TW201911728A - Stacked inverter for converting direct current outputted from a direct current power source into alternating current for being outputted to a motor - Google Patents

Stacked inverter for converting direct current outputted from a direct current power source into alternating current for being outputted to a motor Download PDF

Info

Publication number
TW201911728A
TW201911728A TW106125849A TW106125849A TW201911728A TW 201911728 A TW201911728 A TW 201911728A TW 106125849 A TW106125849 A TW 106125849A TW 106125849 A TW106125849 A TW 106125849A TW 201911728 A TW201911728 A TW 201911728A
Authority
TW
Taiwan
Prior art keywords
liquid
heat dissipation
liquid inlet
inlet
outlet
Prior art date
Application number
TW106125849A
Other languages
Chinese (zh)
Other versions
TWI666868B (en
Inventor
陳建伸
李崇智
苟崴第
王皓冀
Original Assignee
上海騏宏電驅動科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海騏宏電驅動科技有限公司 filed Critical 上海騏宏電驅動科技有限公司
Priority to TW106125849A priority Critical patent/TWI666868B/en
Publication of TW201911728A publication Critical patent/TW201911728A/en
Application granted granted Critical
Publication of TWI666868B publication Critical patent/TWI666868B/en

Links

Abstract

A stacked inverter is used for converting direct current outputted from a direct current power source into alternating current for being outputted to a motor. The stacked inverter comprises a heat dissipation module, two power modules, a current output conduction unit, and a current output conduction unit. The heat dissipation module includes a heat dissipation frame. The heat dissipation frame is in a hollow shape and defines a liquid flow path. The liquid flow path has two openings at the upper and lower ends, a first liquid inlet, and a first liquid outlet. The power modules are respectively stacked on the upper and lower sides of the heat dissipation frame. Each power module includes a first surface and a second surface opposite to the first surface. The second surfaces of the power modules are opposite to each other and respectively cover and close the openings.

Description

堆疊式逆變器Stacked inverter

本發明是有關於一種逆變器,特別是指一種具有散熱模組的堆疊式逆變器。The invention relates to an inverter, in particular to a stacked inverter with a heat dissipation module.

一般車用的逆變器,是使用絕緣柵雙極電晶體(Insulated Gate Bipolar Transistor, 簡稱IGBT)模組將直流電變換為交流電輸出以供其他電器元件使用。一般而言,車用逆變器通常具有一水冷散熱模組,該水冷散熱模組用以冷卻IGBT模組運作時產生的高熱。欲加大逆變器可輸出的功率時,現有做法是並聯兩組相同規格的IGBT模組,以提高逆變器的輸出電流及功率,然而,前述設計方式會造成水冷散熱模組的結構複雜度增加,以及提高製造的成本,並且也易造成兩組IGBT模組經冷卻後的溫度有所差異。In general, an inverter for a vehicle uses an Insulated Gate Bipolar Transistor (IGBT) module to convert DC power into an AC power output for use in other electrical components. Generally, a vehicle inverter usually has a water-cooling heat dissipation module, which is used to cool the high heat generated when the IGBT module operates. In order to increase the power that the inverter can output, the current practice is to parallel two sets of IGBT modules of the same specification to improve the output current and power of the inverter. However, the above design method will cause the structure of the water-cooled heat-dissipating module to be complicated. The increase in the degree, as well as the cost of manufacturing, is also likely to cause differences in the temperature of the two sets of IGBT modules after cooling.

此外,現有水冷散熱模組一般只有單一方向的出液口與進液口,受限於出液口及進液口的位置,使得後續在整車配置時易發生水管路線難以連接到出液口或進液口的問題,並且也易增加水管路線所需的安裝空間。再者,若該水冷散熱模組與水管路線之間無法相互配合,則該水冷散熱模組之進出液口將需要重新設計,進而造成開發費用以及開發時間的浪費。因此,現有水冷散熱模組的出液口及進液口位置無法因應不同的車輛結構而彈性地進行變化。In addition, the existing water-cooling heat-dissipating module generally has only a single-direction liquid outlet and a liquid inlet, which is limited by the position of the liquid outlet and the liquid inlet, so that it is easy to connect the water outlet to the liquid outlet after the vehicle configuration. Or the problem of the inlet port, and it is also easy to increase the installation space required for the water pipe route. Moreover, if the water-cooling heat-dissipating module and the water pipe route cannot cooperate with each other, the water inlet and outlet ports of the water-cooling heat-dissipating module will need to be redesigned, thereby causing waste of development cost and development time. Therefore, the position of the liquid outlet and the inlet of the existing water-cooling heat dissipation module cannot be flexibly changed according to different vehicle structures.

因此,本發明之其中一目的,即在提供一種以結構簡單的散熱模組達成散熱需求的堆疊式逆變器。Therefore, one of the objects of the present invention is to provide a stacked inverter that achieves heat dissipation requirements by a heat dissipation module having a simple structure.

本發明之另一目的,即在提供一種堆疊式逆變器,以單一組散熱模組同時對兩電力模組進行散熱,使兩電力模組冷卻後的溫度一致。Another object of the present invention is to provide a stacked inverter that simultaneously dissipates heat from two power modules by using a single group of heat dissipation modules, so that the temperatures of the two power modules after cooling are uniform.

本發明之又一目的,即在提供一種堆疊式逆變器,藉由多個不同方向的進液口及出液口設計,能依照需求將入水管及出水管分別連接到所需位置的進液口及出液口,藉此,除了能有效地節省散熱模組的開發費用及時間之外,還能增加應用上的彈性以符合不同車輛的需求。Another object of the present invention is to provide a stacked inverter with a plurality of inlets and outlets in different directions, and the inlet pipe and the outlet pipe can be respectively connected to the required position according to requirements. The liquid port and the liquid outlet can not only effectively save the development cost and time of the heat dissipation module, but also increase the flexibility of the application to meet the needs of different vehicles.

於是,本發明堆疊式逆變器在一些實施態樣中,用於將一直流電源輸出的直流電轉換為交流電以輸出至一馬達,該堆疊式逆變器包含一散熱模組、兩個電力模組、一電流輸出傳導單元,及一電流輸出傳導單元。該散熱模組包括一散熱框架,該散熱框架呈鏤空狀並界定出一液體流道,該液體流道具有兩個分別位於上、下端的開口、一第一進液口,及一第一出液口。該等電力模組分別疊置於該散熱框架上下兩側。每一電力模組包括一第一面、一相反於該第一面的第二面、一輸入電極單元,及一與該輸入電極單元相間隔的輸出電極單元。該等電力模組的第二面彼此相對且分別覆蓋並封閉該等開口。該電流輸入傳導單元電連接於該直流電源及該等電力模組的該等輸入電極單元之間。該電流輸出傳導單元電連接於該等輸出電極單元及該馬達之間。Therefore, in some implementations, the stacked inverter of the present invention is configured to convert DC power output from a DC power source into AC power for output to a motor. The stacked inverter includes a heat dissipation module and two power modes. A group, a current output conducting unit, and a current output conducting unit. The heat dissipation module includes a heat dissipation frame that is hollowed out and defines a liquid flow path. The liquid flow path has two openings at the upper and lower ends, a first liquid inlet, and a first outlet. Liquid port. The power modules are respectively stacked on the upper and lower sides of the heat dissipation frame. Each power module includes a first surface, a second surface opposite to the first surface, an input electrode unit, and an output electrode unit spaced apart from the input electrode unit. The second faces of the power modules are opposite each other and respectively cover and close the openings. The current input conducting unit is electrically connected between the DC power source and the input electrode units of the power modules. The current output conducting unit is electrically connected between the output electrode units and the motor.

