TW202034643A - 強健noma傳輸 - Google Patents

強健noma傳輸 Download PDF

Info

Publication number
TW202034643A
TW202034643A TW108141098A TW108141098A TW202034643A TW 202034643 A TW202034643 A TW 202034643A TW 108141098 A TW108141098 A TW 108141098A TW 108141098 A TW108141098 A TW 108141098A TW 202034643 A TW202034643 A TW 202034643A
Authority
TW
Taiwan
Prior art keywords
transmission
wtru
transmission layer
layer
processor
Prior art date
Application number
TW108141098A
Other languages
English (en)
Inventor
愛辛 哈格海爾特
貝拉斯克斯 盧瓦克 卡諾納
李汶宜
沙魯克 那耶納雷爾
普拉仙納 赫拉特馬帝耶瑟蘭吉
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202034643A publication Critical patent/TW202034643A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了與諸如多層NOMA傳輸之類的多層傳輸相關聯的系統、方法和工具。可以將每層擾動模式應用於該複數層,以創建這些層的傳輸功率水平之間的差異。例如,可以經由TCI狀態來提供MAS和NOMA資源指示。可以提供動態MAS和NOMA資源指示。可以提供上鏈CSI-RS技術,例如用於干擾測量。

Description

強健NOMA傳輸
相關申請的交叉引用 本申請要求2018年11月13日遞交的美國臨時專利申請No. 62/760,085以及2019年1月8日遞交的美國臨時專利申請No. 62/789,774的權益,其揭露內容經由引用而被整體併入本文。
用於無線通訊的基本多重存取方案(例如,其中NR可被用作本文的範例)對於下鏈和上鏈資料傳輸可以是正交的,例如,不同使用者的時間和頻率實體資源不重疊。可以使用非正交多重存取(NOMA)方案(例如,這裡NR可以用作範例)。隨著載波頻率的增加,路徑損耗可能成為例如提供足夠的覆蓋區域的限制。毫米波系統中的傳輸可能(例如,另外)遭受非視線損耗,例如,繞射損耗、穿透損耗、氧氣吸收損耗、樹葉損耗等。在初始存取期間,基地台和WTRU可能需要克服路徑損耗並發現彼此。利用許多天線元件來產生波束成形訊號可以是補償路徑損耗的一種方式,例如經由提供波束成形增益來進行補償。波束成形技術可以包括數位、類比和混合波束成形。
提供了與諸如多層NOMA傳輸之類的多層傳輸相關聯的系統、方法和手段。擾動模式可以被應用於不同的傳輸層,以創建這些層的傳輸功率水平之間的差異。該擾動模式可以由網路配置並且包括在碼簿中,其中每一模式對應於該碼簿中的一索引條目。可以基於傳輸層的傳輸特性為該層選擇特定的擾動模式,該傳輸特性包括例如與該層相關聯的傳輸區、與該層相關聯的傳輸資源、與該層相關聯的簽章(signature)、與該層相關聯的天線埠、與該層相關聯的優先順序及/或與該層相關聯的傳輸波束。可以在逐個符號的基礎上將該擾動模式應用於該傳輸層。可以應用隨機預編碼以進一步增強該複數層的分集。
此外,可以確定該複數傳輸層是要經由單個天線埠還是複數天線埠來發送。基於確定要經由單個天線埠來傳輸該傳輸層,可以以第一傳輸功率水平經由該單個天線埠來傳輸第一傳輸層,並且可以以第二傳輸功率水平經由該單個天線埠來傳輸第二傳輸層。基於確定該複數傳輸層要經由複數天線埠來傳輸,第一傳輸層的至少一部分可經由第一天線埠以第一傳輸功率來傳輸,並且第二傳輸層的至少一部分可經由第二天線埠以第二傳輸功率來傳輸。
現在將例如參考各個附圖來描述包括說明性範例的詳細描述。儘管本說明書可以提供可能的實施方式的詳細範例,但是應當注意,這些細節旨在作為說明性的,而不以任何方式限制本申請的範圍。
圖1A是示出了可實施一或複數所揭露的實施例的範例通訊系統100的圖式。該通訊系統100可以是將諸如語音、資料、視訊、消息發送、廣播等的內容提供給複數無線使用者的多重存取系統。該通訊系統100可以經由系統資源(包括無線頻寬)的共用使得複數無線使用者能夠存取這些內容。例如,該通訊系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾獨特字DFT-擴展 OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊濾波OFDM、濾波器組多載波(FBMC)等等。
如圖1A所示,通訊系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110和其他網路112,但應理解的是所揭露的實施例涵蓋任意數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是被配置成在無線環境中操作及/或通訊的任何類型的裝置。作為範例,WTRU 102a、102b、102c、102d中的任一者可以被稱為“站”及/或“STA”,其可以被配置成傳輸及/或接收無線訊號,並且可以包括使用者裝置(UE)、行動站、固定或行動用戶單元、基於訂閱的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、可攜式電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴式顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如,在工業及/或自動處理鏈環境中操作的機器人及/或其他無線裝置)、消費電子裝置,在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、和102d中的任一者可以可互換地稱為UE。
通訊系統100還可以包括基地台114a及/或基地台114b。基地台114a、114b中的每一個可以是被配置成與WTRU 102a、102b、102c、102d中的至少一者有無線介面,以便於存取一或複數通訊網路(例如,CN 106/115、網際網路110及/或網路112)。作為範例,基地台114a、114b可以是基地台收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、gNB、NR節點B、網站控制器、存取點(AP)、無線路由器等。儘管基地台114a、114b每個均被描述為單個元件,但應當理解的是基地台114a、114b可以包括任何數量的互聯基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,其還可以包括諸如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等的其他基地台及/或網路元件(未示出)。基地台114a及/或基地台114b可以被配置成在一或複數載波頻率上傳輸及/或接收無線訊號,其可以被稱為胞元(未示出)。這些頻率可在許可頻譜、未經許可頻譜、或許可頻譜和未經許可頻譜的組合中。胞元可以將無線服務的覆蓋範圍提供給可相對固定或可隨時間而改變的特定地理區域。胞元還可以被劃分成胞元扇區。例如,與基地台114a相關聯的胞元可以被劃分成三個扇區。由此,在一種實施例中,基地台114a可以包括三個收發器,例如胞元的每一扇區都有一收發器。在一種實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以使用針對胞元的每一扇區的複數收發器。例如,波束成形可以用於在期望的空間方向上傳送及/或接收訊號。
基地台114a、114b可以經由空中介面116與WTRU 102a、102b、102c、102d中的一者或多者通訊,該空中介面116可以是任何合適的無線通訊鏈路(例如,射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等)。空中介面116可以使用任何合適的無線電存取技術(RAT)來建立。
更特別地,如上所述,通訊系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,在RAN 104/113中的基地台114a和WTRU 102a、102b、102c可以實施諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括諸如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)的通訊協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在一種實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其可以使用長期演進(LTE)及/或高級LTE(LTE-A)及/或專業版高級LTE(LTE-A Pro)來建立空中介面116。
在一種實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如NR無線電存取的無線電技術,其可以使用新無線電(NR)來建立空中介面116。
在一種實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以例如使用雙連接(DC)原理來實施LTE無線電存取和NR無線電存取。因此,WTRU 102a、102b、102c所使用的空中介面可以多種類型的無線電存取技術及/或發送到/自多種類型的基地台(例如,eNB和gNB)的傳輸為特徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如IEEE 802.11(即,無線保真(WiFi)、IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通訊系統(GSM)、增強型資料速率GSM演進(EDGE)、GSM EDGE(GERAN)之類的無線電技術。
