TW201904324A - 用於新無線電技術的定時提前組 - Google Patents

用於新無線電技術的定時提前組 Download PDF

Info

Publication number
TW201904324A
TW201904324A TW107118964A TW107118964A TW201904324A TW 201904324 A TW201904324 A TW 201904324A TW 107118964 A TW107118964 A TW 107118964A TW 107118964 A TW107118964 A TW 107118964A TW 201904324 A TW201904324 A TW 201904324A
Authority
TW
Taiwan
Prior art keywords
timing advance
radio access
access network
step size
configuration
Prior art date
Application number
TW107118964A
Other languages
English (en)
Other versions
TWI793132B (zh
Inventor
王任丘
陳旺旭
阿米爾 阿密札帝勾哈瑞
約瑟夫畢那米拉 索瑞亞嘉
艾雷斯 戈羅波夫
浩 許
庭芳 紀
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201904324A publication Critical patent/TW201904324A/zh
Application granted granted Critical
Publication of TWI793132B publication Critical patent/TWI793132B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本案內容的各態樣涉及實現或支援在無線電存取網路中配置定時提前的通訊系統、裝置和方法。該方法包括為採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置,決定與用於與無線電存取網路通訊的使用者設備(UE)的定時提前配置一致的定時提前參數,以及在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數。定時提前配置可以被定義為適應無線電存取網路使用的數位方案。