在一些實施態樣中,每一電力模組還包括一凸設於該第二面的散熱件,該散熱件經由對應的該開口穿伸入該液體流道內。In some embodiments, each power module further includes a heat sink protruding from the second surface, and the heat sink penetrates into the liquid flow path through the corresponding opening.

在一些實施態樣中,該散熱框架更界定出分別連通於該液體流道的一入流道,及一出流道,該入流道具有一與該第一進液口不同方向的第二進液口,該出流道具有一與該第一出液口不同方向的第二出液口。In some embodiments, the heat dissipation frame further defines an inflow channel respectively connected to the liquid flow path, and an outflow channel, the inflow prop has a second liquid inlet in a direction different from the first liquid inlet. The outflow prop has a second liquid outlet in a direction different from the first liquid outlet.

在一些實施態樣中,該液體流道沿一左右方向延伸,該入流道及該出流道分別沿一垂直於該左右方向的前後方向延伸。In some embodiments, the liquid flow path extends in a left-right direction, and the inflow channel and the outflow channel respectively extend in a front-rear direction perpendicular to the left-right direction.

在一些實施態樣中,該等開口形狀相同並且上下相互對稱。In some embodiments, the openings are identical in shape and symmetrical to each other.

在一些實施態樣中,該液體流道具有一連通於該等開口之間的散熱區,及一連通於該散熱區與該第一進液口之間的進液整流區。In some embodiments, the liquid flow prop has a heat dissipation zone that communicates between the openings, and an inflow rectification zone that communicates between the heat dissipation zone and the first liquid inlet.

在一些實施態樣中,該散熱模組更包括一閥門單元,該閥門單元可選擇地阻斷該第一進液口及該第二進液口其中之一,且該閥門單元可選擇地阻斷該第一出液口及該第二出液口其中之一。In some embodiments, the heat dissipation module further includes a valve unit, the valve unit selectively blocking one of the first liquid inlet and the second liquid inlet, and the valve unit is selectively blocked One of the first liquid outlet and the second liquid outlet is broken.

在一些實施態樣中,該閥門單元具有一用以控制該第一進液口的開啟與封閉的第一封閉件、一用以控制該第二進液口的開啟與封閉的第二封閉件、一用以控制該第一出液口的開啟與封閉的第三封閉件,及一用以控制該第二出液口的開啟與封閉的第四封閉件。In some embodiments, the valve unit has a first closure for controlling opening and closing of the first inlet, and a second closure for controlling opening and closing of the second inlet. a third closure member for controlling opening and closing of the first liquid outlet, and a fourth closure member for controlling opening and closing of the second liquid outlet.

在一些實施態樣中,該液體流道具有一連通於該等開口之間的散熱區,及一連通於該散熱區與該第一進液口之間的進液整流區。In some embodiments, the liquid flow prop has a heat dissipation zone that communicates between the openings, and an inflow rectification zone that communicates between the heat dissipation zone and the first liquid inlet.

在一些實施態樣中,該第一進液口呈矩形,該進液整流區具有一與該第一進液口連通之外進液整流部、一與該散熱區連通之內進液整流部,及一連通於該外進液整流部及該內進液整流部之間的漸縮部,該內進液整流部沿一垂直於左右方向的上下方向延伸的高度小於該外進液整流部沿該上下方向延伸的高度,該漸縮部沿該上下方向所取的截面積是由該外進液整流部朝該內進液整流部方向逐漸縮小,該入流道與該外進液整流部及該漸縮部相連通,該第二進液口呈圓形。In some embodiments, the first liquid inlet port has a rectangular shape, and the liquid inlet rectifying portion has a liquid inlet rectifying portion connected to the first liquid inlet port, and an inner liquid rectifying portion communicating with the heat dissipating region. And a tapered portion connected between the external liquid rectifying portion and the inner liquid rectifying portion, the inner liquid rectifying portion extending in a vertical direction perpendicular to the horizontal direction is smaller than the outer liquid rectifying portion a height extending in the up-and-down direction, a cross-sectional area taken along the vertical direction of the tapered portion is gradually reduced by the external liquid rectifying portion toward the inner liquid rectifying portion, the inflow passage and the external liquid rectifying portion And the tapered portion is in communication, and the second liquid inlet is circular.

本發明至少具有以下功效:藉由該液體流道位於上下兩端的該等開口,使覆蓋於該等開口的該等電力模組的第二面能同時藉由液體散熱,且由於該等電力模組是僅經由一條該液體流道進行冷卻,故可使該等電力模組的溫度差異一致。此外,在達到冷卻目的的同時,因為該散熱框架的結構簡單,所以在製造成本上也相對地節省。The present invention has at least the following effects: the liquid flow channels are located at the upper and lower ends of the openings, so that the second surface of the power modules covering the openings can simultaneously dissipate heat by the liquid, and due to the electric modes The group is cooled only by one of the liquid flow paths, so that the temperature differences of the power modules can be made uniform. In addition, while achieving the cooling purpose, since the structure of the heat dissipation frame is simple, the manufacturing cost is also relatively saved.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

參閱圖1與圖2,本發明堆疊式逆變器之一實施例,設置於一電動車(圖未示),用於將一直流電源輸出的直流電轉換為交流電以輸出至一馬達(圖未示),直流電源包含一薄膜電容20,薄膜電容20具有一第一輸入正極201、一第一輸入負極202、一第二輸入正極203、一第二輸入負極204、一第三輸入正極205及一第三輸入負極206,該堆疊式逆變器10包含一散熱模組1、兩個電力模組2、一電流輸入傳導單元3及一電流輸出傳導單元4。Referring to FIG. 1 and FIG. 2, an embodiment of the stacked inverter of the present invention is disposed on an electric vehicle (not shown) for converting direct current output from the direct current power source into alternating current to output to a motor (not shown). The DC power supply includes a film capacitor 20 having a first input positive electrode 201, a first input negative electrode 202, a second input positive electrode 203, a second input negative electrode 204, and a third input positive electrode 205. A third input negative electrode 206 includes a heat dissipation module 1, two power modules 2, a current input conduction unit 3, and a current output conduction unit 4.

參閱圖3至圖5,該散熱模組1包括一散熱框架11,該散熱框架11呈鏤空狀並界定出一沿著一左右方向D1延伸的液體流道111,以及分別連通於該液體流道111的一入流道118與一出流道120。該液體流道111具有兩個分別位於上、下端且形狀相同並上下相互對稱的開口112、一第一進液口113、一第一出液口114、一連通於該等開口112之間的散熱區115,及一連通於該散熱區115與該第一進液口113之間的進液整流區116。該進液整流區116具有一與該第一進液口113連通之外進液整流部116a、一與該散熱區115連通之內進液整流部116b,及一連通於該外進液整流部116a及該內進液整流部116b之間的漸縮部116c。內進液整流部116b沿一垂直於左右方向D1的上下方向D3延伸的高度小於外進液整流部116a沿上下方向D3延伸的高度。漸縮部116c沿上下方向D3所取的截面積是由外進液整流部116a朝內進液整流部116b方向逐漸縮小。Referring to FIG. 3 to FIG. 5, the heat dissipation module 1 includes a heat dissipation frame 11 which is hollowed out and defines a liquid flow path 111 extending along a left-right direction D1, and is respectively connected to the liquid flow path. An inlet channel 118 and an outlet channel 120 of 111. The liquid flow path 111 has two openings 112 respectively located at the upper and lower ends and having the same shape and symmetrical with each other, a first liquid inlet 113, a first liquid outlet 114, and a communication between the openings 112. The heat dissipation zone 115 and a liquid inlet rectification zone 116 connected between the heat dissipation zone 115 and the first liquid inlet 113. The liquid inlet rectifying section 116 has a liquid inlet rectifying portion 116a communicating with the first liquid inlet 113, an inner liquid rectifying portion 116b communicating with the heat dissipating portion 115, and a communicating medium rectifying portion The tapered portion 116c between the 116a and the internal liquid rectifying portion 116b. The height of the internal liquid rectifying portion 116b extending in the vertical direction D3 perpendicular to the left-right direction D1 is smaller than the height of the external liquid rectifying portion 116a extending in the vertical direction D3. The cross-sectional area taken along the vertical direction D3 of the tapered portion 116c is gradually reduced by the outer liquid rectifying portion 116a toward the inner liquid rectifying portion 116b.

