TW201916037A - Operating method of resistive memory storage apparatus - Google Patents

Operating method of resistive memory storage apparatus Download PDF

Info

Publication number
TW201916037A
TW201916037A TW106134810A TW106134810A TW201916037A TW 201916037 A TW201916037 A TW 201916037A TW 106134810 A TW106134810 A TW 106134810A TW 106134810 A TW106134810 A TW 106134810A TW 201916037 A TW201916037 A TW 201916037A
Authority
TW
Taiwan
Prior art keywords
current
reset
memory cell
voltage
memory
Prior art date
Application number
TW106134810A
Other languages
Chinese (zh)
Other versions
TWI643194B (en
Inventor
林立偉
鄭如傑
蔡宗寰
曾逸賢
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW106134810A priority Critical patent/TWI643194B/en
Application granted granted Critical
Publication of TWI643194B publication Critical patent/TWI643194B/en
Publication of TW201916037A publication Critical patent/TW201916037A/en

Links

Abstract

A operating method of a resistive memory storage apparatus includes applying a forming voltage to a memory cell and obtaining a cell current of the memory cell; and determining whether to adjust the forming voltage and apply the adjusted forming voltage to the memory cell according to an amount relationship of the cell current and a reference current. The memory cell that the forming voltage is applied operates in a heavy forming and serves as an one-time programmable memory device.

Description

電阻式記憶體儲存裝置的操作方法Operation method of resistive memory storage device

本發明是有關於一種記憶體儲存裝置的操作方法,且特別是有關於一種電阻式記憶體儲存裝置的操作方法。The present invention relates to a method of operating a memory storage device, and more particularly to a method of operating a resistive memory storage device.

近年來電阻式記憶體(諸如電阻式隨機存取記憶體(Resistive Random Access Memory,RRAM))的發展極為快速,是目前最受矚目之未來記憶體的結構。由於電阻式記憶體具備低功耗、高速運作、高密度以及相容於互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)製程技術之潛在優勢,因此非常適合作為下一世代之非揮發性記憶體元件。In recent years, resistive memory (such as Resistive Random Access Memory (RRAM)) has developed extremely rapidly and is currently the most attractive structure of future memory. Resistive memory is ideal for low-power, high-speed operation, high density, and compatibility with Complementary Metal Oxide Semiconductor (CMOS) process technology, making it ideal for next generation non-volatile Memory component.

現行的電阻式記憶體通常包括相對配置的上電極與下電極以及位於上電極與下電極之間的介電層。當對現行的電阻式記憶體進行設定(set)時,我們首先需進行燈絲形成(filament forming)的程序。對電阻式記憶體施加正偏壓,使電流從上電極流至下電極,使得介電層中產生氧空缺(oxygen vacancy)或氧離子(oxygen ion)而形成電流路徑,且此時燈絲形成。在所形成的燈絲中,鄰近上電極處的部分的直徑會大於鄰近下電極處的部分的直徑。此外,當對現行的電阻式記憶體進行重置(reset)時,對電阻式記憶體施加負偏壓,使電流從下電極流至上電極。此時,鄰近下電極處的氧空缺或氧離子脫離電流路徑,使得燈絲在鄰近下電極處斷開。Current resistive memories typically include opposing upper and lower electrodes and a dielectric layer between the upper and lower electrodes. When setting the current resistive memory, we first need to perform the filament forming procedure. A positive bias is applied to the resistive memory to cause a current to flow from the upper electrode to the lower electrode such that an oxygen vacancy or oxygen ion is formed in the dielectric layer to form a current path, and the filament is formed at this time. In the formed filament, the diameter of the portion adjacent to the upper electrode may be larger than the diameter of the portion adjacent to the lower electrode. Further, when the current resistive memory is reset, a negative bias is applied to the resistive memory to cause current to flow from the lower electrode to the upper electrode. At this point, oxygen vacancies or oxygen ions exit the current path adjacent the lower electrode, causing the filament to break adjacent to the lower electrode.

然而,在現有技術中,在對現行的電阻式記憶體進行設定完成之後,雖然可以得到低阻態(low resistance state,LRS)的記憶體晶胞(cell),且其讀取電流大,但是大讀取電流無法得知低阻態的記憶體晶胞的燈絲是否強健到足以符合高溫資料保持能力(High Temperature Data Retention,HTDR)及耐久性(endurance)的檢測。反之,在對現行的電阻式記憶體進行重置完成之後,雖然可以得到高阻態(high resistance state,HRS)的記憶體晶胞,且其讀取電流小,但是小讀取電流無法得知高阻態的記憶體晶胞的燈絲是否強健到足以符合高溫資料保持能力及耐久性的檢測。不符合高溫資料保持能力及耐久性檢測的記憶體晶胞,其可靠度不高,不適合作為一次性可編程(One-time programmable,OTP)的記憶體元件。However, in the prior art, after the current resistive memory is set, although a low resistance state (LRS) memory cell can be obtained, and the read current is large, The large read current does not know whether the filament of the low-resistance memory cell is robust enough to meet the high temperature data retention (HTDR) and endurance detection. On the contrary, after the current resistive memory is reset, although a high resistance state (HRS) memory cell can be obtained, and the read current is small, the small read current cannot be known. Whether the filament of the high-resistance memory cell is strong enough to meet the detection of high-temperature data retention and durability. A memory cell that does not meet the high-temperature data retention capability and durability detection is not reliable and is not suitable as a one-time programmable (OTP) memory component.

本發明提供一種電阻式記憶體儲存裝置的操作方法,其記憶體晶胞的可靠度高,適合作為一次性可編程的記憶體元件。The invention provides a method for operating a resistive memory storage device, wherein the memory cell has high reliability and is suitable as a one-time programmable memory device.

本發明的電阻式記憶體儲存裝置的寫入方法包括:對記憶體晶胞施加形成電壓,並且取得記憶體晶胞的第一晶胞電流;以及依據第一晶胞電流以及第一參考電流的大小關係,決定是否調整形成電壓並且對記憶體晶胞施加已調整的形成電壓。被施加形成電壓後的記憶體晶胞操作在重形成(heavy forming)模式,並且作為一次性可編程的記憶體元件。The writing method of the resistive memory storage device of the present invention includes: applying a forming voltage to the memory cell, and obtaining a first cell current of the memory cell; and according to the first cell current and the first reference current The size relationship determines whether the voltage is formed and an adjusted forming voltage is applied to the memory cell. The memory cell after the voltage is applied is operated in a heavy forming mode and as a one-time programmable memory element.

在本發明的一實施例中,上述的電阻式記憶體儲存裝置的操作方法更包括:判斷第一晶胞電流是否小於第一參考電流;若第一晶胞電流小於第一參考電流,調整形成電壓,並且對記憶體晶胞施加已調整的形成電壓;以及若第一晶胞電流大於或等於第一參考電流,結束操作方法。In an embodiment of the present invention, the operating method of the resistive memory storage device further includes: determining whether the first unit cell current is less than the first reference current; and adjusting the first unit current if the first unit current is less than the first reference current And applying an adjusted forming voltage to the memory cell; and ending the method of operation if the first cell current is greater than or equal to the first reference current.

在本發明的一實施例中,上述的電阻式記憶體儲存裝置的操作方法更包括:重複執行調整形成電壓並且對記憶體晶胞施加已調整的形成電壓的步驟直到第一晶胞電流大於或等於第一參考電流。In an embodiment of the invention, the method for operating the resistive memory storage device further includes: repeating the step of adjusting the forming voltage and applying the adjusted forming voltage to the memory cell until the first cell current is greater than or Equal to the first reference current.

