TW201904012A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW201904012A
TW201904012A TW107101429A TW107101429A TW201904012A TW 201904012 A TW201904012 A TW 201904012A TW 107101429 A TW107101429 A TW 107101429A TW 107101429 A TW107101429 A TW 107101429A TW 201904012 A TW201904012 A TW 201904012A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
wiring
protection circuit
diode
Prior art date
Application number
TW107101429A
Other languages
Chinese (zh)
Other versions
TWI683413B (en
Inventor
佐佐木健次
筒井孝幸
大部功
山本靖久
Original Assignee
日商村田製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商村田製作所股份有限公司 filed Critical 日商村田製作所股份有限公司
Publication of TW201904012A publication Critical patent/TW201904012A/en
Application granted granted Critical
Publication of TWI683413B publication Critical patent/TWI683413B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Abstract

An amplifier circuit including a semiconductor element is formed on a substrate. A protection circuit formed on the substrate includes a plurality of protection diodes that are connected in series with each other, and the protection circuit is connected to an output terminal of the amplifier circuit. A pad conductive layer at least partially includes a pad for connecting to a circuit outside the substrate. The pad conductive layer and the protection circuit at least partially overlap each other in plan view.

Description

半導體裝置    Semiconductor device   

本發明係有關一種半導體裝置。 The present invention relates to a semiconductor device.

作為構成近年來的移動終端的高頻放大器模組的電晶體,主要使用異質接合雙極電晶體(HBT)。公知在HBT的集極-射極間連接了靜電破壞防止電路(保護電路)的半導體裝置(專利文獻1)。該保護電路由被相互串聯連接起來的複數個二極體構成。 As a transistor constituting a high-frequency amplifier module of a mobile terminal in recent years, a heterojunction bipolar transistor (HBT) is mainly used. A semiconductor device in which an electrostatic destruction prevention circuit (protection circuit) is connected between a collector and an emitter of HBT is known (Patent Document 1). The protection circuit is composed of a plurality of diodes connected in series with each other.

[先行技術文獻] [Advanced technical literature]

[專利文獻] [Patent Literature]

專利文獻1:日本專利第4977313號公報 Patent Document 1: Japanese Patent No. 4977313

構成保護電路的二極體被設計為滿足以下條件:在通常功能的動作時不會導通,而在集極-射極間產生了超過所容許的電壓的上限值的電壓時導通。為了滿足這一條件,作為保護電路能利用將8個以上的二極體串聯連接起來的電路。因為有必要確保配置8個以上二極體的區域,所以晶片面積會增大。 The diode constituting the protection circuit is designed to satisfy the following conditions: it does not conduct during normal function operation, but conducts when a voltage exceeding the upper limit of the allowable voltage is generated between the collector and the emitter. In order to satisfy this condition, a circuit in which eight or more diodes are connected in series can be used as a protection circuit. Since it is necessary to ensure that more than eight diode regions are arranged, the wafer area will increase.

本發明的目的在於,提供一種即便將保護電路組裝於放大電路、也能夠抑制晶片面積的增大的半導體裝置。 An object of the present invention is to provide a semiconductor device capable of suppressing an increase in wafer area even if a protection circuit is incorporated in an amplifier circuit.

基於本發明的第1觀點的半導體裝置,具有: 放大電路,包含形成於基板的半導體元件;保護電路,包含形成於所述基板且相互串聯連接的複數個保護二極體,該保護電路被連接至所述放大電路的輸出端子;及焊墊導體層,該焊墊導體層的至少一部分包含用於與所述基板的外部電路連接的焊墊,俯視情況下,所述焊墊導體層與所述保護電路至少局部重疊。 The semiconductor device according to the first aspect of the present invention includes: an amplifier circuit including a semiconductor element formed on a substrate; a protection circuit including a plurality of protection diodes formed on the substrate and connected in series with each other, the protection circuit being connected To the output terminal of the amplifying circuit; and a pad conductor layer, at least a part of the pad conductor layer includes a pad for connection to an external circuit of the substrate. In a plan view, the pad conductor layer and the pad The protection circuits overlap at least partially.

藉由將焊墊導體層與保護電路局部重疊來配置,從而能夠抑制晶片面積的增大。 By arranging the pad conductor layer and the protection circuit to partially overlap, it is possible to suppress an increase in the chip area.

基於本發明的第2觀點的半導體裝置,在基於第1觀點的半導體裝置的構成的基礎上,具有以下特徵:還具有形成於所述基板的接地導體,能夠使輸出端子產生的高電壓穿過保護電路而避開接地導體。 The semiconductor device according to the second aspect of the present invention, in addition to the structure of the semiconductor device according to the first aspect, has the following feature: it also has a ground conductor formed on the substrate, and can pass a high voltage generated by the output terminal Protect the circuit from ground conductors.

基於本發明的第3觀點的半導體裝置,在基於第1及第2觀點的半導體裝置的構成的基礎上,其特徵在於,還具有絕緣性的保護膜,該保護膜覆蓋所述焊墊導體層,設置使所述焊墊導體層的表面的一部分的區域露出的開口,且覆蓋其他區域,俯視情況下,所述開口與所述保護電路至少局部重疊。 The semiconductor device according to the third aspect of the present invention, in addition to the configuration of the semiconductor device according to the first and second aspects, is characterized by further having an insulating protective film covering the pad conductor layer An opening is provided to expose a part of the surface of the pad conductor layer and cover the other area. In a plan view, the opening at least partially overlaps the protection circuit.

露出於設置在保護膜的開口內的焊墊導體層作為引線接合用或凸塊用的焊墊起作用。焊墊與保護電路至少局部重疊,由此能夠抑制晶片面積的增大。 The pad conductor layer exposed in the opening provided in the protective film functions as a pad for wire bonding or bumps. The pads and the protective circuit at least partially overlap, thereby suppressing an increase in the wafer area.

基於本發明的第4觀點的半導體裝置,在基於第3觀點的半導體裝置的構成的基礎上,還具有形成於所述開口的底面的所述焊墊導體層之上的凸塊。 The semiconductor device according to the fourth aspect of the present invention, in addition to the configuration of the semiconductor device according to the third aspect, further includes bumps formed on the pad conductor layer on the bottom surface of the opening.

利用凸塊,能夠面向下安裝於模組基板。 The bump can be installed face-down on the module substrate.

基於本發明的第5觀點的半導體裝置,在基於第4觀點的半導體裝置的構成的基礎上,具有以下特徵:所述凸塊的平面形狀為圓角長方形。 The semiconductor device according to the fifth aspect of the present invention, in addition to the configuration of the semiconductor device according to the fourth aspect, has the following feature: the planar shape of the bump is a rounded rectangle.

藉由使凸塊的平面形狀為圓角長方形,從而能夠與凸塊的掩模形狀幾乎相同地穩定進行凸塊的加工。 By making the planar shape of the bump into a rounded rectangle, the bump can be processed stably in almost the same shape as the mask shape of the bump.

基於本發明的第6觀點的半導體裝置,在基於第1~第5觀點的半導體裝置的構成的基礎上,具有以下特徵:複數個所述保護二極體構成在俯視情況下在中途被折回的二極體列,所述保護電路的一部分被配置於所述焊墊導體層的外側。 The semiconductor device according to the sixth aspect of the present invention, in addition to the structure of the semiconductor device according to the first to fifth aspects, has the following feature: a plurality of the above-mentioned protective diode structures are folded back halfway in a plan view In the diode array, a part of the protection circuit is arranged outside the pad conductor layer.

即便在無法將二極體列的整個區域收斂於焊墊導體層的內部而一部分自焊墊導體層突出的情況下,藉由將二極體列折回,從而也能夠減小從焊墊導體層突出的突出面積。 Even when the entire area of the diode row cannot be converged inside the pad conductor layer and a part of it protrudes from the pad conductor layer, by folding back the diode row, the secondary conductor layer can be reduced Outstanding area.

基於本發明的第7觀點的半導體裝置,在第1~第5觀點基於的半導體裝置的構成的基礎上,具有以下特徵:複數個所述保護二極體構成在俯視情況下在中途被折回的二極體列,複數個所述保護二極體的每一個包含:第1導電型的第1半導體層;第2導電型的第2半導體層,形成於所述第1半導體層的上表面的一部分的區域,且所述第2導電型與所述第1導電型相反;以及與所述第1半導體層的上表面歐姆連接的第1電極,俯視情況下,所述第1電極具有在所述二極體列的寬度方向夾持所述第2半導體層的U字形的平面形狀。 The semiconductor device according to the seventh aspect of the present invention, in addition to the structure of the semiconductor device based on the first to fifth aspects, has the following feature: a plurality of the above-mentioned protective diode structures are folded back halfway in a plan view A diode row, each of the plurality of protective diodes includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type formed on the upper surface of the first semiconductor layer A part of the region, and the second conductivity type is opposite to the first conductivity type; and the first electrode ohmically connected to the upper surface of the first semiconductor layer, in a plan view, the first electrode has a A U-shaped planar shape sandwiching the second semiconductor layer in the width direction of the diode row.

藉由採取這種構成,從而在對二極體列施加了高電壓時變得不易產生靜電放電。由此,能夠靜電放電抑制引發的保護二極體的破壞。 By adopting such a configuration, when a high voltage is applied to the diode array, it becomes less likely to cause electrostatic discharge. Thereby, it is possible to suppress the destruction of the protective diode caused by electrostatic discharge.

基於本發明的第8觀點的半導體裝置,在基於第1~第7觀點的半導 體裝置的構成的基礎上,具有以下特徵:所述半導體元件由化合物半導體形成。 The semiconductor device according to the eighth aspect of the present invention, in addition to the structure of the semiconductor device according to the first to seventh aspects, has the following feature: the semiconductor element is formed of a compound semiconductor.

與矽系的半導體裝置相比,能夠提高動作頻率。 Compared with silicon-based semiconductor devices, the operating frequency can be increased.

藉由將焊墊導體層與保護電路局部重疊地配置,從而能夠抑制晶片面積的增大。 By arranging the pad conductor layer and the protection circuit to partially overlap, it is possible to suppress an increase in the chip area.

31‧‧‧輸入級放大電路 31‧‧‧Input stage amplifier circuit

32‧‧‧輸出級放大電路 32‧‧‧Output stage amplifier circuit

33、34‧‧‧匹配電路 33, 34‧‧‧ matching circuit

35、36‧‧‧偏壓電路 35、36‧‧‧bias circuit

40‧‧‧保護電路 40‧‧‧Protection circuit

41‧‧‧異質接合雙極電晶體(HBT) 41‧‧‧ Heterojunction Bipolar Transistor (HBT)

42‧‧‧輸入電容器 42‧‧‧Input capacitor

43‧‧‧鎮流電阻 43‧‧‧ Ballast resistance

44‧‧‧集極端子 44‧‧‧ collector terminal

45‧‧‧電路單元 45‧‧‧ circuit unit

47‧‧‧二極體串聯電路 47‧‧‧ diode series circuit

48‧‧‧保護二極體 48‧‧‧Protection diode

49A‧‧‧第1HBT單元塊 49A‧‧‧1HBT unit block

49B‧‧‧第2HBT單元塊 49B‧‧‧2HBT unit block

50‧‧‧基板 50‧‧‧ substrate

51‧‧‧子集極層 51‧‧‧Subset polar layer

52‧‧‧集極層 52‧‧‧ Collector

53‧‧‧基極層 53‧‧‧ Base layer

54‧‧‧射極層 54‧‧‧Emitter layer

55‧‧‧n型半導體層 55‧‧‧n-type semiconductor layer

57‧‧‧集極電極 57‧‧‧ Collector electrode

58‧‧‧基極電極 58‧‧‧Base electrode

59‧‧‧射極電極 59‧‧‧Emitter electrode

60‧‧‧背面電極 60‧‧‧Back electrode

61‧‧‧陰極電極 61‧‧‧Cathode electrode

62‧‧‧陽極電極 62‧‧‧Anode electrode

63‧‧‧基極控制配線 63‧‧‧ Base control wiring

64‧‧‧高頻輸入配線 64‧‧‧High frequency input wiring

65‧‧‧焊墊 65‧‧‧solder pad

66‧‧‧通孔 66‧‧‧Through hole

67‧‧‧接觸孔 67‧‧‧Contact hole

68‧‧‧保護膜 68‧‧‧Protection film

69‧‧‧接觸孔 69‧‧‧Contact hole

70‧‧‧接合引線 70‧‧‧bond wire

71‧‧‧通孔 71‧‧‧Through hole

72‧‧‧無機絕緣膜 72‧‧‧Inorganic insulating film

73‧‧‧絕緣樹脂膜 73‧‧‧Insulating resin film

74、75、76‧‧‧接觸孔 74, 75, 76 ‧‧‧ contact hole

77‧‧‧接地用的凸塊 77‧‧‧Bump for grounding

77A‧‧‧Au層 77A‧‧‧Au layer

77B‧‧‧焊料層 77B‧‧‧Solder layer

78‧‧‧高頻輸出用的凸塊 78‧‧‧High frequency output bump

78A‧‧‧Au層 78A‧‧‧Au layer

78B‧‧‧焊料層 78B‧‧‧Solder layer

79‧‧‧接觸孔 79‧‧‧Contact hole

81‧‧‧接地用的凸塊 81‧‧‧Bump for grounding

82‧‧‧高頻輸出用的凸塊 82‧‧‧Bump for high frequency output

B1‧‧‧基極配線 B1‧‧‧ Base wiring

C1‧‧‧第1層的集極配線 C1‧‧‧ Collector wiring of layer 1

C2‧‧‧第2層的集極配線 C2‧‧‧Layer 2 collector wiring

D1‧‧‧二極體配線 D1‧‧‧Diode wiring

E1‧‧‧第1層的射極配線 E1‧‧‧Emitter wiring of layer 1

E2‧‧‧第2層的射極配線 E2‧‧‧Layer 2 wiring

J2‧‧‧連接配線 J2‧‧‧ connection wiring

P1‧‧‧第1層的焊墊導體層 P1‧‧‧The first layer of pad conductor layer

P2‧‧‧第2層的焊墊導體層 P2‧‧‧Layer 2 conductor layer

Q2‧‧‧連接配線 Q2‧‧‧ connection wiring

圖1A是內置基於第1實施例的半導體裝置的功率放大器模組的方塊圖,圖1B是輸出級放大電路及保護電路的等效電路圖。 1A is a block diagram of a power amplifier module incorporating a semiconductor device according to the first embodiment, and FIG. 1B is an equivalent circuit diagram of an output stage amplifier circuit and a protection circuit.

