TW201907497A - Method for fabricating bump structures on chips with panel type process - Google Patents

Method for fabricating bump structures on chips with panel type process Download PDF

Info

Publication number
TW201907497A
TW201907497A TW106122840A TW106122840A TW201907497A TW 201907497 A TW201907497 A TW 201907497A TW 106122840 A TW106122840 A TW 106122840A TW 106122840 A TW106122840 A TW 106122840A TW 201907497 A TW201907497 A TW 201907497A
Authority
TW
Taiwan
Prior art keywords
metal
layer
metal layer
electroless plating
copper
Prior art date
Application number
TW106122840A
Other languages
Chinese (zh)
Other versions
TWI658520B (en
Inventor
許詩濱
許哲瑋
郭同堯
Original Assignee
恆勁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恆勁科技股份有限公司 filed Critical 恆勁科技股份有限公司
Priority to TW106122840A priority Critical patent/TWI658520B/en
Publication of TW201907497A publication Critical patent/TW201907497A/en
Application granted granted Critical
Publication of TWI658520B publication Critical patent/TWI658520B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for fabricating bump structures on chips with a panel type process is provided. First, a panel type substrate is provided. Semiconductor chips are fixed on the panel type substrate. Each semiconductor chip includes metal pads and a passivation layer exposing the metal pads. At least an electroless plating process is performed to form under bump metallurgy structures on the metal pads. The method simplifies the processes of forming electrical connections for semiconductor chips. The panel type process can effectively increase the yield, and reduce the manufacturing cost.

Description

以大板面製程製作晶粒凸塊結構之方法  Method for fabricating grain bump structure by large plate surface process  

本發明係有關於一種製作半導體晶粒凸塊結構之方法,尤指一種以大板面製程製作球底金屬層之方法。 The invention relates to a method for fabricating a semiconductor grain bump structure, in particular to a method for fabricating a ball bottom metal layer by a large plate surface process.

晶粒封裝主要提供積體電路(IC)保護、散熱、電路導通等功能。其中一種晶圓凸塊製程常應用於覆晶技術(flip chip)中,係先於晶圓階段時,在晶圓的對外金屬焊墊上長出球底金屬層(under bump metallurgy structure,UBM structure,或稱球下冶金層),並於球底金屬層上成長凸塊,然後切割晶圓以成為多個獨立的半導體晶粒,之後半導體晶粒104便透過凸塊與封裝基板(package substrate)連接,接著以膠體進行封裝。 The die package mainly provides functions such as integrated circuit (IC) protection, heat dissipation, and circuit conduction. One of the wafer bump processes is often used in flip chip technology, which is based on the wafer stage, and the under bump metallurgy structure (UBM structure) is formed on the outer metal pad of the wafer. Or a sub-metallurgical layer), and growing bumps on the bottom metal layer, and then dicing the wafer to form a plurality of independent semiconductor dies, after which the semiconductor dies 104 are connected to the package substrate through the bumps. Then, it is encapsulated in a gel.

請參考第1圖至第6圖,第1圖係為習知晶圓凸塊製造流程之示意圖,第2圖至第6圖係為習知晶圓凸塊製造流程之剖面示意圖。如第1圖所示,習知球底金屬層製程是在晶圓階段進行,首先提供晶圓10。如第2圖所示,晶圓10具有保護層12與電極墊14。 Please refer to FIG. 1 to FIG. 6 . FIG. 1 is a schematic diagram of a conventional wafer bump manufacturing process, and FIG. 2 to FIG. 6 are schematic cross-sectional views showing a conventional wafer bump manufacturing process. As shown in FIG. 1, the conventional ball-metal layer process is performed at the wafer stage, and the wafer 10 is first provided. As shown in FIG. 2, the wafer 10 has a protective layer 12 and an electrode pad 14.

接著如第3圖所示,利用塗佈機以旋轉塗佈將液態聚醯亞胺層(polyimide layer,PI layer)15均勻塗佈在晶圓上,經由熱盤(hot plate)進行軟烤(soft bake)定型成膜。其後進行紫外光曝光(UV exposure)製程,利用光罩將PI層15預定導通孔的位置遮住而未曝到光(導通孔位置在電極墊14上方)。之後進行顯影(develop)製程,利用顯影液以噴灑(spray)的方式來進行去除未曝光的區域,再以濺鍍方式沉積鈦(Ti),作為球底金屬層16。 Next, as shown in FIG. 3, a liquid polyimide layer (PI layer) 15 is uniformly coated on the wafer by spin coating using a coater, and soft baked by a hot plate ( Soft bake) is shaped into a film. Thereafter, a UV exposure process is performed, and the position of the predetermined via hole of the PI layer 15 is masked by the photomask without being exposed to light (the via hole is positioned above the electrode pad 14). Thereafter, a development process is carried out, and the unexposed area is removed by spraying with a developing solution, and titanium (Ti) is deposited by sputtering to serve as the ball bottom metal layer 16.

然後,再經光阻塗佈、曝光、顯影製程,形成圖案化光阻18(第4圖)。其後,在圖案化光阻18的導通孔中電鍍沉積較厚的銅鍍層20(第5圖)。然後,先剝除圖案化光阻18,再蝕刻 掉不需要的球底金屬層16部分。接著,再經光阻塗佈、曝光、顯影、金屬電鍍與光阻剝除製程(圖中未顯示),得到所需要之金屬凸塊22(第6圖)。 Then, through a photoresist coating, exposure, and development process, a patterned photoresist 18 is formed (Fig. 4). Thereafter, a thick copper plating layer 20 is deposited by plating in the via holes of the patterned photoresist 18 (Fig. 5). Then, the patterned photoresist 18 is stripped and the unwanted portion of the underlying metal layer 16 is etched away. Then, through photoresist coating, exposure, development, metal plating and photoresist stripping process (not shown), the desired metal bumps 22 are obtained (Fig. 6).