該入流道118具有一與該第一進液口113不同方向的第二進液口119,該出流道120具有一與該第一出液口114不同方向的第二出液口121。該入流道118與該外進液整流部116a及該漸縮部116c相連通。經由第一進液口113流入的液體會依序流經外進液整流部116a、漸縮部116c以及內進液整流部116b,而經由第二進液口119流入的液體的一部分會依序流經外進液整流部116a、漸縮部116c以及內進液整流部116b,而另一部分會依序流經漸縮部116c以及內進液整流部116b,藉由外進液整流部116a、漸縮部116c以及內進液整流部116b截面積由大逐漸變小的設計方式,能達到對液體整流的效果,有助於液體能平整地流入散熱區115內。在本實施例中,該入流道118沿一垂直於該左右方向D1的前後方向D2延伸,也就是說,該入流道118的第二進液口119與該液體流道111的第一進液口113兩者方向呈垂直,但該入流道118亦可以沿著不同於該前後方向D2之其他方向延伸而成。換句話說,該入流道118的第二進液口119之方向亦可為與該液體流道111的第一進液口113之方向不同的其他方向,不以兩者互呈垂直的方式為限。另外,該第一進液口113呈方形,該第二進液口119呈圓形,但該第一進液口113與該第二進液口119也可以為不同於本實施例的其他形狀,不以此為限。The inflow channel 118 has a second liquid inlet 119 in a direction different from the first liquid inlet 113. The outlet channel 120 has a second liquid outlet 121 in a direction different from the first liquid outlet 114. The inlet passage 118 communicates with the external liquid rectifying portion 116a and the tapered portion 116c. The liquid that has flowed in through the first liquid inlet 113 flows through the external liquid rectifying portion 116a, the tapered portion 116c, and the inner liquid rectifying portion 116b, and a part of the liquid that flows in through the second liquid inlet 119 is sequentially The flow through the external liquid rectifying unit 116a, the tapered portion 116c, and the internal liquid rectifying portion 116b, and the other portion sequentially flows through the tapered portion 116c and the internal liquid rectifying portion 116b, and the external liquid rectifying portion 116a, The design of the tapered portion 116c and the inner liquid rectifying portion 116b is gradually reduced from large to large, so that the effect of rectifying the liquid can be achieved, and the liquid can be smoothly flowed into the heat radiating region 115. In the present embodiment, the inlet passage 118 extends along a front-rear direction D2 perpendicular to the left-right direction D1, that is, the second liquid inlet 119 of the inlet passage 118 and the first liquid inlet of the liquid flow passage 111. The mouth 113 is perpendicular to both directions, but the inlet passage 118 may also extend in other directions different from the front-rear direction D2. In other words, the direction of the second liquid inlet 119 of the inlet passage 118 may be other directions different from the direction of the first liquid inlet 113 of the liquid flow path 111, and the two are not perpendicular to each other. limit. In addition, the first liquid inlet 113 has a square shape, and the second liquid inlet 119 has a circular shape, but the first liquid inlet 113 and the second liquid inlet 119 may also be different shapes from the other embodiments. Not limited to this.

在本實施例中,該散熱框架11沿著該左右方向D1呈對稱狀,且該液體流道111還具有一連通於該散熱區115與該第一出液口114之間的出液區117。該出液區117具有一與該第一出液口114連通之外出液部117a、一與該散熱區115連通之內出液部117b,及一連通於該外出液部117a及該內出液部117b之間的連通部117c。內出液部117b沿上下方向D3延伸的高度小於外出液部117a沿上下方向D3延伸的高度。連通部117c沿上下方向D3所取的截面積是由內出液部117b朝外出液部117a方向逐漸變大。該出流道120沿該前後方向D2延伸且與該外出液部117a及該連通部117c相連通。也就是說,該出流道120的第二出液口121與該液體流道111的第一出液口114兩者方向呈垂直。但需要說明的是,該出液區117之構造亦可以為其他形式,不以本實施例為限。In this embodiment, the heat dissipation frame 11 is symmetrical along the left and right direction D1, and the liquid flow path 111 further has a liquid discharge area 117 communicating between the heat dissipation area 115 and the first liquid outlet 114. . The liquid discharge area 117 has a liquid discharge portion 117a communicating with the first liquid outlet 114, an inner liquid discharge portion 117b communicating with the heat dissipation portion 115, and a communicating with the outer liquid portion 117a and the inner liquid The communication portion 117c between the portions 117b. The height of the inner liquid discharge portion 117b extending in the vertical direction D3 is smaller than the height of the outer liquid portion 117a extending in the vertical direction D3. The cross-sectional area of the communicating portion 117c in the vertical direction D3 is gradually increased from the inner liquid discharging portion 117b toward the outer liquid discharging portion 117a. The outlet passage 120 extends in the front-rear direction D2 and communicates with the outlet liquid portion 117a and the communication portion 117c. That is, the second liquid outlet 121 of the outlet passage 120 and the first liquid outlet 114 of the liquid flow passage 111 are perpendicular to each other. It should be noted that the configuration of the liquid discharge area 117 may also be in other forms, and is not limited to the embodiment.

參閱圖3、圖6至圖9,該散熱模組1還包括一閥門單元13及一轉接單元14。該閥門單元13可選擇地阻斷該第一進液口113及該第二進液口119其中之一,且該閥門單元13可選擇地阻斷該第一出液口114及該第二出液口120其中之一。該閥門單元13具有一可拆卸地組裝於散熱框架11以控制該第一進液口113的開啟與封閉的第一封閉件131、一可拆卸地組裝於散熱框架11以控制該第二進液口119的開啟與封閉的第二封閉件132、一可拆卸地組裝於散熱框架11以控制該第一出液口114的開啟與封閉的第三封閉件133,及一可拆卸地組裝於散熱框架11以控制該第二出液口121的開啟與封閉的第四封閉件134。在本實施例中,第一封閉件131及第三封閉件133分別為一可供使用者透過螺鎖方式鎖固於散熱框架11上或是由散熱框架11上拆卸的封蓋,第二封閉件132為一可供使用者塞入該第二進液口119內或拆離該第二進液口119的封蓋,第四封閉件134為一可供使用者塞入該第二出液口121內或拆離該第二出液口121的封蓋。Referring to FIG. 3 and FIG. 6 to FIG. 9 , the heat dissipation module 1 further includes a valve unit 13 and an adapter unit 14 . The valve unit 13 selectively blocks one of the first liquid inlet 113 and the second liquid inlet 119, and the valve unit 13 selectively blocks the first liquid outlet 114 and the second outlet One of the liquid ports 120. The valve unit 13 has a first closure member 131 detachably assembled to the heat dissipation frame 11 to control opening and closing of the first liquid inlet 113, and a detachable assembly to the heat dissipation frame 11 to control the second liquid inlet The opening and closing second sealing member 132 of the opening 119, a third closing member 133 detachably assembled to the heat dissipation frame 11 to control opening and closing of the first liquid outlet 114, and a detachable assembly for heat dissipation The frame 11 controls a fourth closure member 134 that opens and closes the second liquid outlet 121. In this embodiment, the first closing member 131 and the third closing member 133 are respectively a cover that can be locked by the user to the heat dissipation frame 11 or detached from the heat dissipation frame 11 by the screw lock, and the second closure The member 132 is a cover that can be inserted into the second liquid inlet 119 or detached from the second liquid inlet 119. The fourth sealing member 134 is a second liquid outlet 134 for the user to insert into the second liquid outlet. The cover of the second liquid outlet 121 is detached from the port 121.