圖2是輸出級放大電路的俯視圖。 Fig. 2 is a plan view of an output stage amplifier circuit.

圖3A是能利用於第1實施例的半導體裝置的HBT的俯視圖,圖3B是圖3A的一點鏈線3B-3B處的剖面圖。 FIG. 3A is a plan view of an HBT that can be used in the semiconductor device of the first embodiment, and FIG. 3B is a cross-sectional view at the one-dot chain line 3B-3B of FIG. 3A.

圖4A是能利用於第1實施例的半導體裝置的保護二極體的俯視圖。圖4B是圖4A的一點鏈線4B-4B處的剖面圖。 4A is a plan view of a protective diode that can be used in the semiconductor device of the first embodiment. FIG. 4B is a cross-sectional view at the one-dot chain line 4B-4B of FIG. 4A.

圖5是圖2的一點鏈線5-5處的剖面圖。 FIG. 5 is a cross-sectional view at the one-dot chain line 5-5 of FIG. 2.

圖6是基於第2實施例的半導體裝置的輸出級放大電路及保護電路的等效電路圖。 6 is an equivalent circuit diagram of an output stage amplifier circuit and a protection circuit of the semiconductor device according to the second embodiment.

圖7是基於第2實施例的半導體裝置的俯視圖。 7 is a plan view of the semiconductor device according to the second embodiment.

圖8是基於第3實施例的半導體裝置的俯視圖。 8 is a plan view of a semiconductor device according to a third embodiment.

圖9是構成基於變形例的半導體裝置的保護電路的保護二極體的俯視圖。 9 is a plan view of a protection diode constituting a protection circuit of a semiconductor device according to a modification.

圖10是基於變形例的半導體裝置的焊墊部分的剖面圖。 10 is a cross-sectional view of a pad portion of a semiconductor device according to a modification.

圖11是基於第4實施例的半導體裝置的俯視圖。 11 is a plan view of a semiconductor device according to a fourth embodiment.

圖12是基於第4實施例的半導體裝置的1個HBT所對應的部分的概略剖面圖。 12 is a schematic cross-sectional view of a portion corresponding to one HBT of the semiconductor device according to the fourth embodiment.

圖13是基於第4實施例的半導體裝置的形成了高頻輸出用的凸塊的部分的剖面圖。 13 is a cross-sectional view of a portion of a semiconductor device according to a fourth embodiment where bumps for high-frequency output are formed.

圖14是基於第4實施例的第1變形例的半導體裝置的俯視圖。 14 is a plan view of a semiconductor device according to a first modification of the fourth embodiment.

圖15是基於第4實施例的第2變形例的半導體裝置的俯視圖。 15 is a plan view of a semiconductor device according to a second modification of the fourth embodiment.

圖16是基於第4實施例的第3變形例的半導體裝置的俯視圖。 16 is a plan view of a semiconductor device according to a third modification of the fourth embodiment.

圖17是基於第5實施例的半導體裝置的剖面圖。 17 is a cross-sectional view of a semiconductor device according to a fifth embodiment.

圖18是基於第5實施例的變形例的半導體裝置的俯視圖。 18 is a plan view of a semiconductor device according to a modification of the fifth embodiment.

圖19A是成為用於模擬寄生電感的影響的類比物件的輸出級放大電路的等效電路圖,圖19B是表示輸出電壓的波形的類比結果的圖表。 FIG. 19A is an equivalent circuit diagram of an output stage amplifier circuit used as an analog object for simulating the influence of parasitic inductance, and FIG. 19B is a graph showing an analog result of a waveform of an output voltage.

圖20A是表示將寄生電感Le設為0並使寄生電感Lc發生了變化時的標準化最大峰值電壓的圖表,圖20B是表示將寄生電感Lc設為0並使寄生電感Le發生了變化時的標準化最大峰值電壓的圖表。 20A is a graph showing the normalized maximum peak voltage when the parasitic inductance Le is set to 0 and the parasitic inductance Lc is changed, and FIG. 20B is a normalized when the parasitic inductance Lc is set to 0 and the parasitic inductance Le is changed. The graph of the maximum peak voltage.

圖21A是用於模擬寄生電阻的影響的類比物件的放大電路的等效電路圖,圖21B是表示類比結果的圖表。 FIG. 21A is an equivalent circuit diagram of an amplifying circuit for an analog object for simulating the influence of parasitic resistance, and FIG. 21B is a graph showing an analog result.

圖22是基於比較例的半導體裝置的俯視圖。 22 is a plan view of a semiconductor device based on a comparative example.

圖23是基於其他比較例的半導體裝置的俯視圖。 23 is a plan view of a semiconductor device according to another comparative example.

圖24是基於又一比較例的半導體裝置的俯視圖。 24 is a plan view of a semiconductor device according to still another comparative example.

圖25是基於又一比較例的半導體裝置的俯視圖。 25 is a plan view of a semiconductor device according to still another comparative example.

圖26A是能利用於基於第1實施例的半導體裝置的保護電路的俯視的示意圖,圖26B是能利用於基於比較例的半導體裝置的保護電路的俯視的示意圖。 26A is a schematic plan view of a protection circuit that can be used in the semiconductor device according to the first embodiment, and FIG. 26B is a schematic plan view of the protection circuit that can be used in the semiconductor device according to a comparative example.

〔第1實施例〕 [First embodiment]

參照圖1A~圖5的圖式,對基於第1實施例的半導體裝置進行說明。 The semiconductor device according to the first embodiment will be described with reference to the drawings of FIGS. 1A to 5.

圖1A是內置基於本實施例的半導體裝置的功率放大器模組的方塊圖。從高頻輸入端子RFi被輸入的輸入訊號經由匹配電路33而被輸入至輸入級放大電路31。由輸入級放大電路31放大後的訊號經由匹配電路34而被輸入至輸出級放大電路32。由輸出級放大電路32放大後的輸出訊號從高頻輸出端子RFo被輸出。 FIG. 1A is a block diagram of a power amplifier module incorporating a semiconductor device according to this embodiment. The input signal input from the high-frequency input terminal RFi is input to the input stage amplifier circuit 31 via the matching circuit 33. The signal amplified by the input stage amplifier circuit 31 is input to the output stage amplifier circuit 32 via the matching circuit 34. The output signal amplified by the output stage amplifier circuit 32 is output from the high-frequency output terminal RFo.

從偏壓電壓端子Vbat向偏壓電路35、36施加偏壓用的電壓。基於從偏壓控制端子Vb1輸入的訊號,偏壓電路35向輸入級放大電路31供給偏壓電流。基於從偏壓控制端子Vb2輸入的訊號,偏壓電路36向輸出級放大電路32供給偏壓電流。從電源端子Vcc1向輸入級放大電路31施加電源電壓,從電源端子Vcc2向輸出級放大電路32施加電源電壓。 A bias voltage is applied to the bias circuits 35 and 36 from the bias voltage terminal Vbat. Based on the signal input from the bias control terminal Vb1, the bias circuit 35 supplies a bias current to the input stage amplifier circuit 31. Based on the signal input from the bias control terminal Vb2, the bias circuit 36 supplies the bias current to the output stage amplifier circuit 32. The power supply voltage is applied to the input stage amplifier circuit 31 from the power supply terminal Vcc1, and the power supply voltage is applied to the output stage amplifier circuit 32 from the power supply terminal Vcc2.

在輸出級放大電路32的輸出端子與接地GND之間連接有保護電路40。保護電路40具備以下功能,即:在因功率放大器模組的負載變動而使輸出級放大電路32的輸出端子產生了超過容許上限值的電壓時,抑制電壓的進一步上升。 A protection circuit 40 is connected between the output terminal of the output stage amplifier circuit 32 and the ground GND. The protection circuit 40 has a function of suppressing a further increase in voltage when a voltage exceeding the allowable upper limit value is generated at the output terminal of the output stage amplifier circuit 32 due to a load fluctuation of the power amplifier module.

圖1B是輸出級放大電路32(圖1A)及保護電路40的等效電路圖。高頻輸入訊號經由輸入電容器42而被輸入異質接合雙極電晶體(HBT)41的基極。經由鎮流電阻43向HBT41供給偏壓電流。HBT41的射極被接地。HBT41的集極端子(相當於圖1A的高頻輸出端子RFo)44經由保護電路40而被落至接地GND。 FIG. 1B is an equivalent circuit diagram of the output stage amplifier circuit 32 (FIG. 1A) and the protection circuit 40. The high-frequency input signal is input to the base of the heterojunction bipolar transistor (HBT) 41 through the input capacitor 42. A bias current is supplied to the HBT 41 via the ballast resistor 43. The emitter of HBT41 is grounded. The collector terminal (corresponding to the high-frequency output terminal RFo of FIG. 1A) 44 of the HBT 41 is dropped to the ground GND via the protection circuit 40.

圖1B示出的等效電路圖中,雖然表示由HBT41、輸入電容器42、及鎮流電阻43組成的1個電路單元45,但實際上相同構成的複數個電路單元45被並聯地連接。 Although the equivalent circuit diagram shown in FIG. 1B shows one circuit unit 45 composed of the HBT 41, the input capacitor 42, and the ballast resistor 43, in practice, a plurality of circuit units 45 of the same configuration are connected in parallel.

保護電路40包含被並聯連接的複數個、例如2個二極體串聯電路47。二極體串聯電路47的每一個包含被串聯連接的複數個、例如10個保護二極體48。各保護二極體48被連接成從集極端子44朝著接地GND的方向為順時針方 向。保護電路40雖然在通常動作時不導通、但在集極端子44產生超過容許上限值的電壓時導通。由此,抑制集極端子44產生的電壓的進一步上升。 The protection circuit 40 includes a plurality of, for example, two diode series circuits 47 connected in parallel. Each of the diode series circuits 47 includes a plurality of, for example, ten protection diodes 48 connected in series. Each protective diode 48 is connected in a clockwise direction from the collector terminal 44 toward the ground GND. The protection circuit 40 does not conduct during normal operation, but conducts when the collector terminal 44 generates a voltage exceeding the allowable upper limit. As a result, a further increase in the voltage generated by the collector terminal 44 is suppressed.

圖2是輸出級放大電路32(圖1A)的俯視圖。16個HBT41被配置成4行4列的矩陣狀。位於第1列及第2列的8個HBT41構成第1HBT單元塊49A,位於第3列及第4列的8個HBT41構成第2HBT單元塊49B。與HBT41的每一個對應地配置有輸入電容器42及鎮流電阻43。相對於第1HBT單元塊49A而配置1個二極體串聯電路47,相對於第2HBT單元塊49B而配置另1個二極體串聯電路47。二極體串聯電路47的每一個包含保護二極體48。 FIG. 2 is a plan view of the output stage amplifier circuit 32 (FIG. 1A). The 16 HBT41s are arranged in a matrix of 4 rows and 4 columns. The eight HBT41s located in the first and second columns constitute the first HBT unit block 49A, and the eight HBT41s located in the third and fourth columns constitute the second HBT unit block 49B. An input capacitor 42 and a ballast resistor 43 are arranged corresponding to each HBT 41. One diode series circuit 47 is arranged with respect to the first HBT cell block 49A, and another diode series circuit 47 is arranged with respect to the second HBT cell block 49B. Each of the diode series circuits 47 includes a protective diode 48.

接著,參照圖3A及圖3B,對HBT41(圖2)各自的構成進行說明。 Next, the configuration of each HBT41 (FIG. 2) will be described with reference to FIGS. 3A and 3B.