然而,習知在晶圓10上形成球底金屬層16及金屬凸塊22之技術係採用晶圓尺寸加工,產量受到晶圓尺寸的限制,製程亦較為繁複,因此其量產性不佳,產出慢,加工成本高。故如何開發一種得以解決上述習知技術各種缺點之製程,以提升產品之良率,並降低製造成本,實為目前亟欲解決之課題。 However, the conventional technique for forming the ball-bottom metal layer 16 and the metal bumps 22 on the wafer 10 is wafer size processing, the throughput is limited by the wafer size, and the process is complicated, so that the mass production is poor. Slow output and high processing costs. Therefore, how to develop a process that solves the above various shortcomings of the prior art, in order to improve the yield of the product and reduce the manufacturing cost, is currently a problem to be solved.

有鑒於此,本發明之主要目的係提供一種以大板面製程製作無電電鍍(electroless plating)球底金屬層之方法,其可簡化製程、降低製造成本。 In view of the above, the main object of the present invention is to provide a method for fabricating an electroless plating ball-bottom metal layer by a large-plate process, which simplifies the process and reduces the manufacturing cost.

為達上述及其它目的,本發明提供一種以大板面製程製作晶粒凸塊結構之方法。首先,提供集合載板與複數個半導體晶粒。半導體晶粒具有主動面及相對主動面之背面。半導體晶粒之主動面上具有複數個金屬電極墊與絕緣保護層,且絕緣保護層暴露出金屬電極墊。其後,把半導體晶粒之背面固定於集合載板上。接著,進行無電電鍍製程,以於半導體晶粒之金屬電極墊上形成球底金屬層。爾後,形成介電層,覆蓋於集合載板、半導體晶粒與球底金屬層上。之後,於介電層中形成複數個導通孔,導通孔暴露出球底金屬層。接著,於介電層之導通孔中形成複數個金屬凸塊。 To achieve the above and other objects, the present invention provides a method of fabricating a grain bump structure in a large-plate process. First, a collector carrier and a plurality of semiconductor dies are provided. The semiconductor die has an active face and a back surface opposite the active face. The active surface of the semiconductor die has a plurality of metal electrode pads and an insulating protective layer, and the insulating protective layer exposes the metal electrode pads. Thereafter, the back side of the semiconductor die is fixed to the collective carrier. Next, an electroless plating process is performed to form a ball-bottom metal layer on the metal electrode pad of the semiconductor die. Thereafter, a dielectric layer is formed overlying the collector carrier, the semiconductor die and the ball-bottom metal layer. Thereafter, a plurality of via holes are formed in the dielectric layer, and the via holes expose the bottom metal layer. Next, a plurality of metal bumps are formed in the via holes of the dielectric layer.

因此,本發明之以大板面製程製作晶粒凸塊結構之方法係透過便利且高效率之無電電鍍製程於半導體晶粒之金屬電極墊上直接形成無電電鍍之球底金屬層,因而可簡化半導體晶粒之電性連接加工製程且易於實施,減少電鍍與圖案化等高成本製程,具有降低製造成本之功效。 Therefore, the method for fabricating a grain bump structure by a large-plate process of the present invention directly forms an electrolessly plated bottom metal layer on a metal electrode pad of a semiconductor die through a convenient and high-efficiency electroless plating process, thereby simplifying the semiconductor The electrical connection processing of the die is easy to implement, and the high cost process such as plating and patterning is reduced, and the manufacturing cost is reduced.

