TW201906383A - 藉由上鏈共享資料通道傳輸上鏈控制資訊(uci)方法、裝置、系統、結構及介面 - Google Patents

藉由上鏈共享資料通道傳輸上鏈控制資訊(uci)方法、裝置、系統、結構及介面 Download PDF

Info

Publication number
TW201906383A
TW201906383A TW107119969A TW107119969A TW201906383A TW 201906383 A TW201906383 A TW 201906383A TW 107119969 A TW107119969 A TW 107119969A TW 107119969 A TW107119969 A TW 107119969A TW 201906383 A TW201906383 A TW 201906383A
Authority
TW
Taiwan
Prior art keywords
uci
pusch
mapped
wtru
subcarrier
Prior art date
Application number
TW107119969A
Other languages
English (en)
Other versions
TWI794242B (zh
Inventor
艾爾登 貝拉
汶宜 李
沙洛克 那耶納雷爾
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201906383A publication Critical patent/TW201906383A/zh
Application granted granted Critical
Publication of TWI794242B publication Critical patent/TWI794242B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Abstract

在傳輸器/收發器中實施的方法,該方法包括將上鏈控制資訊(UCI)信號序列(SS)的任一數量的元素映射至用於傳輸用於攜帶與實體上鏈共用通道(PUSCH)相關聯的資訊的OFDM符號的可用子載波,其中各該子載波具有至少兩個層;根據該映射的元素被映射至的該子載波的該層,預編碼該映射的元素,其中被應用至子載波的第一層的該映射的元素的第一預編碼不同於被應用至相同子載波的第二層的該映射的元素的第二預編碼;向IDFT單元饋送該UCI SS的該映射的元素;以及將該映射的元素變換為IDFT變換後的信號,該IDFT變換後的信號包括用於傳輸的多個資源所攜帶的該UCI SS的該映射的元素。