圖1A中的基地台114b可以是例如無線路由器、本地節點B、本地e節點B或者存取點,並且可以使用任何合適的RAT,以用於促進在諸如商業區、家庭、車輛、校園、工業設施、空中走廊(例如,供無人機使用)、道路之類的局部區域的無線連接。在一種實施例中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.11之類的無線電技術以建立無線區域網路(WLAN)。在一種實施例中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.15的無線電技術以建立無線任人區域網路(WPAN)。在又一種實施例中,基地台114b和WTRU 102c、102d可以使用基於蜂巢的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)以建立微微胞元(picocell)或毫微微胞元(femtocell)。如圖1A所示,基地台114b可以具有至網際網路110的直接連接。由此,基地台114b可不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115通訊,該CN 106/115可以是被配置成將語音、資料、應用及/或網際網路協定語音(VoIP)服務提供到WTRU 102a、102b、102c、102d中的一者或多者的任何類型的網路。資料可以具有不同的服務品質(QoS)要求,例如不同的輸送量要求、潛時要求、容錯要求、可靠性要求、資料輸送量要求,行動性要求等。CN 106/115可以提供呼叫控制、帳單服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分配等,及/或執行高級安全性功能,例如使用者認證。儘管圖1A中未示出,但應理解的是RAN 104/113及/或CN 106/115可以直接或間接地與其他RAN進行通訊,這些其他RAN使用與RAN 104/113相同的RAT或者不同的RAT。例如,除了連接到可以採用NR無線電技術的RAN 104/113,CN 106/115也可以與使用GSM、UMTS、CDMA2000、WiMAX、E-UTRA、或者WiFi無線電技術的另一RAN(未示出)通訊。
CN 106/115也可以用作WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用共同通訊協定的互連電腦網路及裝置的全球系統,該公共通訊協定例如是傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定套件中的TCP、使用者資料報協定(UDP)及/或IP。網路112可以包括由其他服務提供方擁有及/或操作的無線及/或有線通訊網路。例如,網路112可以包括連接到一或複數RAN的另一CN,該一或複數RAN可以使用與RAN 104/113相同的RAT或者不同的RAT。
通訊系統100中的WTRU 102a、102b、102c、102d中的一些或者全部可以包括多模式能力(例如WTRU 102a、102b、102c、102d可以包括用於經由不同的無線鏈路與不同的無線網路進行通訊的複數收發器)。例如,圖1A中顯示的WTRU 102c可以被配置成與可使用基於蜂巢的無線電技術的基地台114a進行通訊,並且與可使用IEEE 802無線電技術的基地台114b進行通訊。
圖1B是範例WTRU 102的系統圖。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136和其他週邊設備138等。應該理解的是,在保持與實施例一致的情況下,WTRU 102可以包括上述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心相關聯的一或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、任何其它類型的積體電路(IC)、狀態機等。處理器118可以執行訊號寫碼、資料處理、功率控制、輸入/輸出處理、及/或使得WTRU 102能夠操作在無線環境中的其他任何功能。處理器118可以耦合到收發器120,該收發器120可以耦合到傳輸/接收元件122。儘管圖1B中將處理器118和收發器120描述為各別的組件,但是應當理解的是處理器118和收發器120可以被一起整合到電子封裝或者晶片中。
傳輸/接收元件122可以被配置成經由空中介面116將訊號傳輸到基地台(例如,基地台114a),或者從基地台(例如,基地台114a)接收訊號。例如,在一種實施例中,傳輸/接收元件122可以是被配置成傳輸及/或接收RF訊號的天線。例如,在一種實施例中,傳輸/接收元件122可以是被配置成傳輸及/或接收例如IR、UV或者可見光訊號的發射器/檢測器。在又一種實施例中,傳輸/接收元件122可以被配置成傳輸及/或接收RF訊號和光訊號兩者。應當理解,傳輸/接收元件122可以被配置成傳輸及/或接收無線訊號的任意組合。
此外,儘管傳輸/接收元件122在圖1B中被描述為單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地,WTRU 102可以使用MIMO技術。由此,在一種實施例中,WTRU 102可以包括二或更多個傳輸/接收元件122(例如,複數天線)以用於經由空中介面116傳輸及/或接收無線訊號。
收發器120可以被配置成對將由傳輸/接收元件122傳輸的訊號進行調變,並且被配置成對由傳輸/接收元件122接收的訊號進行解調。如上所述,WTRU 102可以具有多模式能力。由此,收發器120可以包括複數收發器以使得WTRU 102能夠經由複數RAT進行通訊,例如NR和IEEE 802.11。
WTRU 102的處理器118可以被耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如,液晶顯示(LCD)顯示單元或者有機發光二極體(OLED)顯示單元),並且可以從揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如,液晶顯示(LCD)顯示單元或者有機發光二極體(OLED)顯示單元)接收使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126、及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以存取來自任何類型的合適的記憶體中的資訊,以及在該任何類型的合適的記憶體中儲存資料,該記憶體例如可以是非可移記憶體130及/或可移記憶體132。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或者任何其他類型的記憶體存放裝置。可移記憶體132可以包括用戶身分模組(SIM)卡、記憶條、安全數位(SD)記憶卡等。在其他實施例中,處理器118可以存取來自實體上未位於WTRU 102上(例如位於伺服器或者家用電腦(未示出)上)的記憶體的資訊,以及在上述記憶體中儲存資料。
處理器118可以從電源134接收電能,並且可以被配置成將該電能分配給WTRU 102中的其他組件及/或對在WTRU 102中的其他元件的電能進行控制。電源134可以是任何用於給WTRU 102供電的裝置。例如,電源134可以包括一或複數乾電池(例如,鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池等。
處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可以被配置成提供關於WTRU 102的當前位置的位置資訊(例如,經度和緯度)。WTRU 102可以經由空中介面116從基地台(例如,基地台114a、114b)接收加上或取代GPS晶片組136資訊之位置資訊,及/或基於從二或更多個相鄰基地台接收到的訊號的定時來確定其位置。應當理解,在與實施例保持一致的同時,WTRU 102可以經由任何合適的位置確定方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,該週邊設備138可以包括提供附加特徵、功能及/或無線或有線連接的一或複數軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針(e-compass)、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、震動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、活動追蹤器等等。週邊設備138可以包括一或複數感測器,感測器可以是以下中的一者或多者:陀螺儀、加速計、霍爾效應感測器、磁力計、方位感測器、接近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、手勢感測器、生物感測器、及/或濕度感測器。
WTRU 102可以包括全雙工無線電,對於該全雙工無線電,一些或全部訊號(例如,與用於UL(例如,用於傳輸)和下鏈(例如用於接收)兩者的特別子訊框相關聯)的傳輸和接收可以是並行及/或同時的。全雙工無線電可以包括干擾管理單元,以經由硬體(例如扼流圈)或經由處理器(例如,個別的處理器(未示出)或者經由處理器118)的訊號處理來減少及/或實質上消除自干擾。在一種實施例中,WRTU 102可以包括一些或全部訊號的傳輸和接收(例如,與用於UL(例如,用於傳輸)或下鏈(例如,用於接收)的特別子訊框相關聯)的半雙工無線電。
圖1C是示出了根據一種實施例的RAN 104及CN 106的系統圖。如上所述,RAN 104可使用E-UTRA無線電技術經由空中介面116與WTRU 102a、102b和102c通訊。RAN 104還可以與CN 106進行通訊。
RAN 104可包括e節點B 160a、160b、160c,但應當理解的是在與實施例保持一致的同時,RAN 104可以包括任意數量的e節點B。e節點B 160a、160b、160c每一者均可包括一或複數用於經由空中介面116與WTRU 102a、102b、102c通訊的收發器。在一種實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,e節點B 160a例如可以使用複數天線來向WTRU 102a傳輸無線訊號及/或從它接收無線訊號。
e節點B 160a、160b、160c的每一可與特別的胞元(未示出)相關聯,並且可被配置為處理無線電資源管理決定、交接決定、排程在UL及/或DL中的使用者等。如圖1C所示,e節點B 160a、160b、160c可經由X2介面互相通訊。
圖1C中示出的CN 106可以包括行動管理實體(MME)162、服務閘道(SGW)164和封包資料網路(PDN)閘道(或者PGW)166。儘管前述每一元件被描述為CN 106的一部分,但應理解這些元件的任何一個可以由除CN操作方之外的實體所擁有及/或操作。
MME 162可經由S1介面與RAN 104中的e節點B 162a、162b、162c的每一個相連接,並且可作為控制節點。例如,MME 162可負責認證WTRU 102a、102b、102c的使用者、承載啟動/去啟動、在WTRU 102a、102b、102c初始附著期間選取特定的服務閘道等。MME 162可提供用於在RAN 104和採用諸如GSM及/或WCDMA這樣的其他無線電技術的其他RAN(未示出)之間切換的控制平面功能。
SGW 164可經由S1介面與RAN 104中的e節點B 160a、160b、160c的每一個相連接。SGW 164通常可路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在e節點B間交接期間錨定使用者平面、當DL資料對WTRU 102a、102b、102c可用時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文等。