圖3A是HBT41的俯視圖,圖3B是圖3A的一點鏈線3B-3B處的剖面圖。在半絕緣性的由GaAs組成的基板50的上表面的一部分形成子集極層51。在子集極層51的上表面的一部分形成集極層52,在其上形成基極層53。在基極層53的上表面的一部分形成射極層54,在其上形成n型半導體層55。在子集極層51的上表面形成一對集極電極57,在基極層53的上表面形成基極電極58,在n型半導體層55之上形成射極電極59。集極電極57歐姆連接於子集極層51,基極電極58歐姆連接於基極層53。射極電極59經由n型半導體層55而與射極層54歐姆連接。 FIG. 3A is a top view of HBT41, and FIG. 3B is a cross-sectional view at the one-dot chain line 3B-3B of FIG. 3A. The sub-collector layer 51 is formed on a part of the upper surface of the semi-insulating substrate 50 composed of GaAs. A collector layer 52 is formed on a part of the upper surface of the sub-collector layer 51, and a base layer 53 is formed thereon. An emitter layer 54 is formed on a part of the upper surface of the base layer 53, and an n-type semiconductor layer 55 is formed thereon. A pair of collector electrodes 57 is formed on the upper surface of the sub-collector layer 51, a base electrode 58 is formed on the upper surface of the base layer 53, and an emitter electrode 59 is formed on the n-type semiconductor layer 55. The collector electrode 57 is ohmically connected to the sub-collector layer 51, and the base electrode 58 is ohmically connected to the base layer 53. The emitter electrode 59 is ohmically connected to the emitter layer 54 via the n-type semiconductor layer 55.

如圖3A所示,基極電極58具有在俯視情況下從三方向圍繞射極電極59、且朝着一方向(圖3A中的右方向)開放的U字形(字形)的平面形狀。一對集極電極57配置於基極層53的兩側(圖3A中,上側與下側)。 As shown in FIG. 3A, the base electrode 58 has a U-shaped shape that surrounds the emitter electrode 59 from three directions in a plan view and opens in one direction (the right direction in FIG. 3A). Font). A pair of collector electrodes 57 are arranged on both sides of the base layer 53 (in FIG. 3A, upper side and lower side).

在一對集極電極57的每一個之上形成集極配線C1。在基極電極58之上形成基極配線B1。基極配線B1被配置於連接U字形的基極電極58的2根臂部的基部之上。圖3B中以虛線示出基極配線B1,這意味著基極配線B1未出現在圖3B的剖面內。基極配線B1在從射極電極59遠離的方向(圖3A中,左方向)延伸。在射極電極59之上形成射極配線E1。射極配線E1在從基極配線B1遠離的方 向(圖3A中,右方向)延伸。集極配線C1、基極配線B1、及射極配線E1由第1層的金屬配線層形成。 A collector wiring C1 is formed on each of the pair of collector electrodes 57. The base wiring B1 is formed on the base electrode 58. The base wiring B1 is arranged on the base of the two arms connecting the U-shaped base electrode 58. The base wiring B1 is shown with a broken line in FIG. 3B, which means that the base wiring B1 does not appear in the cross section of FIG. 3B. The base wiring B1 extends in a direction away from the emitter electrode 59 (left direction in FIG. 3A). The emitter wiring E1 is formed on the emitter electrode 59. The emitter wiring E1 extends in a direction away from the base wiring B1 (right direction in FIG. 3A). The collector wiring C1, the base wiring B1, and the emitter wiring E1 are formed of a metal wiring layer of the first layer.

在集極配線C1之上配置有第2層的集極配線C2。第2層的集極配線C2穿過設置在層間絕緣膜的接觸孔內並與第1層的集極配線C1連接。集極配線C2自配置有一對集極配線C1的部位起,分別在與射極配線E1相同的方向(圖3A中,右方向)延伸後而一體化。圖3B中,左右的集極配線C2之間被示出的虛線意味著集極配線C2在圖3B的剖面以外的部位中進行一體化。 A collector wiring C2 of the second layer is arranged on the collector wiring C1. The collector wiring C2 of the second layer passes through the contact hole provided in the interlayer insulating film and is connected to the collector wiring C1 of the first layer. The collector wiring C2 extends from the portion where the pair of collector wirings C1 are arranged, and extends in the same direction (the right direction in FIG. 3A) as the emitter wiring E1 to be integrated. In FIG. 3B, the broken line shown between the left and right collector wiring C2 means that the collector wiring C2 is integrated at a portion other than the cross section of FIG. 3B.

在基板50的背面形成背面電極60。背面電極60在圖3B示出的剖面以外的區域內經過將基板50貫通的通孔內並與射極配線E1連接。本說明書中,“通孔”指的是用於將基板50的背面電極60和基板50的表側的導體層或配線連接的孔。相對于此,“接觸孔”指的是用於將第1層的配線層和第2層的配線層連接的孔。 The back electrode 60 is formed on the back of the substrate 50. The back electrode 60 passes through the through hole penetrating the substrate 50 in a region other than the cross section shown in FIG. 3B and is connected to the emitter wiring E1. In this specification, the “through hole” refers to a hole for connecting the back electrode 60 of the substrate 50 and the conductor layer or wiring on the front side of the substrate 50. In contrast, the “contact hole” refers to a hole for connecting the wiring layer of the first layer and the wiring layer of the second layer.

接著,參照圖4A及圖4B,對保護二極體48(圖2)的構成進行說明。 Next, the configuration of the protective diode 48 (FIG. 2) will be described with reference to FIGS. 4A and 4B.

圖4A是保護二極體48的俯視圖,圖4B是圖4A的一點鏈線4B-4B處的剖面圖。 FIG. 4A is a top view of the protective diode 48, and FIG. 4B is a cross-sectional view at the one-dot chain line 4B-4B of FIG. 4A.

保護二極體48由形成於基板50之上的子集極層51、形成於其上表面的一部分的集極層52、及基極層53構成。集極層52和基極層53之間的pn結作為二極體發揮功能。 The protective diode 48 is composed of a sub-collector layer 51 formed on the substrate 50, a collector layer 52 formed on a part of the upper surface thereof, and a base layer 53. The pn junction between the collector layer 52 and the base layer 53 functions as a diode.

在子集極層51之上形成陰極電極61,在基極層53之上形成陽極電極62。陰極電極61具有與集極電極57(圖3B)相同的層疊構造。陽極電極62具有與基極電極58(圖3B)相同的層疊構造。在陰極電極61及陽極電極62分別連接二極體配線D1。 A cathode electrode 61 is formed on the sub-collector layer 51, and an anode electrode 62 is formed on the base layer 53. The cathode electrode 61 has the same laminated structure as the collector electrode 57 (FIG. 3B). The anode electrode 62 has the same laminated structure as the base electrode 58 (FIG. 3B). Diode wiring D1 is connected to cathode electrode 61 and anode electrode 62, respectively.

俯視情況下,陰極電極61(圖4A)具有在二極體列的寬度方向 夾持基極層53並在圖4A中朝右方向開放的U字形的平面形狀。被連接至陽極電極62的二極體配線D1在陰極電極61開放的方向(右方向)上延伸,並與右鄰的保護二極體48的陰極電極61連接。被連接至陰極電極61的二極體配線D1在與陰極電極61開放的方向相反的方向(左方向)上延伸,並與左鄰的保護二極體48的陽極電極62連接。 In a plan view, the cathode electrode 61 (FIG. 4A) has a U-shaped planar shape sandwiching the base layer 53 in the width direction of the diode row and opening to the right in FIG. 4A. The diode wiring D1 connected to the anode electrode 62 extends in the direction (right direction) in which the cathode electrode 61 opens, and is connected to the cathode electrode 61 of the protection diode 48 adjacent to the right. The diode wiring D1 connected to the cathode electrode 61 extends in a direction (left direction) opposite to the direction in which the cathode electrode 61 opens, and is connected to the anode electrode 62 of the protection diode 48 adjacent to the left.

如圖2所示,第1HBT單元塊49A的HBT41所連接的集極配線C2與被配置於第1列的HBT41與第2列的HBT41之間的區域內的導體平面連續。該導體平面構成集極配線C2的一部分。在構成集極配線C2的導體平面的下方,配置有構成第1層的射極配線E1的導體平面。該導體平面與第1HBT單元塊49A所包含的8個HBT41的射極電極59(圖3A、圖3B)連接。構成射極配線E1的導體平面穿過將基板50貫通的通孔66內而與背面電極60(圖3B)連接。 As shown in FIG. 2, the collector wiring C2 connected to the HBT41 of the first HBT cell block 49A is continuous with the conductor plane in the region disposed between the HBT41 in the first column and the HBT41 in the second column. This conductor plane constitutes a part of collector wiring C2. Below the conductor plane constituting the collector wiring C2, a conductor plane constituting the emitter wiring E1 of the first layer is arranged. This conductor plane is connected to the emitter electrodes 59 (FIG. 3A and FIG. 3B) of eight HBTs 41 included in the first HBT cell block 49A. The conductor plane constituting the emitter wiring E1 passes through the through hole 66 penetrating the substrate 50 and is connected to the back electrode 60 (FIG. 3B).

對於第2HBT單元塊49B而言,同樣地配置有構成集極配線C2的導體平面、及構成射極配線E1的導體平面。 In the second HBT cell block 49B, the conductor plane constituting the collector wiring C2 and the conductor plane constituting the emitter wiring E1 are similarly arranged.

高頻輸入配線64被配置為沿著HBT41的各列,且在端部與共同的導體平面連續。高頻輸入配線64由與第2層的集極配線C2相同的配線層形成。 The high-frequency input wiring 64 is arranged along each column of the HBT 41 and is continuous with the common conductor plane at the end. The high-frequency input wiring 64 is formed of the same wiring layer as the collector wiring C2 of the second layer.

每一個HBT41的基極配線B1在與高頻輸入配線64交叉後經由鎮流電阻43而與基極控制配線63連接。基極配線B1與高頻輸入配線64的交叉部位作為輸入電容器42(圖1B)而進行動作。基極控制配線63由與第1層的射極配線E1相同的配線層形成。 The base wiring B1 of each HBT 41 is connected to the base control wiring 63 via the ballast resistor 43 after crossing the high-frequency input wiring 64. The intersection of the base wiring B1 and the high-frequency input wiring 64 operates as an input capacitor 42 (FIG. 1B). The base control wiring 63 is formed of the same wiring layer as the emitter wiring E1 of the first layer.

焊墊導體層P2被配置為與第1HBT單元塊49A及第2HBT單元塊49B雙方相鄰(圖2中,為下側)。焊墊導體層P2由第2層的配線層形成且與第2層的集極配線C2連續。焊墊導體層P2的一部分被用作為焊墊65。具體是,在覆蓋焊墊導體層P2的保護膜的一部分形成開口,露出於該開口內的部分相當於焊墊65。在此,“焊墊導體層”意味著為了形成焊墊而被配置的導體層,用於向焊墊 傳輸電訊號的配線導體未被包含於焊墊導體層。例如,焊墊導體層P2由能夠配置焊墊的具備二維性的擴展的區域構成。 The pad conductor layer P2 is arranged adjacent to both the first HBT cell block 49A and the second HBT cell block 49B (in FIG. 2, the lower side). The pad conductor layer P2 is formed by the wiring layer of the second layer and is continuous with the collector wiring C2 of the second layer. A part of the pad conductor layer P2 is used as the pad 65. Specifically, an opening is formed in a part of the protective film covering the pad conductor layer P2, and the portion exposed in the opening corresponds to the pad 65. Here, the "pad conductor layer" means a conductor layer arranged to form a pad, and a wiring conductor for transmitting electrical signals to the pad is not included in the pad conductor layer. For example, the pad conductor layer P2 is composed of a two-dimensionally expanded region where pads can be arranged.

構成保護電路40(圖1B)的一對二極體串聯電路47配置於焊墊導體層P2的下方。與第1HBT單元塊49A對應地一個配置二極體串聯電路47,與第2HBT單元塊49B對應地配置另一個二極體串聯電路47。二極體串聯電路47具有在中間地點被折回的平面形狀。 A pair of diode series circuits 47 constituting the protection circuit 40 (FIG. 1B) are arranged below the pad conductor layer P2. One diode series circuit 47 is arranged corresponding to the first HBT cell block 49A, and the other diode series circuit 47 is arranged corresponding to the second HBT cell block 49B. The diode series circuit 47 has a planar shape that is folded back at an intermediate point.

將沿順時針方向在二極體串聯電路47中流通的電流的上游側的端部稱為上游端、將下游側的端部稱為下游端。二極體串聯電路47的下游端的陰極電極61(圖4A、圖4B)所連接的二極體配線D1與射極配線E1連續。二極體串聯電路47的上游端的陽極電極62(圖4A、圖4B)所連接的二極體配線D1經過接觸孔67內並與第2層的焊墊導體層P2連接。 The upstream end of the current flowing in the diode series circuit 47 in the clockwise direction is referred to as an upstream end, and the downstream end is referred to as a downstream end. The diode wiring D1 connected to the cathode electrode 61 (FIGS. 4A and 4B) at the downstream end of the diode series circuit 47 is continuous with the emitter wiring E1. The diode wiring D1 connected to the anode electrode 62 (FIGS. 4A and 4B) at the upstream end of the diode series circuit 47 passes through the contact hole 67 and is connected to the second-layer pad conductor layer P2.

第1實施例中,在俯視情況下焊墊導體層P2和構成保護電路40的保護二極體48至少局部重疊,採用焊墊在元件上(POE)構造。 In the first embodiment, the pad conductor layer P2 and the protective diode 48 constituting the protection circuit 40 overlap at least partially in a plan view, and a pad-on-element (POE) structure is adopted.