在本發明的一實施例中,上述的形成電壓包括閘極電壓以及位元線電壓。對記憶體晶胞施加形成電壓的步驟包括:分別對記憶體晶胞的閘極及其所耦接的位元線施加閘極電壓及位元線電壓。閘極電壓及位元線電壓的電壓值是依據記憶體晶胞的介電層的材料來決定。In an embodiment of the invention, the forming voltage includes a gate voltage and a bit line voltage. The step of applying a forming voltage to the memory cell includes applying a gate voltage and a bit line voltage to the gate of the memory cell and the bit line to which it is coupled, respectively. The voltage of the gate voltage and the bit line voltage is determined by the material of the dielectric layer of the memory cell.

在本發明的一實施例中,上述的電阻式記憶體儲存裝置的操作方法更包括:對操作在重形成模式的記憶體晶胞進行重置操作。進行重置操作後的記憶體晶胞操作在重形成模式,並且作為多次可編程(Multiple-time programmable,MTP)的記憶體元件。In an embodiment of the invention, the method for operating the resistive memory storage device further includes: performing a reset operation on the memory cell operating in the reforming mode. The memory cell after the reset operation is operated in the reforming mode and is a memory element of multiple-time programmable (MTP).

在本發明的一實施例中,上述的電阻式記憶體儲存裝置的操作方法更包括:取得記憶體晶胞的第二晶胞電流;以及依據第二晶胞電流以及第二參考電流的大小關係,決定是否對操作在重形成模式的記憶體晶胞進行重置操作。依據第二晶胞電流以及第二參考電流的大小關係,決定是否對操作在重形成模式的記憶體晶胞進行重置操作的步驟包括:判斷第二晶胞電流是否小於第二參考電流;若第二晶胞電流小於第二參考電流,不對操作在重形成模式的記憶體晶胞進行重置操作,並且結束操作方法;以及若第二晶胞電流大於或等於第二參考電流,對操作在重形成模式的記憶體晶胞進行重置操作。In an embodiment of the present invention, the method for operating the resistive memory storage device further includes: obtaining a second unit cell current of the memory unit cell; and determining a magnitude relationship between the second unit current and the second reference current Determine whether to perform a reset operation on the memory cell operating in the reforming mode. Determining whether to perform a reset operation on the memory cell operating in the reforming mode according to the magnitude relationship between the second cell current and the second reference current includes: determining whether the second cell current is less than the second reference current; The second unit cell current is less than the second reference current, does not perform a reset operation on the memory cell operating in the reforming mode, and ends the operation method; and if the second unit cell current is greater than or equal to the second reference current, the operation is performed The memory cell of the re-formation mode performs a reset operation.

在本發明的一實施例中,上述的重置操作包括:設定記憶體晶胞的源極線電壓,分別對記憶體晶胞的閘極及其所耦接的源極線施加重置電壓及源極線電壓,並且取得記憶體晶胞的第一重置電流;調整記憶體晶胞的源極線電壓,分別對記憶體晶胞的閘極及其所耦接的源極線施加重置電壓及已調整的源極線電壓,並且取得記憶體晶胞的第二重置電流;以及依據第一重置電流以及第二重置電流的大小關係,決定是否再次調整記憶體晶胞的源極線電壓或者記錄第二重置電流的電流值。依據第一重置電流以及第二重置電流的大小關係,決定是否再次調整記憶體晶胞的源極線電壓或者記錄第二重置電流的電流值的步驟包括:判斷第二重置電流是否小於第一重置電流;若第二重置電流小於第一重置電流,記錄第二重置電流的電流值;以及若第二重置電流等於第一重置電流,再次調整記憶體晶胞的源極線電壓。In an embodiment of the present invention, the resetting operation includes: setting a source line voltage of the memory cell, and applying a reset voltage to the gate of the memory cell and the source line to which the memory cell is coupled, and a source line voltage, and obtaining a first reset current of the memory cell; adjusting a source line voltage of the memory cell, respectively applying a reset to the gate of the memory cell and the source line to which the memory cell is coupled a voltage and an adjusted source line voltage, and obtaining a second reset current of the memory cell; and determining whether to re-adjust the source of the memory cell according to the magnitude relationship between the first reset current and the second reset current The line voltage or the current value of the second reset current. The step of determining whether to adjust the source line voltage of the memory cell or the current value of the second reset current according to the magnitude relationship between the first reset current and the second reset current includes: determining whether the second reset current is Less than the first reset current; if the second reset current is less than the first reset current, recording the current value of the second reset current; and if the second reset current is equal to the first reset current, adjusting the memory cell again Source line voltage.

在本發明的一實施例中,若第二重置電流等於第一重置電流,再次調整記憶體晶胞的源極線電壓,並且重複執行分別對記憶體晶胞的閘極及其所耦接的源極線施加重置電壓及已調整的源極線電壓的步驟,直到第二重置電流小於第一重置電流。In an embodiment of the invention, if the second reset current is equal to the first reset current, the source line voltage of the memory cell is adjusted again, and the gates of the memory cells and their couplings are repeatedly performed. The step of applying the reset voltage and the adjusted source line voltage to the source line until the second reset current is less than the first reset current.

在本發明的一實施例中,上述的電阻式記憶體儲存裝置的操作方法更包括:在記錄第二重置電流的電流值之後,再次調整記憶體晶胞的源極線電壓,分別對記憶體晶胞的閘極及其所耦接的源極線施加重置電壓及已調整的源極線電壓,並且取得記憶體晶胞的第三重置電流;以及依據第二重置電流以及第三重置電流的大小關係,決定是否再次調整記憶體晶胞的源極線電壓或者結束重置操作。依據第二重置電流以及第三重置電流的大小關係,決定是否再次調整記憶體晶胞的源極線電壓或者結束重置操作的步驟包括:判斷第三重置電流是否大於或等於第二重置電流;若第三重置電流大於或等於第二重置電流,結束重置操作;以及若第三重置電流小於第二重置電流,再次調整記憶體晶胞的源極線電壓。In an embodiment of the present invention, the operating method of the resistive memory storage device further includes: after recording the current value of the second reset current, adjusting the source line voltage of the memory cell again, respectively, to the memory The gate of the body cell and the source line coupled thereto apply a reset voltage and an adjusted source line voltage, and obtain a third reset current of the memory cell; and according to the second reset current and the The magnitude relationship of the three reset currents determines whether to adjust the source line voltage of the memory cell again or end the reset operation. Determining whether to adjust the source line voltage of the memory cell or ending the reset operation according to the magnitude relationship between the second reset current and the third reset current includes: determining whether the third reset current is greater than or equal to the second The current is reset; if the third reset current is greater than or equal to the second reset current, the reset operation is ended; and if the third reset current is less than the second reset current, the source line voltage of the memory cell is adjusted again.

在本發明的一實施例中,若第三重置電流小於第二重置電流,再次調整記憶體晶胞的源極線電壓,並且重複執行分別對記憶體晶胞的閘極及其所耦接的源極線施加重置電壓及已調整的源極線電壓的步驟,直到第三重置電流大於或等於第二重置電流。In an embodiment of the invention, if the third reset current is less than the second reset current, the source line voltage of the memory cell is adjusted again, and the gates of the memory cells and their couplings are repeatedly performed. The step of applying the reset voltage and the adjusted source line voltage to the source line until the third reset current is greater than or equal to the second reset current.

基於上述,在本發明的示範實施例中,被施加形成電壓後的記憶體晶胞操作在重形成模式中,其可靠度高,適合作為一次性可編程的記憶體元件。Based on the above, in an exemplary embodiment of the present invention, the memory cell after the voltage is applied is operated in the reforming mode, which is highly reliable and is suitable as a one-time programmable memory element.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

以下提出多個實施例來說明本發明,然而本發明不僅限於所例示的多個實施例。又實施例之間也允許有適當的結合。在本申請說明書全文(包括申請專利範圍)中所使用的「耦接」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。此外,「訊號」一詞可指至少一電流、電壓、電荷、溫度、資料、電磁波或任何其他一或多個訊號。The invention is illustrated by the following examples, but the invention is not limited to the illustrated embodiments. Further combinations are also allowed between the embodiments. The term "coupled" as used throughout the specification (including the scope of the claims) may be used in any direct or indirect connection. For example, if the first device is described as being coupled to the second device, it should be construed that the first device can be directly connected to the second device, or the first device can be connected through other devices or some kind of connection means. Connected to the second device indirectly. In addition, the term "signal" may refer to at least one current, voltage, charge, temperature, data, electromagnetic wave or any other one or more signals.