SGW 164可與PGW 166相連接,其可向WTRU 102a、102b、102c提供到諸如網際網路110這樣的封包交換網路的存取,以便於WTRU 102a、102b、102c和IP賦能裝置之間的通訊。
CN 106可促成與其他網路的通訊。例如,CN 106可向WTRU 102a、102b、102c提供到諸如PSTN 108這樣的電路切換式網路的存取,以促成WTRU 102a、102b、102c和傳統陸線通訊裝置之間的通訊。例如,CN 106可包括作為CN 106和PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之通訊。此外,CN 106可向WTRU 102a、102b、102c提供到其他網路112的存取,其他網路112可包括由其他服務提供者擁有及/或操作的其他有線或無線網路。
儘管WTRU在圖1A至圖1D中被描述為無線終端,但是可以預期的是,在某些代表性的實施例中,這樣的終端可(例如,臨時地或永久地)使用與通訊網路的有線通訊介面。
在代表性實施例中,其他網路112可以是WLAN。
基礎設施基本服務集(BSS)模式中的WLAN可以具有用於BSS的存取點(AP)以及與該AP相關聯的一或複數站(STA)。AP可以具有對分散式系統(DS)或其他類型的有線/無線的網路的存取或介面,該網路將訊務傳入及/或傳出BSS。源於BSS外部到STA的訊務可經由AP到達,並可被遞送到STA。源於STA往BSS之外的目的地的訊務可以被發送到AP以遞送到分別目的地。BSS內的STA之間的訊務可以經由AP發送,例如,其中源STA可以將訊務發送到AP並且AP可以將訊務遞送到目的地STA。BSS內的STA之間的訊務可以被視為及/或被稱為對等訊務。對等訊務可以使用直接鏈路建立(DLS)在源STA和目的STA之間(例如,直接在它們之間)發送。在某些代表性實施例中,DLS可以使用802.11e DLS或802.11z隧道DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可不具有AP,並且IBSS內或使用IBSS的STA(例如,所有STA)可以彼此直接通訊。IBSS通訊模式有時可以被稱為“特定(ad-hoc)”通訊模式。
當使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。主通道可以是固定寬度(例如,20MHz寬頻寬)或經由傳訊動態設置寬度。主通道可以是BSS的操作通道並且可以由STA用來建立與AP的連接。在某些代表性實施例中,可以例如在802.11系統中實施具有衝突避免的載波偵聽多重存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如,每一STA)可以感測主通道。如果主通道被特別STA感測/檢測到及/或被確定為繁忙,則該特別STA可退後(back off)。一STA(例如,僅一站)可以在給定的BSS中的任何給定時間傳輸。
高輸送量(HT)STA可以使用40MHz寬的通道進行通訊,例如,經由將主20MHz通道與相鄰或不相鄰的20MHz通道組合以形成40MHz寬通道。
超高輸送量(VHT)STA可支援20MHz、40MHz、80MHz及/或160MHz寬通道。40MHz及/或80MHz通道可以經由組合連續的20MHz通道來形成。可以經由組合八連續的20MHz通道或經由組合二不連續的80MHz通道(其可以被稱為80 + 80配置)來形成160MHz通道。對於80 + 80配置,在通道編碼之後,資料可以經由可將資料劃分為二串流的分段解析器。逆快速傅立葉轉換(IFFT)處理和時域處理可以個別在每一串流上完成。這些串流可以被映射到二80MHz通道上,並且資料可以由傳輸STA來傳輸。在接收STA的接收器處,用於80 + 80配置的上述操作可以逆向,並且可以將組合資料發送到媒體存取控制(MAC)。
1 GHz以下的操作模式由802.11af和802.11ah支援。802.11af和802.11ah中的通道操作頻寬和載波相對於802.11n和802.11ac中所使用的有所減少。802.11af支援在電視白空間(TVWS)頻譜中的5 MHz、10 MHz、和20 MHz頻寬,以及802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz和16 MHz頻寬。根據代表性實施例,802.11ah可以支援諸如巨集覆蓋區域中的MTC裝置的計量計類型控制/機器類型通訊。MTC裝置可以具有某些能力,例如,有限的能力包括支援(例如,僅支持)某些及/或有限的頻寬。MTC裝置可包括具有高於臨界值的電池壽命的電池(例如,以保持非常長的電池壽命)。
可支援複數通道和通道頻寬(諸如802.11n、802.11ac、802.11af、和802.11ah)的WLAN系統包括可被指定為主通道的通道。主通道可以具有等於BSS中所有STA支援的最大共同操作頻寬的頻寬。主通道的頻寬可以由在支援最小頻寬操作模式的BSS中操作的所有STA中的STA來設置及/或限制。在802.11ah的範例中,即使BBS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz、及/或其它通道頻寬操作模式,對於支援(例如,僅支援)1MHz模式的STA(例如,MTC類型裝置),主通道可以是1MHz寬。載波感測及/或網路分配向量(NAV)設置可取決於主通道的狀態。如果主通道例如由於STA(其僅支援1MHz工作模式)繁忙向AP傳輸,則即使大部分頻帶保持空閒且可用,也可認為整個可用頻帶繁忙。
在美國,可由802.11ah使用的可用頻段從902MHz到928MHz。在韓國,可用頻段從917.5 MHz到923.5 MHz。在日本,可用頻段從916.5 MHz到927.5 MHz。根據國家代碼,802.11ah可用的總頻寬為6 MHz至26 MHz。
圖1D是示出了根據實施例的RAN 113和CN 115的系統圖。如上所述,RAN 113可以採用NR無線電技術經由空中介面116與WTRU 102a、102b、102c通訊。RAN 113也可以與CN 115通訊。
RAN 113可以包括gNB 180a、180b、180c,但是應該理解的是RAN 113可以包括任意數量的gNB,同時保持與實施例一致。每一gNB 180a、180b、180c可以包括一或複數收發器以用於與WTRU 102a、102b、102c經由空中介面116進行通訊。在一種實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、108b可以利用波束成形來向gNB 180a、180b、180c傳輸訊號及/或從gNB 180a、180b、180c接收訊號。因此,gNB 180a例如可以使用複數天線來傳輸無線訊號到WTRU 102a及/或接收來自WTRU 102a的無線訊號。在一種實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳輸複數分量載波(未示出)。這些分量載波的子集可以在未經許可的頻譜上,而其餘的分量載波可以在經許可的頻譜上。在一種實施例中,gNB 180a、180b、180c可以實施協調多點(CoMP)技術。例如,WTRU 102a可以從gNB 180a和gNB 180b(及/或gNB 180c)接收協調傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置相關聯的傳輸與gNB 180a、180b、180c通訊。例如,對於不同的傳輸、不同的胞元、及/或無線傳輸頻譜的不同部分,OFDM符號間距及/或OFDM子載波間距可以變化。WTRU 102a、102b、102c可以使用各種或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如,含有不同數量的OFDM符號及/或持續改變絕對時間的長度)與gNB 180a、180b、180c通訊。
gNB 180a、180b、180c可以被配置為以分立配置及/或非分立配置與 WTRU 102a、102b、102c通訊。在分立配置中,WTRU102a、102b、102c可以與gNB180a、180b、180c進行通訊,而無需也存取其他RAN(例如,諸如e節點B 160a、160b、160c)。在分立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c 中的一者或多者作為行動錨點。在分立配置中,WTRU 102a、102b、102c可以使用未經許可頻帶中的訊號與gNB 180a、180b、180c進行通訊。在非分立配置中,WTRU 102a、102b、102c可以與 gNB 180a、180b、180c通訊/連接到 gNB 180a、180b、180c,同時還與另一RAN(例如,e節點B 160a、160b、160c)通訊/連接。例如,WTRU 102a、102b、102c可以實施DC原則以與一或複數gNB 180a、180b、180c和一或複數e節點B160a、160b、160c實質上同時通訊。在非分立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動性錨,以及gNB 180a、180b、180c可以為服務WTRU 102a、102b、102c提供額外的覆蓋及/或輸送量。
gNB 180a、180b、180c中的每一個可以與特別胞元(未示出)相關聯,並且可以被配置為處理無線電資源管理決定、交接決定、UL及/或DL中使用者的排程、網路截割支援、雙重連線性、NR與E-UTRA之間的交互工作、使用者平面資料向使用者平面功能(UPF)184a、184b的路由,控制平面資訊向存取和行動管理功能(AMF)182a、182b的路由等。如圖1D所示,gNB 180a、180b、180c可以經由Xn介面彼此通訊。
在圖1D中所示的CN 115可以包括至少一AMF 182a、182b,至少一UPF 184a、184b,至少一對話管理功能(SMF)183a、183b,以及可能的資料網路(DN)185a、185b。雖然前述的每一元件都被描述為 CN 115的一部分,但是應當理解的是,任何這些元件可以由除了CN操作者之外的實體擁有和/操作。
AMF 182a、182b可以經由N2介面連接到RAN 113中的一或複數gNB 180a、180b、180c,並且可以充當控制節點。例如,AMF 182a、182b可以負責認證WTRU 102a、102b、102c的使用者,支援網路截割(例如,處理具有不同要求的不同PDU對話),選擇特別SMF 183a、183b,管理註冊區域,NAS傳訊的終止行動性管理等。網路截割可以由AMF 182a、182b使用,以基於WTRU 102a、102b、102c正利用的服務類型為WTRU 102a、102b、102c定制CN支持。例如,可以為不同的用例建立不同的網路截割,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、用於機器類型通訊(MTC)存取的服務,及/或類似的服務。該AMF 162可以為在RAN 113和使用其他無線電技術(例如,LTE、LTE-A、LTE-A Pro,及/或例如WiFi的非3GPP存取技術)的其他RAN(未示出)之間的切換提供控制平面功能。