Description

用於新無線電技術的定時提前組
本專利申請案主張享有於2017年6月2日在美國專利局提交的美國臨時專利申請案序號第62/514,584號和於2018年5月31日在美國專利和商標局提交的非臨時申請案第15/994,942號的優先權和權益,該申請案的全部內容經由引用的方式併入本文,如同在下面完整地闡述其全部內容並用於所有適用的目的。
下面論述的技術整體上係關於無線通訊系統,具體而言,係關於控制無線電存取網路中的傳輸的定時。
無線通訊系統被廣泛部署以提供各種電信服務,諸如電話、視訊、資料、訊息收發和廣播。典型的無線通訊系統可以採用能夠經由共享可用系統資源(例如,頻寬、發射功率)來支援與多個使用者進行通訊的多工存取技術。已經在各種電信標準中採用這些多工存取技術,以提供使得不同的無線設備能夠在城市、國家、地區甚至全球級別上進行通訊的公共協定。
例如,第五代(5G)新無線電(NR)通訊技術被設想為擴展和支援關於當前行動網路世代的各種使用場景和應用。在一態樣,5G通訊技術包括:解決用於存取多媒體內容、服務和資料的以人為中心的使用情況的增強型行動寬頻;尤其在延時和可靠性態樣具有嚴格的要求的超可靠-低延時通訊(URLLC);和用於非常大量的連接設備和通常發送相對少量的非延遲敏感資訊的大規模機器類型通訊。
無線通訊網路正被用於為具有不同能力的各種類型的設備提供和支援甚至更廣泛的服務。儘管一些設備可以在通訊通道的可用頻寬內操作,但是在採用NR存取技術的設備中對上行鏈路控制通道的要求在傳統網路實施方式中可能無法滿足或無法實現。
隨著對行動寬頻存取的需求不斷增長,研究和開發不斷推進無線通訊技術的發展,以不僅要滿足對行動寬頻存取日益增長的需求,而且還要提升和增強使用者的行動通訊體驗。
以下呈現本案內容的一或多個態樣的簡化概要以提供對這些態樣的基本理解。本概要不是對本案內容的所有預期態樣的廣泛概述,並且既不意欲標識本案內容的所有態樣的關鍵或重要元素,亦不是描述本案內容的任何或全部態樣的範疇。本概要的唯一目的是以簡化形式呈現本案內容的一或多個態樣的一些概念,作為稍後呈現的更詳細描述的序言。
在一個實例中,揭示一種用於無線電存取網路中的定時提前的方法。該方法包括:針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置,決定與用於與無線電存取網路進行通訊的使用者設備(UE)的定時提前配置一致的定時提前參數,以及在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數。定時提前配置可以被定義為適應無線電存取網路使用的數位方案。
定義定時提前配置可以包括為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。定義定時提前配置可以包括為針對無線電存取網路定義的所有次載波間隔配置定時提前步長尺寸。
在一些情況下,針對無線電存取網路定義次載波間隔組,並且定義定時提前配置可以包括針對次載波間隔組中的次載波間隔配置定時提前步長尺寸。該次載波間隔組可以包括15kHz、30kHz和60kHz的次載波間隔。該次載波間隔組可以包括120kHz和240kHz的次載波間隔。
定義定時提前配置可以包括配置用於表示定時提前參數中被發送給UE的定時提前持續時間的位元數。定義定時提前配置可以包括為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。選擇定時提前步長尺寸和用於表示定時提前值的位元數以獲得具有期望的定時提前細微性的無線電存取網路的最大定時提前持續時間或範圍。期望的定時提前細微性由混合自動重傳請求(HARQ)定時決定。定義定時提前配置可以包括為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。選擇定時提前步長尺寸和用於表示定時提前值的位元數以獲得由無線電存取網路為HARQ定義的最大定時提前持續時間。
定義定時提前配置可以包括基於針對無線電存取網路定義的一或多個次載波間隔的定時提前步長尺寸來配置用於表示定時提前持續時間的位元數。
定義定時提前配置可以包括當UE被配置為作為增強型行動寬頻(eMBB)UE操作時配置用於表示定時提前持續時間的第一位元數,以及當UE被配置為作為超可靠-低延時通訊(URLLC)UE操作時配置用於表示定時提前持續時間的第二位元數。
定義定時提前配置可以包括當UE被配置為作為eMBB UE操作時,配置第一定時提前步長尺寸,以及當UE被配置為作為URLLC UE操作時,配置第二定時提前步長尺寸。
定義定時提前配置可以包括基於由無線電存取網路使用的頻率範圍來為次載波間隔配置一或多個定時提前步長尺寸。無線電存取網路可以被配置為使用與低於6GHz頻率和毫米波長相關聯的頻寬。
在另一實例中,一種用於無線通訊的裝置包括:用於針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置的單元,用於決定與用於與無線電存取網路進行通訊的UE的定時提前配置一致的定時提前參數的單元,以及用於在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數的單元。定時提前配置可以被定義為適應無線電存取網路使用的數位方案。
在另一實例中,一種用於無線通訊的裝置包括:用於針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置的單元,該單元適於定義定時提前配置以適應無線電存取網路使用的數位方案,用於決定與用於與無線電存取網路進行通訊的UE的定時提前配置一致的定時提前參數的單元,用於在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數的單元。
用於定義定時提前配置的單元可以適於為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。用於定義定時提前配置的單元可以適於為針對無線電存取網路定義的所有次載波間隔配置定時提前步長尺寸。
在一些情況下,為無線電存取網路定義次載波間隔組,並且用於定義定時提前配置的單元可以適於為次載波間隔組中的次載波間隔配置定時提前步長尺寸。用於定義定時提前配置的單元可以適於為次載波間隔組之每一者次載波間隔配置循環字首長度。
用於定義定時提前配置的單元可以基於針對無線電存取網路定義的一或多個次載波間隔的定時提前步長尺寸來配置用於表示定時提前參數中被發送給UE的定時提前持續時間的位元數。用於定義定時提前配置的單元可以為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。可以選擇定時提前步長尺寸和用於表示定時提前持續時間的位元數以獲得具有期望的定時提前細微性的無線電存取網路的最大定時提前持續時間或範圍。用於定義定時提前配置的單元可以適於為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。可以選擇定時提前步長尺寸和用於表示定時提前持續時間的位元數以獲得由無線電存取網路針對HARQ定義的最大定時提前持續時間。
在一些實施方式中,用於定義定時提前配置的單元可以適於當UE被配置為作為eMBB UE操作時,配置用於表示定時提前持續時間的第一位元數,以及當UE被配置為作為URLLC UE操作時,配置用於表示定時提前持續時間的第二位元數。用於定義定時提前配置的單元可以適於當UE被配置為作為eMBB UE操作時,配置第一定時提前步長尺寸,以及當UE被配置為作為URLLC UE操作時,配置第二定時提前步長尺寸。用於定義定時提前配置的單元可以適於基於由無線電存取網路使用的頻率範圍來為次載波間隔配置一或多個定時提前步長尺寸。無線電存取網路可以被配置為使用與低於6GHz頻率和毫米波長相關聯的頻寬。
在另一實例中,一種用於無線通訊的裝置具有處理器,通訊地耦合到至少一個處理器的收發機以及通訊地耦合到該至少一個處理器的記憶體。處理器可以被配置為:針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置,決定與用於與無線電存取網路通訊的UE的定時提前配置一致的定時提前參數,以及在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數。定時提前配置被定義為適應無線電存取網路使用的數位方案。
可以針對無線電存取網路定義次載波間隔組,並且處理器可以被配置為:針對次載波間隔組中的次載波間隔配置定時提前步長尺寸。處理器可以被配置為:為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。可以選擇定時提前步長尺寸和用於表示定時提前持續時間的位元數以獲得具有期望的定時提前細微性的無線電存取網路的最大定時提前持續時間或範圍。
在另一實例中,一種電腦可讀取媒體儲存電腦可執行代碼。該代碼可以使電腦針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置,決定與用於與無線電存取網路進行通訊的UE的定時提前配置一致的定時提前參數,以及在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數。定時提前配置可以被定義為適應無線電存取網路使用的數位方案。
經由閱讀下面的具體實施方式,將更全面地理解本發明的這些和其他態樣。經由結合附圖閱讀本發明的具體示例性實施例的以下描述,本發明的其他態樣、特徵和實施例對於本發明所屬領域中具有通常知識者將變得顯而易見。儘管以下可以相對於某些實施例和附圖論述本發明的特徵,但是本發明的所有實施例能夠包括本文論述的有利特徵中的一或多個。亦即,儘管一或多個實施例可以被論述為具有某些有利的特徵,但是根據本文論述的本發明的各種實施例亦可以使用此類特徵中的一或多個。以類似的方式,儘管示例性實施例可以在下面被論述為設備、系統或方法實施例,但是應該理解,可以在各種設備、系統和方法中實現此類示例性實施例。
以下結合附圖闡述的具體實施方式意欲作為各種配置的描述,並非意欲表示可以實踐本文所述的概念的唯一配置。本具體實施方式包括具體細節,目的是提供對各種概念的透徹理解。然而,對於本發明所屬領域中具有通常知識者顯而易見的是,可以在沒有這些具體細節的情況下實踐這些概念。在某些情況下,以方塊圖形式圖示公知的結構和組件,以避免使得這些概念難以理解。
本案內容的各態樣涉及啟用或支援在無線電存取網路中配置定時提前的通訊系統、裝置和方法。可以針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置。可以針對與無線電存取網路進行通訊的UE配置與定時提前配置一致的定時提前參數。在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,可以向UE發送定時提前參數。定時提前配置可以被定義為適應無線電存取網路使用的數位方案。
遍及本案內容呈現的各種概念可以在各種電信系統、網路架構和通訊標準中實現。現在參照圖1,作為說明性實例而非限制,提供了無線電存取網路100的示意圖。
由無線電存取網路100覆蓋的地理區域可以被劃分成可以由使用者設備(UE)基於從一個存取點或基地台在地理區域上廣播的標識唯一地辨識的多個蜂巢區域(細胞)。圖1圖示巨集細胞102、104和106以及小型細胞108,其中的每一個細胞可以包括一或多個扇區。扇區是細胞的子區域。一個細胞內的所有扇區都由同一個基地台服務。扇區內的無線電鏈路可以由屬於該扇區的單個邏輯標識來標識。在劃分為扇區的細胞中,細胞內的多個扇區可以由天線組形成,其中每個天線負責與細胞的一部分中的UE進行通訊。
通常,基地台(BS)服務每個細胞。廣義上,基地台是無線電存取網路中的網路元件,基地台負責在一或多個細胞中向UE進行無線電傳輸以及從UE進行無線接收。本發明所屬領域中具有通常知識者亦可以將BS稱為基地台收發機(BTS)、無線電基地台、無線電收發機、收發機功能、基本服務集(BSS)、擴展服務集(ESS)、存取點(AP)、節點B(NB)、進化型節點 B(eNB)、下一代節點 B(gNB)或某個其他合適的術語。
在圖1中,在細胞102和104中圖示兩個高功率基地台110和112;並且圖示控制細胞106中的遠端無線電頭端(RRH)116的第三高功率基地台114。亦即,基地台可以具有集成天線或者可以經由饋電電纜連線到天線或RRH。在所示出的實例中,細胞102、104和106可以被稱為巨集細胞,因為高功率基地台110、112和114支援具有大尺寸的細胞。此外,低功率基地台118被示出在可以與一或多個巨集細胞重疊的小型細胞108(例如,微細胞、微微細胞、毫微微細胞、家庭基地台、家庭節點B、家庭進化型節點B等)中。在該實例中,細胞108可以被稱為小型細胞,因為低功率基地台118支援具有相對小尺寸的細胞。可以根據系統設計以及組件約束來完成細胞大小設定。應該理解,無線電存取網路100可以包括任何數量的無線基地台和細胞。此外,可以部署中繼節點來擴展給定細胞的大小或覆蓋區域。基地台110、112、114、118為任意數量的行動裝置提供到核心網路的無線存取點。
圖1亦包括四軸飛行器或無人機120,其可以被配置為用作基地台。亦即,在一些實例中,細胞可能不一定是靜止的,並且細胞的地理區域可以根據諸如四軸飛行器120的行動基地台的位置而移動。
通常,基地台可以包括用於與網路的回載部分通訊的回載介面。回載可以提供基地台和核心網路之間的鏈路,並且在一些實例中,回載可以提供各個基地台之間的互連。核心網路是無線通訊系統的一部分,核心網路通常獨立於無線電存取網路中使用的無線電存取技術。可以採用各種類型的回載介面,諸如使用任何合適的傳輸網路的直接實體連接、虛擬網路等。一些基地台可以被配置為集成存取和回載(IAB)節點,其中無線頻譜可以用於存取鏈路(亦即,與UE的無線鏈路)並用於回載鏈路。該方案有時被稱為無線自回載。經由使用無線自回載,而不是要求每個新的基地台部署配備自己的硬佈線回載連接,用於基地台和UE之間的通訊的無線頻譜可以用於回載通訊,從而實現高密度小型蜂巢網路的快速和簡單部署。
