TW201909541A - Switching power supply chip and switching power supply circuit including the same - Google Patents
Switching power supply chip and switching power supply circuit including the same Download PDFInfo
- Publication number
- TW201909541A TW201909541A TW106128821A TW106128821A TW201909541A TW 201909541 A TW201909541 A TW 201909541A TW 106128821 A TW106128821 A TW 106128821A TW 106128821 A TW106128821 A TW 106128821A TW 201909541 A TW201909541 A TW 201909541A
- Authority
- TW
- Taiwan
- Prior art keywords
- power supply
- switching power
- line voltage
- supply chip
- voltage
- Prior art date
Links
- 238000005070 sampling Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 7
- 230000005669 field effect Effects 0.000 claims description 22
- 230000003111 delayed effect Effects 0.000 claims description 10
- 210000004508 polar body Anatomy 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 9
- 238000004804 winding Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16566—Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
- G01R19/16576—Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
- H02H7/125—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
本發明涉及電路領域,更具體地涉及一種開關電源晶片及包括其的開關電源電路。 The present invention relates to the field of circuits, and more particularly, to a switching power supply chip and a switching power supply circuit including the same.
開關電源電路是通過利用控制電路控制電子開關器件(例如,電晶體、場效應管、可控矽閘流管等)不停地接通和關斷來對輸入電壓進行脈衝調變,從而實現交流-直流(AC/DC)或者直流-直流(DC/DC)電壓變換的電路。 The switching power supply circuit uses the control circuit to control the electronic switching devices (such as transistors, field-effect transistors, thyristors, etc.) to be continuously turned on and off to pulse-adjust the input voltage to achieve AC. -A direct current (AC / DC) or direct current (DC / DC) voltage conversion circuit.
第1圖示出了傳統的開關電源電路的示例系統結構的示意圖。下面,以第1圖所示的開關電源電路為例,來說明開關電源晶片的高壓啟動與線電壓感測原理。 FIG. 1 is a schematic diagram showing an example system structure of a conventional switching power supply circuit. In the following, the switching power supply circuit shown in FIG. 1 is taken as an example to explain the high-voltage startup and line voltage sensing principles of the switching power supply chip.
如第1圖所示,Vline為整流橋對來自交流(AC)電源的輸入電壓進行整流後得到的線電壓;Cbulk為濾波電容;三繞組變壓器的一次繞組、二次繞組、輔助繞組之間的匝數比為Np:Ns:Na;U1為開關電源晶片,包括控制器和雙極電晶體S1兩部分;Cp為晶片供電電容;D1為供電二極體;Rst為高壓啟動電阻;Rup為線電壓上分壓電阻,Rdn為線電壓下分壓電阻。 As shown in Figure 1, Vline is the line voltage obtained after the rectifier bridge rectifies the input voltage from the AC (AC) power supply; Cbulk is the filter capacitor; between the primary winding, the secondary winding, and the auxiliary winding of the three-winding transformer The turns ratio is Np: Ns: Na; U1 is the switching power supply chip, including the controller and the bipolar transistor S1; Cp is the chip power supply capacitor; D1 is the power supply diode; Rst is the high-voltage startup resistance; Rup is the wire Voltage-dividing resistor, Rdn is the voltage-dividing resistor under line voltage.
在AC電源接入時(即,在開關電源晶片U1的啟動過程中),線電壓Vline經由高壓啟動電阻Rst為開關電源晶片U1提供啟動電流。具體地,線電壓Vline經由高壓啟動電阻Rst給晶片供電電容Cp充電;當晶片供電電容Cp上的電壓,即開關電源晶片U1的供電腳(即,VCC腳)處的電壓大於開關電源晶片U1的欠壓鎖存(UVLO)開啟閾值 電壓時,開關電源晶片U1啟動,控制器以一定的開關頻率和占空比控制雙極電晶體S1接通和關斷。 When the AC power is turned on (ie, during the startup process of the switching power supply chip U1), the line voltage Vline provides the startup current to the switching power supply chip U1 via the high-voltage startup resistor Rst. Specifically, the line voltage Vline charges the chip power supply capacitor Cp via the high-voltage startup resistor Rst; when the voltage on the chip power supply capacitor Cp, that is, the voltage at the power supply pin (ie, VCC pin) of the switching power supply chip U1 is greater than that of the switching power supply chip U1 When the under voltage latch (UVLO) turns on the threshold voltage, the switching power supply chip U1 starts, and the controller controls the bipolar transistor S1 to be turned on and off with a certain switching frequency and duty cycle.
在開關電源晶片U1啟動後(即,在開關電源晶片U1的工作過程中),變壓器的輔助繞組Na經由供電二極體D1和開關電源晶片U1的VCC腳為開關電源晶片U1供電;控制器經由開關電源晶片U1的線電壓感測腳(即,RT腳)感測線電壓Vline的分壓,並將線電壓Vline的分壓輸入到其內部的比較器與預定的參考電壓進行比較,從而實現輸入過壓和欠壓保護功能。 After the switching power supply chip U1 is started (ie, during the operation of the switching power supply chip U1), the auxiliary winding Na of the transformer supplies power to the switching power supply chip U1 via the power supply diode D1 and the VCC pin of the switching power supply chip U1; the controller passes The line voltage sensing pin (ie, the RT pin) of the switching power supply chip U1 senses the divided voltage of the line voltage Vline, and inputs the divided voltage of the line voltage Vline to an internal comparator to compare with a predetermined reference voltage, thereby realizing input Overvoltage and undervoltage protection.
在第1圖所示的系統結構中,由於高壓啟動電路(即,高壓啟動電阻Rst)和線電壓感測電路(即,線電壓分壓電阻Rup、Rdn)的使用,增加了開關電源晶片U1的週邊器件的數量,從而增加了開關電源電路的系統成本;另外,由於高壓啟動電路和線電壓感測電路產生較大功耗,降低了開關電源電路的系統效率。 In the system structure shown in FIG. 1, the switching power supply chip U1 is increased due to the use of a high-voltage startup circuit (that is, the high-voltage startup resistor Rst) and a line voltage sensing circuit (that is, the line voltage divider resistors Rup, Rdn). The number of peripheral devices increases the system cost of the switching power supply circuit. In addition, the high-voltage startup circuit and the line voltage sensing circuit generate large power consumption, which reduces the system efficiency of the switching power supply circuit.
鑒於以上所述的一個或多個問題,本發明提供了一種開關電源晶片及包括其的開關電源電路。 In view of one or more of the problems described above, the present invention provides a switching power supply chip and a switching power supply circuit including the same.
根據本發明實施例的開關電源晶片,包括控制器和功率開關,控制器包括高壓二極體、第一電阻和第二電阻、第一比較器和第二比較器、第一電力MOS場效電晶體和第二電力MOS場效電晶體、以及控制信號生成模組,其中:第一電阻、第二電阻、以及第一電力MOS場效電晶體連接在開關電源晶片的線電壓感測腳與接地腳之間;第一電阻和高壓二極體連接在開關電源晶片的線電壓感測腳與供電腳之間;第一電阻與第二電阻之間的連接節點經由第二電力MOS場效電晶體連接至第一比較器的輸入端和第二比較器的輸入端;在開關電源晶片的啟動過程中,第一電力MOS場效電晶體、第二電力MOS場效電晶體、以及功率開關均處於關斷狀態,由線電壓感測腳從外部接收的線電壓經由第一電阻和高壓二極體為開關電源晶片提供啟動電流;在開關電源晶片的工作過程中,第一電 力MOS場效電晶體和第二電力MOS場效電晶體均處於接通狀態,第一比較器通過比較第一電阻與第二電阻之間的連接節點處的線電壓取樣值和第一參考電壓生成線電壓過壓感測信號,第二比較器通過比較線電壓取樣值和第二參考電壓生成線電壓欠壓感測信號,控制信號生成模組基於線電壓過壓感測信號和線電壓欠壓感測信號來生成控制功率開關接通與關斷的信號。 A switching power supply chip according to an embodiment of the present invention includes a controller and a power switch. The controller includes a high-voltage diode, a first resistor and a second resistor, a first comparator and a second comparator, and a first power MOS field effect power. The crystal and the second power MOS field effect transistor, and a control signal generating module, wherein the first resistor, the second resistor, and the first power MOS field effect transistor are connected to a line voltage sensing pin and a ground of a switching power supply chip. The first resistor and the high-voltage diode are connected between the line voltage sensing pin and the power supply pin of the switching power supply chip; the connection node between the first resistor and the second resistor is via a second power MOS field effect transistor Connected to the input terminal of the first comparator and the input terminal of the second comparator; during the startup process of the switching power supply chip, the first power MOS field effect transistor, the second power MOS field effect transistor, and the power switch are in In the off state, the line voltage received from the outside by the line voltage sensing pin provides the startup current for the switching power supply chip via the first resistor and the high voltage diode; during the working process of the switching power supply chip, the first The force MOS field effect transistor and the second power MOS field effect transistor are both in an on state. The first comparator compares the sampled line voltage at the connection node between the first resistor and the second resistor with the first reference voltage. Generate a line voltage overvoltage sensing signal. The second comparator generates a line voltage undervoltage sensing signal by comparing the line voltage sampling value with a second reference voltage. The control signal generation module is based on the line voltage overvoltage sensing signal and the line voltage undervoltage. Pressure sensing signal to generate a signal to control the power switch on and off.
在根據本發明實施例的開關電源晶片中,第一電阻同時充當線電壓上分壓電阻和高壓啟動電阻,與第二電阻組成線電壓感測電路來實現線電壓感測功能,並且其自身組成高壓啟動電路來實現高壓啟動功能。 In the switching power supply chip according to the embodiment of the present invention, the first resistor simultaneously functions as a line voltage dividing resistor and a high-voltage starting resistor, and forms a line voltage sensing circuit with the second resistor to implement the line voltage sensing function, and its own composition High voltage start circuit to achieve high voltage start function.
根據本發明實施例的開關電源電路,包括上述開關電源晶片。在使用根據本發明實施例的開關電源晶片的開關電源電路中,開關電源晶片的週邊元件的數量減少了,從而降低了開關電源電路的系統成本;另外,由於第一電阻同時充當高壓啟動電阻和線電壓上分壓電阻,省掉了傳統的線電壓感測電路的功耗,提高了開關電源電路的系統效率。 A switching power supply circuit according to an embodiment of the present invention includes the above-mentioned switching power supply chip. In a switching power supply circuit using a switching power supply chip according to an embodiment of the present invention, the number of peripheral components of the switching power supply chip is reduced, thereby reducing the system cost of the switching power supply circuit; in addition, since the first resistor simultaneously functions as a high-voltage startup resistor and The voltage dividing resistor on the line voltage saves the power consumption of the traditional line voltage sensing circuit and improves the system efficiency of the switching power supply circuit.
Vline‧‧‧線電壓 Vline‧‧‧line voltage
S1‧‧‧雙極電晶體 S1‧‧‧Bipolar Transistor
AC‧‧‧交流電源 AC‧‧‧AC Power
U1、U2‧‧‧開關電源晶片 U1, U2‧‧‧ switching power chip
Rst‧‧‧高壓啟動電阻 Rst‧‧‧High-voltage starting resistance
M1、M2‧‧‧MOS開關 M1, M2‧‧‧MOS switches
Rup‧‧‧線電壓上分壓電阻 Rup‧‧‧line voltage resistance
PG‧‧‧上電完成信號 PG‧‧‧ Power-on completion signal
Rdn‧‧‧線電壓下分壓電阻 Rdn‧‧‧ Voltage Divider at Line Voltage
AVDD‧‧‧低壓電源信號 AVDD‧‧‧Low-voltage power signal
RT‧‧‧線電壓感測腳 RT‧‧‧line voltage sensing pin
comp1、comp2‧‧‧比較器 comp1, comp2‧‧‧ comparator
Cbulk‧‧‧濾波電容 Cbulk‧‧‧filter capacitor
Cp‧‧‧晶片供電電容 Cp‧‧‧Chip Power Capacitor
VCC‧‧‧供電腳 VCC‧‧‧Power supply pin
Line_det‧‧‧線電壓取樣值 Line_det‧‧‧Line voltage sampling value
GND‧‧‧接地腳 GND‧‧‧ ground pin
202‧‧‧控制器 202‧‧‧Controller
Na‧‧‧輔助繞組 Na‧‧‧ auxiliary winding
204‧‧‧功率開關 204‧‧‧Power Switch
Np‧‧‧一次繞組 Np‧‧‧ primary winding
D1‧‧‧供電二極體 D1‧‧‧ Power Diode
Ns‧‧‧二次繞組 Ns‧‧‧secondary winding
D3‧‧‧高壓啟動二極體 D3‧‧‧High-voltage startup diode
UVLO‧‧‧欠壓鎖存 UVLO‧‧‧Under Voltage Latch
2^m1xTclk‧‧‧持續時間 2 ^ m1xTclk‧‧‧Duration
clk‧‧‧時鐘信號 clk‧‧‧ clock signal
D‧‧‧觸發器輸入端 D‧‧‧Trigger input
D2‧‧‧輸出整流二極體 D2‧‧‧ Output Rectifier Diode
Q‧‧‧觸發器輸出端 Q‧‧‧Trigger output
R1‧‧‧回饋上分壓電阻 R1‧‧‧Feedback voltage-dividing resistor
QN‧‧‧觸發器反相輸出端 QN‧‧‧ flip-flop inverting output
R2‧‧‧回饋下分壓電阻 R2‧‧‧Feedback resistor
Cout‧‧‧輸出濾波電容 Cout‧‧‧ output filter capacitor
CS‧‧‧一次電流感測引腳 CS‧‧‧Primary current sensing pin
Vout‧‧‧輸出電壓 Vout‧‧‧Output voltage
FB‧‧‧回饋引腳 FB‧‧‧Feedback pin
Rout‧‧‧負載 Rout‧‧‧Load
Rcs‧‧‧一次電流感測電阻 Rcs‧‧‧Primary current sensing resistor
OR‧‧‧或门 OR‧‧‧OR
C‧‧‧觸發器時鐘輸入端 C‧‧‧Trigger Clock Input
S‧‧‧RS鎖存器的置位端 Set terminal of S‧‧‧RS latch
INV‧‧‧反閘 INV‧‧‧Reverse
Latch‧‧‧RS鎖存器 Latch‧‧‧RS Latch
dff‧‧‧D觸發器 dff‧‧‧D trigger
Vref_OVP、Vref_BO‧‧‧參考電壓 Vref_OVP, Vref_BO‧‧‧Reference voltage
Line_OVP_det、Line_OVP‧‧‧線電壓過壓感測信號 Line_OVP_det, Line_OVP‧‧‧ Line voltage overvoltage sensing signal
Brown_out_det、Brown_out‧‧‧線電壓欠壓感測信號 Brown_out_det, Brown_out‧‧‧ Line voltage undervoltage sensing signal
Line_off_st‧‧‧線電壓異常感測信號(啟動時) Line_off_st‧‧‧Line voltage abnormality detection signal (when starting)
Line_off‧‧‧線電壓異常感測信號(正常工作時) Line_off‧‧‧line voltage abnormal sensing signal (during normal operation)
Line_OVP_rst‧‧‧線電壓過壓感測重定信號 Line_OVP_rst‧‧‧ Line voltage overvoltage sensing reset signal
從下面結合附圖對本發明的具體實施方式的描述中可以更好地理解本發明,其中:第1圖示出了傳統的開關電源電路的示例系統結構的示意圖;第2圖示出了根據本發明實施例的開關電源晶片及其週邊元件的示例電路結構的示意圖;第3圖示出了包括第2圖所示的開關電源晶片及其週邊元件的開關電源電路的示例系統結構的示意圖;第4圖示出了第2圖所示的開關電源晶片中的多個電壓信號的波形圖;第5圖示出了第2圖所示的開關電源晶片的示例實現電路的示意圖。 The present invention can be better understood from the following description of specific embodiments of the present invention with reference to the accompanying drawings, in which: FIG. 1 shows a schematic diagram of an example system structure of a conventional switching power supply circuit; and FIG. 2 shows a diagram according to the present invention. A schematic diagram of an exemplary circuit structure of a switching power supply chip and its peripheral components according to an embodiment of the invention; FIG. 3 is a schematic diagram of an exemplary system structure of a switching power supply circuit including the switching power supply chip and its peripheral components shown in FIG. 2; FIG. 4 shows waveform diagrams of a plurality of voltage signals in the switching power supply chip shown in FIG. 2; FIG. 5 shows a schematic diagram of an example implementation circuit of the switching power supply chip shown in FIG. 2.
下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention will be described in detail below. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it is obvious to a person skilled in the art that the present invention can be implemented without the need for some of these specific details. The following description of the embodiments is merely for providing a better understanding of the present invention by showing examples of the present invention. The invention is by no means limited to any specific configuration and algorithm proposed below, but covers any modification, replacement and improvement of elements, components and algorithms without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessarily obscuring the present invention.
鑒於結合第1圖所述的開關電源電路的一個或多個問題,提供了一種內部集成有高壓啟動電路和線電壓感測電路的開關電源晶片。 In view of one or more problems associated with the switching power supply circuit described in FIG. 1, a switching power supply chip with a high-voltage startup circuit and a line voltage sensing circuit integrated therein is provided.
第2圖示出了根據本發明實施例的開關電源晶片及其週邊元件的示例電路結構的示意圖。如第2圖所示,開關電源晶片U2包括控制器202和功率開關204,控制器202包括高壓二極體D3、高壓啟動電阻Rst、線電壓分壓電阻Rdn、MOS開關M1和M2(其中,M2可以為高壓MOS開關)、比較器comp1和comp2、以及控制信號生成模組。 FIG. 2 is a schematic diagram showing an example circuit structure of a switching power supply chip and its peripheral components according to an embodiment of the present invention. As shown in FIG. 2, the switching power supply chip U2 includes a controller 202 and a power switch 204. The controller 202 includes a high-voltage diode D3, a high-voltage starting resistor Rst, a line voltage dividing resistor Rdn, and MOS switches M1 and M2 (wherein, M2 can be a high-voltage MOS switch), comparators comp1 and comp2, and a control signal generation module.
在第2圖所示的實施例中,高壓啟動電阻Rs、線電壓分壓電阻Rdn、以及MOS開關M1連接在開關電源晶片U2的線電壓感測腳(即,RT腳)與接地腳(即,GND腳)之間;高壓啟動電阻Rs和高壓二極體D3連接在開關電源晶片U2的RT腳與供電腳(即,VCC腳)之間;高壓啟動電阻Rst與線電壓分壓電阻Rdn之間的連接節點經由MOS開關M2連接至比較器comp1的正相輸入端和比較器comp2的負相輸入端。 In the embodiment shown in FIG. 2, the high-voltage starting resistor Rs, the line voltage dividing resistor Rdn, and the MOS switch M1 are connected to the line voltage sensing pin (ie, the RT pin) and the ground pin (ie, the RT pin) of the switching power supply chip U2. , GND pin); the high-voltage startup resistor Rs and the high-voltage diode D3 are connected between the RT pin and the power supply pin (ie, the VCC pin) of the switching power supply chip U2; the high-voltage startup resistor Rst and the line voltage dividing resistor Rdn The connection node between them is connected to the positive-phase input terminal of the comparator comp1 and the negative-phase input terminal of the comparator comp2 via the MOS switch M2.
在第2圖所示的實施例中,MOS開關M1的閘極輸入為開關電源晶片U2的晶片上電完成(PG)信號,該PG信號的初始狀態為邏輯低位準;MOS開關M2的閘極輸入為開關電源晶片U2內部的低壓電 源AVDD信號,該AVDD信號的初始狀態為邏輯低位準。也就是說,在開關電源晶片U2尚未啟動或處於啟動過程中時,MOS開關M1和M2處於關斷狀態。 In the embodiment shown in FIG. 2, the gate input of the MOS switch M1 is a chip power-on completion (PG) signal of the switching power supply chip U2, and the initial state of the PG signal is a logic low level; the gate of the MOS switch M2 The input is the low-voltage power AVDD signal inside the switching power supply chip U2, and the initial state of the AVDD signal is a logic low level. That is, when the switching power supply chip U2 has not been started or is in the process of startup, the MOS switches M1 and M2 are in an off state.
第3圖示出了包括第2圖所示的開關電源晶片及其週邊元件的開關電源電路的示例系統結構的示意圖。下面以第3圖所示的開關電源電路為例,詳細說明第2圖所示的開關電源晶片U2的高壓啟動與線電壓感測原理。 FIG. 3 is a schematic diagram showing an example system structure of a switching power supply circuit including the switching power supply chip and its peripheral components shown in FIG. 2. Taking the switching power supply circuit shown in FIG. 3 as an example, the high-voltage startup and line voltage sensing principles of the switching power supply chip U2 shown in FIG. 2 are described in detail below.
在AC電源接入時(即,在開關電源晶片U2的啟動過程中),PG信號為邏輯低位準,MOS開關M1處於關斷狀態;AVDD信號為邏輯低位準,MOS開關M2處於關斷狀態;線電壓Vline經由高壓啟動電阻Rst和高壓二極體D3為開關電源晶片U2提供啟動電流。具體地,線電壓Vline經由高壓啟動電阻Rst和高壓二極體D3給連接到開關電源晶片U2的VCC腳的晶片供電電容Cp充電;在晶片供電電容Cp上的電壓,即開關電源晶片U2的VCC腳處的電壓大於開關電源晶片U2的UVLO開啟閾值電壓時,開關電源晶片U2啟動。 When the AC power is turned on (ie, during the startup of the switching power supply chip U2), the PG signal is at a logic low level and the MOS switch M1 is in an off state; the AVDD signal is at a logic low level and the MOS switch M2 is in an off state; The line voltage Vline provides a startup current to the switching power supply chip U2 via a high-voltage startup resistor Rst and a high-voltage diode D3. Specifically, the line voltage Vline charges the chip power supply capacitor Cp connected to the VCC pin of the switching power supply chip U2 via the high voltage startup resistor Rst and the high voltage diode D3; the voltage on the chip power supply capacitor Cp, that is, the VCC of the switching power supply chip U2 When the voltage at the pin is greater than the UVLO turn-on threshold voltage of the switching power supply chip U2, the switching power supply chip U2 starts.
在開關電源晶片U2啟動(即,上電完成)後,PG信號從邏輯低位準變為邏輯高位準,MOS開關M1從關斷狀態變為接通狀態;AVDD信號從邏輯低位準變為邏輯高位準,MOS開關M2從關斷狀態變為接通狀態。在開關電源晶片U2的工作過程中,高壓啟動電阻Rst與線電壓分壓電阻Rdn組成線電壓分壓感測電路,對線電壓Vline進行分壓得到線電壓取樣值Line_det(該線電壓取樣值小於開關電源晶片U2的VCC腳處的電壓);比較器comp1將線電壓取樣值Line_det與參考電壓Vref_OVP進行比較,生成線電壓過壓感測信號Line_OVP_det;比較器comp2將線電壓取樣值Line_det與參考電壓Vref_BO進行比較,生成線電壓欠壓感測信號Brown_out_det;控制信號生成模組基於線電壓過壓感測信號Line_OVP_det和線電壓欠壓感測信號Brown_out_de生成控制功率開關204接通和關斷的信號。 After the switching power supply chip U2 is started (that is, power-on is completed), the PG signal changes from a logic low level to a logic high level, and the MOS switch M1 changes from an off state to an on state; the AVDD signal changes from a logic low level to a logic high Yes, the MOS switch M2 changes from the off state to the on state. During the operation of the switching power supply chip U2, the high-voltage startup resistor Rst and the line voltage dividing resistor Rdn form a line voltage dividing voltage sensing circuit, and divide the line voltage Vline to obtain a line voltage sampling value Line_det (the line voltage sampling value is less than The voltage at the VCC pin of the switching power supply chip U2); the comparator comp1 compares the line voltage sampling value Line_det with the reference voltage Vref_OVP to generate a line voltage overvoltage sensing signal Line_OVP_det; the comparator comp2 compares the line voltage sampling value Line_det with the reference voltage Vref_BO is compared to generate a line voltage undervoltage sensing signal Brown_out_det; the control signal generating module generates a signal for controlling the power switch 204 to be turned on and off based on the line voltage overvoltage sensing signal Line_OVP_det and the line voltage undervoltage sensing signal Brown_out_de.
第4圖示出了第2圖所示的開關電源晶片中的線電壓Vline、VCC引腳處的電壓、AVDD信號、PG信號、線電壓取樣值Line_det的波形圖。 FIG. 4 shows waveform diagrams of the line voltage Vline, the voltage at the VCC pin, the AVDD signal, the PG signal, and the line voltage sampling value Line_det in the switching power supply chip shown in FIG. 2.
從以上描述中可以看出,在開關電源晶片U2中,高壓啟動電阻Rst和線電壓分壓電阻Rdn組成線電壓感測電路來實現線電壓感測功能,並且高壓啟動電阻Rst本身組成高壓啟動電路來實現高壓啟動功能。因此,在使用開關電源晶片U2的開關電源電路中,由於開關電源晶片U2中已經集成有高壓啟動電阻Rst和線電壓分壓電阻Rdn,開關電源晶片U2的週邊元件的數量減少了,從而降低了開關電源電路的系統成本;另外,由於高壓啟動電阻Rst不但用於高壓啟動功能而且用於線電壓感測功能,省掉了傳統的線電壓感測電路的功耗,提高了開關電源電路的系統效率。 As can be seen from the above description, in the switching power supply chip U2, the high-voltage startup resistor Rst and the line voltage dividing resistor Rdn constitute a line voltage sensing circuit to implement the line voltage sensing function, and the high-voltage startup resistor Rst itself constitutes a high-voltage startup circuit. To achieve the high-voltage start function. Therefore, in the switching power supply circuit using the switching power supply chip U2, since the switching power supply chip U2 has integrated the high-voltage start resistance Rst and the line voltage dividing resistor Rdn, the number of peripheral components of the switching power supply chip U2 is reduced, thereby reducing System cost of the switching power supply circuit; In addition, because the high-voltage startup resistor Rst is used not only for the high-voltage startup function but also for the line voltage sensing function, the power consumption of the conventional line voltage sensing circuit is saved, and the system of the switching power supply circuit is improved effectiveness.
在結合第2圖和第3圖描述的實施例中,當線電壓取樣值Line_det大於參考電壓Vref_OVP時,線電壓過壓感測信號Line_OVP_det從邏輯低位準變為邏輯高位準,表明電源輸入電壓過高,線電壓過壓感測信號Line_OVP_det會強制關斷功率開關204,從而保護開關電源電路不受損壞;當線電壓取樣值Line_det小於參考電壓Vref_BO時,線電壓欠壓感測信號Brown_out_det從邏輯低位準變為邏輯高位準,表明電源輸入電壓過低,線電壓欠壓感測信號Brown_out_det會強制關斷功率開關204,從而保護開關電源電路不受損壞;當線電壓取樣值Line_det在兩個參考電壓Vref_OVP、Vref_BO之間時,線電壓過壓感測信號Line_OVP_det和線電壓欠壓感測信號Brown_out_det都為邏輯低位準,表明電源輸入電壓在要求範圍內,開關電源電路正常工作。 In the embodiment described with reference to FIGS. 2 and 3, when the line voltage sampling value Line_det is greater than the reference voltage Vref_OVP, the line voltage overvoltage sensing signal Line_OVP_det changes from a logic low level to a logic high level, indicating that the power supply input voltage is too high. High, the line voltage overvoltage sensing signal Line_OVP_det will forcibly turn off the power switch 204, thereby protecting the switching power supply circuit from damage; when the line voltage sampling value Line_det is less than the reference voltage Vref_BO, the line voltage undervoltage sensing signal Brown_out_det starts from a logic low The quasi-high level indicates that the input voltage of the power supply is too low, and the brown-out detection signal Brown_out_det of the line voltage will forcibly turn off the power switch 204, thereby protecting the switching power supply circuit from damage; when the line voltage sampling value Line_det is between two reference voltages, Between Vref_OVP and Vref_BO, the line voltage overvoltage sensing signal Line_OVP_det and the line voltage undervoltage sensing signal Brown_out_det are both logic low levels, indicating that the power supply input voltage is within the required range, and the switching power supply circuit works normally.
第5圖示出了第2圖所示的開關電源晶片的示例實現電路的示意圖。在第5圖所示的實現電路中,在開關電源晶片U2上電完成(即,啟動)後的預定數目的脈衝寬度調變(PWM)週期內,線電壓過壓感測信號Line_OVP_det和線電壓欠壓感測信號Brown_out_det的邏輯或結 果Line_off_st信號被直接用於控制功率開關204接通和關斷。即,控制信號生成模組通過對線電壓過壓感測信號Line_OVP_det和線電壓欠壓感測信號Brown_out_det進行邏輯或運算,來生成控制功率開關204接通和關斷的信號。此時,如果線電壓Vline不在要求範圍內,功率開關204被立刻關斷。 FIG. 5 is a schematic diagram showing an example implementation circuit of the switching power supply chip shown in FIG. 2. In the implementation circuit shown in FIG. 5, the line voltage overvoltage sensing signal Line_OVP_det and the line voltage are within a predetermined number of pulse width modulation (PWM) cycles after the switching power supply chip U2 is powered on (ie, started). The logic or result of the undervoltage sensing signal Brown_out_det is used directly to control the power switch 204 to be turned on and off. That is, the control signal generating module performs a logical OR operation on the line voltage overvoltage sensing signal Line_OVP_det and the line voltage undervoltage sensing signal Brown_out_det to generate a signal for controlling the power switch 204 to be turned on and off. At this time, if the line voltage Vline is not within the required range, the power switch 204 is immediately turned off.
在第5圖所示的實現電路中,如果輸入線電壓在要求範圍內,則經過例如,約3個PWM週期後使Line_off_st信號失效(例如,對Line_off_st信號進行遮罩),後續基於對線電壓過壓感測信號Line_OVP_det和線電壓欠壓感測信號Brown_out_det進行更為複雜的處理得到的Line_off信號來控制功率開關204接通和關斷。 In the implementation circuit shown in Figure 5, if the input line voltage is within the required range, for example, the Line_off_st signal is invalidated after about 3 PWM cycles (for example, the Line_off_st signal is masked), and then based on the line voltage The over-voltage sensing signal Line_OVP_det and the line-voltage under-voltage sensing signal Brown_out_det are Line_off signals obtained by more complicated processing to control the power switch 204 to be turned on and off.
在第5圖所示的實現電路中,時鐘信號clk的週期為Tclk,對於輸入線電壓過壓的情況,當比較器comp1感測到線電壓取樣值Line_det大於參考電壓Vref_OVP時,比較器comp1輸出的線電壓過壓感測信號Line_OVP_det從邏輯低位準變為邏輯高位準,Line_OVP_rst信號從邏輯低位準變為邏輯高位準,由(m2+1)個D觸發器構成的計數器使能,經過(2^m2)xTclk的延時後,Line_OVP信號從邏輯低位準變為邏輯高位準,觸發輸入過壓保護功能;因為線電壓Vline有波動,為了使線電壓過壓感測結果更準確,對線電壓過壓感測功能增加一個峰值感測功能,在(2^m2)xTclk的延時內,如果線電壓過壓感測信號Line_OVP_det處於邏輯低位準的持續時間超過(2^m1)xTclk(一般取Vline週期的1~2倍,且m1<m2),則Line_OVP_rst信號會從邏輯高位準變為邏輯低位準,Line_OVP信號保持為邏輯低位準,不觸發輸入過壓保護功能;對於輸入線電壓欠壓的情況,當比較器comp2感測到線電壓取樣值Line_det小於參考電壓Vref_BO時,線電壓欠壓感測信號Brown_out_det從邏輯低位準變為邏輯高位準,由(n+1)個D觸發器構成的計數器使能,經過(2^n)xTclk的延時後,Brown_out信號變為邏輯高位準,觸發輸入欠壓保護功能。 In the implementation circuit shown in Figure 5, the period of the clock signal clk is Tclk. For the input line voltage overvoltage, when the comparator comp1 senses that the line voltage sampling value Line_det is greater than the reference voltage Vref_OVP, the comparator comp1 outputs The line voltage overvoltage sensing signal Line_OVP_det changes from a logic low level to a logic high level, and the Line_OVP_rst signal changes from a logic low level to a logic high level. A counter composed of (m2 + 1) D flip-flops is enabled. After (2 ^ m2) After the delay of xTclk, the Line_OVP signal changes from a logic low level to a logic high level, triggering the input overvoltage protection function; because the line voltage Vline fluctuates, in order to make the line voltage overvoltage sensing result more accurate, The pressure sensing function adds a peak sensing function. Within the delay of (2 ^ m2) xTclk, if the line voltage overvoltage sensing signal Line_OVP_det is at a logic low level for a duration longer than (2 ^ m1) xTclk (generally Vline period) 1 ~ 2 times and m1 <m2), then the Line_OVP_rst signal will change from a logic high level to a logic low level, and the Line_OVP signal will remain at a logic low level without triggering the input overvoltage protection function; for the input In the case of voltage undervoltage, when the comparator comp2 senses that the line voltage sampling value Line_det is less than the reference voltage Vref_BO, the line voltage undervoltage sensing signal Brown_out_det changes from a logic low level to a logic high level, from (n + 1) D The counter constituted by the flip-flop is enabled. After a delay of (2 ^ n) xTclk, the Brown_out signal becomes a logic high level, triggering the input under-voltage protection function.
也就是說,第2圖所示的控制信號生成模組可以包括第一延遲電路(例如,(m2+1)個D觸發器構成的計數器)和第二延遲電路(例如,(n+1)個D觸發器構成的計數器),其中:第一延遲電路與比較器comp1的輸出端連接,用於將線電壓過壓感測信號Line_OVP_det延遲第一時間(例如,(2^m2)xTclk);第二延遲電路與比較器comp2的輸出端連接,用於將線電壓欠壓感測信號Brown_out_det延遲第二時間(例如,(2^n)xTclk)。在開關電源晶片U2上電完成經過預定數目的脈衝寬度調變週期後,控制信號生成模組通過對經延遲的線電壓過壓感測信號(例如,Line_OVP)和經延遲的線電壓欠壓感測信號(例如,Brown_out)進行邏輯或運算,來生成控制功率開關204接通與關斷的信號。 That is, the control signal generating module shown in FIG. 2 may include a first delay circuit (for example, a counter composed of (m2 + 1) D flip-flops) and a second delay circuit (for example, (n + 1) Counter consisting of D flip-flops), wherein: the first delay circuit is connected to the output terminal of the comparator comp1, and is used to delay the line voltage overvoltage sensing signal Line_OVP_det by the first time (for example, (2 ^ m2) xTclk); The second delay circuit is connected to the output terminal of the comparator comp2, and is configured to delay the line voltage undervoltage sensing signal Brown_out_det by a second time (for example, (2 ^ n) xTclk). After a predetermined number of pulse width modulation cycles are completed after the switching power supply chip U2 is powered on, the control signal generation module passes the delayed line voltage overvoltage sensing signal (for example, Line_OVP) and the delayed line voltage undervoltage sensing. The measurement signal (for example, Brown_out) performs a logical OR operation to generate a signal for controlling the power switch 204 to be turned on and off.
另外,為了使線電壓過壓感測結果更準確,第2圖所示的控制信號生成模組還可以包括峰值感測電路,該峰值感測電路連接在比較器comp1的輸出端與第一延遲電路之間,用於通過感測線電壓過壓感測信號Line_OVP_det處於邏輯低位準的持續時間是否超過第三時間(例如,(2^m1)xTclk)生成線電壓峰值感測信號(例如,Line_OVP_rst),第一延遲電路將線電壓峰值感測信號延遲第一時間,控制信號生成模組通過對經延遲的線電壓峰值感測信號和經延遲的線電壓欠壓感測信號進行邏輯或運算,來生成控制功率開關204接通與關斷的信號。 In addition, in order to make the line voltage overvoltage sensing result more accurate, the control signal generating module shown in FIG. 2 may further include a peak sensing circuit. The peak sensing circuit is connected to the output of the comparator comp1 and the first delay. Between circuits for generating a line voltage peak sensing signal (for example, Line_OVP_rst) by sensing whether the duration of the line voltage overvoltage sensing signal Line_OVP_det is at a logic low level exceeds a third time (for example, (2 ^ m1) xTclk) The first delay circuit delays the line voltage peak sensing signal for a first time, and the control signal generating module performs a logical OR operation on the delayed line voltage peak sensing signal and the delayed line voltage undervoltage sensing signal to A signal is generated to control the power switch 204 to be turned on and off.
這裡,峰值感測電路包括反相器、第三延遲電路(例如,(m1+1)個D觸發器構成的計數器)、以及RS鎖存器,其中,反相器連接在比較器comp1的輸出端與第三延遲電路的輸入端之間,RS鎖存器的兩個輸入端分別與比較器comp1的輸出端和第三延遲電路的輸出端連接,RS鎖存器的輸出端與第一延遲電路的輸入端連接。 Here, the peak sensing circuit includes an inverter, a third delay circuit (for example, a counter composed of (m1 + 1) D flip-flops), and an RS latch, where the inverter is connected to the output of the comparator comp1 Between the terminal and the input of the third delay circuit, the two inputs of the RS latch are respectively connected to the output of the comparator comp1 and the output of the third delay circuit, and the output of the RS latch is connected to the first delay The input of the circuit is connected.
應該明白的是,本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附申請專利範圍而非上述描述定 義,並且,落入申請專利範圍的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 It should be understood that the present invention may be implemented in other specific forms without departing from its spirit and essential characteristics. Therefore, the current embodiment is considered in all aspects as exemplary rather than limiting, the scope of the present invention is defined by the scope of the attached patent application rather than the above description, and the meanings and equivalents falling within the scope of the patent application All changes within the scope of the substance are thus included in the scope of the present invention.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710556311.XA CN107317491B (en) | 2017-07-10 | 2017-07-10 | Switching power source chip and switching power circuit including it |
??201710556311.X | 2017-07-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201909541A true TW201909541A (en) | 2019-03-01 |
TWI661663B TWI661663B (en) | 2019-06-01 |
Family
ID=60178340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106128821A TWI661663B (en) | 2017-07-10 | 2017-08-24 | Switching power supply chip and switching power supply circuit including the same |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107317491B (en) |
TW (1) | TWI661663B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108521115B (en) * | 2018-03-14 | 2019-10-29 | 苏州博创集成电路设计有限公司 | A kind of primary controller and Switching Power Supply of Switching Power Supply |
CN109581031B (en) * | 2018-12-14 | 2019-07-19 | 华南理工大学 | A kind of multi-functional multi gear position current detection circuit and method |
US11374486B2 (en) * | 2020-09-29 | 2022-06-28 | Monolithic Power Systems, Inc. | Power supply with flexible control and the method thereof |
CN113014075B (en) * | 2021-04-07 | 2022-09-06 | 智道网联科技(北京)有限公司 | Power supply circuit of power amplifier device of intelligent network equipment and control method |
CN114285249B (en) * | 2021-12-06 | 2024-01-26 | 昂宝电子(上海)有限公司 | Switching power supply, control chip and control method thereof |
CN116298481B (en) * | 2023-05-18 | 2023-08-15 | 无锡力芯微电子股份有限公司 | Ultra-low power consumption overvoltage detection circuit |
CN117155104B (en) * | 2023-10-31 | 2024-02-13 | 晶艺半导体有限公司 | Starting circuit with undervoltage protection and control circuit |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6259618B1 (en) * | 2000-05-03 | 2001-07-10 | Analog And Power Electronics Corp. | Power chip set for a switching mode power supply having a device for providing a drive signal to a control unit upon startup |
CN201063531Y (en) * | 2007-07-31 | 2008-05-21 | Bcd半导体制造有限公司 | Power supply converting circuit and pulse width modulation controller |
CN101552545B (en) * | 2009-02-25 | 2011-04-06 | 成都芯源系统有限公司 | AC-DC conversion circuit and start-up circuit and method for the same |
CN103023337B (en) * | 2013-01-11 | 2015-07-22 | 聚辰半导体(上海)有限公司 | Power circuit of switching power converter |
US9071146B2 (en) * | 2013-03-13 | 2015-06-30 | Power Integrations, Inc. | AC voltage sensor with low power consumption |
CN203883690U (en) * | 2014-04-03 | 2014-10-15 | 上海新进半导体制造有限公司 | Multiplexing detection circuit, switching power supply controller and fly-back converter |
TWI513163B (en) * | 2014-04-11 | 2015-12-11 | Power Forest Technology Corp | Flyback-based power conversion apparatus |
CN104300509B (en) * | 2014-10-31 | 2017-03-08 | 中颖电子股份有限公司 | It is applied to the under-voltage protection load latch cicuit of multiple li-ion cell protection schemes |
US10277130B2 (en) * | 2015-06-01 | 2019-04-30 | Microchip Technolgoy Incorporated | Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter |
CN205846690U (en) * | 2016-06-24 | 2016-12-28 | 广州市鑫声扬音响设备有限公司 | There is the boot-strap circuit of over-and under-voltage defencive function |
-
2017
- 2017-07-10 CN CN201710556311.XA patent/CN107317491B/en active Active
- 2017-08-24 TW TW106128821A patent/TWI661663B/en active
Also Published As
Publication number | Publication date |
---|---|
CN107317491B (en) | 2019-08-13 |
TWI661663B (en) | 2019-06-01 |
CN107317491A (en) | 2017-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI661663B (en) | Switching power supply chip and switching power supply circuit including the same | |
US9083246B2 (en) | Control circuit for primary side control of switching power supply | |
TWI573362B (en) | System controller and method for protecting the power converter | |
JP5099183B2 (en) | Start-up circuit | |
US9455639B2 (en) | Switched-mode power supply device | |
TW201530998A (en) | Switched capacitor DC-DC converter with reduced in-rush current and fault protection | |
TWI646767B (en) | Power control device and power control system | |
JP5811237B1 (en) | DC-DC converter | |
JP6762431B2 (en) | Current detection circuit | |
JP2012196109A (en) | Control circuit of switching power supply device, and switching power supply device | |
TW201815048A (en) | Line-voltage detection circuit and relevant detection method | |
JP2017070028A (en) | Semiconductor device | |
JP5566655B2 (en) | Switching power supply | |
TWI692185B (en) | Boost converter | |
US9998113B2 (en) | Control device for controlling switching power supply | |
CN108370216A (en) | Switch power converter with zero current when startup | |
US20220399820A1 (en) | Flyback Converter with Improved Over-Voltage Protection Functionality | |
TWI699082B (en) | Power supply device | |
JP5566656B2 (en) | Switching power supply | |
CN107994763B (en) | Switching power supply, control circuit thereof and starting system of controller | |
TW202137660A (en) | Accelerating discharge device | |
TWI715464B (en) | Buck converter | |
TWI491160B (en) | Power supply without high-voltage electrolytic capacitor | |
JP6114944B2 (en) | Power converter, inrush current suppression circuit, and inrush current suppression method | |
TWI825667B (en) | Power supply device |