SMF 183a、183b可以經由N11介面連接到在CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到在CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並配置經由UPF 184a、184b的訊務的路由。SMF 183a、183b可以執行其他功能,例如管理和分配WTRU IP位址、管理PDU對話、控制策略實施和QoS、提供下鏈資料通知等。PDU對話類型可以是基於IP的、基於非IP的、基於乙太網路的等等。
UPF 184a、184b可以經由N3介面連接到RAN 113中的一或複數gNB 180a、180b、180c,其可以向WTRU 102a、102b、102c提供到封包交換網路(例如網際網路110)的存取,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通訊。UPF 184a、184b可以執行其他功能,例如路由和轉發封包、執行使用者平面策略、支援多連接(multi-homed)PDU對話、處理使用者平面QoS、緩衝下鏈封包、提供行動性錨定等。
CN 115可以促進與其他網路的通訊。例如,CN 115可以包括IP閘道,或者可與該IP閘道 (例如,IP多媒體子系統(IMS)伺服器)通訊,其用作CN 115和PSTN 108之間的介面。另外,CN 115可以向WTRU 102a、102b、102c提供對其他網路112的存取,該其他網路112可以包括由其他服務提供者擁有及/或操作的其他有線及/或無線網路。在一種實施例中,WTRU 102a、102b、102c可以經由到UPF 184a、184b的N3介面以及UPF 184a、184b與本地資料網路(DN)185a、185b之間的N6介面經由UPF184a、184b連接到DN 185a、185b。
參考圖1A至圖1D以及圖1A至圖1D的相應描述,對於以下中的一者或多者這裡描述的一種或多種或所有功能可以由一或複數模擬裝置(未示出)執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b,及/或本文描述的任何其他裝置。模擬裝置可以是被配置為模擬本文描述的一或複數或所有功能的一或複數裝置。例如,模擬裝置可以用於測試其他裝置及/或模擬網路及/或WTRU功能。
模擬裝置可以被設計為實施實驗室環境中及/或操作者網路環境中的其他裝置的一或複數測試。例如,一或複數模擬裝置可在完全或部分地實施及/或部署為有線及/或無線通訊網路的一部分的同時執行一或複數或所有功能,以測試通訊網路內的其他裝置。一或複數模擬裝置可以在作為有線及/或無線通訊網路的一部分臨時實施/部署的同時執行一或複數或所有功能。模擬裝置可以為了測試的目的直接耦合到另一裝置及/或可以使用空中無線通訊執行測試。
一或複數模擬裝置可以執行包括所有功能的一或複數功能,而不是作為有線及/或無線通訊網路的一部分來實施/部署。例如,模擬裝置可以在測試實驗室及/或非部署(例如,測試)有線和或無線通訊網路中的測試場景被利用以實施一或複數組件的測試。一或複數模擬裝置可以是測試裝置。模擬裝置可以使用經由RF電路(例如,其可以包括一或複數天線)的直接RF耦合及/或無線通訊來傳輸及/或接收資料。
在UL鏈路級總和輸送量及/或超載能力方面,可能存在與非正交多重存取相關聯的益處。例如,在給定系統中斷時所支援的封包到達速率方面,可以存在系統容量增強的益處。
對於非正交多重存取,在使用重疊資源的傳輸之間可能存在干擾。隨著系統負載增加,這種非正交特性可能更加明顯。為了對抗非正交傳輸之間的干擾,可以採用諸如擴展(線性或非線性擴頻,其具有或不具有稀疏性)及/或交織之類的傳輸器側方案,例如,以提高性能並減輕高級接收器的負擔。
非正交傳輸可以應用於基於授權的傳輸及/或免授權的傳輸。例如,當賦能免授權傳輸時,非正交多重存取的益處可以包括各種使用情況或部署場景,這其中可包括eMBB、URLLC、mMTC等。
多重存取簽章(Multipe Access Signature,MAS)可用於NOMA傳輸,例如,以使gNB接收器能夠唯一地識別WTRU並將來自不同WTRU的NOMA傳輸相分離等等。該MAS可自以下中的一者而被導出;碼簿/碼字、序列、交織器、資源元素(RE)映射、DMRS、前文、空間維度或功率(例如,傳輸功率)。
圖2示出了範例性多層NOMA傳輸器。NOMA簽章可以是傳輸NOMA訊號的WTRU特定的訊號屬性/特徵,其可以在接收器處用於分離不同的使用者。NOMA簽章或MAS可以表示碼簿、交織器種子、序列參數等,其可以用於NOMA訊號的創建及/或解調。NOMA傳輸可以是基於授權(例如使用由網路指派的資源)或免授權(例如使用由WTRU自主選擇的資源)傳輸的形式。對於RRC連接狀態及/或非活動/空閒狀態,可以考慮免授權傳輸。
NOMA傳輸可以基於單層或多層傳輸。在多層傳輸中,位元序列可以被劃分為複數部分,每一部分對應於一層(例如,傳輸層)。該傳輸層可以被寫碼為符號序列(例如,經由編碼器及/或使用一或複數碼字)並且經由單個天線埠或複數天線埠而被傳輸。例如經由降低碼率,可以改善性能。在範例中,可以使用單個碼字或複數碼字。在範例中(例如,具有M層NOMA傳輸),可以使用N個(N ≥ 1) DMRS埠。NOMA層到天線的映射可以以任何形式N → M來完成,其中M可以小於N (例如,M<N),M可以等於N (例如,M = N),或者M可以大於N (例如,M>N)。用於NOMA的DMRS可以保持正交性。可以實現支援更高數量的埠的擴展。
多層傳輸(例如,多層NOMA傳輸)可以用於例如提高通訊系統(例如,NOMA系統)的性能。在高層,多層NOMA傳輸技術可以包括:每一傳輸具有一前向糾錯(FEC)編碼器;或者每層具有一FEC編碼器。圖3示出了用於實施多層NOMA傳輸器的範例性結構。在圖3(a)所示的第一範例中,與使用者i 的傳輸器相關聯的位元序列di 被劃分/分割成K 個部分:di1 到diK (例如,每一部分可對應於傳輸層),並且分別的FEC編碼器被指派以對該位元元序列的部分中的每一個進行寫碼。在圖3(b)所示的第二範例中,在所寫碼的序列被劃分/分割成複數部分之前,一FEC編碼器被指派來寫碼整個位元序列di
在多層傳輸(例如,多層NOMA傳輸)中,可以經由相同的天線埠來傳輸複數層。這可能導致一些性能問題,例如,因為複數層是經由相同通道而被有效地傳輸的。WTRU (例如NOMA WTRU)可以例如在不需要太多的額外傳訊負擔的情況下確定MAS及/或NOMA資源資訊。NOMA傳輸可能需要動態MAS及/或資源映射機制,例如,以增加多樣性和強健性。可以使用用於干擾測量的上鏈CSI-RS過程,例如以促成例如由gNB多使用者檢測(MUD)接收器進行的傳輸的檢測和解碼。
在具有複數層的NOMA傳輸的情況下,這些層可以經由相同的通道而被傳輸,並且可能經歷可能影響NOMA性能的相同變化。可以使用以下各項中的一或複數,例如以引入用於多層傳輸的分集:每層功率擾動(PLPP)、每層延遲插入或隨機預編碼。
可以經由將分別的擾動模式應用於一或複數使用者(例如,WTRU)及/或傳輸層來實現動態每層功率擾動(PLPP)。可以為每一使用者i (例如WTRU)及/或傳輸層k 定義擾動模式pik 。這樣的擾動模式可以對應於如何沿著時域及/或頻域應用功率偏移(例如人為功率偏移) (例如如何在不同的時間及/或頻率資源中應用功率偏移)。該擾動模式pik 可以與複數因數(例如,可以應用擾動模式所經由的傳輸的方面)相關聯。例如,該擾動模式pik 可以與pik (n,l )複數因數相關聯,其中ik 可以分別表示使用者和層索引,並且nl 可以分別表示傳輸RE的時間和頻率索引。因此,pik (n,l )可以表示將擾動模式pik 應用於使用者i 、層k 以及時間/頻率資源nl 。這裡描述的擾動可以在層之間產生人為的功率差(例如,功率偏移)。利用這些功率差,這些層在接收器處可以是可區分的,例如,即使它們在相同通道上被聯合地傳輸。由於該擾動而引起的功率差在接收器的MUD處可能是有益的,例如,以分離和解碼該複數層。
圖4示出了利用PLPP的K 層NOMA傳輸的範例。每一傳輸層上的NOMA符號的功率可以例如根據pik (n,l )值而被改變。例如,可以經由將功率縮放因數xik (n,l )應用於擾動因數pik (n,l ),例如pik (n,l )× xik (n,l ),實現動態擾動。總傳輸功率可以不改變,例如,它可以被保持在標稱值。
在範例中,PLPP可以在逐符號的基礎上(例如,在時域中)被實施,這可以確保滿足傳輸功率約束。在範例中,可以在頻域中應用功率偏移,例如,以實現功率從RE子集到相同符號內的其它子集的偏移。
用於擾動機制的參數可以被預先配置,例如在WTRU處與諸如MAS、NOMA傳輸資源等的其他NOMA參數被聯合地預先配置。擾動機制的參數可以包括以下中的一或複數:關於時間/頻率模式的資訊(例如,模式是否應當被應用於時域中的一或複數符號、頻率中的一或複數頻率資源、或者時域和頻域這兩者中,該模式多常自身重複等)、pik (n,l )因數(例如,實現擾動所在的特定時間/頻率資源)、要應用的功率偏移值(例如,縮放因數)等。該時間/頻率模式可以是週期性的,或者基於偽隨機訊號的(例如,該模式可以基於偽隨機序列而被隨機應用)。該擾動模式可以在時間、頻率或這兩者上被應用。可以基於符號及/或RB索引、時槽號、訊框號等來定義該重複的循環。與擾動因數pik (n,l )相對應的擾動的量(例如,功率偏移)可以基於層數而可被配置及/或(例如,由網路)定義的。可以有二或更多級別(例如,二或更多個功率偏移值集合)。例如,在兩層傳輸中,可以應用三(2+1)個值集合。第一值集合可對應於某一範圍內的最大值集合(例如,最大功率偏移或縮放因數),例如,pik (n,l ) =pmax 。當應用這些值時,可以創建大的(例如,最大的)功率偏移。第二值集合可以對應於最小值集合(例如,最小功率偏移或縮放因數),例如,pik (n,l ) =pmin 。當應用這些值時,可以創建小的(例如,最小的)功率偏移。第三值集合可以包括所有的一,例如pik (n,l ) = 1,其可以指示不施加擾動(例如,不創建人為功率偏移)。
圖5示出了可應用於第i 個使用者(例如WTRU)和第k 個傳輸層的3態擾動模式pik (n,l )的範例定義。該擾動模式中包含的三種狀態可以包括例如如上所述的pmin pmax 和1。如nl 索引所示,圖5所示的擾動(例如,擾動的每一實例)pik (n,l )可以在時域(例如,每符號及/或每層)及/或頻域(例如,在RE級)中被應用。在範例中(例如,在頻域擾動的情況下),每層的RE或RE群組(例如,每一RE或RE群組)可以被縮放(例如,不同地縮放)。在範例中,當與傳輸層相關聯的每一RE或RE群組被不同地縮放時,傳輸層的總傳輸功率可以改變或可以不改變。可以以聯合的時間和頻率方式施加該擾動模式。在圖5中,“1”可以指示在資源(n,l)上沒有擾動。