Description

藉由上鏈共享資料通道傳輸上鏈控制資訊(UCI)方法、裝置、系統、結構及介面
本發明的領域與通信有關,且更為具體地與用於高級或下一代無線通訊系統中的通信(該通信包括使用新無線電及/或新無線電存取技術執行的通信)的方法、裝置、系統、架構及介面有關,且涉及控制資訊(例如,上鏈控制資訊)及參考信號的傳輸。
一種典型的裝置具有包括以下任一者的電路:處理器、記憶體、接收器、以及傳輸器;該處理器被配置為:在子載波映射單元處,將上鏈控制資訊(UCI)信號序列的任何數量的元素映射至用於傳輸用於攜帶與實體上鏈共用通道(PUSCH)相關聯的資訊的正交分頻多工(OFDM)符號的可用子載波集合的子集,其中各該子載波具有至少兩個層;根據該映射的元素被映射至的該子載波的該層,預編碼該映射的元素,其中被應用至子載波的第一層的該映射的元素的第一預編碼不同於被應用至相同子載波的第二層的該映射的元素的第二預編碼;向逆離散傅立葉變換(IDFT)單元輸入該UCI信號序列的該映射的元素;以及使用該IDFT單元將該映射的元素變換為IDFT變換後的信號,使得該IDFT變換後的信號包括用於傳輸的多個資源所攜帶的該UCI信號序列的該映射的元素;以及該傳輸器被配置為將該IDFT變換後的信號作為OFDM信號進行傳輸。
提供了在傳輸器/接收中實施的用於參考信號配置、產生、及/或傳輸的方法、裝置及系統。一種典型的方法包括:在子載波映射單元處,將上鏈控制資訊(UCI)信號序列的任何數量的元素映射至用於傳輸用於攜帶與實體上鏈共用通道(PUSCH)相關聯的資訊的正交分頻多工(OFDM)符號的可用子載波集合的子集,其中各該子載波具有至少兩個層;根據該映射的元素被映射至的該子載波的該層,預編碼該映射的元素,其中被應用至子載波的第一層的該映射的元素的第一預編碼不同於被應用至相同子載波的第二層的該映射的元素的第二預編碼;向逆離散傅立葉變換(IDFT)單元饋送該UCI信號序列的該映射的元素;以及使用該IDFT單元將該映射的元素變換為IDFT變換後的信號,使得該IDFT變換後的信號包括用於傳輸的多個資源所攜帶的該UCI信號序列的該映射的元素。
現參考附圖對說明性實施例進行詳細描述。然而,雖然結合代表性實施例對本發明進行了描述,但本發明並不限於此,且應該理解的是,還可使用其他實施例,或者可對所描述的實施例進行修改及添加以在不與本發明背離的情況下執行與本發明相同的功能。
雖然在下文中使用無線網路架構對代表性實施例進行了一般展示,但可使用任何數量的不同網路架構,例如包括具有有線元件及/或無線元件的網路。用於本發明的實施的範例性網路
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例性通信系統100的圖。該通信系統100可以是為多個無線使用者提供例如語音、資料、視訊、訊息、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM、以及濾波器組多載波(FBMC)等等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任何數量的WTRU、基地台、網路及/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。例如,WTRU 102a、102b、102c及102d中的任一者都可被稱為“站”及/或“STA”,WTRU 102a、102b、102c、102d可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療設備和應用(例如遠端外科手術)、工業設備和應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、及102d中的任一者都可以被可交換地稱為UE。
通信系統100還可以包括基地台114a及/或基地台114b。基地台114a及114b中的每一個可以是被配置為與WTRU 102a、102b、102c、102d中的至少一個WTRU無線介接以促進存取一個或多個通信網路(例如CN 106/115、網際網路110、及/或其他網路112)的任何類型的裝置。舉例來說,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點 B、gNB、NR節點B、站點控制器、存取點(AP)、以及無線路由器等等。雖然每一個基地台114a、114b都被描述為單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,並且該RAN 104/113還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為以一個或多個載波頻率傳輸及/或接收無線信號,基地台114a及/或基地台114b可被稱為胞元(未顯示)。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合之中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,每一個收發器都對應於胞元的一個扇區。在一個實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用多個收發器。舉例來說,可以使用波束成形以在期望的空間方向上傳輸及/或接收信號。
基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一個或多個進行通信,其中該空中介面116可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其中該無線電技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括例如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其中該無線電技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTA Pro(LTE-A Pro)來建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施例如NR無線電存取之類的無線電技術,其中該無線電技術可以使用新型無線電(NR)來建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以例如使用雙連接(DC)原理以共同實施LTE無線電存取和NR無線電存取。因此,WTRU 102a、102b、102c使用的空中介面可以經由多種類型的無線電存取技術及/或向/從多種類型的基地台(例如eNB和gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即,無線高保真(WiFi))、IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
第1A圖中的基地台114b可以是例如無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT以促進局部區域中的無線連接,該局部區域可以是例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在一個實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直連到網際網路110。因此,基地台114b並不是必然要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通信,其中該CN106/115可以是被配置為向WTRU 102a、102b、102c、102d中的一個或多個提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及移動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者驗證之類的高階安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地和其他那些與RAN 104/113使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)及/或網際網路協定(IP))的全球性互連的電腦網路和裝置的系統。網路112可以包括由其他服務供應者擁有及/或操作的有線及/或無線通訊網路。例如,網路112可以包括與一個或多個RAN連接的另一個CN,其中該一個或多個RAN可以與RAN 104/113使用相同RAT或不同RAT。
通信系統100中WTRU 102a、102b、102c、102d中的一些或所有可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置為與使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是示出了範例性WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可編程閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或能使WTRU 102在無線環境中操作的其他任何功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述為單獨的元件,然而應該瞭解,處理器118和收發器120也可以集成在一個電子元件或晶片中。
傳輸/接收元件122可被配置為經由空中介面116以傳輸信號至基地台(例如基地台114a)或接收來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。作為範例,在另一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置為傳輸及/或接收RF和光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。
雖然在第1B圖中將傳輸/接收元件122描述為單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括經由空中介面116以傳輸和接收無線電信號的兩個或多個傳輸/接收元件122(例如多個天線)。
收發器120可被配置為對傳輸/接收元件122所要傳送的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102經由例如NR和IEEE 802.11之類的多種RAT來進行通信的多個收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從例如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取資訊、以及將資料儲存至這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的儲存裝置。可移記憶體132可以包括使用者身份模組(SIM)卡、記憶條、以及安全數位(SD)記憶體等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料儲存至這些記憶體,作為範例,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力、並且可被配置分發及/或控制該電力至WTRU 102中的其他元件。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳金屬化合物(NiMH)、鋰離子(Li-ion)等等)、太陽能電池、以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度和緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊,及/或根據從兩個或多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備138可以包括提供附加特徵、功能及/或有線或無線連接的一個或多個軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、Bluetooth®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或多個感測器,該感測器可以是以下的一個或多個:陀螺儀、加速度計、霍爾效應感測器、磁力計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、手勢感測器、生物測定感測器、及/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,對於該全雙工無線電裝置,一些或所有信號(例如與用於UL(例如針對傳輸)和下鏈(例如針對接收)的特定子訊框相關聯)的接收和傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括干擾管理單元139,以經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消除自干擾。在一個實施例中,WTRU 102可以包括半雙工無線電裝置,對於該半雙工裝置,一些或所有信號(例如與用於UL(例如針對傳輸而言)或下鏈(例如針對接收)的特定子訊框相關聯)的傳輸和接收。
第1C圖是示出了根據一個實施例的RAN 104和CN 106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術以經由空中介面116而與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c中的每一個都可以包括經由空中介面116以與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 140a可以使用多個天線來向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。
e節點B 160a、160b、160c中的每一個都可以關聯於特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c可以經由X2介面彼此通信。
第1C圖所示的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述為是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN營運者之外的實體所擁有及/或操作。
MME 162可以經由S1介面而連接到RAN 104中的e節點B 162a、162b、162c中的每一個、並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162可以提供用於在RAN 104與使用其他無線電技術(例如GSM及/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面而連接到RAN 104中的e節點B 160a、160b、160c中的每一個。SGW 164通常可以路由及轉發使用者資料封包至WTRU 102a、102b、102c/路由及轉發來自WTRU 102a、102b、102c的使用者資料封包。SGW 164可以執行其他功能,例如在eNB間切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理和儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,該PGW 166可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通信。
CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)存取,以促進WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。
雖然在第1A圖至第1D圖中將WTRU描述為無線終端,然而應該想到的是,在某些典型實施例中,此類終端(例如臨時或永久性)可以使用介接至通信網路的有線通信介面。
在典型的實施例中,其他網路112可以是WLAN。
採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是介接到分散式系統(DS)、或是將訊務攜入及/或攜出BSS的另一類型的有線/無線網路。源於BSS外部且至STA的訊務可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務可被發送至AP,以被遞送到各自的目的地。例如,在BSS內的STA之間的訊務可以經由AP來發送,其中源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA。在BSS內的STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似操作模式時,AP可以在固定通道(例如主通道)上傳送信標。該主通道可以具有固定寬度(例如20 MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道、並且可被STA用來與AP建立連接。在某些典型實施例中,可以實施具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,一個STA(例如只有一個站)可以在任何指定時間進行傳輸。
高輸送量(HT)STA可以使用40 MHz寬的通道以用於通信(例如經由將20 MHz寬的主通道與20 MHz寬的相鄰或不相鄰通道結合以形成40 MHz寬的通道)。
甚高輸送量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道而被形成。160 MHz通道可以藉由組合8個連續的20 MHz通道或者藉由組合兩個不連續的80 MHz通道(這種組合可被稱為80+80配置)而被形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分成兩個流。在每一個流上可以單獨完成逆快速傅立葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由一傳輸STA來傳送。在一接收STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af和802.11ah支援次1 GHz操作模式。與在802.11n和802.11ac中使用的那些相比,在802.11af和802.11ah中通道操作頻寬和載波減小。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz及20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz和16 MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信,例如巨集覆蓋區域中的MTC裝置。MTC裝置可以具有某種能力,例如包括支援(例如只支援)某些及/或有限頻寬的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如以保持很長的電池壽命)。
可以支援多個通道和通道頻寬(例如802.11n、802.11ac、802.11af以及802.11ah)的WLAN系統包括可被指定為主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由STA設定及/或限制,其中該STA源自在BSS中操作的所有STA,該STA支援最小頻寬操作模式。在802.11ah的範例中,即使BSS中的AP和其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置),主通道可以是1 MHz寬。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1 MHz操作模式)向AP進行傳輸),那麼即使大多數的頻帶保持空閒並且可用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是從902 MHz到928 MHz。在韓國,可用頻帶是從917.5 MHz到923.5 MHz。在日本,可用頻帶是從916.5 MHz到927.5 MHz。依照國家碼,可用於802.11ah的總頻寬是從6 MHz到26 MHz。