圖示支援多個行動裝置的無線通訊的無線電存取網路100。行動裝置在由第三代合作夥伴計畫(3GPP)頒佈的標準和規範中通常被稱為使用者設備(UE),但是本發明所屬領域中具有通常知識者亦可以將其稱為行動站(MS)、用戶站、行動單元、用戶單元、無線單元、遠端單元、行動設備、無線設備、無線通訊設備、遠端設備、移動使用者站、存取終端(AT)、行動終端、無線終端、遠端終端機、手持機、終端、使用者代理、行動服務客戶端、客戶端或某個其他合適的術語。UE可以是向使用者提供對網路服務的存取的裝置。
在本文件中,「行動」裝置不一定需要具有移動的能力,並且可以是靜止的。術語行動裝置或行動設備泛指各種各樣的設備和技術。例如,行動裝置的一些非限制性實例包括行動電話、蜂巢(細胞)電話、智慧型電話、對話啟動協定(SIP)電話、膝上型電腦、個人電腦(PC)、筆記本、小筆電、智慧型電腦、平板電腦、個人數位助理(PDA)和各種例如對應於「物聯網」(IoT)的嵌入式系統。行動裝置可以另外是汽車或其他運輸車輛、遠端感測器或致動器、機器人或機器人設備、衛星無線設備、全球定位系統(GPS)設備、物件追蹤設備、無人機、多軸飛行器、四軸飛行器、遙控設備、消費者及/或可穿戴設備、諸如眼鏡、可佩戴照相機、虛擬實境設備、智慧手錶、健康或健身追蹤器、數位音訊播放機(例如MP3播放機)、相機、遊戲機等。行動裝置可以另外是數位家庭或智慧家庭設備,諸如家庭音訊、視訊及/或多媒體設備、電器、自動售貨機、智慧照明、家庭安全系統、智慧型儀器表等。行動裝置可以另外是智慧能量設備、安全設備、太陽能電池板或太陽能電池陣列、控制電力(例如智慧電網)、照明、水的市政基礎設施設備等;工業自動化和企業設備;物流控制器;農業設備;軍事防禦設備、車輛、飛機、船舶和武器等。再此外,行動裝置可以提供連接的醫療或遠端醫療支援,即遠距離的保健護理。遠端保健設備可以包括遠端保健監測設備和遠端保健管理設備,其通訊可以被給予高於其他類型的資訊優先處理或者優先存取,例如,在用於傳輸關鍵服務資料的優先存取及/或用於傳輸關鍵服務資料的相關QoS態樣。
在無線電存取網路100內,細胞可以包括可以與每個細胞的一或多個扇區進行通訊的UE。例如,UE 122和124可以與基地台110通訊;UE 126和128可以與基地台112通訊;UE 130和132可以經由RRH 116與基地台114通訊;UE 134可以與低功率基地台118通訊;並且UE 136可以與行動基地台120通訊。此處,每個基地台110、112、114、118和120可以被配置為為相應細胞中的所有UE提供到核心網路(未圖示)的存取點。從基地台(例如,基地台110)到一或多個UE(例如,UE 122和124)的傳輸可以被稱為下行鏈路(DL)傳輸,而從UE(例如,UE 122)到基地台的傳輸可以被稱為上行鏈路(UL)傳輸。根據本案內容的某些態樣,術語下行鏈路可以指源自排程實體(例如,核心網路202)的點對多點傳輸。描述該方案的另一種方式可以是使用術語廣播通道多工。根據本案內容的另外態樣,術語上行鏈路可以指源自被排程實體的點對點傳輸。
在一些實例中,行動網路節點(例如,四軸飛行器120)可以被配置為用作UE。例如,四軸飛行器120可經由與基地台110通訊而在細胞102內操作。在本發明的一些態樣中,兩個或更多個UE(例如,UE 126和128)可以使用對等(P2P)或副鏈路信號127彼此通訊,而不經由基地台(例如,基地台112)中繼該通訊。副鏈路信號127可以包括副鏈路傳輸量和副鏈路控制資訊。在一些實例中,副鏈路控制資訊可以包括請求信號,諸如請求發送(RTS)、源發送信號(STS)及/或方向選擇信號(DSS)。請求信號可以提供被排程實體(例如,UE 126和128)以請求持續時間來保持副鏈路通道可用於副鏈路信號127。副鏈路控制資訊可以進一步包括回應信號,諸如允許發送(CTS)及/或目的地接收信號(DRS)。回應信號可以提供UE 126、128以指實例如所請求的持續時間中的副鏈路通道的可用性。交換請求和回應信號(例如,交握)可以使得執行副鏈路通訊的不同被排程實體能夠在副鏈路傳輸量資訊的通訊之前協商副鏈路通道的可用性。
在無線電存取網路100中,UE在移動的同時獨立於其位置而進行通訊的能力被稱為行動性。通常在行動性管理實體(MME)的控制下建立、維持和釋放UE與無線電存取網路之間的各種實體通道。在本案內容的各個態樣中,無線電存取網路100可利用基於DL的行動性或基於UL的行動性來實現行動性和切換(亦即,將UE的連接從一個無線電通道轉移到另一無線通道)。在配置用於基於DL的行動性的網路中,在與排程實體的撥叫期間或在任何其他時間,UE可以監測來自其服務細胞的信號的各種參數以及相鄰細胞的各種參數。根據這些參數的品質,UE可以保持與一或多個相鄰細胞的通訊。在此時間期間,若UE從一個細胞移動到另一個細胞,或者若來自相鄰細胞的信號品質超過來自服務細胞的信號品質達到給定的時間量,則UE可以進行從服務細胞到相鄰(目標)細胞的移交或切換。例如,UE 124(被示為車輛,儘管可以使用任何合適形式的UE)可以從對應於其服務細胞102的地理區域移動到對應於相鄰細胞106的地理區域。當來自相鄰細胞106的信號強度或品質超過其服務細胞102的信號強度或品質達到給定的時間量,UE 124就可以向其服務基地台110發送指示該情況的報告訊息。作為回應,UE 124可以接收切換命令,並且UE可以經歷到細胞106的切換。
在被配置用於基於UL的行動性的網路中,來自每個UE的UL參考信號可以被網路利用來為每個UE選擇服務細胞。在一些實例中,基地台110、112和114/116可以廣播統一的同步信號(例如,統一主要同步信號(PSS)、統一輔助同步信號(SSS)和統一實體廣播通道(PBCH))。UE 122、124、126、128、130和132可以接收統一同步信號,從同步信號匯出載波頻率和時槽定時,並且回應於匯出定時,發送上行鏈路引導頻或參考信號。由UE(例如,UE 124)發送的上行鏈路引導頻信號可以由無線電存取網路100內的兩個或更多個細胞(例如,基地台110和114/116)同時接收。每個細胞可以量測引導頻信號的強度,並且無線電存取網路(例如,基地台110和114/116中的一或多個及/或核心網路內的中央節點)可以為UE 124決定服務細胞。隨著UE 124移動經由無線電存取網路100,網路可以繼續監測由UE 124發送的上行鏈路引導頻信號。當由相鄰細胞量測的引導頻信號的信號強度或品質超過由服務細胞量測的信號強度或品質時,無論是否通知UE 124,無線電存取網路100都可以將UE 124從服務細胞切換到相鄰細胞。
儘管由基地台110、112和114/116發送的同步信號可以是統一的,但是同步信號可以不標識特定細胞,而是可以標識在相同頻率上及/或以相同定時操作的多個細胞的區域。由於需要在UE和網路之間交換的行動性訊息的數量可能減少,在5G網路或其他下一代通訊網路中使用區域實現了基於上行鏈路的行動性框架並且提高了UE和網路的效率。
在各種實施方式中,無線電存取網路100中的空中介面可以使用許可頻譜、免許可頻譜或共用頻譜。許可頻譜通常借助行動網路服務供應商從政府監管機構購買許可證來提供對部分頻譜的排他使用。非許可頻譜提供了對部分頻譜的共享使用,而無需政府授予的許可證。儘管通常仍需要遵守一些技術規則來存取非許可頻譜,但通常,任何服務供應商或設備都可以獲得存取許可權。共享頻譜可以落在許可和非許可頻譜之間,其中可能需要技術規則或限制來存取頻譜,但頻譜仍然可以由多個服務供應商及/或多個RAT共享。例如,部分許可頻譜的許可證持有者可以提供授權共享存取(LSA)以與其他方共享該頻譜,例如經由合適的被許可方決定的條件來獲得存取。
在一些實例中,可以排程對空中介面的存取,其中排程實體(例如,基地台)為其服務區域或細胞內的一些或全部裝置和設備之間的通訊分配資源。在本案內容內,如下面進一步論述的,排程實體可以負責排程、分配、重新配置和釋放一或多個被排程實體的資源。亦即,對於被排程的通訊,UE或被排程實體利用排程實體分配的資源。
基地台不是可以用作排程實體的唯一實體。亦即,在一些實例中,UE可以用作排程實體,為一或多個被排程實體(例如,一或多個其他UE)排程資源。在其他實例中,可以在UE之間使用副鏈路信號,而不必依賴來自基地台的排程或控制資訊。例如,UE 138被示出為與UE 140和142進行通訊。在一些實例中,UE 138用作排程實體或主要副鏈路設備,UE 140和142可以用作被排程實體或非主要(例如輔助)副鏈路設備。在又一實例中,UE 138可以用作設備到設備(D2D)、對等(P2P)或車對車(V2V)網路及/或網狀網路中的排程實體。在網狀網路實例中,除了與用作排程實體的UE 138進行通訊之外,UE 140和142可以可選地直接彼此通訊。
因此,在具有對時間頻率資源的被排程存取並且具有蜂巢配置、P2P配置或者網狀配置的無線通訊網路中,排程實體和一個或者多個被排程實體可以利用被排程的資源進行通訊。排程實體可以向一或多個被排程實體廣播傳輸量(該傳輸量可以被稱為下行鏈路傳輸量)。廣義上,排程實體是負責排程無線通訊網路中的傳輸量(包括下行鏈路傳輸以及在一些實例中從一或多個被排程實體到排程實體的上行鏈路傳輸量)的節點或設備。廣義上,被排程實體是接收控制資訊的節點或設備,控制資訊包括但不限於排程資訊(例如授權)、同步或定時資訊或來自無線通訊網路中另一實體(例如排程實體)的其他控制資訊。
現在參考圖2,作為說明性實例而非限制,參考無線通訊系統200圖示本案內容的各個態樣。無線通訊系統200包括三個互動域:核心網路202、無線電存取網路(RAN)204和UE(被排程實體206)。借助於無線通訊系統200,可以使UE能夠與外部資料網路210(例如(但不限於)網際網路)執行資料通訊。
RAN 204可以實施任何合適的無線通訊技術以向UE提供無線電存取。作為一個實例,RAN 204可以根據通常被稱為5G或5G NR的第三代合作夥伴計畫(3GPP)新無線電(NR)規範操作。作為另一實例,RAN 204可以按照通常被稱為LTE的5G NR和進化型通用陸地無線電存取網路(eUTRAN)標準的混合體來操作。3GPP將該混合RAN稱為下一代RAN或NG-RAN。當然,在本案內容的範疇內可以使用許多其他實例。
如圖所示,RAN 204包括包含一或多個基地台的複數個排程實體208。廣義上,基地台是無線電存取網路中的網路組件,基地台負責在一或多個細胞中向UE進行無線電傳輸以及從UE進行無線接收。在不同的技術、標準或上下文中,本發明所屬領域中具有通常知識者亦可以將基地台不同地稱為基地台收發機(BTS)、無線電基地台、無線電收發機、收發機功能、基本服務集(BSS)、擴展服務集(ESS)、存取點(AP)、節點B(NB)、進化型節點B(eNB)、下一代節點B(gNB)或某個其他合適的術語。
進一步示出RAN 204支援多個行動裝置的無線通訊。行動裝置在3GPP標準中可被稱為使用者設備(UE),但亦可被本發明所屬領域中具有通常知識者稱為行動站(MS)、用戶站、行動單元、用戶單元、無線單元、遠端單元、行動設備、無線設備、無線通訊設備、遠端設備、行動用戶站、存取終端(AT)、行動終端、無線終端、遠端終端機、手持機、終端、使用者代理、行動服務客戶端、客戶端或某個其他合適的術語。UE可以是向使用者提供對網路服務的存取的裝置。
RAN 204和UE之間的無線通訊可以被描述為利用空中介面。經由空中介面從排程實體208(例如,基地台)到一或多個被排程實體206(例如,一或多個UE)的傳輸可以被稱為下行鏈路(DL)傳輸。根據本案內容的某些態樣,術語下行鏈路可以指源自排程實體208(下面進一步描述;例如,基地台)的點對多點傳輸。描述該方案的另一種方式可以是使用術語廣播通道多工。從被排程實體206(例如,UE)到排程實體208(例如,基地台)的傳輸可以被稱為上行鏈路(UL)傳輸。根據本案內容的另外的態樣,術語上行鏈路可以指源自被排程實體206(下面進一步描述;例如,UE)的點對點傳輸。
在一些實例中,可以排程對空中介面的存取,其中排程實體208(例如,基地台)為其服務區域或細胞內的一些或全部裝置和設備之間的通訊分配資源。在本案內容內,如下面進一步討論的,排程實體可以負責排程、分配、重新配置和釋放一或多個被排程實體的資源。亦即,對於被排程的通訊,可以是被排程實體206的UE可以利用排程實體分配的資源。
基地台不是可以用作排程實體的唯一實體。亦即,在一些實例中,UE可以用作排程實體,為一或多個被排程實體(例如,一或多個其他UE)排程資源。
如圖2所示,排程實體208(例如,基地台)可以向一或多個被排程實體206廣播下行鏈路傳輸量212。廣義上,排程實體208是負責排程無線通訊網路中的傳輸量(包括下行鏈路傳輸量212以及在一些實例中從一或多個被排程實體206到排程實體208的上行鏈路傳輸量216)的節點或設備。另一方面,被排程實體206是接收下行鏈路控制資訊214的節點或設備,下行鏈路控制資訊214包括但不限於排程資訊(例如授權)、同步或定時資訊或來自無線通訊網路中另一實體(例如排程實體208)的其他控制資訊。
通常,基地台可以包括用於與無線通訊系統的回載部分220進行通訊的回載介面。回載部分220可以提供RAN 204中的基地台和核心網路202之間的鏈路。此外,在一些實例中,回載網路可以提供RAN 204中的各個基地台之間的互連。可以採用各種類型的回載介面,諸如使用任何合適的傳輸網路的直接實體連接、虛擬網路等。
核心網路202可以是無線通訊系統200的一部分,並且可以獨立於RAN 204中使用的無線電存取技術。在一些實例中,核心網路202可以根據5G標準(例如,5GC)進行配置。在其他實例中,核心網路202可以根據4G進化型封包核心(EPC)或任何其他合適的標準或配置進行配置。
無線電存取網路204中的空中介面可以利用一或多個雙工演算法。雙工是指兩個端點可以在兩個方向上彼此通訊的點對點通訊鏈路。全雙工表示兩個端點都可以同時彼此進行通訊。半雙工表示一次只有一個端點可以向另一端點發送資訊。在無線鏈路中,全雙工通道通常依賴於發射器和接收器的實體隔離以及合適的干擾消除技術。經常經由使用分頻雙工(FDD)或分時雙工(TDD)來為無線鏈路實施全雙工模擬。在FDD中,不同方向的傳輸在不同的載波頻率操作。在TDD中,使用分時多工將給定通道上的不同方向上的傳輸彼此分離。亦即,在某些時間,通道專用於一個方向上的傳輸,而在其他時間,通道專用於另一方向上的傳輸,其中方向可以非常迅速地變化,例如每時槽幾次。