圖1繪示本發明一實施例之記憶體儲存裝置的概要示意圖。圖2繪示本發明一相關例之記憶體晶胞中的燈絲經正常形成程序、正常重置操作及正常設定操作的概要示意圖。請參考圖1及圖2,此相關例之記憶體儲存裝置100包括記憶體控制電路110以及記憶體晶胞陣列120。記憶體晶胞陣列120耦接至記憶體控制電路110。記憶體晶胞陣列120包括多個以陣列方式排列的記憶體晶胞122。在此相關例中,電阻式記憶體元件122包括上電極210、下電極220以及介電層230。上電極210及下電極220為良好的金屬導體,兩者的材料可以相同或不相同。介電層230設置在上電極210以及下電極220之間。介電層230包括介電材料,例如包括過渡金屬氧化物(Transition Metal Oxide,TMO)。此種結構的記憶體晶胞122至少具有兩種阻值狀態,利用在電極兩端施加不同的電壓來改變電阻式記憶體元件122的阻值狀態,以提供儲存資料的功能。FIG. 1 is a schematic diagram of a memory storage device according to an embodiment of the invention. 2 is a schematic diagram showing a normal formation procedure, a normal reset operation, and a normal setting operation of a filament in a memory cell of a related example of the present invention. Referring to FIG. 1 and FIG. 2, the memory storage device 100 of this related example includes a memory control circuit 110 and a memory cell array 120. The memory cell array 120 is coupled to the memory control circuit 110. The memory cell array 120 includes a plurality of memory cells 122 arranged in an array. In this related example, the resistive memory element 122 includes an upper electrode 210, a lower electrode 220, and a dielectric layer 230. The upper electrode 210 and the lower electrode 220 are good metal conductors, and the materials of the two may be the same or different. The dielectric layer 230 is disposed between the upper electrode 210 and the lower electrode 220. The dielectric layer 230 includes a dielectric material including, for example, Transition Metal Oxide (TMO). The memory cell 122 of such a structure has at least two resistance states, and the resistance state of the resistive memory device 122 is changed by applying different voltages across the electrodes to provide a function of storing data.

在本實施例中,記憶體晶胞122例如具有一電晶體一電阻(1T1R)的結構,或者二電晶體二電阻(2T2R)的結構,其實施方式可以由所屬技術領域的通常知識獲致足夠的教示、建議與實施說明。本發明對記憶體晶胞122的結構並不加以限制。In the present embodiment, the memory cell 122 has, for example, a transistor-resistor (1T1R) structure or a two-diode two-resistor (2T2R) structure, and its implementation can be sufficiently obtained by the general knowledge in the art. Instructions, suggestions and implementation instructions. The present invention does not limit the structure of the memory cell 122.

在此相關例中,記憶體控制電路110用以對記憶體晶胞122進行正常形成程序(forming procedure)。所述正常形成程序是指對記憶體晶胞122進行初始化的過程。在此過程中,記憶體晶胞122的電極兩端持續被施加偏壓V1(形成電壓),以對介電層230產生一個外加電場。在此相關例中,在上電極210施加其值為V1伏特的正電壓,在下電極220施加0伏特的電壓。此外加電場會將氧原子222分離成氧離子212及氧空缺232。氧空缺232在介電層230中形成燈絲(filament),作為電流傳遞路徑。當外加電場超過臨界值時,介電層230會產生介電崩潰現象,從而由高阻態轉變為低阻態。此種崩潰並非永久,其阻值仍可改變。In this related example, the memory control circuit 110 is used to perform a normal forming procedure on the memory cell 122. The normal formation procedure refers to the process of initializing the memory cell 122. During this process, a bias voltage V1 (forming voltage) is continuously applied across the electrodes of the memory cell 122 to generate an applied electric field to the dielectric layer 230. In this related example, a positive voltage of V1 volt is applied to the upper electrode 210, and a voltage of 0 volt is applied to the lower electrode 220. In addition, the addition of an electric field separates the oxygen atoms 222 into oxygen ions 212 and oxygen vacancies 232. The oxygen vacancy 232 forms a filament in the dielectric layer 230 as a current transfer path. When the applied electric field exceeds the critical value, the dielectric layer 230 will undergo a dielectric collapse phenomenon, thereby transitioning from a high resistance state to a low resistance state. This type of collapse is not permanent and its resistance can still change.

經正常形成程序的記憶體晶胞122具有低阻態。在正常重置操作時,記憶體晶胞122的上電極210被施加0伏特的電壓,下電極220被施加其值為V2伏特的正電壓。此電壓差值是正常重置電壓,例如-V2伏特。經正常重置操作的記憶體晶胞122其狀態由低阻態轉變為高阻態。接著,在正常設定操作時,記憶體晶胞122的上電極210被施加其值為V3伏特的正電壓,下電極220被施加0伏特的電壓。此電壓差值是正常設定電壓,例如+V3伏特。經正常設定操作的記憶體晶胞122其狀態由高阻態轉變為低阻態。在此相關例中,正常重置電壓及正常設定電壓的大小及極性僅用以例示說明,不用以限定本發明。在本實施例中,圖2所繪示的形成程序、重置操作及設定操作僅用以例示說明,不用以限定本發明。The memory cell 122 that has undergone the normal formation process has a low resistance state. At the normal reset operation, the upper electrode 210 of the memory cell 122 is applied with a voltage of 0 volts, and the lower electrode 220 is applied with a positive voltage having a value of V2 volts. This voltage difference is a normal reset voltage, such as -V2 volts. The memory cell 122 that has undergone a normal reset operation changes its state from a low resistance state to a high resistance state. Next, at the normal setting operation, the upper electrode 210 of the memory cell 122 is applied with a positive voltage of V3 volts, and the lower electrode 220 is applied with a voltage of 0 volts. This voltage difference is a normal set voltage, such as +V3 volts. The memory cell 122 operated by the normal setting changes its state from a high resistance state to a low resistance state. In this related example, the magnitude and polarity of the normal reset voltage and the normal set voltage are for illustrative purposes only, and are not intended to limit the present invention. In the present embodiment, the forming procedure, the resetting operation, and the setting operation illustrated in FIG. 2 are for illustrative purposes only, and are not intended to limit the present invention.

另一方面,對可靠度測試以及商業化而言,記憶體儲存裝置100的高溫資料保持能力及耐久性具有決定性的影響。記憶體儲存裝置100的高溫資料保持能力之所以會漏失的原因之一在於氧離子212從電極層(例如上電極210)漂移至介電層230,與其中的氧空缺232再次結合,從而可能阻斷介電層230中的電流傳遞路徑,亦即造成其中的燈絲斷裂。On the other hand, for reliability testing and commercialization, the high temperature data retention capability and durability of the memory storage device 100 have a decisive influence. One of the reasons why the high temperature data retention capability of the memory storage device 100 is lost is that the oxygen ions 212 drift from the electrode layer (for example, the upper electrode 210) to the dielectric layer 230, and recombine with the oxygen vacancy 232 therein, thereby possibly blocking The current transfer path in the dielectric layer 230 is broken, that is, the filament is broken therein.

