TW201911301A - Three dimensional memory and method of operating the same - Google Patents
Three dimensional memory and method of operating the same Download PDFInfo
- Publication number
- TW201911301A TW201911301A TW106125940A TW106125940A TW201911301A TW 201911301 A TW201911301 A TW 201911301A TW 106125940 A TW106125940 A TW 106125940A TW 106125940 A TW106125940 A TW 106125940A TW 201911301 A TW201911301 A TW 201911301A
- Authority
- TW
- Taiwan
- Prior art keywords
- charge storage
- line
- source
- storage structure
- layer
- Prior art date
Links
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
本發明是有關於一種半導體元件及其操作方法,且特別是有關於一種三維記憶體及其操作方法。The present invention relates to a semiconductor device and a method of operating the same, and more particularly to a three-dimensional memory and method of operating the same.
快閃記憶體元件由於具有可多次進行資料之存入、讀取、抹除等動作,且存入之資料在斷電後也不會消失之優點,所以已成為個人電腦和電子設備所廣泛採用的一種非揮發性記憶體元件。Flash memory components have become widely used in personal computers and electronic devices because they have the advantages of allowing data to be stored, read, erased, etc., and the stored data does not disappear after power-off. A non-volatile memory component used.
典型的快閃記憶體元件是以摻雜的多晶矽製作浮置閘極與控制閘極。而且,浮置閘極與控制閘極之間以介電層相隔。浮置閘極與基底之間是以穿隧氧化層相隔。在讀取快閃記憶體中的資料時,是對控制閘極上施加一工作電壓,並依據浮置閘極的帶電狀態來影響其下通道的開/關,而此通道之開/關即為判讀資料值「0」或「1」之依據。A typical flash memory device is a doped polysilicon that is fabricated with a floating gate and a control gate. Moreover, the floating gate and the control gate are separated by a dielectric layer. The floating gate is separated from the substrate by a tunneling oxide layer. When reading the data in the flash memory, an operating voltage is applied to the control gate, and the on/off of the lower channel is affected according to the charged state of the floating gate, and the on/off of the channel is The basis for reading the data value "0" or "1".
隨著科技的進步,各類電子產品皆朝向高速、高效能、且輕薄短小的趨勢發展,而在這趨勢之下,對於更高儲存能力之快閃記憶體的需求也隨之增加。因此,快閃記憶體的設計也已朝向具有高積集度及高密度的三維快閃記憶體結構發展。With the advancement of technology, all kinds of electronic products are moving toward high speed, high efficiency, light and short, and under this trend, the demand for flash memory with higher storage capacity has also increased. Therefore, the design of flash memory has also been developed toward a three-dimensional flash memory structure with high integration and high density.
本發明提供一種三維記憶體及其操作方法,其可在單一記憶胞中儲存4位元的資料,進而提高整體三維記憶體儲存能力。The invention provides a three-dimensional memory and a method for operating the same, which can store 4-bit data in a single memory cell, thereby improving the overall three-dimensional memory storage capacity.
本發明提供一種三維記憶體,其將隔離結構配置在相鄰源極線之間,藉此降低讀取時的干擾。The present invention provides a three-dimensional memory that arranges an isolation structure between adjacent source lines, thereby reducing interference during reading.
本發明提供一種三維記憶體,包括:基底、多條源極線、多個隔離結構、多條汲極線、多個位元線、多個電荷儲存結構以及多個導體層。源極線位於基底上。隔離結構分別位於源極線之間,以電性隔離源極線。汲極線位於源極線上。汲極線與源極線的延伸方向不同。位元線自源極線延伸至汲極線。電荷儲存結構分別圍繞位元線。導體層分別覆蓋沿各源極線排列的電荷儲存結構的表面。The present invention provides a three-dimensional memory comprising: a substrate, a plurality of source lines, a plurality of isolation structures, a plurality of drain lines, a plurality of bit lines, a plurality of charge storage structures, and a plurality of conductor layers. The source line is on the substrate. The isolation structures are respectively located between the source lines to electrically isolate the source lines. The bungee line is on the source line. The dipole line and the source line extend in different directions. The bit line extends from the source line to the drain line. The charge storage structures surround the bit lines, respectively. The conductor layers respectively cover the surfaces of the charge storage structures arranged along the respective source lines.
在一實施例中,形成位元線的材料包括第一型多晶矽材料。形成源極線與汲極線的材料包括第二型多晶矽材料。第一型多晶矽材料不同於第二型多晶矽材料。In an embodiment, the material forming the bit line comprises a first type polysilicon material. The material forming the source line and the drain line includes a second type polysilicon material. The first type polycrystalline germanium material is different from the second type polycrystalline germanium material.
在一實施例中,各位元線包括第一部分、第二部分與第三部分。第二部分位於第一部分與第三部分之間。第二部分被電荷儲存結構所包圍。第一部分連接源極線且作為源極。第三部分連接汲極線且作為汲極。In an embodiment, each of the bit lines includes a first portion, a second portion, and a third portion. The second part is located between the first part and the third part. The second portion is surrounded by a charge storage structure. The first part is connected to the source line and acts as a source. The third part connects the bungee line and acts as a bungee.
在一實施例中,三維記憶體更包括矽化金屬層位於源極線上,以降低所述源極線與位元線之間的電阻值。In one embodiment, the three-dimensional memory further includes a deuterated metal layer on the source line to reduce a resistance value between the source line and the bit line.
在一實施例中,電荷儲存結構是經組態以儲存4位元的資料。In an embodiment, the charge storage structure is configured to store 4 bits of data.
在一實施例中,電荷儲存結構包括穿隧介電層、電荷儲存層以及電子阻擋層。所述電荷儲存層位於穿隧介電層與電子阻擋層之間。In an embodiment, the charge storage structure includes a tunneling dielectric layer, a charge storage layer, and an electron blocking layer. The charge storage layer is between the tunneling dielectric layer and the electron blocking layer.
在一實施例中,電荷儲存層的材料包括氮化矽、氧化鋁、二氧化鉿、二氧化鋯、氧化鑭、氧化釔或其組合。In an embodiment, the material of the charge storage layer comprises tantalum nitride, aluminum oxide, hafnium oxide, zirconium dioxide, hafnium oxide, tantalum oxide or a combination thereof.
本發明提供一種用於所述三維記憶體的操作方法,包括:程式化、抹除或讀取電荷儲存結構。The present invention provides a method of operation for the three-dimensional memory, comprising: stylizing, erasing or reading a charge storage structure.
在一實施例中,程式化電荷儲存結構的步驟包括對導體層施加一正電壓,對汲極線施加另一正電壓,並將源極線接地,以將電子儲存在靠近所述汲極線的所述電荷儲存結構中。In one embodiment, the step of staging the charge storage structure includes applying a positive voltage to the conductor layer, applying another positive voltage to the drain line, and grounding the source line to store electrons near the drain line In the charge storage structure.