圖5是圖2的一點鏈線5-5處的剖面圖。在基板50之上形成保護二極體48。在覆蓋保護二極體48的層間絕緣膜之上形成焊墊導體層P2。形成保護膜68,以使得覆蓋焊墊導體層P2及基板50上的其他區域。焊墊導體層P2的上表面的一部分露出于形成在保護膜68的開口的底面。該露出的部分相當於焊墊65。接合引線70被接合於焊墊65。 FIG. 5 is a cross-sectional view at the one-dot chain line 5-5 of FIG. 2. A protective diode 48 is formed on the substrate 50. A pad conductor layer P2 is formed on the interlayer insulating film covering the protective diode 48. The protective film 68 is formed so as to cover the pad conductor layer P2 and other areas on the substrate 50. A part of the upper surface of the pad conductor layer P2 is exposed on the bottom surface of the opening formed in the protective film 68. This exposed portion corresponds to the pad 65. The bonding wire 70 is bonded to the pad 65.

射極配線E1等第1層的配線層和基板50之間的層間絕緣膜、及焊墊導體層P2等第2層的配線層和第1層的配線層之間的層間絕緣膜,例如能利用氮化矽(SiN)。保護膜68例如能利用聚醯亞胺等絕緣樹脂。另外,也可以在由絕緣樹脂組成的保護膜68的基底配置SiN層。 The interlayer insulating film between the wiring layer of the first layer such as the emitter wiring E1 and the substrate 50, and the interlayer insulating film between the wiring layer of the second layer such as the pad conductor layer P2 and the wiring layer of the first layer can be, for example, Using silicon nitride (SiN). For the protective film 68, an insulating resin such as polyimide can be used, for example. In addition, a SiN layer may be disposed on the base of the protective film 68 made of insulating resin.

〔第1實施例的效果〕 [Effects of the first embodiment]

接下來,和圖22~圖25的圖式示出的基於比較例的半導體裝置進行比較,同時對基於第1實施例的半導體裝置的優異效果加以說明。 Next, the superior effects of the semiconductor device according to the first embodiment will be described in comparison with the semiconductor device based on the comparative example shown in the drawings of FIGS. 22 to 25.

圖22~圖25的圖式分別是基於比較例的半導體裝置的俯視圖。在比較例的說明中,針對與基於第1實施例的半導體裝置共同的構成,省略說明。 22 to 25 are plan views of semiconductor devices based on comparative examples. In the description of the comparative example, the description of the configuration common to the semiconductor device according to the first embodiment is omitted.

在圖22示出的比較例中,在焊墊導體層P2之下配置有由第1層的配線層構成的焊墊導體層P1。第1層的焊墊導體層P1和第2層的焊墊導體層P2經過設置在兩者之間所配置的層間絕緣膜的接觸孔69內而被相互連接。第1層的焊墊導體層P1和第2層的焊墊導體層P2具有幾乎相同的平面形狀,接觸孔69具有比焊墊導體層P1、P2稍小的平面形狀。 In the comparative example shown in FIG. 22, a pad conductor layer P1 composed of a wiring layer of the first layer is arranged below the pad conductor layer P2. The pad conductor layer P1 of the first layer and the pad conductor layer P2 of the second layer are connected to each other through the contact hole 69 provided in the interlayer insulating film disposed therebetween. The pad conductor layer P1 of the first layer and the pad conductor layer P2 of the second layer have almost the same planar shape, and the contact hole 69 has a slightly smaller planar shape than the pad conductor layers P1 and P2.

因為在第2層的焊墊導體層P2之下配置有第1層的焊墊導體層P1,所以不能將包含由第1層的導體層構成的二極體配線D1的保護電路40和焊墊導體層P2重疊地配置。因此,將保護電路40配置在第1HBT單元塊49A與焊墊導體層P2之間、及第2HBT單元塊49B與焊墊導體層P2之間。與第1實施例的情況同樣地,保護電路40由2個二極體串聯電路47構成,二極體串聯電路47的每一個具有在中間地點被折回的平面形狀。集極配線C2與焊墊導體層P2經由第2層的配線層所構成的連接配線Q2而被連接。連接配線Q2和保護電路40局部重疊。 Since the pad conductor layer P1 of the first layer is disposed under the pad conductor layer P2 of the second layer, the protection circuit 40 and the pad including the diode wiring D1 composed of the conductor layer of the first layer cannot be connected The conductor layers P2 are arranged to overlap. Therefore, the protection circuit 40 is arranged between the first HBT cell block 49A and the pad conductor layer P2 and between the second HBT cell block 49B and the pad conductor layer P2. As in the case of the first embodiment, the protection circuit 40 is composed of two diode series circuits 47, and each of the diode series circuits 47 has a planar shape folded back at an intermediate point. The collector wiring C2 and the pad conductor layer P2 are connected via a connection wiring Q2 constituted by a wiring layer of the second layer. The connection wiring Q2 and the protection circuit 40 partially overlap.

保護電路40的下游端的陰極電極61(圖4A、圖4B)所連接的二極體配線D1和射極配線E1的連接構造,與基於第1實施例的半導體裝置的連接構造(圖2)相同。保護電路40的上游端的陽極電極62(圖4A、圖4B)所連接的二極體配線D1與第1層的焊墊導體層P1連續。 The connection structure of the diode wiring D1 and the emitter wiring E1 connected to the cathode electrode 61 (FIGS. 4A and 4B) at the downstream end of the protection circuit 40 is the same as the connection structure of the semiconductor device according to the first embodiment (FIG. 2) . The diode wiring D1 connected to the anode electrode 62 (FIGS. 4A and 4B) at the upstream end of the protection circuit 40 is continuous with the pad conductor layer P1 of the first layer.

圖23示出的比較例中,保護電路40由1個二極體串聯電路構成。其他構成和圖22示出的比較例的構成相同。二極體串聯電路未被折回而是沿著1根直線延伸。二極體串聯電路延伸的方向和被配置成4行4列的矩陣狀的HBT41的行方向平行。 In the comparative example shown in FIG. 23, the protection circuit 40 is composed of one diode series circuit. The other configuration is the same as the configuration of the comparative example shown in FIG. 22. The diode series circuit is not folded back but extends along a straight line. The direction in which the diode series circuit extends is parallel to the row direction of the HBT 41 arranged in a matrix of 4 rows and 4 columns.

保護電路40的下游端的陰極電極61所連接的二極體配線D1與第2HBT單元塊49B的射極配線E1連續。保護電路40並未直接連結於第1HBT單元塊49A的射極配線E1而是經由背面電極60(圖3B、圖4B、圖5)來連接。保護電路40的上游端的陽極電極62所連接的二極體配線D1與第1層的焊墊導體層P1連續。 The diode wiring D1 connected to the cathode electrode 61 at the downstream end of the protection circuit 40 is continuous with the emitter wiring E1 of the second HBT cell block 49B. The protection circuit 40 is not directly connected to the emitter wiring E1 of the first HBT cell block 49A, but is connected via the back electrode 60 (FIGS. 3B, 4B, and 5). The diode wiring D1 connected to the anode electrode 62 at the upstream end of the protection circuit 40 is continuous with the pad conductor layer P1 of the first layer.

在圖22及圖23的任一比較例中,在第1HBT單元塊49A與焊墊導體層P2之間、及第2HBT單元塊49B與焊墊導體層P2之間都配置有保護電路40。 In any of the comparative examples of FIGS. 22 and 23, the protection circuit 40 is disposed between the first HBT cell block 49A and the pad conductor layer P2 and between the second HBT cell block 49B and the pad conductor layer P2.

在圖24示出的比較例中,保護電路40相對於第1HBT單元塊49A而言在行方向(圖24中左方向)相鄰地配置。 In the comparative example shown in FIG. 24, the protection circuit 40 is arranged adjacent to the first HBT cell block 49A in the row direction (left direction in FIG. 24).

保護電路40的上游端的陽極電極62所連接的二極體配線D1與第1層的焊墊導體層P1連續。保護電路40自與焊墊導體層P1的連接部位起在列方向(圖24中上方向)上延伸,一直達到超過第1HBT單元塊49A的上端的位置。保護電路40的下游端的陰極電極61所連接的二極體配線D1經過接觸孔74內並與第2層的連接配線J2連接,且經由連接配線J2而與第1HBT單元塊49A的射極配線E1連接。第2HBT單元塊49B的射極配線E1經由背面電極60(圖3B、圖4B、圖5)而與保護電路40連接。 The diode wiring D1 connected to the anode electrode 62 at the upstream end of the protection circuit 40 is continuous with the pad conductor layer P1 of the first layer. The protection circuit 40 extends in the column direction (upward direction in FIG. 24) from the connection position with the pad conductor layer P1 and reaches a position exceeding the upper end of the first HBT cell block 49A. The diode wiring D1 connected to the cathode electrode 61 at the downstream end of the protection circuit 40 passes through the contact hole 74 and is connected to the second-layer connection wiring J2 and is connected to the emitter wiring E1 of the first HBT cell block 49A via the connection wiring J2 connection. The emitter wiring E1 of the second HBT cell block 49B is connected to the protection circuit 40 via the back electrode 60 (FIGS. 3B, 4B, and 5).

在保護電路40與第1HBT單元塊49A的射極配線E1之間配置有第1層的基極控制配線63及第2層的高頻輸入配線64。因此,不能利用第1層或第2層的配線層並以較短的配線長來連接保護電路40的下游端的陰極電極61與射極配線E1。在圖24示出的比較例中,連接配線J2從接觸孔74的位置開始沿著保護電路40的二極體列,一直延伸到第1HBT單元塊49A與焊墊導體層P2之間的區域。然後,連接配線J2在第1HBT單元塊49A與焊墊導體層P2之間被連接於射極配線E1。因為射極配線E1與保護電路40經由較長的連接配線J2而被連接,所以寄生電感的影響增大。 Between the protection circuit 40 and the emitter wiring E1 of the first HBT cell block 49A, the base control wiring 63 of the first layer and the high-frequency input wiring 64 of the second layer are arranged. Therefore, it is impossible to connect the cathode electrode 61 on the downstream end of the protection circuit 40 and the emitter wiring E1 with a short wiring length using the wiring layer of the first layer or the second layer. In the comparative example shown in FIG. 24, the connection wiring J2 extends from the position of the contact hole 74 along the diode row of the protection circuit 40 to the area between the first HBT cell block 49A and the pad conductor layer P2. Then, the connection wiring J2 is connected to the emitter wiring E1 between the first HBT cell block 49A and the pad conductor layer P2. Since the emitter wiring E1 and the protection circuit 40 are connected via a long connection wiring J2, the influence of parasitic inductance increases.

在圖25示出的比較例中,保護電路40的下游端的陰極電極61穿過 通孔71內並與背面電極60(圖3B、圖4B、圖5)連接,從而被接地。 In the comparative example shown in FIG. 25, the cathode electrode 61 at the downstream end of the protection circuit 40 passes through the through hole 71 and is connected to the back electrode 60 (FIG. 3B, FIG. 4B, and FIG. 5) to be grounded.

在圖22~圖25的任一比較例中,焊墊導體層P2與保護電路40都未重疊,而是分別專有基板50(圖3B、圖4B、圖5)的表面。相對於此,在第1實施例(圖2)中,焊墊導體層P2與保護電路40至少局部重疊配置。因此,相比於這些比較例,能夠縮小晶片面積。 In any of the comparative examples shown in FIGS. 22 to 25, the pad conductor layer P2 and the protection circuit 40 are not overlapped, but the surfaces of the respective substrates 50 (FIGS. 3B, 4B, and 5) are proprietary. On the other hand, in the first embodiment (FIG. 2), the pad conductor layer P2 and the protection circuit 40 are arranged at least partially overlapping. Therefore, compared to these comparative examples, the wafer area can be reduced.

在圖22及圖23的比較例中,在第1HBT單元塊49A與焊墊導體層P2之間、及第2HBT單元塊49B與焊墊導體層P2之間配置有保護電路40。因此,連接焊墊導體層P2與集極配線C2的連接配線Q2增長。該連接配線Q2引起的寄生電阻串聯地被插入HBT41(圖1B)的集極電路。在第1實施例(圖2)中,由於焊墊導體層P2與第1HBT單元塊49A及第2HBT單元塊49B相鄰配置,故能夠縮短連接焊墊導體層P2與集極配線C2的配線。因此,能夠抑制被插入HBT41(圖1B)的集極電路的寄生電阻的增大所引起的放大電路的性能下降。 In the comparative examples of FIGS. 22 and 23, the protection circuit 40 is disposed between the first HBT cell block 49A and the pad conductor layer P2 and between the second HBT cell block 49B and the pad conductor layer P2. Therefore, the connection wiring Q2 connecting the pad conductor layer P2 and the collector wiring C2 increases. The parasitic resistance caused by the connection wiring Q2 is inserted in series into the collector circuit of the HBT41 (FIG. 1B). In the first embodiment (FIG. 2), since the pad conductor layer P2 is arranged adjacent to the first HBT cell block 49A and the second HBT cell block 49B, the wiring connecting the pad conductor layer P2 and the collector wiring C2 can be shortened. Therefore, it is possible to suppress the performance degradation of the amplifier circuit caused by the increase in the parasitic resistance of the collector circuit inserted into the HBT41 (FIG. 1B).

圖24的比較例中,連接配線J2引起的寄生電感被串聯地插入保護電路40。若寄生電感增大,則尤其高頻頻段中的響應性變差,因此保護功能會下降。在第1實施例中,保護電路40的連接中並未使用具備大寄生電感的長配線。因此,能夠抑制保護電路40的保護功能的下降。 In the comparative example of FIG. 24, the parasitic inductance caused by the connection wiring J2 is inserted into the protection circuit 40 in series. If the parasitic inductance increases, especially in the high-frequency band, the responsiveness becomes poor, so the protection function will decrease. In the first embodiment, long wiring with a large parasitic inductance is not used for the connection of the protection circuit 40. Therefore, it is possible to suppress a decrease in the protection function of the protection circuit 40.