在本案內容的一些態樣中,排程實體及/或被排程實體可以被配置用於波束成形及/或MIMO技術。圖3圖示支援MIMO的無線通訊系統300的實例。在無線通訊系統300中,發射器302包括多個發射天線304(例如,N個發射天線),並且接收器306包括多個接收天線308(例如,M個接收天線)。因此,從發射天線304到接收天線308存在N×M條信號路徑310。發射器302和接收器306中的每一個例如可以在排程實體(例如圖2的核心網路202)、被排程實體206或任何其他合適的無線通訊設備內實現。
這種多天線技術的使用使得無線通訊系統能夠利用空間域來支援空間多工、波束成形和發射分集。空間多工可以用於同時在相同的時間頻率資源上發送亦稱為層的不同資料串流。可以將資料串流發送到單個UE以增加資料速率或者發送到多個UE以增加整體系統容量,後者被稱為多使用者MIMO(MU-MIMO)。這是經由對每個資料串流進行空間預編碼(亦即,將資料串流與不同的加權和相移相乘)隨後在下行鏈路上經由多個發射天線發送每個經過空間預編碼的流來實現的。經過空間預編碼的資料串流以不同的空間簽名到達UE,這使得每個UE能夠恢復去往該UE的一或多個資料串流。在上行鏈路上,每個UE發送經過空間預編碼的資料串流,其使得基地台能夠辨識每個經過空間預編碼的資料串流的源。
資料串流或層的數量對應於傳輸的秩。通常,支援MIMO的無線通訊系統300中的傳輸的秩受限於發射天線304或接收天線308的數量中較低的一個。另外,UE處的通道狀況以及其他考慮因素(例如基地台處的可用資源)亦可能影響傳輸秩。例如,可以基於從UE發送到基地台的秩指示符(RI)來決定在下行鏈路上分配給特定UE的秩(及因此的資料串流的數量)。RI可以基於天線配置(例如,發射和接收天線的數量)和每個接收天線上的被量測的信號與干擾雜訊比(SINR)來決定。例如,RI可以指示在當前通道狀況下可以支援的層數。基地台可以使用RI以及資源資訊(例如,要為UE排程的可用資源和資料量)來向UE分配傳輸秩。
在分時雙工(TDD)系統中,UL和DL是相互的,因為它們各自使用具有相同頻率頻寬的不同時槽。因此,在TDD系統中,基地台可以基於UL SINR量測(例如,基於從UE發送的探測參考信號(SRS)或其他引導頻信號)為DL MIMO傳輸分配秩。基於所分配的秩,基地台隨後可以為每一層使用單獨的C-RS序列來發送CSI-RS以提供多層通道估計。根據CSI-RS,UE可以量測跨層和資源區塊的通道品質,並且將CQI和RI值回饋給基地台,以用於更新秩並分配用於未來的下行鏈路傳輸的RE。
在最簡單的情況下,如圖3所示,2x2 MIMO天線配置上的秩為2的空間多工傳輸將從每個發射天線304發送一個資料串流。每個資料串流沿著不同的信號路徑310到達每個接收天線308。接收器306隨後可以使用來自每個接收天線308的接收信號重構資料串流。
為了經由無線電存取網路100進行傳輸以獲得低塊錯誤率(BLER)同時仍然實現非常高的資料速率,可以使用通道編碼。亦即,無線通訊通常可以利用合適的糾錯封包碼。在典型的封包碼中,將資訊訊息或序列分成碼塊(CB),並且發送設備處的編碼器(例如CODEC)隨後在數學上向資訊訊息添加冗餘。在經過編碼的資訊訊息中利用這種冗餘可以提高訊息的可靠性,從而能夠糾正由於雜訊而可能發生的任何位元錯誤。
在5G NR規範中,使用者資料使用具有兩個不同基本圖的准循環低密度同位元校驗(LDPC)進行編碼:一個基本圖用於較大的碼塊及/或較高的碼率,而另一個基本圖以其他方式使用。控制資訊和實體廣播通道(PBCH)基於經過嵌套的序列使用極化編碼進行編碼。對於這些通道,將刪餘、縮短和重多工於速率匹配。
然而,本發明所屬領域中具有通常知識者將理解,可以利用任何合適的通道碼來實現本案內容的各態樣。排程實體208和被排程實體206的各種實施方式可以包括合適的硬體和能力(例如,編碼器、解碼器及/或CODEC)以利用這些通道碼中的一或多個來進行無線通訊。
無線電存取網路100中的空中介面可以利用一或多個多工和多工存取演算法來實現各種設備的同時通訊。例如,5G NR規範為從UE 122和124到基地台110的UL傳輸提供多路存取,並且利用具有循環字首(CP)的OFDM為從基地台110到一或多個UE 122和124的DL傳輸提供多工。另外,對於UL傳輸,5G NR規範為具有CP的離散傅裡葉變換-展頻-OFDM(DFT-s-OFDM)(亦稱為單載波FDMA(SC-FDMA))提供支援。然而,在本案內容的範疇內,多工和多工存取不限於上述方案,並且可以利用分時多工存取(TDMA)、分碼多工存取(CDMA)、分頻多工存取(FDMA)、稀疏碼多工存取(SCMA)、資源擴展多工存取(RSMA)或其他合適的多工存取方案來提供。此外,可以利用分時多工(TDM)、分碼多工(CDM)、分頻多工(FDM)、OFDM、稀疏碼多工(SCM)或其他合適的多工方案來提供從基地台110到UE 122和124的多工DL傳輸。
將參考圖4中示意性示出的OFDM波形400來描述本案內容的各個態樣。本發明所屬領域中具有通常知識者應該理解,本案內容的各個態樣可以以與本文下面所描述的基本相同的方式應用於DFT-s-OFDMA波形。亦即,儘管為了清楚起見,本案內容的一些實例可以集中在OFDM鏈路上,但是應該理解,相同的原理亦可以應用於DFT-s-OFDMA波形。
在本案內容內,訊框指的是用於無線傳輸的10ms的持續時間,其中每個訊框由每個1ms的10個子訊框組成。在給定的載波上,UL中可以存在一個訊框集合,並且DL中可以存在另一個訊框集合。現在參考圖4,圖示示例性DL子訊框402的放大圖,圖示OFDM資源網格404。然而,如本發明所屬領域中具有通常知識者將容易理解的,取決於任意數量的因素,用於任何特定應用的PHY傳輸結構可以與此處描述的實例不同。此處,時間在以OFDM符號為單位的水平方向上;並且頻率在以次載波或音調為單位的垂直方向上。
資源網格404可以用於示意性地表示用於給定天線埠的時間頻率資源。亦即,在具有多個天線埠可用的MIMO實施方式中,對應的多個資源網格404可用於通訊。將資源網格404劃分為多個資源元素(RE)406。作為1個次載波×1個符號的RE是時頻網格的最小離散部分,並且包含表示來自實體通道的資料或信號的單個複值。取決於在特定實施方式中使用的調制,每個RE可以表示一位元或多位元資訊。在一些實例中,RE的塊可以被稱為實體資源區塊(PRB),或者更簡單地被稱為資源區塊(RB)408,其包含頻域中的任何適當數量的連續次載波。在一個實例中,RB可以包括12個次載波,這是獨立於所使用的數位方案的數量。在一些實例中,取決於數位方案,RB可以包括時域中的任何適當數量的連續OFDM符號。在本案內容內,假設諸如RB 408的單個RB完全對應於通訊(給定設備的傳輸或接收)的單個方向。
UE通常僅使用資源網格404的子集。RB可以是可以分配給UE的最小資源單位。因此,為UE排程的RB越多,並且為空中介面選擇的調制方案越高,UE的資料速率就越高。
在該圖示中,RB 408被示為佔用小於子訊框402的整個頻寬,其中在RB 408的上方和下方圖示一些次載波。在給定實施方式中,子訊框402可以具有對應於任何數量的一或多個RB 408的頻寬。此外,在該圖示中,RB 408被示為佔用小於子訊框402的整個持續時間,儘管這僅僅是一個可能的實例。
每個1ms子訊框402可以由一或多個相鄰時槽組成。在圖4所示的實例中,作為說明性實例,一個子訊框402包括四個時槽410。在一些實例中,可以根據具有給定循環字首(CP)長度的指定數量的OFDM符號來定義時槽。例如,時槽可以包括具有標稱CP的7或14個OFDM符號。其他實例可以包括具有更短持續時間(例如,一個或兩個OFDM符號)的小時槽。在一些情況下可以經由佔用為相同或不同的UE的正在進行的時槽傳輸而排程的資源來發送這些小時槽。
時槽410中的一個的放大圖圖示包括控制區域412和資料區域414的時槽410。通常,控制區域412可以攜帶控制通道(例如,PDCCH),並且資料區域414可以攜帶資料通道(例如,PDSCH或PUSCH)。當然,時槽可以包含全部DL、全部UL或者至少一個DL部分和至少一個UL部分。圖4中所示的簡單結構在本質上僅僅是示例性的,並且可以利用不同時槽結構,並且不同時槽結構可以包括控制區域和資料區域中的每一個的一或多個。
儘管在圖4中未圖示,但可以排程RB 408內的各種RE 406以攜帶一或多個實體通道,包括控制通道、共享通道、資料通道等。RB 408內的其他RE 406亦可以攜帶引導頻或參考信號,包括但不限於解調參考信號(DMRS)、控制參考信號(CRS)或探測參考信號(SRS)。這些引導頻或參考信號可以提供接收設備來執行相應通道的通道估計,這可以實現RB 408內的控制及/或資料通道的相干解調/偵測。
在DL傳輸中,發送設備(例如,排程實體208)可以分配一或多個RE 406(例如,在控制區域412內)以將包括一或多個DL控制通道(諸如PBCH;PSS;SSS;實體控制格式指示符通道(PCFICH);實體混合自動重傳請求(HARQ)指示符通道(PHICH);及/或實體下行鏈路控制通道(PDCCH)等)的DL控制資訊214攜帶到一或多個被排程實體206。PCFICH提供資訊以説明接收設備接收和解碼PDCCH。PDCCH攜帶下行鏈路控制資訊(DCI),包括但不限於功率控制命令、排程資訊、授權及/或RE用於DL和UL傳輸的分配。PHICH攜帶HARQ回饋傳輸,例如確認(ACK)或否定確認(NACK)。HARQ是本發明所屬領域中具有通常知識者熟知的技術,其中為了準確性可以在接收側檢查封包傳輸的完整性,例如利用任何合適的完整性檢查機制,諸如校驗和或循環冗餘檢查(CRC)。若確認了傳輸的完整性,則可以發送ACK,而若未確認,則可以發送NACK。回應於NACK,發送設備可以發送HARQ重傳,其可以實現追趕組合,增量冗餘等。
在UL傳輸中,發送設備(例如,被排程實體206)可以利用一或多個RE 406將包括諸如實體上行鏈路控制通道(PUCCH)的一或多個UL控制通道的UL控制資訊218攜帶到排程實體208。UL控制資訊218可以包括各種分群組類型和類別,包括引導頻、參考信號和被配置為實現或輔助解碼上行鏈路資料傳輸的資訊。在一些實例中,UL控制資訊218可以包括排程請求(SR),即請求排程實體208排程上行鏈路傳輸。此處,回應於在PUCCH中發送的SR,排程實體208可以發送可以排程資源用於上行鏈路封包傳輸的下行鏈路控制資訊214。UL控制資訊亦可以包括HARQ回饋、通道狀態回饋(CSF)或任何其他合適的UL控制資訊。
除了控制資訊之外,亦可以為使用者資料或傳輸量資料分配一或多個RE 406(例如,在資料區域414內)。這種傳輸量可以在一或多個傳輸量通道上攜帶,諸如對於DL傳輸,是實體下行鏈路共享通道(PDSCH);或者對於UL傳輸,是實體上行鏈路共享通道(PUSCH)。在一些實例中,資料區域414內的一或多個RE 406可以被配置為攜帶系統資訊區塊(SIB),攜帶可以實現存取給定細胞的資訊。
上面描述的與圖2和4中所示的通道或載波不一定是可以在排程實體208和被排程實體206之間使用的所有通道或載波,本發明所屬領域中具有通常知識者將認識到除了所示的那些之外亦可以使用其他通道或載波,例如其他傳輸量、控制和回饋通道。
上面描述的這些實體通道通常被多工並映射到傳輸通道以便在媒體存取控制(MAC)層處進行處理。傳輸通道攜帶稱為傳輸塊(TB)的區塊。基於調制和編碼方案(MCS)以及給定傳輸中RB的數量,可以對應於資訊位元的數量的傳輸塊大小(TBS)可以是受控參數。
在OFDM中,為了保持次載波或音調的正交性,次載波間隔可以等於符號週期的倒數。OFDM波形的數位方案是指其特定次載波間隔和循環字首(CP)管理負擔。可縮放數位方案是指網路選擇不同次載波間隔的能力,並且因此利用每個間隔選擇相應的符號持續時間(包括CP長度)的能力。使用可縮放數位方案,標稱次載波間隔(SCS)可以向上或向下縮放整數倍。以這種方式,不管CP管理負擔和所選擇的SCS如何,符號邊界都可以在符號的某些公倍數處對準(例如,在每個1ms子訊框的邊界對準)。SCS的範圍可以包括任何合適的SCS。例如,可縮放數位方案可以支援從15kHz到480kHz的SCS。
圖5圖示可縮放數位方案500的某些態樣,其中第一RB 502具有標稱數位方案,並且第二RB 504具有經過縮放的數位方案。作為一個實例,第一RB 502可以具有30kHz的「標稱」次載波間隔(SCSn),以及333μs的「標稱」符號持續時間n。此處,在第二RB 504中,經過縮放的數位方案包括標稱SCS的兩倍或2×SCSn = 60kHz的經過縮放的SCS。由於這提供了每符號兩倍的頻寬,因此導致攜帶相同資訊的縮短的符號持續時間。因此,在第二RB 504中,經過縮放的數位方案包括標稱符號持續時間的一半或(符號持續時間n)÷2 =167μs的經過縮放的符號持續時間。
根據本案內容的一態樣,一或多個時槽可以被構造為自包含時槽。例如,圖6圖示自包含時槽600和650的兩個示例性結構。在一些實例中,可以使用自包含時槽600及/或650代替上述和圖4中所示的時槽410。
在所示實例中,以DL為中心的時槽600可以是發射器排程的時槽。術語以DL為中心的通常指其中為DL方向上的傳輸(例如,從排程實體208到被排程實體206的傳輸)分配更多資源的結構。類似地,以UL為中心的時槽650可以是接收器排程的時槽,其中為UL方向上的傳輸(例如,從被排程實體206到排程實體208的傳輸)分配更多資源。
每個時槽,例如自包含時槽600和650,可以包括發送(Tx)和接收(Rx)部分。例如,在以DL為中心的時槽600中,排程實體208首先有機會在DL控制區域602中的例如PDCCH上發送控制資訊,隨後有機會例如在DL資料區域604中的PDSCH上發送DL使用者資料或傳輸量。在具有合適的持續時間610的保護時段(GP)區域606之後,排程實體208有機會在來自使用該載波的其他實體的UL短脈衝608中接收包括任何UL排程請求、CSF、HARQ ACK/NACK等的UL資料及/或UL回饋。此處,當在相同時槽的DL控制區域602中排程DL資料區域604中攜帶的所有資料時;並且此外,當在相同時槽的UL短脈衝608中確認(或至少有機會確認)在DL資料區域604中攜帶的所有資料時,諸如以DL為中心的時槽600的時槽可被稱為自包含時槽。以這種方式,每個自包含的時槽可以被認為是自包含實體,不必需要任何其他時槽來完成對於任何給定封包的排程-傳輸-確認循環。