可以定義一組預定的擾動機制。該擾動機制可以被定義為例如碼簿,其中該碼簿的每一條目可以包括(例如,包含)關於擾動過程的資訊,例如以下各項中的一或複數個:擾動模式、擾動因數(一或複數個)等。在基於碼簿的實施方式中,該碼簿的每一條目可以例如經由使用索引而被指示給WTRU。例如,網路(例如,gNB)可以經由較高層傳訊(例如,在一或複數RRC消息中)將關於該碼簿的配置資訊傳輸到WTRU。該網路可以(例如,經由下鏈控制資訊或DCI)經由向該WTRU指定該條目的索引來指示該碼簿的哪個條目將被該WTRU應用。
碼簿可以是預定義的(例如,經由標準及/或由網路經由較高層傳訊來發訊號通知)。碼簿可以是半靜態配置的(例如,由網路經由較高層傳訊預定義/預配置,並且隨後由網路例如經由DCI啟動/去啟動)。WTRU可以例如動態地(例如經由DCI)或半靜態地(例如由網路配置並且隨後經由DCI被啟動/去啟動)接收指示,以調適(adapt)與該擾動過程相關的所有或一些資訊。例如,WTRU可以接收關於與該碼簿中的條目相關聯的索引的指示。基於包括在該碼簿條目中的資訊,WTRU可以(例如,基於WTRU選擇的種子或網路配置的種子)產生隨機序列或模式以作為對傳輸層的擾動而被應用。WTRU可以向該網路指示其碼簿選擇及/或所產生的隨機序列/模式。這樣,不同的擾動模式可以針對不同的WTRU、不同類型的傳輸、不同的層等而被動態地配置及/或應用(例如,啟動或停用)。
可以使用一或複數擾動參數(例如,一或複數擾動參數的一或複數預定義集合),諸如時間/頻率模式(一或複數)、功率縮放因數(一或複數個)等。WTRU可以被預配置有如本文所述的這樣的參數或這樣的參數的一或複數集合,或者它可以動態或半靜態地接收如本文該的這樣的參數或這樣的參數的一或複數集合。
WTRU可以基於以下操作情況中的一或複數來選擇及/或應用一或複數擾動參數,例如時間/頻率模式(一或複數個)、功率縮放因數(一或複數個)等等。
WTRU可以基於其他傳輸參數(一或複數個)來確定及/或應用一或複數擾動參數,例如時間/頻率模式(一或複數個)、功率縮放因數(一或複數個)等等。例如,該一或複數擾動參數可以基於一或複數NOMA傳輸參數而被確定及/或應用,該一或複數NOMA傳輸參數例如為NOMA區(例如,時間/頻率NOMA資源(區))、MA簽章、前文、DMRS配置等。例如,當使用一或複數第一NOMA傳輸參數(例如,第一NOMA區(例如時間/頻率NOMA資源(區))、第一MA簽章、第一前文及/或第一DMRS配置)時,可以確定及/或應用第一擾動參數集合,並且當使用一或複數第二NOMA傳輸參數(例如,第二NOMA區(例如時間/頻率NOMA資源(區))、第二MA簽章、第二前文及/或第二DMRS配置)時,可以確定及/或應用第二擾動參數集合。
WTRU可以基於NOMA層所採用的MCS的組合來確定及/或應用一或複數擾動參數。例如,如果層具有較高的碼率或調變階數(例如,與其相關聯) (例如,如果該碼率或調變階數超過特定臨界值),則WTRU可以增加在其期間在該層上應用相對正的功率偏移的週期性或持續時間(例如,確定及/或應用較高的週期性或持續時間)。
可以使用一或複數天線埠來進行多層傳輸(例如,多層NOMA傳輸)。WTRU可以基於WTRU可以用於執行傳輸的天線埠的數量來確定及/或應用一或複數擾動參數。例如,在單個天線埠(例如,複數層被配置為經由一天線埠被傳輸)的情況下,WTRU可以選擇及/或應用可能導致在該層上創建較大功率偏移的一或複數擾動參數(例如,一或複數擾動參數集合)。例如,由於與複數天線相關聯的潛在較高空間分集,具有複數天線埠的WTRU可以使用較少級(order)的擾動(例如,在功率偏移及/或週期性方面)。
WTRU可以基於一或複數空間通道傳輸屬性來確定及/或選擇一或複數擾動參數,該一或複數空間通道傳輸屬性例如為傳輸波束、傳輸配置索引(TCI)狀態、波束索引、SRS埠、天線面板(例如安裝在面板上的一天線群組)、相干性(例如,完全相干、部分相干、非相干)等。WTRU可以從預定義的表中選擇及/或應用一或複數擾動參數。例如,可以經由至少一空間通道傳輸屬性(例如,TCI狀態)來索引該表。
WTRU可以根據訊務類型、(重)傳輸的數量、優先順序或預期可靠性中的一者或多者來確定及/或選擇一或複數擾動參數。在範例中,如果層承載較高可靠性的訊務,則WTRU可以選擇/應用擾動參數以便增加週期性及/或持續時間(例如,選擇及/或應用較高的週期性及/或持續時間),在該週期性及/或持續時間期間,相對正的功率偏移被應用於該層。在範例中,如果層承載較高可靠性的訊務,則WTRU可以選擇/應用擾動參數以便增加為該層創建的功率偏移。
在多層NOMA的每層擾動的範例中,例如圖4所示的範例,可以基於其它系統參數來定義動態擾動模式。例如,可以選擇該動態模式以最小化多層傳輸的PAPR特性。所選模式可考慮資料酬載來定義擾動因數。WTRU可以從一批預先配置的集合中選擇擾動因數,例如其可以導致最小PAPR或任何其他類似度量的擾動因數。可以經由其它傳輸方面(例如,DMRS模式、DMRS加擾序列、MAS等)隱式地進行對所選模式的指示。
圖6是示出了可由WTRU執行的範例擾動操作的框圖。在602,WTRU可以將要被傳輸位元序列分割成K個子序列或傳輸層。在604,WTRU可以例如使用NOMA編碼器將每一傳輸層編碼為符號序列。在606,WTRU可以確定用於每一傳輸層的功率擾動模式,如本文所述。在608,WTRU可以將所確定的功率擾動模式應用於每一傳輸層,例如經由在逐符號的基礎上將該模式與編碼傳輸層相乘來進行應用。該擾動可能導致K個傳輸層的傳輸功率彼此偏移,這可以增強該傳輸層的分集並改善接收器處的解碼性能。在610,WTRU可以使用從該擾動操作中導出的傳輸功率來傳輸該K個傳輸層。這些層可以經由單個天線埠或複數天線埠來傳輸。當單個天線埠用於該傳輸時,WTRU可以在經由單個天線埠傳輸所組合的序列之前,將K個層組合(例如,求總和)成一序列。
可以經由每層延遲插入(PLDI)而在傳輸層之間引起NOMA分集。圖7示出了利用PLDI的多層NOMA傳輸的範例,例如,其中zik 可以是使用者i 的第k 個NOMA層的時域表示。該使用者i 的時域NOMA訊號zi 可以被預編碼並在實際天線埠上被傳輸。例如,NOMA層的數量可以不同於MIMO層的數量。作為說明,2層NOMA傳輸可以被映射到可變數量的天線上,例如,一或複數任意數量的天線。
WTRU可以被預配置(例如,經由網路)有延遲值集合。這些延遲值中的每一個可以對應於要應用於例如層的傳輸延遲。這些延遲值可為WTRU特定的或被配置用於WTRU群組。WTRU可以接收改變這些延遲值的指示(例如,從諸如gNB的網路實體接收)。WTRU可以接收複數延遲值集合以基於以下範例標準中的一或複數標準進行選擇:DL測量(例如,路徑損耗或SNR)、MCS、MAS、NOMA資源、DMRS埠、天線面板、TCI狀態、路徑延遲、TA資訊等。
可以描述利用隨機預編碼器的NOMA分集。可以應用以下中的一或複數個。
一種用於在傳輸層之間引起分集的技術可以包括引入隨機預編碼器。圖8示出了利用隨機預編碼的範例多層NOMA傳輸,其中wik 可以是使用者i 的第k 個NOMA層的頻域表示。預編碼器P可以被設計為在輸出處保持一致的功率。使用者i 的NOMA訊號vi 可以稍後被預編碼,例如,用於在實際天線埠上傳輸
WTRU可以(例如,經由網路)被預配置有包括(例如,包含)不同預編碼器的碼簿集。可以將這些層分組為幾個子集,以便用相同的預編碼器進行預編碼,可以獨立地對每一層進行預編碼,等等。每一預編碼器P可以是矩陣或向量的形式,其中其列數可以表示用於預編碼的子群組的數目。P中的行數可以表示階數或傳輸秩序。使用者i 的訊號向量v i 可以由W預編碼(例如,進一步預編碼)及/或波束成形,例如,用於在實際天線埠上傳輸。
WTRU可以經由例如隨機地循環經由可用的預編碼器來選擇預編碼器。例如,WTRU可以經由基於偽隨機或週期性模式而循環經由可用的預編碼器來選擇預編碼器。WTRU可以接收複數碼簿集以基於以下範例標準中的一或複數來進行選擇:WTRU ID、DL測量(例如路徑損耗或SNR)、之間/內部干擾、MCS、MAS、訊務類型、NOMA資源、DMRS埠、天線面板、TCI狀態、路徑延遲、TA資訊等。預編碼器循環的選擇模式可以是WTRU特定的。該預編碼器循環的選擇模式可以基於以下範例參數中的一或複數:WTRU ID、胞元ID等。
可以存在到TCI狀態的MAS/NOMA資源連結。一或複數多重存取簽章(MAS)可以用於多工來自不同WTRU及/或不同層的一或複數上鏈訊號。MAS可以基於以下中的一或複數來確定:具有唯一身份的序列;具有唯一模式的排程資源中的子載波及/或符號的子集;所選擇或指示的天線埠號(或天線埠索引);加擾身份,其被指示、配置或用於相關聯的解調RS;該排程的資源內的PRB的子集;傳輸功率水準或值;時序提前水準或值;或者時槽、子訊框、訊框或聚合時槽內的跳頻模式。
在範例中,MAS可用於傳輸單個資料串流。如果WTRU傳輸多於一的資料串流(例如PUSCH的傳輸秩序大於一),則可以使用複數MAS,其中資料流程的數量可以確定該傳輸秩序。秩序的數目、層的數目、傳輸秩序以及秩序可以互換地使用。
WTRU可以被指示或配置有MAS的集合。WTRU可以基於以下中的一者或多者來確定用於UL傳輸(例如PUSCH或PUCCH)的MAS子集:指示的TCI狀態;指示的傳輸秩序;指示的DM-RS埠索引;WTRU-ID (例如C-RNTI);時槽、子訊框及/或訊框索引;或用於UL傳輸的相關面板。可以應用以下中的一或複數。可以為該UL傳輸指示TCI狀態,例如,其中該TCI狀態可以用於為該UL傳輸指示QCL的下鏈RS (例如,CSI-RS索引或SSB索引)及/或上鏈RS (例如,SRS索引)。WTRU可以基於所指示的TCI狀態來確定上鏈波束。可以為該UL傳輸指示DM-RS埠索引。例如,如果在相關聯的DCI中指示了第一DM-RS埠用於PUSCH傳輸,則可以使用該集合中的第一MAS,而如果指示第二DM-RS埠,則可以使用該集合中的第二MAS。該第一MAS及第二MAS可不同。該第一DM-RS埠和第二DM-RS埠可以不同,其中該第一DM-RS埠和第二DM-RS埠可以基於相關聯的CDM群組來確定。例如,第一CDM群組中的DM-RS埠可以被確定或視為第一DM-RS埠,而第二CDM群組中的DM-RS埠可以被確定或視為第二DM-RS埠。相關的面板可以用於該UL傳輸。WTRU可以基於哪個上鏈面板與該UL傳輸相關聯來使用不同的MAS。
WTRU可以被配置/指示一MAS集合。WTRU可以確定一被配置/指示的MAS的子集,以例如向gNB報告、通知或指示以下一或複數:較佳波束索引、HARQ-ACK資訊或CSI資訊。可以應用以下中的一或複數。可以使用較佳的波束索引。例如,WTRU可以被配置成具有MAS和波束參考訊號(例如CSI-RS、SSB)之間的關聯,並且WTRU可以確定MAS以向gNB報告、指示或通知較佳的波束索引(例如波束參考訊號索引)。該波束選擇可基於與MAS相關聯的波束參考訊號的測量。可以使用HARQ-ACK資訊。如果UL傳輸與HARQ-ACK傳輸重疊,則WTRU可以從該集合中選擇或確定MAS以指示與先前發生的下鏈傳輸相關聯的HARQ-ACK。可以使用CSI資訊,其中該CSI資訊可以包括以下中的一或複數:CRI、RI、PMI或CQI。