圖25的比較例中,必須新確保用於配置通孔71的區域,該通孔用於連接保護電路40與背面電極60(圖3B、圖4B、圖5)。因此,相對於圖24的比較例,晶片尺寸進一步增大。在第1實施例中,由於無需設置這種通孔71,故能夠回避晶片尺寸的大型化。 In the comparative example of FIG. 25, it is necessary to newly secure a region for arranging the through hole 71 for connecting the protection circuit 40 and the back electrode 60 (FIG. 3B, FIG. 4B, and FIG. 5). Therefore, the wafer size is further increased relative to the comparative example of FIG. 24. In the first embodiment, since there is no need to provide such a through hole 71, it is possible to avoid the increase in the size of the wafer.

再有,在第1實施例中,一個二極體串聯電路47與第1HBT單元塊49A的射極配線E1連接,另一個二極體串聯電路47與第2HBT單元塊49B的射極配線E1連接。因此,在第1HBT單元塊49A與第2HBT單元塊49B中,平衡優良地配置保護電路40。 Furthermore, in the first embodiment, one diode series circuit 47 is connected to the emitter wiring E1 of the first HBT cell block 49A, and the other diode series circuit 47 is connected to the emitter wiring E1 of the second HBT cell block 49B . Therefore, in the first HBT cell block 49A and the second HBT cell block 49B, the protection circuit 40 is well-balanced.

還有,藉由將2個二極體串聯電路47的每一個在中間地點折回,從而能夠消除二極體串聯電路47自焊墊導體層P2的突出、或減小突出部分的面積。因此,即便配置2個二極體串聯電路47,也不會妨礙晶片尺寸的小型化。 Also, by folding back each of the two diode series circuits 47 at the intermediate point, it is possible to eliminate the protrusion of the diode series circuit 47 from the pad conductor layer P2 or reduce the area of the protrusion. Therefore, even if two diode series circuits 47 are arranged, it does not hinder the miniaturization of the wafer size.

接著,參照圖26A及圖26B,對作為保護二極體48(圖2)而利用在圖4A示出的平面形狀的二極體的效果進行說明。 Next, with reference to FIGS. 26A and 26B, the effect of using the planar diode shown in FIG. 4A as the protective diode 48 (FIG. 2) will be described.

圖26A是保護電路40的俯視的示意圖。10個保護二極體48被串聯地連接。保護二極體48的每一個包含n型的子集極層51(圖4A、圖4B)、及俯視情況下被配置在子集極層51的內部的p型的基極層53。圖26A中,表示被層疊的半導體層的最上表面的導電型。若關注半導體層的最上表面,則子集極層51的n型區域從三方向圍繞基極層53的p型區域。因此,對於二極體列的寬度方向而言,在p型區域的兩側配置n型區域。 FIG. 26A is a schematic diagram of the protection circuit 40 viewed from above. Ten protection diodes 48 are connected in series. Each of the protective diodes 48 includes an n-type sub-collector layer 51 (FIGS. 4A and 4B), and a p-type base layer 53 disposed inside the sub-collector layer 51 in a plan view. FIG. 26A shows the conductivity type of the uppermost surface of the stacked semiconductor layers. When focusing on the uppermost surface of the semiconductor layer, the n-type region of the sub-collector layer 51 surrounds the p-type region of the base layer 53 from three directions. Therefore, in the width direction of the diode column, n-type regions are arranged on both sides of the p-type region.

位於在二極體列中流通的順時針方向電流的上游端的保護二極體48的基極層53,與集極端子44連接,位於下游端的保護二極體48的子集極層51與接地GND(圖1B)連接。 The base layer 53 of the protection diode 48 at the upstream end of the clockwise current flowing in the diode column is connected to the collector terminal 44, and the sub-collector layer 51 of the protection diode 48 at the downstream end is connected to the ground GND (Figure 1B) connection.

圖26B是基於比較例的保護電路的俯視的示意圖。比較例中,p型的基極層53配置為偏向二極體列的寬度方向的一方。二極體列在中途被折回,2個保護二極體48在寬度方向上接近。圖26B示出的比較例中,位於上游端的保護二極體48的p型區域和位於下游端的保護二極體48的n型區域面對面並接近。若採取這種配置,則在從外部對集極端子44施加了高電壓時,公知在上游端的保護二極體48與下游端的保護二極體48之間變得易於產生靜電放電(參照國際公開第2016/047217號)。若產生靜電放電,則保護二極體48會被破壞。 26B is a schematic diagram of a plan view of a protection circuit based on a comparative example. In the comparative example, the p-type base layer 53 is arranged to be biased toward one side in the width direction of the diode column. The diode array is folded back halfway, and the two protective diodes 48 approach in the width direction. In the comparative example shown in FIG. 26B, the p-type region of the protection diode 48 at the upstream end and the n-type region of the protection diode 48 at the downstream end face each other and are close to each other. With this configuration, when a high voltage is applied to the collector terminal 44 from the outside, it is known that electrostatic discharge is likely to occur between the protection diode 48 at the upstream end and the protection diode 48 at the downstream end (refer to International Publication No. 2016/047217). If an electrostatic discharge occurs, the protective diode 48 will be destroyed.

第1實施例中,在上游端的保護二極體48的p型區域和下游端的保護二極體48的n型區域之間,存在上游端的保護二極體48的n型區域。這樣,位於上游端的保護二極體48的p型區域和位於下游端的保護二極體48的n型區域不 會面對面。因此,在施加高電壓時變得難以產生靜電放電,能夠抑制保護二極體48的破壞。 In the first embodiment, between the p-type region of the protection diode 48 at the upstream end and the n-type region of the protection diode 48 at the downstream end, there is an n-type region of the protection diode 48 at the upstream end. Thus, the p-type region of the protection diode 48 at the upstream end and the n-type region of the protection diode 48 at the downstream end do not face each other. Therefore, it becomes difficult to generate electrostatic discharge when a high voltage is applied, and it is possible to suppress the destruction of the protective diode 48.

第1實施例中,雖然構成為保護二極體48的U字形的陰極電極61從三方向圍繞p型區域,但反之也可以構成為將陽極電極62設為U字形、並使陽極電極62從三方向圍繞n型區域。 In the first embodiment, although the U-shaped cathode electrode 61 configured to protect the diode 48 surrounds the p-type region from three directions, the reverse may be configured such that the anode electrode 62 is U-shaped and the anode electrode 62 is separated from Three directions surround the n-type region.

作為其他效果,第1實施例基於的半導體裝置由化合物半導體構成,因此與矽系的半導體裝置相比能夠提高動作頻率。 As another effect, since the semiconductor device based on the first embodiment is composed of a compound semiconductor, the operating frequency can be increased compared to a silicon-based semiconductor device.

〔第2實施例〕 [Second Embodiment]

接下來,參照圖6及圖7對基於第2實施例的半導體裝置進行說明。以下,針對與基於第1實施例的半導體裝置的構成共同的構成,省略說明。 Next, the semiconductor device according to the second embodiment will be described with reference to FIGS. 6 and 7. Hereinafter, a description of the configuration common to the configuration of the semiconductor device according to the first embodiment will be omitted.

圖6是基於第2實施例的半導體裝置的輸出級放大電路32(圖1A)及保護電路40的等效電路圖。第1實施例中,保護電路40由2個二極體串聯電路47構成,但在第2實施例中保護電路40由1個二極體串聯電路構成。 6 is an equivalent circuit diagram of the output stage amplifier circuit 32 (FIG. 1A) and the protection circuit 40 of the semiconductor device according to the second embodiment. In the first embodiment, the protection circuit 40 is composed of two diode series circuits 47, but in the second embodiment, the protection circuit 40 is composed of one diode series circuit.

圖7是基於第2實施例的半導體裝置的俯視圖。第1實施例中,如圖2所示,在第1HBT單元塊49A的射極配線E1、及第2HBT單元塊49B的射極配線E1分別連接有二極體串聯電路47。相對於此,在第2實施例中,僅在第2HBT單元塊49B的射極配線E1連接保護電路40,在第1HBT單元塊49A的射極配線E1並未直接連接保護電路40。第1HBT單元塊49A的射極配線E1經由背面電極60(圖3B、圖4B、圖5)、及第2HBT單元塊49B的射極配線E1而與保護電路40連接。 7 is a plan view of the semiconductor device according to the second embodiment. In the first embodiment, as shown in FIG. 2, a diode series circuit 47 is connected to the emitter wiring E1 of the first HBT cell block 49A and the emitter wiring E1 of the second HBT cell block 49B, respectively. In contrast, in the second embodiment, the protection circuit 40 is connected only to the emitter wiring E1 of the second HBT cell block 49B, and the protection circuit 40 is not directly connected to the emitter wiring E1 of the first HBT cell block 49A. The emitter wiring E1 of the first HBT cell block 49A is connected to the protection circuit 40 via the back electrode 60 (FIGS. 3B, 4B, and 5) and the emitter wiring E1 of the second HBT cell block 49B.

第2實施例中,構成保護電路40的複數個保護二極體48沿著1根直線排列。排列方向和從第2HBT單元塊49B朝著第1HBT單元塊49A的方向平行。 In the second embodiment, a plurality of protection diodes 48 constituting the protection circuit 40 are arranged along one straight line. The arrangement direction is parallel to the direction from the second HBT unit block 49B toward the first HBT unit block 49A.

在第2實施例中,保護電路40與焊墊導體層P2也是重疊的,也採用POE構造。因此,在第2實施例中也能獲得與第1實施例同樣的效果。 In the second embodiment, the protection circuit 40 and the pad conductor layer P2 also overlap, and the POE structure is also adopted. Therefore, the same effect as the first embodiment can be obtained in the second embodiment.

第2實施例中,由於僅在第2HBT單元塊49B的射極配線E1直接連接保護電路40,故在第1HBT單元塊49A的HBT41與第2HBT單元塊49B的HBT41中,保護效果不能達到均衡。為了均衡地保護第1HBT單元塊49A的HBT41與第2HBT單元塊49B的HBT41,與第2實施例的構成相比,較佳為採用第1實施例的構成。 In the second embodiment, since only the emitter wiring E1 of the second HBT cell block 49B is directly connected to the protection circuit 40, the protection effect cannot be balanced between the HBT41 of the first HBT cell block 49A and the HBT41 of the second HBT cell block 49B. In order to protect the HBT41 of the first HBT cell block 49A and the HBT41 of the second HBT cell block 49B in a balanced manner, the configuration of the first embodiment is preferably adopted as compared with the configuration of the second embodiment.

其中,在第1實施例中,構成保護電路40的保護二極體48的個數為第2實施例的構成保護電路40的保護二極體48的個數的2倍。因此,有時很難將保護電路40的整個區域收斂在焊墊導體層P2(圖2)的內側。在第2實施例中,容易將保護電路40的整個區域收斂於焊墊導體層P2的內側。這樣,在晶片的縮小化的觀點上,第2實施例較第1實施例有利。 However, in the first embodiment, the number of protection diodes 48 constituting the protection circuit 40 is twice the number of protection diodes 48 constituting the protection circuit 40 in the second embodiment. Therefore, it is sometimes difficult to converge the entire area of the protection circuit 40 inside the pad conductor layer P2 (FIG. 2). In the second embodiment, it is easy to converge the entire area of the protection circuit 40 inside the pad conductor layer P2. In this way, the second embodiment is more advantageous than the first embodiment from the viewpoint of shrinking the wafer.

〔第3實施例〕 [Third Embodiment]

接著,參照圖8對基於第3實施例的半導體裝置進行說明。以下,針對與基於第2實施例的半導體裝置的構成共同的構成,省略說明。 Next, the semiconductor device according to the third embodiment will be described with reference to FIG. 8. Hereinafter, a description of the configuration common to the configuration of the semiconductor device according to the second embodiment will be omitted.

圖8是基於第3實施例的半導體裝置的俯視圖。第2實施例中,構成保護電路40(圖7)的複數個保護二極體48沿著1根直線排列。在第3實施例中,由構成保護電路40的複數個保護二極體48組成的二極體列在中途被折回。折回地點沒有必要是二極體列的中間地點。 8 is a plan view of a semiconductor device according to a third embodiment. In the second embodiment, a plurality of protection diodes 48 constituting the protection circuit 40 (FIG. 7) are arranged along one straight line. In the third embodiment, the diode array composed of the plurality of protection diodes 48 constituting the protection circuit 40 is folded back halfway. The turn-back point need not be the middle point of the diode array.

在第3實施例中,保護電路40也與焊墊導體層P2重疊。因此,能獲得與第2實施例同樣的效果。再有,由於能夠在任意的部位將二極體列折回,故用於將保護電路40的上游端的陽極電極62連接至焊墊導體層P2的接觸孔67的位置的自由度提高。 In the third embodiment, the protection circuit 40 also overlaps the pad conductor layer P2. Therefore, the same effect as the second embodiment can be obtained. Furthermore, since the diode row can be folded back at an arbitrary position, the degree of freedom of the position for connecting the anode electrode 62 at the upstream end of the protection circuit 40 to the contact hole 67 of the pad conductor layer P2 is improved.