可以包括GP區域606以適應UL和DL定時中的可變性。例如,由於射頻(RF)天線方向切換(例如,從DL到UL)導致的延時和傳輸路徑延時可以導致被排程實體206在UL上提前發送以匹配DL定時。這種提前傳輸可能干擾從排程實體208接收到的符號。因此,GP區域606可以允許DL資料區域604之後一定量的時間來防止干擾,其中GP區域606提供用於排程實體208切換其RF天線方向的適當時間量,用於空中(OTA)傳輸的適當時間量以及由被排程實體進行ACK處理的適當時間量。
類似地,以UL為中心的時槽650可以被配置為自包含時槽。以UL為中心的時槽650基本類似於以DL為中心的時槽600,包括在DL控制區域652和UL資料區域656之間提供的保護時段654,之後是UL短脈衝區域658。
時槽600和650中示出的時槽結構僅僅是自包含時槽的一個實例。其他實例可以包括在每個時槽的開始處的公共DL部分以及在每個時槽的結尾處的公共UL部分,這些各個部分之間的時槽結構存在各種差異。其他實例仍然可以在本案內容的範疇內提供。
定時提前用於使從多個UE發送的信號同步到達基地台。圖7圖示無線電存取網路700的實例,其中四個UE 704、706、708、710與基地台702進行有效通訊。每個UE 704、706、708、710經歷可歸因於基地台702與UE 704、706、708、710之間的各自傳播路徑714、716、718、720的特性的傳播延遲(時間1-時間4)。在實例中,兩個UE 708、710位於與基地台702基本相同的實體距離處,並且距離基地台702比其他兩個UE 704、706更遠,其中一個UE 704最靠近基地台702。該實例中的最大傳播延遲(時間4)與傳播路徑720相關聯,傳播路徑720涉及離開建築物或表面712的一或多個反射。反射在城市環境中可能是顯著的。傳播延遲可以包括由中繼設備以及由無線電存取網路700覆蓋的實體環境的其他態樣引入的延遲。
在各種無線電存取技術中,將使得UE 704、706、708、710提前上行鏈路傳輸的個性化定時提前資訊提供給UE 704、706、708、710。定時提前資訊的淨效果和隨之而來的上行鏈路傳輸的提前將導致來自每個UE 704、706、708、710的傳輸同時到達基地台702。每個UE 704、706、708、710對其被排程的傳輸時間應用負偏移,導致傳輸比被排程的更早地開始。
在例示的無線電存取網路700中,具有最大傳播延遲的UE 710調整其被排程的上行鏈路傳輸的定時,使得其比與較小傳播延遲相關聯的UE 704、706、708更早地開啟始送。
基地台702可以基於往返時間計算定時提前持續時間。每個UE 704、706、708、710可以計算從下行鏈路子訊框的到達時間開始的參考時間。參考時間隨後可以用於基於UE 704、706、708、710的對應的定時提前值來決定上行鏈路子訊框定時排程和調整後的傳輸排程。定時提前可以基於相同的傳播延遲值適用於下行鏈路和上行鏈路傳輸的假設下的傳播延遲的兩倍。
例如,LTE網路中的定時提前規定UE 704、706、708、710以優於或等於±4×Ts 秒的相對精確度調整它們各自的傳輸的定時,其中Ts 是由3GPP定義的基本時間單位。在LTE實例中,Ts =1⁄((15000×2048) )秒。定時提前命令以相對於當前上行鏈路定時的16×Ts 倍表示。LTE網路定義了單步長尺寸大小。
在涉及UE 704、706、708、710對無線電存取網路700的初始存取的隨機存取程序期間,在隨機存取通道(RACH)中發送定時提前(TA)命令。由排程實體(基地台702)在提供取決於細胞大小的TA值的隨機存取回應(RAR)中提供TA命令。
當UE 704、706、708、710處於連接及/或閒置狀態時發送的TA命令具有16×Ts 的細微性,並且該值以6位元表示。固定的位元數導致無線電存取網路700支援的精確度和最大範圍之間的折衷。多個因素影響TA步長尺寸或細微性,包括: •細胞大小、CP長度及/或音調(次載波)間隔。 •使用低於6 GHZ和毫米波。 •HARQ等時線。 •不同的服務,例如URLLC或eMBB。 TA持續時間可以針對每個UE 704、706、708、710而變化。例如,UE 704、706、708、710可以經歷不同的移動特性(速度)及/或強路徑跳躍。 5G NR中的定時提前
本文揭示的某些態樣為5G NR無線電存取網路提供改進的定時提前。5G NR無線電存取網路中的定時提前可能相對於先前的無線電存取技術會受到進一步變化及/或限制。例如,5G NR可以支援不同的數位方案,並且可以用於實現支援可縮放數位方案的無線電存取網路。無線電存取網路可以支援次載波間隔(SCS)(例如,n ×15kHz)和對應的可縮放CP長度的不同步長尺寸。可以實施各種不同的服務,包括增強型行動寬頻,以及超可靠和低延時的通訊。可以實現不同的HARQ定時:n +x 定時,其中x =0、1、2、3、4個HARQ。
根據某些態樣,可以使用可以根據CP長度縮放的TA步長尺寸來處理5G NR無線電存取網路數位方案。在實例中,可以為所有SCS定義一個步長尺寸。在另一實例中,可以為每個SCS單獨定義一個步長尺寸。在又一實例中,可以為一或多個SCS組定義一個步長尺寸。作為一個實例,當為每SCS組定義步長尺寸時,可以為組{15kHz/30kHz/60kHz}定義一個步長尺寸,可以為組{120kHz/240kHz}定義一個步長尺寸,並且可以為單個成員組{480kHz}定義一個步長尺寸。在一些其他實例中,可以不同地封包SCS。
在一些實施方式中,可以在低於6 GHZ及/或毫米波中為相同SCS(例如,60KHz)定義不同的步長尺寸。可以在許可和免許可頻帶中為相同SCS定義不同的步長尺寸。
根據某些態樣,分配給TA命令的位元數在5G NR無線電存取網路中可以是固定的或可變的。
在第一實例中,分配給TA命令的位元數是固定的,並且當使用較小的步長尺寸時可以減小最大定時提前值。例如,以與LTE相同的方式定義的Ts ,當為初始存取定義11位元的TA值時,5G NR無線電存取網路可以具有以下特性: •對於15 kHz SCS的16Ts TA步長尺寸,最大TA為667μs或100km; •對於30kHz/60kHz SCS組的8Ts TA步長尺寸,最大TA為333μs或50km; •對於120kHz/240kHz SCS組的4Ts TA步長尺寸,最大TA為167μs或25km。
當為連接及/或閒置狀態定義6位元TA值時,並且5G NR無線電存取網路可能具有以下特性: •對於15 kHz SCS的16Ts TA步長尺寸,最大TA為32.8μs •對於30kHz/60kHz SCS組的8Ts TA步長尺寸,最大TA為16.4μs •對於120kHz/240kHz SCS組的4Ts TA步長尺寸,最大TA為8.2μs。
可以為5G NR無線電存取網路定義表示TA持續時間的可變TA步長尺寸及/或可變的位元數。例如,可以為15kHz SCS定義8Ts TA步長尺寸,其中12位元用於初始存取及/或8位元用於連接狀態。
在第二實例中,分配給TA命令的位元數可以隨著數位方案而變化。亦即,不同的位元數可以用於不同的數位方案。在一些情況下,對於15kHz的SCS,TA步長尺寸為16Ts ,可以使用11位元TA值,以提供667μs或100km的最大TA。對於30kHz/60kHz SCS,TA步長尺寸為8Ts ,可以使用10位元TA值,以提供167μs或25km的最大TA。
根據某些態樣,5G NR無線電存取網路中的定時提前可以被配置為適應不同的HARQ等時線。例如,對於較短的HARQ等時線,最大TA及/或TA步長尺寸可以較小。在一些情況下,當發送自包含時槽時,HARQ定時可以較短。
根據某些態樣,5G NR無線電存取網路中的定時提前可以被配置為適應不同的服務。在一些實施方式中,當採用URLCC時,最大TA及/或TA步長尺寸可以減小。即使在同一個細胞中,URLLC UE可以具有比增強型行動寬頻(eMBB)UE更小的覆蓋範圍。毫米波實施方式可能會經歷比低於6GHZ實施方式更大的定時跳躍。可以採用更大的步長尺寸或更大位元數來適應更大的TA範圍。 排程實體
圖8是圖示採用處理系統814的排程實體800的硬體實施方式的實例的方塊圖。例如,排程實體800可以是如圖1或2中的任何一或多個所示的或在本文其他部分提及的使用者設備(UE)。在另一實例中,排程實體800可以是如圖1或2中的任何一或多個所示的基地台。
排程實體800可以用包括一或多個處理器804的處理系統814來實現。處理器804的實例包括微處理器、微控制器、數位訊號處理器(DSP)、現場可程式設計閘陣列(FPGA)、可程式設計邏輯裝置(PLD)、狀態機、閘控邏輯、個別硬體電路以及被配置為執行貫穿本案內容所描述的各種功能的其他適當硬體。在各種實例中,排程實體800可以被配置為執行本文描述的功能中的任何一或多個功能。亦即,如在排程實體800中所使用的處理器804可以用於實現下面描述並在圖10中示出的處理和程序中的任何一或多個。
在該實例中,處理系統814可以用匯流排802整體上表示的匯流排架構來實現。匯流排802可以包括任意數量的互連匯流排和橋接器,這取決於處理系統814的具體應用和整體設計約束。匯流排802通訊地將包括一或多個處理器(整體上由處理器804表示)、記憶體805和電腦可讀取媒體(整體上由電腦可讀取媒體806表示)的各種電路耦合在一起。匯流排802亦可以連結各種其他電路,例如定時源、外設組件、穩壓器和電源管理電路等,這些電路是本發明所屬領域公知的,並因此不再進一步描述。匯流排介面808提供匯流排802和收發機810之間的介面。收發機810提供用於經由傳輸媒體與各種其他裝置通訊的通訊介面或單元。取決於裝置的性質,亦可以提供使用者介面812(例如,小鍵盤、顯示器、揚聲器、麥克風、操縱桿)。
在本案內容的一些態樣中,處理器804可以包括電路840,其被配置用於各種功能,包括例如計算及/或決定支援可縮放數位方案的無線電存取網路的定時提前步長尺寸。處理器804可以包括電路842,其被配置用於各種功能,包括例如計算及/或決定用於表示向耦合到無線電存取網路的UE發送的定時延遲的位元長度。例如,電路可以被配置為實現包括關於圖10的下面描述的功能中的一或多個功能。
處理器804負責管理匯流排802和一般處理,包括執行儲存在電腦可讀取媒體806上的軟體。該軟體在由處理器804執行時使得處理系統814執行以下針對任何特定裝置描述的各種功能。電腦可讀取媒體806和記憶體805亦可以用於儲存在執行軟體時由處理器804操縱的資料。
處理系統中的一或多個處理器804可以執行軟體。軟體應被廣義地解釋為表示指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體模組、應用程式、軟體應用程式、套裝軟體、常式、子常式、物件、可執行程式、執行的執行緒、程序、功能等等,無論是被稱為軟體、韌體、仲介軟體、微代碼、硬體描述語言還是其他術語。軟體可以常駐在電腦可讀取媒體806上。電腦可讀取媒體806可以是非暫時性電腦可讀取媒體。作為實例,非暫時性電腦可讀取媒體包括磁存放裝置(例如,硬碟、軟碟、磁條)、光碟(例如,壓縮光碟(CD)或數位多功能光碟DVD))、智慧卡、快閃記憶體設備(例如,卡、棒或鍵式磁碟動器)、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可程式設計ROM(PROM)、可抹除PROM(EPROM)、電子可抹除PROM(EEPROM)、暫存器、抽取式磁碟以及用於儲存可由電腦存取和讀取的軟體及/或指令的任何其他合適的媒體。電腦可讀取媒體806可以常駐在處理系統814中、在處理系統814的外部,或者分佈在包括處理系統814的多個實體上。電腦可讀取媒體806可以體現在電腦程式產品中。作為實例,電腦程式產品可以包括封裝材料中的電腦可讀取媒體。本發明所屬領域中具有通常知識者將認識到如何取決於特定的應用和施加在整個系統上的整體設計約束來最好地實現貫穿本案內容所呈現的所述功能。
在一或多個實例中,電腦可讀取媒體806可以包括軟體,其被配置用於各種功能,包括例如執行與圖10的程序1000相關聯的功能中的一或多個。在一個實例中,電腦可讀取媒體806儲存電腦可執行代碼852、854,該電腦可執行代碼852、854被配置為使處理系統814為使用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置。 被排程實體
圖9是示出採用處理系統914的示例性被排程實體900的硬體實施方式的實例的概念圖。根據本案內容的各個態樣,元件或者元件的任何部分或者元件的任何組合可以用包括一或多個處理器904的處理系統914來實現。例如,被排程實體900可以是如圖1或2中的任何一或多個所示的或在本文其他部分提及的使用者設備(UE)。
處理系統914可以與圖8中所示的處理系統814基本上相同,包括匯流排介面908、匯流排902、記憶體905、處理器904和電腦可讀取媒體906。在一或多個實例中,電腦可讀取媒體906可以包括軟體952、954,其被配置用於各種功能,包括例如執行與圖10的程序1000相關聯的功能中的一或多個。
此外,被排程實體900可以包括與以上圖8中所述的基本上相似的使用者介面912和收發機910。亦即,如在被排程實體900中使用的處理器904可以用於實現下面描述的和圖10中所示的程序中的任何一或多個。
在本案內容的一些態樣中,處理器904可以包括電路940,被配置用於各種功能,包括例如針對支援可縮放數位方案的無線電存取網路決定定時提前步長尺寸。處理器904可以包括電路942,其被配置用於各種功能,包括例如計算及/或決定用於表示向耦合到無線電存取網路的UE發送的定時延遲的位元長度。例如,電路可以被配置為實現包括關於圖10的下面描述的功能中的一或多個功能。