第1D圖是示出了根據一個實施例的RAN 113和CN 115的系統圖。如上所述,RAN 113可以使用NR無線電技術以經由空中介面116而與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。gNB 180a、180b、180c中的每一個都可以包括一個或多個收發器,以經由空中介面116而與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形處理以向gNB 180a、180b、180c傳輸信號及/或從gNB 180a、180b、180c接收信號。因此,舉例來說,gNB 180a可以使用多個天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。在一個實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTR 102a(未顯示)傳送多個分量載波。這些分量載波的子集可以在無授權頻譜上,而剩餘分量載波則可以在授權頻譜上。在一個實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(及/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數集相關聯的傳輸以與gNB 180a、180b、180c進行通信。舉例來說,對於不同的傳輸、不同的胞元及/或無線傳輸頻譜的不同部分,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號及/或持續不同的絕對時間長度)以與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一個或多個作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以用無授權頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c會在與另一RAN(例如e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理而基本同時地與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或輸送量,以服務WTRU 102a、102b、102c。
gNB 180a、180b、180c中的每一個都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、實施雙連接性、實施NR與E-UTRA之間的互通、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取和移動性管理功能(AMF)182a、182b等等。如第1D圖所示,gNB 180a、180b、180c可以經由Xn介面彼此通信。
第1D圖中顯示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述為CN 115的一部分,但是應該瞭解,這其中的任一元件都可以被CN營運者之外的其他實體擁有及/或操作。
AMF 182a、182b可以經由N2介面而連接到RAN 113中的gNB 180a、180b、180c中的一個或多個、並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同PDU對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止NAS傳訊、以及移動性管理等等。AMF 182a、1823b可以使用網路截割,以基於使用的WTRU 102a、102b、102c的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。作為範例,針對不同的用例,可以建立不同的網路切片,例如取決於超可靠低潛時(URLLC)存取的服務、取決於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro及/或WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面而連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面而連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務路由。該SMF 183a、183b可以執行其他功能,例如管理及分配UE IP位址、管理PDU對話、控制策略執行及QoS、提供下鏈資料通知等等。PDU對話類型可以是基於IP的、基於非IP的、基於乙太網路的等等。
UPF 184a、184b可以經由N3介面而連接到RAN 113中的gNB 180a、180b、180c中的一個或多個,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)存取,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、快取下鏈封包、以及提供移動性錨定處理等等。
CN 115可以促進與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與CN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其他網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由與UPF 184a、184b的N3介面介接以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並經由UPF 184a、184b連接到本地資料網路(DN)185a、185b。
鑒於第1A圖至第1D圖以及第1A圖至第1D圖的相應描述,有關以下中一者或多者的在此描述的一個或多個或所有功能可以由一個或多個仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185 a-b及/或這裡描述的其他任一個或多個裝置。這些仿真裝置可以是被配置為仿真於此描述的一個或多個或所有功能的一個或多個裝置。舉例來說,這些仿真裝置可用於測試其他裝置及/或模擬網路及/或WTRU功能。
該仿真裝置可被設計為在實驗室環境及/或營運者網路環境中實施其他裝置的一項或多項測試。舉例來說,在被完全或部分作為有線及/或無線通訊網路一部分實施及/或部署的同時,該一個或多個仿真裝置可以執行一個或多個或所有功能,以測試通信網路內的其他裝置。該一個或多個仿真裝置可以在被臨時作為有線及/或無線通訊網路的一部分實施/部署的同時執行一個或多個或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試、及/或可以使用空中無線通訊來執行測試。
可以在未被作為有線及/或無線通訊網路一部分實施/部署的同時,一個或多個仿真裝置執行包括所有功能的一個或多個功能。舉例來說,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通訊網路的測試場景中使用,以實施一個或多個元件的測試。該一個或多個仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或經由RF電路(作為範例,該電路可以包括一個或多個天線)的無線通訊來傳輸及/或接收資料。
雖然WTRU在第1圖至第4圖中被描述作為無線終端,但可以預見的是,在某些典型實施例中,此終端可(例如,臨時或永久地)使用介接至通信網路的有線通信介面。
下一代無線系統的設計目前正在學術界、工業界、監管及標準化機構中進行。IMT-2020願景設立了下一代無線系統的開發的框架及整體目標。為了解决所遇到的無線資料訊務的增加、對較高資料速率的需求、低潛時及大規模連接,該IMT-2020願景定義了驅動第五代(5G)設計需求的主要用例:增強行動寬頻(eMBB)、超高可靠性低潛時通信(URLLC)以及大規模機器類型通信(mMTC)。這些用例在峰值資料率、潛時、頻譜效率及移動性方面具有非常不同的目標。
雖然該IMT-2020願景表明對於給定用例並非所有的關鍵能力均是均等重要的,可在5G設計中建立靈活度,以例如滿足期望使用者特定需求以及支援多個服務。空中介面(尤其是實體(PHY)層波形)為新的5G技術的數個關鍵元件其中之一。在此方面,考慮該主要用例以及各種其他/不同應用以及各種用途、需要、及/或部署場景及其伴隨的(例如,強制性的特定)性能測量、度量及/或其需求,3GPP正在進行針對新無線電及/或新無線電存取技術(統稱為“NR”)的研究及開發,以用於高級或下一代(例如,5G)無線通訊系統。
在通信網路中,控制傳訊可經由上鏈控制通道而被傳輸。例如,在長期演進(LTE)的情況下,可在實體上鏈控制通道(PUCCH)中傳輸上鏈層1及/或層2控制傳訊。此控制傳訊(例如,資料、資訊、訊息等)可包括以下任一者:通道品質資訊(CQI)、MIMO回饋、排程請求(SR)、或混合自動重複請求(HARQ)應答/否定應答(ACK/NACK)、或任何其他類似的及/或合適類型的層1及/或層2傳訊。
LTE傳輸可包括傳輸PUCCH傳輸及實體上鏈共用資訊(PUSCH)傳輸中的任一者。為了避免對可用於PUSCH傳輸的資源塊(RB)進行分段,例如,該PUSCH傳輸:(1)可針對在通道頻寬邊緣處的RB;及/或(2)可跨整個時槽。資源塊可包括任何數量的資源元素(RE),且RE可被稱為資源、元素、時間頻率資源及/或元素等。例如,對於具有給定總傳輸功率的LTE傳輸,在時槽(例如,每一時槽;僅單一資源塊)中被分配給PUCCH的窄頻寬可最大化每子載波的功率。可基於鏈路性能以及上鏈控制酬載範圍的多工能力來定義各種PUCCH格式。例如,可實施格式1/1a/1b以攜帶1至2位元的控制資訊,且格式2/2a/2b能夠傳遞20-22個編碼位元的控制資訊。
當同時上鏈PUSCH資料及控制傳訊被排程用於UE/WTRU時,該控制傳訊可在DFT擴展之前與資料一起被多工,以保留上鏈傳輸的單載波低立方度量(CM)屬性。因此,UE/WTRU可使用上鏈控制通道(例如,PUCCH)以在子訊框中(例如,僅在子訊框中)傳輸控制傳訊(例如,任何必須的控制傳訊),在該子訊框中,UE/WTRU尚未被分配用於PUSCH傳輸的任何RB。可使用PUSCH以攜帶控制資訊,其中可使用被分配用於PUSCH傳輸的一些資源來傳輸控制資訊。
在新無線電(NR)的情況下,可使用實體上鏈控制傳訊來攜帶以下任一者:HARQ ACK、通道狀態資訊(CSI)報告(例如,包括波束成形資訊)以及排程請求(SR)。然而,NR可支援傳輸NR上鏈(UL)控制通道的兩種方式:短持續時間傳輸及長持續時間傳輸。在於短持續時間傳輸中傳輸UL控制通道的情況下,可在時槽的最後傳輸的UL符號(一個或多個)周圍傳輸控制傳訊。在長持續時間傳輸的情況下,可經由多個UL符號來傳輸UL控制傳訊,以改善覆蓋。在UL控制通道的短持續時間傳輸的情況下(其可被稱為短PUCCH),可在時槽中與UL資料通道進行分時多工(TDM)及/或分頻多工(FDM)兩者。在UL控制通道的長持續時間傳輸的情況下(其可被稱為長PUCCH),可允許在時槽內與UL資料通道進行FDM(例如,僅進行FDM)。
在使用正交分頻多工(OFDM)及離散傅立葉變換(DFT)-擴展-OFDM(DFT-s-OFDM)波形的NR的情況下,可實施技術以支援在PUSCH資源上的上鏈控制資訊(UCI)傳輸。
根據在此所述的實施例,ACK/NACK符號可指用於傳輸該ACK/NACK資訊的係數。例如,可對ACK/NACK位元進行編碼及調變,使得調變符號可被稱為ACK/NACK符號,及/或可對ACK/NACK位元進行調變,且可將調變符號與序列進行多工,其中所多工的序列的每一係數可被稱為ACK/NACK符號。類似的定義也適用於其他類型的控制資訊。傳輸時間間隔(TTI)可指傳輸預定義數量的OFDM(或DFT-s-OFDM)符號所花費的時間。例如,TTI可為時槽、子訊框,其中時槽可由7個OFDM符號組成。用於 OFDM 波形的 PUSCH 中的上鏈控制資訊( UCI )傳輸
根據實施例,可在解調參考符號(DM-RS)(其還可被稱為資料解調參考符號)鄰近的OFDM符號(一個或多個)上傳輸ACK/NACK符號。根據實施例,攜帶ACK/NACK符號的OFDM符號的數量可對應於ACK/NACK符號的數量、且可由網路(例如,由基地台,該基地台可被稱為以下任一者:節點B、增強節點B(eNB)、gNB、存取點(AP)、及/或其他類似網路裝置/實體)傳訊及/或配置。根據某些實施例,UE/WTRU可基於指定參數(例如,以下任一者:PUCCH格式、ACK/NACK符號數量等)來隱性確定OFDM符號數量。例如,OFDM符號m+1 ,m+2, …m+K 上的子載波k 可用於攜帶ACK/NACK符號,其中OFDM符號m+1 可為DM-RS符號鄰近的OFDM符號,且K 可為參數(例如,PUCCH格式)。
根據實施例,可在DM-RS符號鄰近的OFDM符號(一個或多個)上傳輸秩指示符(RI)符號。根據實施例,攜帶RI符號的OFDM符號的數量可對應於RI符號的數量、且可由eNB、gNB、及/或其他AP來配置及/或傳訊。根據某些實施例,OFDM符號的數量可由UE/WTRU基於以下任一者來確定:PUCCH格式、RI符號數量等。作為一範例,可使用OFDM符號m+1, m+2, …m+L 上的子載波l 來攜帶RI符號,其中OFDM符號m+1 可為DM-RS符號鄰近的OFDM符號,且L 為參數(例如,PUCCH格式)。
根據實施例,可前端載入DM-RS(例如,其可在使用者資料傳輸之前被傳輸,例如在PUSCH傳輸之前)。可以有一個或多個DM-RS符號。根據實施例,在多個DM-RS符號的情況下,UCI資料傳輸可在前端載入的DM-RS的最後一DM-RS符號之後開始。根據實施例,可將其他類型的UCI(例如,CQI)置於多個OFDM符號上的指定子載波集合上。該多個OFDM符號可跨部分或整個TTI。這些子載波可在整個或部分頻寬指派上交錯,以例如實現頻率分集。
將ACK/NACK符號置入PUSCH中可藉由以下任一方法來實現。根據實施例,第一種方法可包括ACK/NACK符號打孔PUSCH。例如,ACK/NACK符號可取代(例如,打孔)將在PUSCH中傳輸的資料調變符號(例如,16 QAM符號)。根據實施例,第二種方法可包括在ACK/NACK符號周圍速率匹配PUSCH。根據實施例,在速率匹配的情況下,不對將被載入ACK/NACK符號的PUSCH資源計入用於用於PUSCH傳輸的可用資源數量。
根據實施例,有關上述方法的決策(例如,(a)ACK/NACK符號是否打孔PUSCH;及/或(b)PUSCH是否在ACK/NACK符號周圍被速率匹配)可以取決於以下任一內容:(1)TTI內用於PUSCH的可用OFDM符號的數量;(2)總PUSCH資源的數量(例如,由多個所分配的子載波的數量乘以TTI內的可用於PUSCH傳輸的OFDM符號的數量);及/或(3)將在PUSCH中傳輸的ACK/NACK符號的數量。
根據在此所述的實施例,n 可指用於PUSCH的可用OFDM符號的數量,k 可指所分配的子載波的數量,以及m 可指ACK/NACK符號的數量。根據實施例,可應用以下規則中的任一者(例如,應用至上述方法):(1)如果mM ,則ACK/NACK符號可打孔PUSCH,而如果mM ,則可在ACK/NACK符號周圍對PUSCH進行速率匹配,參數M 可由eNB、gNB及/或其他AP配置,及/或可根據PUCCH格式來確定;(2)如果n<N ,則可在ACK/NACK符號周圍對PUSCH進行速率匹配,參數N 可由eNB、gNB及/或其他AP配置,及/或可根據PUCCH格式來確定,如果n≥NmM ,則ACK/NACK符號可打孔PUSCH符號,或者如果n≥NmM ,可在ACK/NACK符號周圍對PUSCH進行速率匹配;及/或(3)如果nk<L ,則可在ACK/NACK符號周圍對PUSCH進行速率匹配,參數L 可由eNB、gNB及/或其他AP配置、及/或可由PUCCH格式來確定,如果nk≥L ,則ACK/NACK符號可打孔PUSCH符號,以及如果mM 或如果mM ,可在ACK/NACK符號周圍對PUSCH進行速率匹配。
根據實施例,ACK/NACK符號可打孔PUSCH。例如,在ACK/NACK符號的數量與碼塊中調變符號的數量的比率低於臨界值的情況下,ACK/NACK符號可打孔PUSCH。根據實施例,可以有對Z個資訊位元進行編碼以產生bZ個編碼位元的情況中,其中b可為有理數。在此情況下,可以用例如QAM調變等的調變方案對該bZ個編碼位元進行調變,以產生調變符號。
根據實施例,可在PUSCH資源集合(例如由任何數量的OFDM符號上的多個子載波構成的PUSCH的分配資源)上傳輸調變符號,且編碼率可為1/b。根據實施例,在一些調變符號被打孔且由ACK/NACK符號取代的情況下,有效的編碼率可大於1/b。根據實施例,在使用打孔時的編碼率的增加小於臨界值(例如,Δ < β,其中Δ為有效編碼率的增加,而β為臨界值),則ACK/NACK符號可打孔PUSCH,否則可在ACK/NACK符號周圍對PUSCH進行速率匹配。根據實施例,Δ 和β可由中央控制器配置。根據實施例,可在RI及/或CQI符號周圍對PUSCH進行速率匹配。
第2圖為示出了根據實施例的在PUSCH中的UCI傳輸的示意圖;以及第3圖為示出了根據實施例的OFDM波形產生器的示意圖。
參見第2圖,x軸表示OFDM符號,而y軸表示子載波。根據實施例,每一資源(例如,每一OFDM符號子載波配對)已被分配用於PSUCH傳輸,但一些資源被用於攜帶UCI資料而非使用者資料。根據實施例,可在前端載入的DM-RS 201的最後一個DM-RS 201鄰近的OFDM符號(一個或多個)上傳輸ACK/NACK 202及/或 RI 203符號。雖然第2圖中為DM-RS 201分配了一個OFDM符號,但本揭露的內容並不限於此,可以有用作DM-RS 201的多個OFDM符號。根據實施例,可在DM-RS 201之後的數個OFDM符號上傳輸CQI 204。可在以下任一者上傳輸UCI符號:鄰近子載波、非鄰近子載波、及/或子載波,其中子載波群組可能不是鄰近的,但是群組內的子載波可以是鄰近的。
根據實施例,第3圖的OFDM波形產生器可用於產生第2圖的第二OFDM符號,其中排序後的PUSCH及UCI符號被插入至IDFT輸入集合中,其中每一輸入對應於子載波
第4圖為示出了根據實施例的使用OFDM進行帶有附加DM-RS的UCI傳輸。
根據實施例,作為對前端載入的DM-RS的附加或替代,可配置DM-RS 401以用於TTI內的傳輸。根據實施例,附加DM-RS 401符號可改善通道估計精確度,例如當移動性高時。在此情況下,ACK/NACK 203及/或RI 403符號中的任一者可被置於前端載入的DM-RS 401及附加DM-RS符號401周圍,如第4圖所示。
在第4圖所示的情況下,可應用以下任一者:(1)將在前端載入的DM-RS 401鄰近的OFDM符號上傳輸的ACK/NACK 402符號可在附加DM-RS 401符號鄰近的OFDM符號上被重複,如果配置了超過一個附加DM-RS 401,ACK/NACK 402符號可在附加DM-RS 401符號中至少一者鄰近的OFDM符號上被傳輸;及/或(2)ACK/NACK 402符號的總數可被分為群組集合,每一群組可在DM-RS 401符號其中之一鄰近的OFDM符號上被傳輸,如果配置了超過一個附加DM-RS 401,ACK/NACK 402符號可在附加DM-RS 401符號中的至少一者鄰近的OFDM符號上被傳輸。
第5圖為示出了根據實施例的使用OFDM的帶有附加DM-RS的另一UCI傳輸的示意圖。
根據實施例,如第5圖所示,在附加參考符號與OFDM符號中的其他類型的符號(例如,用於PUSCH傳輸的符號)多工的情況下,ACK/NACK 502及/或RI 503符號被置於與DM-RS 501相同的OFDM符號中。
第6圖為示出了根據實施例的使用OFDM的帶有附加PT-RS的另一UCI傳輸的示意圖。
根據實施例,某些參考符號(例如,可用於估計及追蹤相位雜訊的相位追蹤參考信號(PT-RS)605符號)可被動態使用(例如,PT-RS傳輸可被啟動/開啟)並在特定OFDM符號的某些子載波上被傳輸,如第6圖所示。雖然以下描述的技術均是以PT-RS為背景進行描述的,但是本揭露的內容並不限於此,且這些技術可適用於其他類型的RS。當賦能PT-RS傳輸時,可應用以下方法中的任一者:(1)PT-RS 605可對UCI符號進行打孔;(2)如果UCI並非ACK/NACK 602及/或RI 603,則PT-RS 605可對UCI符號進行打孔;(3)UCI可對PT-RS 605進行打孔;(4)如果UCI為ACK/NACK 602及/或RI 603,UCI可對PT-RS 605進行打孔;及/或(5)UCI或PT-RS 605中的任一者的子載波索引可根據所建立的規則而被移位,以防止UCI與PT-RS 605衝突。例如,如果子載波k, k+1將攜帶UCI,且針對子載波k賦能了(例如,開啟了)PT-RS 605,則可在子載波k+1, k+2上傳輸UCI;及/或可在子載波k-1上傳輸PT-RS 605。
根據實施例,所揭露的技術可類似地適用於下鏈及上鏈傳輸可共用TTI的傳輸方案。在此混合傳輸時間間隔的情況下,所揭露的方案可適用於混合傳輸時間間隔的上鏈傳輸部分。利用 MIMO UCI 傳輸
如在此所述的,資料碼字可指被編碼及調變以用於實體上鏈共用通道(PUSCH)中的傳輸的資料符號。進一步的,資料碼字可與碼字互換使用。根據實施例,資料碼字或碼字可基於PUSCH的傳輸秩及/或用於PUSCH傳輸的資料碼字的數量而與任何數量的層相關聯(或可包括任何數量的層)。如在此所述的,UCI碼字可指被編碼及調變以在PUSCH中傳輸的控制資訊符號。然而,本揭露的內容並不限於此,且控制資訊符號可被編碼及調變以用於以下任一者中的傳輸:PUSCH、實體上鏈控制通道(PUCCH)以及任何其他類似或合適的通道。
根據實施例,PUSCH可使用多個天線而在任何數量的空間層上(例如,經由、使用任何數量的空間層)被傳輸。根據實施例,資料碼字(例如,一個碼字)可被分為任何數量的流,且例如每一流可在空間層(例如,各自的空間層)上被傳輸。根據實施例,超過一個資料碼字(例如,多個碼字)可被分為多個流,且例如每一流可在空間層(例如,各自的空間層)上被傳輸。根據實施例,空間層(例如,一個層)可與僅對應於單一碼字的資料符號相關聯(例如,被限制為攜帶僅對應於單一碼字的資料符號)。然而,本揭露的內容並不限於此,且空間層可與對應於任何數量的碼字的符號相關聯。
根據實施例,用於傳輸的碼字的數量(例如,用於PUSCH傳輸的資料碼字的數量)可基於用於(例如,關聯於)PUSCH傳輸的層的數量而被確定。根據實施例,每碼字的層的數量可基於用於PUSCH傳輸的層的數量而被確定。例如,在超過一個碼字的情況下,用於PUSCH傳輸的層中的一者或多者可與每一碼字相關聯。根據實施例,碼字至層的映射可根據以下任一者而被確定:預定義的規則、配置、下鏈控制資訊(DCI)、指示符、或其他顯性及/或隱性資訊。根據實施例,用於PUSCH傳輸的層的數量可例如使用以下任一者由網路指示:廣播資訊、DCI、配置資訊、或其他類似資訊及/或傳訊。
根據實施例,WTRU可在時槽中(例如,子訊框)(例如,相同時槽(例如,相同子訊框))的PUSCH或PUCCH中的任一者中傳輸UCI。根據實施例,WTRU可被配置、排程、通知、表明等,以在相同時槽中傳輸PUSCH及PUCCH。根據實施例,WTRU可根據以下任一者來傳輸UCI:波形、傳輸秩、或傳輸功率。例如,WTRU可在根據以下任一者選擇的通道中傳輸UCI:波形、傳輸秩、或傳輸功率。
在波形的情況下,如果WTRU被配置為(例如,確定)使用第一波形(例如,CP-OFDM)以用於上鏈傳輸(例如,PUSCH及/或PUCCH),WTRU可在PUCCH上傳輸UCI,且如果WTRU被配置為(例如,確定)使用第二波形(例如,DFT-s-OFDM)以用於上鏈傳輸,則可在PUSCH上傳輸UCI。在傳輸秩的情況下,如果WTRU被配置為(例如,確定)傳輸具有低於預定義臨界值的秩的PUSCH,則該WTRU可在PUSCH上傳輸UCI;否則,該WTRU可在PUCCH上傳輸UCI,反之亦然。在傳輸功率的情況下,如果UE被配置(例如,表明或確定)以傳輸具有大於預定義臨界值的傳輸功率的PUSCH,則該WTRU可在PUCCH上傳輸UCI;否則,該UE可在PUCSH上傳輸UCI,反之亦然。根據實施例,在WTRU在PUCCH上傳輸UCI的情況下,WTRU可同時傳輸PUSCH及PUCCH(例如,在相同時槽中)、或可在該時槽中丟棄(例如,不傳輸)PUSCH。
根據實施例,可以用多個流在PUSCH中傳輸UCI,或者換句話說,可在PUSCH中傳輸與多個流相關聯的UCI。根據實施例,可藉由對資料碼字進行速率匹配(例如,使用可用資源來傳輸該資料碼字)以在PUSCH中傳輸與UCI碼字(例如,以下任一者:編碼及調變的ACK/NACK位元、編碼及調變的RI位元、或聯合編碼及調變的ACK/NACK及RI位元)相關聯的UCI符號(例如,屬於該UCI碼字的UCI符號)。根據實施例,在速率匹配的情況下,可對碼字的長度(例如,PUSCH傳輸的碼字)進行調整以匹配在傳輸間隔(例如,時槽或子訊框中的任一者)的持續時間上可用於資料傳輸的資源數量(例如,分配用於UCI傳輸的資源並未被包括在此數量中)。
根據實施例,在超過一個碼字的情況下(例如,存在兩個或更多個資料碼字),可在超過一個資料碼字內傳輸UCI符號(例如,ACK/NACK UCI符號)集合。例如,可在相同UCI符號集合周圍對該兩個或更多個資料碼字進行速率匹配。根據實施例,可根據例如UCI類型以在資料碼字上重複UCI符號。根據實施例,可在多個資料碼字或層中的任一者上重複ACK/NACK(例如,HARQ-ACK)及/或RI UCI符號。根據實施例,可在不重複下,在一個碼字或層、或者多個碼字或層中的任一者內傳輸CQI UCI符號。
第7圖為示出了根據實施例的UCI及資料碼字多工選項的示意圖。
參見第7圖,在情況(a)中,相同UCI符號803可與兩個資料碼字(或層)的資料碼字(或層)符號701、702多工。在情況(a)中,兩個UCI符號703可屬於相同UCI碼字(或層)、且可為ACK/NACK UCI。參見第7圖,在情況(b)中,與資料碼字#1多工的UCI符號703可不同於與資料碼字#2多工的UCI符號703。在情況(b)中,四個UCI符號703可屬於相同UCI碼字、且可為CQI UCI。
第8圖為示出了根據實施例的碼字至層的映射的示意圖。根據實施例,碼字(例如,資料碼字、UCI碼字)可被映射至(例如,可能需要被映射至)空間層。
參見第8圖,所多工的資料(例如,資料碼字#1符號801)及UCI碼字(例如,UCI 符號802)可被映射至3個空間層。根據實施例,該映射可被執行,使得每一空間層包括(例如,具有、含有)來自UCI碼字的符號。根據實施例,UCI符號總數N可根據以下等式而被確定: N = kM + L…………..[等式1], 其中k為空間層數量,M及L為整數,以及L = mod(N, k)。根據實施例,每一層k可含有至少M個UCI符號,且剩餘的L個符號可被均勻分佈在L個層之間,或者所有L個符號可被指派給層(例如,一個單層)。
根據實施例,可在任何數量的資料碼字(例如,僅一個資料碼字)的多個層上重複任何數量的UCI符號。例如,可以有這樣的情形:層1至4被用於傳輸資料碼字#1,而層5至8被用於傳輸資料碼字#2。根據實施例,在此情形下,可在以下上重複UCI符號:(1)層1至4中的任一(例如,所有)層;(2)層5至8中的任一(例如,所有)層;或(3)包含來自層1至4以及5至8兩者的任一層的層群組。根據實施例,可使用UCI類型來確定是否在碼字的多個層上重複UCI符號。例如,可在多個層上重複至少ACK/NACK及/或RI UCI符號。進一步的,根據實施例,UCI符號的重複可減小資料碼字的長度。
第9圖為示出了根據實施例的在具有及不具有UCI重複下的碼字至層映射的示意圖。
參見第9圖,情況(a)示出了不在兩個空間層上進行UCI重複下的碼字至層映射;以及情況(b)示出了在兩個空間層上進行UCI重複下的碼字至層映射。例如,對於情況(a),UCI符號902被映射至兩個空間層的各自的層,而不重複;以及對於情況(b),UCI符號902被在兩個空間層中的每一者中被重複,其中資料碼字#1符號901被映射至兩個空間層。
第10圖為示出了根據實施例的層至子載波的映射的示意圖,其中UCI被映射至相同子載波。
根據實施例,空間層可被映射至用於傳輸的PUSCH子載波集合。參見第10圖,空間層可被映射至子載波,使得UCI符號可被置於UCI符號在其上被傳輸的層上的相同子載波上。例如,如層1映射1003及層2映射1004所示,UCI符號1002可被置於層1及2上的相同子載波上。
第11圖為示出了根據實施例的層至子載波映射的示意圖,其中UCI被映射至不同的子載波。
根據實施例,參見第11圖,對於不同的層集合,用於攜帶UCI符號的子載波的索引可以是不同的。例如,如層1映射1103及層2映射1104所示,UCI符號1102可被置於層1及2上的不同子載波上。
第12圖為示出了根據實施例的層至子載波映射的示意圖,其中重複的UCI被映射至相同的子載波。
根據實施例,在不同層上傳輸的UCI符號可與所有UCI或UCI子集相關聯。例如,參見第12圖,如層1映射1203及層2映射1204所示,在不同層上傳輸的UCI符號1202對於所有UCI或UCI子集而言是相同的。
根據實施例,可對空間層(例如,每一層)進行預編碼。例如,與層(例如,每一層)相關聯的信號及/或資訊可在被映射至傳輸天線之前被預編碼。根據實施例,在符號被映射至層1中的子載波k 的情況下,其可被稱為(例如,可被給定為),而映射至層2中的相同子載波的符號可被稱為(例如,可被給定為)。在此情況下,映射至該子載波上的傳輸天線埠的信號可被產生為:………………………………[等式2], 其中(其可被稱為G矩陣或矩陣G)為具有兩個行的(Ntx x 2)預編碼矩陣。根據實施例,可為(Ntx x Ntl)矩陣,其中Ntx為天線埠的數量,且Ntl為層數。例如,G可由Ntl個 (Ntx x 1)行向量構成。
根據實施例,G矩陣可由網路(例如,中央控制器)配置。例如,G矩陣可由基地台傳訊給WTRU(例如,該WTRU的傳輸器)。根據實施例,G矩陣可由傳輸節點(例如,WTRU)確定。根據實施例,可使用相同的G矩陣來預編碼與任何數量的子載波及/或子帶相關聯的符號。例如,可使用相同的G矩陣來預編碼任何數量的的子載波及/或子帶上(例如12個子載波的一個資源塊上的)的符號。根據實施例,可使用不同的預編碼矩陣來預編碼不同子帶上的資料。根據實施例,可使用G矩陣來根據UCI的缺失預編碼PUSCH資料。例如,可使用(例如,在子帶上及/或在任何數量的子載波上使用)相同的G矩陣來預編碼資料及UCI符號這兩者。
根據實施例,多個層上的子載波k 可被載入相同的UCI符號,且映射至天線埠的信號可被寫為:…………………………[等式3]。 在等式3的情況下,有效預編碼向量可為用於傳輸的次佳預編碼向量、且可能導致UCI接收的性能降級。
根據實施例,可修改預編碼操作,例如以改善UCI傳輸(例如,UCI傳輸的性能)。根據實施例,預編碼操作可被修改為:..[等式4], 其中A 為對角矩陣,其中對角元素可為複合值。
根據實施例,矩陣可與碼簿相關聯(例如,從碼簿中選擇、確定的、及/或表明)。例如,在PUSCH的兩層傳輸的情況下,其中對於所有層,UCI符號均是相同的,可從碼簿而被選擇:。 然而,本揭露的內容不限於上述碼簿,且可使用不同的碼簿。
根據實施例,預編碼操作可被修改如下:…….[等式5], 其中A 為其對角元素可為複合值的向量,且該向量A 可被稱為針對虛擬天線的預編碼向量。根據實施例,可根據碼簿來選擇、確定或表明(例如,該向量A )。例如,在PUSCH的兩層傳輸的情況下,其中對於所有層,UCI符號均是相同的,可從碼簿而被選擇:。 然而,本揭露的內容不限於上述碼簿,且可使用不同的碼簿。
根據實施例,在接收器或傳輸器中的任一者處(例如,接收器節點、傳輸器節點、基地台、WTRU),可以是已知的。根據實施例,可由接收器節點(例如,基地台)確定、並被傳訊給傳輸器。根據實施例,可由傳輸器節點確定並被傳訊給接收節點(例如,WTRU)。根據實施例,藉由使傳輸器利用相同的對資料解調參考信號進行預編碼,可被傳訊給接收器。根據實施例,在UCI符號中的一些或所有在子帶(例如,連續子載波集合(例如,不會改變的子載波))上被傳輸的情況下,該子帶上傳輸的參考信號可以用複合矩陣而被預編碼。根據實施例,可根據來確定或獲得。根據實施例,可根據以下任一者來確定:資源索引、子載波索引、或符號索引。
根據實施例,可根據模式而對進行循環。例如,可根據預先確定的模式,經由碼簿中的矩陣/向量來對進行循環。根據實施例,可根據以下任一者執行該循環:子載波、資源元素、子帶、OFDM符號、時槽。例如,在具有4個矩陣的碼簿的情況下,可以用碼簿的第一預編碼矩陣來對具有UCI的第一子載波進行預編碼,用碼簿的第二預編碼矩陣來對具有UCI的第二子載波進行預編碼,用碼簿的第三預編碼矩陣來對具有UCI的第三子載波進行預編碼,以及用碼簿的第四預編碼矩陣來對具有UCI的第四子載波進行預編碼。根據實施例,在此情況下,可以用來自碼簿的第一矩陣來對具有UCI的下一子載波進行預編碼等。
根據實施例,可使用G矩陣的行(例如,一個行)來對所有層上的符號進行預編碼,如等式6中所示:……….[等式6], 其中。根據實施例,根據等式6的預編碼方法可被認為等同於在僅一個層上(例如可能利用功率提升)傳輸。根據實施例,預編碼矩陣(例如,G矩陣的行)可為以下任一者:被傳訊給接收器、由接收器確定、由接收節點確定、被傳訊給傳輸器、由傳輸器確定、由傳輸節點確定、或由中央控制器配置。根據實施例,預編碼向量可根據規則而被確定。例如,可以有這樣的規則,其使得G矩陣的第n ’行總是被用於預編碼UCI符號。
第13圖為示出了根據實施例的層至子載波映射的示意圖,其中重複的UCI被映射至不同的子載波。
根據實施例,如第13圖所示,可將任何數量的相同UCI符號映射至不同子載波。例如,如層1映射1303及層2映射1304所示,UCI符號1302可被映射至層1及2的不同子載波。根據實施例,可根據以下等式執行預編碼:…………………………………..[等式7], 其中可為資料符號,而可為UCI符號。
根據實施例,在UCI符號不在相同子載波上被重複的情況下,可例如在沒有修改下使用G矩陣作為預編碼矩陣。根據實施例,攜帶UCI符號的子載波集合對於所有層可能是不同的,或者換句話說,每一層可與攜帶UCI符號的不同子載波集合相關聯。例如,在4個層的情況下,可在子載波12、 24、36、48上傳輸一個UCI符號。根據實施例,可對層子集使用相同的子載波。例如,在4個層的情況下,可在子載波12、 24、36、48上傳輸一個UCI符號。
根據實施例,可藉由打孔(例如,藉由取代與資料碼字相關聯的符號(例如,屬於該資料碼字的符號)),在PUSCH中傳輸屬於UCI碼字的UCI符號(例如,被編碼及調變的ACK/NACK位元、被編碼及調變的RI位元、被聯合編碼及調變的ACK/NACK及RI位元)。然而,本揭露的內容並不限於此,上述所給出的特徵、操作及方法可應用於打孔PUSCH以進行UCI傳輸的情形。針對 DFT-s-OFDM 波形的 PUSCH 中的 UCI 傳輸
第14圖示出了根據實施例的DFT-s-OFDM波形產生器的示意圖;第15圖為示出了針對PUSCH中的UCI傳輸的DFT-s-OFDM波形的示意圖;第16圖為示出了針對PUSCH中的UCI傳輸的DFT-s-OFDM波形的另一示意圖;以及第17圖為示出了針對PUSCH中的UCI傳輸的另一DFT-s-OFDM波形的示意圖。
根據實施例,在DFT-s-OFDM的情況下,可在DTT操作之前執行UCI符號(例如,打孔)的放置。參見第14圖,可由方塊1401執行放置UCI符號,該方塊1401位於DFT-s-OFDM傳輸器1400的DFT方塊1402之前。例如,可在DFT擴展(例如,在時域中)之前對PUSCH與UCI(例如,ACK/NACK 1403、RI 1404以及CQI 1405)符號進行多工。在以下技術中,DFT輸入可被稱為時間樣本或樣本。例如,在DFT大小為12的情況下(例如,DFT接收12個輸入),有12個時間樣本。
根據實施例,ACK/NACK符號可鄰近前端載入的DM-RS符號,例如,ACK/NACK符號可被置於鄰近該前端載入的DM-RS符號的DFT-s-OFDM符號(一個或多個)處(例如,由該DFT-s-OFDM符號攜帶)。根據實施例,攜帶ACK/NACK符號的DFT-s-OFDM符號的數量可取決於ACK/NACK符號的數量、且可由eNB、gNB及/或其他AP配置。根據實施例,DFT-s-OFDM符號的數量可由UE/WTRU基於以下任一者來隱性確定:PUCCH格式及/或ACK/NACK符號的數量等。例如,DFT-s-OFDM符號m+1, m+2, …m+K 的樣本索引k 可被用於攜帶ACK/NACK符號。在此情況下 DFT-s-OFDM 符號m+1 可為前端載入的DM-RS符號鄰近的DFT-s-OFDM 符號,且K 可為參數,例如PUCCH格式。
根據實施例,RI符號可被置於DM-RS符號鄰近的DFT-s-OFDM符號(一個或多個)上。根據實施例,攜帶RI的DFT-s-OFDM符號的數量可取決於RI符號的數量、且可由eNB、gNB及/或其他AP配置。根據實施例,攜帶RI的DFT-s-OFDM符號的數量可由UE/WTRU基於以下任一者隱性地確定:PUCCH格式及/或RI符號的數量等。例如,DFT-s-OFDM符號m+1, m+2, …m+L 的樣本索引l 可被用於攜帶RI符號。在此情況下,DFT-s-OFDM 符號m+1 可為前端載入的DM-RS符號鄰近的DFT-s-OFDM 符號,且L 可為參數。作為另一範例,在DFT大小為24的情況下,可以有24個樣本(其可根據所關聯/相應樣本索引而被指代或參考,例如樣本索引1至24)。在此情況下,任何數量的該24個輸入(由各自的樣本索引表明)可被取代為控制傳訊,例如,ACK/NACK傳訊、RI、CQI等。
根據實施例,其他類型的UCI(例如,CQI)可被置於多個DFT-s-OFDM符號上的指定時間樣本集合上。例如,樣本集合可以在所有兩個邊緣或在邊緣其中之一上。參見第15圖,示出了訊框結構,其中ACK/NACK 1502及RI 1503符號在DM-RS 1501鄰近的DFT-s-OFDM符號上被傳輸,而CQI 1504符號在DM-RS 1501之後的數個DFT-s-OFDM符號上被傳輸。根據實施例,第15圖的訊框結構中的CQI 1504符號被置於DFT輸入的兩個邊緣上。參見第16圖,CQI 1604符號可被置於DFT輸入的一個邊緣上。根據實施例,DFT-OFDM符號的數量可跨部分或整個TTI。
根據實施例,DM-RS可被前端載入(例如,DM-RS可在開始傳輸使用者資料之前被傳輸),且可以有任何數量的所傳輸的DM-RS符號。在傳輸多個DM-RS符號的情況下,UCI資料傳輸可開始於前端載入的DM-RS的最後一個DM-RS符號傳輸之後。根據實施例,如第17圖所示,ACK/NACK 1702及RI 1703符號可分佈在DFT的輸入上,或者他們可在如第17圖所示的DFT輸入的連續集合上被傳輸。根據實施例,用於ACK/NACK及RI的輸入集合可以是相鄰的或不相鄰的/分散的。
ACK/NACK符號可根據以下任一方法而被置入PUSCH。根據實施例,ACK/NACK符號可打孔PUSCH(例如,將在PUSCH中傳輸的資料調變符號(例如,16 QAM符號)可以ACK/NACK符號取代)。根據實施例,可在ACK/NACK符號周圍對PUSCH進行速率匹配。在此速率匹配的情況下,將被載入ACK/NACK符號的PUSCH資源可不被計入用於PUSCH傳輸的可用資源數量。
根據實施例,可確定:(a)ACK/NACK符號是否可打孔PUSCH;及/或(b)是否可在ACK/NACK符號周圍對PUSCH進行速率匹配。根據實施例,此確定可取決於以下任一者:(i)傳輸時間間隔內可用於PUSCH的DFT-s-OFDM符號的數量;(ii)總PUSCH資源數量(例如,傳輸時間間隔內可用於PUSCH的DFT-s-OFDM符號的數量乘以所分配的子載波的數量,其中子載波的數量可等於DFT輸入插腳的數量);及/或(iii)將在PUSCH中傳輸的ACK/NACK符號的數量。
根據實施例,關於至少上述的討論,可應用以下規則中的任一者:(1)n可為可用於PUSCH的DFT-s-OFDM符號的數量,k可為所分配的子載波的數量,以及m可為ACK/NACK符號的數量;(2)如果mM ,ACK/NACK符號可打孔PUSCH,而如果mM ,可在ACK/NACK符號周圍對PUSCH進行速率匹配,參數M可由eNB、gNB及/或其他AP配置及/或傳訊、及/或可由PUCCH格式確定;(3)如果n<N,則可在ACK/NACK符號周圍對PUSCH進行速率匹配,參數N可由eNB、gNB及/或其他AP配置及/或傳訊、及/或可由PUCCH格式確定,以及如果n≥N,則如果mM ,ACK/NACK符號可打孔PUSCH符號,而如果mM ,可在ACK/NACK符號周圍對PUSCH進行速率匹配;及/或(4)如果nk<L,則可在ACK/NACK符號周圍對PUSCH進行速率匹配, 參數L可由eNB、gNB及/或其他AP配置及/或傳訊、及/或可由PUCCH格式確定,如果nk≥L,則如果mM ,ACK/NACK符號可打孔PUSCH符號,而如果mM ,可在ACK/NACK符號周圍對PUSCH進行速率匹配。
根據實施例,ACK/NACK符號可打孔PUSCH。例如,在ACK/NACK符號數量與碼塊中的調變符號數量的比率低於臨界值的情況下,ACK/NACK符號可打孔PUSCH。根據實施例,可以有Z個資訊位元被編碼以產生bZ個編碼位元的情形,其中b可為有理數。在此情況下,bZ個編碼位元可以用調變方案(例如,QAM調變)而被調變,以產生調變符號。
根據實施例,可在PUSCH的資源集合(例如,PUSCH的所分配的資源,其由任何數量的OFDM符號上的多個子載波構成)上傳輸調變符號,且編碼率可為1/b。根據實施例,在一些調變符號被打孔且由ACK/NACK符號取代的情況下,有效編碼率可高於1/b。根據實施例,在使用打孔時的編碼率的增加小於一值(例如,Δ < β,其中Δ為有效編碼率的增加,而β為臨界值),則ACK/NACK符號可打孔PUSCH,否則可在ACK/NACK符號周圍對PUSCH進行速率匹配。根據實施例,Δ 和β可由中央控制器配置。根據實施例,可在RI及/或CQI符號周圍對PUSCH進行速率匹配。