因為焊墊65的開口部成為水分的侵入路徑,所以較佳為接觸孔67避開焊墊65。在第3實施例中,接觸孔67的位置的自由度提高,由此使接觸孔67 避開焊墊65變得容易起來。 Since the opening of the pad 65 serves as an intrusion path for moisture, it is preferable that the contact hole 67 avoid the pad 65. In the third embodiment, the degree of freedom of the position of the contact hole 67 is improved, thereby making it easier for the contact hole 67 to avoid the pad 65.

在為了使焊墊導體層P21的基底表面平坦化,作為層間絕緣而利用了膜絕緣樹脂膜的情況下,在配置有接觸孔67的部位,焊墊導體層P2的上表面的平坦性變差。在焊墊65內為了確保焊墊導體層P2的表面的平坦性,較佳為將接觸孔67配置成未與焊墊65重疊。第3實施例中,由於接觸孔67的位置的自由度提高,故將接觸孔67配置成未與焊墊65重疊變得容易起來。 In the case where a film insulating resin film is used as the interlayer insulation in order to flatten the base surface of the pad conductor layer P21, the flatness of the upper surface of the pad conductor layer P2 deteriorates at the location where the contact hole 67 is arranged . In order to ensure the flatness of the surface of the pad conductor layer P2 in the pad 65, it is preferable to arrange the contact hole 67 so as not to overlap the pad 65. In the third embodiment, since the degree of freedom of the position of the contact hole 67 is improved, it is easy to arrange the contact hole 67 so as not to overlap the pad 65.

〔第1、第2、及第3實施例的變形例〕 [Modifications of the first, second, and third embodiments]

接下來,對第1、第2、及第3實施例的變形例進行說明。 Next, modifications of the first, second, and third embodiments will be described.

圖9是構成基於變形例的半導體裝置的保護電路40的保護二極體48的俯視圖。以下,對圖4A示出的保護二極體48的俯視圖進行比較後加以說明。圖4A示出的保護二極體48中,陰極電極61從三方向圍繞基極層53。相對於此,在圖9示出的變形例中,俯視情況下,陰極電極61被配置成與基極層53在二極體列延伸的方向上相鄰。 9 is a plan view of a protection diode 48 constituting a protection circuit 40 of a semiconductor device according to a modification. Hereinafter, the top view of the protective diode 48 shown in FIG. 4A will be described after comparison. In the protective diode 48 shown in FIG. 4A, the cathode electrode 61 surrounds the base layer 53 from three directions. On the other hand, in the modification shown in FIG. 9, the cathode electrode 61 is arranged adjacent to the base layer 53 in the direction in which the diode row extends in a plan view.

在基極層53的上表面形成陽極電極62。陽極電極62所連接的二極體配線D1和陰極電極61所連接的二極體配線D1在相互相反的方向上延伸。 An anode electrode 62 is formed on the upper surface of the base layer 53. The diode wiring D1 connected to the anode electrode 62 and the diode wiring D1 connected to the cathode electrode 61 extend in mutually opposite directions.

圖9示出的變形例中,與圖4A示出的實施例相比較,能夠擴寬二極體配線D1的寬度。因此,能夠抑制二極體配線D1引起的寄生電感的增加。 In the modification shown in FIG. 9, compared with the embodiment shown in FIG. 4A, the width of the diode wiring D1 can be widened. Therefore, an increase in the parasitic inductance caused by the diode wiring D1 can be suppressed.

另外,圖9示出的變形例中,有可能成為圖26B的比較例所示出的位於順時針方向電流的上游端的保護二極體48的p型區域和位於下游端的保護二極體48的n型區域面對面的配置。在採用將二極體列折回的配置的情況下,為了抑制施加高電壓時保護二極體48被破壞的狀況,在保護二極體48的配置方面需要注意。 In addition, in the modification shown in FIG. 9, there may be a p-type region of the protection diode 48 located at the upstream end of the clockwise current and a protection diode 48 located at the downstream end shown in the comparative example of FIG. 26B. The n-type area is arranged face to face. In the case of a configuration in which the diode array is folded back, in order to suppress the situation in which the protection diode 48 is destroyed when a high voltage is applied, attention needs to be paid to the arrangement of the protection diode 48.

圖10是基於變形例的半導體裝置的焊墊部分的剖面圖。以下,與 圖5示出的焊墊部分的剖面圖相比較後加以說明。圖5示出的第1實施例中,射極配線E1等第1層的配線層和焊墊導體層P2等第2層的配線層之間的層間絕緣膜利用的是SiN等無機絕緣膜。在圖10示出的變形例中,使第1層的配線層與第2層的配線層之間的層間絕緣膜採取無機絕緣膜72與絕緣樹脂膜73的2層構造。絕緣樹脂膜73能夠利用例如聚醯亞胺等。 10 is a cross-sectional view of a pad portion of a semiconductor device according to a modification. Hereinafter, it will be described in comparison with the cross-sectional view of the pad portion shown in FIG. 5. In the first embodiment shown in FIG. 5, the interlayer insulating film between the first-layer wiring layer such as the emitter wiring E1 and the second-layer wiring layer such as the pad conductor layer P2 uses an inorganic insulating film such as SiN. In the modification shown in FIG. 10, the interlayer insulating film between the wiring layer of the first layer and the wiring layer of the second layer has a two-layer structure of an inorganic insulating film 72 and an insulating resin film 73. For the insulating resin film 73, for example, polyimide or the like can be used.

圖10示出的變形例中,能夠使得絕緣樹脂膜73的上表面、即焊墊導體層P2的基底表面平坦。進而,將接合引線70接合於焊墊65時的衝擊變得難以傳遞至正下方的半導體元件,因此能夠抑制接合時的衝擊帶來的元件的破壞。 In the modification shown in FIG. 10, the upper surface of the insulating resin film 73, that is, the base surface of the pad conductor layer P2 can be made flat. Furthermore, the impact when the bonding wire 70 is bonded to the pad 65 becomes difficult to be transmitted to the semiconductor element directly below, so that the destruction of the element due to the impact at the time of bonding can be suppressed.

〔第4實施例〕 [Fourth embodiment]

接著,參照圖11~圖13的圖式,對基於第4實施例的半導體裝置進行說明。以下,針對與基於第1實施例的半導體裝置的構成共同的構成,省略說明。雖然基於第1實施例的半導體裝置是面向上安裝用,但基於第4實施例的半導體裝置是面向下安裝用。 Next, the semiconductor device according to the fourth embodiment will be described with reference to the drawings of FIGS. 11 to 13. Hereinafter, a description of the configuration common to the configuration of the semiconductor device according to the first embodiment will be omitted. Although the semiconductor device according to the first embodiment is for upward mounting, the semiconductor device according to the fourth embodiment is for downward mounting.

圖11是基於第4實施例的半導體裝置的俯視圖。按複數個HBT41的每個射極電極59(圖3B)配置第1層的射極配線E1。按被配置成4行4列的矩陣狀的HBT41的每列,配置第2層的射極配線E2。射極配線E2經由正下方的射極配線E1而與HBT41的射極電極59連接。 11 is a plan view of a semiconductor device according to a fourth embodiment. The emitter wiring E1 of the first layer is arranged for each emitter electrode 59 (FIG. 3B) of the plurality of HBTs 41. The emitter wiring E2 of the second layer is arranged for each column of the HBT 41 arranged in a matrix of 4 rows and 4 columns. The emitter wiring E2 is connected to the emitter electrode 59 of the HBT 41 via the emitter wiring E1 directly below.

相對於第1HBT單元塊49A的8個HBT41而配置1個第1層的集極配線C1。在第1列所對應的射極配線E2和第2列所對應的射極配線E2之間配置第2層的集極配線C2。集極配線C2經過接觸孔75內並與正下方的集極配線C1連接。集極配線C2與焊墊導體層P2連續。第2列所對應的射極配線E2被引出至未與第1層的集極配線C1重疊的區域,穿過接觸孔74內並與第1層的二極體配線D1連接。 One collector wiring C1 of the first layer is arranged with respect to the eight HBTs 41 of the first HBT cell block 49A. A second layer of collector wiring C2 is arranged between the emitter wiring E2 corresponding to the first column and the emitter wiring E2 corresponding to the second column. The collector wiring C2 passes through the contact hole 75 and is connected to the collector wiring C1 directly below. The collector wiring C2 is continuous with the pad conductor layer P2. The emitter wiring E2 corresponding to the second column is drawn out to an area that does not overlap the collector wiring C1 of the first layer, passes through the contact hole 74, and is connected to the diode wiring D1 of the first layer.

第2HBT單元塊49B所對應的射極配線E1、E2、集極配線C1、C2 的構成也和第1HBT單元塊49A所對應的射極配線E1、E2、集極配線C1、C2的構成相同。 The configurations of the emitter wirings E1 and E2 and the collector wirings C1 and C2 corresponding to the second HBT cell block 49B are also the same as the configurations of the emitter wirings E1 and E2 and the collector wirings C1 and C2 corresponding to the first HBT cell block 49A.

在射極配線E2之上配置接地用的凸塊77,在焊墊導體層P2之上配置高頻輸出用的凸塊78。在圖11中,表示焊墊導體層P2之上配置了2個凸塊78的例子,但凸塊78的個數未限於2個。凸塊78的個數既可以是1個、也可以是3個以上。 A bump 77 for grounding is disposed on the emitter wiring E2, and a bump 78 for high-frequency output is disposed on the pad conductor layer P2. FIG. 11 shows an example in which two bumps 78 are arranged on the pad conductor layer P2, but the number of bumps 78 is not limited to two. The number of bumps 78 may be one or three or more.

圖12是1個HBT48所對應的部分的概略剖面圖。第1實施例中,在第1層的集極配線C1(圖3B)的正上方配置第2層的集極配線C2,但在第4實施例中,在第1層的集極配線C1的正上方並未配置第2層的集極配線C2。取而代之,在第1層的射極配線E1的正上方配置第2層的射極配線E2。 FIG. 12 is a schematic cross-sectional view of a portion corresponding to one HBT48. In the first embodiment, the collector wiring C2 of the second layer is arranged directly above the collector wiring C1 (FIG. 3B) of the first layer. However, in the fourth embodiment, the collector wiring C1 of the first layer The collector wiring C2 of the second layer is not arranged directly above. Instead, the emitter wiring E2 of the second layer is arranged directly above the emitter wiring E1 of the first layer.

在射極配線E2之上配置接地用的凸塊77。凸塊77例如具有將Au層77A與焊料層77B層疊而成的層疊構造。 A bump 77 for grounding is arranged on the emitter wiring E2. The bump 77 has, for example, a laminated structure in which an Au layer 77A and a solder layer 77B are laminated.

圖13是形成有高頻輸出用的凸塊78的部分的剖面圖。構成保護電路40(圖1B)的保護二極體48被由無機絕緣膜72與絕緣樹脂膜73組成的層間絕緣膜覆蓋。在保護二極體48的上方配置由焊墊導體層P2的一部分組成的焊墊65。在焊墊65之上配置高頻輸出用的凸塊78。凸塊78具有Au層78A與焊料層78B被層疊而成的2層構造。 13 is a cross-sectional view of a portion where bumps 78 for high-frequency output are formed. The protective diode 48 constituting the protective circuit 40 (FIG. 1B) is covered with an interlayer insulating film composed of an inorganic insulating film 72 and an insulating resin film 73. Above the protective diode 48, a pad 65 composed of a part of the pad conductor layer P2 is arranged. A bump 78 for high-frequency output is arranged on the pad 65. The bump 78 has a two-layer structure in which an Au layer 78A and a solder layer 78B are laminated.

〔第4實施例的效果〕 [Effects of the fourth embodiment]

接著,對第4實施例的優異效果進行說明。在第4實施例中,也採用如圖9示出的那樣保護電路40與焊墊導體層P2重疊的POE構造。因此,能獲得與第1實施例的情況同樣的效果。例如,能夠縮小晶片尺寸。再有,因為能夠抑制被串聯地插入保護電路40的寄生電感的增大,所以能夠抑制高頻頻段中的保護功能的下降。進而,因為能夠抑制被串聯地插入HBT41的集極電路的寄生電阻的增大, 所以能夠抑制輸出級放大電路的性能的下降。 Next, the excellent effects of the fourth embodiment will be described. In the fourth embodiment, the POE structure in which the protection circuit 40 overlaps the pad conductor layer P2 as shown in FIG. 9 is also adopted. Therefore, the same effect as in the case of the first embodiment can be obtained. For example, the wafer size can be reduced. In addition, since the increase in the parasitic inductance inserted into the protection circuit 40 in series can be suppressed, it is possible to suppress the decrease in the protection function in the high-frequency band. Furthermore, since the increase in the parasitic resistance of the collector circuit inserted in series in the HBT 41 can be suppressed, it is possible to suppress the decrease in the performance of the output stage amplifier circuit.

〔第4實施例的變形例〕接下來,參照圖14~圖16的圖式,對基於第4實施例的各種變形例的半導體裝置進行說明。圖14是基於第4實施例的第1變形例的半導體裝置的俯視圖。在第4實施例中,如圖9所示,針對第1HBT單元塊49A及第2HBT單元塊49B而分別配置保護電路40。相對於此,在圖14示出的第4實施例的變形例中,僅針對第2HBT單元塊49B而配置保護電路40,針對第1HBT單元塊49A並未配置保護電路40。 [Modification of Fourth Embodiment] Next, referring to the drawings of FIGS. 14 to 16, a semiconductor device according to various modifications of the fourth embodiment will be described. 14 is a plan view of a semiconductor device according to a first modification of the fourth embodiment. In the fourth embodiment, as shown in FIG. 9, protection circuits 40 are arranged for the first HBT cell block 49A and the second HBT cell block 49B, respectively. On the other hand, in the modification of the fourth embodiment shown in FIG. 14, the protection circuit 40 is arranged only for the second HBT cell block 49B, and the protection circuit 40 is not arranged for the first HBT cell block 49A.