在一實施例中,抹除電荷儲存結構的步驟包括對導體層施加一負電壓,對汲極線施加一正電壓,並將源極線接地,以將電洞吸引至靠近所述汲極線的電荷儲存結構中。In one embodiment, the step of erasing the charge storage structure includes applying a negative voltage to the conductor layer, applying a positive voltage to the drain line, and grounding the source line to attract the hole to the drain line. The charge storage structure.
在一實施例中,讀取電荷儲存結構的機制包括對導體層施加一讀取電壓,對汲極線施加一正電壓,並將源極線接地,以讀取靠近所述汲極線的電荷儲存結構中的儲存狀態。In one embodiment, the mechanism for reading the charge storage structure includes applying a read voltage to the conductor layer, applying a positive voltage to the drain line, and grounding the source line to read the charge near the drain line. Store the storage state in the structure.
在一實施例中,讀取電荷儲存結構的機制包括對導體層施加一讀取電壓,對源極線施加一正電壓,並將汲極線接地,以讀取靠近所述源極線的電荷儲存結構中的儲存狀態。In one embodiment, the mechanism for reading the charge storage structure includes applying a read voltage to the conductor layer, applying a positive voltage to the source line, and grounding the drain line to read the charge near the source line. Store the storage state in the structure.
基於上述,本發明藉由在相鄰兩條源極線之間配置隔離結構,以電性隔離相鄰兩條源極線,進而降低讀取時的干擾。另外,本發明以高介電常數材料當作電荷儲存層,其可在單一記憶胞中儲存4位元的資料,進而提高整體三維記憶體儲存能力。此外,本發明藉由價帶-導帶熱電洞注入模式來抹除所述記憶胞,其可降低穿隧介電層的損害,進而提升三維記憶體的可靠度。Based on the above, the present invention electrically isolates two adjacent source lines by arranging an isolation structure between adjacent two source lines, thereby reducing interference during reading. In addition, the present invention uses a high dielectric constant material as a charge storage layer, which can store 4-bit data in a single memory cell, thereby improving the overall three-dimensional memory storage capacity. In addition, the present invention erases the memory cell by a valence band-guideband thermowell injection mode, which can reduce the damage of the tunneling dielectric layer and thereby improve the reliability of the three-dimensional memory.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再一一贅述。The invention will be more fully described with reference to the drawings of the embodiments. However, the invention may be embodied in a variety of different forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar reference numerals indicate the same or similar elements, and the following paragraphs will not be repeated.
圖1為依照本發明之一實施例所繪示的三維記憶體的立體示意圖。在本實施例中,圖1之三維記憶體可例如是反或(NOR)快閃記憶體。為了清楚起見,圖1中僅繪示出基底、底介電層、源極線、隔離結構、記憶胞以及汲極線,其他構件請參照後續的剖面示意圖。FIG. 1 is a perspective view of a three-dimensional memory according to an embodiment of the invention. In the present embodiment, the three-dimensional memory of FIG. 1 may be, for example, a reverse or (NOR) flash memory. For the sake of clarity, only the substrate, the bottom dielectric layer, the source line, the isolation structure, the memory cell, and the drain line are shown in FIG. 1. For other components, refer to the subsequent cross-sectional schematic diagram.
請參照圖1,本實施例提供一種三維記憶體,包括:基底100、底介電層102、多條源極線104a、多個隔離結構116a、多個記憶胞、多條位元線114、多條字元線WL以及多條汲極線128。詳細地說,底介電層102位於基底100上。源極線104a位於底介電層102上,使得底介電層102位於源極線104a與基底100之間。源極線104a為條狀圖案,其沿著Y方向延伸。隔離結構116a位於源極線104a之間的底介電層102上,以電性隔離相鄰兩條源極線104a,進而降低讀取時的干擾。在一實施例中,隔離結構116a為條狀,其沿著Y方向延伸。Referring to FIG. 1 , the embodiment provides a three-dimensional memory, including: a substrate 100, a bottom dielectric layer 102, a plurality of source lines 104a, a plurality of isolation structures 116a, a plurality of memory cells, and a plurality of bit lines 114. A plurality of word lines WL and a plurality of drain lines 128. In detail, the bottom dielectric layer 102 is located on the substrate 100. The source line 104a is on the bottom dielectric layer 102 such that the bottom dielectric layer 102 is between the source line 104a and the substrate 100. The source line 104a is a stripe pattern extending in the Y direction. The isolation structure 116a is located on the bottom dielectric layer 102 between the source lines 104a to electrically isolate the adjacent two source lines 104a, thereby reducing interference during reading. In an embodiment, the isolation structure 116a is strip-shaped that extends in the Y direction.
記憶胞以陣列方式分別位於源極線104a上。具體來說,每一記憶胞包括電荷儲存結構118。電荷儲存結構118圍繞位元線114的第二部分114b(如圖2L所示)。在一實施例中,位元線114可例如是圓柱狀結構,而電荷儲存結構118呈帶狀並包圍位元線114的中央部分。但本發明不以此為限,在其他實施例中,位元線114可例如是多邊柱狀結構。另外,電荷儲存結構118相對於基底100的表面的垂直方向的長度L可視為通道長度。位元線114自源極線104a延伸至汲極線128。在一實施例中,位元線114沿著Z方向延伸,使得位元線114的兩端分別連接源極線104a與汲極線128。形成位元線114的材料包括P型多晶矽材料,使位於源極線104a與電荷儲存結構118之間的位元線114的第一部份114a(如圖2L所示)可作為源極,被電荷儲存結構118所包覆的位元線114的第二部分114b可作為主動區或通道區,位於汲極線128與電荷儲存結構118之間的位元線114的第三部分114c(如圖2L所示)可作為汲極。各字元線WL覆蓋沿同一行(column)排列的多個電荷儲存結構118的表面。如圖1所示,字元線WL沿著Y方向延伸。也就是說,字元線WL的延伸方向與源極線104a的延伸方向相同。The memory cells are respectively located on the source line 104a in an array manner. In particular, each memory cell includes a charge storage structure 118. The charge storage structure 118 surrounds the second portion 114b of the bit line 114 (as shown in Figure 2L). In an embodiment, the bit line 114 can be, for example, a cylindrical structure, and the charge storage structure 118 is strip-shaped and surrounds a central portion of the bit line 114. However, the present invention is not limited thereto. In other embodiments, the bit line 114 may be, for example, a polygonal columnar structure. In addition, the length L of the charge storage structure 118 with respect to the vertical direction of the surface of the substrate 100 can be regarded as the channel length. Bit line 114 extends from source line 104a to drain line 128. In one embodiment, the bit line 114 extends along the Z direction such that both ends of the bit line 114 are connected to the source line 104a and the drain line 128, respectively. The material forming the bit line 114 includes a P-type polysilicon material such that the first portion 114a (shown in FIG. 2L) of the bit line 114 between the source line 104a and the charge storage structure 118 can serve as a source. The second portion 114b of the bit line 114 covered by the charge storage structure 118 can serve as an active or channel region, a third portion 114c of the bit line 114 between the drain line 128 and the charge storage structure 118 (eg 2L) can be used as a bungee. Each word line WL covers the surface of a plurality of charge storage structures 118 arranged along the same column. As shown in FIG. 1, the word line WL extends in the Y direction. That is, the direction in which the word line WL extends is the same as the direction in which the source line 104a extends.