可以提供動態MAS和NOMA資源機制。WTRU可以被配置有多重存取簽章(MAS),並且該MAS可以在被分配用於UL傳輸(例如,PUSCH、PUCCH及/或PRACH)的時間頻率資源上改變,例如以便隨機化在UL中同時傳輸的不同WTRU之間的干擾。WTRU可以基於以下MAS跳躍(hopping)方案中的一或複數來動態地確定所指派的用於UL傳輸的MAS:OFDM符號MAS跳躍;時槽內MAS跳躍;時槽間MAS跳躍;微型時槽MAS跳躍;PRB MAS跳躍;部分PRB MAS跳躍;BWP MAS跳躍;或載波MAS跳躍。
可以使用OFDM符號MAS跳躍。時槽內的每一OFDM符號可以與不同的MAS相關聯,例如,該MAS可以跨複數連續的OFDM符號跳躍。該WTRU可以例如基於時槽內的OFDM符號索引來確定為PUSCH/PUCCH傳輸分配/配置的每一符號的MAS。
可以使用時槽內MAS跳躍。UL實體通道(例如,PUSCH或PUCCH)的每一半可以與不同的MAS相關聯。WTRU可以確定用於傳輸時槽中的第一半的PUSCH/PUCCH符號的第一跳的第一MAS和用於第二跳(其包括第二半或剩餘PUSCH/PUCCH符號)的第二MAS。該時槽內的每一跳的MAS可以與以下中的一或複數相關聯:DM-RS埠,其被指派用於在該時槽的每一半中進行的傳輸;CSI-RS資源索引,其被指派用於在該時槽的每一半中的傳輸;或者SRS資源索引。
可以使用時槽間MAS跳躍。在時槽重複的情況下,每一時槽可以與不同的MAS相關聯,例如,其中MAS可以跨複數連續時槽跳躍。WTRU可以基於以下中的一或複數來確定每一時槽的MAS:子訊框/訊框內的時槽索引;前端載入DM-RS埠,其被指派給每一時槽;指派給每一時槽的CSI-RS資源索引;或者指派給每一時槽的SRS資源索引(例如,SRI)。
可以使用微型時槽MAS跳躍。在微型時槽重複的情況下,每一微型時槽可以與不同的MAS相關聯,例如,其中MAS可以跨複數連續的微型時槽跳躍。WTRU可以基於以下中的一或複數來確定每一微型時槽的MAS:時槽/子訊框/訊框內的微型時槽索引;該時槽內的針對每一微型時槽的起始OFDM符號;針對每一微型時槽的DM-RS埠等
可以使用PRB MAS跳躍。在WTRU被排程/配置用於複數PRB上的UL傳輸的情況下,每一PRB的MAS可以是不同的。WTRU可以基於以下中的一或複數來確定用於每一PRB的MAS:所分配的PUSCH/PUCCH內的PRB索引;活動BWP內的PRB索引;或者載波內的PRB索引。
可以使用部分PRB MAS跳躍。在WTRU被排程/配置用於在一或複數PRB上的UL傳輸的情況下,PRB的每一部分的MAS可以是不同的。WTRU可以基於以下中的一或複數來確定用於PRB的每一部分的MAS:每一PRB內的部分PRB索引;所分配的PUSCH/PUCCH內的PRB索引;活動BWP內的PRB索引;或者載波內的PRB索引。
可以使用BWP MAS跳躍。在WTRU被配置成具有用於UL傳輸的複數BWP的情況下,用於每一BWP的MAS可以不同。WTRU可以基於以下中的一或複數來確定用於每一BWP的MAS:BWP索引;每一BWP中的用於初始存取的CORESET索引;或者每一BWP中的用於初始存取的搜索空間索引。
可以使用載波MAS跳躍。在WTRU被配置成具有用於使用載波聚合的UL傳輸的複數分量載波的情況下,用於每一分量載波的MAS可以是不同的。WTRU可以基於以下中的一或複數來確定用於每一分量載波的MAS:分量載波索引;胞元索引;BWP索引;每一載波/BWP中的用於初始存取的CORESET索引;或者每一載波/BWP中的用於初始存取的搜索空間索引。
可以提供用於上鏈NOMA的CSI-RS。在上鏈多使用者實施方式中,例如NOMA,WTRU可以應用特定的上鏈傳輸技術以允許gNB進行胞元間或胞元內干擾測量。可以考慮上鏈NOMA系統來說明這種(多種)技術的細節,但是這種技術的細節可以適用於諸如其他多使用者實施方式的其他場景。WTRU可以被配置成具有用於NOMA傳輸的參數集合。WTRU可以確定用於NOMA傳輸的參數集合。該參數集合可以包括資訊,例如(時間/頻率)資源、MAS資訊等。
WTRU可以不在所有分配的PUSCH NOMA資源上進行傳輸。未使用的PUSCH資源可以被認為是可以例如經由gNB用於干擾測量的上鏈CSI-RS資源。這樣的CSI-RS可以被稱為干擾測量RS (IM-RS)。圖9示出了用於上鏈NOMA傳輸中的干擾測量的IM-RS的範例。在該範例中,WTRU1被配置有IM-RS(1),其可以允許對WTRU2和WTRU3的NOMA傳輸進行測量,而IM-RS (2)可以允許對WTRU1和WTRU3的NOMA傳輸進行測量等等。
IM-RS模式可以用其每NOMA傳輸事件的頻率/時間位置來定義,例如,時槽、週期性及/或適用的NOMA層。具有零週期性的IM-RS可以被認為是去啟動的IM-RS過程。
在NOMA傳輸中,可以實施針對PUSCH的IM-RS事件。可以應用以下中的一或複數。對於PUSCH NOMA傳輸,IM-RS事件可以發生,其中PUSCH功率被設置為零。這樣,該PUSCH傳輸可以在IM資源周圍沒有速率匹配的情況下發生。除了干擾測量之外,在解碼期間,gNB可在WTRU的解碼中利用該資訊。WTRU可以例如基於標準、臨界值等自主地啟動或去啟動其IM-RS過程,除非其被gNB所覆蓋。根據IM-RS模式,可以經由PUSCH資訊的速率匹配來支援IM-RS事件。在範例中,IM-RS機會可以經由上述解決方案的組合來形成。
可以為單個WTRU或一WTRU群組定義IM-RS模式。WTRU可以顯式地或隱式地接收指示以啟動或去啟動IM-RS事件,或者改變該IM-RS模式。
NOMA WTRU可以被半靜態地或動態地配置有與特定IM-RS過程相關的資訊。WTRU可以被半靜態地或動態地配置為具有多於一IM-RS配置,其中每一配置可以由索引來表示。索引可以動態地指示給WTRU,或者其可以從另一NOMA配置來確定。
IM-RS模式可以從與該NOMA操作相關的操作特徵(一或複數)或參數(一或複數)中的一者或多者確定。可以應用以下中的一或複數。可以根據所確定的用於NOMA傳輸的PUSCH資源集合(例如,RE)來確定IM-RS模式。例如,不同的PUSCH NOMA資源集合可以具有不同的相關聯的IM-RS模式。IM-RS模式可連結到所確定的用於NOMA傳輸的MAS。例如,MAS (例如,每一MAS)可以具有與IM-RS索引的一對一連結。IM-RS模式可根據重傳索引來調適,例如使得對於重傳,可使用IM-RS的更密集或更不密集的模式。IM-RS模式可根據NOMA層的數目來調適。在多層NOMA傳輸中,每層的IM-RS模式可以相同或不同。可以根據RS下鏈測量來調適IM-RS模式。例如,如果WTRU SNR下降到預先配置的臨界值以下,IM-RS可以被去啟動。可以基於所配置或確定的上鏈DMRS配置來定義IM-RS。例如,可以相對於上鏈DMRS的映射位置及/或週期性來確定IM-RS資源。可以基於訊務類型(例如,mMTC、URLLC、eMBB等)及/或封包大小來確定IM-RS的配置。例如,可以為mMTC WTRU施加更多IM-RS事件,以允許更多的測量機會用於其他非mMTC傳輸。
可以以不同WTRU工作週期在WTRU群組中重用共同IM-RS模式,這可以減少負擔。該IM-RS模式可包括一RE共同集合,該RE共同集合可針對該群組中的所有WTRU被相同地定義,並且該群組中的每一WTRU可在相同資源上以不同的時間間隔週期性地停止傳輸。例如,對於N個使用者,可以使用N個TTI週期,其中每一使用者在1/N個TTI期間不進行傳輸。圖10示出了群組IM-RS模式的循環的範例。在圖10的範例中,存在N = 4個WTRU。在TTI1中,WTRU1、WTRU2和WTRU3在由IM-RS模式佔用的RE上執行NOMA傳輸,而WTRU4不在由該IM-RS模式佔用的RE上傳輸。接收器從WTRU1、WTRU2、和WTRU3的總和獲取干擾資訊,其對WTRU4的解碼是有用的。在TTI2中,WTRU3不進行傳輸,依此類推。
儘管本揭露的特徵和元件可以考慮LTE、LTE-A、新無線電(NR)或5G特定協定,但是應當理解,本文描述的解決方案不限於該場景,並且也可應用於其它無線系統。
雖然在上文中描述了採用特定組合或順序的特徵和元件,但是本領域普通技術人員將會認識到,每一特徵或元件既可以單獨使用,也可以與其他特徵和元件進行任何組合來使用。此外,這裡描述的方法可以在引入電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。電腦可讀媒體的範例包括電訊號(經由有線或無線連接傳輸)以及電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、寄存器、緩衝記憶體、半導體存放裝置、諸如內部硬碟和可移除碟片之類的磁媒體、磁光媒體、以及諸如CD-ROM碟片和數位多用途碟片(DVD)的的光媒體。與軟體關聯的處理器可以用於實施在這裡所描述的裝置中使用的射頻收發器。
100:通訊系統 102、102a、102b、102c、102d:無線傳輸/接收單元(WTRU) 104、113:無線電存取網路(RAN) 106、115:核心網路(CN) 108:公共交換電話網路(PSTN) 110:網際網路 112:其他網路 114a、114b:基地台 116:空中介面 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B 162:行動管理實體(MME) 164:服務閘道(SGW) 166:封包資料網路(PDN)閘道(PGW) 180a、180b、180c:g節點B(gNB) 182a、182b:行動管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN) 602、604、606、608、610:步驟 di、di1、diK:位元序列 i:使用者 K:傳輸層 N2、N3、N4、N6、N11、S1、X2、Xn:介面 NOMA:非正交多重存取 P:預編碼器 TTI:傳輸時間間隔 Vi:使用者i的NOMA訊號 W:預編碼
圖1A是示出了可實施一或複數揭露的實施例的範例通訊系統的系統圖; 圖1B是示出了根據一種實施例可在圖1A所示的通訊系統內使用的範例無線傳輸/接收單元(WTRU)的系統圖; 圖1C是示出了根據一種實施例可在圖1A所示的通訊系統內使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖; 圖1D是示出了根據一種實施例可在圖1A所示的通訊系統內使用的另一範例RAN和另一範例CN的系統圖; 圖2示出了範例性多層NOMA傳輸器。 圖3示出了用於實施多層NOMA傳輸器的結構的範例。 圖4示出了利用PLPP的K層NOMA傳輸的範例。 圖5示出3態擾動模式的範例定義。 圖6示出了可以由WTRU執行的範例功率擾動操作。 圖7示出了使用PLDI的多層NOMA傳輸的範例。 圖8示出了利用隨機預編碼的範例多層NOMA傳輸。 圖9示出了用於上鏈NOMA傳輸中的干擾測量的IM-RS的範例。 圖10示出了群組IM-RS模式的循環的範例。
di、di1、diK:位元序列
i:使用者