圖3繪示本發明一實施例之記憶體晶胞經熱處理前後,其晶胞電流的累積分布函數(Cumulative Distribution Function,CDF)圖。請參考圖1至圖3,在圖2的相關例中,記憶體晶胞122經過正常(normal)的形成程序之後,可在後續進行正常設定操作或正常重置操作,以改變記憶體晶胞122的電阻狀態,從而記錄寫入的資料是邏輯1或邏輯0。所述正常形成程序例如是在形成程序進行時,對記憶體晶胞122的閘極施加1.5至2.5伏特的電壓(即閘極電壓Vg=1.5V~2.5V),並且對與其耦接的位元線施加大於0伏特且小於4伏特的電壓(即位元線電壓Vbl=0V~4V)。3 is a diagram showing a Cumulative Distribution Function (CDF) diagram of a unit cell current before and after heat treatment of a memory cell according to an embodiment of the invention. Referring to FIG. 1 to FIG. 3, in the correlation example of FIG. 2, after the memory cell 122 is subjected to a normal formation process, a normal setting operation or a normal reset operation may be performed to change the memory cell. The resistance state of 122, so that the recorded data is logical 1 or logic 0. The normal formation process is, for example, applying a voltage of 1.5 to 2.5 volts (ie, gate voltage Vg=1.5V to 2.5V) to the gate of the memory cell 122 when the formation process is performed, and the bit coupled thereto The line applies a voltage greater than 0 volts and less than 4 volts (ie, bit line voltage Vbl=0V~4V).

在圖2的相關例中,經過正常的形成程序的記憶體晶胞122,其晶胞電流大致分布在圖3的區域I中。區域I是晶胞電流介在0至第一臨界電流Ith1之間的區域,第一臨界電流Ith1約為22微安培(microampere,μA)。操作在區域I中的記憶體晶胞122,在經過熱處理程序前後,其晶胞電流分布曲線A、B有顯著差異,亦即記憶體晶胞122的高溫資料保持能力明顯衰減。In the correlation example of FIG. 2, the cell current of the normal formation process memory cell 122 is substantially distributed in the region I of FIG. The region I is a region where the cell current is between 0 and the first critical current Ith1, and the first critical current Ith1 is about 22 microampere (μA). The memory cell 122 operating in the region I has a significant difference in the cell current distribution curves A and B before and after the heat treatment process, that is, the high temperature data retention capability of the memory cell 122 is significantly attenuated.

在本發明的示範實施例中,相較於正常形成程序,記憶體控制電路110在重形成程序中對記憶體晶胞122施加較大的形成電壓,例如閘極電壓Vg>6.0V且位元線電壓Vbl>5.0V。在本實施例中,閘極電壓Vg及位元線電壓Vbl的電壓值例如是依據記憶體晶胞122的介電層230的材料來決定。因此,在本發明的示範實施例中,經過重形成程序的記憶體晶胞122,其晶胞電流大致分布在圖3的區域II中。區域II是晶胞電流介在第二臨界電流Ith2至40微安培之間的區域,第二臨界電流Ith2約為27微安培。操作在區域II中的記憶體晶胞122,在經過熱處理程序前後,其晶胞電流分布曲線C、D大致相同,亦即記憶體晶胞122的高溫資料保持能力實質上不變,可靠度高。因此,在本發明的示範實施例中,被施加形成電壓後的記憶體晶胞122操作在重形成模式(即區域II中),其高溫資料保持能力不變,可靠度高,適合作為一次性可編程的記憶體元件。In an exemplary embodiment of the present invention, the memory control circuit 110 applies a larger forming voltage to the memory cell 122 in the reforming process than the normal forming process, such as a gate voltage Vg > 6.0V and a bit. The line voltage Vbl>5.0V. In the present embodiment, the voltage values of the gate voltage Vg and the bit line voltage Vb1 are determined, for example, depending on the material of the dielectric layer 230 of the memory cell 122. Thus, in an exemplary embodiment of the invention, the memory cell 122 of the reformatted program has a unit cell current that is substantially distributed in region II of FIG. Region II is the region where the unit cell current is between the second critical current Ith2 and 40 microamperes, and the second critical current Ith2 is about 27 microamperes. The memory cell 122 operating in the region II has substantially the same cell current distribution curves C and D before and after the heat treatment process, that is, the high temperature data retention capability of the memory cell 122 is substantially constant, and the reliability is high. . Therefore, in the exemplary embodiment of the present invention, the memory cell 122 after the voltage is applied is operated in the reforming mode (ie, in the region II), the high temperature data retention capability is constant, and the reliability is high, which is suitable as a one-time Programmable memory component.

在本發明的示範實施例中,重形成模式例如是相較於正常形成程序,記憶體控制電路110在重形成程序中對記憶體晶胞122施加較大的形成電壓,以使記憶體晶胞122可操作在晶胞電流大於第二臨界電流的區域II中。可操作在重形成模式的記憶體晶胞122的可靠度高,適合作為一次性可編程的記憶體元件。在圖3的示範實施例中,其所揭示的各種參數(包括閘極電壓、位元線電壓、分布曲線以及臨界電流值)僅用以例示說明,不用以限定本發明。以下例示多個示範實施例以說明電阻式記憶體儲存裝置的操作方法。In an exemplary embodiment of the present invention, the reforming mode is, for example, compared to a normal forming process, and the memory control circuit 110 applies a large forming voltage to the memory cell 122 in the reforming process to cause the memory cell 122 is operable in region II where the unit cell current is greater than the second critical current. The memory cell 122 that can operate in the reforming mode has high reliability and is suitable as a one-time programmable memory element. In the exemplary embodiment of FIG. 3, the various parameters disclosed (including gate voltage, bit line voltage, distribution curve, and critical current value) are for illustrative purposes only and are not intended to limit the invention. A number of exemplary embodiments are exemplified below to illustrate a method of operation of a resistive memory storage device.

圖4繪示本發明一實施例之記憶體儲存裝置的操作方法的步驟流程圖。請參考圖1及圖4,在本實施例中,在步驟S100中,記憶體控制電路110對記憶體晶胞122施加形成電壓,並且取得記憶體晶胞122的第一晶胞電流。在步驟S100中,相較於正常形成程序,施加在記憶體晶胞122的形成電壓例如是較大的形成電壓。在步驟S110中,記憶體控制電路110依據第一晶胞電流以及第一參考電流的大小關係,決定是否調整形成電壓並且對記憶體晶胞122施加已調整的形成電壓。在本實施例中,被施加形成電壓後的記憶體晶胞或者被施加已調整的形成電壓後的記憶體晶胞可操作在重形成模式,其可靠度高,適合作為一次性可編程的記憶體元件。4 is a flow chart showing the steps of an operation method of a memory storage device according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 4, in the embodiment, in step S100, the memory control circuit 110 applies a forming voltage to the memory cell 122 and obtains a first cell current of the memory cell 122. In step S100, the formation voltage applied to the memory cell 122 is, for example, a larger formation voltage than the normal formation process. In step S110, the memory control circuit 110 determines whether to adjust the forming voltage and apply the adjusted forming voltage to the memory cell 122 according to the magnitude relationship between the first cell current and the first reference current. In this embodiment, the memory cell after the voltage is applied or the memory cell after the applied voltage is applied can be operated in the reforming mode, which has high reliability and is suitable as a one-time programmable memory. Body component.