圖10是示出根據本案內容的一些態樣的程序1000的流程圖。如下所述,在本案內容的範疇內的特定實施方式中,可以省略一些或全部所示特徵,並且一些所示特徵可能不是對於實現所有實施例都是必需的。在一些實例中,程序1000可以由圖8中示出的排程實體800執行。在一個實例中,該程序可以使用被配置用於計算及/或決定支援可縮放數位方案的無線電存取網路的定時提前步長尺寸的電路840來部分或全部實現。在一個實例中,該程序可以使用被配置為計算及/或決定用於表示向耦合到無線電存取網路的UE發送的定時延遲的位元長度的電路842來部分地或全部實現。在其他實例中,程序1000可以經由用於執行下面描述的功能或演算法的任何合適的裝置或單元來執行。
在方塊1002處,排程實體可以針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置。定時提前配置可以被定義為適應無線電存取網路使用的數位方案。
在方塊1004處,排程實體可以決定與針對與無線電存取網路進行通訊的UE的定時提前配置一致的定時提前參數。
在方塊1006處,排程實體可以在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數。
可以經由為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸來定義定時提前配置。可以經由為針對無線電存取網路定義的所有次載波間隔配置定時提前步長尺寸來定義定時提前配置。
在一些情況下,為無線電存取網路定義次載波間隔組。經由為次載波間隔組中的次載波間隔配置定時提前步長尺寸來定義定時提前配置。在一個實例中,該次載波間隔組包括15kHz、30kHz和60kHz的次載波間隔。在另一個實例中,該次載波間隔組包括120kHz和240kHz的次載波間隔。
在一些情況下,為無線電存取網路定義循環字首長度組,並且可以經由為循環字首長度組之每一者循環字首長度配置定時提前步長尺寸來定義定時提前配置。
在一些實例中,定義定時提前配置包括配置用於表示定時提前參數中被發送給UE的定時提前持續時間的位元數。可以經由為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸來定義定時提前配置。可以選擇定時提前步長尺寸和用於表示定時提前值的位元數以獲得具有期望的定時提前細微性的無線電存取網路的最大定時提前持續時間或範圍。期望的定時提前細微性可以由HARQ等時線決定。可以經由為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸來定義定時提前配置。可以選擇定時提前步長尺寸和用於表示定時提前值的位元數以獲得由無線電存取網路為HARQ定義的最大定時提前持續時間。
在一個實例中,定義定時提前配置包括基於針對無線電存取網路定義的一或多個次載波間隔的定時提前步長尺寸來配置用於表示定時提前持續時間的位元數。
在一個實例中,定義定時提前配置包括當UE被配置為作為eMBB UE操作時配置用於表示定時提前持續時間的第一位元數,以及當UE被配置為作為URLLC UE操作時配置用於表示定時提前持續時間的第二位元數。
在一個實例中,定義定時提前配置包括當UE被配置為作為eMBB UE操作時,配置第一定時提前步長尺寸,以及當UE被配置為作為URLLC UE操作時,配置第二定時提前步長尺寸。
在一個實例中,定義定時提前配置包括基於由無線電存取網路使用的頻率範圍來為次載波間隔配置一或多個定時提前步長尺寸。無線電存取網路可以被配置為使用與低於6GHz頻率和毫米波長相關聯的頻寬。
根據本文揭示的某些態樣,一種用於無線通訊的裝置包括:用於針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置的單元,該單元適於定義定時提前配置以適應無線電存取網路使用的數位方案,用於決定與針對與無線電存取網路進行通訊的UE的定時提前配置一致的定時提前參數的單元,以及用於在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數的單元。
在一個實例中,用於定義定時提前配置的單元可以適於為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。用於定義定時提前配置的單元可以適於為針對無線電存取網路定義的所有次載波間隔配置定時提前步長尺寸。
在各種實例中,為無線電存取網路定義次載波間隔組,並且用於定義定時提前配置的單元適於為次載波間隔組中的次載波間隔配置定時提前步長尺寸。用於定義定時提前配置的單元可以適於為次載波間隔組之每一者次載波間隔配置循環字首長度。
在一些實例中,用於定義定時提前配置的單元可以適於基於針對無線電存取網路定義的一或多個次載波間隔的定時提前步長尺寸來配置用於表示定時提前參數中被發送給UE的定時提前持續時間的位元數。用於定義定時提前配置的單元可以適於為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。可以選擇定時提前步長尺寸和用於表示定時提前持續時間的位元數以獲得具有期望的定時提前細微性的無線電存取網路的最大定時提前持續時間或範圍。用於定義定時提前配置的單元可以適於為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。可以選擇定時提前步長尺寸和用於表示定時提前持續時間的位元數以獲得由無線電存取網路為HARQ定義的最大定時提前持續時間。
在某些實施方式中,用於定義定時提前配置的單元可以適於當UE被配置為作為eMBB UE操作時,配置用於表示定時提前持續時間的第一位元數,以及當UE被配置為作為URLLC UE操作時,配置用於表示定時提前持續時間的第二位元數。用於定義定時提前配置的單元可以適於當UE被配置為作為eMBB UE操作時,配置第一定時提前步長尺寸,以及當UE被配置為作為URLLC UE操作時,配置第二定時提前步長尺寸。用於定義定時提前配置的單元可以適於基於由無線電存取網路使用的頻率範圍來為次載波間隔配置一或多個定時提前步長尺寸。無線電存取網路可以被配置為使用與低於6GHz頻率和毫米波長相關聯的頻寬。
根據某些態樣,一種用於無線通訊的裝置具有處理器,通訊地耦合到至少一個處理器的收發機以及通訊地耦合到該至少一個處理器的記憶體。處理器可以被配置為:針對採用具有可縮放數位方案的調制方案的無線電存取網路定義定時提前配置,決定與針對與無線電存取網路進行通訊的UE的定時提前配置一致的定時提前參數,以及在涉及UE的初始存取程序期間或者當UE處於無線電存取網路中的連接狀態時,向UE發送定時提前參數。定時提前配置被定義為適應無線電存取網路使用的數位方案。
可以為無線電存取網路定義次載波間隔組,並且處理器可以被配置為:為次載波間隔組中的次載波間隔配置定時提前步長尺寸。處理器可以被配置為:為針對無線電存取網路定義的一或多個次載波間隔配置定時提前步長尺寸。可以選擇定時提前步長尺寸和用於表示定時提前持續時間的位元數以獲得具有期望的定時提前細微性的無線電存取網路的最大定時提前持續時間或範圍。
已經參考示例性實施方式呈現了無線通訊網路的幾個態樣。如本發明所屬領域中具有通常知識者將容易理解的,貫穿本案內容所描述的各個態樣可以擴展到其他電信系統、網路架構和通訊標準。
舉例而言,可以在由3GPP定義的其他系統(諸如長期進化(LTE)、進化型封包系統(EPS)、通用行動電信系統(UMTS)及/或行動通訊全球系統(GSM))內實現各個態樣。亦可以將各個態樣擴展到由第三代合作夥伴計畫2(3GPP2)定義的系統,諸如CDMA2000及/或進化資料最佳化(EV-DO)。其他實例可以在採用IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、超寬頻(UWB)、藍芽的系統及/或其他合適的系統內實現。所採用的實際電信標準、網路架構及/或通訊標準將取決於具體的應用和施加在系統上的整體設計約束。
在本案內容中,使用詞語「示例性」來表示「用作實例、例證或說明」。本文描述為「示例性」的任何實施方式或態樣不一定被解釋為優選的或優於本案內容的其他態樣。同樣,術語「態樣」不要求本案內容的所有態樣都包括所論述的特徵、優點或操作模式。術語「耦合」在本文中用於代表兩個物件之間的直接或間接耦合。例如,若物件A實體接觸物件B,並且物件B接觸物件C,則物件A和C仍然可以被視為彼此耦合 - 即使它們彼此不直接實體接觸。例如,即使第一物件從未直接實體上與第二物件接觸,第一物件亦可以耦合到第二物件。術語「電路」和「電路系統」被廣泛地使用,並且意欲包括電氣設備和導體的硬體實施方式,該硬體實施方式在連接和配置時能夠實現本案內容中描述的功能,而沒有關於電子電路類型的限制,以及資訊和指令的軟體實施方式,該等資訊和指令的軟體實施方式在由處理器執行時能夠實現本案內容中描述的功能。
本文中所示的組件、步驟、特徵及/或功能中的一或多個可以重新排列及/或組合成單個組件、步驟、特徵或功能或者以幾個組件、步驟或功能來體現。在不脫離本文揭示的新穎特徵的情況下,亦可以添加額外元件、組件、步驟及/或功能。本文中所示的裝置、設備及/或組件可以被配置為執行本文中描述的方法、特徵或步驟中的一或多個。本文描述的新穎演算法亦可以用軟體及/或嵌入硬體來有效地實現。
應當理解,所揭示的方法中的步驟的具體順序或層次是示例性程序的說明。基於設計偏好,可以理解的是,可以重新排列方法中的步驟的具體順序或層次。所附方法請求項以示例性順序呈現了各個步驟的元素,並且不意味著限於所呈現的具體順序或層次,除非本文特別加以指出。
提供之前的描述是為了使本發明所屬領域中具有通常知識者能夠實踐本文描述的各個態樣。該等態樣的各種修改對於本發明所屬領域中具有通常知識者而言將是顯而易見的,並且本文定義的一般原理可以應用於其他態樣。因此,請求項不意欲限於本文所示的各態樣,而是應被賦予與請求項的語言一致的全部範疇,其中以單數形式提及元件並非意欲表示「一個且僅有一個」,除非特別如此說明,而是「一或多個」。除非另有特別說明,術語「一些」是指一或多個。提及專案列表中的「至少一個」的短語是指該等專案的任何組合,包括單個成員。舉例而言,「a、b或c中的至少一個」意欲涵蓋:a;b;c;a和b;a和c;b和c;及a、b和c。本發明所屬領域中具有通常知識者已知或以後獲知的本案內容全文中該的各個態樣的要素的所有結構和功能均等物經由引用明確地併入本文,並且意欲被請求項所涵蓋。此外,無論這些揭示內容是否在請求項中被明確地表述,本文中揭示的任何內容皆不意欲貢獻給公眾。因此,沒有請求項要素應根據美國專利法施行細則第19條第4項的規定來解釋,除非用短語「用於……的單元」明確地表述該要素,或者在方法請求項的情況下,使用短語「用於……的步驟」來表述該要素。
100‧‧‧無線電存取網路
102‧‧‧巨集細胞
104‧‧‧巨集細胞
106‧‧‧巨集細胞
108‧‧‧小型細胞
110‧‧‧基地台
112‧‧‧基地台
114‧‧‧基地台
116‧‧‧基地台
118‧‧‧基地台
120‧‧‧四軸飛行器或無人機
122‧‧‧UE
124‧‧‧UE
126‧‧‧UE
127‧‧‧對等(P2P)或副鏈路信號
128‧‧‧UE
130‧‧‧UE
132‧‧‧UE
134‧‧‧UE
136‧‧‧UE
138‧‧‧UE
140‧‧‧UE
142‧‧‧UE
200‧‧‧無線通訊系統
202‧‧‧核心網路
204‧‧‧無線電存取網路(RAN)
206‧‧‧排程實體
208‧‧‧排程實體
210‧‧‧外部資料網路
212‧‧‧下行鏈路傳輸量
214‧‧‧下行鏈路控制資訊
216‧‧‧上行鏈路傳輸量
218‧‧‧UL控制資訊
220‧‧‧回載
300‧‧‧無線通訊系統
302‧‧‧發射器
304‧‧‧發射天線
306‧‧‧接收器
308‧‧‧接收天線
310‧‧‧信號路徑
400‧‧‧OFDM波形
402‧‧‧DL子訊框
404‧‧‧OFDM資源網格
406‧‧‧資源元素(RE)
408‧‧‧資源區塊(RB)
410‧‧‧時槽
412‧‧‧控制區域
414‧‧‧資料區域
500‧‧‧可縮放數位方案
502‧‧‧第一RB
504‧‧‧第二RB
600‧‧‧時槽
602‧‧‧DL控制區域
604‧‧‧DL資料區域
606‧‧‧保護時段(GP)區域
608‧‧‧UL短脈衝
610‧‧‧持續時間
650‧‧‧時槽
652‧‧‧DL控制區域
654‧‧‧保護時段
656‧‧‧UL資料區域
658‧‧‧UL短脈衝區域
700‧‧‧無線電存取網路
702‧‧‧基地台
704‧‧‧UE
706‧‧‧UE
708‧‧‧UE
710‧‧‧UE
712‧‧‧建築物或表面
714‧‧‧傳播路徑
716‧‧‧傳播路徑
718‧‧‧傳播路徑
720‧‧‧傳播路徑
800‧‧‧排程實體
802‧‧‧匯流排
804‧‧‧處理器
805‧‧‧記憶體
806‧‧‧電腦可讀取媒體
808‧‧‧匯流排介面
810‧‧‧收發機
812‧‧‧使用者介面
814‧‧‧處理系統
840‧‧‧電路
842‧‧‧電路
852‧‧‧電腦可執行代碼
854‧‧‧電腦可執行代碼
900‧‧‧被排程實體
902‧‧‧被排程實體
904‧‧‧處理器
905‧‧‧記憶體
906‧‧‧電腦可讀取媒體
908‧‧‧匯流排介面
910‧‧‧收發機
912‧‧‧使用者介面
914‧‧‧處理系統
940‧‧‧電路
942‧‧‧電路
952‧‧‧軟體
954‧‧‧軟體
1000‧‧‧程序
1002‧‧‧方塊
1004‧‧‧方塊
1006‧‧‧方塊
圖1是無線電存取網路的實例的概念圖。
圖2是無線通訊系統的示意圖。
圖3是示出支援多輸入多輸出(MIMO)通訊的無線通訊系統的方塊圖。
圖4是利用正交分頻多工(OFDM)的空中介面中的無線電資源的組織的示意圖。
圖5圖示具有標稱和經過縮放的數位方案的資源區塊。
圖6是根據本案內容的一些態樣的示例性自包含時槽的示意圖。
圖7圖示根據本發明的某些態樣的可適應的無線電存取網路中的傳播延遲。
圖8是概念性地示出根據本案內容的一些態樣的排程實體的硬體實施方式的實例的方塊圖。
圖9是概念性地示出根據本案內容的一些態樣的被排程實體的硬體實施方式的實例的方塊圖。
圖10是示出根據本案內容的某些態樣的程序的流程圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (30)