Claims (15)

  1. 一種無線發射/接收單元(WTRU),該WTRU包括: 一處理器,其被配置為: 確定一第一傳輸層和第二傳輸層要被傳輸到一網路; 將一第一擾動模式應用於該第一傳輸層並且將一第二擾動模式應用於該第二傳輸層,其中經由該第一擾動模式和該第二擾動模式在與該第一傳輸層相關聯的一第一傳輸功率水平和與該第二傳輸層相關聯的一第二傳輸功率水平之間創建一差異; 確定該第一和第二傳輸層是要經由一單個天線埠還是複數天線埠而被傳輸; 基於確定該第一傳輸層和該第二傳輸層要經由該單個天線埠被傳輸: 以該第一傳輸功率水平經由該單個天線埠來傳輸該第一傳輸層;以及 以該第二傳輸功率水平經由該單個天線埠來傳輸該第二傳輸層。
  2. 如請求項1所述的WTRU,其中該處理器被配置成將該第一擾動模式應用於該第一傳輸層包括該處理器被配置成在一或複數傳輸資源的一第一集合中將一第一擾動參數集合應用於該第一傳輸層,並且該處理器被配置成將該第二擾動模式應用於該第二傳輸層包括該處理器被配置成在一或複數傳輸資源的一第二集合中將一第二擾動參數集合應用於該第二傳輸層。
  3. 如請求項2所述的WTRU,其中該第一擾動參數集合包括一第一功率縮放因數,並且其中該第二擾動參數集合包括一第二功率縮放因數。
  4. 如請求項1所述的WTRU,其中該處理器被配置成基於從該網路接收的一配置來確定該第一擾動模式和該第二擾動模式。
  5. 如請求項1所述的WTRU,其中該處理器被配置成基於一碼簿確定該第一擾動模式和該第二擾動模式。
  6. 如請求項5所述的WTRU,其中該碼簿包括複數條目,每一條目對應於由一索引標識的一擾動模式,並且該處理器還被配置成從該網路接收對應於該第一或第二擾動模式的該索引的一指示。
  7. 如請求項1所述的WTRU,其中該處理器被配置成基於以下中的一者或多者來確定該第一擾動模式和該第二擾動模式:與該第一傳輸層或該第二傳輸層相關聯的一傳輸區、與該第一傳輸層或該第二傳輸層相關聯的傳輸資源、與該第一傳輸層或該第二傳輸層相關聯的一簽章、與該第一傳輸層或該第二傳輸層相關聯的一天線埠、與該第一傳輸層或該第二傳輸層相關聯的一優先順序、或與該第一傳輸層或該第二傳輸層相關聯的一傳輸波束。
  8. 如請求項1所述的WTRU,其中基於確定該第一傳輸層和該第二傳輸層將經由複數天線埠而被傳輸,該處理器被配置成: 經由一第一天線埠以該第一傳輸功率傳輸該第一傳輸層的至少一部分;以及 經由一第二天線埠以該第二傳輸功率傳輸該第二傳輸層的至少一部分。
  9. 如請求項1所述的WTRU,其中該處理器還被配置成在傳輸該第一和第二傳輸層之前,對該第一和第二傳輸層應用隨機預編碼。
  10. 如請求項1所述的WTRU,其中該第一傳輸層和該第二傳輸層的每一者包括一非正交多重存取(NOMA)傳輸。
  11. 如請求項1所述的WTRU,其中該處理器被配置成在一逐個符號的基礎上將該第一擾動模式和該第二擾動模式應用於分別的第一傳輸層和第二傳輸層。
  12. 如請求項1所述的WTRU,其中該處理器被配置成在一資源元素級別將該第一擾動模式和該第二擾動模式應用於分別的第一傳輸層和第二傳輸層。
  13. 一種在一無線傳輸/接收單元(WTRU)中實施的方法,該方法包括: 確定一第一傳輸層和第二傳輸層要被傳輸到一網路; 將一第一擾動模式應用於該第一傳輸層並且將一第二擾動模式應用於該第二傳輸層,其中在與該第一傳輸層相關聯的第一傳輸功率水平和與該第二傳輸層相關聯的一第二傳輸功率水平之間創建一差異; 確定該第一和第二傳輸層是要經由一單個天線埠還是複數天線埠而被傳輸; 基於確定該第一傳輸層和該第二傳輸層要經由該單個天線埠被傳輸: 以該第一傳輸功率水平經由該單個天線埠來傳輸該第一傳輸層;以及 以該第二傳輸功率水平經由該單個天線埠來傳輸該第二傳輸層。
  14. 如請求項13所述的方法,其中將該第一擾動模式應用於該第一傳輸層包括在一或複數傳輸資源的一第一集合中將一第一功率縮放因數應用於該第一傳輸層,並且其中將該第二擾動模式應用於該第二傳輸層包括在一或複數傳輸資源的一第二集合中將一第二功率縮放因數應用於該第二傳輸層。
  15. 如請求項13所述的方法,其中該第一和第二傳輸層每一者包括一非正交多重存取(NOMA)傳輸。
TW108141098A 2018-11-13 2019-11-13 強健noma傳輸 TW202034643A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862760085P 2018-11-13 2018-11-13
US62/760,085 2018-11-13
US201962789774P 2019-01-08 2019-01-08
US62/789,774 2019-01-08