每一汲極線128連接排列成同一列(row)的多條位元線114。汲極線128沿著X方向延伸。也就是說,汲極線128與源極線104a的延伸方向不同。Each of the drain lines 128 is connected to a plurality of bit lines 114 arranged in the same row. The drain line 128 extends in the X direction. That is, the direction in which the drain line 128 extends from the source line 104a is different.
圖2A至圖2L為沿圖1之A-A線之製造流程的剖面示意圖。圖3A至圖3P為沿圖1之B-B線之製造流程的剖面示意圖。2A to 2L are schematic cross-sectional views showing the manufacturing flow along the line A-A of Fig. 1. 3A to 3P are schematic cross-sectional views showing the manufacturing flow along the line B-B of Fig. 1.
請同時參照圖2A與圖3A,本實施例提供圖1之三維記憶體的製造方法,其步驟如下。首先,提供基底100。在一實施例中,基底100可例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。在本實施例中,基底100可以是P型矽基底。Referring to FIG. 2A and FIG. 3A simultaneously, this embodiment provides a method for manufacturing the three-dimensional memory of FIG. 1 , and the steps are as follows. First, a substrate 100 is provided. In one embodiment, the substrate 100 can be, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator (SOI)). In the present embodiment, the substrate 100 may be a P-type germanium substrate.
接著,在基底100上依序形成底介電層102、導體層104、緩衝結構106以及介電層108。在一實施例中,底介電層102可以是氧化矽層,其形成方法可例如是化學氣相沈積法。導體層104可以是摻雜多晶矽層。在本實施例中,導體層104可以是N+多晶矽層,其所植入的摻質可例如是磷或是砷,其摻雜濃度可例如是1´1018 /cm3 至1´1021 /cm3 。緩衝結構106包括氧化矽層106a、氮化矽層106b以及氧化矽層106c的複合結構,其形成方法可例如是化學氣相沈積法。介電層108可以是氮化矽層,其形成方法可例如是化學氣相沈積法。Next, a bottom dielectric layer 102, a conductor layer 104, a buffer structure 106, and a dielectric layer 108 are sequentially formed on the substrate 100. In an embodiment, the bottom dielectric layer 102 may be a ruthenium oxide layer, and the formation method thereof may be, for example, a chemical vapor deposition method. Conductor layer 104 can be a doped polysilicon layer. In this embodiment, the conductor layer 104 may be an N+ polysilicon layer, and the implanted dopant may be, for example, phosphorus or arsenic, and the doping concentration thereof may be, for example, 1 ́10 18 /cm 3 to 1 ́10 21 / Cm 3 . The buffer structure 106 includes a composite structure of a ruthenium oxide layer 106a, a tantalum nitride layer 106b, and a ruthenium oxide layer 106c, which may be formed, for example, by chemical vapor deposition. The dielectric layer 108 may be a tantalum nitride layer, and the formation method thereof may be, for example, a chemical vapor deposition method.
請同時參照圖2A-2B與圖3A-3B,於導體層104、緩衝結構106以及介電層108中形成隔離層110。隔離層110沿著A-A線方向(亦即圖1的Y方向)延伸,藉此將導體層104分隔成多條源極線104a。隔離層110的形成方法可例如是在導體層104、緩衝結構106以及介電層108中形成開口10。開口10暴露出底介電層102的頂面。接著,將隔離材料填入開口10中並進行平坦化製程。在此階段中,如圖3B所示,隔離層110的頂面與介電層108的頂面實質上共平面。在一實施例中,所述平坦化製程可以是化學機械研磨製程(CMP)或回蝕刻製程(Etching back)。隔離層110的材料可以是氧化矽。2A-2B and FIGS. 3A-3B, an isolation layer 110 is formed in the conductor layer 104, the buffer structure 106, and the dielectric layer 108. The isolation layer 110 extends in the A-A line direction (i.e., the Y direction of FIG. 1), thereby dividing the conductor layer 104 into a plurality of source lines 104a. The method of forming the isolation layer 110 may, for example, form the opening 10 in the conductor layer 104, the buffer structure 106, and the dielectric layer 108. The opening 10 exposes the top surface of the bottom dielectric layer 102. Next, an isolation material is filled into the opening 10 and a planarization process is performed. In this stage, as shown in FIG. 3B, the top surface of the isolation layer 110 is substantially coplanar with the top surface of the dielectric layer 108. In an embodiment, the planarization process may be a chemical mechanical polishing process (CMP) or an etchback process. The material of the isolation layer 110 may be ruthenium oxide.
請同時參照圖2B-2C與圖3B-3C,形成貫穿緩衝結構106以及介電層108的多個開口12,以暴露出源極線104a的頂面。另外,由於開口12是用以定義圖1之位元線114的位置,因此,開口12是以陣列方式分別形成於源極線104a上。之後,在基底100上形成導體材料112。導體材料112填入開口12中並覆蓋介電層108的頂面。在一實施例中,導體材料112可例如是P型多晶矽材料,其所植入的摻質可例如是硼。2B-2C and FIGS. 3B-3C, a plurality of openings 12 are formed through the buffer structure 106 and the dielectric layer 108 to expose the top surface of the source line 104a. In addition, since the opening 12 is for defining the position of the bit line 114 of FIG. 1, the openings 12 are respectively formed on the source line 104a in an array manner. Thereafter, a conductor material 112 is formed on the substrate 100. Conductor material 112 fills the opening 12 and covers the top surface of dielectric layer 108. In one embodiment, the conductor material 112 can be, for example, a P-type polysilicon material, the dopant being implanted can be, for example, boron.
請同時參照圖2C-2D與圖3C-3D,進行平坦化製程,以暴露出介電層108的頂面,並在各開口12中形成位元線114。在此階段中,位元線114的頂面與介電層108的頂面實質上共平面。在一實施例中,所述平坦化製程可以是化學機械研磨製程或回蝕刻製程。Referring to FIGS. 2C-2D and FIGS. 3C-3D simultaneously, a planarization process is performed to expose the top surface of dielectric layer 108 and form bit lines 114 in each opening 12. In this stage, the top surface of the bit line 114 is substantially coplanar with the top surface of the dielectric layer 108. In an embodiment, the planarization process may be a chemical mechanical polishing process or an etch back process.
請同時參照圖2D-2E與圖3D-3E,凹蝕(recess)隔離層110,使得隔離結構116的頂面與緩衝結構106的頂面實質上共平面。然後,移除介電層108,以暴露出緩衝結構106的頂面。在一實施例中,凹蝕隔離層110的方法可例如是濕式蝕刻法,其可利用對隔離層110與介電層108(或位元線114)具有高蝕刻選擇比的蝕刻液來進行。相似地,移除介電層108的方法也可以是濕式蝕刻法,其可利用對介電層108與位元線114(或隔離結構116)具有高蝕刻選擇比的蝕刻液來進行。2D-2E and FIGS. 3D-3E, the isolation layer 110 is recessed such that the top surface of the isolation structure 116 is substantially coplanar with the top surface of the buffer structure 106. Dielectric layer 108 is then removed to expose the top surface of buffer structure 106. In one embodiment, the method of recessing the isolation layer 110 can be, for example, a wet etch process that can be performed using an etchant having a high etch selectivity to the isolation layer 110 and the dielectric layer 108 (or the bit line 114). . Similarly, the method of removing the dielectric layer 108 can also be a wet etch process that can be performed using an etchant having a high etch selectivity to the dielectric layer 108 and the bit line 114 (or isolation structure 116).
請同時參照圖2F與圖3F,在基底100上形成電荷儲存結構118。電荷儲存結構118共形地覆蓋位元線114的表面、緩衝結構106的頂面以及隔離結構116的頂面。雖然圖2F與圖3F所繪示的電荷儲存結構118為單層結構,但實際上電荷儲存結構118可包括穿隧介電層、電荷儲存層以及電子阻擋層(未繪示)。所述電荷儲存層位於所述穿隧介電層與所述電子阻擋層之間。在一實施例中,電荷儲存結構118可例如是由氧化矽層/氮化矽層/氧化矽層所構成的複合結構。但本發明不以此為限,在其他實施例中,所述電荷儲存層的材料可以是高介電常數材料,以提供高電容耦合(capacitive coupling)。高介電常數材料是指介電常數高於4的介電材料。高介電常數材料可例如是氮化矽、氧化鋁、二氧化鉿、二氧化鋯、氧化鑭、氧化釔或其組合。相較於習知以摻雜的多晶矽當作浮置閘極的記憶體,本實施例之電荷儲存結構118可減少穿隧介電層與電子阻擋層的厚度,同時維持記憶體的可靠度。另外,本實施例之高介電常數的電荷儲存層具有較低的有效氧化物厚度(effective oxide thickness,EOT),其有利於記憶體的尺寸微縮。此外,由於高介電常數材料為電性絕緣材料,因此,電子可分開儲存在具有高介電常數的電荷儲存層中,以達到將4位元資料儲存在單一記憶胞的功效。在替代實施例中,所述電荷儲存層的材料也可以是相對於穿隧介電層與電子阻擋層之具有較大導帶偏移(conduction band offset)的材料,其具有較佳的可靠度。Referring to FIG. 2F and FIG. 3F simultaneously, a charge storage structure 118 is formed on the substrate 100. The charge storage structure 118 conformally covers the surface of the bit line 114, the top surface of the buffer structure 106, and the top surface of the isolation structure 116. Although the charge storage structure 118 illustrated in FIG. 2F and FIG. 3F is a single layer structure, the charge storage structure 118 may include a tunneling dielectric layer, a charge storage layer, and an electron blocking layer (not shown). The charge storage layer is between the tunneling dielectric layer and the electron blocking layer. In one embodiment, the charge storage structure 118 can be, for example, a composite structure composed of a hafnium oxide layer/tantalum nitride layer/yttria layer. However, the invention is not limited thereto. In other embodiments, the material of the charge storage layer may be a high dielectric constant material to provide a high capacitive coupling. A high dielectric constant material refers to a dielectric material having a dielectric constant higher than 4. The high dielectric constant material may be, for example, tantalum nitride, aluminum oxide, hafnium oxide, zirconium dioxide, hafnium oxide, tantalum oxide or a combination thereof. Compared with the conventional memory in which the doped polysilicon is used as a floating gate, the charge storage structure 118 of the present embodiment can reduce the thickness of the tunneling dielectric layer and the electron blocking layer while maintaining the reliability of the memory. In addition, the high dielectric constant charge storage layer of the present embodiment has a low effective oxide thickness (EOT), which is advantageous for the size reduction of the memory. In addition, since the high dielectric constant material is an electrically insulating material, electrons can be separately stored in a charge storage layer having a high dielectric constant to achieve the effect of storing 4-bit data in a single memory cell. In an alternative embodiment, the material of the charge storage layer may also be a material having a larger conduction band offset relative to the tunneling dielectric layer and the electron blocking layer, which has better reliability. .
值得注意的是,在高溫的情況下,源極線104a的N型摻質會擴散至位元線114的第一部分114a中,藉此形成源極區。位元線114的第二部分114b位於位元線114的第一部分114a上。在一實施例中,位元線114的第二部分114b可以是P型導電型;而位元線114的第一部分(或源極區)114a可以是N型導電型。位元線114的第一部分114a嵌於緩衝結構106中。電荷儲存結構118覆蓋且圍繞位元線114的第二部分114b。為簡潔起見,此第一部分114a僅繪示於圖2F與圖3F中,而不再繪示於後續圖式中。It is noted that at high temperatures, the N-type dopant of the source line 104a will diffuse into the first portion 114a of the bit line 114, thereby forming a source region. The second portion 114b of the bit line 114 is located on the first portion 114a of the bit line 114. In an embodiment, the second portion 114b of the bit line 114 may be a P-type conductivity type; and the first portion (or source region) 114a of the bit line 114 may be an N-type conductivity type. The first portion 114a of the bit line 114 is embedded in the buffer structure 106. The charge storage structure 118 covers and surrounds the second portion 114b of the bit line 114. For the sake of brevity, this first portion 114a is only shown in FIG. 2F and FIG. 3F and is not shown in the subsequent figures.
請同時參照圖2G與圖3G,於電荷儲存結構118上形成導體層120。導體層120圍繞電荷儲存結構118並覆蓋電荷儲存結構118的頂面。在一實施例中,導體層120的材料可例如是摻雜多晶矽,其形成方法可以是化學氣相沉積法。在替代實施例中,導體層120的材料可以是金屬材料,例如銅(Cu)、鋁(Al)、鎢(W)或其組合。Referring to FIG. 2G and FIG. 3G simultaneously, the conductor layer 120 is formed on the charge storage structure 118. Conductor layer 120 surrounds charge storage structure 118 and covers the top surface of charge storage structure 118. In an embodiment, the material of the conductor layer 120 may be, for example, a doped polysilicon, which may be formed by chemical vapor deposition. In an alternate embodiment, the material of the conductor layer 120 may be a metallic material such as copper (Cu), aluminum (Al), tungsten (W), or a combination thereof.
請同時參照圖2G-2H與圖3G-3H,對導體層120進行平坦化製程,以暴露出電荷儲存結構118的頂面。在此情況下,如圖2H與圖3H所示,導體層120a配置在位元線114旁,且導體層120a的頂面與電荷儲存結構118的頂面可實質上共平面。在一實施例中,所述平坦化製程可以是化學機械研磨製程或回蝕刻製程。Referring to FIGS. 2G-2H and FIGS. 3G-3H simultaneously, the conductor layer 120 is planarized to expose the top surface of the charge storage structure 118. In this case, as shown in FIGS. 2H and 3H, the conductor layer 120a is disposed beside the bit line 114, and the top surface of the conductor layer 120a and the top surface of the charge storage structure 118 may be substantially coplanar. In an embodiment, the planarization process may be a chemical mechanical polishing process or an etch back process.
請同時參照圖2H-2I與圖3H-3I,進行蝕刻製程,移除部分導體層120a,以暴露出電荷儲存結構118的上部118U。在此情況下,如圖2I與圖3I所示,導體層120b的頂面低於電荷儲存結構118(或位元線114)的頂面。在一實施例中,所述蝕刻製程可以是回蝕刻製程。Referring to FIGS. 2H-2I and FIGS. 3H-3I simultaneously, an etching process is performed to remove a portion of the conductor layer 120a to expose the upper portion 118U of the charge storage structure 118. In this case, as shown in FIGS. 2I and 3I, the top surface of the conductor layer 120b is lower than the top surface of the charge storage structure 118 (or the bit line 114). In an embodiment, the etching process may be an etch back process.
請同時參照圖3I與圖3J,於位元線114之間的導體層120b中形成開口14,以形成導體層120c。開口14對應於隔離結構116a。在一實施例中,開口14可以是條狀開口,其沿著Y方向(如圖1所示)延伸。開口14貫穿導體層120c、電荷儲存結構118以及部分緩衝結構106,以暴露出緩衝結構106的氧化矽層106a。在一實施例中,開口14的形成方法包括微影製程與蝕刻製程。所述蝕刻製程可例如是反應性離子蝕刻製程(RIE)。Referring to FIG. 3I and FIG. 3J simultaneously, an opening 14 is formed in the conductor layer 120b between the bit lines 114 to form the conductor layer 120c. The opening 14 corresponds to the isolation structure 116a. In an embodiment, the opening 14 can be a strip-shaped opening that extends along the Y-direction (as shown in Figure 1). The opening 14 extends through the conductor layer 120c, the charge storage structure 118, and the partial buffer structure 106 to expose the yttrium oxide layer 106a of the buffer structure 106. In one embodiment, the method of forming the opening 14 includes a lithography process and an etch process. The etching process can be, for example, a reactive ion etching process (RIE).
請同時參照圖3J與圖3K,於基底100上形成間隙壁材料122。間隙壁材料122共形地覆蓋開口14的表面、導體層120c的頂面以及電荷儲存結構118的頂面。在一實施例中,間隙壁材料122的材料可例如是氮化矽,其形成方法可以是化學氣相沉積法。Referring to FIG. 3J and FIG. 3K simultaneously, a spacer material 122 is formed on the substrate 100. The spacer material 122 conformally covers the surface of the opening 14, the top surface of the conductor layer 120c, and the top surface of the charge storage structure 118. In an embodiment, the material of the spacer material 122 may be, for example, tantalum nitride, which may be formed by chemical vapor deposition.
請同時參照圖3K與圖3L,進行乾式蝕刻製程,移除部分間隙壁材料122,以在導體層120c的側壁形成間隙壁122a並在電荷儲存結構118的上部118U的側壁形成間隙壁122b。在此情況下,開口14的底面的間隙壁材料122也被移除,以暴露出緩衝結構106的氧化矽層106a的頂面(未繪示)。在一實施例中,所述乾式蝕刻製程可例如是反應性離子蝕刻製程(RIE)。之後,進行濕式蝕刻製程,以移除緩衝結構106的氧化矽層106a,並在緩衝結構106中形成空隙16。空隙16暴露出源極線104a的部分頂面。如圖3L所示,空隙16由緩衝結構106的氮化矽層106b、位元線114以及源極線104a所定義。Referring to FIG. 3K and FIG. 3L simultaneously, a dry etching process is performed to remove a portion of the spacer material 122 to form a spacer 122a on the sidewall of the conductor layer 120c and a spacer 122b on the sidewall of the upper portion 118U of the charge storage structure 118. In this case, the spacer material 122 of the bottom surface of the opening 14 is also removed to expose the top surface (not shown) of the ruthenium oxide layer 106a of the buffer structure 106. In an embodiment, the dry etching process can be, for example, a reactive ion etching process (RIE). Thereafter, a wet etching process is performed to remove the hafnium oxide layer 106a of the buffer structure 106 and to form the voids 16 in the buffer structure 106. The void 16 exposes a portion of the top surface of the source line 104a. As shown in FIG. 3L, the void 16 is defined by the tantalum nitride layer 106b of the buffer structure 106, the bit line 114, and the source line 104a.
請同時參照圖3L與圖3M,進行金屬矽化製程,以於外露於空隙16的源極線104a的部分頂面上形成矽化金屬層124。如圖3M所示,矽化金屬層124除了配置在被源極線104a覆蓋以外的源極線104a的頂面上,還延伸配置在源極線104a下方的源極線104a中,以降低源極線104a與位元線114之間的電阻值,進而提升記憶體的速度。金屬矽化製程的步驟包括在源極線104a上形成金屬層(未繪示)。之後,進行熱回火(Anneal)製程,使得所述金屬層與其所接觸的源極線104a反應形成矽化金屬層124。在一實施例中,矽化金屬層124的材料例如是矽化鎳(NiSi)、矽化鈷(CoSi)、矽化鈦(TiSi)、矽化鎢(WSi)、矽化鉬(MoSi)、矽化鉑(PtSi)、矽化鈀(PdSi)或其組合。Referring to FIG. 3L and FIG. 3M simultaneously, a metal deuteration process is performed to form a deuterated metal layer 124 on a portion of the top surface of the source line 104a exposed to the void 16. As shown in FIG. 3M, the deuterated metal layer 124 is disposed on the top surface of the source line 104a other than the source line 104a, and is further disposed in the source line 104a under the source line 104a to lower the source. The resistance between line 104a and bit line 114 increases the speed of the memory. The step of the metal deuteration process includes forming a metal layer (not shown) on the source line 104a. Thereafter, an Anneal process is performed such that the metal layer reacts with the source line 104a that it contacts to form the deuterated metal layer 124. In one embodiment, the material of the deuterated metal layer 124 is, for example, nickel germanium (NiSi), cobalt (CoSi), titanium (TiSi), tungsten germanium (WSi), molybdenum (MoSi), platinum (PtSi), Palladium telluride (PdSi) or a combination thereof.
由於圖3J至圖3M的層的變化並不會出現在圖1的A-A線剖面上,因此,為了簡潔起見,本文中並未繪示出相對應於圖3J至圖3M的步驟的A-A線剖面圖。也就是說,圖2J的步驟是接續於矽化金屬層124的形成之後。請同時參照圖2J與圖3M-3N,於基底100上形成介電層126。介電層126填入開口14中並填入空隙16中。如圖3N所示,介電層126還覆蓋電荷儲存結構118的頂面。在一實施例中,介電層126的材料包括氧化矽,其形成方法可以是化學氣相沉積法。Since the changes of the layers of FIGS. 3J to 3M do not appear on the AA line cross section of FIG. 1, for the sake of brevity, the AA line corresponding to the steps of FIGS. 3J to 3M is not shown herein. Sectional view. That is, the step of FIG. 2J is subsequent to the formation of the deuterated metal layer 124. Referring to FIG. 2J and FIGS. 3M-3N simultaneously, a dielectric layer 126 is formed on the substrate 100. Dielectric layer 126 fills into opening 14 and fills void 16. Dielectric layer 126 also covers the top surface of charge storage structure 118 as shown in FIG. 3N. In one embodiment, the material of the dielectric layer 126 includes hafnium oxide, which may be formed by chemical vapor deposition.
請同時參照圖2J-2K與圖3N-3O,對介電層126進行平坦化製程,移除部分介電層126、部分電荷儲存結構118以及部分間隙壁122b,以暴露出位元線114的頂面。在此情況下,如圖3O所示,位元線114的頂面、電荷儲存結構118的頂面以及介電層126a的頂面可實質上共平面。在一實施例中,所述平坦化製程可以是化學機械研磨製程或回蝕刻製程。Referring to FIG. 2J-2K and FIG. 3N-3O, the dielectric layer 126 is planarized to remove a portion of the dielectric layer 126, a portion of the charge storage structure 118, and a portion of the spacers 122b to expose the bit lines 114. Top surface. In this case, as shown in FIG. 3O, the top surface of the bit line 114, the top surface of the charge storage structure 118, and the top surface of the dielectric layer 126a may be substantially coplanar. In an embodiment, the planarization process may be a chemical mechanical polishing process or an etch back process.
請同時參照圖2L與圖3P,於位元線114上形成汲極線128。汲極線128沿著B-B線方向(或圖1的X方向)延伸,並橫越源極線104a與隔離結構116a。在本實施例中,汲極線128可以是N+多晶矽層,其所植入的摻質可例如是磷或是砷,其摻雜濃度可例如是1´1018 /cm3 至1´1021 /cm3 。但本發明不限於此,在其他實施例中,汲極線128也可以是金屬或其他導體材料。在替代實施例中,亦可對位元線114進行離子植佈製程,以將磷摻質或是砷摻質植入位元線114的第三部分114c中,藉此形成汲極區。也就是說,如圖2L所示,位元線114包括第一部分114a、第二部分114b以及第三部分114c。第二部分114b位於第一部分114a與第三部分114c之間。在一實施例中,第二部分114b的導電型與第一部分114a與第三部分114c的導電型不同。在本實施例中,第二部分114b可具有P型導電型,其可視為主動區或通道區。第一部分114a與第三部分114c可具有N型導電型。第一部分114a可視為源極區;而第三部分114c可視為汲極區。Referring to FIG. 2L and FIG. 3P simultaneously, a drain line 128 is formed on the bit line 114. The drain line 128 extends in the BB line direction (or the X direction of FIG. 1) and traverses the source line 104a and the isolation structure 116a. In this embodiment, the drain line 128 may be an N+ polysilicon layer, and the implanted dopant may be, for example, phosphorus or arsenic, and the doping concentration may be, for example, 1 ́10 18 /cm 3 to 1 ́10 21 . /cm 3 . However, the invention is not limited thereto, and in other embodiments, the drain line 128 may also be a metal or other conductor material. In an alternate embodiment, the bit line 114 can also be subjected to an ion implantation process to implant a phosphorous or arsenic dopant into the third portion 114c of the bit line 114, thereby forming a drain region. That is, as shown in FIG. 2L, the bit line 114 includes a first portion 114a, a second portion 114b, and a third portion 114c. The second portion 114b is located between the first portion 114a and the third portion 114c. In an embodiment, the conductivity type of the second portion 114b is different from the conductivity type of the first portion 114a and the third portion 114c. In the present embodiment, the second portion 114b may have a P-type conductivity type, which may be regarded as an active region or a channel region. The first portion 114a and the third portion 114c may have an N-type conductivity type. The first portion 114a can be considered a source region; and the third portion 114c can be considered a drain region.
值得注意的是,如圖2L與圖3P所示,位元線114自源極線104a延伸至汲極線128。電荷儲存結構118圍繞位元線114的側壁,並延伸覆蓋緩衝結構106的頂面。導體層120c覆蓋電荷儲存結構118的表面,使得電荷儲存結構118配置於位元線114與導體層120c之間。導體層120c至少覆蓋位元線114的第二部分(或通道區)114b。換言之,導體層120c可視為記憶胞的控制閘極或是字元線。It is noted that, as shown in FIGS. 2L and 3P, the bit line 114 extends from the source line 104a to the drain line 128. The charge storage structure 118 surrounds the sidewall of the bit line 114 and extends over the top surface of the buffer structure 106. The conductor layer 120c covers the surface of the charge storage structure 118 such that the charge storage structure 118 is disposed between the bit line 114 and the conductor layer 120c. Conductor layer 120c covers at least a second portion (or channel region) 114b of bit line 114. In other words, the conductor layer 120c can be regarded as a control gate or a word line of the memory cell.
在本實施例中,雖然圖2L與圖3P所繪示的源極線104a為源極端;而汲極線128為汲極端,但本發明不以此為限。在其他實施例中,源極線104a也可用以當作汲極端;而汲極線128也可用以當作源極端。In the present embodiment, although the source line 104a illustrated in FIGS. 2L and 3P is the source terminal; and the drain line 128 is the 汲 terminal, the present invention is not limited thereto. In other embodiments, source line 104a can also be used as the 汲 extreme; and drain line 128 can also be used as the source terminal.
圖4A為程式化本發明之一實施例的三維記憶體的剖面示意圖。圖4B為抹除本發明之一實施例的三維記憶體的剖面示意圖。圖4C與圖4D分別為讀取本發明之一實施例的三維記憶體的剖面示意圖。4A is a schematic cross-sectional view of a three-dimensional memory embodying an embodiment of the present invention. 4B is a schematic cross-sectional view of a three-dimensional memory in which an embodiment of the present invention is erased. 4C and 4D are schematic cross-sectional views showing a three-dimensional memory according to an embodiment of the present invention, respectively.
本實施例之三維記憶體的操作方法包括程式化、抹除或讀取圖1的電荷儲存結構118。請參照圖4A,程式化電荷儲存結構118的機制包括通道熱電子注入模式(Channel Hot Electron Injection)。詳細地說,通道熱電子注入模式的步驟如下。對字元線WL(其對應於圖1的導體層120c)施加一正電壓Vg ,對汲極D(其對應於圖1的汲極線128)施加另一正電壓Vd ,並將源極S(其對應於圖1的源極線104a)接地,使得記憶胞導通。因此,電流從汲極D流入源極S,而通道C中產生的熱電子被吸引並儲存在靠近汲極D的電荷儲存結構118中,以產生「01」的狀態。相似地,對字元線WL、汲極D以及源極S施加不同電壓,則可分別產生「10」、「11」或是「00」的狀態。因此,本實施例之電荷儲存結構118可經組態以儲存4位元的資料。在一實施例中,電壓Vg 可介於7伏特至9.5伏特之間;電壓Vd 可介於3.5伏特至5伏特之間。The method of operating the three-dimensional memory of this embodiment includes stylizing, erasing or reading the charge storage structure 118 of FIG. Referring to FIG. 4A, the mechanism for programming the charge storage structure 118 includes a channel hot electron injection (Channel Hot Electron Injection). In detail, the steps of the channel hot electron injection mode are as follows. A positive voltage V g is applied to the word line WL (which corresponds to the conductor layer 120c of FIG. 1 ), and another positive voltage V d is applied to the drain D (which corresponds to the drain line 128 of FIG. 1 ) and the source is applied. The pole S (which corresponds to the source line 104a of FIG. 1) is grounded such that the memory cells are turned on. Therefore, a current flows from the drain D to the source S, and the hot electrons generated in the channel C are attracted and stored in the charge storage structure 118 near the drain D to generate a state of "01". Similarly, when different voltages are applied to the word line WL, the drain D, and the source S, a state of "10", "11", or "00" can be generated. Thus, the charge storage structure 118 of the present embodiment can be configured to store 4-bit data. In one embodiment, the voltage V g may be between 7 volts to 9.5 volts; may be interposed between the voltage V d is 5 volts to 3.5 volts.
請參照圖4B,抹除電荷儲存結構118的機制包括價帶-導帶熱電洞注入模式(Band to Band Hot Hole Injection)。詳細地說,價帶-導帶熱電洞注入模式的步驟如下。對字元線WL(其對應於圖1的導體層120c)施加一負電壓Vg ,對汲極D(其對應於圖1的汲極線128)施加一正電壓Vd ,並將源極S(其對應於圖1的源極線104a)接地。如此一來,通道C中的熱電洞被吸引並注入在靠近汲極D的電荷儲存結構118中,使得所述熱電洞與所儲存的電子耦合。在本實施例中,以價帶-導帶熱電洞注入模式來抹除電荷儲存結構118,其可降低電荷儲存結構118中的穿隧介電層的損害,進而提升三維記憶體的可靠度。在一實施例中,電壓Vg 可介於-10伏特至-15伏特之間;電壓Vd 可介於3.5伏特至5伏特之間。Referring to FIG. 4B, the mechanism for erasing the charge storage structure 118 includes a Band to Band Hot Hole Injection. In detail, the steps of the valence band-guide band hot hole injection mode are as follows. Applying a negative voltage V g to the word line WL (which corresponds to the conductor layer 120c of FIG. 1 ), applying a positive voltage V d to the drain D (which corresponds to the drain line 128 of FIG. 1 ), and applying a source S (which corresponds to the source line 104a of FIG. 1) is grounded. As such, the thermoelectric holes in channel C are attracted and injected into the charge storage structure 118 near the drain D such that the thermal holes are coupled to the stored electrons. In the present embodiment, the charge storage structure 118 is erased in the valence band-guideband thermal hole injection mode, which can reduce the damage of the tunneling dielectric layer in the charge storage structure 118, thereby improving the reliability of the three-dimensional memory. In one embodiment, the voltage V g may be between -10 volts to -15 volts; may be interposed between the voltage V d is 5 volts to 3.5 volts.
請參照圖4C與圖4D,讀取電荷儲存結構118的機制包括正向讀取(forward read)模式或反向讀取(reverse read)模式。詳細地說,正向讀取模式的操作的步驟如下。如圖4C所示,對字元線WL(其對應於圖1的導體層120c)施加一讀取電壓Vg ,對汲極D(其對應於圖1的汲極線128)施加一正電壓VF ,並將源極S(其對應於圖1的源極線104a)接地,以讀取靠近汲極D的電荷儲存結構118中的儲存狀態。因此,當電子已儲存在靠近汲極D的電荷儲存結構118時,記憶胞的閥值升高,記憶胞以斷開的方式進行操作。在一實施例中,讀取電壓Vg 可介於3.5伏特至4.5伏特之間;電壓VF 可介於0.7伏特至1.2伏特之間。Referring to FIGS. 4C and 4D, the mechanism for reading the charge storage structure 118 includes a forward read mode or a reverse read mode. In detail, the steps of the operation in the forward read mode are as follows. 4C, a read voltage V g is applied to the word line WL (which corresponds to the conductor layer 120c of FIG. 1), a positive voltage is applied to the drain D (which corresponds to a drain line 128 of FIG. 1) V F , and the source S (which corresponds to the source line 104a of FIG. 1) is grounded to read the stored state in the charge storage structure 118 near the drain D. Therefore, when electrons have been stored in the charge storage structure 118 near the drain D, the threshold of the memory cell rises and the memory cell operates in a disconnected manner. In one embodiment, the read voltage V g may be between 3.5 volts to 4.5 volts; voltage V F may be between 0.7 volts to 1.2 volts.
反向讀取模式的操作的類似上述步驟。如圖4D所示,對字元線WL(其對應於圖1的導體層120c)施加一讀取電壓,對源極S(其對應於圖1的源極線104a)施加一正電壓VR ,並將汲極D(其對應於圖1的汲極線128)接地,以讀取靠近源極S的電荷儲存結構118中的儲存狀態。因此,當電子未儲存在靠近源極S的電荷儲存結構118時,記憶胞的閥值降低,記憶胞以導通的方式進行操作。在一實施例中,讀取電壓Vg 可介於3.5伏特至4.5伏特之間;電壓VR 可介於0.7伏特至1.2伏特之間。The operation of the reverse read mode is similar to the above steps. As shown in FIG. 4D, a read voltage is applied to the word line WL (which corresponds to the conductor layer 120c of FIG. 1), and a positive voltage V R is applied to the source S (which corresponds to the source line 104a of FIG. 1). The drain D (which corresponds to the drain line 128 of FIG. 1) is grounded to read the stored state in the charge storage structure 118 near the source S. Therefore, when electrons are not stored in the charge storage structure 118 near the source S, the threshold of the memory cell is lowered, and the memory cell is operated in a conducting manner. In one embodiment, the read voltage V g may be between 3.5 volts to 4.5 volts; voltage V R may be between 0.7 volts to 1.2 volts.
綜上所述,本發明藉由在相鄰兩條源極線之間配置隔離結構,以電性隔離相鄰兩條源極線,進而降低讀取時的干擾。另外,本發明以高介電常數材料當作電荷儲存層,其可在單一記憶胞中儲存4位元的資料,進而提高整體三維記憶體儲存能力。此外,本發明藉由價帶-導帶熱電洞注入模式來抹除所述記憶胞,其可降低穿隧介電層的損害,進而提升三維記憶體的可靠度。In summary, the present invention electrically isolates two adjacent source lines by arranging an isolation structure between adjacent two source lines, thereby reducing interference during reading. In addition, the present invention uses a high dielectric constant material as a charge storage layer, which can store 4-bit data in a single memory cell, thereby improving the overall three-dimensional memory storage capacity. In addition, the present invention erases the memory cell by a valence band-guideband thermowell injection mode, which can reduce the damage of the tunneling dielectric layer and thereby improve the reliability of the three-dimensional memory.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
10、12、14‧‧‧開口10,12,14‧‧
16‧‧‧空隙16‧‧‧ gap
100‧‧‧基底100‧‧‧Base
102‧‧‧底介電層102‧‧‧ bottom dielectric layer
104‧‧‧導體層104‧‧‧Conductor layer
104a‧‧‧源極線104a‧‧‧Source line
106‧‧‧緩衝結構106‧‧‧buffer structure
106a、106c‧‧‧氧化矽層106a, 106c‧‧‧ yttrium oxide layer
106b‧‧‧氮化矽層106b‧‧‧ layer of tantalum nitride
108‧‧‧介電層108‧‧‧ dielectric layer
110‧‧‧隔離層110‧‧‧Isolation
112‧‧‧導體材料112‧‧‧Conductor materials
114‧‧‧位元線114‧‧‧ bit line
114a‧‧‧第一部分114a‧‧‧Part I
114b‧‧‧第二部分114b‧‧‧Part II
114c‧‧‧第三部分114c‧‧‧Part III
116、116a‧‧‧隔離結構116, 116a‧‧‧Isolation structure
118‧‧‧電荷儲存結構118‧‧‧Charge storage structure
118U‧‧‧上部118U‧‧‧ upper
120、120a‧‧‧導體層120, 120a‧‧‧ conductor layer
120b、120c‧‧‧導體層120b, 120c‧‧‧ conductor layer
122‧‧‧間隙壁材料122‧‧‧ spacer material
122a、122b‧‧‧間隙壁122a, 122b‧‧‧ spacer
124‧‧‧矽化金屬層124‧‧‧Deuterated metal layer
126、126a‧‧‧介電層126, 126a‧‧‧ dielectric layer
128‧‧‧汲極線128‧‧‧汲polar line
C‧‧‧通道C‧‧‧ channel
D‧‧‧汲極D‧‧‧汲
S‧‧‧源極S‧‧‧ source
L‧‧‧長度L‧‧‧ length
WL‧‧‧字元線WL‧‧‧ character line
X、Y、Z‧‧‧方向X, Y, Z‧‧ Direction
Vg、Vd、VF、VR‧‧‧電壓V g , V d , V F , V R ‧‧‧ voltage
圖1為本發明之一實施例的三維記憶體的立體示意圖。 圖2A至圖2L為沿圖1之A-A線之製造流程的剖面示意圖。 圖3A至圖3P為沿圖1之B-B線之製造流程的剖面示意圖。 圖4A為程式化本發明之一實施例的三維記憶體的剖面示意圖。 圖4B為抹除本發明之一實施例的三維記憶體的剖面示意圖。 圖4C與圖4D分別為讀取本發明之一實施例的三維記憶體的剖面示意圖。1 is a perspective view of a three-dimensional memory according to an embodiment of the present invention. 2A to 2L are schematic cross-sectional views showing the manufacturing flow along the line A-A of Fig. 1. 3A to 3P are schematic cross-sectional views showing the manufacturing flow along the line B-B of Fig. 1. 4A is a schematic cross-sectional view of a three-dimensional memory embodying an embodiment of the present invention. 4B is a schematic cross-sectional view of a three-dimensional memory in which an embodiment of the present invention is erased. 4C and 4D are schematic cross-sectional views showing a three-dimensional memory according to an embodiment of the present invention, respectively.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106125940A TWI634562B (en) | 2017-08-01 | 2017-08-01 | Three dimensional memory and method of operating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106125940A TWI634562B (en) | 2017-08-01 | 2017-08-01 | Three dimensional memory and method of operating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI634562B TWI634562B (en) | 2018-09-01 |
TW201911301A true TW201911301A (en) | 2019-03-16 |
Family
ID=64452896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106125940A TWI634562B (en) | 2017-08-01 | 2017-08-01 | Three dimensional memory and method of operating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI634562B (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9087975B2 (en) * | 2012-01-20 | 2015-07-21 | Agency For Science, Technology And Research | Resistive memory arrangement and a method of forming the same |
US9397110B2 (en) * | 2014-05-21 | 2016-07-19 | Macronix International Co., Ltd. | 3D independent double gate flash memory |
-
2017
- 2017-08-01 TW TW106125940A patent/TWI634562B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI634562B (en) | 2018-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9825049B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
CN107123649B (en) | Method for manufacturing semiconductor device | |
TWI501385B (en) | Semiconductor device and non-volatile memory cell and method for manufacturing the same | |
JP4989630B2 (en) | Array source line in NAND flash memory | |
US10580487B2 (en) | Three dimensional NOR flash memory with isolated source lines and method of operating the same | |
US10090399B2 (en) | Semiconductor device and a manufacturing method thereof | |
US9905429B2 (en) | Semiconductor device and a manufacturing method thereof | |
JP2005228786A (en) | Semiconductor memory and its manufacturing method | |
US11101281B2 (en) | Semiconductor device and method of manufacturing the same | |
WO2009104688A1 (en) | Non-volatile memory device and method of manufacturing same | |
CN103824815A (en) | Method of manufacturing semiconductor device and semiconductor device | |
US10707223B2 (en) | FINFET non-volatile semiconductor memory device and method of manufacturing the FINFET non-volatile semiconductor memory device | |
US11672121B2 (en) | Semiconductor memory device including separated epitaxial layers | |
TW201709528A (en) | Semiconductor device and method of manufacturing the same | |
US8035150B2 (en) | Nonvolatile semiconductor memory device and method for manufacturing the same | |
US11201163B2 (en) | High-density NOR-type flash memory | |
TWI744006B (en) | Memory device and manufacturing method thereof | |
KR20230031334A (en) | Split gate having erase gate disposed over word line gate, 2-bit non-volatile memory cell, and manufacturing method thereof | |
TWI605572B (en) | Non-volatile memory and manufacturing method thereof | |
US11342430B2 (en) | Semiconductor device | |
TWI634562B (en) | Three dimensional memory and method of operating the same | |
CN114078867A (en) | Single well-transistor-and-capacitor non-volatile memory device and integration scheme | |
US20080020529A1 (en) | Non-volatile memory and fabrication thereof | |
US8148770B1 (en) | Memory device with buried bit line structure | |
TW201630163A (en) | Non-volatile memory and manufacturing method thereof |