  1. 一種用於配置定時提前的方法,包括以下步驟: 針對採用具有可縮放數位方案的一調制方案的一無線電存取網路定義一定時提前配置,其中該定時提前配置被定義為適應該無線電存取網路使用的一數位方案; 決定與針對與該無線電存取網路進行通訊的一使用者設備(UE)的該定時提前配置一致的定時提前參數;及 在涉及該UE的一初始存取程序期間或者當該UE處於該無線電存取網路中的一連接狀態時,向該UE發送該定時提前參數。
  2. 根據請求項1之方法,其中定義該定時提前配置包括以下步驟: 為針對該無線電存取網路定義的一或多個次載波間隔配置一定時提前步長尺寸。
  3. 根據請求項1之方法,其中定義該定時提前配置包括以下步驟: 為針對該無線電存取網路定義的所有次載波間隔配置一定時提前步長尺寸。
  4. 根據請求項1之方法,其中一次載波間隔組被定義用於該無線電存取網路,並且其中定義該定時提前配置包括以下步驟: 針對該次載波間隔組中的次載波間隔配置一定時提前步長尺寸。
  5. 根據請求項4之方法,其中該次載波間隔組包括15kHz、30kHz和60kHz的次載波間隔。
  6. 根據請求項4之方法,其中該次載波間隔組包括120kHz和240kHz的次載波間隔。
  7. 根據請求項1之方法,其中一循環字首長度組被定義用於該無線電存取網路,並且其中定義該定時提前配置包括以下步驟: 針對該循環字首長度組之每一者循環字首長度配置一定時提前步長尺寸。
  8. 根據請求項1之方法,其中定義該定時提前配置包括以下步驟: 配置用於表示該等定時提前參數中被發送給該UE的一定時提前持續時間的一位元數。
  9. 根據請求項8之方法,其中定義該定時提前配置包括以下步驟: 為針對該無線電存取網路定義的一或多個次載波間隔配置一定時提前步長尺寸, 其中該定時提前步長尺寸和用於表示該定時提前持續時間的該位元數被選擇以獲得具有一期望的定時提前細微性的該無線電存取網路的一最大定時提前持續時間或範圍。
  10. 根據請求項9之方法,其中該期望的定時提前細微性是由一混合自動重傳請求(HARQ)等時線決定的。
  11. 根據請求項8之方法,其中定義該定時提前配置包括以下步驟: 為針對該無線電存取網路定義的一或多個次載波間隔配置一定時提前步長尺寸, 其中該定時提前步長尺寸和用於表示該定時提前持續時間的該位元數被選擇以獲得由該無線電存取網路為混合自動重傳請求(HARQ)定義的一最大定時提前持續時間。
  12. 根據請求項1之方法,其中定義該定時提前配置包括以下步驟: 基於針對該無線電存取網路定義的一或多個次載波間隔的一定時提前步長尺寸來配置用於表示一定時提前持續時間的一位元數。
  13. 根據請求項1之方法,其中定義該定時提前配置包括以下步驟: 當該UE被配置為作為一增強型行動寬頻(eMBB)UE操作時,配置用於表示一定時提前持續時間的一第一位元數;及 當該UE被配置為作為一超可靠-低延時通訊(URLLC)UE操作時配置用於表示該定時提前持續時間的一第二位元數。
  14. 根據請求項1之方法,其中定義該定時提前配置包括以下步驟: 當該UE被配置為作為一增強型行動寬頻(eMBB)UE操作時,配置一第一定時提前步長尺寸;及 當該UE被配置為作為一超可靠-低延時通訊(URLLC)UE操作時,配置一第二定時提前步長尺寸。
  15. 根據請求項1之方法,其中定義該定時提前配置包括以下步驟: 基於由該無線電存取網路使用的頻率範圍來針對次載波間隔配置一或多個定時提前步長尺寸,其中該無線電存取網路能夠被配置為使用與低於6 GHz頻率和毫米波長相關聯的頻寬。
  16. 一種用於無線通訊的裝置,包括: 用於針對採用具有可縮放數位方案的一調制方案的一無線電存取網路定義一定時提前配置的單元,該單元適於定義該定時提前配置以適應該無線電存取網路使用的一數位方案; 用於決定與針對與該無線電存取網路進行通訊的一使用者設備(UE)的該定時提前配置一致的定時提前參數的單元;及 用於在涉及該UE的一初始存取程序期間或者當該UE處於該無線電存取網路中的一連接狀態時,向該UE發送該定時提前參數的單元。
  17. 根據請求項16之裝置,其中該用於定義該定時提前配置的單元適於: 為針對該無線電存取網路定義的一或多個次載波間隔配置一定時提前步長尺寸。
  18. 根據請求項16之裝置,其中該用於定義該定時提前配置的單元適於: 為針對該無線電存取網路定義的所有次載波間隔配置一定時提前步長尺寸。
  19. 根據請求項16之裝置,其中一次載波間隔組被定義用於該無線電存取網路,並且其中該用於定義該定時提前配置的單元適於: 針對該次載波間隔組中的次載波間隔配置一定時提前步長尺寸。
  20. 根據請求項16之裝置,其中一循環字首長度組被定義用於該無線電存取網路,並且其中該用於定義該定時提前配置的單元適於: 為該循環字首長度組之每一者循環字首長度配置一定時提前步長尺寸。
  21. 根據請求項16之裝置,其中該用於定義該定時提前配置的單元適於: 基於針對該無線電存取網路定義的一或多個次載波間隔的一定時提前步長尺寸來配置用於表示該等定時提前參數中被發送給該UE的一定時提前持續時間的一位元數。
  22. 根據請求項21之裝置,其中該用於定義該定時提前配置的單元適於: 為針對該無線電存取網路定義的一或多個次載波間隔配置一定時提前步長尺寸, 其中該定時提前步長尺寸和用於表示該定時提前持續時間的該位元數被選擇以獲得具有一期望的定時提前細微性的該無線電存取網路的一最大定時提前持續時間或範圍。
  23. 根據請求項21之裝置,其中該用於定義該定時提前配置的單元適於: 為針對該無線電存取網路定義的一或多個次載波間隔配置一定時提前步長尺寸, 其中該定時提前步長尺寸和用於表示該定時提前持續時間的該位元數被選擇以獲得由該無線電存取網路為混合自動重傳請求(HARQ)定義的一最大定時提前持續時間。
  24. 根據請求項16之裝置,其中該用於定義該定時提前配置的單元適於: 當該UE被配置為作為一增強型行動寬頻(eMBB)UE操作時,配置用於表示一定時提前持續時間的一第一位元數;及 當該UE被配置為作為一超可靠-低延時通訊(URLLC)UE操作時配置用於表示該定時提前持續時間的一第二位元數。
  25. 根據請求項16之裝置,其中該用於定義該定時提前配置的單元適於: 當該UE被配置為作為一增強型行動寬頻(eMBB)UE操作時,配置一第一定時提前步長尺寸;及 當該UE被配置為作為一超可靠-低延時通訊(URLLC)UE操作時,配置一第二定時提前步長尺寸。
  26. 根據請求項16之裝置,其中該用於定義該定時提前配置的單元適於: 基於由該無線電存取網路使用的頻率範圍來為次載波間隔配置一或多個定時提前步長尺寸,其中該無線電存取網路能夠被配置為使用與低於6 GHz頻率和毫米波長相關聯的頻寬。
  27. 一種用於無線通訊的裝置,包括: 至少一個處理器; 一收發機,其通訊地耦合到該至少一個處理器;及 一記憶體,其通訊地耦合到該至少一個處理器,其中該至少一個被配置為: 針對採用具有可縮放數位方案的一調制方案的一無線電存取網路定義一定時提前配置,其中該定時提前配置被定義為適應該無線電存取網路使用的一數位方案; 決定與針對與該無線電存取網路通訊的一使用者設備(UE)的該定時提前配置一致的定時提前參數;及 在涉及該UE的一初始存取程序期間或者當該UE處於該無線電存取網路中的一連接狀態時,向該UE發送該定時提前參數。
  28. 根據請求項27之裝置,其中 一循環字首長度組被定義用於該無線電存取網路,並且其中該至少一個處理器被配置為: 為該循環字首長度組之每一者循環字首長度配置一定時提前步長尺寸。
  29. 根據請求項27之裝置,其中該至少一個處理器被配置為: 為針對該無線電存取網路定義的一或多個次載波間隔配置一定時提前步長尺寸, 其中該定時提前步長尺寸和用於表示一定時提前持續時間的一位元數被選擇以獲得具有一期望的定時提前細微性的該無線電存取網路的一最大定時提前持續時間或範圍。
  30. 一種儲存電腦可執行代碼的電腦可讀取媒體,該電腦可執行代碼包括用於使一電腦執行以下操作的代碼: 針對採用具有可縮放數位方案的一調制方案的一無線電存取網路定義一定時提前配置,其中該定時提前配置被定義為適應該無線電存取網路使用的一數位方案; 決定與針對與該無線電存取網路進行通訊的一使用者設備(UE)的該定時提前配置一致的定時提前參數;及 在涉及該UE的一初始存取程序期間或者當該UE處於該無線電存取網路中的一連接狀態時,向該UE發送該定時提前參數。
TW107118964A 2017-06-02 2018-06-01 用於新無線電技術的定時提前組 TWI793132B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762514584P 2017-06-02 2017-06-02
US62/514,584 2017-06-02
US15/994,942 US11240774B2 (en) 2017-06-02 2018-05-31 Timing advance group for new radio
US15/994,942 2018-05-31