該轉接單元14具有一可拆卸地組裝於散熱框架11且用以連通該第一進液口113與車用冷卻液管線(圖未示)的第一進液轉接件141、一可拆卸地組裝於該第二進液口119且用以連通該第二進液口119與車用冷卻液管線的第二進液轉接件142、一可拆卸地組裝於散熱框架11且用以連通該第一出液口114與車用冷卻液管線的第一出液轉接件143,及一可拆卸地組裝於該第二出液口121且用以連通該第二出液口121與車用冷卻液管線的第二出液轉接件144。藉此,第一進液轉接件141或第二進液轉接件142可將車用冷卻液管線所輸送的冷卻液傳輸至液體流道111內,而第一出液轉接件143或第二出液轉接件144則可將液體流道111內導流至另一車用冷卻液管線。前述冷卻液是以冷卻水為例,當然,冷卻液也可為其他不同形式的冷卻液。The adapter unit 14 has a first liquid inlet adapter 141 detachably assembled to the heat dissipation frame 11 for communicating with the first liquid inlet 113 and a vehicle coolant line (not shown), and a detachable unit The second liquid inlet adapter 142 is assembled to the second liquid inlet 119 and communicates with the second liquid inlet 119 and the vehicle coolant line, and is detachably assembled to the heat dissipation frame 11 for communication. The first liquid outlet 114 and the first liquid outlet 143 of the vehicle coolant line are detachably assembled to the second liquid outlet 121 and are configured to communicate with the second liquid outlet 121 and the vehicle. A second outlet adapter 144 of the coolant line is used. Thereby, the first liquid inlet adapter 141 or the second liquid inlet adapter 142 can transfer the coolant delivered by the vehicle coolant line to the liquid flow channel 111, and the first liquid outlet adapter 143 or The second liquid outlet adapter 144 can conduct the liquid flow path 111 into another vehicle coolant line. The aforementioned cooling liquid is exemplified by cooling water. Of course, the cooling liquid may also be other different forms of cooling liquid.

在該堆疊式逆變器的實際安裝上,依照不同車型的不同冷卻液管線配置,使用該閥門單元13阻斷該第一進液口113及該第二進液口119其中之一,並將該轉接單元14裝設於該第一進液口113及該第二進液口119其中另一,且使用該閥門單元13阻斷該第一出液口114及該第二出液口121其中之一,並將該轉接單元14裝設於該第一出液口114及該第二出液口121其中另一。以下分別針對不同的使用態樣進行說明:In the actual installation of the stacked inverter, the valve unit 13 is used to block one of the first liquid inlet 113 and the second liquid inlet 119 according to different coolant line configurations of different models, and The switching unit 14 is installed in the first liquid inlet 113 and the second liquid inlet 119, and the first liquid outlet 114 and the second liquid outlet 121 are blocked by the valve unit 13 One of the first liquid outlets 114 and the second liquid outlets 121 are disposed in the other one. The following are explained for different usage scenarios:

參閱圖4及圖6,在一種使用方式中,若要使冷卻液自該第一進液口113進入且自第一出液口114排出,將該第二封閉件132裝設於該第二進液口119且將該第二封閉件134裝設於該第二出液口121,以分別封閉該第二進液口119及該第二出液口121。接著,將該第一進液轉接件141裝設於散熱框架11形成有該第一進液口113的一側,且將該第一出液轉接件143裝設於散熱框架11形成有該第一出液口114的另一側,藉此,冷卻液能沿著箭頭方向經由第一進液轉接件141及該第一進液口113流入液體流道111內,並且沿著箭頭方向經由該第一出液口114及該第一出液轉接件143排出液體流道111。Referring to FIG. 4 and FIG. 6, in a usage mode, if the coolant is to enter from the first liquid inlet 113 and is discharged from the first liquid outlet 114, the second sealing member 132 is installed in the second The liquid inlet 119 and the second sealing member 134 are installed in the second liquid outlet 121 to close the second liquid inlet 119 and the second liquid outlet 121, respectively. Then, the first liquid inlet adapter 141 is disposed on a side of the heat dissipation frame 11 on which the first liquid inlet 113 is formed, and the first liquid outlet adapter 143 is disposed on the heat dissipation frame 11 The other side of the first liquid outlet 114, whereby the coolant can flow into the liquid flow path 111 through the first liquid inlet adapter 141 and the first liquid inlet 113 in the direction of the arrow, and along the arrow The direction discharges the liquid flow path 111 through the first liquid outlet 114 and the first liquid outlet 143.

參閱圖4及圖7,在另一種使用方式中,若要使冷卻液自該第二進液口119進入且自第二出液口121排出,將該第一封閉件131裝設於散熱框架11形成有該第一進液口113的一側,且將該第一封閉件133裝設於散熱框架11形成有該第一出液口114的另一側,以分別封閉該第一進液口113及該第一出液口114。接著,將該第二進液轉接件142裝設於該第二進液口119內,且將該第二出液轉接件144裝設於該第二出液口121內,藉此,冷卻液能沿著箭頭方向經由該第二進液轉接件142及該第二進液口119流入液體流道111內,並且沿著箭頭方向經由該第二出液口121及該第二出液轉接件144排出液體流道111。Referring to FIG. 4 and FIG. 7 , in another usage mode, if the coolant is to enter from the second liquid inlet 119 and is discharged from the second liquid outlet 121 , the first sealing member 131 is mounted on the heat dissipation frame. 11 is formed with one side of the first liquid inlet 113, and the first sealing member 133 is disposed on the other side of the heat dissipation frame 11 formed with the first liquid outlet 114 to respectively close the first liquid inlet The port 113 and the first liquid outlet 114. Then, the second liquid inlet adapter 142 is installed in the second liquid inlet 119, and the second liquid outlet adapter 144 is installed in the second liquid outlet 121. The coolant can flow into the liquid flow path 111 through the second liquid inlet adapter 142 and the second liquid inlet 119 in the direction of the arrow, and pass through the second liquid outlet 121 and the second outlet in the direction of the arrow. The liquid adapter 144 discharges the liquid flow path 111.

參閱圖4及圖8,在另一種使用方式中,若要使冷卻液自該第一進液口113進入且自第二出液口121排出,將該第二封閉件132裝設於該第二進液口119,且將該第一封閉件133裝設於散熱框架11形成有該第一出液口114的另一側,以分別封閉該第二進液口119及該第一出液口114。接著,將該第一進液轉接件141裝設於散熱框架11形成有該第一進液口113的一側,且將該第二出液轉接件144裝設於該第二出液口121,藉此,冷卻液能沿著箭頭方向經由該第一進液轉接件141及該第一進液口113流入液體流道111內,並且沿著箭頭方向經由該第二出液口121及該第二出液轉接件144排出液體流道111。Referring to FIG. 4 and FIG. 8 , in another usage mode, if the coolant is to enter from the first liquid inlet 113 and is discharged from the second liquid outlet 121 , the second sealing member 132 is installed on the first sealing member 132 . a second liquid inlet 119, and the first sealing member 133 is disposed on the other side of the heat dissipation frame 11 on which the first liquid outlet 114 is formed to respectively close the second liquid inlet 119 and the first liquid outlet Port 114. Next, the first liquid inlet adapter 141 is disposed on a side of the heat dissipation frame 11 on which the first liquid inlet 113 is formed, and the second liquid outlet adapter 144 is installed in the second liquid outlet a port 121, whereby the coolant can flow into the liquid flow path 111 through the first liquid inlet adapter 141 and the first liquid inlet 113 in the direction of the arrow, and the second liquid outlet port is along the arrow direction. 121 and the second liquid outlet adapter 144 discharge the liquid flow path 111.