Publications (1)

Publication Number Publication Date
TW202034643A true TW202034643A (zh) 2020-09-16

Family

ID=68835300

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141098A TW202034643A (zh) 2018-11-13 2019-11-13 強健noma傳輸

Country Status (5)

Country Link
US (1) US11937189B2 (zh)
EP (1) EP3881614A1 (zh)
CN (1) CN113039840A (zh)
TW (1) TW202034643A (zh)
WO (1) WO2020102144A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020062051A1 (zh) * 2018-09-28 2020-04-02 株式会社Ntt都科摩 用于上行功率控制的方法及设备
US11368922B2 (en) * 2019-05-01 2022-06-21 Ofinno, Llc Power control for multiple panels in a radio system
US11743019B2 (en) * 2020-01-31 2023-08-29 Qualcomm Incorporated Clutter interference management
US11558862B2 (en) 2020-04-24 2023-01-17 Qualcomm Incorporated Codepoint scrambling for a non-coherent transmission
CN112969141B (zh) * 2021-02-26 2022-10-25 北京邮电大学 一种通信感知一体化非正交多址随机接入通信方法及装置
WO2024092744A1 (en) * 2022-11-04 2024-05-10 Huawei Technologies Co., Ltd. System and method for multiple access based on power profiles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9179426B2 (en) 2010-05-07 2015-11-03 Qualcomm Incorporated Modulation and coding scheme adjustment for uplink channel power control in advanced telecommunication networks
CN106160987B (zh) * 2015-04-23 2020-01-31 中兴通讯股份有限公司 控制信息的发送方法及装置
CN106452697B (zh) * 2015-08-04 2019-08-16 电信科学技术研究院 一种上行数据的发送方法、接收方法及装置
US10517082B2 (en) 2016-04-01 2019-12-24 Huawei Technologies Co., Ltd. Mechanisms for multi-tier distributed co-operative multi-point technology
JP2018026660A (ja) * 2016-08-09 2018-02-15 ソニー株式会社 通信装置、通信方法及びプログラム
US10708728B2 (en) * 2016-09-23 2020-07-07 Qualcomm Incorporated Adaptive modulation order for multi-user superposition transmissions with non-aligned resources
WO2018147789A1 (en) * 2017-02-13 2018-08-16 Telefonaktiebolaget Lm Ericsson (Publ) System and method for distributed coordination of duplex directions in a nr system
CN107689859A (zh) * 2017-08-29 2018-02-13 广西大学 基于博弈论的scma系统码本和功率分配方法
US20200358557A1 (en) * 2019-05-10 2020-11-12 Samsung Electronics Co., Ltd. Method and apparatus for data transmission in wireless communication system

Also Published As

Publication number Publication date
CN113039840A (zh) 2021-06-25
US11937189B2 (en) 2024-03-19
EP3881614A1 (en) 2021-09-22
US20220007304A1 (en) 2022-01-06
WO2020102144A1 (en) 2020-05-22

Similar Documents

Publication Publication Date Title
US11678329B2 (en) Reference signal design for wireless communication systems
US20220255710A1 (en) Transmission and reception of physical downlink control channels
EP3873020B1 (en) Beam-based pdcch transmission in nr
TWI794242B (zh) 藉由上鏈共享資料通道傳輸上鏈控制資訊(uci)方法、裝置、系統、結構及介面
JP2022120117A (ja) 位相トラッキング参照信号送信
US20220132497A1 (en) Control channel for new radio
WO2020033719A1 (en) Method and apparatus for physical sidelink control channel (pscch) design in new radio (nr)
AU2017308909A1 (en) Systems and methods for aperiodic measurement reference signal transmission in multiple antenna systems
US11937189B2 (en) Robust NOMA transmission
US11716746B2 (en) Scheduling and transmission for NOMA
WO2018175578A1 (en) Resource allocation for uplink control channel
KR20210124967A (ko) 신뢰할 수 있는 다중 전송 시스템을 위한 방법 및 장치
WO2019195103A1 (en) Methods of harq for noma
WO2023212008A1 (en) Methods and apparatus for multi-trp srs enhancements in tdd
WO2022081935A1 (en) Methods, apparatuses, systems etc. directed to enhanced control channel and shared channel transmissions at high frequencies
WO2023086445A1 (en) Methods on enhancing reliability and supporting mixed priority traffic in high frequency communications