Publications (2)

Publication Number Publication Date
TW201904324A true TW201904324A (zh) 2019-01-16
TWI793132B TWI793132B (zh) 2023-02-21

Family

ID=62784226

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118964A TWI793132B (zh) 2017-06-02 2018-06-01 用於新無線電技術的定時提前組

Country Status (7)

Country Link
US (1) US11240774B2 (zh)
EP (2) EP3632031B1 (zh)
JP (1) JP7159221B2 (zh)
CN (1) CN110679110B (zh)
BR (1) BR112019024871A2 (zh)
TW (1) TWI793132B (zh)
WO (1) WO2018223088A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647157A (zh) * 2019-03-26 2021-11-12 瑞典爱立信有限公司 具有负传播延迟指示的集成接入回程(iab)节点

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109275185B (zh) * 2017-06-06 2020-03-20 华为技术有限公司 发送上行信息的方法和装置
US11032816B2 (en) 2017-08-10 2021-06-08 Qualcomm Incorporated Techniques and apparatuses for variable timing adjustment granularity
CN109391966B (zh) * 2017-08-11 2021-08-31 华为技术有限公司 一种定时提前确定方法及设备
KR102370452B1 (ko) * 2017-09-10 2022-03-04 엘지전자 주식회사 무선 통신 시스템에서 캐리어 병합을 이용하여 신호를 송수신하기 위한 방법 및 이를 위한 장치
EP3682579A1 (en) * 2017-09-11 2020-07-22 Nokia Technologies Oy Uplink timing adjustment with multiple numerologies
EP3692755A1 (en) * 2017-10-02 2020-08-12 Telefonaktiebolaget LM Ericsson (publ) Timing advance range adaptation in new radio
US11102777B2 (en) 2017-11-10 2021-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Timing advance offset for uplink-downlink switching in new radio
JP7074195B2 (ja) 2018-01-10 2022-05-24 富士通株式会社 上りリンク送信タイミングアドバンスの取得方法、装置及び通信システム
US10624052B2 (en) 2018-05-11 2020-04-14 Dish Network L.L.C. Timing advance for satellite-based communications
US10931365B2 (en) * 2018-05-11 2021-02-23 Dish Network L.L.C. Timing advance for satellite-based communications using a satellite with enhanced processing capabilities
US11082941B2 (en) * 2018-08-09 2021-08-03 Qualcomm Incorporated Timing offset techniques in wireless communications
CN110830975A (zh) * 2018-08-10 2020-02-21 索尼公司 电子装置、无线通信方法和计算机可读介质
US11582077B2 (en) * 2019-02-25 2023-02-14 Huawei Technologies Co., Ltd. Systems and methods for transmission of uplink control information over multiple carriers in unlicensed spectrum
US11382116B2 (en) 2019-03-28 2022-07-05 Qualcomm Incorporated Configuring a starting offset for a configured grant uplink communication
WO2021012227A1 (zh) * 2019-07-24 2021-01-28 Oppo广东移动通信有限公司 一种无线信号的定时调整方法、用户设备、网络设备
CN112583752B (zh) 2019-09-29 2022-10-11 华为技术有限公司 一种基于卫星通信的信号传输方法及设备
US11659578B2 (en) 2019-10-09 2023-05-23 Qualcomm Incorporated Timing conditions for sidelink feedback reporting
CN114258127B (zh) * 2020-09-25 2023-09-15 维沃移动通信有限公司 信息确定方法、信息发送方法、装置和设备
WO2023044711A1 (en) * 2021-09-24 2023-03-30 Qualcomm Incorporated Communication timing for sidelink relay between ground ue and aerial device
WO2024065590A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Multiple tag mapping

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717972B2 (en) * 2009-10-29 2014-05-06 Alcatel Lucent Method for range extension in wireless communication systems
US9402255B2 (en) * 2010-09-30 2016-07-26 Panasonic Intellectual Property Corporation Of America Timing advance configuration for multiple uplink component carriers
CA2862197A1 (en) 2012-01-29 2013-08-01 Telefonaktiebolaget L M Ericsson (Publ) User equipment, network node and method for applying power scaling to uplink transmissions
CN103298136B (zh) 2012-02-29 2016-11-23 华为技术有限公司 一种随机接入方法、终端、基站及系统
US10863313B2 (en) * 2014-08-01 2020-12-08 Polte Corporation Network architecture and methods for location services
WO2014089737A1 (en) 2012-12-10 2014-06-19 Qualcomm Incorporated Timing advance selection for synchronized uplink transmission
CN105027640A (zh) * 2012-12-10 2015-11-04 高通股份有限公司 用于经同步上行链路传输的定时提前量选择的方法和装置
US9380466B2 (en) * 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
US11382081B2 (en) * 2015-10-16 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information acquisition in wireless communication system
US11497015B2 (en) * 2016-09-30 2022-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Autonomous timing adjustment for a wireless device
US10356740B2 (en) * 2016-11-29 2019-07-16 Huawei Technologies Co., Ltd. System and scheme for uplink synchronization for small data transmissions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647157A (zh) * 2019-03-26 2021-11-12 瑞典爱立信有限公司 具有负传播延迟指示的集成接入回程(iab)节点

Also Published As

Publication number Publication date
BR112019024871A2 (pt) 2020-06-09
KR20200014840A (ko) 2020-02-11
JP2020522930A (ja) 2020-07-30
EP3632031B1 (en) 2021-12-29
TWI793132B (zh) 2023-02-21
EP3979549C0 (en) 2023-09-27
EP3632031A1 (en) 2020-04-08
EP3979549B1 (en) 2023-09-27
EP3979549A1 (en) 2022-04-06
CN110679110B (zh) 2022-06-28
US11240774B2 (en) 2022-02-01
US20180352527A1 (en) 2018-12-06
JP7159221B2 (ja) 2022-10-24
WO2018223088A1 (en) 2018-12-06
CN110679110A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
TWI793132B (zh) 用於新無線電技術的定時提前組
TWI762630B (zh) 無線通訊中的不具有時序同步的上行鏈路傳輸
TWI749121B (zh) 用於無線通訊的方法、裝置與非暫時性電腦可讀取媒體
US11743889B2 (en) Channel state information (CSI) reference signal (RS) configuration with cross-component carrier CSI prediction algorithm
TWI771525B (zh) 在無線通訊中將上行鏈路控制資訊映射到上行鏈路資料通道
US11323227B2 (en) Multiplexing of physical uplink shared channel (PUSCH) and physical uplink control channel (PUCCH) in uplink short burst transmission
TW201906478A (zh) 用於傳輸波束故障恢復請求的系統和方法
TWI797138B (zh) 用於匹配下行鏈路和上行鏈路下行鏈路控制資訊長度的動態填充欄位
US10917919B2 (en) Reference signal design for medium access in cellular V2X communication
TW201843975A (zh) 經由對參考信號和資料音調的頻分多工的新無線電單符號設計
EP3804446B1 (en) Traffic scheduling in cellular v2x communication
KR102670504B1 (ko) 뉴 라디오에 대한 타이밍 전진 그룹