參閱圖4及圖9,在又一種使用方式中,若要使冷卻液自該第二進液口119進入且自第一出液口114排出,將該第一封閉件131裝設於散熱框架11形成有該第一進液口113的一側,且將該第二封閉件134裝設於該第二出液口121,以分別封閉該第一進液口113及該第二出液口121。接著,將該第二進液轉接件142裝設於該第二進液口119且將該第一出液轉接件143裝設於散熱框架11形成有該第一出液口114的另一側,藉此,冷卻液能沿著箭頭方向經由該第二進液轉接件142及該第二進液口119流入液體流道111內,並且沿著箭頭方向經由該第一出液口114及該第一出液轉接件143排出液體流道111。Referring to FIG. 4 and FIG. 9 , in another usage mode, if the coolant is to enter from the second liquid inlet 119 and is discharged from the first liquid outlet 114 , the first sealing member 131 is mounted on the heat dissipation frame. 11 is formed with one side of the first liquid inlet 113, and the second sealing member 134 is disposed at the second liquid outlet 121 to respectively close the first liquid inlet 113 and the second liquid outlet 121. Next, the second liquid inlet adapter 142 is installed in the second liquid inlet 119 and the first liquid outlet adapter 143 is mounted on the heat dissipation frame 11 to form the first liquid outlet 114. One side, whereby the coolant can flow into the liquid flow path 111 through the second liquid inlet adapter 142 and the second liquid inlet 119 in the direction of the arrow, and the first liquid outlet port is along the arrow direction 114 and the first liquid outlet adapter 143 discharge the liquid flow path 111.

參閱圖3、圖10及圖11,兩個電力模組2呈上下疊置並分別裝設於該散熱框架11上下兩側且對應於該等開口112,每一電力模組2包括一本體21、一輸入電極單元22、一輸出電極單元23及一散熱件24。本體21具有一第一面211及一相反於該第一面211的第二面212,該輸出電極單元23及該輸入電極單元22設置於該第一面211,該等第二面212彼此相對。輸入電極單元22設置於該第一面211,包括一第一正極221、一第一負極222、一第二正極223、一第二負極224、一第三正極225及一第三負極226,該第一正極221、該第二正極223及該第三正極225彼此相間隔,該第一負極222、該第二負極224及該第三負極226彼此相間隔,該第一正極221及該第一負極222彼此相鄰,該第二正極223及該第二負極224彼此相鄰,該第三正極225及該第三負極226彼此相鄰,其中一個電力模組2的該輸入電極單元22的該第一正極221、該第二正極223及該第三正極225分別與另一個電力模組2的該第一負極222、該第二負極224及該第三負極226位置上下相對應。輸出電極單元23設置於該第一面211並相對於輸入電極單元22位在第一面211的另一側,其包括一第一輸出電極231、一第二輸出電極232及一第三輸出電極233,其分別代表了三相電流中的U、V、W極,該兩電力模組2的該第一輸出電極231的位置上下相對應,該兩電力模組2的該第二輸出電極232的位置上下相對應,該兩電力模組2的該第三輸出電極233的位置上下相對應,需要說明的是,其中一個電力模組2是透過其內部以程式設定的方式,使得兩個電力模組2的第一輸出電極231、第二輸出電極232及第三輸出電極233是上下對應的。散熱件24設置於第二面212並且經由對應的開口112穿伸入散熱框架11的散熱區115內,使得兩個電力模組2的散熱件24彼此相對,散熱件24在本實施例為多個散熱柱的態樣,但不以此為限,也可為散熱鰭片等其他的形式。Referring to FIG. 3 , FIG. 10 and FIG. 11 , the two power modules 2 are stacked on top of each other and are respectively disposed on the upper and lower sides of the heat dissipation frame 11 and corresponding to the openings 112 . Each power module 2 includes a body 21 . An input electrode unit 22, an output electrode unit 23 and a heat sink 24. The body 21 has a first surface 211 and a second surface 212 opposite to the first surface 211. The output electrode unit 23 and the input electrode unit 22 are disposed on the first surface 211, and the second surfaces 212 are opposite to each other. . The input electrode unit 22 is disposed on the first surface 211, and includes a first positive electrode 221, a first negative electrode 222, a second positive electrode 223, a second negative electrode 224, a third positive electrode 225, and a third negative electrode 226. The first positive electrode 221, the second positive electrode 223 and the third positive electrode 225 are spaced apart from each other, and the first negative electrode 222, the second negative electrode 224 and the third negative electrode 226 are spaced apart from each other, and the first positive electrode 221 and the first electrode The anodes 222 are adjacent to each other, the second cathodes 223 and the second anodes 224 are adjacent to each other, and the third cathodes 225 and the third anodes 226 are adjacent to each other, and the input electrode unit 22 of one of the power modules 2 The first positive electrode 221 , the second positive electrode 223 , and the third positive electrode 225 respectively correspond to the positions of the first negative electrode 222 , the second negative electrode 224 , and the third negative electrode 226 of the other power module 2 . The output electrode unit 23 is disposed on the first surface 211 and is located on the other side of the first surface 211 with respect to the input electrode unit 22, and includes a first output electrode 231, a second output electrode 232, and a third output electrode. 233, which represents the U, V, and W poles of the three-phase current, wherein the positions of the first output electrodes 231 of the two power modules 2 correspond to each other, and the second output electrodes 232 of the two power modules 2 The position of the third output electrode 233 of the two power modules 2 corresponds to the upper and lower positions. It should be noted that one of the power modules 2 is programmed through the interior thereof so that the two powers are The first output electrode 231, the second output electrode 232, and the third output electrode 233 of the module 2 are vertically connected. The heat dissipating member 24 is disposed on the second surface 212 and penetrates into the heat dissipation region 115 of the heat dissipation frame 11 via the corresponding opening 112, so that the heat dissipation members 24 of the two power modules 2 are opposite to each other, and the heat dissipation member 24 is more in this embodiment. The shape of the heat sink, but not limited to it, can also be other forms such as heat sink fins.