第1HBT單元塊49A的射極配線E2,在面向下安裝到模組基板的狀態下,經過模組基板內的接地導體、及第2HBT單元塊49B的射極配線E2而連接於保護電路40。再有,在第4實施例的變形例中,保護電路40的二極體列沿著1根直線排列。其中,也可以將保護電路40的二極體列採取如第3實施例(圖8)的保護電路40那樣進行了折回的形狀。 The emitter wiring E2 of the first HBT cell block 49A is connected to the protection circuit 40 via the ground conductor in the module substrate and the emitter wiring E2 of the second HBT cell block 49B in a state of being mounted downward on the module substrate. In addition, in a modification of the fourth embodiment, the diode rows of the protection circuit 40 are arranged along one straight line. However, the diode array of the protection circuit 40 may be folded like the protection circuit 40 of the third embodiment (FIG. 8).

圖15是基於第4實施例的第2變形例的半導體裝置的俯視圖。在第4實施例中,如圖11所示,接地用的凸塊77及高頻輸出用的凸塊78的平面形狀為長方形。相對於此,在第2變形例中,如圖15所示,凸塊77及凸塊78的平面形狀是使長方形的4個角具有圓角的圓角長方形。例如,凸塊77及凸塊78的平面形狀具有由2根相等長度的平行線和連接2根平行線的2個半圓周組成的跑道狀的外周線。 15 is a plan view of a semiconductor device according to a second modification of the fourth embodiment. In the fourth embodiment, as shown in FIG. 11, the planar shapes of the bump 77 for grounding and the bump 78 for high-frequency output are rectangular. On the other hand, in the second modification, as shown in FIG. 15, the planar shapes of the bump 77 and the bump 78 are rounded rectangles having four corners of the rectangle with rounded corners. For example, the planar shapes of the bump 77 and the bump 78 have a racetrack-shaped outer peripheral line composed of two parallel lines of equal length and two half circles connecting the two parallel lines.

再有,在第4實施例中,如圖12及圖13所示,凸塊77由Au層77A與焊料層77B構成,凸塊78由Au層78A與焊料層78B構成。相對於此,在第2變形例中,能取代Au層77A及Au層78A而利用Cu層(Cu立柱)。將包含Cu立柱和配置在其上表面的焊料層的凸塊稱之為Cu立柱凸塊。在圖12及圖13中,用長方形來表示焊料層77B及78B的剖面形狀,但在焊料的回流焊處理後,焊料層77B及78B的側面與上表面圓滑地連續,成為朝著上方鼓出的曲面。 In the fourth embodiment, as shown in FIGS. 12 and 13, the bump 77 is composed of the Au layer 77A and the solder layer 77B, and the bump 78 is composed of the Au layer 78A and the solder layer 78B. In contrast, in the second modification, a Cu layer (Cu pillar) can be used instead of the Au layer 77A and the Au layer 78A. The bumps including the Cu pillar and the solder layer disposed on the upper surface are called Cu pillar bumps. In FIGS. 12 and 13, the cross-sectional shapes of the solder layers 77B and 78B are represented by rectangles. However, after the solder reflow process, the side surfaces and upper surfaces of the solder layers 77B and 78B are smoothly continuous and bulge upward. Surface.

圖16是基於第4實施例的第3變形例的半導體裝置的俯視圖。第3變形例中,基於第1變形例的半導體裝置(圖14)的接地用的凸塊77及高頻輸出用的凸塊78的平面形狀為圓角長方形。再有,凸塊77及78能與第2變形例(圖15)同樣地利用Cu立柱凸塊。 16 is a plan view of a semiconductor device according to a third modification of the fourth embodiment. In the third modification, the planar shapes of the bump 77 for grounding and the bump 78 for high-frequency output according to the semiconductor device (FIG. 14) of the first modification are rounded rectangles. In addition, the bumps 77 and 78 can use Cu stud bumps in the same manner as the second modification (FIG. 15).

第4實施例的第1變形例、第2變形例、及第3變形例中,能獲得與第4實施例同樣的優異效果。再有,若如基於第2變形例及第3變形例的半導體裝置那樣將凸塊77及78的平面形狀設為圓角長方形,則能夠與凸塊的掩模形狀幾乎相同地穩定加工形成凸塊。 In the first modification, the second modification, and the third modification of the fourth embodiment, the same excellent effects as the fourth embodiment can be obtained. In addition, if the planar shapes of the bumps 77 and 78 are rounded rectangles as in the semiconductor devices based on the second modification and the third modification, the bumps can be processed stably to form projections almost the same as the mask shape of the bumps Piece.

〔第5實施例〕 [Fifth Embodiment]

接著,參照圖17對基於第5實施例的半導體裝置進行說明。以下,針對與圖11、圖12、及圖13示出的基於第4實施例的半導體裝置的構成共同的構成,省略說明。 Next, the semiconductor device according to the fifth embodiment will be described with reference to FIG. 17. Hereinafter, the configuration common to the configuration of the semiconductor device according to the fourth embodiment shown in FIGS. 11, 12, and 13 will not be described.

圖17是基於第5實施例的半導體裝置的剖面圖。在第4實施例中,按HBT41的每列,在HBT41的正上方配置第2層的射極配線E2(圖11)。相對於此,在第5實施例中,如圖17所示,按HBT41的每列,在HBT41的正上方配置第2層的集極配線C2。集極配線C2經由第1層的集極配線C1而與HBT41的集極電極57(圖3B)連接。 17 is a cross-sectional view of a semiconductor device according to a fifth embodiment. In the fourth embodiment, the emitter wiring E2 of the second layer is arranged right above the HBT 41 for each column of the HBT 41 (FIG. 11). On the other hand, in the fifth embodiment, as shown in FIG. 17, the collector wiring C2 of the second layer is arranged right above the HBT 41 for each column of the HBT 41. The collector wiring C2 is connected to the collector electrode 57 (FIG. 3B) of the HBT 41 via the collector wiring C1 of the first layer.

針對第1HBT單元塊49A的8個HBT41而配置1個第1層的射極配線E1。在第1列所對應的集極配線C2和第2列所對應的集極配線C2之間配置第2層的射極配線E2。射極配線E2經過被設置在其下的層間絕緣膜的接觸孔76內並與第1層的射極配線E1連接。 One emitter wiring E1 of the first layer is arranged for the eight HBTs 41 of the first HBT cell block 49A. The emitter wiring E2 of the second layer is arranged between the collector wiring C2 corresponding to the first column and the collector wiring C2 corresponding to the second column. The emitter wiring E2 passes through the contact hole 76 of the interlayer insulating film provided thereunder and is connected to the emitter wiring E1 of the first layer.

第2HBT單元塊49B所對應的射極配線E1、E2、及集極配線C1、C2的構成和第1HBT單元塊49A所對應的射極配線E1、E2、及集極配線C1、C2 的構成相同。 The configurations of the emitter wirings E1 and E2 and the collector wirings C1 and C2 corresponding to the second HBT cell block 49B are the same as the configurations of the emitter wirings E1 and E2 and the collector wirings C1 and C2 corresponding to the first HBT cell block 49A .

第1HBT單元塊49A及第2HBT單元塊49B的射極配線E2與焊墊導體層P2連續。設置在第2列的HBT41的第1層的集極配線C1之中被配置於距焊墊導體層P2最近的位置的集極配線C1,與保護電路40的上游端的陽極電極62所連接的二極體配線D1連續。保護電路40的下游端的陰極電極61所連接的二極體配線D1經過接觸孔79內並與焊墊導體層P2連接。 The emitter wiring E2 of the first HBT cell block 49A and the second HBT cell block 49B is continuous with the pad conductor layer P2. Among the collector wiring C1 of the first layer of the HBT41 in the second column, the collector wiring C1 disposed closest to the pad conductor layer P2 is connected to the anode electrode 62 at the upstream end of the protection circuit 40. The polar body wiring D1 is continuous. The diode wiring D1 connected to the cathode electrode 61 at the downstream end of the protection circuit 40 passes through the contact hole 79 and is connected to the pad conductor layer P2.

在焊墊導體層P2之上配置接地用的凸塊81,在第2層的集極配線C2之上配置高頻輸出用的凸塊82。在第4實施例中,雖然將高頻輸出用的凸塊78(圖11)重疊於保護電路40,但也可以如第5實施例那樣將接地用的凸塊81重疊於保護電路40。 A bump 81 for grounding is disposed on the pad conductor layer P2, and a bump 82 for high-frequency output is disposed on the collector wiring C2 of the second layer. In the fourth embodiment, although the bumps 78 (FIG. 11) for high-frequency output are superimposed on the protection circuit 40, the bumps 81 for grounding may be superimposed on the protection circuit 40 as in the fifth embodiment.

〔第5實施例的變形例〕 [Modification of the fifth embodiment]

接著,參照圖18對基於第5實施例的變形例的半導體裝置進行說明。 Next, a semiconductor device according to a modification of the fifth embodiment will be described with reference to FIG. 18.

圖18是基於第5實施例的變形例的半導體裝置的俯視圖。在基於第5實施例的半導體裝置中,接地用的凸塊81及高頻輸出用的凸塊82(圖17)的平面形狀為長方形。相對於此,在本變形例中,凸塊81及82的平面形狀為圓角長方形。再有,凸塊81及82能利用Cu立柱凸塊。即便在如第5實施例那樣採用將接地用的凸塊81重疊於保護電路40的構成的情況下,作為凸塊81及82,也能夠利用平面形狀為圓角長方形的Cu立柱凸塊。 18 is a plan view of a semiconductor device according to a modification of the fifth embodiment. In the semiconductor device according to the fifth embodiment, the planar shapes of the bump 81 for grounding and the bump 82 for high-frequency output (FIG. 17) are rectangular. On the other hand, in this modification, the planar shapes of the bumps 81 and 82 are rectangular with rounded corners. In addition, Cu bumps 81 and 82 can use Cu stud bumps. Even in the case where the bump 81 for ground is superposed on the protection circuit 40 as in the fifth embodiment, as the bumps 81 and 82, Cu pillar bumps having a planar shape with rounded rectangles can be used.

〔寄生電感的影響〕 [Influence of parasitic inductance]

接著,參照圖19A~圖20B的圖式,對被串聯地插入保護電路40(圖1B)的寄生電感的影響進行說明。藉由類比而求出被串聯地插入保護電路40(圖1B)的寄生電感的影響。 Next, the influence of the parasitic inductance inserted into the protection circuit 40 (FIG. 1B) in series will be described with reference to the drawings of FIGS. 19A to 20B. The influence of the parasitic inductance inserted into the protection circuit 40 (FIG. 1B) in series is determined by analogy.

圖19A是成為類比物件的輸出級放大電路的等效電路圖。在集極端子44與接地GND之間連接有保護電路40。保護電路40由被串聯連接成從集極端子44向接地GND流動的電流為順時針方向的10個保護二極體48構成。假設寄生電感Lc被插入保護電路40與集極端子44之間、寄生電感Le被插入保護電路40與接地GND之間。 FIG. 19A is an equivalent circuit diagram of an output stage amplifier circuit that becomes an analog object. A protection circuit 40 is connected between the collector terminal 44 and the ground GND. The protection circuit 40 is composed of ten protection diodes 48 connected in series so that the current flowing from the collector terminal 44 to the ground GND is clockwise. It is assumed that the parasitic inductance Lc is inserted between the protection circuit 40 and the collector terminal 44 and the parasitic inductance Le is inserted between the protection circuit 40 and the ground GND.

將向輸出級放大電路的輸入電力設為3dBm、將電源電壓設為3.4V、將高頻訊號的頻率設為2.5GHz,使輸出級放大電路的負載變動,由此進行了輸出電壓的類比。 An analogy of the output voltage was made by setting the input power to the output stage amplifier circuit to 3 dBm, the power supply voltage to 3.4 V, and the frequency of the high-frequency signal to 2.5 GHz to vary the load of the output stage amplifier circuit.

圖19B是表示輸出電壓的波形的類比結果的圖表。橫軸以單位“ps”來表示經過時間,縱軸表示輸出電壓。相對於某一負載能獲得1個波形,對應於各種負載則能獲得複數個波形。可知若負載發生變動、則輸出電壓的峰值也會發生變動。將使負載發生了變動時輸出電壓的峰值達到最大時的電壓值稱為最大峰值電壓。使寄生電感Lc、Le變化,由此計算出最大峰值電壓。將寄生電感Lc、Le均為0時的最大峰值電壓作為基準,對所計算出的最大峰值電壓進行了標準化。 FIG. 19B is a graph showing the analog result of the waveform of the output voltage. The horizontal axis represents the elapsed time in units of "ps", and the vertical axis represents the output voltage. One waveform can be obtained relative to a certain load, and a plurality of waveforms can be obtained corresponding to various loads. It can be seen that when the load changes, the peak value of the output voltage also changes. The voltage value when the peak value of the output voltage reaches the maximum when the load changes is referred to as the maximum peak voltage. By changing the parasitic inductances Lc and Le, the maximum peak voltage is calculated. The maximum peak voltage when the parasitic inductances Lc and Le are both 0 is used as a reference, and the calculated maximum peak voltage is standardized.