第18圖為示出了根據實施例的使用DFT-s-OFDM的帶有附加DM-RS的UCI傳輸的示意圖。
根據實施例,作為對前端載入的DM-RS的附加或替代,可配置DM-RS 以用於傳輸,例如以當移動性高時改善通道估計精確度。在此情況下,ACK/NACK 1802及/或RI 1803符號中的任一者可被置於前端載入的DM-RS 1801符號及附加DM-RS 1801符號周圍,如第18圖所示。根據實施例,可應用下列:(1)將在前端載入的DM-RS 401鄰近傳輸的ACK/NACK 符號可在附加DM-RS 符號鄰近的OFDM符號上被重複,以及,如果配置了超過一個附加DM-RS,ACK/NACK 符號可在附加DM-RS符號中的至少一者鄰近的DFT-s-OFDM符號上被傳輸;及/或(2)ACK/NACK符號可被分為群組集合,每一群組可在DM-RS符號其中之一鄰近的DFT-s-OFDM符號上被傳輸。
根據實施例,可賦能(例如,開啟)參考符號(RS),例如用於估計及追蹤相位雜訊的PT-RS,且該參考符號可在特定DFT-s-OFDM符號的某些DFT輸入上被傳輸。雖然以下技術是以PT-RS為背景給出的,但本揭露的內容並不限於此,且該技術可適用於其他類型的RS。根據實施例,當PT-RS傳輸被賦能(例如,被開啟)時,可應用以下方法中的任一者:(1)UCI符號可由PT-RS打孔;(2)如果UCI不是ACK/NACK及/或RI,UCI符號可由PT-RS打孔;(3)如果UCI為ACK/NACK及/或RI,PT-RS由UCI打孔;(4)PT-RS由UCI打孔;及/或(5)UCI及/或PT-RS的任一者的時間樣本索引是基於所建立的規則而被移位,以避免UCI與PT-RS的衝突。例如,在時間樣本n的情況下,n+1將用於攜帶UCI,且PT-RS針對時間樣本n被賦能,UCI可在時間樣本n+1、n+2上被傳輸;或者PT-RS可在時間樣本n-1上被傳輸。
根據實施例,所揭露的技術可類似適用於TTI可針對下鏈及上鏈傳輸而被共用(例如,混合TTI)的傳輸方案。在此情況下,在此所揭露的方案可應用於此混合TTI的上鏈傳輸部分。基於 PUSCH 中的 UCI 傳輸的 DM-RS 密度調整
根據實施例,針對PUSCH傳輸的DM-RS密度可根據以下任一者而被確定:PUSCH上存在UCI(例如,該UCI正經由PUSCH而被傳輸)或者在PUSCH中、上及/或與該PUSCH多工的UCI類型。根據實施例,DM-RS密度可與以下任一者相關聯:(1)DM-RS頻率密度(例如,在用於DM-RS傳輸的OFDM或DFT-s-OFDM符號中用於DM-RS的RE的數量)及/或(2)用於PUSCH傳輸及/或實體RB(PRB)的所排程的頻寬內的DM-RS時間密度(例如,用於DM-RS傳輸的OFDM及/或DFT-s-OFDM符號的數量)。
根據實施例,用於PUSCH傳輸的DM-RS模式可基於PUSCH上存在UCI及/或PUSCH中多工的UCI類型而被確定。根據實施例,DM-RS模式可以是在PRB內DM-RS的時間及頻率位置。根據實施例,一個或多個DM-RS模式可具有相同或不同的DM-RS密度。如在此所述的,術語DM-RS密度及DM-RS模式可被互換使用,但依舊符合在此所提供的有關他們各自的描述。
根據實施例,第一DM-RS密度可用於無UCI在PUSCH傳輸中被多工的情況,而第二DM-RS密度可用於PUSCH傳輸內UCI被多工的情況。例如,第一DM-RS密度可基於前端載入的DM-RS(例如,用於DM-RS的前一個或兩個OFDM及/或DFT-s-OFDM符號),而第二DM-RS密度可基於前端載入的DM-RS及附加DM-RS(例如,PUSCH傳輸內的稍後符號中的附加OFDM及/或DFT-s-OFDM符號可用於DM-RS)。
根據實施例,UE/WTRU可基於PUSCH傳輸中存在UCI(或多工了UCI)而確定附加DM-RS(或第二DM-RS密度)傳輸。在此情況下,可傳輸前端載入的DM-RS,而不管UCI存在/不存在,且附加DM-RS傳輸可基於PUSCH傳輸中是UCI存在/不存在而被確定。在此情況下,附加DM-RS可基於特定類型的UCI的存在而被傳輸。例如,如果在PUSCH傳輸中多工了第一UCI類型,該附加DM-RS可不被傳輸(例如,使用第一DM-RS密度),而如果多工了第二UCI類型,則可傳輸該附加DM-RS(例如,使用第二DM-RS密度)。根據實施例,第一UCI類型可包括以下任一者:寬頻/子帶CQI及/或PMI,而第二UCI類型可包括以下任一者:RI、HARQ-ACK、及/或CSI-RS資源索引(CRI)。
根據實施例,可經由配置(例如,根據配置資訊)以賦能/停用(例如,開啟/關閉)基於UCI存在(例如,多工)的多個DM-RS密度的使用。例如,在gNB(例如,gNB、HNB等)被配置為使用多個DM-RS密度的情況下,UE/WTRU可基於PUSCH傳輸上存在(或多工了)UCI來確定所配置的DM-RS密度內的DM-RS密度。否則,根據實施例,UE/WTRU可使用DM-RS密度,其可在不考慮PUSCH傳輸中是否存在UCI的情況下被確定。
根據實施例,用於開啟/關閉多個DM-RS密度的使用的配置(例如,配置資訊賦能/禁用)可包括及/或可被包括在以下任一者中:(1)較高層傳訊;(2)基於任何系統參數(例如,子載波間距、TTI長度、時槽號、無線電訊框號、頻帶、及/或系統頻寬)的隱性確定;(3)基於服務類型 (例如,eMBB、URLLC及/或mMTC)的隱性確定;及/或(4)基於以下UE/WTRU特定參數中的至少一者的隱性確定:例如,UE/WTRU-ID、UE/WTRU類別、排程參數(例如,MCS、層數、及/或所排程的頻寬)、及/或UE/WTRU能力等。
根據實施例,UCI的存在(或多工)可根據在所排程的PUSCH資源內用於UCI傳輸所使用(例如所需的)的RE數量而被確定。根據實施例,在用於UCI傳輸的RE數量小於臨界值的情況下,UE/WTRU可考慮/確定UCI未被多工以用於PUSCH傳輸,例如以確定DM-RS密度。在用於UCI傳輸的RE數量等於或大於臨界值的情況下,UE/WTRU可考慮/確定UCI被多工以用於PUSCH傳輸,例如以確定DM-RS密度。
根據實施例,可基於在所排程的PUSCH資源內用於UCI傳輸所使用(例如所需的)的RE數量來確定DM-RS密度。例如,在用於UCI傳輸的RE的數量小於臨界值的情況下,可使用第一DM-RS密度,而在用於UCI傳輸的RE的數量大於臨界值的情況下,可使用第二DM-RS密度。根據實施例,該臨界值可為以下任一者:預先定義的臨界值、根據用於PUSCH傳輸的所排程資源(例如,用於PUSCH傳輸的可用RE的數量)而被確定的臨界值、及/或任何其他數值。
第19圖為示出了根據實施例的基於PUSCH類型及UCI類型的DM-RS密度及模式的示意圖。
根據實施例,可使用一個或多個DM-RS密度,且可根據PUSCH中存在記憶體在UCI及/或UCI類型中的任一者確定用於PUSCH傳輸的DM-RS密度。參見第19圖,例如:(1)如果沒有多工UCI以用於PUSCH傳輸,可使用第一DM-RS密度1901;(2)如果包括前端載入的DM-RS 1904及附加DM-RS1905的UCI在PUSCH中被多工且UCI為第一UCI類型,可使用第二DM-RS密度1902;及/或(3)如果UCI在PUSCH中被多工且UCI為第二UCI類型,可使用第三DM-RS密度。根據實施例,第一UCI類型可包括寬頻/子帶CQI及/或PMI中的任一者;第二UCI類型可包括RI及/或CRI中的任一者;以及第三UCI類型可包括針對單一載波的HARQ-ACK及/或針對多載波的HARQ-ACK中的任一者。
根據實施例,在同時傳輸多個UCI類型的情況下,使用及/或需要(例如,要求)最高(或最低)DM-RS密度的UCI類型可被用於確定用於包括多個UCI類型的PUSCH傳輸的DM-RS密度。
第20圖為示出了根據實施例的基於PUSCH類型的DM-RS密度及模式的示意圖。
根據實施例,可使用一個或多個DM-RS密度,且用於PUSCH傳輸的DM-RS密度可基於PUSCH類型而被確定。根據實施例,如第20圖所示,PUSCH類型可為以下任一者:僅PUSCH(例如,PUSCH類型1)、具有UCI的PUSCH(PUSCH類型2)、或PUSCH上僅UCI(PUSCH類型3)。根據實施例,可使用任何數量的具有相同DM-RS密度的DM-RS模式,例如DM-RS模式2002、2003。例如,可將DM-RS模式2001用於PUSCH類型1,可將DM-RS模式2002用於PUSCH類型2(例如,具有UCI的PUSCH,包括前端載入的DM-RS 2004以及附加DM-RS 2005),以及可將另一DM-RS模式2003用於PUSCH類型3(例如,PUSCH上僅具有UCI)。根據實施例,在此所揭露的技術可類似適用於TTI可針對下鏈及上鏈傳輸而被共用的傳輸方案(例如,混合TTI)。在此情況下,在此所揭露的方案可應用於此混合TTI的上鏈傳輸部分。基於 PUSCH 中的 UCI 傳輸的 PRB 捆綁大小調整
根據實施例,可捆綁任何數量的PRB。根據實施例,可基於PUSCH上存在UCI而確定PRB捆綁大小。例如,如果沒有UCI被多工以用於PUSCH傳輸,可使用第一PRB捆綁大小,以及如果UCI被多工以用於PUSCH傳輸,可使用第二PRB捆綁大小。
根據實施例,PRB捆綁大小可被稱為(例如,可被認為是、由以下確定、由以下表明、與以下相關聯)用於捆綁PRB群組(PRG)內的一個或多個PRB的相同預編碼器。RPB捆綁大小可表明捆綁PRB群組內PRB的數量。根據實施例,接收器可接收捆綁PRB群組內的任何數量的PRB 的參考信號,例如以改善通道估計性能。
根據實施例,捆綁PRB群組可包括相同時槽中的PRB。根據實施例,捆綁PRB群組中的任何數量的PRB在頻域中可以是連續的。根據實施例,捆綁PRB群組可包括任何數量的時槽(例如,不同時槽)中的PRB。根據實施例,捆綁PRB群組中的任何數量的PRB在時域中可以是連續的。
根據實施例,可以有任何數量的PRB捆綁大小。根據實施例,PRB捆綁大小可基於PUSCH上存在UCI而被確定。例如,WTRU可根據PUSCH上接收的(例如,偵測的及/或解碼控制傳訊)UCI而確定PRB捆綁大小。根據實施例,PRB捆綁大小可包括針對PUSCH傳輸所排程的PRB(例如,PRB集合)中的所有PRB。在此情況下,可針對所有所排程的PRB(其可被稱為寬頻PRB捆綁)使用相同預編碼器。根據實施例,PRB捆綁大小可包括針對PUSCH傳輸所排程的PRB(例如,PRB集合)中的任何數量的PRB。
根據實施例,PRB捆綁大小可經由較高層傳訊而被配置。例如,任何數量的PRB捆綁大小可經由廣播控制傳訊而被配置(例如,確定、設定、選擇等)。根據實施例,可使用較高層傳訊來配置用於確定PRB捆綁大小的方法。例如,可根據配置資訊及/或接收自較高層的傳訊來賦能(例如,開啟/關閉)根據PUSCH上存在UCI來進行PRB捆綁大小確定。根據實施例,配置(例如,控制傳訊、配置資訊、及/或資訊元素等)可包括或為以下任一者: (1) 較高層配置(例如,較高層配置資訊); (2) 與波形相關聯的隱性配置(例如,隱性配置資訊);例如,在使用OFDM以用於PUSCH傳輸的情況下,可使用動態PRB捆綁大小調整;例如,在使用DFT-s-OFDM以用於PUSCH傳輸的情況下,可使用寬頻PRB捆綁。 (3) 根據系統參數的隱性確定,該系統參數包括以下任一者:(i) 子載波間距;(ii)TTI長度;(iii) 時槽號;(iv) 無線電訊框號;(v) 頻帶;(vi) 系統頻寬;及/或(vii) 任何其他系統參數; (4) 根據服務類型的隱性確定,該服務類型包括以下任一者:(i) eMBB;(ii) URLLC;(iii) mMTC;及/或(iv) 任何其他服務類型;及/或 (5) 根據UE/WTRU特定參數的隱性確定,該UE/WTRU特定參數包括以下任一者:(i) UE/WTRU-ID;(ii) UE/WTRU類別;(iii) 排程參數(例如,MCS、層數、排程頻寬等);(iv) UE/WTRU能力;及/或(v) 任何其他UE/WTRU特定參數。
根據實施例,可使用任何數量的PRB捆綁大小,且PRB捆綁大小(例如,針對PUSCH傳輸)可根據以下任一者而被確定:存在UCI及/或UCI類型。例如,在沒有UCI被多工以用於PUSCH傳輸的情況下,可使用第一PRB捆綁大小;在UCI被多工且UCI為第一UCI類型的情況下,可使用第二PRB捆綁大小;以及在UCI被多工且UCI為第二UCI類型的情況下,可使用第三PRB捆綁大小等等。根據實施例,UCI類型可包括及/或可為以下任一者:(1)針對以下任一者第一UCI類型:寬頻/子帶CQI及/或PMI;(2)針對以下任一者第二UCI類型:RI及/或CRI;(3)針對以下任一者第三UCI類型:針對單載波的HARQ-ACK及/或針對多載波的HARQ-ACK。
根據實施例,可同時傳輸多個UCI類型。在多個UCI類型的情況下,可根據UCI類型(例如,來自多個UCI類型,例如,使用或者需要(例如,需求)最大或最小PRB捆綁大小的UCI類型)的PRB大小來確定用於PUSCH傳輸的PRB捆綁大小。根據實施例,可使用任何數量的PRB捆綁大小,且可根據PUSCH類型來確定PRB捆綁大小(例如,針對PUSCH傳輸)。根據實施例,PUSCH類型可包括以下任一者:(1)針對僅PUSCH的PUSCH類型1;(2)針對具有UCI的PUSCH的PUSCH類型2;及/或(3)針對PUSCH 上的僅UCI的PUSCH類型3。
根據實施例,在此所揭露的技術可類似適用於TTI可針對下鏈及上鏈傳輸而被共用的傳輸方案(例如,混合TTI)。在此情況下,在此所揭露的方案可應用於此混合TTI的上鏈傳輸部分。PUSCH 中的 CQI 的交錯時間 - 頻率資源元素映射
根據實施例,在CP-OFDM傳輸的情況下,可在針對PUSCH傳輸所分配的時間-頻率資源上分佈(交錯)資源元素映射。例如,所分佈(例如,交錯的)資源元素映射可用於實現針對CQI的時間-頻率分集。不同於本揭露,LTE(例如,舊有的LTE)使用頻率優先映射,其中CQI酬載被依序直接映射到相鄰資源元素上。在LTE(例如,舊有的LTE)及碼塊群組(CGG)的情況下,由於對於用於資料傳輸的某些CBG的大量資源損失,該頻率優先映射會(例如,本質上)影響針對大CQI酬載的某些CBG的性能。此外,在LTE(例如,舊有的LTE)的情況下,在低速情形下,CQI酬載的時間優先順序映射可能不能提供任何分集增益。
根據實施例,在PUSCH中CQI的交錯時間-頻率資源元素映射的情況下,CQI資訊位元可被(例如,首先)通道編碼及/或(例如,其次)速率匹配至PUSCH上用於CQI傳輸的可用資源。根據實施例,WTRU可確定(例如,給定、某些)時槽中用於CQI傳輸的資源元素的量。根據實施例,根據CQI的性能目標(例如,依照BLER及/或PAPR等),WTRU可(例如,動態地)確定給定時槽中用於CQI傳輸的資源元素的量。
根據實施例,WTRU可(例如,動態地)確定資源元素的量。根據實施例,給定時槽中用於CQI傳輸的資源元素的量可根據時槽的所配置DM-RS模式而被確定。例如,在低密度DM-RS的情況下,WTRU可針對PUSCH上的CQI傳輸使用較低編碼率(例如,分配較高數量的資源),例如以補償與通道估計精確度相關聯的損失。根據實施例,根據PUSCH與TDM或FDM方式的短或長PUCCH的同時傳輸,WTRU可(例如,動態地)確定給定時槽中用於CQI傳輸的資源元素的量。
根據實施例,給定時槽中用於CQI傳輸的資源元素的量可根據用於PUSCH傳輸的波形(例如,CP-OFDM及/或DFT-s-OFDM)而被確定。根據實施例,在CP-OFDM情況下(例如,相較於DFT-s-OFDM,針對CP-OFDM的覆蓋是有限的情況下),WTRU可將較低編碼率(例如,分配較高數量的資源)用於PUSCH上的CQI傳輸。根據實施例,根據給定時槽中存在其他參考符號(例如,PT-RS、CSI-RS、干擾測量資源(IMR)等)及/或將在相同PUSCH上傳輸的針對其他UCI(例如,ACK/NACK、RI等)的酬載量,WTRU可(例如,動態地)確定該時槽中用於CQI傳輸的資源元素的量
根據實施例,給定時槽中用於CQI傳輸的資源元素的量可根據分配用於PUSCH傳輸的RB是連續的還是非連續的而被確定。根據實施例,在非連續分配的情況下,可考慮調變間失真(IMD)。根據實施例,可藉由降低CQI的編碼率(例如,有效編碼率)來解決較高的IMD。根據實施例,給定時槽中用於CQI傳輸的資源元素的量可根據可用功率餘量(例如,根據功率餘量報告(PHR))而被確定。例如,WTRU可使用PHR來確定以下任一者:(1)有多少傳輸功率剩下以用於功率提升CQI傳輸;及/或(2)目前PUSCH傳輸正使用的功率。
根據實施例,給定時槽中用於CQI傳輸的資源元素的量可根據CBG配置而被確定。例如,不同於CBG由多個碼塊(CB)構成的情況,在CBG由單一CB構成的情況下,WTRU可針對CQI使用不同的編碼率。根據實施例,給定時槽中用於CQI傳輸的資源元素的量可根據PUSCH模式(例如,針對操作的PUSCH模式、或用於操作的PUSCH模式等)而被確定,該PUSCH模式例如為單使用者多層MIMO、單使用者單層MIMO、以及多使用者MIMO。
第21圖為示出了根據實施例的PUSCH上的CQI的頻率交錯資源映射的示意圖。
根據實施例,WTRU可使用用於PUSCH上的CQI的資源元素映射的(例如,所配置的、預配置的、預先確定的、傳訊的等)模式。根據實施例,模式可採用(例如,表明、使用、參考、分配、配置、選擇等)在時間及/或頻率域中的任一者中交錯的時間-頻率資源元素。參見第21圖,示出了由包括至少一RB的資源塊群組(RGB)構成的方案(例如,模式、映射)。
根據實施例,WTRU可根據(例如,針對)任何數量的RGB來分割用於(例如,分配用於)PUSCH傳輸的頻寬。根據實施例,RGB可包括任何數量的RB,例如本地的或分散的RB。例如,參見第21圖,RGB 2101可包括RB 2102-2105中的任一者。根據實施例,WTRU可(例如,依序地)將編碼後的CQI符號映射至RGB的OFDM符號的資源元素。例如,WTRU可將編碼後的CQI符號依序映射至第一RGB的第一OFDM符號的第一資源元素,接著映射至第二RGB的第一OFDM符號的第一資源元素,以此類推。在依序映射編碼後的CQI符號的情況下,WTRU可根據與PUSCH上的CQI相關聯(例如,針對PUSCH上的CQI)的頻率交錯而最大化頻率分集增益。
第22圖為示出了根據實施例的PUSCH上的CQI的時間-頻率交錯資源映射的示意圖。
根據實施例,用於PUSCH傳輸的時間持續時間可被分割為任何數量的OFDM符號及/或CBG。例如,參見第22圖,WTRU可將用於PUSCH傳輸的分配時間持續時間分割為一個或多個OFDM符號及/或CBG,例如CBG 2201、2202。根據實施例,每一CBG可與任何數量的OFDM符號相關聯。根據實施例,WTRU可將編碼後的CQI符號依序映射至第一CBG的第一OFDM符號的第一資源元素、接著映射至第二CBG的第一OFDM符號的第一資源元素,以此類推。在依序映射編碼後的CQI符號的情況下,WTRU可根據與PUSCH上的CQI相關聯的(或針對PUSCH上的CQI的)時間交錯來最大化時間分集增益,且可避免單一CBG的過大資源使用。
根據實施例,可針對以下任一者來給出時間持續時間及頻寬持續時間、或者時間持續時間及頻寬持續時間可例如被分割為以下任一者:OFDM符號、CBG、或RGB。根據實施例,WTRU可根據CBG及/或RBG而將編碼後的CQI符號依序映射至OFDM符號的各自的資源元素,例如以實現時間及頻率分集增益。參見第22圖,示出了具有時間持續時間及頻寬持續時間的分割的方案(例如,模式、映射),該分割由包括1個RB的RGB構成。
第23圖為示出了根據實施例的由WTRU執行的產生OFDM符號的方法的示意圖。
根據實施例,WTRU可包括傳輸器、接收器(及/或收發器)、以及處理器,用於執行第23圖所示的方法。參見第23圖,在操作2301處,WTRU可將UCI信號序列的任何數量的元素(及/或與任何數量的元素相關聯的資訊)映射至用於傳輸用於攜帶與PUSCH相關聯的資訊的OFDM符號的可用子載波集合的子集。在操作2302處,WTRU可根據該元素被映射至的子載波的層來預編碼該映射的元素。在操作2303處,該WTRU可將該UCI信號序列的該映射的元素饋送至IDFT單元,以及在操作2304處,該WTRU可使用IDFT單元將該映射的元素變換為IDFT變換後的信號。根據實施例,該IDFT變換後的信號可包括由用於傳輸的多個資源所攜帶的UCI信號序列的該映射的元素。
根據實施例,被應用至子載波的第一層的該映射的元素的第一預編碼不同於被應用至相同子載波的第二層的該映射的元素的第二預編碼。根據實施例,被應用至該第二層的該映射的元素的該第二預編碼是根據以下任一者確定的:來自相關聯的DCI的指示、該第一預編碼矩陣的函數及該UCI的相關聯資源索引。根據實施例,該第二層的該映射的元素包括與該第一層的該映射的元素相同的UCI。根據實施例,被應用至第一子載波的層的該映射的元素的該預編碼可不同於被應用至第二子載波的相同層的該映射的元素的預編碼。根據實施例,用於傳輸UCI信號序列的碼字的數量可根據每一子載波的層數而被確定。根據實施例,該碼字可根據以下任一者而被映射至每一子載波的層:規則、配置資訊、或下鏈控制資訊(DCI)。
根據實施例,與該UCI信號序列的元素相關聯的資訊的映射可包括以下任一者:(1)打孔PUSCH;或(2)速率匹配該PUSCH。根據實施例,該PUSCH的打孔可包括以該UCI信號序列的元素取代與將在PUSCH中傳輸的資料調變符號相關聯的元素。根據實施例,該PUSCH的速率匹配可包括根據可用資源來速率匹配該PUSCH的資料調變符號的元素。根據實施例,該UCI信號序列的元素可在單一子訊框(或無線電訊框的類似類型分割)期間被傳輸。
根據實施例,該UCI信號序列可包括與上鏈傳輸相關聯的或用於控制上鏈傳輸的控制資訊。根據實施例,該UCI可包括與以下任一者相關聯的資訊: ACK/NACK、RI或CQI。根據實施例,該OFDM符號可為離散傅立葉變換-擴展OFDM(DFT-s-OFDM)符號。根據實施例,該WTRU可在DFT單元處接收與該UCI信號序列的任何數量的元素相關聯的資訊、且可在該DFT單元處使用DFT操作而對該資訊進行預編碼,以形成該UCI信號序列的頻域樣本/信號以用於該DFT-s-OFDM符號。根據實施例,WTRU可選擇性地:(1)藉由以該UCI信號序列的該元素取代與將在該PUSCH中傳輸的資料調變符號相關聯的該元素以打孔該PUSCH;或(2)速率匹配與該PUSCH的資料調變符號相關聯的資料信號序列的該元素,使得該資料信號的被速率匹配的元素被設置於該UCI信號序列的元素附近。根據實施例,該WTRU可接收該IDFT變換後的信號的傳輸,作為由該傳輸器/接收器傳輸的至少一OFDM符號。
雖然上文中描述的特徵和元素採用了特定的組合,但是本領域中具有通常知識者將會瞭解,每一個特徵或元素既可以單獨使用,也可以與其他特徵和元素進行任何組合。此外,這裡描述的方法可以在併入到電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。關於非揮發性電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體儲存裝置、例如內部硬碟和可拆卸光碟之類的磁性媒體、磁光媒體、以及CD-ROM光碟及數位多功能光碟(DVD)之類的光學媒體。與軟體相關聯的處理器可以用於實施在UE、WTRU、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。
此外,在上述實施例中記錄了包括約束伺服器和包含處理器的集結點/伺服器的處理平臺、計算系統、控制器和其他裝置。這些裝置可以包括至少一個中央處理單元(“CPU”)和記憶體。依照電腦程式設計領域中具有通常知識者的實踐,對於操作或指令的行為及符號性表示的引用可以由不同的CPU和記憶體來執行。此類行為和操作或指令可被稱為“運行”、“電腦運行”或“CPU運行”。
本領域中具有通常知識者將會瞭解,行為以及用符號表示的操作或指令包括由CPU來操縱電子信號。電子系統代表的是可能導致電子信號由此變換或減少,以及將資料位元保存在記憶體系統中的記憶體位置,由此重新配置或以其他方式變更CPU操作以及其他信號處理的資料位元。保持資料位元的記憶體位置是具有與資料位元對應或代表資料位元的特定電、磁、光或有機屬性的實體位置。應該理解的是,這裡的範例性實施例並不限於上述平臺或CPU,並且其他平臺和CPU同樣可以支援所提供的方法。
資料位元還可以被保持在電腦可讀媒體上,電腦可讀媒體媒體包括磁片、光碟以及CPU可讀取的其他任何揮發(例如隨機存取記憶體(“RAM”))或非揮發(例如唯讀記憶體(“ROM”))大型儲存系統。電腦可讀媒體可以包括協作或互連的電腦可讀媒體,這些媒體可以單獨存在於處理系統之上、或可以分佈在可能位於處理系統本地或遠端的多個互連處理系統之中。可以理解的是,這些代表性實施例並不限於上述記憶體,並且其他的平臺和記憶體同樣可以支援所描述的方法。
在一個說明性實施例中,這裡描述的任何操作、處理等等都可以作為儲存在電腦可讀媒體上的電腦可讀指令來實施。電腦可讀指令可以由行動單元、網路元件及/或其他任何計算裝置的處理器來執行。
在系統方面的硬體和軟體實施之間幾乎是沒有區別的。使用硬體還是軟體通常(但也並不是始終如此,因為在某些環境中,在硬體和軟體之間的選擇有可能會變得很重要)是代表了成本與效率之間的折衷的設計選擇。這裡描述的處理及/或系統及/或其他技術可以由各種載體(vehicle)來實現(例如硬體、軟體及/或韌體),並且較佳的載體可以隨著部署處理及/或系統及/或其他技術的上下文而改變。舉例來說,如果實施方確定速度和精確度是首要的,那麼實施方可以選擇主要採用硬體及/或韌體載體。如果靈活度是首要的,則實施方可以選擇主要採用軟體實施。替代地,實施方可以選擇硬體、軟體及/或韌體的某種組合。
以上的詳細描述已經經由使用方塊圖、流程圖及/或範例而對裝置及/或處理的不同實施例進行了描述。就像此類方塊圖、流程圖及/或範例包括了一個或多個功能及/或操作那樣,本領域中具有通常知識者將會理解,此類方塊圖、流程圖或範例內的每一個功能及/操作可以單獨及/或共同地由範圍廣泛的硬體、軟體、韌體或者近乎其任何組合來實施。例如,合適的處理器包括通用處理器、專用處理器、傳統處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心相關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、專用標準產品(ASSP)、現場可編程閘陣列(FPGA)電路、其他任何類型的積體電路(IC)及/或狀態機。
雖然上文中提供的特徵和元件採用了特定的組合,但是本領域中具有通常知識者將會瞭解,每一個特徵或元件可以單獨、或以與其他特徵和元件的任何組合而被使用。本揭露並不是依照本申請案中描述的特定實施例來限制的,這些實施例旨在作為不同方面的說明。正如本領域中具有通常知識者顯而易見的那樣,在不脫離本揭露的實質和範疇的情況下,可以做出眾多的修改和變化。本申請案的說明書中使用的元件、行為或指令不應被理解為對本發明是至關重要或是不可或缺的,除非明確地採用這種方式提供。除了這裡列舉的方法和裝置外,本領域中具有通常知識者將可以從以上的描述中顯而易見處於本揭露的範圍以中的功能等同的方法和裝置。此類修改和變化旨在落入附加申請專利範圍的範圍內。本揭露僅僅依照附加申請專利範圍的條款及其此類申請專利範圍有權保護的等價物的全部範圍而被限制。應該理解的是,本揭露並不限於特定方法或系統。
還應該理解的是,這裡使用的術語僅僅是為了描述特定的實施例的目的,且並不旨在進行限制。如本文所使用的,當本文引用的術語“使用者設備”及其縮寫“UE”可以是指(i)如上所述的無線傳輸及/或接收單元(WTRU);(ii)如上所述的WTRU的多個實施例中的任何一個;(iii)具有無線能力及/或有線能力(例如可連接)的裝置,特別地,裝置配置了如上所述的WTRU的一些或所有結構和功能;(iii)配置了比如上所述的WTRU的所有結構和功能少的結構和功能的具有無線能力及/或有線能力的裝置;或(iv)類似裝置。在這裡提供了可以代表這裡述及的任一WTRU的範例WTRU的細節。
在某些代表性實施例中,這裡描述的主題的若干個部分可以經由專用積體電路(ASIC)、現場可編程閘陣列(FPGA)、數位訊號處理器(DSP)及/或其他集成格式來實施。然而,本領域中具有通常知識者將會認識到,這裡揭露的實施例的一些方面可以全部或者部分在積體電路中等同地實施、作為在一個或多個電腦上運行的一個或多個電腦程式(例如作為在一個或多個電腦系統上運行的一個或多個程式)來實施、作為在一個或多個處理器上運行的一個或多個程式(例如作為在一個或多個微處理器上運行的一個或多個程式)來實施,作為韌體來實施,或者作為近乎其任何組合來實施,並且依照本揭露,關於軟體及/或韌體的電路設計及/或代碼編寫同樣落入本領域中具有通常知識者的技術範圍以內。此外,本領域中具有通常知識者將會瞭解,這裡描述的主題的機制可以作為程式產品而以各種形式分發,並且無論使用了何種特定類型的信號承載媒體來實際執行分發,這裡描述的主題的說明性實施例都是適用的。信號承載媒體的範例包括但不限於下列:可記錄型媒體,例如軟碟、硬碟驅動器、CD、DVD、數位磁帶、電腦記憶體等等,以及傳輸類型的媒體,例如數位及/或類比通信媒體(例如光纜、波導、有線通信鏈路、無線通訊鏈路等等)。
這裡描述的主題有時示出被包括在其他不同的元件內或是與之連接的不同元件。應該理解的是,如此描繪的架構僅僅是範例,並且用於實現相同功能的眾多其他架構實際上都是可以實施的。在概念上,實現相同功能的元件的任何佈置都被有效地“關聯”,使得實現期望的功能。因此,在這裡組合在一起以實現特定功能的任何兩個元件都可被認為是彼此“關聯”的,使得將會實現期望的功能,而不用考慮架構或中間元件。同樣地,以這種方式關聯的任何兩個元件也可以被視為彼此“可操作地連接”或“可操作地耦合”,以便彼此實現期望的功能,並且能以這種方式關聯的任何兩個元件也可以被視為彼此“能夠可操作地耦合”,以實現期望的功能。能夠可操作地耦合的特定範例包括但不限於可以在實體上配對及/或在實體上交互的元件及/或可以無線地互及/或無線交互的元件及/或在邏輯上交互及/或可在邏輯上交互的元件。
對於在這裡實質上使用了的任何的複數及/或單數術語,本領域中具有通常知識者可以根據上下文及/或應用適當地從複數轉換為單數及/或從單數轉換為複數。為了清楚起見,在這裡可以明確地闡述各種單數/複數置換。
本領域中具有通常知識者將會理解,一般來說,在這裡尤其是附加申請專利範圍(例如附加申請專利範圍的主體)中使用的術語通常旨在作為“開放式”術語(舉例來說,術語“包括”應被解釋成“包括但不限於”,術語“具有”應被解釋成“至少具有”,術語“包含”應被解釋為“包括但不限於”等等)。本領域中具有通常知識者將會進一步理解,如果所引入的申請專利範圍敘述旨在特定的數量,那麼在該申請專利範圍中應該明確地敘述這種意圖,並且如果沒有這種敘述,那麼此類意圖是不存在的。舉例來說,如果旨在是僅僅一個項目,那麼可以使用術語“單一”或類似語言。作為理解輔助,後續的附加申請專利範圍及/或這裡的描述可以包括使用介紹性短語“至少一個”以及“一個或多個”以引入申請專利範圍的敘述。然而,使用此類短語不應被解釋成是這樣一種申請專利範圍敘述的引入方式,即藉由不定冠詞“一”或“一個”以將包含以這種方式引入的申請專利範圍敘述的任何特定的申請專利範圍限於只包含一個此類敘述的實施例,即使相同的申請專利範圍包含了介紹性短語“一個或多個”或者“至少一個”以及例如“一”或“一個”之類的不定冠詞的時候也是如此(例如,“一”及/或“一個”應該被解釋成是指“至少一個”或者“一個或多個”)。這對於使用定冠詞來引入申請專利範圍敘述的時候也是如此。此外,即使明確敘述了所引入的特定數量的申請專利範圍敘述,本領域中具有通常知識者也會認識到,這種敘述應被解釋成至少是指所敘述的數量(例如在沒有其他修飾語的情況下的關於“兩個敘述”的無修飾敘述意味著至少兩個敘述或是兩個或更多敘述)。此外,在這些實例中,如果使用了與“A、B和C等等中的至少一個”相類似的規約,那麼此類結構通常應該具有本領域中具有通常知識者所理解的該規約的意義(例如,“具有A、B和C中的至少一個的系統”將會包括但不侷限於只具有A、只具有B、只具有C、具有A和B、具有A和C、具有B和C及/或具有A、B和C等等的系統)。在使用了與“A、B或C等等中的至少一個”相似的規約的實例中,此類結構通常應該具有本領域中具有通常知識者所理解的規約的意義(舉例來說,“具有A、B或C中的至少一個的系統”包括但不限於只具有A,只具有B、只具有C、具有A和B,具有A和C,具有B和C及/或具有A、B和C等等的系統)。本領域中具有通常知識者會將進一步理解,無論在說明書、申請專利範圍書還是附圖中,提出兩個或更多替代項的幾乎任何分離性的詞語及/或短語都應被理解成預期了包括這些項中的一個、任一項或是所有兩項的可能性。舉例來說,短語“A或B”將被理解成包括“A”或“B”或“A和B”的可能性。此外,這裡使用的跟隨有一系列的多個項目及/或多個項目類另一術語“任一者”旨在包括單獨或與其他項目及/或其他項目類別相結合的項目及/或項目類別中的“任一者”,“任何組合”,“任何多個”及/或“任何多個的組合”。此外,這裡使用的術語“集合”或“群組”旨在包括任何數量的項目,其中包括零。另外,這裡使用的術語“數量”旨在包括任何數量,其中包括零。
此外,如果本揭露的特徵或方面是依照馬庫西組的方式描述的,那麼本領域中具有通常知識者將會認識到,本揭露因此也是依照馬庫西組中的任何單一成員或成員子群組描述的。
正如本領域中具有通常知識者所理解的那樣,出於任何和所有目的,例如在提供書面描述方面,這裡揭露的所有範圍還包括了任何和所有可能的子範圍以及其子範圍組合。任何所列出的範圍都能很容易地被認為是充分描述和賦能了被分解成至少兩等分、三等分、四等分、五等分、十等分等等的相同範圍。作為非限制性範例,本文討論的每一個範圍都可以很容易即可分解成下部的三分之一、中間的三分之一以及上部的三分之一範圍。本領域中具有通常知識者將會理解,例如“至多”、“至少”、“大於”、“小於”等等的所有語言包含了所敘述的數字,並且是指隨後可被分解成如上所討論的子範圍的範圍。最後,正如本領域中具有通常知識者所理解的那樣,一個範圍會包括每一個單獨的成員。因此,舉例來說,具有1-3個胞元的群組指的是具有1、2或3個胞元的群組。同樣,具有1-5個胞元的群組是指具有1、2、3、4或5個胞元的群組,依此類推。
此外,除非進行說明,申請專利範圍不應該被解讀為僅限於所提供的順序或元件。此外,任何申請專利範圍中使用的術語“用於……的裝置”旨在援引美國法典第35章第112節第6段或裝置-加-功能(mean-plus-function,裝置+功能)的申請專利範圍格式,並且沒有術語“ 用於……裝置”的任何申請專利範圍均不具有這種意義。
可使用與軟體相關聯的處理器來實施用於無線傳輸接收單元(WTRU)、使用者設備(UE)、終端、基地台、移動管理實體(MME)或演進型封包核心(EPC)或任何主機電腦內的射頻收發器。WTRU可結合實施為硬體及/或軟體(包括軟體定義的無線電(SDR))的模組以及其他元件而被使用,其他元件例如為攝影機、視訊攝影機模組、視訊電話、對講電話、振動裝置、揚聲器、麥克風、電視收發器、免持耳機、鍵盤、藍牙®模組、調頻(FM)無線電單元、近場通信(NFC)模組、液晶顯示(LCD)顯示單元、有機發光二極體(OLED)顯示單元、數位音樂播放器、媒體播放器、視訊遊戲播放器模組、網際網路瀏覽器及/或無線區域網路(WLAN)或超寬頻(UWB)模組。
雖然依照通信系統對本發明進行了描述,但是可以預見,系統可被實施為微處理器/通用電腦上的軟體(未示出)。在某些實施例中,各種元件功能中的一者或多者可被實施為控制通用電腦的軟體。
另外,雖然在此參考特定實施例對本發明進行了說明及描述,但本發明並不旨在侷限於所示的細節。相反,可在不背離本發明的情況下,在申請專利範圍的等同的範圍及範疇內做出各種修改。
100‧‧‧通信系統
102、102a、102b、102c、102d‧‧‧無線傳輸/接收單元(WTRU)
104/113‧‧‧無線電存取網路(RAN)
106/115‧‧‧核心網路(CN)
108‧‧‧公共交換電話網路(PSTN)
110‧‧‧網際網路
112‧‧‧其他網路
114a、114b‧‧‧基地台
116‧‧‧空中介面
118‧‧‧處理器
120‧‧‧收發器
122‧‧‧傳輸/接收元件
124‧‧‧揚聲器/麥克風
126‧‧‧小鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧非可移記憶體
132‧‧‧可移記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧週邊設備
160a、160b、160c‧‧‧e節點B
162‧‧‧移動性管理實體(MME)
164‧‧‧服務閘道(SGW)
166‧‧‧封包資料網路(PDN)閘道(或PGW)
180a、180b、180c‧‧‧gNB
182a、182b‧‧‧存取和移動性管理功能(AMF)
183a、183b‧‧‧對話管理功能(SMF)
184a、184b‧‧‧使用者平面功能(UPF)
185a、185b‧‧‧資料網路(DN)
201、401、501、601、1501、1601、1701‧‧‧解調參考符號(DM-RS)
202、302、402、502、602、1403、1502、1602、1702‧‧‧應答/否定應答(ACK/NACK)
203、303、403、503、603、1404、1503、1603、1703‧‧‧秩指示符(RI)
204、304、404、504、1405、1504、1604、1704‧‧‧CQI
605‧‧‧相位追蹤參考信號(PT-RS)
701、702‧‧‧資料碼字(或層)符號
703、802、902、1002、1102、1202、1302‧‧‧UCI符號
801、901、1001、1101、1201、1301‧‧‧資料碼字#1符號
1003、1103、1203、1303‧‧‧層1映射
1004、1104、1204、1304‧‧‧層2映射
1400‧‧‧離散傅立葉變換-擴展OFDM(DFT-s-OFDM)傳輸器
1401‧‧‧方塊
1402‧‧‧離散傅立葉變換(DFT)方塊
1901‧‧‧第一DM-RS密度
1902‧‧‧第二DM-RS密度
1904、2004‧‧‧前端載入的DM-RS
1905、2005‧‧‧附加DM-RS
2001、2002、2003‧‧‧DM-RS模式
2101‧‧‧資源塊群組(RGB)
2102-2105‧‧‧資源塊(RB)
2201、2202‧‧‧CBG
IDFT‧‧‧逆離散傅立葉變換
OFDM‧‧‧正交分頻多工
PUSCH‧‧‧實體上鏈共用通道
N2、N3、N4、N6、N11、S1、X2、Xn‧‧‧介面
RE‧‧‧資源元素
UCI‧‧‧上鏈控制訊息
藉由結合附圖及以下以範例性方式給出的詳細描述,可得到更為詳細的理解。類似於詳細描述,以下附圖中的圖是範例性的。因此,附圖及詳細描述並不能被視為是限制性的,且其他等同效用的範例也是可行及可能的。此外,附圖中相同的元件符號表示相同的元件,且其中: 第1A圖是示出了可以在其中實施一個或多個揭露的實施例的範例通信系統的系統圖; 第1B圖是示出了根據實施例的可以在第1A圖所示的通信系統中使用的範例無線傳輸/接收單元(WTRU)的系統圖; 第1C圖是示出了根據實施例的可以在第1A圖所示的通信系統中使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖; 第1D圖是示出了根據實施例的可以在第1A圖所示的通信系統中使用的另一個範例RAN和另一個範例CN的系統圖; 第2圖為示出了根據實施例的在PUSCH中的UCI傳輸的示意圖; 第3圖為示出了根據實施例的OFDM波形產生器的示意圖; 第4圖為示出了根據實施例的使用OFDM進行帶有附加DM-RS的UCI傳輸的示意圖; 第5圖為示出了根據實施例的使用OFDM的帶有附加DM-RS的另一UCI傳輸的示意圖; 第6圖為示出了根據實施例的使用OFDM的帶有附加PT-RS的另一UCI傳輸的示意圖; 第7圖為示出了根據實施例的UCI及資料碼字多工選項的示意圖; 第8圖為示出了根據實施例的碼字至層的映射的示意圖; 第9圖為示出了根據實施例的在具有及不具有UCI重複下的碼字至層的映射的示意圖; 第10圖為示出了根據實施例的層至子載波的映射的示意圖,其中UCI被映射至相同子載波; 第11圖為示出了根據實施例的層至子載波的映射的示意圖,其中UCI被映射至不同子載波; 第12圖為示出了根據實施例的層至子載波的映射的示意圖,其中重複的UCI被映射至相同子載波; 第13圖為示出了根據實施例的層至子載波的映射的示意圖,其中重複的UCI被映射至不同子載波; 第14圖示出了根據實施例的DFT-s-OFDM波形產生器的示意圖; 第15圖為示出了針對PUSCH中的UCI傳輸的DFT-s-OFDM波形的示意圖; 第16圖為示出了針對PUSCH中的UCI傳輸的另一DFT-s-OFDM波形的示意圖; 第17圖為示出了針對PUSCH中的UCI傳輸的另一DFT-s-OFDM波形的示意圖; 第18圖為示出了根據實施例的使用DFT-s-OFDM的帶有附加DM-RS的UCI傳輸的示意圖; 第19圖為示出了根據實施例的基於PUSCH類型及UCI類型的DM-RS密度及模式的示意圖; 第20圖為示出了根據實施例的基於PUSCH類型的DM-RS密度及模式的示意圖; 第21圖為示出了根據實施例的PUSCH上的CQI的頻率交錯資源映射的示意圖; 第22圖為示出了根據實施例的PUSCH上的CQI的時間-頻率交錯資源映射的示意圖;以及 第23圖為示出了根據實施例的由WTRU執行的產生OFDM符號的方法的示意圖。

Claims (20)

  1. 一種無線傳輸/接收單元(WTRU),包括包含一傳輸器、一接收器、一處理器以及一記憶體中任一者的一電路,其中: 該處理器被配置為: 在一子載波映射單元處,將一上鏈控制資訊(UCI)信號序列的任一數量的元素映射至用於傳輸用於攜帶與一實體上鏈共用通道(PUSCH)相關聯的一資訊的一正交分頻多工(OFDM)符號的一可用子載波集合的一子集,其中各該子載波具有至少兩個層; 根據該映射的元素被映射至的該子載波的該層,預編碼該映射的元素,其中被應用至一子載波的一第一層的一映射的元素的一第一預編碼不同於被應用至相同子載波的一第二層的一映射的元素的一第二預編碼; 向一逆離散傅立葉變換(IDFT)單元輸入該UCI信號序列的該映射的元素;以及 使用該IDFT單元將該映射的元素變換為一IDFT變換後的信號,使得該IDFT變換後的信號包括用於傳輸的多個資源所攜帶的該UCI信號序列的該映射的元素;以及 該傳輸器被配置為將該IDFT變換後的信號作為一OFDM信號進行傳輸。
  2. 如申請專利範圍第1項所述的WTRU,其中該處理器被配置為: 根據以下任一者來確定被應用於該第二層的該映射的元素的該第二預編碼:來自相關聯的DCI的一指示、該第一預編碼矩陣的一函數、或與該UCI相關聯的一資源索引。
  3. 如申請專利範圍第1項所述的WTRU,其中該第二層的該映射的元素包括與該第一層的該映射的元素相同的UCI。
  4. 如申請專利範圍第1項所述的WTRU,其中該處理器被配置為: 藉由應用與被應用至一第二子載波的一層的一映射的元素的一預編碼不同的一預編碼,對一第一子載波的相同層的一映射的元素進行預編碼。
  5. 如申請專利範圍第1項所述的WTRU,其中該處理器被配置為: 根據每一子載波的層數,確定用於傳輸一UCI信號序列的碼字的一數量。
  6. 如申請專利範圍第5項所述的WTRU,其中該處理器被配置為: 根據以下任一者而將該碼字映射至每一子載波的該層:一規則、一配置資訊或一下鏈控制資訊(DCI)。
  7. 如申請專利範圍第1項所述的WTRU,其中該處理器被配置為使用以下任一者以映射與該UCI信號序列的該元素相關聯的該資訊:(1)打孔該PUSCH;或(2)速率匹配該PUSCH。
  8. 如申請專利範圍第7項所述的WTRU,其中該處理器被配置為藉由以該UCI信號序列的該元素取代與將在該PUSCH中傳輸的資料調變符號相關聯的元素來打孔該PUSCH。
  9. 如申請專利範圍第7項所述的WTRU,其中該處理器被配置為藉由根據可用資源以對該PUSCH的一資料調變符號的元素進行速率匹配來速率匹配該PUSCH。
  10. 如申請專利範圍第1項所述的WTRU,其中該傳輸器被配置為在一單一子訊框(或一無線電訊框的類似類型分割)期間傳輸該UCI信號序列的該元素。
  11. 如申請專利範圍第1項所述的WTRU,其中該UCI信號序列包括與上鏈傳輸相關聯或用於控制上鏈傳輸的一控制資訊
  12. 如申請專利範圍第11項所述的WTRU,其中該UCI包括與以下任一者相關聯的一資訊:一應答(ACK)/否定ACK(ACK/NACK)、一秩指示符(RI)或一通道品質資訊(CQI)。
  13. 如申請專利範圍第1項所述的WTRU,其中該OFDM符號為一離散傅立葉變換-擴展OFDM(DFT-s-OFDM)符號。
  14. 如申請專利範圍第13項所述的WTRU,進一步包括: 一接收器,被配置為在一DFT單元處接收與該UCI信號序列的任一數量的元素相關聯的該資訊; 其中該處理器被配置為在該DFT單元處使用一DFT操作以預編碼該資訊,從而形成用於該DFT-s-OFDM符號的該UCI信號序列的一頻域樣本/信號。
  15. 如申請專利範圍第1項所述的WTRU,其中該處理器被配置為: 選擇性地:(1)藉由以該UCI信號序列的該元素取代與將在該PUSCH中傳輸的資料調變符號相關聯的該元素來打孔該PUSCH;或(2)速率匹配與該PUSCH的資料調變符號相關聯的一資料信號序列的該元素,使得該資料信號的該速率匹配後的元素被置於該UCI信號序列的元素附近。
  16. 如申請專利範圍第1項所述的WTRU,進一步包括由一接收器/收發器接收該IDFT變換後的信號的一傳輸,作為由該傳輸器/接收器傳輸的至少一OFDM符號。
  17. 一種在一傳輸器/收發器中實施的方法,該方法包括: 在一子載波映射單元處,將一上鏈控制資訊(UCI)信號序列的任一數量的元素映射至用於傳輸用於攜帶與一實體上鏈共用通道(PUSCH)相關聯的一資訊的一正交分頻多工(OFDM)符號的一可用子載波集合的一子集,其中各該子載波具有至少兩個層; 根據該元素被映射至的該子載波的該層,預編碼該映射的元素,其中被應用至一子載波的一第一層的一映射的元素的一第一預編碼不同於被應用至相同子載波的一第二層的一映射的元素的一第二預編碼; 向一逆離散傅立葉變換(IDFT)單元饋送該UCI信號序列的該映射的元素;以及 使用該IDFT單元將該映射的元素變換為一IDFT變換後的信號,使得該IDFT變換後的信號包括用於傳輸的多個資源所攜帶的該UCI信號序列的該映射的元素。
  18. 如申請專利範圍第17項所述的方法,其中被應用於該第二層的該映射的元素的該第二預編碼是根據以下任一者而被確定:來自相關聯的DCI的一指示、該第一預編碼矩陣的一函數或與該UCI相關聯的一資源索引。
  19. 如申請專利範圍第17項所述的方法,其中該第二層的該映射的元素包括與該第一層的該映射的元素相同的UCI。
  20. 如申請專利範圍第17項所述的方法,其中被應用至一第一子載波的一層的一映射的元素的該預編碼不同於被應用至一第二子載波的相同層的一映射的元素的預編碼。
TW107119969A 2017-06-14 2018-06-11 藉由上鏈共享資料通道傳輸上鏈控制資訊(uci)方法、裝置、系統、結構及介面 TWI794242B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762519505P 2017-06-14 2017-06-14
US62/519505 2017-06-14
US201762543198P 2017-08-09 2017-08-09
US62/543198 2017-08-09

Publications (2)

Publication Number Publication Date
TW201906383A true TW201906383A (zh) 2019-02-01
TWI794242B TWI794242B (zh) 2023-03-01

Family

ID=62817069

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119969A TWI794242B (zh) 2017-06-14 2018-06-11 藉由上鏈共享資料通道傳輸上鏈控制資訊(uci)方法、裝置、系統、結構及介面

Country Status (7)

Country Link
US (2) US11621817B2 (zh)
EP (2) EP3639449A1 (zh)
JP (2) JP2020523909A (zh)
CN (2) CN110754058B (zh)
RU (1) RU2769716C2 (zh)
TW (1) TWI794242B (zh)
WO (1) WO2018231626A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110754058B (zh) * 2017-06-14 2023-05-05 交互数字专利控股公司 用于经由上行链路共享数据信道的uci传输的方法、装置
CN110999165B (zh) 2017-08-10 2022-06-28 松下电器(美国)知识产权公司 用户设备、基站和无线通信方法
WO2019035213A1 (ja) * 2017-08-18 2019-02-21 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10986613B2 (en) * 2018-01-19 2021-04-20 Qualcomm Incorporated Uplink control information (UCI) to resource element (RE) mapping
US11540257B2 (en) * 2018-03-23 2022-12-27 Qualcomm Incorporated Uplink control information transmission on autonomous uplink in new radio-unlicensed (NR-U)
WO2019200602A1 (en) * 2018-04-20 2019-10-24 Qualcomm Incorporated Techniques and apparatuses for rate splitting using first layers and second layers
US11128429B2 (en) * 2018-10-05 2021-09-21 Lenovo (Singapore) Pte. Ltd. Method and apparatus for generating a CSI report
CN111277359A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 处理方法及设备
EP3925118A1 (en) * 2019-02-15 2021-12-22 Telefonaktiebolaget LM Ericsson (publ) Acknowledgement signaling for radio access networks
CN111585930B (zh) * 2019-02-18 2023-03-10 华为技术有限公司 信息处理方法和装置
US20220159580A1 (en) 2019-03-21 2022-05-19 Samsung Electronics Co., Ltd. Power headroom report, configuring, power control, and data transmission method, apparatus, terminal, and base station
EP3979538A4 (en) * 2019-07-10 2022-06-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD FOR MULTIPLEXED TRANSMISSION OF UPLINK CONTROL INFORMATION AND RELATED PRODUCT
CN115176431B (zh) * 2020-02-07 2024-04-26 北京小米移动软件有限公司 无线网络中的传输和访问
US11800519B2 (en) 2020-05-01 2023-10-24 Qualcomm Incorporated Time-interleaving of code block groups in full-duplex mode
US11743899B2 (en) * 2020-05-15 2023-08-29 Lg Electronics Inc. Method and apparatus for transmitting/receiving wireless signal in wireless communication system
US11901983B1 (en) * 2021-03-17 2024-02-13 T-Mobile Innovations Llc Selectively assigning uplink transmission layers
WO2024031656A1 (en) * 2022-08-12 2024-02-15 Lenovo (Beijing) Ltd. Uci multiplexing in pusch with two codewords
WO2024073997A1 (en) * 2023-02-14 2024-04-11 Lenovo (Beijing) Ltd. Pusch transmission with two codewords

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950645B1 (ko) 2006-03-03 2010-04-01 삼성전자주식회사 다중 입력 다중 출력 방식을 사용하는 이동 통신시스템에서 신호 송수신 장치 및 방법
US8467367B2 (en) 2007-08-06 2013-06-18 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
JP2010068223A (ja) 2008-09-10 2010-03-25 Sharp Corp 移動通信システム、基地局装置、移動局装置および移動通信方法
DK2351445T3 (en) * 2008-10-20 2015-10-26 Interdigital Patent Holdings carrier Aggregation
US8958380B2 (en) * 2010-03-22 2015-02-17 Lg Electronics Inc. Method and device for transmitting control information
CN101807974B (zh) * 2010-04-07 2015-05-20 中兴通讯股份有限公司 一种在物理上行共享信道传输上行控制信令的系统及方法
US8670496B2 (en) * 2010-04-14 2014-03-11 Samsung Electronics Co., Ltd. Method and system for mapping uplink control information
WO2011137408A2 (en) * 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Determination of carriers and multiplexing for uplink control information transmission
WO2011142626A2 (ko) * 2010-05-13 2011-11-17 엘지전자 주식회사 Mimo 무선 통신 시스템에서 제어 정보 및 데이터의 다중화 전송 방법 및 장치
CA2801007C (en) 2010-06-08 2016-01-05 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment in mimo transmission mode
EP2587699B1 (en) * 2010-06-24 2019-10-16 LG Electronics Inc. Method and device for transmitting uplink control information in a wireless communication system
KR101846164B1 (ko) 2010-08-20 2018-04-06 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 송신하는 방법 및 이를 위한 장치
WO2012058815A1 (en) * 2010-11-05 2012-05-10 Nokia Siemens Networks Oy Configuration uncertainty
WO2012103932A1 (en) * 2011-02-01 2012-08-09 Nokia Siemens Networks Oy Channel configuration
KR102029243B1 (ko) 2011-05-24 2019-10-07 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US9107191B2 (en) * 2011-11-11 2015-08-11 Qualcomm Incorporated System and method for managing simultaneous uplink signal transmissions in carrier aggregation systems
WO2013168958A1 (ko) * 2012-05-07 2013-11-14 엘지전자 주식회사 하향링크 데이터 수신 방법 및 사용자기기와 하향링크 데이터 전송 방법 및 기지국
US9578632B2 (en) * 2014-03-27 2017-02-21 Qualcomm Incorporated Methods and apparatus for UL DM-RS overhead reduction
JP6543341B2 (ja) * 2014-12-08 2019-07-10 エルジー エレクトロニクス インコーポレイティド 上りリンク制御情報を送信するための方法及びそのための装置
DE112015006784T5 (de) * 2015-08-07 2018-04-19 Intel IP Corporation UCI für die Carrier Aggregation
WO2017026783A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치
US10892874B2 (en) 2015-08-21 2021-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Discarding and retaining physical data channels
CN106559878B (zh) 2015-09-25 2021-11-02 中兴通讯股份有限公司 上行控制信息uci发送、获取方法及装置
EP3520261A1 (en) * 2016-09-28 2019-08-07 IDAC Holdings, Inc. Indication of selected waveform using reference signals
JP2020520147A (ja) * 2017-05-03 2020-07-02 アイディーエーシー ホールディングス インコーポレイテッド アップリンク制御情報を送信するための方法、システム、および装置
CN110754058B (zh) * 2017-06-14 2023-05-05 交互数字专利控股公司 用于经由上行链路共享数据信道的uci传输的方法、装置
US20190052414A1 (en) * 2017-08-10 2019-02-14 Alireza Babaei Multiplexing mechanism for uplink control information
CN109246042B (zh) * 2017-08-25 2019-11-19 华为技术有限公司 一种信号传输的方法、设备及系统

Also Published As

Publication number Publication date
JP2020523909A (ja) 2020-08-06
RU2020100055A3 (zh) 2021-08-19
EP3639449A1 (en) 2020-04-22
RU2020100055A (ru) 2021-07-09
CN110754058B (zh) 2023-05-05
US20200213057A1 (en) 2020-07-02
US11621817B2 (en) 2023-04-04
TWI794242B (zh) 2023-03-01
US20230188292A1 (en) 2023-06-15
RU2769716C2 (ru) 2022-04-05
EP4213433A1 (en) 2023-07-19
WO2018231626A1 (en) 2018-12-20
CN116318577A (zh) 2023-06-23
JP2023106383A (ja) 2023-08-01
CN110754058A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
TWI794242B (zh) 藉由上鏈共享資料通道傳輸上鏈控制資訊(uci)方法、裝置、系統、結構及介面
TWI767952B (zh) 無線傳輸/接收單元(wtru)及用於解碼資料的方法
KR102642287B1 (ko) 업링크 제어 정보를 송신하기 위한 방법, 시스템, 및 장치
TW202046789A (zh) Nr sl多次通道pscch傳輸方法
US20200036470A1 (en) Common control channel and reference symbol for multiple waveform data transmission
WO2020033704A1 (en) Enhanced sidelink control transmission
TW201841534A (zh) 實體下鏈控制通道
WO2019195505A1 (en) Control information signaling and procedure for new radio (nr) vehicle-to-everything (v2x) communications
US20110019776A1 (en) Method and apparatus for obtaining port index information
EP3602982B1 (en) Transmit diversity for uplink control channel using discrete fourier transform spread orthogonal frequency division multiplexing (dft-s-ofdm) waveforms
TW201941650A (zh) Noma排程及傳輸
TW202034643A (zh) 強健noma傳輸
TW202147799A (zh) 動態解調信號資源分配
EP4193531A1 (en) Time and code domain coverage enhancements
KR20230172595A (ko) Wlan 시스템에 대한 다중-ap 채널 사운딩 피드백 절차
WO2018175578A1 (en) Resource allocation for uplink control channel
WO2019195103A1 (en) Methods of harq for noma
WO2021188507A1 (en) Multi-ru multi-ap transmissions in wlan systems
WO2024073290A1 (en) Methods and apparatuses for simultaneous uplink transmission of control channel
WO2023043683A1 (en) Dynamic slot format indications and wtru behaviors associated with xdd
EP4356530A1 (en) Enhanced channel sounding protocols for wlan systems