10‧‧‧晶圓 10‧‧‧ wafer

12‧‧‧保護層 12‧‧‧Protective layer

14‧‧‧電極墊 14‧‧‧electrode pads

15‧‧‧聚醯亞胺層 15‧‧‧ Polyimine layer

16‧‧‧球底金屬層 16‧‧‧Bottom metal layer

18‧‧‧圖案化光阻 18‧‧‧ patterned resist

20‧‧‧銅鍍層 20‧‧‧copper plating

22‧‧‧金屬凸塊 22‧‧‧Metal bumps

30-44‧‧‧步驟 30-44‧‧‧Steps

100、200‧‧‧半導體封裝結構 100,200‧‧‧ semiconductor package structure

102‧‧‧集合載板 102‧‧‧Collection carrier

103‧‧‧膠膜 103‧‧‧ film

104‧‧‧半導體晶粒 104‧‧‧Semiconductor grains

104a‧‧‧主動面 104a‧‧‧ active face

104b‧‧‧背面 104b‧‧‧Back

106‧‧‧金屬電極墊 106‧‧‧Metal electrode pads

106a‧‧‧銅金屬電極墊 106a‧‧‧Bronze metal electrode pads

106b‧‧‧鋁金屬電極墊 106b‧‧‧Aluminum metal electrode pad

108‧‧‧絕緣保護層 108‧‧‧Insulation protection layer

108c‧‧‧開口 108c‧‧‧ openings

110‧‧‧球底金屬層 110‧‧‧Bottom metal layer

110a‧‧‧銅金屬層 110a‧‧‧ copper metal layer

110c‧‧‧鎳金屬層 110c‧‧‧ Nickel metal layer

110d‧‧‧第一黃金金屬層 110d‧‧‧First gold metal layer

110e‧‧‧鈀金屬層 110e‧‧‧palladium metal layer

110f‧‧‧第二黃金金屬層 110f‧‧‧second gold metal layer

120‧‧‧介電層 120‧‧‧ dielectric layer

120c‧‧‧導通孔 120c‧‧‧through hole

130‧‧‧圖案化乾膜 130‧‧‧ patterned dry film

130c‧‧‧乾膜開口 130c‧‧‧Dry film opening

150‧‧‧金屬凸塊 150‧‧‧Metal bumps

160‧‧‧線路重佈層 160‧‧‧Line redistribution

170‧‧‧線路重佈增層 170‧‧‧The line is redistributed

180‧‧‧外部錫球 180‧‧‧External solder balls

202‧‧‧金屬板 202‧‧‧Metal plates

第1圖係為習知晶圓凸塊製造流程之示意圖; 第2圖至第6圖係為習知晶圓凸塊製造流程之剖面示意圖;第7圖繪示的是本發明以大板面製程製作球底金屬層與金屬凸塊之方法流程示意圖;第8A圖至第12圖繪示的是本發明第一實施例以大板面製程製作球底金屬層與金屬凸塊之示意圖,其中第8B圖係為第8A圖的俯視示意圖,其餘為剖面示意圖;第13圖至第16圖繪示的是本發明第二至第五實施例製作之球底金屬層的剖面示意圖;以及第17圖至第18圖繪示的是本發明第六至第七實施例製作之半導體電性連接結構的剖面示意圖。 1 is a schematic view of a conventional wafer bump manufacturing process; FIGS. 2 to 6 are schematic cross-sectional views of a conventional wafer bump manufacturing process; and FIG. 7 is a schematic view of the present invention for making a ball bottom by a large-plate process Schematic diagram of a method for forming a metal layer and a metal bump; FIG. 8A to FIG. 12 are schematic views showing a method for fabricating a ball metal layer and a metal bump in a large-plate process according to the first embodiment of the present invention, wherein FIG. 8B is a schematic view The schematic view of the top view of FIG. 8A, the rest is a schematic cross-sectional view; and FIGS. 13 to 16 are schematic cross-sectional views of the bottom metal layer of the second to fifth embodiments of the present invention; and FIGS. 17 to 18 The figure shows a schematic cross-sectional view of a semiconductor electrical connection structure fabricated in the sixth to seventh embodiments of the present invention.

關於本發明之優點與精神可以藉由以下發明詳述及所附圖式得到進一步的瞭解。本發明較佳實施例之製造及使用係詳細說明如下。必須瞭解的是本發明提供了許多可應用的創新概念,在特定的背景技術之下可以做廣泛的實施。此特定的實施例僅以特定的方式表示,以製造及使用本發明,但並非限制本發明的範圍。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention. The manufacture and use of the preferred embodiments of the invention are described in detail below. It must be understood that the present invention provides a number of applicable innovative concepts that can be widely implemented under specific background art. This particular embodiment is shown by way of example only, and is not intended to limit the scope of the invention.

請參閱第7圖至第12圖,第7圖繪示的是本發明以大板面製程製作球底金屬層與金屬凸塊之方法流程示意圖,第8A圖至第12圖繪示的是本發明第一實施例以大板面製程製作無電電鍍球底金屬層與金屬凸塊之剖面示意圖,而第8B圖是第8A圖的俯視示意圖。如第7圖之步驟30、第8A圖與第8B圖所示,首先,提供集合載板102與複數個半導體晶粒104。 Please refer to FIG. 7 to FIG. 12 . FIG. 7 is a schematic flow chart of a method for fabricating a ball metal layer and a metal bump in a large-plate process according to the present invention, and FIG. 8A to FIG. 12 illustrate the present invention. In the first embodiment of the invention, a cross-sectional view of the electroless plating ball metal layer and the metal bump is produced by a large-plate process, and FIG. 8B is a top plan view of FIG. 8A. As shown in step 30, FIG. 8A and FIG. 8B of FIG. 7, first, the carrier substrate 102 and the plurality of semiconductor dies 104 are provided.

集合載板102可為金屬板或絕緣板。金屬板可為金屬銅材質;絕緣板可為環氧樹脂(epoxy resin)、聚乙醯胺(polyimide)、氰脂(cyanate ester)、碳纖維(carbon fiber)或混合玻璃纖維與環氧樹脂等材質所構成。半導體晶粒104可為主動式或被動式半導體晶粒,係先於整片晶圓上完成各種被動元件、主動元件與連結結構之製作後,分割而成的獨立晶粒。半導體晶粒104例如是電容矽晶粒、記憶體晶粒或中央處理器(CPU)晶粒等。 半導體晶粒104具有主動面104a及相對於主動面104a之背面104b。半導體晶粒104之主動面104a具有複數個金屬電極墊106,例如鋁金屬電極墊或銅金屬電極墊。其中半導體晶粒104之主動面104a上已預先形成絕緣保護層108以覆蓋金屬電極墊106。絕緣保護層108之材質可選自苯環丁烯(benzo-cyclo-butene,BCB)、聚亞醯胺或其他介電材料。 The collective carrier 102 can be a metal plate or an insulating plate. The metal plate may be made of metal copper; the insulating plate may be epoxy resin, polyimide, cyanate ester, carbon fiber or mixed glass fiber and epoxy resin. Composition. The semiconductor die 104 can be an active or passive semiconductor die, which is a separate die that is formed by dividing various passive components, active components, and bonded structures on the entire wafer. The semiconductor die 104 is, for example, a capacitor die, a memory die, or a central processing unit (CPU) die. The semiconductor die 104 has an active face 104a and a back face 104b opposite the active face 104a. The active face 104a of the semiconductor die 104 has a plurality of metal electrode pads 106, such as aluminum metal electrode pads or copper metal electrode pads. An insulating protective layer 108 is previously formed on the active surface 104a of the semiconductor die 104 to cover the metal electrode pad 106. The material of the insulating protective layer 108 may be selected from benzo-cyclo-butene (BCB), poly-liminamide or other dielectric materials.