圖20A是表示將寄生電感Le設為0、並使寄生電感Lc發生了變化時的標準化最大峰值電壓的圖表。圖20B是表示將寄生電感Lc設為0、並使寄生電感Le發生了變化時的標準化最大峰值電壓的圖表。可知在任意情況下都是標準化最大峰值電壓隨著寄生電感Lc、Le增加而升高。標準化最大峰值電壓的增加意味著保護電路40的保護功能下降。這是因為寄生電感Lc、Le導致保護電路40的響應特性下降的緣故。為了維持保護電路40的充分的保護功能,較佳為減小寄生電感Lc、Le。 20A is a graph showing the normalized maximum peak voltage when the parasitic inductance Le is set to 0 and the parasitic inductance Lc is changed. 20B is a graph showing the normalized maximum peak voltage when the parasitic inductance Lc is set to 0 and the parasitic inductance Le is changed. It can be seen that in any case, the normalized maximum peak voltage increases as the parasitic inductances Lc and Le increase. The increase in the standardized maximum peak voltage means that the protection function of the protection circuit 40 decreases. This is because the parasitic inductances Lc and Le degrade the response characteristics of the protection circuit 40. In order to maintain a sufficient protection function of the protection circuit 40, it is preferable to reduce the parasitic inductances Lc and Le.

在上述第1~第5實施例中,能夠不會使從保護電路40到HBT41的集極電極57(圖3B)為止的距離、及從保護電路40到HBT41的射極電極59(圖 3B)為止的距離增大地配置保護電路40。因此,能夠抑制寄生電感Lc、Le的增大、並維持充分的保護功能。 In the above-described first to fifth embodiments, the distance from the protection circuit 40 to the collector electrode 57 (FIG. 3B) of the HBT 41 and the emitter electrode 59 (FIG. 3B) from the protection circuit 40 to the HBT 41 can be avoided The protection circuit 40 is arranged to increase the distance up to. Therefore, it is possible to suppress an increase in the parasitic inductances Lc and Le and maintain a sufficient protection function.

〔寄生電阻的影響〕 [Influence of parasitic resistance]

接下來,參照圖21A及圖21B,對HBT41的集極配線的寄生電阻Rc發生了變化時的輸入電力與輸出電力的模擬結果進行說明。 Next, referring to FIGS. 21A and 21B, the simulation results of the input power and output power when the parasitic resistance Rc of the collector wiring of the HBT 41 changes will be described.

圖21A是類比物件的放大電路的等效電路圖。假設寄生電阻Rc被插入HBT41的集極和集極端子44之間。使寄生電阻Rc以20mΩ為單位地增加,藉由類比而求解出輸入電力與輸出電力的關係。將輸入訊號的頻率設為2.5GHz、將電源電壓設為3.4V。 21A is an equivalent circuit diagram of an amplification circuit of an analog object. It is assumed that the parasitic resistance Rc is inserted between the collector and collector terminal 44 of the HBT 41. The parasitic resistance Rc is increased in units of 20 mΩ, and the relationship between input power and output power is solved by analogy. Set the frequency of the input signal to 2.5GHz and the power supply voltage to 3.4V.

圖21B是表示類比結果的圖表。橫軸以單位“dBm”來表示輸入電力、縱軸以單位“dBm”來表示輸出電力。可知輸出電力隨著寄生電阻Rc增大而下降。輸出電力的下降的原因基於以下的理由。在大電力時因流通的集極電流,在寄生電阻Rc中產生電壓降。由於該電壓降,實效性的HBT41的集極電壓Vce會下降。結果,輸出電力下降。為了抑制輸出電力的下降,較佳為減小寄生電阻Rc。 21B is a graph showing the results of the analogy. The horizontal axis represents the input power in units of "dBm", and the vertical axis represents the output power in units of "dBm". It can be seen that the output power decreases as the parasitic resistance Rc increases. The reason for the decrease in output power is based on the following reasons. When the power is large, the collector current flows, and a voltage drop occurs in the parasitic resistance Rc. Due to this voltage drop, the collector voltage Vce of the effective HBT41 will drop. As a result, the output power drops. In order to suppress the decrease in output power, it is preferable to reduce the parasitic resistance Rc.

上述第1~第5實施例中,能夠將HBT41和集極端子用的焊墊65靠近配置。因此,能夠抑制寄生電阻Rc的增大。結果,能夠抑制輸出級放大電路的性能的下降。 In the first to fifth embodiments described above, the HBT 41 and the pad 65 for the collector terminal can be arranged close to each other. Therefore, an increase in parasitic resistance Rc can be suppressed. As a result, it is possible to suppress the performance degradation of the output stage amplifier circuit.

上述的各實施例是例示,毋庸置疑,不同的實施例中示出的構成的局部性的置換或組合是能夠實現的。針對基於複數個實施例的同樣的構成的同樣的作用效果,並未按每個實施例逐一言及。進而,本發明未被限制於上述的實施例。例如,能夠實現各種變更、改進、組合等,對本技術領域中具有通常知識者來說是顯而易見的。 The above embodiments are examples, and there is no doubt that partial replacement or combination of the configurations shown in the different embodiments can be realized. The same operation and effect based on the same configuration of a plurality of embodiments are not described individually for each embodiment. Furthermore, the present invention is not limited to the above-mentioned embodiments. For example, various changes, improvements, combinations, etc. can be realized, which are obvious to those having ordinary knowledge in the technical field.

Claims (8)

一種半導體裝置,具有:放大電路,包含形成於基板的半導體元件;保護電路,包含形成於所述基板且相互串聯連接的複數個保護二極體,且被連接至所述放大電路的輸出端子;及焊墊導體層,至少一部分包含用於與所述基板的外部電路連接的焊墊,俯視情況下,所述焊墊導體層與所述保護電路至少局部重疊。     A semiconductor device includes: an amplifier circuit including a semiconductor element formed on a substrate; a protection circuit including a plurality of protection diodes formed on the substrate and connected in series with each other, and connected to an output terminal of the amplifier circuit; At least a portion of the pad conductor layer includes a pad for connection to an external circuit of the substrate, and the pad conductor layer and the protection circuit at least partially overlap in a plan view.     如請求項1所述之半導體裝置,其中,所述半導體裝置還具有形成於所述基板的接地導體,所述保護電路被連接於所述放大電路的輸出端子與所述接地導體之間。     The semiconductor device according to claim 1, wherein the semiconductor device further has a ground conductor formed on the substrate, and the protection circuit is connected between the output terminal of the amplifier circuit and the ground conductor.     如請求項1或2所述之半導體裝置,其中,所述半導體裝置還具有絕緣性的保護膜,該保護膜覆蓋所述焊墊導體層,設置使所述焊墊導體層的表面的一部分的區域露出的開口,且覆蓋其他區域,俯視情況下,所述開口與所述保護電路至少局部重疊。     The semiconductor device according to claim 1 or 2, wherein the semiconductor device further has an insulating protective film that covers the pad conductor layer and is provided such that part of the surface of the pad conductor layer The area is exposed and covers other areas. In a plan view, the opening and the protection circuit at least partially overlap.     如請求項3所述之半導體裝置,其中,所述半導體裝置還具有形成於所述開口的底面的所述焊墊導體層之上的凸塊。     The semiconductor device according to claim 3, wherein the semiconductor device further has bumps formed on the pad conductor layer on the bottom surface of the opening.     如請求項4所述之半導體裝置,其中,所述凸塊的平面形狀為圓角長方形。     The semiconductor device according to claim 4, wherein the planar shape of the bump is a rectangle with rounded corners.     如請求項1或2所述之半導體裝置,其中,複數個所述保護二極體構成在俯視情況下在中途被折回的二極體列,所述保護電路的一部分被配置於所述焊墊導體層的外側。     The semiconductor device according to claim 1 or 2, wherein a plurality of the protection diodes constitute a diode row folded back halfway in a plan view, and a part of the protection circuit is arranged on the pad The outer side of the conductor layer.     如請求項1或2所述之半導體裝置,其中,複數個所述保護二極體構成在俯視情況下在中途被折回的二極體列, 複數個所述保護二極體的每一個包含:第1導電型的第1半導體層;第2導電型的第2半導體層,形成於所述第1半導體層的上表面的一部分的區域,且所述第2導電型與所述第1導電型相反;以及與所述第1半導體層的上表面歐姆連接的第1電極,俯視情況下,所述第1電極具有在所述二極體列的寬度方向夾持所述第2半導體層的U字形的平面形狀。     The semiconductor device according to claim 1 or 2, wherein the plurality of protection diodes constitute a diode row that is folded back halfway in a plan view, and each of the plurality of protection diodes includes: A first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type formed on a part of the upper surface of the first semiconductor layer, and the second conductivity type and the first conductivity type Conversely; and the first electrode ohmically connected to the upper surface of the first semiconductor layer, in a plan view, the first electrode has a U sandwiching the second semiconductor layer in the width direction of the diode row The flat shape of the glyph.     如請求項1或2所述之半導體裝置,其中,所述半導體元件由化合物半導體形成。     The semiconductor device according to claim 1 or 2, wherein the semiconductor element is formed of a compound semiconductor.    
TW107101429A 2017-02-28 2018-01-15 Semiconductor device TWI683413B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017035871 2017-02-28
JPJP2017-035871 2017-02-28
JPJP2017-142136 2017-07-21
JP2017142136A JP2018142688A (en) 2017-02-28 2017-07-21 Semiconductor device

Publications (2)

Publication Number Publication Date
TW201904012A true TW201904012A (en) 2019-01-16
TWI683413B TWI683413B (en) 2020-01-21

Family

ID=63528280

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107101429A TWI683413B (en) 2017-02-28 2018-01-15 Semiconductor device

Country Status (3)

Country Link
JP (1) JP2018142688A (en)
KR (1) KR102044715B1 (en)
TW (1) TWI683413B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766337B (en) * 2019-09-30 2022-06-01 日商村田製作所股份有限公司 Semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150026A (en) 2019-03-11 2020-09-17 株式会社村田製作所 Multilayer wiring board
TWI747145B (en) 2019-03-19 2021-11-21 日商村田製作所股份有限公司 Semiconductor device and amplifier module
JP2021013142A (en) 2019-07-09 2021-02-04 株式会社村田製作所 Power amplifier circuit
JP2021016076A (en) * 2019-07-11 2021-02-12 株式会社村田製作所 Semiconductor device
CN117043957A (en) * 2021-03-26 2023-11-10 株式会社村田制作所 Semiconductor device with a semiconductor device having a plurality of semiconductor chips

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA738021B (en) 1972-11-07 1974-09-25 Clark Equipment Co Tractor suspension
JPH10163451A (en) * 1996-12-02 1998-06-19 Hitachi Ltd Semiconductor storage device
WO2001018865A1 (en) * 1999-09-06 2001-03-15 Hitachi, Ltd. High-frequency power amplification module and radio communication device
JP4977313B2 (en) * 2004-01-19 2012-07-18 ルネサスエレクトロニクス株式会社 Heterojunction bipolar transistor
JP4846244B2 (en) * 2005-02-15 2011-12-28 ルネサスエレクトロニクス株式会社 Semiconductor device
US20120098120A1 (en) * 2010-10-21 2012-04-26 Taiwan Semiconductor Manufacturing Company, Ltd. Centripetal layout for low stress chip package
US9106072B2 (en) * 2012-12-19 2015-08-11 Qualcomm Incorporated Electrostatic discharge protection of amplifier cascode devices
US9397084B1 (en) * 2015-03-02 2016-07-19 United Microelectronics Corp. Structure of ESD protection circuits on BEOL layer
JP2016171163A (en) * 2015-03-12 2016-09-23 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit, communication module, and smart meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766337B (en) * 2019-09-30 2022-06-01 日商村田製作所股份有限公司 Semiconductor device
US11495563B2 (en) 2019-09-30 2022-11-08 Murata Manufacturing Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
TWI683413B (en) 2020-01-21
JP2018142688A (en) 2018-09-13
KR102044715B1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
TWI683413B (en) Semiconductor device
US10707200B2 (en) Semiconductor device
US10985123B2 (en) Semiconductor apparatus
TW201911420A (en) Semiconductor device
CN109390331B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US10868155B2 (en) Compound semiconductor device
US11601102B2 (en) Power amplifier circuit and semiconductor device
US11658180B2 (en) Semiconductor device having a plurality of bipolar transistors with different heights between their respective emitter layers and emitter electrodes
US20060097320A1 (en) Protecting element and semiconductor device using the same
TWI788213B (en) Bidirectional electrostatic discharge (esd) protection device
TWI766337B (en) Semiconductor device
US11227862B2 (en) Semiconductor device
US11876032B2 (en) Semiconductor device
JP2019220669A (en) Semiconductor device
US11652016B2 (en) Semiconductor device
CN111916494A (en) Semiconductor device with a plurality of semiconductor chips
TWI787909B (en) Semiconductor device
KR102460062B1 (en) Power amplifier apparatus
US7768100B2 (en) Semiconductor integrated circuit
US11817493B2 (en) Semiconductor device
TW202113981A (en) Semiconductor device
JPWO2005053028A1 (en) Semiconductor device with electrostatic breakdown protection element
TW202414601A (en) Semiconductor devices and high-frequency power amplifiers