參閱圖3及圖12,電流輸入傳導單元3電連接於直流電源的薄膜電容20及該等電力模組2的該等輸入電極單元22之間,其包括一電連接於各該電力模組2的該第一正極221之間的第一正極匯流條31、一電連接於各該電力模組2的該第一負極222之間的第一負極匯流條32、一電連接於各該電力模組2的該第二正極223之間的第二正極匯流條33、一電連接於各該電力模組2的該第二負極224之間的第二負極匯流條34、一電連接於各該電力模組2的該第三正極225之間的第三正極匯流條35及一電連接於各該電力模組2的該第三負極226之間的第三負極匯流條36。該第一正極匯流條31電連接於兩電力模組2的該第一正極221與薄膜電容20的第一輸入正極201之間。該第一負極匯流條32電連接於兩電力模組2的該第一負極222與薄膜電容20的第一輸入負極202之間。,該第二正極匯流條33電連接於兩電力模組2的該第二正極223與薄膜電容20的第二輸入正極203之間。該第二負極匯流條34電連接於兩電力模組2的該第二負極224與薄膜電容20的第二輸入負極204之間。該第三正極匯流條35電連接於兩電力模組2的該第三正極225與薄膜電容20的第三輸入正極205之間。該第三負極匯流條36電連接於兩電力模組2的該第三負極226與薄膜電容20的第三輸入負極206之間。Referring to FIG. 3 and FIG. 12 , the current input and conduction unit 3 is electrically connected between the film capacitor 20 of the DC power source and the input electrode units 22 of the power modules 2 , and includes an electrical connection to each of the power modules 2 . The first positive bus bar 31 between the first positive electrode 221 and the first negative bus bar 32 electrically connected to the first negative electrode 222 of each power module 2 are electrically connected to each of the power modes. a second positive bus bar 33 between the second positive electrodes 223 of the group 2, a second negative current bus bar 34 electrically connected between the second negative electrodes 224 of each of the power modules 2, and one electrically connected to each A third positive bus bar 35 between the third positive electrodes 225 of the power module 2 and a third negative bus bar 36 electrically connected between the third negative electrodes 226 of the power modules 2 . The first positive bus bar 31 is electrically connected between the first positive electrode 221 of the two power modules 2 and the first input positive electrode 201 of the thin film capacitor 20 . The first negative bus bar 32 is electrically connected between the first negative electrode 222 of the two power modules 2 and the first input negative electrode 202 of the thin film capacitor 20 . The second positive bus bar 33 is electrically connected between the second positive electrode 223 of the two power modules 2 and the second input positive electrode 203 of the film capacitor 20 . The second negative bus bar 34 is electrically connected between the second negative electrode 224 of the two power modules 2 and the second input negative electrode 204 of the film capacitor 20 . The third positive bus bar 35 is electrically connected between the third positive electrode 225 of the two power modules 2 and the third input positive electrode 205 of the film capacitor 20 . The third negative bus bar 36 is electrically connected between the third negative electrode 226 of the two power modules 2 and the third input negative electrode 206 of the film capacitor 20 .

參閱圖3及圖11,電流輸出傳導單元4電連接於該等輸出電極單元23及該馬達(圖未示)之間,其包括一電連接於兩電力模組2的該第一輸出電極231與馬達之間的第一匯流條41、一電連接於兩電力模組2的該第二輸出電極232與馬達之間的第二匯流條42,及一電連接於兩電力模組2的該第三輸出電極233與馬達之間的第三匯流條43。Referring to FIG. 3 and FIG. 11 , the current output conducting unit 4 is electrically connected between the output electrode unit 23 and the motor (not shown), and includes a first output electrode 231 electrically connected to the two power modules 2 . a first bus bar 41 connected to the motor, a second bus bar 42 electrically connected between the second output electrode 232 of the two power modules 2 and the motor, and a second electrically connected to the two power modules 2 The third bus bar 43 between the third output electrode 233 and the motor.

參閱圖1、圖3、圖11及圖12,以下介紹本發明堆疊式逆變器10的運作流程,首先薄膜電容20先由第一至第三輸入正極201、203、205與第一至第三輸入負極202、204、206透過電流輸入傳導單元3將直流電傳輸至該等電力模組2的第一至第三正極221、223、225與第一至第三負極222、224、226,透過該等電力模組2將直流電轉換為三相交流電後再透過電流輸出傳導單元4將三相交流電輸出至該馬達。在此過程中,兩個電力模組2的溫度將逐漸升高,此時可將冷卻液經由第一進液口113或第二進液口119輸入該液體流道111內,由於兩電力模組2的散熱件24分別穿伸至液體流道111的散熱區115內,因此,冷卻液在散熱區115內流動的過程中會同時冷卻兩電力模組2的散熱件24,使兩個電力模組2降溫,如此一來兩個電力模組2的降溫程度將趨於一致,能有效降低兩個電力模組2的溫度差異值,使電流輸出的穩定度提高。Referring to FIG. 1 , FIG. 3 , FIG. 11 and FIG. 12 , the following describes the operation flow of the stacked inverter 10 of the present invention. First, the film capacitor 20 firstly passes through the first to third input positive electrodes 201 , 203 , 205 and the first to the first The three input negative electrodes 202, 204, and 206 transmit the direct current to the first to third positive electrodes 221, 223, 225 and the first to third negative electrodes 222, 224, 226 of the power module 2 through the current input conducting unit 3, through The power modules 2 convert the direct current into three-phase alternating current, and then output the three-phase alternating current to the motor through the current output conducting unit 4. During this process, the temperature of the two power modules 2 will gradually increase. At this time, the coolant can be input into the liquid flow path 111 via the first liquid inlet 113 or the second liquid inlet 119, due to the two electric modes. The heat dissipating members 24 of the group 2 respectively extend into the heat dissipating region 115 of the liquid flow path 111. Therefore, during the flow of the cooling liquid in the heat dissipating region 115, the heat dissipating members 24 of the two power modules 2 are simultaneously cooled, so that the two electric powers are The module 2 is cooled down, so that the cooling degree of the two power modules 2 will tend to be consistent, and the temperature difference between the two power modules 2 can be effectively reduced, so that the stability of the current output is improved.

綜上所述,本發明推疊式逆變器,藉由灌入該液體流道111的冷卻液體對經由該等開口112穿伸進入該散熱區115的該等電力模組2的散熱件24進行冷卻,進而能同時對兩個電力模組2進行散熱。另外, 因為該等電力模組2是僅經由一條該液體流道111進行冷卻,且由於該進液整流區116有助於使進入散熱區115的液體流速平整,使該散熱件24的每一處均勻散熱且使該等電力模組2的溫度差異小,進而使電流輸出的穩定度提高。在實際應用於電動車時,也因該推疊式逆變器10具有可供選擇的第一進液口113與第二進液口119,以及可供選擇的第一出液口114與第二出液口121,使該推疊式逆變器10安裝時在車用冷卻液管線的配置方面有更有多彈性空間。此外,在達到冷卻目的的同時,因為該散熱框架11的結構簡單,所以在製造成本上也相對地節省。故確實能達成本發明之目的。In summary, the push-pull inverter of the present invention, through the cooling liquid poured into the liquid flow path 111, dissipates the heat sink 24 of the power modules 2 that penetrate the heat dissipation zone 115 through the openings 112. Cooling is performed to further dissipate heat from the two power modules 2 at the same time. In addition, since the power modules 2 are cooled only through one of the liquid flow paths 111, and because the liquid rectification region 116 helps to level the liquid flow rate entering the heat dissipation region 115, each of the heat dissipation members 24 is made. The heat is uniformly dissipated and the temperature difference between the power modules 2 is small, thereby improving the stability of the current output. When actually applied to an electric vehicle, the push-type inverter 10 has an optional first liquid inlet 113 and a second liquid inlet 119, and an optional first liquid outlet 114 and The two liquid outlets 121 have a more flexible space for the arrangement of the vehicle coolant line when the push-in inverter 10 is mounted. Further, while achieving the cooling purpose, since the structure of the heat dissipation frame 11 is simple, the manufacturing cost is also relatively saved. Therefore, the object of the present invention can be achieved.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.