利用電漿蝕刻(plasma etching)、反應離子蝕刻(reactive ion etching,RIE)或雷射(laser)等方式,以對絕緣保護層108進行開口加工。藉此,於絕緣保護層108中形成開口108c。開口108c對應金屬電極墊106的位置,以暴露出金屬電極墊106。 The insulating protective layer 108 is subjected to opening processing by means of plasma etching, reactive ion etching (RIE) or laser. Thereby, the opening 108c is formed in the insulating protective layer 108. The opening 108c corresponds to the position of the metal electrode pad 106 to expose the metal electrode pad 106.

其後如第7圖之步驟32、第8A圖與第8B圖所示,把半導體晶粒104之背面104b固定於集合載板上102上。例如先在集合載板102之上表面貼附膠膜103,再將半導體晶粒104接置其上。 Thereafter, as shown in step 32, FIG. 8A and FIG. 8B of FIG. 7, the back surface 104b of the semiconductor die 104 is fixed to the collective carrier 102. For example, the adhesive film 103 is attached to the upper surface of the collective carrier 102, and the semiconductor die 104 is placed thereon.

之後如第7圖之步驟34與第9圖所示,進行無電電鍍製程,以於半導體晶粒104之金屬電極墊106上形成自對準之球底金屬層110,藉此於半導體晶粒104上完成電性連接加工製程。 Thereafter, as shown in steps 34 and 9 of FIG. 7, an electroless plating process is performed to form a self-aligned ball-metal layer 110 on the metal electrode pad 106 of the semiconductor die 104, whereby the semiconductor die 104 is formed. The electrical connection processing process is completed.

無電電鍍為自催化(auto-catalytic)化學處理技術,其係形成沉積金屬層在待鍍物體之被鍍金屬表面上。無電電鍍係暴露或浸漬待鍍物體於化學溶液中。此化學溶液包括還原劑與沉積金屬材料,還原劑可與沉積金屬材料和被鍍金屬的金屬離子進行反應,以於被鍍金屬的暴露部分形成沉積金屬層。據此,無電電鍍可藉自對準方式形成球底金屬層110。 Electroless plating is an auto-catalytic chemical treatment technique that forms a deposited metal layer on a metallized surface of an object to be plated. Electroless plating exposes or impregnates the object to be plated in a chemical solution. The chemical solution includes a reducing agent and a deposited metal material, and the reducing agent can react with the deposited metal material and the metal ion-coated metal ions to form a deposited metal layer on the exposed portion of the metal plating. Accordingly, electroless plating can form the ball-bottom metal layer 110 by self-alignment.

球底金屬層110是作為金屬電極墊106與後續凸塊之間的介面,其具備應力低、黏著性佳、抗腐蝕性強以及沾銅錫性好等特性。於本實施例中,球底金屬層110係以無電電鍍方式沉積銅、鎳、鈀、金或其組合於金屬電極墊106上,由於金屬電極墊106亦為相同或相似性質的金屬材質,使無電電鍍之球底金屬層110可直接形成並強固結合於金屬電極墊106上,並且可藉由球底金屬層110保護其下之金屬電極墊106,避免金屬電極墊106受到污染。在本發明之其他實施例中,球底金屬層110可由銅、鋁、鎳、鈦、錫、 鈀、鈀、上述組合或其他類似元素所製成。 The ball bottom metal layer 110 serves as an interface between the metal electrode pad 106 and the subsequent bumps, and has characteristics such as low stress, good adhesion, strong corrosion resistance, and good copper-tin soldering properties. In the present embodiment, the bottom metal layer 110 is deposited by electroless plating on copper, nickel, palladium, gold or a combination thereof on the metal electrode pad 106. Since the metal electrode pad 106 is also made of the same or similar metal material, The electroplated bottom metal layer 110 can be directly formed and strongly bonded to the metal electrode pad 106, and the underlying metal electrode pad 106 can be protected by the ball bottom metal layer 110 to prevent the metal electrode pad 106 from being contaminated. In other embodiments of the invention, the bottom metal layer 110 may be made of copper, aluminum, nickel, titanium, tin, palladium, palladium, combinations thereof, or other similar elements.

接著如第7圖之步驟36、步驟38與第10圖所示,步驟36於半導體晶粒104主動面104a上及集合載板102上形成介電層120,覆蓋於集合載板102、半導體晶粒104與球底金屬層110上。介電層120可充填於半導體晶粒104之間的集合載板102表面,以增加對半導體晶粒104之保護,將半導體晶粒104更加固定於集合載板102上。 Then, as shown in step 36, step 38 and FIG. 10 of FIG. 7, step 36 forms a dielectric layer 120 on the active surface 104a of the semiconductor die 104 and on the carrier substrate 102, covering the collector carrier 102 and the semiconductor crystal. The particles 104 are on the bottom metal layer 110. The dielectric layer 120 can be filled on the surface of the collective carrier 102 between the semiconductor dies 104 to increase the protection of the semiconductor die 104 to further fix the semiconductor die 104 to the collective carrier 102.

步驟38於介電層120中形成複數個導通孔120c。導通孔120c暴露出球底金屬層110。透過例如雷射鑽孔或曝光顯影等製程以於介電層120之表面形成導通孔120c,藉以露出半導體晶粒104上的球底金屬層110。 Step 38 forms a plurality of via holes 120c in the dielectric layer 120. The via hole 120c exposes the ball bottom metal layer 110. A via hole 120c is formed on the surface of the dielectric layer 120 by a process such as laser drilling or exposure development to expose the ball-bottom metal layer 110 on the semiconductor die 104.

於本實施例中,介電層120可為封膠材料層,例如是環氧樹脂封裝材料(epoxy molding compound,EMC,亦稱為固態封裝材料),而形成導通孔120c之步驟包括對封膠材料層進行雷射鑽孔製程。形成封膠材料層之步驟可包括將封裝膠置入模具中,加熱後經由澆道與澆口,注入已放好半導體晶粒104與集合載板102的模穴,完成壓模程序,接著進行烘烤製程,以固化封膠材料層。 In this embodiment, the dielectric layer 120 may be a sealing material layer, such as an epoxy molding compound (EMC, also referred to as a solid packaging material), and the step of forming the via hole 120c includes sealing the sealing material. The material layer is subjected to a laser drilling process. The step of forming the layer of the sealing material may include placing the encapsulant into the mold, heating, and then filling the cavity where the semiconductor die 104 and the assembly carrier 102 have been placed through the runner and the gate to complete the compression molding process, and then proceeding. The baking process is to cure the layer of the sealing material.

於其他實施例中,介電層120可為光阻層,而形成導通孔120c之步驟包括對光阻層進行曝光製程與顯影製程。 In other embodiments, the dielectric layer 120 can be a photoresist layer, and the step of forming the via holes 120c includes performing an exposure process and a development process on the photoresist layer.

如第7圖之步驟40與第11圖所示,於介電層120上形成圖案化乾膜130。圖案化乾膜130包括複數個乾膜開口130c,以暴露出導通孔120c、球底金屬層110與部分之介電層120。 As shown in step 40 and FIG. 11 of FIG. 7, a patterned dry film 130 is formed on the dielectric layer 120. The patterned dry film 130 includes a plurality of dry film openings 130c to expose the via holes 120c, the ball bottom metal layer 110, and a portion of the dielectric layer 120.

如第7圖之步驟42、步驟44與第12圖所示,步驟42於介電層120之導通孔120c與乾膜開口130c中形成金屬凸塊150。具體而言,形成金屬凸塊150之步驟可包括進行銅金屬電鍍製程,以於介電層120與圖案化乾膜130上形成金屬銅層(圖未示)。接著,去除圖案化乾膜130,及蝕刻去除多餘金屬銅,藉此形成金屬凸塊150。 As shown in step 42, step 44 and FIG. 12 of FIG. 7, step 42 forms a metal bump 150 in the via hole 120c of the dielectric layer 120 and the dry film opening 130c. Specifically, the step of forming the metal bumps 150 may include performing a copper metal plating process to form a metal copper layer (not shown) on the dielectric layer 120 and the patterned dry film 130. Next, the patterned dry film 130 is removed, and excess metal copper is etched away, thereby forming metal bumps 150.

步驟44於金屬凸塊150上形成線路重佈層 (redistribution layer,RDL)160,其中線路重佈層160透過金屬凸塊150與球底金屬層110而電性連接至半導體晶粒104之金屬電極墊106,使半導體晶粒104得以藉此向外作電性延伸。 Step 44 forms a redistribution layer (RDL) 160 on the metal bump 150, wherein the circuit redistribution layer 160 is electrically connected to the metal electrode of the semiconductor die 104 through the metal bump 150 and the ball bottom metal layer 110. The pad 106 allows the semiconductor die 104 to be electrically extended outward therefrom.

由於習知技術受到晶圓尺寸的限制,因此量產性不佳。相對地,由於本發明係採用大板面製程,可以把為數眾多的半導體晶粒104固定於集合載板上102批量進行製程,因此本發明的批次產量可以是習知技術的倍數,大幅提升製程效率。 Since the prior art is limited by the size of the wafer, the mass production is not good. In contrast, since the present invention employs a large-plate process, a large number of semiconductor dies 104 can be fixed to the collective carrier 102 for batch processing, so that the batch yield of the present invention can be a multiple of the prior art and greatly improved. Process efficiency.

此外,相較於習知技術,本發明使用無電電鍍製程來形成球底金屬層110的技術可降低形成金屬凸塊150所需要的整體製造成本和前置時間。本發明藉由無電電鍍製程直接形成自對準球底金屬層110,因而不需圖案化光阻層來提供此步驟的圖案對準。由於本發明係利用無電電鍍方式,於半導體晶粒104之金屬電極墊106上直接形成自對準之球底金屬層110,因而可簡化半導體晶粒104之電性連接加工製程且易於實施,減少電鍍與圖案化等高成本製程,具有降低製造成本之功效。 Moreover, the present invention uses an electroless plating process to form the ball-bottom metal layer 110 as compared to conventional techniques to reduce the overall manufacturing cost and lead time required to form the metal bumps 150. The present invention directly forms the self-aligned bottom metal layer 110 by an electroless plating process, thereby eliminating the need to pattern the photoresist layer to provide pattern alignment for this step. Since the self-aligned ball-metal layer 110 is directly formed on the metal electrode pad 106 of the semiconductor die 104 by the electroless plating method, the electrical connection processing process of the semiconductor die 104 can be simplified and the implementation is easy and reduced. High-cost processes such as electroplating and patterning have the effect of reducing manufacturing costs.

詳細說明球底金屬層110之結構,本發明之球底金屬層110可由單層金屬或多層金屬所組成,例如是可增加金屬與金屬電極墊106結合性的黏附層(adhesion layer)、避免金屬氧化的阻障層(barrier layer)、以及增加銅錫凸塊沾附力的潤濕層(wetting layer)。無電電鍍製程可利用例如無電鍍鎳鈀浸金(electroless nickel-electroless palladium-immersion gold,ENEPIG)或無電鍍鎳浸金(electroless nickel-immersion gold,ENIG)等無電電鍍製程組合。請參考第13圖至第16圖,第13圖至第16圖繪示的是本發明第二至第五實施例製作之球底金屬層的剖面示意圖。 The structure of the bottom metal layer 110 is described in detail. The bottom metal layer 110 of the present invention may be composed of a single layer of metal or a plurality of layers of metal, for example, an adhesion layer that can increase the bonding of the metal to the metal electrode pad 106, and avoids metal. An oxidized barrier layer, and a wetting layer that increases the adhesion of the copper-tin bump. The electroless plating process can utilize an electroless plating process combination such as electroless nickel-electroless palladium-immersion gold (ENEPIG) or electroless nickel-immersion gold (ENIG). Please refer to FIG. 13 to FIG. 16. FIG. 13 to FIG. 16 are schematic cross-sectional views showing the bottom metal layer of the second to fifth embodiments of the present invention.

如第13圖所示,第二實施例之無電電鍍製程包括銅無電電鍍製程,金屬電極墊係為銅金屬電極墊106a,球底金屬層係為銅金屬層110a,由下而上的排列順序分別是銅金屬電極墊106a、銅金屬層110a與金屬凸塊150。 As shown in FIG. 13, the electroless plating process of the second embodiment includes a copper electroless plating process, the metal electrode pad is a copper metal electrode pad 106a, and the ball bottom metal layer is a copper metal layer 110a, and the bottom-up order is arranged. They are a copper metal electrode pad 106a, a copper metal layer 110a, and a metal bump 150, respectively.

如第14圖所示,第三實施例之無電電鍍製程包括銅無電電鍍製程,金屬電極墊係為鋁金屬電極墊106b,球底金屬層 110係為銅金屬層110a,由下而上的排列順序分別是鋁金屬電極墊106b、銅金屬層110a與金屬凸塊150。 As shown in FIG. 14, the electroless plating process of the third embodiment includes a copper electroless plating process, the metal electrode pad is an aluminum metal electrode pad 106b, and the ball bottom metal layer 110 is a copper metal layer 110a, which is arranged from bottom to top. The order is an aluminum metal electrode pad 106b, a copper metal layer 110a, and a metal bump 150, respectively.

如第15圖所示,第四實施例之無電電鍍製程包括鎳無電電鍍製程與銅無電電鍍製程,金屬電極墊係為鋁金屬電極墊106b,球底金屬層110包括鎳金屬層110c與銅金屬層110a,由下而上的排列順序分別是鋁金屬電極墊106b、鎳金屬層110c、銅金屬層110a與金屬凸塊150。 As shown in FIG. 15, the electroless plating process of the fourth embodiment includes a nickel electroless plating process and a copper electroless plating process, the metal electrode pad is an aluminum metal electrode pad 106b, and the ball bottom metal layer 110 includes a nickel metal layer 110c and a copper metal. The bottom layer up order of the layers 110a is an aluminum metal electrode pad 106b, a nickel metal layer 110c, a copper metal layer 110a, and a metal bump 150, respectively.

如第16圖所示,第五實施例之無電電鍍製程包括第一黃金無電電鍍製程、鈀無電電鍍製程與第二黃金無電電鍍製程,金屬電極墊係為鋁金屬電極墊106b,球底金屬層110包括第一黃金金屬層110d、鈀金屬層110e與第二黃金金屬層110f,由下而上的排列順序分別是鋁金屬電極墊106b、第一黃金金屬層110d、鈀金屬層110e、第二黃金金屬層110f與金屬凸塊150。 As shown in FIG. 16, the electroless plating process of the fifth embodiment includes a first gold electroless plating process, a palladium electroless plating process, and a second gold electroless plating process, and the metal electrode pad is an aluminum metal electrode pad 106b, and a ball bottom metal layer. 110 includes a first gold metal layer 110d, a palladium metal layer 110e, and a second gold metal layer 110f. The bottom-up arrangement order is an aluminum metal electrode pad 106b, a first gold metal layer 110d, a palladium metal layer 110e, and a second A gold metal layer 110f and a metal bump 150.

後續,本發明亦可依據實際電性設計需要,於介電層120及線路重佈層160上進行線路增層製程,並形成外部錫球,藉以形成具多層線路之半導體封裝結構。第17圖至第18圖繪示的是本發明第六至第七實施例製作之半導體電性連接結構的剖面示意圖。如第17圖與第18圖所示,本發明另於介電層120及線路重佈層160上進行線路增層製程,形成線路重佈增層170,並形成外部錫球180,以形成扇出式(fan-out)之半導體封裝結構100、200。其中,第六實施例去除集合載板102後即為獨立之半導體封裝結構100,而第七實施例之半導體封裝結構200包括以金屬板202承載半導體晶粒104。 Subsequently, the present invention can also perform a line build-up process on the dielectric layer 120 and the line redistribution layer 160 according to actual electrical design requirements, and form an external solder ball to form a semiconductor package structure having a multilayer line. 17 to 18 are schematic cross-sectional views showing a semiconductor electrical connection structure fabricated in the sixth to seventh embodiments of the present invention. As shown in FIGS. 17 and 18, the present invention further performs a line build-up process on the dielectric layer 120 and the line redistribution layer 160 to form a line redistribution layer 170 and form an outer solder ball 180 to form a fan. A semiconductor package structure 100, 200 of a fan-out. The sixth embodiment removes the collective carrier 102 and is an independent semiconductor package structure 100. The semiconductor package structure 200 of the seventh embodiment includes the semiconductor die 104 carried by the metal plate 202.

綜上所述,本發明利用無電電鍍方式於半導體晶粒之金屬電極墊上直接形成自對準之球底金屬層,因而可簡化半導體晶粒之電性連接加工製程且易於實施,減少電鍍與圖案化等高成本製程,具有降低製造成本之功效。此外,由於本發明係採用大板面製程,因此可大幅提升製程產量與效率。 In summary, the present invention directly forms a self-aligned ball-bottom metal layer on the metal electrode pad of the semiconductor die by electroless plating, thereby simplifying the electrical connection process of the semiconductor die and being easy to implement, reducing plating and patterning. The high cost process has the effect of reducing manufacturing costs. In addition, since the present invention employs a large-plate process, the process throughput and efficiency can be greatly improved.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包 括於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

Claims (10)

一種以大板面製程製作晶粒凸塊結構之方法,包括:提供一集合載板與複數個半導體晶粒,各該半導體晶粒具有一主動面及相對於該主動面之一背面,各該半導體晶粒之該主動面上具有複數個金屬電極墊與一絕緣保護層,且該絕緣保護層暴露出該等金屬電極墊;把該等半導體晶粒之該等背面固定於該集合載板上;進行一無電電鍍製程,以於該等半導體晶粒之該等金屬電極墊上形成一球底金屬層;形成一介電層,覆蓋於該集合載板、該等半導體晶粒與該球底金屬層上;於該介電層中形成複數個導通孔,該等導通孔暴露出該球底金屬層;以及於該介電層之該等導通孔中形成複數個金屬凸塊。  A method for fabricating a die bump structure by a large-plate process includes: providing a collective carrier and a plurality of semiconductor dies, each of the semiconductor dies having an active surface and a back surface opposite to the active surface The active surface of the semiconductor die has a plurality of metal electrode pads and an insulating protective layer, and the insulating protective layer exposes the metal electrode pads; and the back surfaces of the semiconductor dies are fixed on the collective carrier Performing an electroless plating process to form a ball-bottom metal layer on the metal electrode pads of the semiconductor dies; forming a dielectric layer covering the slab, the semiconductor dies and the spheroidal metal a plurality of via holes are formed in the dielectric layer, the via holes exposing the bottom metal layer; and a plurality of metal bumps are formed in the via holes of the dielectric layer.   如申請專利範圍第1項之方法,其中該無電電鍍製程包括一銅無電電鍍製程,各該金屬電極墊係為一銅金屬電極墊,該球底金屬層係為一銅金屬層,由下而上的排列順序分別是各該銅金屬電極墊、該銅金屬層與各該金屬凸塊。  The method of claim 1, wherein the electroless plating process comprises a copper electroless plating process, wherein each of the metal electrode pads is a copper metal electrode pad, and the ball bottom metal layer is a copper metal layer, The upper arrangement order is the copper metal electrode pad, the copper metal layer and each of the metal bumps.   如申請專利範圍第1項之方法,其中該無電電鍍製程包括一銅無電電鍍製程,各該金屬電極墊係為一鋁金屬電極墊,該球底金屬層係為一銅金屬層,由下而上的排列順序分別是各該鋁金屬電極墊、該銅金屬層與各該金屬凸塊。  The method of claim 1, wherein the electroless plating process comprises a copper electroless plating process, wherein each of the metal electrode pads is an aluminum metal electrode pad, and the ball bottom metal layer is a copper metal layer, The upper arrangement order is the aluminum metal electrode pad, the copper metal layer and each of the metal bumps.   如申請專利範圍第1項之方法,其中該無電電鍍製程包括一鎳無電電鍍製程與一銅無電電鍍製程,各該金屬電極墊係為一鋁金屬電極墊,該球底金屬層包括一鎳金屬層與一銅金屬層,由下而上的排列順序分別是各該鋁金屬電極墊、該鎳金屬層、該銅金屬層與各該金屬凸塊。  The method of claim 1, wherein the electroless plating process comprises a nickel electroless plating process and a copper electroless plating process, wherein each of the metal electrode pads is an aluminum metal electrode pad, and the ball bottom metal layer comprises a nickel metal. The layer and the copper metal layer are arranged in order from bottom to top for each of the aluminum metal electrode pads, the nickel metal layer, the copper metal layer and each of the metal bumps.   如申請專利範圍第1項之方法,其中該無電電鍍製程包括一第一黃金無電電鍍製程、一鈀無電電鍍製程與一第二黃金無電電鍍製程,各該金屬電極墊係為一鋁金屬電極墊,該球底金屬層包 括一第一黃金金屬層、一鈀金屬層與一第二黃金金屬層,由下而上的排列順序分別是各該鋁金屬電極墊、該第一黃金金屬層、該鈀金屬層、該第二黃金金屬層與各該金屬凸塊。  The method of claim 1, wherein the electroless plating process comprises a first gold electroless plating process, a palladium electroless plating process and a second gold electroless plating process, wherein each of the metal electrode pads is an aluminum metal electrode pad. The bottom metal layer includes a first gold metal layer, a palladium metal layer and a second gold metal layer, and the bottom-up order is respectively the aluminum metal electrode pads, the first gold metal layer, and the a palladium metal layer, the second gold metal layer and each of the metal bumps.   如申請專利範圍第1項之方法,其中該介電層係為一封膠材料層,而形成該等導通孔之該步驟包括對該封膠材料層進行一雷射鑽孔製程。  The method of claim 1, wherein the dielectric layer is a layer of a glue material, and the step of forming the via holes comprises performing a laser drilling process on the layer of the sealant material.   如申請專利範圍第1項之方法,其中該介電層係為一光阻層,而形成該等導通孔之該步驟包括對該光阻層進行一曝光製程與一顯影製程。  The method of claim 1, wherein the dielectric layer is a photoresist layer, and the step of forming the via holes comprises performing an exposure process and a development process on the photoresist layer.   如申請專利範圍第1項之方法,更包括於該介電層上形成一圖案化乾膜,該圖案化乾膜包括複數個乾膜開口,以暴露出該等導通孔、該球底金屬層與部分之該介電層。  The method of claim 1, further comprising forming a patterned dry film on the dielectric layer, the patterned dry film comprising a plurality of dry film openings to expose the via holes, the bottom metal layer And a portion of the dielectric layer.   如申請專利範圍第8項之方法,其中形成該等金屬凸塊之該步驟包括於該等導通孔與該等乾膜開口中形成該等金屬凸塊  The method of claim 8, wherein the step of forming the metal bumps comprises forming the metal bumps in the via holes and the dry film openings.   如申請專利範圍第1項之方法,更包括於該等金屬凸塊上形成一線路重佈層,其中該線路重佈層透過該等金屬凸塊與該球底金屬層而電性連接至該等半導體晶粒之該等金屬電極墊。  The method of claim 1, further comprising forming a line redistribution layer on the metal bumps, wherein the circuit redistribution layer is electrically connected to the ball metal layer through the metal bumps Such metal electrode pads of semiconductor dies.  
TW106122840A 2017-07-07 2017-07-07 Method for fabricating bump structures on chips with panel type process TWI658520B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106122840A TWI658520B (en) 2017-07-07 2017-07-07 Method for fabricating bump structures on chips with panel type process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106122840A TWI658520B (en) 2017-07-07 2017-07-07 Method for fabricating bump structures on chips with panel type process

Publications (2)

Publication Number Publication Date
TW201907497A true TW201907497A (en) 2019-02-16
TWI658520B TWI658520B (en) 2019-05-01

Family

ID=66213212

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106122840A TWI658520B (en) 2017-07-07 2017-07-07 Method for fabricating bump structures on chips with panel type process

Country Status (1)

Country Link
TW (1) TWI658520B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7863096B2 (en) * 2008-07-17 2011-01-04 Fairchild Semiconductor Corporation Embedded die package and process flow using a pre-molded carrier
US8847389B1 (en) * 2013-03-12 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for a conductive bump structure

Also Published As

Publication number Publication date
TWI658520B (en) 2019-05-01

Similar Documents

Publication Publication Date Title
TWI654726B (en) Semiconductor package with dummy connector and method of forming same
TWI576927B (en) Semiconductor device and manufacturing method thereof
US8273601B2 (en) Method of fabricating multi-chip package structure
US8581402B2 (en) Molded chip interposer structure and methods
TWI479577B (en) Semiconductor device and method of forming dam material around periphery of die to reduce warpage
CN210223952U (en) Panel assembly, wafer package and chip package
TW201110253A (en) Semiconductor device and method of dual-molding die formed on opposite sides of build-up interconnect structure
TWI553807B (en) Package structure
DE102018110872B3 (en) Integrated fan-out package and its training process
TWI610375B (en) Semiconductor device and method of forming openings through insulating layer over encapsulant for enhanced adhesion of interconnect structure
TW201740523A (en) Semiconductor device and manufacturing method thereof
US10057995B2 (en) Electronic device
WO2020000933A1 (en) Fan-out packaging structure for controlling deformation and manufacturing method therefor
TWI658520B (en) Method for fabricating bump structures on chips with panel type process
KR20220034006A (en) Semiconductor devices and methods of manufacturing semiconductor devices
US10483232B2 (en) Method for fabricating bump structures on chips with panel type process
TWI635546B (en) Semiconductor structure and manufacturing method thereof
TW202013659A (en) Electronic device and manufacturing method thereof
US11688657B2 (en) Semiconductor devices and methods of manufacturing semiconductor devices
US11984378B2 (en) Semiconductor package structure and method for forming the same
US20240006337A1 (en) Electronic devices and methods of manufacturing electronic devices
WO2020168518A1 (en) Packaging structure and preparation method therefor
TW201725668A (en) Package substrate and its fabrication method
CN109216201A (en) In the method for big plate face technique production crystal grain projection cube structure
TW202349588A (en) Semiconductor package and method of manufacturing semiconductor package