圖5繪示本發明另一實施例之記憶體儲存裝置的操作方法的步驟流程圖。請參考圖1及圖5,在本實施例中,在步驟S200中,記憶體控制電路110設定形成電壓的電壓值。形成電壓的電壓值的大小例如是依據記憶體晶胞122的閘極電壓或位元線電壓,或者依據形成電壓的脈衝寬度來決定。在步驟S200中,記憶體控制電路110所設定的形成電壓例如是相較於正常形成程序的形成電壓較大的形成電壓。在一實施例中,記憶體控制電路110所設定的形成電壓的脈衝寬度可與正常形成程序的形成電壓的脈衝寬度相同或較大。在步驟S210中,記憶體控制電路110對記憶體晶胞122施加形成電壓。在步驟S210中,對記憶體晶胞122施加形成電壓的操作例如是分別對記憶體晶胞122的閘極及其所耦接的位元線施加閘極電壓Vg及位元線電壓Vbl。在本實施例中,閘極電壓Vg及位元線電壓Vbl的電壓值例如是依據記憶體晶胞122的介電層230的材料來決定。在步驟S220中,記憶體控制電路110取得記憶體晶胞122的第一晶胞電流I1。FIG. 5 is a flow chart showing the steps of a method for operating a memory storage device according to another embodiment of the present invention. Referring to FIG. 1 and FIG. 5, in the embodiment, in step S200, the memory control circuit 110 sets a voltage value for forming a voltage. The magnitude of the voltage value at which the voltage is formed is determined, for example, depending on the gate voltage of the memory cell 122 or the bit line voltage, or depending on the pulse width at which the voltage is formed. In step S200, the formation voltage set by the memory control circuit 110 is, for example, a formation voltage that is larger than the formation voltage of the normal formation program. In one embodiment, the pulse width of the forming voltage set by the memory control circuit 110 may be the same as or larger than the pulse width of the forming voltage of the normal forming program. In step S210, the memory control circuit 110 applies a forming voltage to the memory cell 122. In step S210, the operation of applying a voltage to the memory cell 122 is, for example, applying a gate voltage Vg and a bit line voltage Vbl to the gate of the memory cell 122 and the bit line to which it is coupled. In the present embodiment, the voltage values of the gate voltage Vg and the bit line voltage Vb1 are determined, for example, depending on the material of the dielectric layer 230 of the memory cell 122. In step S220, the memory control circuit 110 acquires the first unit cell current I1 of the memory cell 122.

接著,在步驟S230中,記憶體控制電路110判斷第一晶胞電流I1是否小於第一參考電流Iref1。在本實施例中,第一參考電流Iref1例如被設定為35微安培,此值並不用以限定本發明。若第一晶胞電流I1大於或等於第一參考電流Iref1(即I1≧Iref1),表示被施加形成電壓後的記憶體晶胞可操作在重形成模式,並且適合作為一次性可編程的記憶體元件。因此,記憶體控制電路110結束記憶體儲存裝置100的操作方法。Next, in step S230, the memory control circuit 110 determines whether the first unit cell current I1 is smaller than the first reference current Iref1. In the present embodiment, the first reference current Iref1 is set, for example, to 35 microamperes, which is not intended to limit the invention. If the first cell current I1 is greater than or equal to the first reference current Iref1 (ie, I1≧Iref1), it means that the memory cell after the applied voltage is applied is operable in the reforming mode, and is suitable as a one-time programmable memory. element. Therefore, the memory control circuit 110 ends the operation method of the memory storage device 100.

若第一晶胞電流I1小於第一參考電流Iref1,記憶體控制電路110執行步驟S240。在步驟S240中,記憶體控制電路110調整步驟S200所設定的形成電壓,並且回到步驟S210對記憶體晶胞122施加已調整的形成電壓。在本實施例中,記憶體控制電路110調整形成電壓的方式之一例如是步階化(stepping)形成電壓,亦即將形成電壓調整為準位逐漸增加的脈衝寬度訊號。If the first unit cell current I1 is smaller than the first reference current Iref1, the memory control circuit 110 performs step S240. In step S240, the memory control circuit 110 adjusts the formation voltage set in step S200, and returns to step S210 to apply the adjusted formation voltage to the memory cell 122. In the present embodiment, one of the ways in which the memory control circuit 110 adjusts the voltage formation is, for example, stepping to form a voltage, that is, a pulse width signal whose voltage is adjusted to a gradually increasing level.

接著,記憶體控制電路110重複執行步驟S210至S240直到第一晶胞電流I1大於或等於第一參考電流Iref1,並且結束記憶體儲存裝置100的操作方法。因此,被施加已調整的形成電壓後的記憶體晶胞可操作在重形成模式,並且適合作為一次性可編程的記憶體元件。在本實施例中,記憶體控制電路110也可以在執行操作方法之前設定對記憶體晶胞122施加形成電壓的次數為一或多次(例如5次或更少),此次數不用以限定本發明。因此,記憶體控制電路110重複執行步驟S210至S240的次數不大於所設定的次數。在一實施例中,記憶體控制電路110也可不重複執行步驟S210至S240,亦即在第一次施加形成電壓之後,第一晶胞電流I1即大於或等於第一參考電流Iref1。Next, the memory control circuit 110 repeatedly performs steps S210 to S240 until the first unit cell current I1 is greater than or equal to the first reference current Iref1, and ends the operation method of the memory storage device 100. Therefore, the memory cell after the applied forming voltage is applied can operate in the reforming mode and is suitable as a one-time programmable memory element. In this embodiment, the memory control circuit 110 may also set the number of times the voltage is applied to the memory cell 122 to be one or more times (for example, five times or less) before performing the operation method. invention. Therefore, the number of times the memory control circuit 110 repeatedly performs steps S210 to S240 is not greater than the set number of times. In an embodiment, the memory control circuit 110 may not repeatedly perform steps S210 to S240, that is, after the first application of the forming voltage, the first unit current I1 is greater than or equal to the first reference current Iref1.

因此,在本實施例中,被施加形成電壓後的記憶體晶胞或者被施加已調整的形成電壓後的記憶體晶胞可操作在重形成模式,其可靠度高,適合作為一次性可編程的記憶體元件。在本發明的示範實施例中,記憶體控制電路110可對操作在重形成模式的記憶體晶胞122進行重置操作,以使記憶體晶胞122可作為多次可編程的記憶體元件。以下例示至少一個示範實施例以說明電阻式記憶體儲存裝置的操作方法。Therefore, in the present embodiment, the memory cell after the voltage is applied or the memory cell after the applied voltage is applied can be operated in the reforming mode, and the reliability is high, and is suitable as one-time programmable. Memory component. In an exemplary embodiment of the invention, the memory control circuit 110 may perform a reset operation on the memory cell 122 operating in the reforming mode such that the memory cell 122 can function as a plurality of programmable memory elements. At least one exemplary embodiment is exemplified below to illustrate a method of operation of a resistive memory storage device.

圖6繪示本發明另一實施例之記憶體儲存裝置的操作方法的步驟流程圖。請參考圖1及圖6,在本實施例中,記憶體晶胞122例如是可操作在重形成模式,且可靠度高,適合作為一次性可編程的記憶體元件。本實施例之操作方法可對操作在重形成模式的記憶體晶胞122進行重置操作,以使記憶體晶胞122可作為多次可編程的記憶體元件。6 is a flow chart showing the steps of a method of operating a memory storage device according to another embodiment of the present invention. Referring to FIG. 1 and FIG. 6, in the present embodiment, the memory cell 122 is operable in a reforming mode, for example, and has high reliability, and is suitable as a one-time programmable memory device. The operation method of this embodiment can perform a reset operation on the memory cell 122 operating in the reforming mode, so that the memory cell 122 can function as a multi-programmable memory element.

在步驟S300中,記憶體控制電路110取得記憶體晶胞122的第二晶胞電流I2。在步驟S310中,記憶體控制電路110判斷第二晶胞電流I2是否小於第二參考電流Iref2。若第二晶胞電流I2小於第二參考電流Iref2(即I2<Iref2),記憶體控制電路110不對操作在重形成模式的記憶體晶胞122進行重置操作,並且結束操作方法。若第二晶胞電流I2大於或等於第二參考電流Iref2,記憶體控制電路110執行步驟S322,對操作在重形成模式的記憶體晶胞122進行重置操作。因此,在步驟S310中,記憶體控制電路110依據第二晶胞電流I2以及第二參考電流Iref2的大小關係,決定是否對操作在重形成模式的記憶體晶胞進行重置操作。In step S300, the memory control circuit 110 obtains the second unit cell current I2 of the memory cell 122. In step S310, the memory control circuit 110 determines whether the second unit cell current I2 is smaller than the second reference current Iref2. If the second unit cell current I2 is smaller than the second reference current Iref2 (i.e., I2 < Iref2), the memory control circuit 110 does not perform a reset operation on the memory cell 122 operating in the reforming mode, and ends the operation method. If the second unit cell current I2 is greater than or equal to the second reference current Iref2, the memory control circuit 110 performs step S322 to perform a reset operation on the memory unit cell 122 operating in the reforming mode. Therefore, in step S310, the memory control circuit 110 determines whether to perform a reset operation on the memory cell operating in the reforming mode according to the magnitude relationship between the second cell current I2 and the second reference current Iref2.

在步驟S322中,記憶體控制電路110設定記憶體晶胞122的源極線電壓。在步驟S324中,記憶體控制電路110分別對記憶體晶胞122的閘極及其所耦接的源極線施加重置電壓及源極線電壓。在步驟S326中,記憶體控制電路110取得記憶體晶胞122的第一重置電流Irst1,並且記錄第一重置電流值。在步驟S332中,記憶體控制電路110調整記憶體晶胞122的源極線電壓。在步驟S334中,記憶體控制電路110分別對記憶體晶胞122的閘極及其所耦接的源極線施加重置電壓及已調整的源極線電壓。在步驟S336中,記憶體控制電路110取得記憶體晶胞122的第二重置電流Irst2。In step S322, the memory control circuit 110 sets the source line voltage of the memory cell 122. In step S324, the memory control circuit 110 applies a reset voltage and a source line voltage to the gate of the memory cell 122 and the source line to which it is coupled. In step S326, the memory control circuit 110 takes the first reset current Irst1 of the memory cell 122 and records the first reset current value. In step S332, the memory control circuit 110 adjusts the source line voltage of the memory cell 122. In step S334, the memory control circuit 110 applies a reset voltage and an adjusted source line voltage to the gate of the memory cell 122 and the source line to which it is coupled. In step S336, the memory control circuit 110 obtains the second reset current Irst2 of the memory cell 122.

在步驟S340中,記憶體控制電路110判斷第二重置電流Irst2是否小於第一重置電流Irst1。若第二重置電流Irst2小於第一重置電流Irst1(即Irst2<Irst1),記憶體控制電路110執行步驟S350記錄第二重置電流Irst2的電流值。若第二重置電流Irst2等於第一重置電流Irst1(即Irst2=Irst1),記憶體控制電路110重複執行步驟S332至S340,直到第二重置電流Irst2小於第一重置電流Irst1。因此,在步驟S340中,記憶體控制電路110依據第一重置電流Irst1以及第二重置電流Irst2的大小關係,決定是否再次調整記憶體晶胞122的源極線電壓或者記錄第二重置電流Irst2的電流值。In step S340, the memory control circuit 110 determines whether the second reset current Irst2 is smaller than the first reset current Irst1. If the second reset current Irst2 is smaller than the first reset current Irst1 (ie, Irst2 < Irst1), the memory control circuit 110 performs step S350 to record the current value of the second reset current Irst2. If the second reset current Irst2 is equal to the first reset current Irst1 (ie, Irst2=Irst1), the memory control circuit 110 repeatedly performs steps S332 to S340 until the second reset current Irst2 is smaller than the first reset current Irst1. Therefore, in step S340, the memory control circuit 110 determines whether to adjust the source line voltage of the memory cell 122 or record the second reset according to the magnitude relationship between the first reset current Irst1 and the second reset current Irst2. Current value of current Irst2.

在步驟S362中,記憶體控制電路110調整記憶體晶胞122的源極線電壓。在步驟S364中,記憶體控制電路110分別對記憶體晶胞122的閘極及其所耦接的源極線施加重置電壓及已調整的位元線電壓。在步驟S366中,記憶體控制電路110取得記憶體晶胞122的第三重置電流Irst3。在步驟S370中,記憶體控制電路110判斷第三重置電流Irst3是否大於或等於第二重置電流Irst2。若第三重置電流Irst3大於或等於第二重置電流Irst2(即Irst3≧Irst2),記憶體控制電路110結束重置遭作。若第三重置電流Irst3小於第二重置電流Irst2(即Irst3<Irst2),記憶體控制電路110重複執行步驟S362至S370,直到第三重置電流Irst3大於或等於第二重置電流Irst2。In step S362, the memory control circuit 110 adjusts the source line voltage of the memory cell 122. In step S364, the memory control circuit 110 applies a reset voltage and an adjusted bit line voltage to the gate of the memory cell 122 and the source line to which it is coupled. In step S366, the memory control circuit 110 obtains the third reset current Irst3 of the memory cell 122. In step S370, the memory control circuit 110 determines whether the third reset current Irst3 is greater than or equal to the second reset current Irst2. If the third reset current Irst3 is greater than or equal to the second reset current Irst2 (ie, Irst3 ≧ Irst2), the memory control circuit 110 ends the reset. If the third reset current Irst3 is smaller than the second reset current Irst2 (ie, Irst3<Irst2), the memory control circuit 110 repeatedly performs steps S362 to S370 until the third reset current Irst3 is greater than or equal to the second reset current Irst2.

在本實施例中,取得記憶體晶胞122的晶胞電流或重置電流的方式之一例如是對記憶體晶胞122施加讀取電壓或驗證電壓,以偵測記憶體晶胞122的電流值的大小。在本實施例中,在本實施例中,記憶體控制電路110調整重置電壓的方式之一例如是步階化重置電壓,亦即將重置電壓調整為準位逐漸增加的脈衝寬度訊號。在本實施例中,利用圖6所繪示的操作方法,記憶體控制電路110可對操作在重形成模式的記憶體晶胞122進行重置操作,以使記憶體晶胞122可作為多次可編程的記憶體元件。In the present embodiment, one of the ways of obtaining the cell current or the reset current of the memory cell 122 is, for example, applying a read voltage or a verify voltage to the memory cell 122 to detect the current of the memory cell 122. The size of the value. In this embodiment, in the embodiment, one of the ways in which the memory control circuit 110 adjusts the reset voltage is, for example, a stepped reset voltage, that is, the reset voltage is adjusted to a pulse width signal whose level is gradually increased. In this embodiment, by using the operation method illustrated in FIG. 6, the memory control circuit 110 can perform a reset operation on the memory cell 122 operating in the reforming mode, so that the memory cell 122 can be used as multiple times. Programmable memory component.

綜上所述,在本發明的示範實施例中,相較正常形成程序,在重形成程序中被施加較大的形成電壓後的記憶體晶胞或者被施加已調整的較大的形成電壓後的記憶體晶胞可操作在重形成模式,其可靠度高,適合作為一次性可編程的記憶體元件。此外,記憶體控制電路可對操作在重形成模式的記憶體晶胞進行重置操作,以使記憶體晶胞可作為多次可編程的記憶體元件。此種操作方式可維持操作在重形成模式的記憶體儲存裝置的高溫資料保持能力以及優化操作在重形成模式的記憶體儲存裝置的耐久性,提高可靠度。In summary, in the exemplary embodiment of the present invention, the memory cell after a larger forming voltage is applied in the reforming process or after the adjusted larger forming voltage is applied, compared to the normal forming process. The memory cell can operate in a reforming mode with high reliability and is suitable as a one-time programmable memory component. In addition, the memory control circuit can perform a reset operation on the memory cell operating in the reforming mode so that the memory cell can serve as a multi-programmable memory element. This mode of operation maintains the high temperature data retention capability of the memory storage device operating in the reforming mode and optimizes the durability of the memory storage device operating in the reforming mode to improve reliability.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧記憶體儲存裝置100‧‧‧ memory storage device

110‧‧‧記憶體控制電路110‧‧‧Memory Control Circuit

120‧‧‧記憶體晶胞陣列120‧‧‧Memory cell array

122‧‧‧記憶體晶胞122‧‧‧ memory cell

210‧‧‧上電極210‧‧‧Upper electrode

212‧‧‧氧離子212‧‧‧Oxygen ions

220‧‧‧下電極220‧‧‧ lower electrode

222‧‧‧氧原子222‧‧‧Oxygen atom

230‧‧‧介電層230‧‧‧ dielectric layer

232‧‧‧氧空缺232‧‧‧Oxygen vacancies

V1‧‧‧形成電壓V1‧‧‧ forming voltage

V2‧‧‧重置電壓V2‧‧‧Reset voltage

V3‧‧‧設定電壓V3‧‧‧Set voltage

HRS‧‧‧高阻態HRS‧‧‧high resistance state

LRS‧‧‧低阻態LRS‧‧‧Low resistance state

A、B、C、D‧‧‧分布曲線A, B, C, D‧‧‧ distribution curves

S100、S110、S200、S210、S220、S230、S240、S300、S310、S322、S324、S326、S332、S334、S336、S340、S350、S362、S364、S366、S370‧‧‧方法步驟S100, S110, S200, S210, S220, S230, S240, S300, S310, S322, S324, S326, S332, S334, S336, S340, S350, S362, S364, S366, S370‧‧‧ method steps

圖1繪示本發明一實施例之記憶體儲存裝置的概要示意圖。 圖2繪示本發明一相關例之記憶體晶胞中的燈絲經形成程序、重置操作及設定操作的概要示意圖。 圖3繪示本發明一實施例之記憶體晶胞經熱處理前後,其晶胞電流的累積分布函數圖。 圖4繪示本發明一實施例之記憶體儲存裝置的操作方法的步驟流程圖。 圖5繪示本發明另一實施例之記憶體儲存裝置的操作方法的步驟流程圖。 圖6繪示本發明另一實施例之記憶體儲存裝置的操作方法的步驟流程圖。FIG. 1 is a schematic diagram of a memory storage device according to an embodiment of the invention. 2 is a schematic diagram showing a filament formation process, a reset operation, and a setting operation in a memory cell of a related example of the present invention. 3 is a graph showing a cumulative distribution function of unit cell currents of a memory cell before and after heat treatment according to an embodiment of the invention. 4 is a flow chart showing the steps of an operation method of a memory storage device according to an embodiment of the present invention. FIG. 5 is a flow chart showing the steps of a method for operating a memory storage device according to another embodiment of the present invention. 6 is a flow chart showing the steps of a method of operating a memory storage device according to another embodiment of the present invention.

Claims (10)

一種電阻式記憶體儲存裝置的操作方法,包括: 對一記憶體晶胞施加一形成電壓,並且取得該記憶體晶胞的一第一晶胞電流;以及 依據該第一晶胞電流以及一第一參考電流的大小關係,決定是否調整該形成電壓並且對該記憶體晶胞施加已調整的該形成電壓,其中被施加該形成電壓後的該記憶體晶胞操作在一重形成模式,並且作為一次性可編程的記憶體元件。A method of operating a resistive memory storage device, comprising: applying a forming voltage to a memory cell and obtaining a first cell current of the memory cell; and according to the first cell current and a first Determining whether to adjust the forming voltage and applying the adjusted forming voltage to the memory unit cell, wherein the memory cell after the forming voltage is applied is operated in a reforming mode, and Programmable memory components. 如申請專利範圍第1項所述的電阻式記憶體儲存裝置的操作方法,更包括: 判斷該第一晶胞電流是否小於該第一參考電流; 若該第一晶胞電流小於該第一參考電流,調整該形成電壓,並且對該記憶體晶胞施加已調整的該形成電壓;以及 若該第一晶胞電流大於或等於該第一參考電流,結束該操作方法。The method of operating the resistive memory storage device of claim 1, further comprising: determining whether the first unit cell current is less than the first reference current; if the first unit cell current is less than the first reference Current, adjusting the forming voltage, and applying the adjusted forming voltage to the memory cell; and ending the method of operation if the first cell current is greater than or equal to the first reference current. 如申請專利範圍第1項所述的電阻式記憶體儲存裝置的操作方法,更包括: 重複執行調整該形成電壓並且對該記憶體晶胞施加已調整的該形成電壓的步驟直到該第一晶胞電流大於或等於該第一參考電流。The method of operating the resistive memory storage device of claim 1, further comprising: repeating the step of adjusting the forming voltage and applying the adjusted forming voltage to the memory cell until the first crystal The cell current is greater than or equal to the first reference current. 如申請專利範圍第1項所述的電阻式記憶體儲存裝置的操作方法,其中該形成電壓包括一閘極電壓以及一位元線電壓,以及對該記憶體晶胞施加該形成電壓的步驟包括: 分別對該記憶體晶胞的閘極及其所耦接的位元線施加該閘極電壓及該位元線電壓,其中該閘極電壓及該位元線電壓的電壓值是依據該記憶體晶胞的介電層的材料來決定。The method of operating a resistive memory storage device according to claim 1, wherein the forming voltage comprises a gate voltage and a one-bit line voltage, and the step of applying the forming voltage to the memory unit cell comprises Applying the gate voltage and the bit line voltage to the gate of the memory cell and the bit line to which the memory cell is coupled, wherein the gate voltage and the voltage value of the bit line voltage are based on the memory The material of the dielectric layer of the bulk cell is determined. 如申請專利範圍第1項所述的電阻式記憶體儲存裝置的操作方法,更包括: 對操作在該重形成模式的該記憶體晶胞進行一重置操作,其中進行該重置操作後的該記憶體晶胞操作在該重形成模式,並且作為多次可編程的記憶體元件。The method for operating a resistive memory storage device according to claim 1, further comprising: performing a reset operation on the memory cell operating in the reforming mode, wherein the reset operation is performed The memory cell operates in this reforming mode and acts as a multi-programmable memory element. 如申請專利範圍第5項所述的電阻式記憶體儲存裝置的操作方法,更包括: 取得該記憶體晶胞的一第二晶胞電流;以及 依據該第二晶胞電流以及一第二參考電流的大小關係,決定是否對操作在該重形成模式的該記憶體晶胞進行該重置操作, 其中依據該第二晶胞電流以及該第二參考電流的大小關係,決定是否對操作在該重形成模式的該記憶體晶胞進行該重置操作的步驟包括:判斷該第二晶胞電流是否小於該第二參考電流;若該第二晶胞電流小於該第二參考電流,不對操作在該重形成模式的該記憶體晶胞進行該重置操作,並且結束該操作方法;以及若該第二晶胞電流大於或等於該第二參考電流,對操作在該重形成模式的該記憶體晶胞進行該重置操作。The method for operating a resistive memory storage device according to claim 5, further comprising: obtaining a second unit cell current of the memory unit cell; and, according to the second unit cell current and a second reference Determining whether the operation is performed on the memory cell operating in the reforming mode according to the magnitude relationship of the current, wherein determining whether the operation is performed according to the magnitude relationship between the second cell current and the second reference current The step of performing the reset operation in the memory cell of the reforming mode includes: determining whether the second cell current is less than the second reference current; if the second cell current is less than the second reference current, the operation is not The memory cell of the reforming mode performs the reset operation and ends the operation method; and if the second cell current is greater than or equal to the second reference current, the memory operating in the reforming mode The cell performs this reset operation. 如申請專利範圍第5項所述的電阻式記憶體儲存裝置的操作方法,其中該重置操作包括: 設定該記憶體晶胞的一源極線電壓,分別對該記憶體晶胞的閘極及其所耦接的源極線施加一重置電壓及該源極線電壓,並且取得該記憶體晶胞的一第一重置電流; 調整該記憶體晶胞的該源極線電壓,分別對該記憶體晶胞的閘極及其所耦接的源極線施加該重置電壓及已調整的該源極線電壓,並且取得該記憶體晶胞的一第二重置電流;以及 依據該第一重置電流以及該第二重置電流的大小關係,決定是否再次調整該記憶體晶胞的該源極線電壓或者記錄該第二重置電流的電流值, 其中依據該第一重置電流以及該第二重置電流的大小關係,決定是否再次調整該記憶體晶胞的該源極線電壓或者記錄該第二重置電流的電流值的步驟包括:判斷該第二重置電流是否小於該第一重置電流;若該第二重置電流小於該第一重置電流,記錄該第二重置電流的電流值;以及若該第二重置電流等於該第一重置電流,再次調整該記憶體晶胞的該源極線電壓。The method of operating a resistive memory storage device according to claim 5, wherein the resetting operation comprises: setting a source line voltage of the memory unit cell, respectively, to a gate of the memory unit cell Applying a reset voltage and the source line voltage to the source line coupled thereto, and obtaining a first reset current of the memory cell; adjusting the source line voltage of the memory cell, respectively Applying the reset voltage and the adjusted source line voltage to the gate of the memory cell and the source line to which the memory cell is coupled, and obtaining a second reset current of the memory cell; Determining whether to adjust the source line voltage of the memory cell or to record the current value of the second reset current according to the magnitude relationship between the first reset current and the second reset current, wherein according to the first weight And determining a magnitude of the current and the second reset current, determining whether to adjust the source line voltage of the memory cell or recording the current value of the second reset current includes: determining the second reset current Is it smaller than the first? Setting a current; if the second reset current is less than the first reset current, recording a current value of the second reset current; and if the second reset current is equal to the first reset current, adjusting the memory again The source line voltage of the unit cell. 如申請專利範圍第7項所述的電阻式記憶體儲存裝置的操作方法,其中若該第二重置電流等於該第一重置電流,再次調整該記憶體晶胞的該源極線電壓,並且重複執行分別對該記憶體晶胞的閘極及其所耦接的源極線施加該重置電壓及已調整的該源極線電壓的步驟,直到該第二重置電流小於該第一重置電流。The method of operating a resistive memory storage device according to claim 7, wherein if the second reset current is equal to the first reset current, adjusting the source line voltage of the memory cell again, And repeating the steps of respectively applying the reset voltage and the adjusted source line voltage to the gate of the memory cell and the coupled source line until the second reset current is less than the first Reset the current. 如申請專利範圍第7項所述的電阻式記憶體儲存裝置的操作方法,更包括: 在記錄該第二重置電流的電流值之後,再次調整該記憶體晶胞的該源極線電壓,分別對該記憶體晶胞的閘極及其所耦接的源極線施加該重置電壓及已調整的該源極線電壓,並且取得該記憶體晶胞的一第三重置電流;以及 依據該第二重置電流以及該第三重置電流的大小關係,決定是否再次調整該記憶體晶胞的該源極線電壓或者結束該重置操作, 其中依據該第二重置電流以及該第三重置電流的大小關係,決定是否再次調整該記憶體晶胞的該源極線電壓或者結束該重置操作的步驟包括:判斷該第三重置電流是否大於或等於該第二重置電流;若該第三重置電流大於或等於該第二重置電流,結束該重置操作;以及若該第三重置電流小於該第二重置電流,再次調整該記憶體晶胞的該源極線電壓。The operating method of the resistive memory storage device of claim 7, further comprising: adjusting the source line voltage of the memory cell after recording the current value of the second reset current, Applying the reset voltage and the adjusted source line voltage to the gate of the memory cell and the coupled source line, respectively, and obtaining a third reset current of the memory cell; Determining whether to adjust the source line voltage of the memory cell again or ending the reset operation according to the magnitude relationship between the second reset current and the third reset current, wherein the second reset current and the The magnitude relationship of the third reset current, determining whether to adjust the source line voltage of the memory cell again or ending the reset operation comprises: determining whether the third reset current is greater than or equal to the second reset a current; if the third reset current is greater than or equal to the second reset current, ending the reset operation; and if the third reset current is less than the second reset current, adjusting the memory cell again Source Line voltage. 如申請專利範圍第9項所述的電阻式記憶體儲存裝置的操作方法,其中若該第三重置電流小於該第二重置電流,再次調整該記憶體晶胞的該源極線電壓,並且重複執行分別對該記憶體晶胞的閘極及其所耦接的源極線施加該重置電壓及已調整的該源極線電壓的步驟,直到該第三重置電流大於或等於該第二重置電流。The method of operating a resistive memory storage device according to claim 9, wherein if the third reset current is less than the second reset current, adjusting the source line voltage of the memory cell again, And repeating the steps of respectively applying the reset voltage and the adjusted source line voltage to the gate of the memory cell and the coupled source line until the third reset current is greater than or equal to the The second reset current.
TW106134810A 2017-10-11 2017-10-11 Operating method of resistive memory storage apparatus TWI643194B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106134810A TWI643194B (en) 2017-10-11 2017-10-11 Operating method of resistive memory storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106134810A TWI643194B (en) 2017-10-11 2017-10-11 Operating method of resistive memory storage apparatus

Publications (2)

Publication Number Publication Date
TWI643194B TWI643194B (en) 2018-12-01
TW201916037A true TW201916037A (en) 2019-04-16

Family

ID=65431886

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134810A TWI643194B (en) 2017-10-11 2017-10-11 Operating method of resistive memory storage apparatus

Country Status (1)

Country Link
TW (1) TWI643194B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812094B (en) * 2022-03-22 2023-08-11 華邦電子股份有限公司 Filament forming method for resistive memory unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594878B2 (en) * 2006-02-23 2010-12-08 シャープ株式会社 Resistance control method for variable resistance element and nonvolatile semiconductor memory device
US20140264224A1 (en) * 2013-03-14 2014-09-18 Intermolecular, Inc. Performance Enhancement of Forming-Free ReRAM Devices Using 3D Nanoparticles
KR102169634B1 (en) * 2014-09-30 2020-10-23 삼성전자주식회사 Nonvolatile memory device
CN107768515B (en) * 2016-08-18 2020-05-08 华邦电子股份有限公司 Method for forming memory device

Also Published As

Publication number Publication date
TWI643194B (en) 2018-12-01

Similar Documents

Publication Publication Date Title
TWI738391B (en) Method of writing to resistive random access memory cells
CN108475519B (en) Apparatus and method including memory and operation thereof
US9165644B2 (en) Method of operating a resistive memory device with a ramp-up/ramp-down program/erase pulse
KR101193395B1 (en) Non volatile memory cell and semiconductor memory device
US7525832B2 (en) Memory device and semiconductor integrated circuit
US7894254B2 (en) Refresh circuitry for phase change memory
US8995167B1 (en) Reverse program and erase cycling algorithms
JP2016015192A (en) Data recording method and nonvolatile storage
JPWO2007074504A1 (en) Nonvolatile semiconductor memory device and writing method thereof
CN110060722B (en) Power-on reset method of resistive memory storage device
US10783962B2 (en) Resistive memory storage apparatus and writing method thereof including disturbance voltage
TWI643194B (en) Operating method of resistive memory storage apparatus
TWI534807B (en) Forming and testing method of resistive memory
US9524776B2 (en) Forming method for variable-resistance nonvolatile memory element
US9001553B1 (en) Resistive devices and methods of operation thereof
US11682456B2 (en) Methods for enlarging the memory window and improving data retention in restistive memory device
Lee et al. A novel cross point one-resistor (0T1R) conductive bridge random access memory (CBRAM) with ultra low set/reset operation current
CN109658963B (en) Operation method of resistive memory storage device
TWI647704B (en) Power on reset method for resistive memory storage device
TWI629682B (en) Resistive memory storage apparatus and writing method thereof
TWI633558B (en) Operating method of resistive memory storage apparatus
TW201839768A (en) Method for operating non-volatile memory device and applications thereof
TWI640006B (en) Resistive memory storage apparatus and writing method thereof
US20070052001A1 (en) Nonvolatile semiconductor memory device and method of fabricating the same
Kamalanathan Kinetics of Programmable Metallization Cell Memory