10‧‧‧堆疊式逆變器10‧‧‧Stacked inverter

20‧‧‧薄膜電容20‧‧‧ Film Capacitance

201‧‧‧第一輸入正極201‧‧‧First input positive

202‧‧‧第一輸入負極202‧‧‧First input negative

203‧‧‧第二輸入正極203‧‧‧Second input positive

204‧‧‧第二輸入負極204‧‧‧Second input negative

205‧‧‧第三輸入正極205‧‧‧ third input positive

206‧‧‧第三輸入負極206‧‧‧ third input negative

1‧‧‧散熱模組1‧‧‧ Thermal Module

11‧‧‧散熱框架11‧‧‧heating frame

111‧‧‧液體流道111‧‧‧Liquid runner

112‧‧‧開口112‧‧‧ openings

113‧‧‧第一進液口113‧‧‧First inlet

114‧‧‧第一出液口114‧‧‧First outlet

115‧‧‧散熱區115‧‧‧heating area

116‧‧‧進液整流區116‧‧‧Inlet rectification zone

116a‧‧‧外進液整流部116a‧‧‧External fluid rectification

116b‧‧‧內進液整流部116b‧‧‧Inlet liquid rectification

116c‧‧‧漸縮部116c‧‧‧Friction

117‧‧‧出液區117‧‧‧Drainage area

117a‧‧‧外出液部117a‧‧‧Outflow Department

117b‧‧‧內出液部117b‧‧‧In the liquid discharge department

117c‧‧‧連通部117c‧‧‧Connecting Department

118‧‧‧入流道118‧‧‧Into the runner

119‧‧‧第二進液口119‧‧‧Second inlet

120‧‧‧出流道120‧‧‧ outflow channel

121‧‧‧第二出液口121‧‧‧Second outlet

13‧‧‧閥門單元13‧‧‧Valve unit

131‧‧‧第一封閉件131‧‧‧First closure

132‧‧‧第二封閉件132‧‧‧Second closure

133‧‧‧第三封閉件133‧‧‧ Third closure

134‧‧‧第四封閉件134‧‧‧Fourth closure

14‧‧‧轉接單元14‧‧‧Transfer unit

141‧‧‧第一進液轉接件141‧‧‧First Infusion Adapter

142‧‧‧第二進液轉接件142‧‧‧Second fluid inlet adapter

143‧‧‧第一出液轉接件143‧‧‧First liquid delivery adapter

144‧‧‧第二出液轉接件144‧‧‧Second fluid delivery adapter

2‧‧‧電力模組2‧‧‧Power Module

21‧‧‧本體21‧‧‧ body

211‧‧‧第一面211‧‧‧ first side

212‧‧‧第二面212‧‧‧ second side

22‧‧‧輸入電極單元22‧‧‧Input electrode unit

221‧‧‧第一正極221‧‧‧First positive electrode

222‧‧‧第一負極222‧‧‧ first negative

223‧‧‧第二正極223‧‧‧second positive

224‧‧‧第二負極224‧‧‧second negative

225‧‧‧第三正極225‧‧‧ Third positive electrode

226‧‧‧第三負極226‧‧‧ third negative

23‧‧‧輸出電極單元23‧‧‧Output electrode unit

231‧‧‧第一輸出電極231‧‧‧First output electrode

232‧‧‧第二輸出電極232‧‧‧second output electrode

233‧‧‧第三輸出電極233‧‧‧ third output electrode

24‧‧‧散熱件24‧‧‧ Heat sink

3‧‧‧電流輸入傳導單元3‧‧‧Current input conduction unit

31‧‧‧第一正極匯流條31‧‧‧First positive bus bar

32‧‧‧第一負極匯流條32‧‧‧First negative bus bar

33‧‧‧第二正極匯流條33‧‧‧Second positive bus bar

34‧‧‧第二負極匯流條34‧‧‧Second negative bus bar

35‧‧‧第三正極匯流條35‧‧‧ Third positive bus bar

36‧‧‧第三負極匯流條36‧‧‧ Third negative bus bar

4‧‧‧電流輸出傳導單元4‧‧‧Current output conduction unit

41‧‧‧第一匯流條41‧‧‧First bus bar

42‧‧‧第二匯流條42‧‧‧Second bus bar

43‧‧‧第三匯流條43‧‧‧ Third Bus Bar

D1‧‧‧左右方向D1‧‧‧ direction

D2‧‧‧前後方向D2‧‧‧ direction

D3‧‧‧上下方向D3‧‧‧Up and down direction

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是本發明堆疊式逆變器的一實施例與一薄膜電容電連接的一立體圖; 圖2是一立體分解圖,說明該實施例與該薄膜電容的連接方式; 圖3是一立體分解圖,說明該實施例之一散熱模組與兩個電力模組的組裝方式; 圖4是沿圖3中的IV-IV線所截取的一剖面圖,說明該實施例的散熱模組的一散熱框架的內部結構; 圖5是沿圖3中的V-V線所截取的一剖面圖,說明該實施例的散熱框架的一液體流道; 圖6是一俯視圖,說明該實施例的散熱框架在一種使用方式中與一閥門單元及一轉接單元的配合情形; 圖7是一類似圖6的視圖,說明該實施例的散熱框架在另一種使用方式中與該閥門單元及該轉接單元的配合情形; 圖8是一類似圖6的視圖,說明該實施例的散熱框架在一種使用方式中與該閥門單元及該轉接單元的配合情形; 圖9是一類似圖6的視圖,說明該實施例的散熱框架在又一種使用方式中與該閥門單元及該轉接單元的配合情形; 圖10是該實施例之一側視圖; 圖11是該實施例由另一視角觀看之一立體圖;及 圖12是一局部剖面圖,說明該實施例的電力模組的散熱件經由開口穿伸入散熱框架的液體流道內,以及冷卻液在液體流道內流動並對散熱件散熱。Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a perspective view of an embodiment of a stacked inverter of the present invention electrically connected to a film capacitor; Is an exploded view showing the connection between the embodiment and the film capacitor; FIG. 3 is an exploded perspective view showing the assembly mode of the heat dissipation module and the two power modules of the embodiment; FIG. A cross-sectional view taken along line IV-IV of FIG. 3 illustrates the internal structure of a heat dissipation frame of the heat dissipation module of the embodiment; FIG. 5 is a cross-sectional view taken along line V-V of FIG. A liquid flow path of the heat dissipation frame of the embodiment; FIG. 6 is a plan view showing the cooperation of the heat dissipation frame of the embodiment with a valve unit and an adapter unit in a use mode; FIG. 7 is a similar view to FIG. A view showing the cooperation of the heat dissipation frame of the embodiment with the valve unit and the adapter unit in another mode of use; FIG. 8 is a view similar to FIG. 6 illustrating the heat dissipation frame of the embodiment in a manner of use. In and FIG. 9 is a view similar to FIG. 6 illustrating the cooperation of the heat dissipation frame of the embodiment with the valve unit and the adapter unit in still another mode of use; FIG. 1 is a side view of the embodiment; FIG. 11 is a perspective view of the embodiment viewed from another perspective; and FIG. 12 is a partial cross-sectional view showing the heat sink of the power module of the embodiment extending through the opening into the heat dissipation frame The liquid flow path, and the coolant flow in the liquid flow path and dissipate heat from the heat sink.

Claims (10)

一種堆疊式逆變器,用於將一直流電源輸出的直流電轉換為交流電以輸出至一馬達,包含: 一散熱模組,包括一散熱框架,該散熱框架呈鏤空狀並界定出一液體流道,該液體流道具有兩個分別位於上、下端的開口、一第一進液口,及一第一出液口; 兩個電力模組,分別疊置於該散熱框架上下兩側,每一電力模組包括一第一面、一相反於該第一面的第二面、一輸入電極單元,及一與該輸入電極單元相間隔的輸出電極單元,該等電力模組的第二面彼此相對且分別覆蓋並封閉該等開口; 一電流輸入傳導單元,電連接於該直流電源及該等電力模組的該等輸入電極單元之間;及 一電流輸出傳導單元,電連接於該等輸出電極單元及該馬達之間。A stacked inverter for converting a direct current output from a direct current power source into an alternating current to output to a motor, comprising: a heat dissipation module including a heat dissipation frame, wherein the heat dissipation frame is hollowed out and defines a liquid flow path The liquid flow path has two openings respectively located at the upper and lower ends, a first liquid inlet, and a first liquid outlet; two power modules are respectively stacked on the upper and lower sides of the heat dissipation frame, and each The power module includes a first surface, a second surface opposite to the first surface, an input electrode unit, and an output electrode unit spaced apart from the input electrode unit, the second sides of the power modules are opposite to each other Oppositely and separately covering and closing the openings; a current input conducting unit electrically connected between the DC power source and the input electrode units of the power modules; and a current output conducting unit electrically connected to the outputs Between the electrode unit and the motor. 如請求項1所述的堆疊式逆變器,其中,每一電力模組還包括一凸設於該第二面的散熱件,該散熱件經由對應的該開口穿伸入該液體流道內。The stacked inverter of claim 1, wherein each power module further includes a heat dissipating member protruding from the second surface, the heat dissipating member penetrating into the liquid flow path via the corresponding opening . 如請求項1或2所述的堆疊式逆變器,其中,該散熱框架更界定出分別連通於該液體流道的一入流道,及一出流道,該入流道具有一與該第一進液口不同方向的第二進液口,該出流道具有一與該第一出液口不同方向的第二出液口。The stacked inverter of claim 1 or 2, wherein the heat dissipation frame further defines an inflow channel respectively connected to the liquid flow path, and an outflow channel, the inflow prop has a first a second liquid inlet having a different direction of the liquid outlet, the outlet element having a second liquid outlet in a direction different from the first liquid outlet. 如請求項3所述的堆疊式逆變器,其中,該液體流道沿一左右方向延伸,該入流道及該出流道分別沿一垂直於該左右方向的前後方向延伸。The stacked inverter of claim 3, wherein the liquid flow path extends in a left-right direction, and the inflow channel and the outflow channel respectively extend in a front-rear direction perpendicular to the left-right direction. 如請求項3所述的堆疊式逆變器,其中,該等開口形狀相同並且上下相互對稱。The stacked inverter of claim 3, wherein the openings are identical in shape and symmetrical to each other. 如請求項1或2所述的堆疊式逆變器,其中,該液體流道具有一連通於該等開口之間的散熱區,及一連通於該散熱區與該第一進液口之間的進液整流區。The stacked inverter of claim 1 or 2, wherein the liquid flow prop has a heat dissipation area connected between the openings, and a communication between the heat dissipation area and the first liquid inlet The liquid inlet rectification zone. 如請求項3所述的堆疊式逆變器,其中,該散熱模組更包括一閥門單元,該閥門單元可選擇地阻斷該第一進液口及該第二進液口其中之一,且該閥門單元可選擇地阻斷該第一出液口及該第二出液口其中之一。The stacked inverter of claim 3, wherein the heat dissipation module further comprises a valve unit, the valve unit selectively blocking one of the first liquid inlet and the second liquid inlet, And the valve unit selectively blocks one of the first liquid outlet and the second liquid outlet. 如請求項7所述的堆疊式逆變器,其中,該閥門單元具有一用以控制該第一進液口的開啟與封閉的第一封閉件、一用以控制該第二進液口的開啟與封閉的第二封閉件、一用以控制該第一出液口的開啟與封閉的第三封閉件,及一用以控制該第二出液口的開啟與封閉的第四封閉件。The stacked inverter of claim 7, wherein the valve unit has a first closing member for controlling opening and closing of the first liquid inlet, and a second sealing member for controlling the second liquid inlet. a second closure member that opens and closes, a third closure member for controlling opening and closing of the first liquid outlet, and a fourth closure member for controlling opening and closing of the second liquid outlet. 請求項4所述的堆疊式逆變器,其中,該液體流道具有一連通於該等開口之間的散熱區,及一連通於該散熱區與該第一進液口之間的進液整流區。The stacked inverter of claim 4, wherein the liquid flow prop has a heat dissipation area connected between the openings, and a liquid communication between the heat dissipation area and the first liquid inlet Rectification zone. 如請求項9所述的堆疊式逆變器,其中,該第一進液口呈矩形,該進液整流區具有一與該第一進液口連通之外進液整流部、一與該散熱區連通之內進液整流部,及一連通於該外進液整流部及該內進液整流部之間的漸縮部,該內進液整流部沿一垂直於左右方向的上下方向延伸的高度小於該外進液整流部沿該上下方向延伸的高度,該漸縮部沿該上下方向所取的截面積是由該外進液整流部朝該內進液整流部方向逐漸縮小,該入流道與該外進液整流部及該漸縮部相連通,該第二進液口呈圓形。The stacked inverter of claim 9, wherein the first liquid inlet has a rectangular shape, and the liquid inlet rectification zone has a liquid inlet rectifying portion, a heat dissipation portion, and the heat dissipation portion. a liquid inlet rectifying portion connected to the region, and a tapered portion connected between the external liquid rectifying portion and the inner liquid rectifying portion, the inner liquid rectifying portion extending in a vertical direction perpendicular to the left and right direction The height is smaller than a height of the outer liquid rectifying portion extending in the vertical direction, and a cross-sectional area of the tapered portion taken along the vertical direction is gradually reduced by the outer liquid rectifying portion toward the inner liquid rectifying portion, and the inflow The passage communicates with the external liquid rectifying portion and the tapered portion, and the second liquid inlet has a circular shape.
TW106125849A 2017-08-01 2017-08-01 Stacked inverter TWI666868B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125849A TWI666868B (en) 2017-08-01 2017-08-01 Stacked inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125849A TWI666868B (en) 2017-08-01 2017-08-01 Stacked inverter

Publications (2)

Publication Number Publication Date
TW201911728A true TW201911728A (en) 2019-03-16
TWI666868B TWI666868B (en) 2019-07-21

Family

ID=66590496

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125849A TWI666868B (en) 2017-08-01 2017-08-01 Stacked inverter

Country Status (1)

Country Link
TW (1) TWI666868B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030822B2 (en) * 2011-08-15 2015-05-12 Lear Corporation Power module cooling system
WO2015104914A1 (en) * 2014-01-09 2015-07-16 日立オートモティブシステムズ株式会社 Semiconductor device and power conversion device using same
CN106655710B (en) * 2015-10-29 2019-02-22 台达电子企业管理(上海)有限公司 Power supply change-over device
CN106655807B (en) * 2015-10-29 2019-02-26 台达电子企业管理(上海)有限公司 Power supply change-over device

Also Published As

Publication number Publication date
TWI666868B (en) 2019-07-21

Similar Documents

Publication Publication Date Title
JP5024600B2 (en) Heating element cooling structure and driving device having the structure
US9502329B2 (en) Semiconductor module cooler
JP5900610B2 (en) Semiconductor device and cooler for semiconductor device
JP6093186B2 (en) Semiconductor module cooler
WO2013054887A1 (en) Cooler for semiconductor module, and semiconductor module
US20160021784A1 (en) Cooling Module for Electrical Components
WO2015194259A1 (en) Cooler and cooler fixing method
BR102013010344A2 (en) Power Conversion Device
JP2013051311A (en) Electronic component cooling unit and electric power conversion apparatus
WO2013140704A1 (en) Power conversion apparatus
JP2012146759A (en) Cooler and electric power conversion apparatus using the same
JP5783465B2 (en) Busbar and electrical circuit
US20120287577A1 (en) Liquid cooling element
WO2018209828A1 (en) Liquid cooling heat dissipation device and motor controller
JP6642731B2 (en) Semiconductor module and power converter
JP7172579B2 (en) electrical equipment
KR102625685B1 (en) Electric power module and manufacturing method therof, inverter apparatus with electric power module
TWM554664U (en) Stacked type inverter
KR102256906B1 (en) Cold plate assembly for electrical cabinet
CN109302083B (en) stacked inverter
CN107731765B (en) Integrated liquid cooling radiator
CN207265878U (en) Stack inverter
US20210329815A1 (en) Electric power module and inverter apparatus having the same
TW201911728A (en) Stacked inverter for converting direct current outputted from a direct current power source into alternating current for being outputted to a motor
JP2017216293A (en) Fluid-cooling type cooling device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees