TW201910531A - 熔融鍍鋅鋼板 - Google Patents

熔融鍍鋅鋼板 Download PDF

Info

Publication number
TW201910531A
TW201910531A TW106125687A TW106125687A TW201910531A TW 201910531 A TW201910531 A TW 201910531A TW 106125687 A TW106125687 A TW 106125687A TW 106125687 A TW106125687 A TW 106125687A TW 201910531 A TW201910531 A TW 201910531A
Authority
TW
Taiwan
Prior art keywords
steel sheet
layer
hot
dip galvanized
content
Prior art date
Application number
TW106125687A
Other languages
English (en)
Other versions
TWI675924B (zh
Inventor
森下敦司
金藤泰平
內田智史
中田達也
山口裕司
Original Assignee
日商新日鐵住金股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商新日鐵住金股份有限公司 filed Critical 日商新日鐵住金股份有限公司
Priority to TW106125687A priority Critical patent/TWI675924B/zh
Publication of TW201910531A publication Critical patent/TW201910531A/zh
Application granted granted Critical
Publication of TWI675924B publication Critical patent/TWI675924B/zh

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一種熔融鍍鋅鋼板,係於母材鋼板之至少一側具有熔融鍍鋅層,且該熔融鍍鋅鋼板之特徵在於;前述熔融鍍鋅層中的Fe含量大於0%且在3.0%以下,Al含量大於0%且在1.0%以下;於前述熔融鍍鋅層與前述母材鋼板之界面具有Fe-Al合金層;前述Fe-Al合金層厚度為0.1μm~2.0μm;前述母材鋼板寬度方向上之前述Fe-Al合金層厚度之最大値與最小値的差在0.5μm以內;前述母材鋼板內具有與前述Fe-Al合金層直接接觸之微細化層,且前述微細化層的平均厚度為0.1μm~5.0μm,前述微細化層內肥粒鐵相的平均粒徑為0.1μm~3.0μm,前述微細化層中含有Si及Mn之1種或2種以上的氧化物,且前述氧化物的最大徑為0.01μm~0.4μm;前述母材鋼板寬度方向上之前述微細化層厚度之最大値與最小値的差在2.0μm以內。

Description

熔融鍍鋅鋼板
本發明涉及強度、延性、擴孔性、鍍敷密著性及外觀均勻性優異之熔融鍍鋅鋼板。
發明背景 對於主要用於汽車骨架構件之鋼板一直以來都要求高強度化。而該等高強度鋼板為了獲得高強度與優異之成形性,一般係含有有助於強度提升之以Si及Mn為代表的合金元素。然,以Si及Mn為代表之合金元素卻亦會降低鍍敷密著性。 又,對於汽車用鋼板因一般皆在屋外使用故通常會要求具優異耐蝕性。
而關於汽車外板等之用途,一般會利用壓製加工對板周邊部施行嚴酷的彎曲加工(摺邊彎曲)。而且不僅汽車外板,於其他用途上亦多利用壓製加工施行嚴酷的彎曲加工或擴孔加工等後作使用。而對習知的熔融鍍鋅鋼板施行嚴酷的彎曲加工或擴孔加工等時,該加工部分會發生鍍敷層從母材鋼板剝離之情形。而像這樣若鍍敷層剝離的話,該處即會喪失耐蝕性,而有母材鋼板從早期即腐蝕而生鏽之問題。就算不至於鍍敷層剝離之程度,鍍敷層與母材鋼板之間亦會喪失密著性,導致該部分產生些微空隙,造成外部空氣或水分從該空隙侵入,使鍍敷層喪失防蝕機能。而造成如同前述,母材鋼板從早期即腐蝕而生鏽。 基於該等問題,要施行嚴酷的彎曲加工等後作使用之高強度鋼板係強烈希望使用具備鍍敷層對母材鋼板具優異密著性之熔融鍍鋅層的鍍敷鋼板。
為了提高鍍敷層的密著性,例如以專利文獻1~3為代表,有提出一種使鋼板內部生成氧化物,來減少會造成鍍敷剝離之基鐵與鍍敷層之界面上的氧化物之方法。然,當使所述氧化物生成於鋼板表層時,鋼板表層的碳會與氧結合而氣體化。結果造成碳自鋼板脫離,故該碳脫離之區域會有強度顯著降低之情形。當鋼板表層的強度降低時,受表層部特性大力影響之耐疲勞特性即會變差,而有疲勞強度大幅降低之虞。
或是為了提高鍍敷層的密著性,專利文獻4中提出了一種在一般退火步驟前新增新的退火步驟及酸洗步驟來施行,使母材鋼板表面改質,提高鍍敷密著性之方法。不過,專利文獻4所記載之方法對一般高強度鍍敷鋼板之製造方法來說要增加步驟,而有成本方面之課題。
此外,專利文獻5中,提出了一種自母材鋼板表層部除去碳來提高鍍敷密著性之方法。然,專利文獻5所記載之方法卻會使經除去碳之區域的強度顯著降低。因此,專利文獻5所記載之方法會使受表層部特性大力影響之耐疲勞特性變差,而有疲勞強度大幅降低之虞。
又,專利文獻6、7中,提出了一種將鍍敷層中的Mn、Al及Si量控制在適宜的範圍內來使鍍敷密著性提升之鋼板。但專利文獻6、7所記載之鋼板因需在製造時將鍍敷層中的元素量作高精度的控制,造成作業上負擔變大而有成本方面之課題。
關於提高鍍敷密著性之手法,專利文獻8有提出一種鋼板微觀組織僅由肥粒鐵構成之高強度鋼板。但,專利文獻8所記載之鋼板其微觀組織因僅為軟質的肥粒鐵故無法獲得充分高的強度。
而現在,係廣泛使用經於熔融鍍鋅處理後施行合金化處理之合金化熔融鍍鋅鋼板。合金化處理係一種將鍍敷層加熱至Zn熔點以上的溫度,使大量的Fe原子從母材鋼板中擴散到鍍敷層中,將鍍敷層製成Zn-Fe合金主體的層之處理。例如,專利文獻9、10、11提出了一種鍍敷密著性優異之合金化熔融鍍鋅鋼板。但,為了將鍍敷層充分合金化,必須將鋼板加熱至高溫。若將鋼板加熱至高溫,鋼板內部的觀組織即會變質,尤其易生成粗大的鐵系碳化物而有損鋼板特性,故而不佳。
另一方面,例如以專利文獻12所記載之熔融鍍鋅鋼板來說,有鍍敷層在寬度方向上之Fe含量不均勻性造成之外觀不均的課題。
先前技術文獻 專利文獻 專利文獻1:日本特開2008-019465號公報 專利文獻2:日本特開2005-060742號公報 專利文獻3:日本特開平9-176815號公報 專利文獻4:日本特開2001-026853號公報 專利文獻5:日本特開2002-088459號公報 專利文獻6:日本特開2003-055751號公報 專利文獻7:日本特開2003-096541號公報 專利文獻8:日本特開2005-200750號公報 專利文獻9:日本特開平11-140587號公報 專利文獻10:日本特開2001-303226號公報 專利文獻11:日本特開2005-060743號公報 專利文獻12:國際公開第2016/072477號
發明概要 發明欲解決之課題 鑑於以上現狀,本發明即係提供一種強度、延性、擴孔性、點熔接性鍍敷密著性及外觀均勻性優異之熔融鍍鋅鋼板。
用以解決課題之手段 本發明人等為了製得鍍敷密著性及外觀均勻性優異之熔融鍍鋅鋼板反覆積極努力進行檢討。結果發現,即便將含有大量Si及Mn之鋼板用作鍍敷原板,藉由在使用含有特定量Al之鍍敷浴形成之鍍敷層與母材鋼板之界面形成之Fe-Al合金層正下方形成由肥粒鐵相之極微細粒所構成之特定微細化層,即可抑制加工時產生及傳播裂紋,而可抑制從該處發生鍍敷剝離。而且,也發現了在將含有大量Si及Mn之鋼板用作鍍敷原板時,於鋼板寬度方向上會形成不均勻的內部氧化層,造成熔融鍍鋅鋼板的鍍敷層的Fe含量不均勻,使外觀不均。因此,本發明人等針對會形成不均勻內部氧化層之要因進一步積極努力檢討,發現了該原因在於將熱軋鋼板捲取後之寬度方向上氧濃度的差異。本發明人等為了抑制因所述鍍敷層造成之外觀不均又進一步積極努力檢討。結果發現,將鋼板寬度方向上之微細化層及Fe-Al合金層厚度控制在特定範圍內,可製得不僅鍍敷密著性優異連外觀均勻性亦優異之熔融鍍鋅鋼板。
本發明即為鑑於所述見解所完成者,其態様如下。
(1)一種熔融鍍鋅鋼板,係於母材鋼板之至少一側具有熔融鍍鋅層,且該熔融鍍鋅鋼板之特徵在於前述母材鋼板具有以下所示化學組成: 以質量%計, C:0.040%~0.400%、 Si:0.05%~2.50%、 Mn:0.50%~3.50%、 P:0.0001%~0.1000%、 S:0.0001%~0.0100%、 Al:0.001%~1.500%、 N:0.0001%~0.0100%、 O:0.0001%~0.0100%、 Ti:0.000%~0.150%、 Nb:0.000%~0.100%、 V:0.000%~0.300%、 Cr:0.00%~2.00%、 Ni:0.00%~2.00%、 Cu:0.00%~2.00%、 Mo:0.00%~2.00%、 B:0.0000%~0.0100%、 W:0.00%~2.00%、 Ca、Ce、Mg、Zr、La及REM:合計0.0000%~0.0100%、及 剩餘部分:Fe及不純物; 前述熔融鍍鋅層中的Fe含量大於0%且在3.0%以下,Al含量大於0%且在1.0%以下; 在前述熔融鍍鋅層與前述母材鋼板之界面具有Fe-Al合金層; 前述Fe-Al合金層厚度為0.1μm~2.0μm; 前述母材鋼板寬度方向上之前述Fe-Al合金層厚度之最大値與最小値的差在0.5μm以內; 前述母材鋼板內具有與前述Fe-Al合金層直接接觸之微細化層,且前述微細化層的平均厚度為0.1μm~5.0μm,前述微細化層內肥粒鐵相的平均粒徑為0.1μm~3.0μm,前述微細化層中含有Si及Mn之1種或2種以上的氧化物,且前述氧化物的最大徑為0.01μm~0.4μm; 前述母材鋼板寬度方向上之前述微細化層厚度之最大値與最小値的差在2.0μm以內。
(2)如(1)之熔融鍍鋅鋼板,其令前述母材鋼板中Si含量(質量%)為[Si]、Al含量(質量%)為[Al]時滿足下述式1; 相對於前述母材鋼板總厚度,以自前述母材鋼板表面起1/4厚度為中心之在1/8厚度~3/8厚度之範圍的殘留沃斯田鐵以體積分率計為1%以上。 [Si]+0.7[Al]≧0.30 (式1)。
(3)如(1)或(2)之熔融鍍鋅鋼板,其中前述熔融鍍鋅層之每單面鍍敷附著量為10g/m2 以上且100g/m2 以下。
(4)如(1)至(3)中任一項之熔融鍍鋅鋼板,其中前述化學組成滿足: Ti:0.001%~0.150%、 Nb:0.001%~0.100%、或是 V:0.001%~0.300%、 或該等之任意組合。
(5)如(1)至(4)中任一項之熔融鍍鋅鋼板,其中前述化學組成滿足: Cr:0.01%~2.00%、 Ni:0.01%~2.00%、 Cu:0.01%~2.00%、 Mo:0.01%~2.00%、 B:0.0001%~0.0100%、或是 W:0.01%~2.00%、 或該等之任意組合。
(6)如(1)至(5)中任一項之熔融鍍鋅鋼板,其中前述化學組成滿足: Ca、Ce、Mg、Zr、La及REM:合計0.0001%~0.0100%。
發明效果 根據本發明,可提供強度、延性、擴孔性、點熔接性、鍍敷密著性及外觀均勻性優異之熔融鍍鋅鋼板。
用以實施發明之形態 以下,就本發明實施形態進行詳細說明。
首先一邊參照所附圖式一邊說明本發明實施形態之熔融鍍鋅鋼板。圖1係顯示本發明實施形態之熔融鍍鋅鋼板之截面圖。本實施形態之熔融鍍鋅鋼板1於母材鋼板2表面具備熔融鍍鋅層3,且於熔融鍍鋅層3與母材鋼板2表面之界面具備Fe-Al合金層4,於母材鋼板2內具備與Fe-Al合金層4相接之微細化層5與脫碳層6。
(母材鋼板2) 說明構成本發明實施形態之熔融鍍鋅鋼板1的母材鋼板2及其製造所用鋼胚之化學組成。詳細將於後敘述,本發明實施形態之熔融鍍鋅鋼板1係經鑄造鋼胚、熱軋延、冷軋延、退火及鍍敷等而製造。因此,母材鋼板2及其製造所用鋼胚之化學組成不僅母材鋼板2特性,還考慮到了該等處理。以下說明中,母材鋼板2或鋼胚所含各元素含量單位之「%」只要無特別限制即為「質量%」之意。母材鋼板具有以下所示化學組成:C:0.040%~0.400%、Si:0.05%~2.50%、Mn:0.50%~3.50%、P:0.0001%~0.1000%、S:0.0001%~0.0100%、Al:0.001%~1.500%、N:0.0001%~0.0100%、O:0.0001%~0.0100%、Ti:0.000%~0.150%、Nb:0.000%~0.100%、V:0.000%~0.300%、Cr:0.00%~2.00%、Ni:0.00%~2.00%、Cu:0.00%~2.00%、Mo:0.00%~2.00%、B:0.0000%~0.0100%、W:0.00%~2.00%、Ca、Ce、Mg、Zr、La及REM:合計0.0000%~0.0100%,及剩餘部分:Fe及不純物。不純物可舉例礦石或廢料等原材料所含者、於製造步驟中所含者。
(C:0.040%~0.400%) C可提高母材鋼板強度。C含量大於0.400%時,點熔接性會變差。因此,設C含量為0.400%以下。以點熔接性之觀點,C含量宜設為0.300%以下,更宜設為0.220%以下。為了獲得更高的強度,C含量宜設為0.055%以上,更宜設為0.070%以上。
(Si:0.05%~2.50%) Si可抑制母材鋼板中鐵系碳化物之生成,提高強度與成形性。另一方面,Si會使鋼板脆化。故Si含量大於2.50%時,鑄造出的鋼胚易龜裂。因此,設Si含量為2.50%以下。Si會於退火時於母材鋼板表面形成氧化物,顯著破壞鍍敷的密著性,故Si含量宜設為2.00%以下,更宜設為1.60%以下。Si含量小於0.05%時,於對母材鋼板施行鍍敷時,會大量生成粗大鐵系碳化物,使強度及成形性變差。因此,設Si含量為0.05%以上。以抑制鐵系碳化物生成之觀點,Si含量宜設為0.10%以上,更宜設為0.25%以上。
(Mn:0.50%~3.50%) Mn可藉由提高母材鋼板的淬火性來提高強度。當Mn含量大於3.50%時,母材鋼板板厚中央部會生成Mn濃度高的部分而易引起脆化,使鑄造出的鋼胚變得易龜裂。因此,設Mn含量為3.50%以下。以點熔接性會變差之觀點,Mn含量宜設為3.00%以下,更宜設為2.80%以下。而Mn含量小於0.50%時,於退火後之冷卻中會大量形成軟質組織,而難以確保充分高的拉伸強度。因此,設Mn含量為0.50%以上。為了獲得更高的強度,Mn含量宜設為0.80%以上,更宜設為1.00%以上。
(P:0.0001%~0.1000%) P會使鋼材脆化。故當P含量大於0.1000%時,鑄造出的鋼胚會變得易龜裂。因此,設P含量為0.1000%以下。又,P會使透過點熔接而熔融之部分脆化。故為了獲得充分的熔接接合強度,P含量宜設為0.0400%以下,更宜設為0.0200%以下。而P含量小於0.0001%時,會造成製造成本大幅增加。因此,設P含量為0.0001%以上,宜設為0.0010%以上。
(S:0.0001%~0.0100%) S會與Mn結合形成粗大的MnS,使延性、延伸凸緣性及彎曲性等成形性降低。因此,設S含量為0.0100%以下。又,S會使點熔接性變差。因此,S含量宜設為0.0060%以下,更宜設為0.0035%以下。S含量小於0.0001%時,會使製造成本大幅增加。因此,設S含量為0.0001%以上,宜設為0.0005%以上,更宜設為0.0010%以上。
(Al:0.001%~1.500%) Al會使鋼材脆化。故Al含量大於1.500%時會使鑄造出的鋼胚易龜裂。因此,設Al含量為1.500%以下。而基於點熔接性會變差之觀點,Al含量宜設為1.200%以下,更宜設為1.000%以下。Al含量下限値並無特別限定,Al可作為不純物含於鋼中。為了使Al含量小於0.001%,會使製造成本大幅增加。因此,設Al含量為0.001%以上。Al為鋼的脫氧元素。為了獲得充分的脱氧效果,Al含量宜設為0.010%以上。
(N:0.0001%~0.0100%) N會形成粗大的氮化物,使延性、延伸凸緣性及彎曲性等成形性變差。當N含量大於0.0100%時,會使成形性顯著變差。因此,設N含量為0.0100%以下。N含量過剰時,會於熔接時產生氣孔,因此N含量宜設為0.0070%以下,更宜設為0.0050%以下。N含量下限値並無特別限定,N可作為不純物含於鋼中。為了使N含量小於0.0001%,會使製造成本大幅增加。因此,設N含量為0.0001%以上,宜設為0.0003%以上,更宜設為0.0005%以上。
(O:0.0001%~0.0100%) O會形成氧化物,使延性、延伸凸緣性及彎曲性等成形性變差。當O含量大於0.0100%時,會使成形性顯著變差。因此,設O含量為0.0100%以下,宜設為0.0050%以下,更宜設為0.0030%以下。O含量下限値並無特別限定,O可作為不純物含於鋼中。為了使O含量小於0.0001%,會使製造成本大幅增加。因此,設N含量為0.0001%以上,宜設為0.0003%以上,更宜設為0.0005%以上。
([Si]+0.7[Al]:0.30以上) Si及Al可抑制會伴隨變韌鐵變態發生之碳化物生成。為了製得殘留沃斯田鐵,宜含有預定量以上之Si及/或Al。藉由製得殘留沃斯田鐵可獲得TRIP效果。由該觀點,當令母材鋼板中Si含量(質量%)為[Si]、Al含量(質量%)為[Al]時宜滿足下述式1。即,下述式1左邊([Si]+0.7[Al])的値宜設為0.30以上,更宜設為0.45以上,又以設為0.70以上為佳。 [Si]+0.7[Al]≧0.30 (式1)。
Ti、Nb、V、Cr、Ni、Cu、Mo、B、W、Ca、Ce、Mg、Zr、La及REM非為必須元素,係於鋼板中亦可有限度地適宜含有預定量之任意元素。
(Ti:0.000%~0.150%) Ti可透過強化析出物、抑制肥粒鐵晶粒的成長使細粒強化、及抑制再結晶所行之差排強化來提高鋼板強度。因此,亦可含有Ti。Ti含量大於0.150%時,會使碳氮化物析出變多,造成成形性變差。因此,設Ti含量為0.150%以下。由成形性之觀點,Ti含量宜設為0.080%以下。Ti含量下限値並無特別限定,然為了充分獲得提高強度之效果,Ti含量宜設為0.001%以上。為了充分獲得上述效果,Ti含量更宜設為0.010%以上。
(Nb:0.000%~0.100%) Nb可透過強化析出物、抑制肥粒鐵晶粒的成長使細粒強化、及抑制再結晶所行之差排強化來提高鋼板強度。因此,亦可含有Nb。Nb含量大於0.100%時,會使碳氮化物析出變多,造成成形性變差。因此,設Nb含量為0.100%以下。由成形性之觀點,Nb含量宜設為0.060%以下。Nb含量下限値並無特別限定,然為了充分獲得提高強度之效果,Nb含量宜設為0.001%以上。為了充分獲得上述效果,Nb含量更宜設為0.005%以上。
(V:0.000%~0.300%) V可透過強化析出物、抑制肥粒鐵晶粒的成長使細粒強化、及抑制再結晶所行之差排強化來提高鋼板強度。因此,亦可含有V。V含量大於0.300%時,會使碳氮化物析出變多,造成成形性變差。因此,設V含量為0.300%以下,宜設為0.200%以下。V含量下限値並無特別限定,然為了充分獲得提高強度之效果,V含量宜設為0.001%以上,更宜設為0.010%以上。
(Cr:0.00%~2.00%) Cr可抑制在高溫下之相變態以更提升鋼板強度。因此,亦可含有Cr取代一部份的C及/或Mn。Cr含量大於2.00%時,於熱軋延時加工性會受損而有導致生產性降低之情形。因此,設Cr含量為2.00%以下,宜設為1.20%以下。Cr含量下限値並無特別限定,然為了充分獲得更加提高強度之效果,Cr含量宜設為0.01%以上,更宜設為0.10%以上。
(Ni:0.00%~2.00%) Ni可抑制在高溫下之相變態以更提升鋼板強度。因此,亦可含有Ni取代一部份的C及/或Mn。Ni含量大於2.00%時,會有損及熔接性的情形。因此,設Ni含量2.00%以下,宜設為1.20%以下。Ni含量下限値並無特別限定,然為了充分獲得更加提高強度之效果,Ni含量宜設為0.01%以上,更宜設為0.10%以上。
(Cu:0.00%~2.00%) Cu可作為微細粒子存在於鋼中來提高強度。因此,亦可含有Cu取代一部份的C及/或Mn。Cu含量大於2.00%時,會有損及熔接性的情形。因此,設Cu含量為2.00%以下,宜設為1.20%以下。Cu含量下限値並無特別限定,然為了充分獲得更加提高強度之效果,Cu含量宜設為0.01%以上,更宜設為0.10%以上。
(Mo:0.00%~2.00%) Mo可抑制在高溫下之相變態以更提升鋼板強度。因此,亦可含有Mo取代一部份的C及/或Mn。Mo含量大於2.00%時,於熱軋延時加工性會受損而有導致生產性降低之情形。因此,設Mo含量為2.00%以下,宜設為1.20%以下。Mo含量下限値並無特別限定,然為了充分獲得更加提高強度之效果,Mo含量宜設為0.01%以上,更宜設為0.05%以上。
(B:0.0000%~0.0100%) B可抑制在高溫下之相變態以更提升鋼板強度。因此,亦可含有B取代一部份的C及/或Mn。B含量大於0.0100%時,於熱軋延時加工性會受損而有導致生產性降低之情形。因此,設B含量為0.0100%以下。由生產性之觀點,B含量宜設為0.0050%以下。B含量下限値並無特別限定,然為了充分獲得更加提高強度之效果,B含量宜設為0.0001%以上,更宜設為0.0005%以上。
(W:0.00%~2.00%) W可抑制在高溫下之相變態以更提升鋼板強度。因此,亦可含有W取代一部份的C及/或Mn。W含量大於2.00%時,於熱軋延時加工性會受損而有導致生產性降低之情形。因此,設W含量為2.00%以下,宜設為1.20%以下。W含量下限値並無特別限定,然為了充分獲得更加提高強度之效果,W含量宜設為0.01%以上,更宜設為0.10%以上。
(Ca、Ce、Mg、Zr、La及REM:合計0.0000%~0.0100%) Ca、Ce、Mg、Zr、La或REM可改善成形性。因此,亦可含有Ca、Ce、Mg、Zr、La或REM。Ca、Ce、Mg、Zr、La及REM含量合計大於0.0100%時,會有損及延性之虞。因此,設Ca、Ce、Mg、Zr、La及REM含量合計為0.0100%以下,宜設為合計為0.0070%以下。Ca、Ce、Mg、Zr、La及REM含量的下限値並無特別限定,為了充分獲得改善鋼板成形性之效果,Ca、Ce、Mg、Zr、La及REM含量宜設為合計為0.0001%以上,更宜設為合計0.0010%以上。此外,REM係Rare Earth Metal的略稱,係指屬鑭系之元素。本發明實施形態中,REM或Ce例如可添作稀土金屬合金,而除了La或Ce外還有複合含有鑭系元素之情形。La或Ce以外之鑭系元素亦可作為不純物含有。又,亦可含有金屬La或金屬Ce。
此外,Ti、Nb、V、Cr、Ni、Cu、Mo、B及W若以作為不純物而低於上述各元素含量之下限値則亦可含有。Ca、Ce、Mg、Zr、La及REM若以作為不純物而低於上述合計量下限則亦可含有。
(熔融鍍鋅層3) [熔融鍍鋅層3之Fe含量:大於0%且在3.0%以下] 熔融鍍鋅層3之Fe含量大於0%且在3.0%以下。因實質上要製造Fe含量為0%的熔融鍍鋅層3係很困難的。故,設Fe含量大於0%。由可確保鍍敷密著性之觀點,Fe含量宜設為0.3%以上,更宜設為0.5%以上。Fe含量大於3.0%時,會使鍍敷密著性降低。因此,設Fe含量為3.0%以下。而由可確保鍍敷密著性之觀點,Fe含量宜設為2.5%以下,更宜設為2.0%以下。
[熔融鍍鋅層3之Al含量:大於0%且在1.0%以下] 熔融鍍鋅層3之Al含量大於0%且在1.0%以下。若Al含量為0%,則Fe原子會擴散至熔融鍍鋅層3中促使生成Zn-Fe合金之合金化進行,導致鍍敷密著性降低。因此,設Al含量大於0%。由可抑制所述合金化進行之觀點,Al含量宜設為0.1%以上,更宜設為0.2%以上。Al含量大於1.0%時,會使鍍敷密著性降低。因此,設Al含量為1.0%以下。由可確保鍍敷密著性之觀點,Al含量宜設為0.8%以下,更宜設為0.5%以下。
[熔融鍍鋅層3之每單面鍍敷附著量:10g/m2 以上100g/m2 以下] 鍍敷附著量小於10g/m2 時,會有無法獲得充分耐蝕性之情況。因此,鍍敷附著量宜設為10g/m2 以上。由耐蝕性之觀點,鍍敷附著量更宜設為20g/m2 以上,又以設為30g/m2 以上為佳。鍍敷附著量大於100g/m2 時,進行點熔接時的電極損耗會變得很激烈,而有於連續進行熔接時造成熔融塊徑減少,使熔接接合強度變差的情況。因此,鍍敷附著量宜設為100g/m2 以下。由連續熔接性之觀點,鍍敷附著量更宜設為93g/m2 以下,又以設為85g/m2 以下為佳。
熔融鍍鋅層3中亦可含有Ag、B、Be、Bi、Ca、Cd、Co、Cr、Cs、Cu、Ge、Hf、I、K、La、Li、Mg、Mn、Mo、Na、Nb、Ni、Pb、Rb、Sb、Si、Sn、Sr、Ta、Ti、V、W、Zr及REM中之1種以上。藉由含有該等元素可改善耐蝕性及加工性。
熔融鍍鋅層3中亦可含有由ζ相(FeZn13 )構成之柱狀晶。由鍍敷密著性之觀點,熔融鍍鋅層3與母材鋼板2之整個界面中之ζ相被覆比率宜設為小於20%。
(Fe-Al合金層4) [Fe-Al合金層4之厚度:0.1μm~2.0μm] 本發明實施形態中,熔融鍍鋅層3與母材鋼板2表面之界面係形成有Fe-Al合金層4。藉由形成Fe-Al合金層4可以抑制生成Zn-Fe合金之合金化,而可抑制鍍敷密著性降低。並且,可抑制因合金化不均造成之外觀不均。相較於在熔融鍍鋅處理後施行了合金化處理的合金化熔融鍍鋅鋼板,未施行合金化處理的熔融鍍鋅鋼板更容易因合金化不均造成外觀不均。當Fe-Al合金層4厚度少於0.1μm時,會使鍍敷密著性及外觀變差。因此,設Fe-Al合金層4厚度為0.1μm以上。Fe-Al合金層4厚度多於2.0μm時,會使鍍敷密著性降低。因此,設Fe-Al合金層4的厚度為2.0μm以下,宜設為1.0μm以下。
[母材鋼板2寬度方向上之Fe-Al合金層4厚度之最大値與最小値的差:0.5μm以內] 母材鋼板2寬度方向上之Fe-Al合金層4厚度之最大値與最小値的差係指測定Fe-Al合金層4之距離其兩端50mm之位置與將其之間分成7等分之各位置共計8處的Fe-Al合金層4厚度,其中最大値與最小値的差。Fe-Al合金層4的厚度越薄,就越易使生成Zn-Fe合金之合金化進行。因此,母材鋼板2寬度方向上之Fe-Al合金層4的厚度差越大,其合金化越不均。Fe-Al合金層4厚度之最大値與最小値的差大於0.5μm時,會使鍍敷密著性及鍍敷外觀均勻性變差。因此,設Fe-Al合金層4厚度之最大値與最小値的差為0.5μm以內,宜設為0.4μm以內,更宜設為0.3μm以內。
(微細化層5) 母材鋼板2內具備與Fe-Al合金層4相接之微細化層5與脫碳層6。微細化層5及脫碳層6如後述,係在進行退火時於控制在特定溫度域及特定氣體環境之條件下進行脫碳反應而生成之層。因此,構成微細化層5之組織屏除氧化物及夾雜物粒子,其實質上以肥粒鐵相7為主體,而關於構成脫碳層6之組織,屏除氧化物及夾雜物粒子,其實質上以肥粒鐵相8為主體。具體而言,肥粒鐵相7、8的體積分率為70%以上,剩餘部分為沃斯田鐵相、變韌鐵相、麻田散鐵相及波來鐵相之中1種以上的混合組織。微細化層5係在母材鋼板2最表部的肥粒鐵相7的平均粒徑為脫碳層6的肥粒鐵相8的平均粒徑的1/2以下時存在。微細化層5與脫碳層6之境界係令為微細化層5的肥粒鐵相7的平均粒徑大於脫碳層6的肥粒鐵相8的平均粒徑的1/2之境界。
[微細化層5的平均厚度:0.1μm~5.0μm] 微細化層5的平均厚度小於0.1μm時會產生裂紋而無法抑制伸展,故會造成鍍敷密著性變差。因此,設微細化層5的平均厚度為0.1μm以上,宜設為0.2μm以上,更宜設為0.3μm以上。微細化層5的平均厚度大於5.0μm時,會促使生成Zn-Fe合金的合金化進行,使熔融鍍鋅層3中的Fe含量增加,造成鍍敷密著性變差。因此,設微細化層5的平均厚度為5.0μm以下,宜設為4.0μm以下,更宜設為3.0μm。
[肥粒鐵相7的平均粒徑:0.1μm~3.0μm] 肥粒鐵相7的平均粒徑小於0.1μm時會產生裂紋而無法抑制伸展,故會造成鍍敷密著性變差。因此,設肥粒鐵相7的平均粒徑為0.1μm以上。肥粒鐵相7的平均粒徑大於3.0μm時,會使鍍敷密著性變差。因此,設肥粒鐵相7的平均粒徑為3.0μm以下,宜設為2.0μm以下。
微細化層5的平均厚度及微細化層5內的肥粒鐵相7的平均粒徑係依以下所示方法測定。自熔融鍍鋅鋼板1以與母材鋼板2的軋延方向平行之截面為觀察面採取試料。利用CP(Cross section polisher)裝置加工試料的觀察面,並用FE-SEM(Field Emission Scanning Electron Microscopy)中的反射電子像以5000倍觀察來測定。
[氧化物的最大徑:0.01μm~0.4μm] 微細化層5中含有Si及Mn中1種以上的氧化物。氧化物例如可舉選自於由SiO2 、Mn2 SiO4 、MnSiO3 、Fe2 SiO4 、FeSiO3 、MnO所構成群組中1種以上者。該氧化物如後述,會於退火時於特定溫度域下形成於母材鋼板2內。利用氧化物粒子可抑制母材鋼板2表層中肥粒鐵相結晶的成長,而會形成微細化層5。氧化物最大徑小於0.01μm時,微細化層5無法充分形成,故會使鍍敷密著性變差。因此,氧化物最大徑設為0.01μm以上,宜設為0.05μm以上。氧化物最大徑大於0.4μm時,肥粒鐵相7會粗大化,使微細化層5無法充分形成,且氧化物本身會變成鍍敷剝離的起點,使鍍敷密著性變差。因此,設氧化物的最大徑為0.4μm以下,宜設為0.2μm以下。
氧化物最大徑係利用以下所示方法測定。自熔融鍍鋅鋼板1以與母材鋼板2的軋延方向平行之截面為觀察面採取試料。將試料觀察面用FIB(Focused Ion Beam)加工製成薄膜試料。然後,用FE-TEM(Field Emission Transmission Electr on Microscopy)以30000倍觀察薄膜試料。對各薄膜試料觀察5視野,將全視野計測所得之計測値中最大直徑作為氧化物最大徑。
[母材鋼板2寬度方向上之微細化層5厚度之最大値與最小値的差:2.0μm以內】 母材鋼板2寬度方向上之微細化層5厚度之最大値與最小値的差係指測定微細化層5之距離其兩端50mm之位置與將其之間分成7等分之各位置共計8處的微細化層5厚度,其中最大値與最小値的差。微細化層5的厚度越厚,就越易使生成Zn-Fe合金的合金化進行。因此,母材鋼板2寬度方向上之微細化層5厚度之差越大,其合金化越不均。微細化層5厚度之最大値與最小値的差若大於2.0μm,則會使鍍敷密著性及鍍敷外觀均勻性變差。因此,設微細化層5厚度之最大値與最小値的差在2.0μm以內,宜設為1.5μm以內,更宜設為1.0μm以內。
(微觀組織) 本發明實施形態之熔融鍍鋅鋼板1之母材鋼板2的微觀組織並無特別限定,宜製成如下之微觀組織。鋼板特性會隨微觀組織而異。要將微觀組織定量化時,以現實來說要將鋼板全部區域定量化是不可能的,故係以母材鋼板2表面起1/4厚度為中心之在1/8厚度~3/8厚度之範圍的微觀組織代表作為鋼板的微觀組織來定量化作規定。板厚中央部之微觀組織會因強勁的凝固偏析而變化,故無法稱作可代表鋼板的微觀組織。母材鋼板2表層附近之微觀組織會因局部溫度變化及/或與外部氣體反應而變化,故無法稱作可代表鋼板的微觀組織。
本發明實施形態之熔融鍍鋅鋼板1之母材鋼板2的微觀組織可為粒狀肥粒鐵、針狀肥粒鐵、未再結晶肥粒鐵、波來鐵、變韌鐵、變韌肥粒鐵、麻田散鐵、回火麻田散鐵、殘留沃斯田鐵、粗大雪明碳鐵中1種以上。母材鋼板2為了獲得因應熔融鍍鋅鋼板1之用途的特性,可適宜選擇各相、各組織體積分率的細項、組織大小、配置。
[殘留沃斯田鐵:1%以上] 殘留沃斯田鐵係可大幅提高強度與延性之平衡之組織。以母材鋼板2表面起1/4厚度為中心之在1/8厚度~3/8厚度之範圍的殘留沃斯田鐵的體積分率小於1%時,可提高強度與延性之平衡的效果會有變小之虞。因此,殘留沃斯田鐵的體積分率宜設為1%以上。為了更提升強度與延性之平衡,殘留沃斯田鐵的體積分率更宜設為3%以上,並且宜設為5%以上。為了獲得大量的殘留沃斯田鐵會使C含量大幅增加。但大量的C會有使熔接性顯著變差之虞。因此,殘留沃斯田鐵的體積分率宜設為25%以下。殘留沃斯田鐵會隨著變形而變態成硬質的麻田散鐵,而該麻田散鐵會成為破壞的起點造成影響,故有使延伸凸緣性變差之情況。因此,殘留沃斯田鐵的體積分率更宜設為20%以下。
本發明實施形態之熔融鍍鋅鋼板1的母材鋼板2所含各組織的體積分率例如係依以下所示方法測定。
本實施形態之熔融鍍鋅鋼板1的母材鋼板2所含殘留沃斯田鐵的體積分率係利用X射線繞射法進行評估。以母材鋼板2表面起1/4厚度為中心之在1/8厚度~3/8厚度之範圍中,將與板面平行之面加工成鏡面後,用X射線繞射法測定FCC(Face Centered Cubic)鐵的面積分率,並將該測定値作為殘留沃斯田鐵的體積分率。
本實施形態之熔融鍍鋅鋼板1的母材鋼板2所含肥粒鐵、變韌肥粒鐵、變韌鐵、回火麻田散鐵、新生麻田散鐵、波來鐵及粗大雪明碳鐵的體積分率係利用場發射掃描型電子顯微鏡(FE-SEM:Field Emission Scanning Electron Microscope)測定。以與母材鋼板2之軋延方向平行之截面為觀察面採取試料。研磨該試料的觀察面並用硝太蝕劑蝕刻。用FE-SEM觀察觀察面之以板厚1/4厚度為中心之在1/8厚度~3/8厚度之範圍並測定面積分率,並將該測定値視作體積分率。
本實施形態之熔融鍍鋅鋼板1中母材鋼板2的板厚並無特別限定。而由熔融鍍鋅鋼板1的平坦性、冷卻時的控制性之觀點,母材鋼板2的板厚宜設為0.6mm以上且小於5.0mm。
接著,針對製造本發明實施形態之熔融鍍鋅鋼板的方法進行說明。該方法中係對具有上述化學組成之鋼胚進行鑄造、熱軋延、冷軋延、退火、鍍敷及鍍敷後的冷卻。於退火與鍍敷之間及/或於鍍敷後的冷卻中,為了獲得殘留沃斯田鐵會因應需要進行變韌鐵變態處理。
(鑄造) 首先,鑄造要供於熱軋延之鋼胚。要供於熱軋延之鋼胚可使用連續鑄造鋼胚或利用薄鋼胚連鑄機等所製出者。
(熱軋延) 為了抑制因鑄造造成之晶體方向的各向異性,鋼胚加熱溫度宜設為1080℃以上,更宜設為1150℃以上。另一方面,鋼胚加熱溫度的上限値並無特別限定。當鋼胚的加熱溫度高於1300℃時,會有要投入大量能量的情況,而有造成製造成本大幅增加之情形。因此,鋼胚的加熱溫度宜設為1300℃以下。
於加熱鋼胚後進行熱軋延。熱軋延的結束溫度(軋延結束溫度)若低於850℃,則會使軋延的反作用力變高,而難以穩定製得預定板厚。因此,熱軋延結束溫度宜設為850℃以上,更宜設為875℃以上。熱軋延的結束溫度若高於980℃,則於鋼胚加熱結束後,至熱軋延要結束前之間會有要加熱鋼板的情形,而有造成成本增加的情況。因此,熱軋延的結束溫度宜設為980℃以下,更宜設為960℃以下。
接著,將熱軋延後的熱軋鋼板捲成捲材。此外,於熱軋延後且捲取前進行冷卻時的平均冷卻速度宜設為10℃/秒以上。其係因藉由在更低溫下進行變態,可使熱軋鋼板粒徑微細化,而使冷軋延及退火後的母材鋼板的有效晶粒徑微細。
捲取溫度宜設為350℃以上且750℃以下。而波來鐵及/或長徑1μm以上的粗大雪明碳鐵會分散並生成為熱軋鋼板的微觀組織,使因冷軋延而導入熱軋鋼板的應變局域化。這是為了之後於退火中使各種晶體方向的沃斯田鐵逆變態。藉此,可將退火後的母材鋼板的有效晶粒微細化。當捲取溫度低於350℃時,會有無法生成波來鐵及/或粗大雪明碳鐵之情況。因此,捲取溫度宜設為350℃以上。為了降低熱軋鋼板的強度使冷軋延容易進行,捲取溫度更宜設為450℃以上。捲取溫度高於750℃時,於軋延方向上會生成長帶狀的波來鐵及肥粒鐵,而有於冷軋延及退火後自肥粒鐵生成之母材鋼板的有效晶粒往軋延方向延伸而粗大化。因此,捲取溫度宜設為750℃以下。為了將退火後的母材鋼板的有效晶粒徑微細化,捲取溫度更宜設為680℃以下。捲取熱軋鋼板後,內部氧化層會有厚厚形成在比鋼板端部更中央部處,使內部氧化層不均勻地形成在鏽皮層下。而該情況會在捲取溫度超過650℃時變得更明顯。當該內部氧化層無法利用後述之酸洗、冷軋延去除時,因微細化層及Fe-Al合金層會不均勻形成,而有使鍍敷密著性及外觀均勻性變差的可能性。因此,捲取溫度宜更設為650℃以下。
接著,酸洗依上述而製得之熱軋鋼板。酸洗可去除形成於熱軋鋼板表面之氧化物而有助於提升母材鋼板的鍍敷性。酸洗可進行一次亦可分數次進行。由微細化層及Fe-Al合金層可均勻形成、且可確保其所達成之外觀均勻性之觀點,以強化酸洗來盡可能去除生成於鏽皮層下的內部氧化層為宜。酸洗條件只要可去除內部氧化層則無特別限定。例如,由酸洗效率與經濟性之觀點,酸洗宜使用鹽酸。去除內部氧化層之條件,例如鹽酸濃度宜將氯化氫設為5質量%以上,酸洗溫度宜設為80℃以上,酸洗時間宜設為30秒以上。例如,當捲取溫度高於650℃時,以可更強化酸洗來盡可能去除內部氧化層為宜,而酸洗時間更宜設為60秒以上。
(冷軋延) 接著,對酸洗後的熱軋鋼板進行冷軋延。軋縮率合計大於85%時,鋼板會喪失延性,而有鋼板於冷軋延中斷裂的情形。因此,軋縮率合計宜設為85%以下,更宜設為75%以下,且宜設為70%以下。軋縮率合計的下限値並無特別限定。然當軋縮率合計小於0.05%時,母材鋼板形狀會不均質,使鍍敷無法均勻附著,而有損及外觀之虞。因此,軋縮率合計宜設為0.05%以上,更宜設為0.10%以上。此外,冷軋延宜多道次進行,且冷軋延的道次數及對各道次軋縮率的分配並無限制。
軋縮率合計大於10%且低於20%時,於其之後的退火中會無法充分進行再結晶,於鋼板表層附近殘留因產生大量差排而失去延展性的粗大晶粒,而有使彎曲性及耐疲勞特性變差的情形。因此,縮小軋縮率的合計,可有效減輕差排蓄積於晶粒而留住晶粒的延展性。或是增大軋縮率的合計,可於退火中充分進行再結晶,而有效將加工組織製成內部的差排蓄積少之再結晶粒。由減輕差排蓄積於晶粒之觀點,軋縮率合計宜設為10%以下,更宜設為5.0%以下。另一方面,為了於退火中使再結晶充分進行,軋縮率合計宜設為20%以上,更宜設為30%以上。
(退火) 接著,對冷延鋼板施行退火。退火宜使用具有預熱帶、均熱帶與鍍敷帶之連續退火鍍敷生產線。宜對冷延鋼板進行退火並使其通過預熱帶與均熱帶,並在冷延鋼板要到達鍍敷帶時結束退火,於鍍敷帶進行鍍敷。
如上述,當使用連續退火鍍敷生產線時,例如宜使用以下所示方法。尤其係為了使預定微細化層及Fe-Al合金層均勻生成,以確保鍍敷密著性及外觀均勻性,則控制預熱帶的氣體環境及加熱方式、以及控制均熱帶的氣體環境很重要。
於預熱帶上,係在水蒸氣分壓P(H2 O)與氫分壓P(H2 )之比的Log値Log(P(H2 O)/P(H2 ))控制在-1.7~-0.2之氣體環境下,使用空氣比設為0.7~1.0之預熱燃燒器加熱至400℃~800℃,同時使冷延鋼板通過。於預熱帶調整水蒸氣分壓P(H2 O)與氫分壓P(H2 )之比,會對在後續熔融鍍鋅時於界面上使Fe-Al合金相於寬度方向均勻析出及對鍍敷前的鋼板的表面性狀帶來影響。於預熱帶調整空氣比可抑制Si等強脫氧元素的氧化膜生成於鋼板表面。且調整空氣比並調整水蒸氣分壓P(H2 O)與氫分壓P(H2 )之比,可抑制鋼板表面過度脫碳。藉此可於後續鍍敷步驟中,抑制鋼板表面晶界有過度的Fe-Zn合金反應,而能選擇性地進行Fe-Al合金反應。藉由選擇性地進行Fe-Al合金反應,可促使形成均勻的Fe-Al合金層,獲得優異的鍍敷密著性、外觀均勻化。當Log(P(H2 O)/P(H2 ))大於-0.2時,易於後續鍍敷步驟中引起Fe-Zn合金化,使鍍敷中的Fe濃度變高。而造成鍍敷密著性降低,且易發生外觀不均。另一方面,當Log(P(H2 O)/P(H2 ))小於-1.7,鋼板表面會生成碳濃度高的部分,而無法於表面形成微細化層,使鍍敷密著性降低。
「空氣比」係指單位體積的混合氣體所含空氣體積、與為了使單位體積的混合氣體所含燃料氣體完全燃燒而理論上所需之空氣體積之比,其可以下述式表示。 空氣比=[單位體積的混合氣體所含空氣體積(m3 )]/[為了使單位體積的混合氣體所含燃料氣體完全燃燒而理論上所需之空氣體積(m3 )] 空氣比大於1.0時,會於鋼板表層部過度生成Fe氧化膜,使退火後的脫碳層肥大化,且亦會過度生成微細化層。因此,鍍敷合金化會過度進行,使鍍敷密著性、碎裂性及粉碎性降低。所以,空氣比宜設為1.0以下,更宜設為0.9以下。當空氣比小於0.7時,會無法形成微細化層,使鍍敷密著性降低。因此,空氣比宜設為0.7以上,更宜設為0.8以上。
要通過預熱帶之鋼板溫度若低於400℃,則無法形成充分的微細化層。因此,要通過預熱帶之鋼板溫度宜設為400℃以上,更宜設為600℃以上。要通過預熱帶之鋼板溫度若高於800℃,則鋼板表面會生成含Si及/或Mn之粗大的氧化物,使鍍敷密著性降低。因此,要通過預熱帶之鋼板溫度宜設為800℃以下,更宜設為750℃以下。
預熱帶的加熱速度若慢則內部會氧化,而於鋼板內部生成粗大的氧化物。在600℃~750℃的加熱速度尤為重要。為了抑制鋼板表層部過度脫碳而生成粗大的氧化物,在600℃~750℃的平均加熱速度宜設為1.0℃/秒以上。平均加熱速度若低於1.0℃/秒,於微細化層中會生成粗大的氧化物,使鍍敷密著性或粉碎性降低。因此,平均加熱速度宜設為1.0℃/秒以上。由抑制鋼板表層部過度脫碳而生成粗大的氧化物之觀點,平均加熱速度更宜設為1.5℃/秒以上,更宜設為2.0℃/秒以上。由為了確保預熱帶的處理時間之觀點,平均加熱速度宜設為50℃/秒以下。平均加熱速度若在50℃/秒以下,可易獲得均勻的微細化層,而製得鍍敷密著性及外觀均勻性優異之熔融鍍鋅層。
要將與鋼板成形性相關之微觀組織的體積分率控制在預定範圍,退火的最高加熱溫度係很重要的因子。最高加熱溫度若低,則於鋼中會熔融殘留粗大的鐵系碳化物,使成形性變差。故為了使鐵系碳化物充分固溶以提高成形性,最高加熱溫度宜設為750℃以上。尤其係為了獲得殘留沃斯田鐵,最高加熱溫度更宜設為(Ac1+50)℃以上。最高加熱溫度的上限値並無特別限定,然由鍍敷密著性之觀點,為了減少生成於母材鋼板表面的氧化物,最高加熱溫度宜設為950℃以下,更宜設為900℃以下。
鋼板的Ac1點分別為沃斯田鐵逆變態的開始點。具體而言,Ac1點可藉由自熱軋延後的熱軋鋼板切出小片後,以10℃/秒加熱至1200℃為止,並測定該期間之體積膨脹而得。
退火的最高加熱溫度會在均熱帶達點。該均熱帶的氣體環境係將Log(P(H2 O)/P(H2 ))控制在-1.7~-0.2。Log(P(H2 O)/P(H2 ))小於-1.7時,會無法形成微細化層,使鍍敷密著性降低。因此,Log(P(H2 O)/P(H2 ))宜設為-1.7以上。Log(P(H2 O)/P(H2 ))大於-0.2時,脫碳會過度進行,則不僅母材鋼板表層的硬質相會顯著減少,微細化層中還會形成粗大的氧化物,使鍍敷密著性及粉碎性降低。因此,Log(P(H2 O)/P(H2 ))宜設為-0.2以下。
均熱帶的Log(P(H2 O)/P(H2 ))為-1.7~-0.2時,會成為鍍敷剝離起點之Si氧化物及/或Mn氧化物不會形成於鋼板最表面層,而鋼板表層內部會形成最大徑為0.01μm~0.4μm之Si及/或Mn的微細氧化物。Si及/或Mn的微細氧化物可抑制退火中之Fe再結晶的成長。而且因退火氣體環境中的水蒸氣會使母材鋼板表層脫碳,故退火後的母材鋼板表層的微觀組織會變成肥粒鐵相。結果而於退火後的母材鋼板表層形成平均厚度為0.1μm~5.0μm,肥粒鐵相的平均粒徑為0.1μm~3.0μm,最大徑為0.01μm~0.4μm之含Si及/或Mn氧化物的微細化層。
自到達最高加熱溫度後至到達鍍敷浴為止之鍍敷前的冷卻條件並無特別限定。然為了獲得殘留沃斯田鐵則要抑制波來鐵及雪明碳鐵的生成。因此,以鍍敷前的冷卻條件來說,自750℃至700℃為止的平均冷卻速度宜設為1.0℃/秒以上,更宜設為5.0℃/秒以上。平均冷卻速度的上限値並無特別限定,然為了獲得過大的平均冷卻速度,亦有使用特殊冷卻設備或不會影響鍍敷之冷媒的情形。則由此觀點,自750℃至700℃為止的平均冷卻速度宜設為100℃/秒以下,更宜設為70℃/秒以下。
接續鍍敷前的冷卻,為了獲得回火麻田散鐵,在鋼板溫度到達500℃後至到達鍍敷浴為止期間,麻田散鐵變態處理亦可使鋼板在預定溫度域中停留一定時間。麻田散鐵變態處理溫度宜設為麻田散鐵變態開始溫度(Ms點)以下,更宜設為(Ms點-20)℃以下。麻田散鐵變態處理溫度宜設為50℃以上,更宜設為100℃以上。麻田散鐵變態處理時間宜設為1秒鐘~100秒鐘,更宜設為10秒鐘~60秒鐘。此外,可於麻田散鐵變態處理製得之麻田散鐵會因進行鍍敷時鋼板浸入高溫的鍍敷浴而轉變成回火麻田散鐵。
當令VF為肥粒鐵的體積分率(%)、C含量(質量%)為[C]、Si含量(質量%)為[Si]、Mn含量(質量%)為[Mn]、Cr含量(質量%)為[Cr]、Ni含量(質量%)為[Ni]、Al含量(質量%)為[Al]時,Ms點可利用下述式計算。此外,要在製造熔融鍍鋅鋼板中直接測定肥粒鐵的體積分率係很困難的。因此,會將冷延鋼板在通過連續退火生產線前切出小片,並將該小片以同於通過連續退火生產線時之溫度歷程進行退火後,測定小片的肥粒鐵的體積變化,並將利用該測定値算出之値作為肥粒鐵的體積分率(VF)。 Ms點[℃]=541-474[C]/(1-VF)-15[Si]-35[Mn]-17[Cr]-17[Ni]+19[Al]
鍍敷前之冷卻後,為了獲得殘留沃斯田鐵,變韌鐵變態處理亦可使鋼板在250℃~500℃的溫度域停留一定時間。變韌鐵變態處理可於退火與鍍敷之間進行,亦可於鍍敷後之冷卻時進行,於退火與鍍敷之間及於鍍敷後之冷卻時兩邊進行亦可。
於退火與鍍敷之間及於鍍敷後之冷卻時兩邊進行變韌鐵變態處理時,變韌鐵變態處理的停留時間的和宜設為15秒以上且500秒以下。停留時間的和小於15秒時,變韌鐵變態會無法充分進行,而無法獲得充分的殘留沃斯田鐵。因此,停留時間的和宜設為15秒以上,更宜設為25秒以上。停留時間的和大於500秒時,會生成波來鐵及/或粗大的雪明碳鐵。因此,停留時間的和宜設為500秒以下,更宜設為300秒以下。
於退火與鍍敷之間進行變韌鐵變態處理時,變韌鐵變態處理溫度若高於500℃,則會生成波來鐵及/或粗大的雪明碳鐵,而無法獲得殘留沃斯田鐵。因此,變韌鐵變態處理溫度宜設為500℃以下。且為了促進碳伴隨變韌鐵變態而往沃斯田鐵濃縮,變韌鐵變態處理溫度更宜設為485℃以下,且更宜設為470℃以下。變韌鐵變態處理溫度若低於250℃,變韌鐵變態會無法充分進行,而無法獲得殘留沃斯田鐵。因此,變韌鐵變態處理溫度宜設為250℃以上。為了有效進行變韌鐵變態,變韌鐵變態處理溫度更宜設為300℃以上,且更宜設為340℃以上。此外,於鍍敷前的冷卻後,要進行變韌鐵變態處理與麻田散鐵變態處理兩者時,係於變韌鐵變態處理前進行麻田散鐵變態處理。
(鍍敷) 接著,將所製得之母材鋼板浸漬於鍍敷浴。鍍敷浴具有以鋅為主體、且鍍敷浴中的總Al量減去總Fe量所得的値、即有效Al量為0.180質量%~0.250質量%之組成。鍍敷浴中的有效Al量小於0.180質量%時,Fe-Al合金層會無法充分形成,而Fe會進入熔融鍍鋅層中,損害鍍敷密著性。因此,鍍敷浴中的有效Al量宜設為0.180質量%以上,更宜設為0.185質量%以上,且更宜設為0.190質量%以上。鍍敷浴中的有效Al量若大於0.250質量%,則母材鋼板表面與熔融鍍鋅層之界面的Fe-Al合金層會過度生成,損害鍍敷密著性。因此,鍍敷浴中的有效Al量宜設為0.250質量%以下,更宜設為0.240質量%以下,且更宜設為0.230質量%以下。
鍍敷浴中亦可含有Ag、B、Be、Bi、Ca、Cd、Co、Cr、Cs、Cu、Ge、Hf、I、K、La、Li、Mg、Mn、Mo、Na、Nb、Ni、Pb、Rb、Sb、Si、Sn、Sr、Ta、Ti、V、W、Zr及REM中1種以上元素。利用各元素的含量可改善熔融鍍鋅層的耐蝕性及加工性。
鍍敷浴溫度低於440℃時,鍍敷浴的黏度會過度升高,而難以控制熔融鍍鋅層的厚度,損及熔融鍍鋅鋼板的外觀。因此,鍍敷浴的溫度宜設為440℃以上,更宜設為445℃以上。鍍敷浴溫度高於470℃時,會產生大量煙霧,而難以安全製造。因此,鍍敷浴溫度宜設為470℃以下,更宜設為460℃以下。
母材鋼板進入鍍敷浴時的鋼板溫度若低於430℃,為了使鍍敷浴溫度可在440℃以上穩定而要給予鍍敷浴大量熱量而不實用。因此,母材鋼板進入鍍敷浴時的鋼板溫度宜設為430℃以上。為了形成預定的Fe-Al合金層,母材鋼板進入鍍敷浴時的鋼板溫度更宜設為440℃以上。母材鋼板進入鍍敷浴時的鋼板溫度若高於480℃,則為了使鍍敷浴溫度可在470℃以下穩定,會要導入可自鍍敷浴排出大量熱量的設備,而使製造成本變高。因此,母材鋼板進入鍍敷浴時的鋼板溫度宜設為480℃以下。為了形成預定的Fe-Al合金層,母材鋼板進入鍍敷浴時的鋼板溫度更宜設為470℃以下。
鍍敷浴的溫度以可在440℃~470℃之範圍內的溫度穩定更佳。鍍敷浴的溫度若不穩定,Fe-Al合金層或熔融鍍鋅層中的Fe含量會不均勻,而使鍍敷層外觀不均勻,造成鍍敷密著性變差。故為了使鍍敷浴溫度穩定,宜使進入鍍敷浴時的鋼板溫度與鍍敷浴溫度大略一致。具體而言,由實際製造設備的溫度控制性有限度,宜將進入鍍敷浴時的鋼板溫度設為鍍敷浴溫度±10℃以內,且設為鍍敷浴溫度±5℃以內更佳。
此外,於鍍敷浴浸漬後為了獲得預定的鍍敷附著量,宜對鋼板表面噴吹以氮為主體之高壓氣體來去除表層過多的鋅。之後,冷卻至室溫。冷卻時,Fe原子幾乎不會從母材鋼板往熔融鍍鋅層擴散,故以確保鍍敷密著性之觀點,至ζ相生成幾乎停止之溫度(350℃)為止宜設冷卻速度為1℃/秒以上。
冷卻至350℃之後,為了獲得殘留沃斯田鐵,亦可進行停留在250℃~350℃之溫度範圍的變韌鐵變態處理。變韌鐵變態處理溫度若低於250℃,則變韌鐵變態無法充分進行,而無法充分獲得殘留沃斯田鐵。因此,變韌鐵變態處理溫度宜設為250℃以上。為了有效進行變韌鐵變態,變韌鐵變態處理溫度更宜設為300℃以上。變韌鐵變態處理溫度若高於350℃,則Fe原子會從母材鋼板過度擴散到熔融鍍鋅層,使鍍敷密著性變差。因此,變韌鐵變態處理溫度宜設為350℃以下,更宜設為340℃以下。
為了使殘留沃斯田鐵更穩定化,亦可冷卻至250℃以下後施行再加熱處理。再加熱處理的處理溫度及處理時間可因應需要適宜設定。再加熱處理溫度若低於250℃,則無法獲得充分的效果。因此,再加熱處理溫度宜設為250℃以上,更宜設為280℃以上。再加熱處理溫度若高於350℃,則Fe原子會從母材鋼板擴散到熔融鍍鋅層,使鍍敷密著性變差。因此,再加熱處理溫度宜設為350℃以下,更宜設為330℃以下。再加熱處理時間若超過1000秒,則上述效果會達飽和。因此,再加熱處理時間宜設為1000秒以下。
依上述可製造本發明實施形態之熔融鍍鋅鋼板。
本發明實施形態中,例如亦可對依上述方法製得之熔融鍍鋅鋼板的熔融鍍鋅層表面賦予由磷氧化物及/或含磷之複合氧化物所構成之皮膜。由磷氧化物及/或含磷之複合氧化物所構成之皮膜可在加工熔融鍍鋅鋼板時發揮潤滑劑的功能,而可保護形成於母材鋼板表面之熔融鍍鋅層。
本發明實施形態中,例如為了矯正形狀,可對已冷卻至室溫之熔融鍍鋅鋼板施行軋縮率設為3.00%以下之冷軋延。
此外,本發明實施形態之製造熔融鍍鋅鋼板之方法宜適用母材鋼板板厚為0.6mm以上且小於5.0mm之熔融鍍鋅鋼板之製造。母材鋼板板厚小於0.6mm時,會有難以將母材鋼板形狀保持平坦之情況。而母材鋼板板厚在5.0mm以上時,會有難以控制退火及鍍敷之冷卻的情況。
此外,上述實施形態皆僅為例示實施本發明時之具體化例,本發明技術範圍並不受限於該等例。亦即,只要不脫離本發明技術思想、或其主要特徴則可以各種形態實施本發明。
實施例 接著,說明本發明實施例。實施例中之條件係為確認本發明可實施性及效果而採用之一條件例,本發明並不受限於該一條件例。只要不脫離本發明要旨而可達成本發明之目的,本發明即可採用各種條件。
鑄造具表1~表4所示化學組成(鋼種A~鋼種AT)之鋼胚,並以表5及表6所示條件(鋼胚加熱溫度、軋延結束溫度)進行熱軋延,且以表5及表6所示條件(自熱軋結束至捲取為止之平均冷卻速度、捲取溫度)進行冷卻,而製得熱軋鋼板。之後,使用80℃的10%鹽酸,以表5及表6所示酸洗時間,對熱軋鋼板進行酸洗,並以表5及表6所示軋縮率施行冷軋延,而製得冷延鋼板。表1~表4中的底線係表示該數値超出本發明範圍外。鋼種A~鋼種AT的剩餘部分為Fe及不純物。表5~表6中的底線係表示該數値超出適於製造熔融鍍鋅鋼板之範圍外。
接著,對所製得之冷延鋼板,以表7及表8所示條件(預熱帶的空氣比、預熱帶之預熱結束溫度、預熱帶氣體環境中的Log(P(H2 O)/P(H2 ))、還原帶氣體環境中的Log(P(H2 O)/P(H2 ))、在600℃~750℃之溫度域的平均加熱速度、最高加熱溫度(Tm))施行退火。此外,實驗例1~實驗例50之預熱結束溫度係設為623℃~722℃之範圍。然後,以表7及表8所示條件(冷卻速度1(在750℃~700℃之溫度域的平均冷卻速度)、冷卻速度2(在700℃~500℃之溫度域的平均冷卻速度)、變韌鐵變態處理1條件(處理溫度、處理時間)、麻田散鐵變態處理(處理溫度、處理時間))進行冷卻處理。此外,關於未進行變韌鐵變態處理1、麻田散鐵變態處理之鋼板,在表7及表8中該處理的條件欄係記為「-」。表7~表8中的底線係表示該數値超出適於製造熔融鍍鋅鋼板之範圍外。
接著,以表9及表10所示鍍敷條件(有效Al量、鍍敷浴溫度(浴溫)、鋼板進入溫度、浸漬時間)浸漬於鍍鋅浴施行鍍敷。鍍敷後,以表9及10所示條件(冷卻速度(在鍍敷後鋼板溫度~350℃之溫度域的平均冷卻速度)、變韌鐵變態處理2條件(處理溫度、處理時間)、再加熱處理條件(處理溫度、處理時間))進行冷卻處理。此外,關於變韌鐵變態處理2、未施行再加熱處理之鋼板,在表9及表10中該處理的條件欄係記為「-」。然後,以表9及表10所示軋縮率施行冷軋延,而製得實驗例1~實驗例97的熔融鍍鋅鋼板。其中,一部分的實驗例中有中斷實驗者。表9~表10中的底線係表示該數値超出適於製造熔融鍍鋅鋼板之範圍外。
對所製得之鍍敷鋼板(實驗例1~實驗例97)觀察母材鋼板的微觀組織及熔融鍍鋅層。將母材鋼板的微觀組織及熔融鍍鋅層的觀察結果示於表11及表12。表11及表12中的底線係表示該數値超出本發明範圍外。
首先,自熔融鍍鋅鋼板以與母材鋼板之軋延方向平行之截面為觀察面採取試料。對試料觀察面使用場發射掃描型電子顯微鏡(FE-SEM)進行組織觀察及利用EBSD法進行高分解能晶體方向解析,並觀察自母材鋼板表面起在母材鋼板板厚1/8~厚度3/8之範圍中的微觀組織,鑑定構成組織。於表13及表14中,係分別以F表示粒狀肥粒鐵,WF表示針狀肥粒鐵,NRF表示未再結晶肥粒鐵,P表示波來鐵,θ表示粗大雪明碳鐵,BF表示變韌肥粒鐵,B表示變韌鐵,M表示麻田散鐵,tM表示回火麻田散鐵,γ表示殘留沃斯田鐵作觀察。
又,自熔融鍍鋅鋼板採取25mm×25mm小片作為試驗片。對試驗片之自板厚表面起1/8厚度~3/8厚度之範圍,將與板面平行之面加工成鏡面,並用X射線繞射法測定殘留沃斯田鐵的體積分率(γ分率)。
鍍敷附著量係用摻有抑制劑之鹽酸來熔融熔融鍍鋅層,並比較熔融前後的重量而求得。然後,將Fe及Al用ICP定量來測定熔融鍍鋅層中的Fe濃度及Al濃度。
然後,自熔融鍍鋅鋼板以與母材鋼板之軋延方向平行之截面為觀察面採取試料,並用上述測定方法求出形成於母材鋼板表面與熔融鍍鋅層之界面的Fe-Al合金層的平均厚度、母材鋼板寬度方向上之Fe-Al合金層厚度之最大値與最小値的差,與Fe-Al合金層相接之微細化層的平均厚度、母材鋼板寬度方向上之微細化層厚度之最大値與最小値的差、微細化層內之肥粒鐵相的平均粒徑、及微細化層中Si及Mn中之1種以上氧化物之直徑的最大値。並將該結果示於表11及表12。
接著,為了調查熔融鍍鋅鋼板的特性,而進行了拉伸試驗、擴孔試驗、彎曲試驗、密著性評估試驗、點熔接試驗、腐蝕試驗、碎裂性試驗、粉碎性試驗及鍍敷外觀均勻性評估。並於表13及表14顯示各實驗例之特性。
拉伸試驗係自熔融鍍鋅鋼板做出JIS Z 2201所記載之5號試驗片,依JIS Z 2241所記載之方法求出降伏強度(YS)、拉伸最大強度(TS)、總延伸率(El)。此外,拉伸特性係將拉伸最大強度(TS)為420MPa以上之情況評估為良好。
擴孔試驗係依JIS Z 2256所記載之方法進行。成形性中,延性(總延伸率)(El)及擴孔性(λ)雖會隨拉伸最大強度(TS)而變化,但於滿足下述式(2)時評估強度、延性及擴孔性為良好。 TS1.5 ×El×λ0.5 ≧ 2.0×106 ・・・式(2)
鍍敷密著性係對賦予了5%單軸拉伸應變之熔融鍍鋅鋼板施行杜邦衝撃試驗。於衝撃試驗後之熔融鍍鋅鋼板貼上黏著膠帶後剝除,將鍍敷未被剝離之情況評估為特別良好(◎),鍍敷有被剝離5%以上之情況評估為不良(×),鍍敷剝離小於5%之情況評估為良好(○)。杜邦衝撃試驗係使用前端的曲率半徑設為1/2吋的衝頭,使3kg的錘自1m高度落下來進行。
點熔接性係進行連續打點試驗作評估。以熔融部直徑成為板厚平方根的5.3~5.7倍之熔接條件連續進行1000次點熔接,並以熔融部直徑之第1點d1 與第1000點d1000 作比較,d1000 /d1 在0.90以上之情況評估為良好(○),小於0.90之情況評估為不良(×)。
耐蝕性評估係使用自熔融鍍鋅鋼板切出150mm×70mm之試驗片。對試驗片施行磷酸鋅系浸漬型化學轉化處理,接著施行20μm的陽離子電鍍塗裝、35μm的中間塗裝、35μm的表塗塗裝後,將背面與端部用絕緣膠帶密封。耐蝕性試驗係使用以SST 6hr、乾燥4hr、濕潤4hr、冷凍4hr為1循環之CCT。塗裝後之耐蝕性的評估係對塗裝面用切刀施行橫切到母材鋼板為止來測定CCT 60循環後的膨脹寬度。膨脹寬度在3.0mm以下之情況評估為良好(○),大於3.0mm之情況評估為不良(×)。
碎裂性係使用自熔融鍍鋅鋼板切出70mm×150mm的試驗片來進行評估。首先,對試驗片進行汽車用脫脂、形成化學轉化皮膜、及3層塗裝。接著,於將試驗片冷卻保持在-20℃之狀態下,以2kgf/cm2 的空氣壓垂直照射10個碎石(0.3g~0.5g)。碎石的照射係對各試驗片反覆各進行5次來實施。之後,對各試驗片觀察合計50個碎裂痕,並就該剝離界面的位置依以下基準評估。剝離界面在比熔融鍍鋅層更上面(熔融鍍鋅層-化學轉化皮膜之界面、或電鍍塗裝-中間塗裝之界面)評估為良好(○),而在鍍敷層-基鐵之界面有1處剝離評估為不良(×)。
粉碎性為評估熔融鍍鋅層的加工性,係使用V彎曲加工(JIS Z 2248)進行評估。將熔融鍍鋅鋼板切成50mm×90mm,並用1R-90°V字模具壓製機形成成型體作成試驗體。對各試驗體的谷部實施膠帶剝離。具體而言,係於試驗體彎曲加工部上壓抵寬度為24mm的玻璃紙膠帶並撕起後,目視判斷玻璃紙膠帶長度90mm之部分。評估基準如下。熔融鍍鋅層的剝離相對於加工部面積在5%以下評估為良好(○),熔融鍍鋅層的剝離相對於加工部面積大於5%評估為不良(×)。
外觀均勻性評估係測定鋼板寬度方向上之距離其両端50mm之位置與將其之間分成7等分之位置共計8處的明度(L*値),將最大値減去最小値所得之差小於5評估為良好(○), 5以上且小於10評估為稍不良(△),10以上評估為不良(×)。
[表1]
[表2]
[表3]
[表4]
[表5]
[表6]
[表7]
[表8]
[表9]
[表10]
[表11]
[表12]
[表13]
[表14]
有效Al量為0.180%之實驗例64及實驗例86,其Fe-Al合金層有沿寬度方向均勻生成,故無上述專利文獻12所記載之鍍敷密著性降低。
實驗例3中,鍍敷浴中的有效Al濃度極低,而無法形成Fe-Al合金層,且熔融鍍鋅層中的Fe含量過高,而無法獲得充分的鍍敷密著性、碎裂性、粉碎性、鍍敷外觀均勻性。
實驗例6因未對熱軋鋼板施行冷軋延,故鋼板平坦度差而無法進行退火,故中止實驗。
實驗例20之鍍敷後的冷卻速度小,故熔融鍍鋅層中的Fe含量過高,而無法獲得充分的鍍敷密著性、碎裂性、粉碎性。
實驗例26之退火的加熱速度小,使母材鋼板中的氧化物過度成長,而生成會成為致使母材鋼板表面破壞之起點的粗大氧化物,故鍍敷密著性、粉碎性變差。
實驗例28之冷軋延的軋縮率過大,致使鋼板斷裂,故中止實驗。
實驗例33之均熱帶的Log(P(H2 O)/P(H2 ))大,使母材鋼板表層的微細化層過度變厚,而會生成Zn-Fe合金之熔融鍍鋅層的合金化過度進行,使熔融鍍鋅層中的Fe含量增加,故鍍敷密著性、碎裂性、粉碎性變差。
實驗例36之預熱帶的空氣比大,造成鋼板表面脫碳過度進行,使微細化層的平均厚度變厚,而會生成Zn-Fe合金之熔融鍍鋅層的合金化過度進行,使熔融鍍鋅層中的Fe含量增加,故鍍敷密著性、碎裂性、粉碎性變差。
實驗例40之鍍敷浴中有效Al濃度低,而無法生成充分厚度的Fe-Al合金層,故熔融鍍鋅層中的Fe含量過高,而無法獲得充分的鍍敷密著性、碎裂性、粉碎性、鍍敷外觀均勻性。
實驗例42之鍍敷浴中有效Al濃度高,使熔融鍍鋅層中的Al含量過高,生成過厚的Fe-Al合金層,而無法獲得充分的鍍敷密著性、點熔接性。
實驗例46之均熱帶的Log(P(H2 O)/P(H2 ))小,而發生沒鍍敷到的情況,故鍍敷密著性差。且實驗例46未形成微細化層,母材鋼板表面之肥粒鐵相的平均粒徑為3.6μm,而於自表面起至深度0.5μm之範圍的鋼板內部的氧化物直徑的最大値小於0.01μm。
實驗例47之Si含量大,而於鑄造時鋼胚在冷卻中龜裂,故中斷實驗。
實驗例48之Mn含量大,而於熱軋延時鋼胚在加熱中龜裂,故中斷實驗。
實驗例49之P含量大,而於熱軋延時鋼胚在加熱中龜裂,故中斷實驗。
實驗例50之Al含量大,而於鑄造時鋼胚在冷卻中龜裂,故中斷實驗。
實驗例54之退火的最高加熱溫度低,而無法生成殘留沃斯田鐵,致使鋼板中大量存在粗大的雪明碳鐵,造成TS1.5 ×El×λ0.5 變差,而無法獲得充分的特性。
實驗例55之自750℃至700℃為止的平均冷卻速度小,生成大量碳化物,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例58之鍍敷處理後的變韌鐵變態處理溫度高,使熔融鍍鋅層中的Fe含量增加,故鍍敷密著性、碎裂性、粉碎性變差。
實驗例59之鍍敷處理前的變韌鐵變態處理時間短,無法充分進行變韌鐵變態,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例60之鍍敷浴中有效Al量過少,無法生成充分厚度的Fe-Al合金層,故熔融鍍鋅層中的Fe含量過高,而無法獲得充分的鍍敷密著性、碎裂性、粉碎性。
實驗例65之自700℃至500℃為止之平均冷卻速度小,生成大量碳化物,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例66之鍍敷處理後的變韌鐵變態處理溫度低,過度抑制變韌鐵變態的進行,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例67之鍍敷浴中有效Al濃度高,使熔融鍍鋅層中的Al含量過高,生成過厚的Fe-Al合金層,而無法獲得充分的鍍敷密著性、點熔接性。
實驗例68之熱軋延的結束溫度低,使鋼板形狀顯著變差,故中止實驗。
實驗例72之捲取溫度低,而於冷軋延時鋼板斷裂,故中止實驗。
實驗例73之預熱帶的Log(P(H2 O)/P(H2 ))小,而發生沒鍍敷到的情形,故表層粒徑無法微細化,而鍍敷密著性變差。且實驗例73未形成微細化層,母材鋼板表面的肥粒鐵相的平均粒徑為3.3μm,而於自表面起至深度0.5μm之範圍的鋼板內部的氧化物最大徑小於0.01μm。
實驗例74不論於鍍敷處理前及鍍敷處理後皆未施行變韌鐵變態處理,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例75之鍍敷處理前的變韌鐵變態處理溫度高,生成大量碳化物,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例76之鍍敷處理前的變韌鐵變態處理溫度低,過度抑制變韌鐵變態的進行,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例78之退火的最高加熱溫度低於Ac1+50℃,而無法生成殘留沃斯田鐵,致使鋼板中大量存在粗大的雪明碳鐵,造成TS1.5 ×El×λ0.5 變差,而無法獲得充分的特性。
實驗例80之鍍敷處理前的變韌鐵變態處理時間與鍍敷處理後之變韌鐵變態處理時間的和小,無法充分進行變韌鐵變態,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例84之Si含量及Al含量不滿足式(1),生成大量碳化物,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例87之鍍敷處理前的變韌鐵變態處理時間長,生成大量碳化物,而無法獲得殘留沃斯田鐵,故強度與成形性之平衡變差。
實驗例88之C含量大,故點熔接性及成形性變差。
實驗例89之C含量小,無法生成殘留沃斯田鐵,使硬質相的體積分率變小,而無法獲得充分的拉伸強度。
實驗例90之Mn含量小,故於退火及鍍敷時生成大量波來鐵及粗大雪明碳鐵,而無法生成殘留沃斯田鐵,故無法充分獲得鋼板的拉伸強度及成形性。
實驗例91之S含量大,生成大量粗大硫化物,而造成延性及擴孔性變差。
實驗例92之N含量大,生成大量粗大氮化物,而造成延性及擴孔性變差。
實驗例93之O含量大,生成大量粗大氧化物,而造成延性及擴孔性變差。
實驗例94之預熱結束溫度高,致使母材鋼板中之氧化物過度成長,而生成會成為致使母材鋼板表面破壞之起點的粗大氧化物,造成鍍敷密著性變差。
實施例95之預熱帶的Log(P(H2 O)/P(H2 ))大,使母材鋼板表層的微細化層過度變厚,造成會生成Zn-Fe合金之熔融鍍鋅層的合金化過度進行,使熔融鍍鋅層中的Fe含量增加,故鍍敷密著性、碎裂性、粉碎性變差。又,鋼板寬度方向上之Fe-Al合金層厚度之最大値與最小値的差大於0.5μm,故鍍敷外觀不均勻。
實驗例10、實驗例22、實驗例30、實驗例43、實驗例44之捲取溫度在650℃以上,鋼板寬度方向上之Fe-Al合金層厚度之最大値與最小値的差大於0.5μm,故鍍敷外觀稍不均勻。且,鋼板寬度方向上之微細化層厚度之最大値與最小値的差大於2.0μm。實驗例11、實驗例45之捲取溫度雖在650℃以上,但有增長酸洗時間,故鋼板寬度方向上之微細化層厚度之最大値與最小値的差在2.0μm以內,而獲得良好的鍍敷外觀均勻性。實施例97之捲取溫度雖低於650℃,但因酸洗時間為15秒而時間較短,故無法完全去除生成地不均勻之內部氧化層,而鋼板寬度方向上之微細化層厚度之最大値與最小値的差大於2.0μm,鍍敷外觀稍不均勻。實驗例99之預熱帶的平均加熱速度大於50℃/秒,故鋼板寬度方向上之Fe-Al合金層厚度之最大値與最小値的差大於0.5μm,鋼板寬度方向上之微細化層厚度之最大値與最小値的差大於2.0μm,鍍敷外觀稍不均勻。
產業上之可利用性 本發明可利用於例如有關適於汽車外板等之熔融鍍鋅鋼板的產業上。
1‧‧‧熔融鍍鋅鋼板
2‧‧‧母材鋼板
3‧‧‧熔融鍍鋅層
4‧‧‧Fe-Al合金層
5‧‧‧微細化層
6‧‧‧脫碳層
7、8‧‧‧肥粒鐵相
圖1係顯示本發明實施形態熔融鍍鋅鋼板之截面圖。

Claims (6)

  1. 一種熔融鍍鋅鋼板,係於母材鋼板之至少一側具有熔融鍍鋅層,且該熔融鍍鋅鋼板之特徵在於前述母材鋼板具有以下所示化學組成: 以質量%計, C:0.040%~0.400%、 Si:0.05%~2.50%、 Mn:0.50%~3.50%、 P:0.0001%~0.1000%、 S:0.0001%~0.0100%、 Al:0.001%~1.500%、 N:0.0001%~0.0100%、 O:0.0001%~0.0100%、 Ti:0.000%~0.150%、 Nb:0.000%~0.100%、 V:0.000%~0.300%、 Cr:0.00%~2.00%、 Ni:0.00%~2.00%、 Cu:0.00%~2.00%、 Mo:0.00%~2.00%、 B:0.0000%~0.0100%、 W:0.00%~2.00%、 Ca、Ce、Mg、Zr、La及REM:合計0.0000%~0.0100%、及 剩餘部分:Fe及不純物; 前述熔融鍍鋅層中的Fe含量大於0%且在3.0%以下,Al含量大於0%且在1.0%以下; 在前述熔融鍍鋅層與前述母材鋼板之界面具有Fe-Al合金層; 前述Fe-Al合金層厚度為0.1μm~2.0μm; 前述母材鋼板寬度方向上之前述Fe-Al合金層厚度之最大値與最小値的差在0.5μm以內; 前述母材鋼板內具有與前述Fe-Al合金層直接接觸之微細化層,且前述微細化層的平均厚度為0.1μm~5.0μm,前述微細化層內肥粒鐵相的平均粒徑為0.1μm~3.0μm,前述微細化層中含有Si及Mn之1種或2種以上的氧化物,且前述氧化物的最大徑為0.01μm~0.4μm; 前述母材鋼板寬度方向上之前述微細化層厚度之最大値與最小値的差在2.0μm以內。
  2. 如請求項1之熔融鍍鋅鋼板,其令前述母材鋼板中Si含量(質量%)為[Si]、Al含量(質量%)為[Al]時滿足下述式1; 相對於前述母材鋼板總厚度,以自前述母材鋼板表面起1/4厚度為中心之在1/8厚度~3/8厚度之範圍的殘留沃斯田鐵以體積分率計為1%以上; [Si]+0.7[Al]≧0.30 (式1)。
  3. 如請求項1或2之熔融鍍鋅鋼板,其中前述熔融鍍鋅層之每單面鍍敷附著量為10g/m2 以上且100g/m2 以下。
  4. 如請求項1或2之熔融鍍鋅鋼板,其中前述化學組成滿足: Ti:0.001%~0.150%、 Nb:0.001%~0.100%、或是 V:0.001%~0.300%、 或該等之任意組合。
  5. 如請求項1或2之熔融鍍鋅鋼板,其中前述化學組成滿足: Cr:0.01%~2.00%、 Ni:0.01%~2.00%、 Cu:0.01%~2.00%、 Mo:0.01%~2.00%、 B:0.0001%~0.0100%、或是 W:0.01%~2.00%、 或該等之任意組合。
  6. 如請求項1或2之熔融鍍鋅鋼板,其中前述化學組成滿足: Ca、Ce、Mg、Zr、La及REM:合計0.0001%~0.0100%。
TW106125687A 2017-07-31 2017-07-31 熔融鍍鋅鋼板 TWI675924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125687A TWI675924B (zh) 2017-07-31 2017-07-31 熔融鍍鋅鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125687A TWI675924B (zh) 2017-07-31 2017-07-31 熔融鍍鋅鋼板

Publications (2)

Publication Number Publication Date
TW201910531A true TW201910531A (zh) 2019-03-16
TWI675924B TWI675924B (zh) 2019-11-01

Family

ID=66590190

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125687A TWI675924B (zh) 2017-07-31 2017-07-31 熔融鍍鋅鋼板

Country Status (1)

Country Link
TW (1) TWI675924B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343393B2 (en) * 2002-03-01 2017-03-01 JFE Steel Corporation Surface treated steel plate and method for production thereof
BR112017008460A2 (pt) * 2014-11-05 2017-12-26 Nippon Steel & Sumitomo Metal Corp chapa de aço galvanizada por imersão a quente

Also Published As

Publication number Publication date
TWI675924B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
TWI589709B (zh) 熔融鍍鋅鋼板
KR102344787B1 (ko) 용융 아연 도금 강판
TWI601848B (zh) 熔融鍍鋅鋼板
TWI564404B (zh) 熔融鍍鋅鋼板
JP5327410B1 (ja) 耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法、並びに、高強度合金化溶融亜鉛めっき鋼板およびその製造方法
CN110959048B (zh) 热浸镀锌钢板
CN110959047B (zh) 热浸镀锌钢板
CN115003833B (zh) 钢板及其制造方法
TWI675924B (zh) 熔融鍍鋅鋼板
TWI646218B (zh) Hot-dip galvanized steel sheet
TWI646219B (zh) Hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees