TW201901457A - Method of controlling on-die termination and system performing the same - Google Patents

Method of controlling on-die termination and system performing the same Download PDF

Info

Publication number
TW201901457A
TW201901457A TW107109741A TW107109741A TW201901457A TW 201901457 A TW201901457 A TW 201901457A TW 107109741 A TW107109741 A TW 107109741A TW 107109741 A TW107109741 A TW 107109741A TW 201901457 A TW201901457 A TW 201901457A
Authority
TW
Taiwan
Prior art keywords
intra
memory
die
target memory
memory bank
Prior art date
Application number
TW107109741A
Other languages
Chinese (zh)
Other versions
TWI763803B (en
Inventor
孫永訓
金始弘
李昶敎
崔楨煥
河慶洙
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201901457A publication Critical patent/TW201901457A/en
Application granted granted Critical
Publication of TWI763803B publication Critical patent/TWI763803B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory

Landscapes

  • Dram (AREA)
  • Static Random-Access Memory (AREA)

Abstract

A method of controlling on-die termination (ODT) in a multi-rank system including a plurality of memory ranks is provided. The method includes: enabling ODT circuits of the plurality of memory ranks into an initial state when the multi-rank system is powered on; enabling the ODT circuits of a write target memory rank and non-target memory ranks among the plurality of memory ranks during a write operation; and disabling the ODT circuit of a read target memory rank among the plurality of memory ranks while enabling the ODT circuits of non-target memory ranks among the plurality of memory ranks during a read operation.

Description

晶粒內終結之控制方法與進行所述方法之系統Method for controlling intra-grain termination and system for performing the same

示例性實施例大體而言是有關於半導體積體電路,且更具體而言是有關於一種晶粒內終端(on-die termination,ODT)之控制方法及一種進行所述方法之系統。 [相關申請案的交叉參考] 本美國非臨時申請案基於35 USC § 119主張於2017年5月29日提出申請的韓國專利申請案第10-2017-0066377號及於2017年7月14日提出申請的韓國專利申請案第10-2017-0089692號的優先權,所述韓國專利申請案的揭露內容全文併入本案供參考。The exemplary embodiments are generally related to semiconductor integrated circuits, and more particularly to a method of controlling on-die termination (ODT) and a system for performing the method. [Cross-Reference to Related Applications] This non-provisional application in the United States is based on 35 USC § 119, which is filed on May 29, 2017, and is filed on July 14, 2017. The priority of the Korean Patent Application No. 10-2017-0089692, the entire disclosure of which is incorporated herein by reference.

引入晶粒內終端(ODT)是為了藉由減少發射器與接收器之間的訊號反射來增強訊號完整性(signal integrity)。晶粒內終端電路可藉由提供與傳輸線的阻抗匹配的終端電阻(termination resistance)來減少訊號反射。然而,若實作晶粒內終端以增強訊號完整性,則功耗可能提高。The intra-die termination (ODT) is introduced to enhance signal integrity by reducing signal reflection between the transmitter and the receiver. The intra-die termination circuit can reduce signal reflection by providing a termination resistance that matches the impedance of the transmission line. However, if a die within the die is implemented to enhance signal integrity, power consumption may increase.

本發明概念的至少一個實施例提供一種能夠降低功耗及增強訊號完整性的晶粒內終端之控制方法。At least one embodiment of the inventive concept provides a method of controlling a intra-die terminal capable of reducing power consumption and enhancing signal integrity.

本發明概念的至少一個實施例提供一種進行能夠降低功耗及增強訊號完整性的晶粒內終端之控制方法之系統。At least one embodiment of the inventive concept provides a system for performing a method of controlling an intra-die terminal capable of reducing power consumption and enhancing signal integrity.

根據本發明概念的示例性實施例,一種在包括多個記憶體排的多排式系統中控制晶粒內終端(ODT)之方法,所述方法包括:當所述多排式記憶體系統被通電時,將所述多個記憶體排的晶粒內終端電路賦能成初始狀態;在寫入操作期間,將所述多個記憶體排中的寫入目標記憶體排的所述晶粒內終端電路及非目標記憶體排的所述晶粒內終端電路賦能;以及在讀取操作期間,將所述多個記憶體排中的讀取目標記憶體排的所述晶粒內終端電路去能,同時將所述多個記憶體排中的非目標記憶體排的所述晶粒內終端電路賦能。In accordance with an exemplary embodiment of the inventive concept, a method of controlling an intra-die termination (ODT) in a multi-row system including a plurality of memory banks, the method comprising: when the multi-row memory system is When energized, the in-die termination circuit of the plurality of memory banks is enabled to an initial state; during the writing operation, the plurality of memory banks are written into the die of the target memory bank The in-die termination circuit of the termination circuit and the non-target memory bank is enabled; and the intra-die termination circuit of the read target memory bank of the plurality of memory banks during a read operation The enabling, while enabling the intra-die termination circuit of the non-target memory banks of the plurality of memory banks.

根據本發明概念的示例性實施例,一種在記憶體裝置中控制晶粒內終端(ODT)之方法包括:當所述記憶體裝置被通電時,將所述記憶體裝置的晶粒內終端電路賦能成初始狀態以具有第一電阻值;在對所述記憶體裝置進行寫入操作期間將所述晶粒內終端電路賦能;以及在對所述記憶體裝置進行讀取操作期間將所述晶粒內終端電路去能。In accordance with an exemplary embodiment of the inventive concept, a method of controlling an intra-die termination (ODT) in a memory device includes: in-grain termination circuitry of the memory device when the memory device is powered Having an initial state to have a first resistance value; energizing the intra-die termination circuit during a write operation to the memory device; and during a read operation on the memory device The termination circuit in the die is de-energized.

根據本發明概念的示例性實施例,一種系統包括:多個記憶體排,包括多個記憶體裝置;以及記憶體控制器,被配置成控制所述多個記憶體排。所述多個記憶體排的晶粒內終端(ODT)電路在所述系統被通電時被賦能成初始狀態,所述多個記憶體排的所述晶粒內終端電路在對所述多個記憶體排中的寫入目標記憶體排及非目標記憶體排進行寫入操作期間被賦能,且在讀取操作期間,所述多個記憶體排中的讀取目標記憶體排的所述晶粒內終端電路被去能、同時所述多個記憶體排中的非目標記憶體排的所述晶粒內終端電路被賦能。According to an exemplary embodiment of the inventive concept, a system includes: a plurality of memory banks including a plurality of memory devices; and a memory controller configured to control the plurality of memory banks. An intra-die termination (ODT) circuit of the plurality of memory banks is enabled to be in an initial state when the system is powered, and the intra-gate termination circuit of the plurality of memory banks is in the plurality of The write target memory bank and the non-target memory bank in the memory bank are enabled during a write operation, and during the read operation, the read target memory banks in the plurality of memory banks are read The intra-die termination circuitry is disabled, and the intra-die termination circuitry of the non-target memory banks of the plurality of memory banks is enabled.

根據本發明概念的示例性實施例,一種系統包括第一記憶體排及第二記憶體排。所述第一記憶體排包括連接至第一晶粒內終端(ODT)電路的多個第一記憶體裝置。所述第二記憶體排包括連接至第二晶粒內終端電路的多個第二記憶體裝置。所述第一晶粒內終端電路及所述第二晶粒內終端電路在所述第一記憶體排的寫入操作期間被賦能,且在所述第一記憶體排的讀取操作期間,所述第一晶粒內終端電路被去能且所述第二晶粒內終端電路被賦能。According to an exemplary embodiment of the inventive concept, a system includes a first memory bank and a second memory bank. The first memory bank includes a plurality of first memory devices coupled to a first intra-die termination (ODT) circuit. The second memory bank includes a plurality of second memory devices connected to the termination circuitry in the second die. The first intra-gate termination circuit and the second intra-die termination circuit are enabled during a write operation of the first memory bank and during a read operation of the first memory bank The first intra-gate termination circuit is disabled and the second intra-die termination circuit is enabled.

根據示例性實施例的晶粒內終端之控制方法及進行所述方法之系統可藉由以下方式來降低功耗及增強訊號完整性:進行靜態晶粒內終端控制,以使得在讀取操作期間目標記憶體排的晶粒內終端電路及非目標記憶體排的晶粒內終端電路大體維持於賦能狀態,而讀取目標記憶體排的晶粒內終端電路則被去能。A method of controlling a terminal within a die according to an exemplary embodiment and a system for performing the same can reduce power consumption and enhance signal integrity by performing static intra-die terminal control so as to be during a read operation The intra-gate termination circuit of the target memory bank and the intra-die termination circuit of the non-target memory bank are generally maintained in an enabled state, and the intra-die termination circuit of the read target memory bank is disabled.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

在下文中,將參照其中示出本發明概念的一些示例性實施例的附圖來更充分地闡述本發明概念。在所有圖式中相同的編號指代相同的元件。In the following, the inventive concept will be more fully explained with reference to the accompanying drawings in which FIG. The same reference numbers in all figures refer to the same elements.

圖1是示出根據本發明概念示例性實施例的晶粒內終端(ODT)之控制方法的流程圖,且圖2是示出根據本發明概念示例性實施例的晶粒內終端之控制方法的時序圖。1 is a flowchart illustrating a method of controlling an intra-die terminal (ODT) according to an exemplary embodiment of the inventive concept, and FIG. 2 is a flowchart illustrating a method of controlling a terminal within a die according to an exemplary embodiment of the inventive concept. Timing diagram.

圖1及圖2示出在包括多個記憶體排(memory rank)的多排式系統中控制晶粒內終端之方法。以下將參照圖3來闡述多排式系統。在實施例中,記憶體排是連接至同一晶片選擇訊號的一組記憶體晶片。因此,當存在多個記憶體排時,每一記憶體排接收不同的晶片選擇訊號。在又一實施例中,給定記憶體排的所述一組記憶體晶片共用相同的命令及控制訊號。1 and 2 illustrate a method of controlling a terminal within a die in a multi-row system including a plurality of memory ranks. A multi-row system will be explained below with reference to FIG. In an embodiment, the memory bank is a set of memory chips connected to the same wafer select signal. Thus, when there are multiple banks of memory, each bank of memory receives a different wafer select signal. In yet another embodiment, the set of memory chips for a given bank of memory share the same command and control signals.

參照圖1,當多排式系統被通電時,將多個記憶體排的晶粒內終端電路賦能成初始狀態(S100)。舉例而言,將晶粒內終端電路賦能成初始狀態可藉由以下方式來進行:對所述晶粒內終端電路施通電力且將晶粒內終端電路中的每一者的電阻設定成相同的電阻值。在對所述多個記憶體排中的寫入目標記憶體排進行寫入操作期間將所述多個記憶體排的晶粒內終端電路賦能(S200)。舉例而言,若記憶體排的晶粒內終端電路中當前作為寫入目標的一個晶粒內終端電路由於所述記憶體排的前一讀取操作而當前被去能,則在所述寫入期間將此晶粒內終端電路賦能。此外,可在進行實際寫入之前的一段時間內將記憶體排的當前作為寫入目標的晶粒內終端電路賦能。在對讀取目標記憶體排進行讀取操作期間將所述多個記憶體排中的所述讀取目標記憶體排的晶粒內終端電路去能(S300)。Referring to FIG. 1, when the multi-row system is energized, the intra-die termination circuits of the plurality of memory banks are energized to an initial state (S100). For example, the enabling of the intra-die termination circuit to an initial state can be performed by applying power to the intra-die termination circuit and setting the resistance of each of the intra-die termination circuits to be the same. The resistance value. The intra-die termination circuits of the plurality of memory banks are enabled during a write operation to the write target memory banks in the plurality of memory banks (S200). For example, if an intra-gate termination circuit currently in the intra-die termination circuit of the memory bank is currently de-energized due to a previous read operation of the memory bank, then the write is performed. The termination circuit in this die is energized during the entry. In addition, the intra-die termination circuit that is currently the write target of the memory bank can be enabled for a period of time prior to actual writing. The intra-grain termination circuit of the read target memory bank in the plurality of memory banks is disabled during a read operation on the read target memory bank (S300).

記憶體存取操作可包括寫入操作及讀取操作且所述記憶體存取操作可與例如模式暫存器寫入操作、模式暫存器讀取操作、刷新操作等其他操作區分開。在寫入操作的情形中,所述多個記憶體排可被區分為作為寫入操作的對象的寫入目標記憶體排及除所述寫入目標記憶體排外的非目標記憶體排。舉例而言,在寫入操作期間,資料被寫入至多個記憶體排中的一者(即,寫入目標記憶體排)且所述資料不被寫入至其餘記憶體排。在讀取操作的情形中,所述多個記憶體排可被區分為作為讀取操作的對象的讀取目標記憶體排及除所述讀取目標記憶體排外的非目標記憶體排來劃分。舉例而言,在讀取操作期間,資料是自多個記憶體排中的一者(即,讀取目標記憶體排)被讀取且資料不自其餘記憶體排被讀取。可將寫入目標記憶體排或讀取目標記憶體排簡稱為目標記憶體排。The memory access operations may include write operations and read operations and the memory access operations may be distinguished from other operations such as mode register write operations, mode register read operations, refresh operations, and the like. In the case of a write operation, the plurality of memory banks can be divided into a write target memory bank that is an object of a write operation and a non-target memory bank that is excluded from the write target memory. For example, during a write operation, data is written to one of a plurality of memory banks (ie, written to a target memory bank) and the material is not written to the remaining memory banks. In the case of a read operation, the plurality of memory banks can be divided into a read target memory bank that is the object of the read operation and a non-target memory bank that is excluded from the read target memory row. . For example, during a read operation, data is read from one of a plurality of memory banks (ie, a read target memory bank) and data is not read from the remaining memory banks. The write target memory bank or the read target memory bank can be simply referred to as the target memory bank.

參照圖2,在時間點T1處,當多排式系統被通電時,所述多個記憶體排的晶粒內終端電路被賦能成初始狀態。在示例性實施例中,所述多個記憶體排的晶粒內終端電路中的每一者被設定成在初始狀態中具有第一電阻值。儘管圖2示出晶粒內終端電路的賦能時間點與通電時間一致,然而可首先完成所述通電時序(power-on sequence)且可接著在經過一定時間間隔之後將所述晶粒內終端電路賦能成初始狀態。Referring to FIG. 2, at time point T1, when the multi-row system is energized, the intra-die termination circuits of the plurality of memory banks are energized to an initial state. In an exemplary embodiment, each of the intra-grain termination circuits of the plurality of memory banks is set to have a first resistance value in an initial state. Although FIG. 2 shows that the energization time point of the intra-die termination circuit coincides with the energization time, the power-on sequence may be completed first and then the intra-die termination may be performed after a certain time interval has elapsed. The circuit is energized into an initial state.

在進行寫入操作的同時在時間間隔T2至T3及T4至T5期間,包括寫入目標記憶體排及非目標記憶體排的記憶體排的所有晶粒內終端電路維持賦能狀態。在示例性實施例中,在寫入操作期間,所述多個記憶體排的晶粒內終端電路維持於初始狀態以具有第一電阻值。在另一示例性實施例中,在寫入操作期間,寫入目標記憶體排的晶粒內終端電路的電阻值被自第一電阻值改變成與所述第一電阻值不同的第二電阻值。During the time interval T2 to T3 and T4 to T5, all of the intra-die terminal circuits including the memory banks of the write target memory bank and the non-target memory bank are maintained in an energized state while the write operation is being performed. In an exemplary embodiment, the intra-die termination circuitry of the plurality of memory banks is maintained in an initial state to have a first resistance value during a write operation. In another exemplary embodiment, during the write operation, the resistance value of the intra-die termination circuit of the write target memory bank is changed from the first resistance value to a second resistance different from the first resistance value. value.

在進行讀取操作的同時在時間間隔T6至T7期間,讀取目標記憶體排的晶粒內終端電路被去能且非目標記憶體排的晶粒內終端電路被賦能。在示例性實施例中,在讀取操作期間,非目標記憶體排的晶粒內終端電路維持於初始狀態以具有第一電阻值。儘管圖2示出讀取目標記憶體排被去能的時間間隔與讀取操作的時間間隔一致,然而所述讀取目標記憶體排被去能的時間間隔可小於讀取操作的時間間隔。換言之,僅當經過資料輸入-輸出接腳輸出讀取資料時,將讀取目標記憶體排的晶粒內終端電路去能便足矣。舉例而言,僅當經過目標記憶體排的接腳輸出自所述目標記憶體排讀取的資料時,讀取目標記憶體排的晶粒內終端電路才可被去能。During the time interval T6 to T7 while the read operation is being performed, the intra-die termination circuit of the read target memory bank is disabled and the intra-die termination circuit of the non-target memory bank is enabled. In an exemplary embodiment, during a read operation, the intra-die termination circuitry of the non-target memory bank is maintained in an initial state to have a first resistance value. Although FIG. 2 shows that the time interval at which the read target memory bank is de-energized coincides with the time interval of the read operation, the time interval at which the read target memory bank is disabled can be less than the time interval of the read operation. In other words, it is sufficient to read the intra-die terminal circuit of the target memory bank only when the data is read through the data input-output pin output. For example, the intra-die termination circuit of the read target memory bank can be disabled only when the pin of the target memory bank outputs data read from the target memory bank.

在時間點T8處,當多排式系統被斷電時,電源被阻擋且所有記憶體排的晶粒內終端電路被去能。舉例而言,在供應至晶粒內終端電路的電力之間可存在開關(switch),且所述阻擋可藉由斷開所述開關來進行。舉例而言,當開關是電晶體時,所述開關可基於被施加至所述電晶體的閘極的控制訊號而斷開。At time point T8, when the multi-row system is powered down, the power supply is blocked and the in-die termination circuitry of all memory banks is disabled. For example, there may be a switch between the power supplied to the termination circuitry within the die, and the blocking may be performed by opening the switch. For example, when the switch is a transistor, the switch can be turned off based on a control signal applied to the gate of the transistor.

只要目標記憶體排的晶粒內終端電路被賦能且非目標記憶體排的晶粒內終端電路被去能時,訊號完整性便可能由於射入至所述非目標記憶體排的訊號波未被終止(terminated)且因此可能造成跳動(jitter)而劣化。相比之下,根據本發明概念的至少一個實施例,可藉由除讀取目標記憶體排的情形外幾乎總是將晶粒內終端電路賦能來增強訊號完整性。儘管非目標記憶體排的晶粒內終端電路總是被賦能,然而如以下將闡述,在偽開放汲極終端的情形中不會造成待用功耗(standby power consumption)。As long as the intra-gate termination circuit of the target memory bank is enabled and the intra-gate termination circuit of the non-target memory bank is disabled, signal integrity may be due to signal waves incident on the non-target memory bank It is not terminated and thus may cause jitter to deteriorate. In contrast, in accordance with at least one embodiment of the inventive concept, signal integrity can be enhanced by almost always enabling intra-die termination circuitry in addition to reading the target memory bank. Although the intra-die termination circuitry of the non-target memory bank is always enabled, as will be explained below, in the case of a pseudo-open drain terminal, no standby power consumption is caused.

若非目標記憶體排的晶粒內終端電路在寫入操作中被賦能且在讀取操作中被去能,則所有記憶體排均處於待用狀態以接收記憶體存取命令(例如,寫入命令或讀取命令)及對所述記憶體存取命令進行解碼。在此種情形中,晶粒內終端電路不進入斷電模式且因此待用功耗提高。相比之下,根據示例性實施例,在寫入操作及讀取操作中,非目標記憶體排的晶粒內終端電路維持於賦能狀態。在此種情形中,晶粒內終端電路可更輕易地進入斷電模式且因此待用功耗可降低。If the intra-die termination circuit of the non-target memory bank is enabled in the write operation and is disabled during the read operation, all memory banks are in a standby state to receive the memory access command (eg, write Entering a command or reading a command) and decoding the memory access command. In this case, the intra-die termination circuit does not enter the power down mode and thus the standby power consumption is increased. In contrast, according to an exemplary embodiment, in the write operation and the read operation, the intra-die terminal circuits of the non-target memory banks are maintained in an energized state. In this case, the intra-die termination circuit can enter the power-down mode more easily and thus the power consumption to be used can be reduced.

在實施例中,無論記憶體控制器所輸出的記憶體存取命令(例如,寫入命令或讀取命令)如何,所述多個記憶體排中的非目標記憶體排的晶粒內終端電路具有恆定的電阻值。此種恆定的電阻值可基於模式暫存器中所儲存的值。In an embodiment, regardless of a memory access command (eg, a write command or a read command) output by the memory controller, the intra-die terminal of the non-target memory bank in the plurality of memory banks The circuit has a constant resistance value. This constant resistance value can be based on the value stored in the mode register.

在示例性實施例中,基於被分別提供至所述多個記憶體排的多個排選擇訊號而將哪一記憶體排對應於用於寫入操作或讀取操作的目標記憶體排通知給所述多個記憶體排。在此種情形中,所有處於待用狀態的記憶體排進入斷電模式且與被激活的排選擇訊號對應的目標記憶體排被自所述斷電模式喚醒至正常操作模式。非目標記憶體排無需改變晶粒內終端電路的賦能狀態且因此所述非目標記憶體排可維持斷電模式。In an exemplary embodiment, a memory bank corresponding to a target memory bank for a write operation or a read operation is notified based on a plurality of row selection signals respectively supplied to the plurality of memory banks The plurality of memory banks. In this case, all of the memory banks in the inactive state enter the power down mode and the target memory bank corresponding to the activated row select signal is awakened from the power down mode to the normal mode of operation. The non-target memory bank does not need to change the enabling state of the termination circuitry within the die and thus the non-target memory bank can maintain the power down mode.

如此一來,根據至少一個實施例的晶粒內終端之控制方法及進行所述方法之系統可藉由靜態晶粒內終端控制來降低功耗及增強訊號完整性,以使得在讀取操作期間目標記憶體排的晶粒內終端電路及非目標記憶體排的晶粒內終端電路大體維持於賦能狀態,而讀取目標記憶體排的晶粒內終端電路則被去能。In this way, the method for controlling the intra-die terminal according to at least one embodiment and the system for performing the method can reduce power consumption and enhance signal integrity by static intra-die terminal control, so that during the read operation The intra-gate termination circuit of the target memory bank and the intra-die termination circuit of the non-target memory bank are generally maintained in an enabled state, and the intra-die termination circuit of the read target memory bank is disabled.

儘管已參照圖1及圖2針對多排式系統闡述了晶粒內終端之控制方法,然而示例性實施例可應用於包括單個記憶體排的記憶體裝置的系統。Although the method of controlling the intra-die termination has been described with respect to the multi-row system with reference to FIGS. 1 and 2, the exemplary embodiment is applicable to a system including a memory device of a single memory bank.

在單排式系統的情形中,單個記憶體裝置在寫入操作期間對應於寫入目標記憶體排且在讀取操作期間對應於讀取目標記憶體排。根據示例性實施例,當記憶體裝置被通電時,所述記憶體裝置的晶粒內終端電路被賦能成初始狀態以具有第一電阻值。在對記憶體裝置進行寫入操作期間晶粒內終端電路可被賦能且在對所述記憶體裝置進行讀取操作期間晶粒內終端電路可被去能。In the case of a single row system, a single memory device corresponds to a write target memory bank during a write operation and to a read target memory bank during a read operation. According to an exemplary embodiment, when the memory device is powered on, the intra-die termination circuit of the memory device is energized to an initial state to have a first resistance value. The intra-die termination circuitry can be enabled during a write operation to the memory device and the intra-die termination circuitry can be disabled during a read operation on the memory device.

圖3是示出根據本發明概念示例性實施例的多排式系統的方塊圖。FIG. 3 is a block diagram showing a multi-row system according to an exemplary embodiment of the inventive concept.

參照圖3,多排式系統10包括記憶體控制器20及記憶體子系統30。記憶體子系統30包括多個記憶體排RNK1至RNKM且記憶體排RNK1至RNKM中的每一者包括一或多個記憶體裝置MEM,M是大於1的自然數。記憶體控制器20及記憶體子系統30可分別包括介面電路(interface circuit)以進行相互通訊。介面電路可藉由用於傳送命令CMD、位址ADDR、及控制訊號CTRL等的控制匯流排及用於傳送資料的資料匯流排來進行連接。在實施例中,命令CMD包括位址ADDR。記憶體控制器20可發出命令CMD及位址ADDR以存取記憶體子系統30,且在記憶體控制器20的控制下資料可被寫入記憶體子系統30中或者資料可被自記憶體子系統30讀出。在實施例中,記憶體控制器20包括用於輸出控制訊號CTRL、命令CMD、位址ADDR、且與記憶體子系統30交換資料DATA的單獨的接腳。當命令CMD包括位址ADDR時,記憶體控制器20可省略用於輸出位址ADDR的接腳。根據示例性實施例,當多排式系統10被通電時,所述多個記憶體排RNK1至RNKM的晶粒內終端電路被賦能成初始狀態,在對所述多個記憶體排RNK1至RNKM中的寫入目標記憶體排進行寫入操作期間所述多個記憶體排RNK1至RNKM的晶粒內終端電路被賦能,且在對讀取目標記憶體排進行讀取操作期間所述多個記憶體排RNK1至RNKM中的讀取目標記憶體排的晶粒內終端電路被去能。Referring to FIG. 3, the multi-row system 10 includes a memory controller 20 and a memory subsystem 30. The memory subsystem 30 includes a plurality of memory banks RNK1 through RNKM and each of the memory banks RNK1 through RNKM includes one or more memory devices MEM, M being a natural number greater than one. The memory controller 20 and the memory subsystem 30 may each include an interface circuit to communicate with each other. The interface circuit can be connected by a control bus for transmitting commands CMD, an address ADDR, and a control signal CTRL, and a data bus for transmitting data. In an embodiment, the command CMD includes the address ADDR. The memory controller 20 can issue the command CMD and the address ADDR to access the memory subsystem 30, and the data can be written into the memory subsystem 30 or the data can be self-memory under the control of the memory controller 20. Subsystem 30 reads out. In an embodiment, memory controller 20 includes separate pins for outputting control signals CTRL, command CMD, address ADDR, and exchanging data DATA with memory subsystem 30. When the command CMD includes the address ADDR, the memory controller 20 can omit the pin for outputting the address ADDR. According to an exemplary embodiment, when the multi-row system 10 is powered on, the intra-die termination circuits of the plurality of memory banks RNK1 to RNKM are energized into an initial state in which the RNK1 to RNKM are arranged for the plurality of memories The intra-die termination circuit of the plurality of memory banks RNK1 to RNKM during the write operation of the write target memory bank is enabled, and during the read operation on the read target memory bank The intra-grain termination circuits of the read target memory banks in the memory banks RNK1 to RNKM are disabled.

圖4是示出圖3所示多排式系統中所包含的記憶體裝置的示例性實施例的方塊圖。4 is a block diagram showing an exemplary embodiment of a memory device included in the multi-row system of FIG.

參照圖4,記憶體裝置400包括控制邏輯410(例如,控制邏輯電路)、位址暫存器420、儲存庫控制邏輯(bank control logic)430(例如,儲存庫控制邏輯電路)、行位址多工器(row address multiplexer)440、刷新計數器445、行解碼器(row decoder)460、列解碼器(column decoder)470、記憶體胞元陣列(memory cell array)480、感測放大器單元485(例如,感測放大器電路)、輸入-輸出(input-output,I/O)閘控電路(gating circuit)490、及資料輸入-輸出(I/O)電路500。Referring to Figure 4, memory device 400 includes control logic 410 (e.g., control logic circuitry), address register 420, bank control logic 430 (e.g., repository control logic), row address A row address multiplexer 440, a refresh counter 445, a row decoder 460, a column decoder 470, a memory cell array 480, and a sense amplifier unit 485 ( For example, a sense amplifier circuit), an input-output (I/O) gating circuit 490, and a data input-output (I/O) circuit 500.

記憶體胞元陣列480包括多個儲存庫陣列(bank array)480a至480h。行解碼器460包括分別耦合至儲存庫陣列480a至480h的多個儲存庫行解碼器460a至460h。列解碼器470包括分別耦合至儲存庫陣列480a至480h的多個儲存庫列解碼器470a至470h。感測放大器單元485包括分別耦合至儲存庫陣列480a至480h的多個儲存庫感測放大器485a至485h。The memory cell array 480 includes a plurality of bank arrays 480a through 480h. Row decoder 460 includes a plurality of bank row decoders 460a through 460h coupled to bank arrays 480a through 480h, respectively. Column decoder 470 includes a plurality of bank column decoders 470a through 470h coupled to bank arrays 480a through 480h, respectively. The sense amplifier unit 485 includes a plurality of bank sense amplifiers 485a through 485h coupled to the bank arrays 480a through 480h, respectively.

位址暫存器420自記憶體控制器20接收包括儲存庫位址BANK_ADDR、行位址ROW_ADDR、及列位址COL_ADDR的位址ADDR。位址暫存器420將所接收儲存庫位址BANK_ADDR提供至儲存庫控制邏輯430,將所接收行位址ROW_ADDR提供至行位址多工器440,且將所接收列位址COL_ADDR提供至列解碼器470。The address register 420 receives from the memory controller 20 an address ADDR including a bank address BANK_ADDR, a row address ROW_ADDR, and a column address COL_ADDR. The address register 420 provides the received bank address BANK_ADDR to the repository control logic 430, the received row address ROW_ADDR to the row address multiplexer 440, and the received column address COL_ADDR to the column Decoder 470.

儲存庫控制邏輯430可基於儲存庫位址BANK_ADDR而產生儲存庫控制訊號。儲存庫行解碼器460a至460h中與儲存庫位址BANK_ADDR對應的一者可基於儲存庫控制訊號來激活。儲存庫列解碼器470a至470h中與儲存庫位址BANK_ADDR對應的一者可基於儲存庫控制訊號來激活。The repository control logic 430 can generate a repository control signal based on the repository address BANK_ADDR. One of the repository row decoders 460a through 460h corresponding to the repository address BANK_ADDR can be activated based on the repository control signal. One of the repository column decoders 470a through 470h corresponding to the repository address BANK_ADDR can be activated based on the repository control signal.

行位址多工器440可自位址暫存器420接收行位址ROW_ADDR,且可自刷新計數器445接收刷新行位址REF_ADDR。行位址多工器440可選擇性地輸出行位址ROW_ADDR或刷新行位址REF_ADDR中的一者作為行位址RA。自行位址多工器440輸出的行位址RA可應用於儲存庫行解碼器460a至460h。Row address multiplexer 440 can receive row address ROW_ADDR from address register 420 and can receive refresh row address REF_ADDR from self-refresh counter 445. The row address multiplexer 440 can selectively output one of the row address ROW_ADDR or the refresh row address REF_ADDR as the row address RA. The row address RA output by the self address multiplexer 440 can be applied to the bank row decoders 460a through 460h.

儲存庫行解碼器460a至460h中被激活的一個儲存庫行解碼器可對自行位址多工器440輸出的行位址RA進行解碼,且可激活與行位址RA對應的字元線(word-line)。舉例而言,被激活的儲存庫行解碼器可將字元線驅動電壓施加至與行位址RA對應的字元線。A bank row decoder activated in the bank row decoders 460a through 460h can decode the row address RA output by the self address multiplexer 440 and can activate the word line corresponding to the row address RA ( Word-line). For example, the activated bank row decoder can apply a word line drive voltage to a word line corresponding to the row address RA.

列解碼器470可包括列位址鎖存器(column address latch)。列位址鎖存器可自位址暫存器420接收列位址COL_ADDR,且暫時地儲存所接收的列位址COL_ADDR。在示例性實施例中,在叢發模式(burst mode)中,列位址鎖存器產生自所接收的列位址COL_ADDR遞增的列位址。列位址鎖存器可將暫時儲存的或產生的列位址應用於儲存庫列解碼器470a至470h。Column decoder 470 can include a column address latch. The column address latch can receive the column address COL_ADDR from the address register 420 and temporarily store the received column address COL_ADDR. In an exemplary embodiment, in a burst mode, the column address latch generates a column address that is incremented from the received column address COL_ADDR. The column address latch can apply the temporarily stored or generated column address to the bank column decoders 470a through 470h.

儲存庫列解碼器470a至470h中被激活的一個儲存庫列解碼器可對自列位址鎖存器輸出的列位址COL_ADDR進行解碼,且可控制輸入-輸出閘控電路490以輸出與列位址COL_ADDR對應的資料。A bank column decoder activated in the bank column decoders 470a through 470h can decode the column address COL_ADDR output from the column address latch and can control the input-output gate circuit 490 to output and column The data corresponding to the address COL_ADDR.

輸入/輸出閘控電路490可包括用於對輸入-輸出資料進行閘控的電路系統。輸入/輸出閘控電路490可更包括用於儲存自儲存庫陣列480a至480h輸出的資料的讀取資料鎖存器及用於將資料寫入儲存庫陣列480a至480h的寫入驅動器。Input/output gate control circuit 490 can include circuitry for gating the input-output data. The input/output gating circuit 490 can further include read data latches for storing data output from the bank arrays 480a through 480h and write drivers for writing data to the bank arrays 480a through 480h.

欲自儲存庫陣列480a至480h中的一個儲存庫陣列讀取的資料可藉由與欲被讀取資料的所述一個儲存庫陣列耦合的感測放大器485來感測,且可儲存於讀取資料鎖存器中。儲存於讀取資料鎖存器中的資料可經由資料輸入/輸出電路500而提供至記憶體控制器20。欲寫入儲存庫陣列480a至480h的一個儲存庫陣列中的資料DQ可被自記憶體控制器20提供至資料輸入/輸出電路500。寫入驅動器可將資料DQ寫入儲存庫陣列480a至480h中的一個儲存庫陣列中。The data to be read from one of the repository arrays 480a through 480h can be sensed by a sense amplifier 485 coupled to the one of the arrays of data to be read, and can be stored for reading. In the data latch. The data stored in the read data latch can be provided to the memory controller 20 via the data input/output circuit 500. The material DQ in a bank array to be written to the bank arrays 480a through 480h can be provided from the memory controller 20 to the data input/output circuit 500. The write driver can write the material DQ into one of the repository arrays 480a through 480h.

控制邏輯410可控制記憶體裝置400的操作。舉例而言,控制邏輯410可產生記憶體裝置400的控制訊號以進行寫入操作或讀取操作。控制邏輯410可包括命令解碼器(command decoder)411及模式暫存器集合(mode register set)412,命令解碼器411對自記憶體控制器20接收的命令CMD進行解碼,模式暫存器集合412設定記憶體裝置的操作模式。舉例而言,模式暫存器集合412中的暫存器的值可指示記憶體裝置的操作模式。Control logic 410 can control the operation of memory device 400. For example, control logic 410 can generate a control signal for memory device 400 for a write operation or a read operation. The control logic 410 can include a command decoder 411 and a mode register set 412 that decodes the command CMD received from the memory controller 20, the mode register set 412. Set the operating mode of the memory device. For example, the value of the scratchpad in the pattern register set 412 can indicate the mode of operation of the memory device.

圖5是示出根據本發明概念示例性實施例的圖4所示記憶體裝置中所包含的資料輸入-輸出電路的實施例的方塊圖。FIG. 5 is a block diagram showing an embodiment of a data input-output circuit included in the memory device shown in FIG. 4, according to an exemplary embodiment of the inventive concept.

參照圖5,資料輸入-輸出電路500包括晶粒內終端電路300、資料輸入-輸出接腳600、傳輸驅動器DR 710、及接收緩衝器BF 720。傳輸驅動器710基於所讀取資料來驅動資料輸入-輸出接腳600且接收緩衝器720接收經過資料輸入-輸出接腳600提供的寫入資料。舉例而言,所讀取資料被自記憶體排的記憶體輸出至傳輸驅動器710且記憶體控制器將寫入資料輸出至接收緩衝器720。在實施例中,傳輸驅動器DR 710及接收緩衝器BF 720是由運算放大器(operational amplifier)來實作。Referring to FIG. 5, the data input-output circuit 500 includes an intra-die terminal circuit 300, a data input-output pin 600, a transmission driver DR 710, and a reception buffer BF 720. The transfer driver 710 drives the data input-output pin 600 based on the read data and the receive buffer 720 receives the write data provided via the data input-output pin 600. For example, the read data is output from the memory of the memory bank to the transfer driver 710 and the memory controller outputs the write data to the receive buffer 720. In an embodiment, the transfer driver DR 710 and the receive buffer BF 720 are implemented by an operational amplifier.

晶粒內終端電路300包括終端控制單元310(例如,終端控制電路)及終端電阻器單元350。The intra-die termination circuit 300 includes a terminal control unit 310 (e.g., a terminal control circuit) and a termination resistor unit 350.

終端電阻器單元350耦合至資料輸入-輸出接腳600且對耦合至資料輸入-輸出接腳600的傳輸線提供終端阻抗。根據示例性實施例的晶粒內終端之控制方法可應用於控制用於達成記憶體控制器20與記憶體裝置30之間的雙向通訊的輸入-輸出接腳的終端。因此,根據示例性實施例的方法除可應用於資料輸入-輸出接腳600外亦可應用於資料選通接腳(data strobe pin)、資料遮罩接腳(data mask pin)、或終端資料選通接腳(termination data strobe pin)。根據示例性實施例的方法不包括用於達成自記憶體控制器20至記憶體裝置30的單向通訊的位址接腳、命令接腳的晶粒內終端。用語「接腳」廣泛地指代用於積體電路的電性內連(electrical interconnection),例如所述積體電路上的接墊(pad)或其他電性觸點(electrical contact)。The terminating resistor unit 350 is coupled to the data input-output pin 600 and provides a termination impedance to the transmission line coupled to the data input-output pin 600. The method of controlling the intra-die terminal according to an exemplary embodiment can be applied to a terminal that controls an input-output pin for achieving bidirectional communication between the memory controller 20 and the memory device 30. Therefore, the method according to the exemplary embodiment can be applied to a data strobe pin, a data mask pin, or a terminal device in addition to the data input-output pin 600. Termination data strobe pin. The method according to an exemplary embodiment does not include an intra-die terminal for an address pin, a command pin for achieving one-way communication from the memory controller 20 to the memory device 30. The term "pin" broadly refers to an electrical interconnection for an integrated circuit, such as a pad or other electrical contact on the integrated circuit.

在實施例中,終端電阻器單元350進行上拉(pull-up)終端操作以在電源電壓節點與資料輸入-輸出接腳600之間提供終端電阻及/或進行下拉(pull-down)終端操作以在接地節點與資料輸入-輸出接腳600之間提供終端電阻。以下將參照圖14A及圖14B闡述用於上拉終端操作及下拉終端操作二者的中心分接終端(CTT),以下將參照圖15A及圖15B闡述僅用於下拉終端操作的第一偽開放汲極(POD)終端,且以下將參照圖16A及圖16B闡述僅用於上拉終端操作的第二偽開放汲極終端。In an embodiment, the termination resistor unit 350 performs a pull-up terminal operation to provide termination resistance and/or pull-down terminal operation between the supply voltage node and the data input-output pin 600. A termination resistor is provided between the ground node and the data input-output pin 600. A center tap terminal (CTT) for both pull-up terminal operation and pull-down terminal operation will be explained below with reference to FIGS. 14A and 14B, and a first pseudo open only for pull-down terminal operation will be described below with reference to FIGS. 15A and 15B. A bungee (POD) terminal, and a second pseudo open gate terminal for operation of only the pull-up terminal will be described below with reference to FIGS. 16A and 16B.

儘管圖5示出其中配備有單獨的終端電阻器單元350的示例性實施例,然而傳輸驅動器710中的訊號驅動器(圖中未示出)自身可充當終端電阻器。舉例而言,在寫入操作中,傳輸驅動器710不傳輸讀取資料,且在接收緩衝器720被賦能以接收寫入資料的同時傳輸驅動器710充當終端電阻器單元350。Although FIG. 5 illustrates an exemplary embodiment in which a separate termination resistor unit 350 is provided, the signal driver (not shown) in the transmission driver 710 itself can function as a termination resistor. For example, in a write operation, transfer driver 710 does not transfer read data, and transfer driver 710 acts as termination resistor unit 350 while receive buffer 720 is enabled to receive write data.

當終端電阻器單元350進行上拉終端操作時,連接至資料輸入-輸出接腳600的傳輸線的電壓可實質上維持於電源電壓的位準。作為結果,僅當傳送為邏輯低位準的資料時,才有電流流經終端電阻器單元350及傳輸線。相比之下,當終端電阻器單元350進行下拉終端操作時,連接至資料輸入-輸出接腳600的傳輸線的電壓可實質上維持於接地電壓。作為結果,僅當傳送為邏輯高位準的資料時,才有電流流經終端電阻器單元350及傳輸線。When the termination resistor unit 350 performs the pull-up terminal operation, the voltage of the transmission line connected to the data input-output pin 600 can be substantially maintained at the level of the power supply voltage. As a result, current flows through the terminating resistor unit 350 and the transmission line only when the data is transferred to the logic low level. In contrast, when the termination resistor unit 350 performs a pull-down terminal operation, the voltage of the transmission line connected to the data input-output pin 600 can be substantially maintained at the ground voltage. As a result, current flows through the terminating resistor unit 350 and the transmission line only when the data is transferred to the logic high level.

終端控制單元310(例如,終端控制電路)接收強度碼(strength code)SCD及輸出賦能訊號OEN。終端控制單元310基於強度碼SCD及輸出賦能訊號OEN來產生用於控制終端電阻器單元350調整終端阻抗的終端控制訊號TCS。The terminal control unit 310 (for example, the terminal control circuit) receives the strength code SCD and the output enable signal OEN. The terminal control unit 310 generates a terminal control signal TCS for controlling the terminal resistor unit 350 to adjust the terminal impedance based on the intensity code SCD and the output enable signal OEN.

在示例性實施例中,強度碼SCD是與資料速率相關聯的多個位元。資料速率指代記憶體裝置的操作頻率或經過資料輸入-輸出接腳600傳送的資料的雙態觸變率(toggle rate)。舉例而言,終端阻抗可當操作頻率為第一頻率時改變成第一阻抗且當操作頻率為第二其他頻率時改變成第二終端。如以下將參照圖19A及圖19B所述,具有多個位元的強度碼SCD可基於圖4中的模式暫存器412中所儲存的值來提供。In an exemplary embodiment, the strength code SCD is a plurality of bits associated with a data rate. The data rate refers to the operating frequency of the memory device or the toggle rate of the data transmitted via the data input-output pin 600. For example, the termination impedance may change to a first impedance when the operating frequency is the first frequency and to the second terminal when the operating frequency is the second other frequency. As will be described below with reference to FIGS. 19A and 19B, an intensity code SCD having a plurality of bits may be provided based on values stored in the mode register 412 in FIG.

在實施例中,輸出賦能訊號OEN是在讀取操作期間被激活(actived)。儘管輸出賦能訊號OEN是使用中的,然而終端控制單元310提供處於預定邏輯位準的終端控制訊號TCS以控制終端電阻器單元350不提供終端阻抗。在此種情形中,終端電阻器單元350可響應於具有預定邏輯位準的終端控制訊號TCS而自資料輸入-輸出接腳600電性解耦(electrically decoupled)。當終端電阻器單元350自資料輸入-輸出接腳600電性解耦時,可稱晶粒內終端電路300或終端電阻器單元350為「被去能」。In an embodiment, the output enable signal OEN is actived during a read operation. Although the output enable signal OEN is in use, the terminal control unit 310 provides the terminal control signal TCS at a predetermined logic level to control the termination resistor unit 350 not to provide the termination impedance. In this case, the terminating resistor unit 350 can be electrically decoupled from the data input-output pin 600 in response to the terminal control signal TCS having a predetermined logic level. When the terminating resistor unit 350 is electrically decoupled from the data input-output pin 600, the in-die terminal circuit 300 or the terminating resistor unit 350 may be referred to as "disabled".

儘管在寫入操作期間輸出賦能訊號OEN被去激活(deactivated),然而終端控制單元310產生終端控制訊號TCS以控制終端電阻器單元350提供終端阻抗。終端控制單元310可響應於強度碼SCD來改變終端控制訊號TCS的邏輯位準以改變終端阻抗。舉例而言,強度碼SCD的值可指示特定終端阻抗或電阻。若終端電阻器單元350先前自資料輸入-輸出接腳600電性解耦,則終端電阻器單元350響應於終端控制訊號TCS的施加而重新耦合至資料輸入-輸出單元600。Although the output enable signal OEN is deactivated during the write operation, the terminal control unit 310 generates the terminal control signal TCS to control the termination resistor unit 350 to provide the termination impedance. The terminal control unit 310 can change the logic level of the terminal control signal TCS in response to the strength code SCD to change the terminal impedance. For example, the value of the intensity code SCD may indicate a particular termination impedance or resistance. If the terminating resistor unit 350 was previously electrically decoupled from the data input-output pin 600, the terminating resistor unit 350 is recoupled to the data input-output unit 600 in response to the application of the terminal control signal TCS.

圖6是示出根據本發明概念示例性實施例的圖5所示資料輸入-輸出電路中所包含的晶粒內終端電路的電路圖。FIG. 6 is a circuit diagram showing an intra-die terminal circuit included in the data input-output circuit shown in FIG. 5, according to an exemplary embodiment of the inventive concept.

參照圖6,晶粒內終端電路300包括上拉終端控制單元330、下拉終端控制單元340、上拉驅動器360、及下拉驅動器370。Referring to FIG. 6, the intra-die termination circuit 300 includes a pull-up terminal control unit 330, a pull-down terminal control unit 340, a pull-up driver 360, and a pull-down driver 370.

上拉終端控制單元330包括第一選擇器334至第三選擇器336(例如,多工器),且下拉終端控制單元340包括第四選擇器344至第六選擇器346(例如,多工器)。上拉驅動器360包括第一p通道金屬氧化物半導體(p-channel metal oxide semiconductor,PMOS)電晶體361至第三PMOS電晶體363及第一電阻器R1至第三電阻器R3。第一PMOS電晶體361至第三PMOS電晶體363連接至電源電壓VDDQ,且第一電阻器R1至第三電阻器R3中的每一者連接於第一PMOS電晶體361至第三PMOS電晶體363中相應的一者與資料輸入-輸出接腳600之間。下拉驅動器370包括第一n通道金屬氧化物半導體(n-channel metal oxide semiconductor,NMOS)電晶體371至第三NMOS電晶體373及第四電阻器R4至第六電阻器R6。第一NMOS電晶體371至第三NMOS電晶體373連接至接地電壓VSSQ,且第四電阻器R4至第六電阻器R6中的每一者連接於第一NMOS電晶體371至第三NMOS電晶體373中相應的一者與資料輸入-輸出接腳600之間。The pull-up terminal control unit 330 includes a first selector 334 to a third selector 336 (eg, a multiplexer), and the pull-down terminal control unit 340 includes a fourth selector 344 to a sixth selector 346 (eg, a multiplexer) ). The pull-up driver 360 includes a first p-channel metal oxide semiconductor (PMOS) transistor 361 to a third PMOS transistor 363 and first to third resistors R1 to R3. The first PMOS transistor 361 to the third PMOS transistor 363 are connected to the power supply voltage VDDQ, and each of the first to third resistors R1 to R3 is connected to the first to third PMOS transistors 361 to 361 A corresponding one of 363 is between the data input-output pin 600. The pull-down driver 370 includes a first n-channel metal oxide semiconductor (NMOS) transistor 371 to a third NMOS transistor 373 and fourth to sixth resistors R4 to R6. The first NMOS transistor 371 to the third NMOS transistor 373 are connected to the ground voltage VSSQ, and each of the fourth to sixth resistors R4 to R6 is connected to the first NMOS transistor 371 to the third NMOS transistor. A corresponding one of 373 is between the data input-output pin 600.

第一選擇器334至第三選擇器336中的每一者可接收電源電壓VDDQ作為第一輸入中的每一者,接收第一強度碼位元至第三強度碼位元SCD1、SCD2及SCD3作為第二輸入中的每一者,且接收輸出賦能訊號OEN作為控制訊號中的每一者。第四選擇器344至第六選擇器346中的每一者可接收接地電壓VDDQ作為第一輸入中的每一者,接收第四強度碼位元至第六強度碼位元SCD4、SCD5及SCD6作為第二輸入中的每一者,且接收輸出賦能訊號OEN作為控制訊號中的每一者。強度碼SCD可包括強度碼位元SCD1至SDC6。Each of the first selector 334 to the third selector 336 may receive the power supply voltage VDDQ as each of the first inputs, and receive the first intensity code bits to the third intensity code bits SCD1, SCD2, and SCD3 As each of the second inputs, the output enable signal OEN is received as each of the control signals. Each of the fourth selector 644 to the sixth selector 346 may receive the ground voltage VDDQ as each of the first inputs, and receive the fourth intensity code bits to the sixth intensity code bits SCD4, SCD5, and SCD6. As each of the second inputs, the output enable signal OEN is received as each of the control signals. The intensity code SCD may include intensity code bits SCD1 to SDC6.

儘管在讀取操作期間輸出賦能訊號OEN是在邏輯高位準處被激活,然而第一選擇器334至第三選擇器336可輸出為邏輯高位準的第一終端控制訊號至第三終端控制訊號TCS1、TCS2、及TCS3,且第四選擇器344至第六選擇器346可輸出為邏輯低位準的第四終端控制訊號至第六終端控制訊號TCS4、TCS5、及TCS6。第一PMOS電晶體361至第三PMOS電晶體363響應於為邏輯高位準的第一終端控制訊號至第三終端控制訊號TCS1、TCS2、及TCS3而被斷開,且第四PMOS電晶體371至第六PMOS電晶體373響應於為邏輯低位準的第四終端控制訊號至第六終端控制訊號TCS4、TCS5、及TCS6而被斷開。因此,在讀取操作期間,資料輸入-輸出接腳600與電源電壓VDDQ及接地電壓VSSQ電性地斷開連接且晶粒內終端電路300被去能。Although the output enable signal OEN is activated at the logic high level during the read operation, the first selector 334 to the third selector 336 may output the first terminal control signal to the third terminal control signal of the logic high level. TCS1, TCS2, and TCS3, and the fourth selector 344 to the sixth selector 346 can output the fourth terminal control signals to the sixth terminal control signals TCS4, TCS5, and TCS6 which are logic low levels. The first PMOS transistor 361 to the third PMOS transistor 363 are turned off in response to the first terminal control signal to the logic high level to the third terminal control signals TCS1, TCS2, and TCS3, and the fourth PMOS transistor 371 is The sixth PMOS transistor 373 is turned off in response to the fourth terminal control signal to the sixth terminal control signals TCS4, TCS5, and TCS6 that are logic low. Therefore, during the read operation, the data input-output pin 600 is electrically disconnected from the power supply voltage VDDQ and the ground voltage VSSQ and the intra-die termination circuit 300 is disabled.

儘管在寫入操作期間輸出賦能訊號OEN是在邏輯低位準處被激活,然而第一選擇器334至第三選擇器336輸出第一強度碼位元至第三強度碼位元SCD1、SCD2、及SCD3作為第一終端控制訊號至第三終端控制訊號TCS1、TCS2、TCS3,且第四選擇器344至第六選擇器346輸出第四強度碼位元至第六強度碼位元SCD4、SCD5、及SCD6作為第四終端控制訊號至第六終端控制訊號TCS4、TCS5、及TCS6。Although the output enable signal OEN is activated at the logic low level during the write operation, the first to third selectors 334 to 336 output the first intensity code bits to the third intensity code bits SCD1, SCD2. And SCD3 as the first terminal control signal to the third terminal control signals TCS1, TCS2, TCS3, and the fourth selector 344 to the sixth selector 346 output the fourth intensity code bit to the sixth intensity code bits SCD4, SCD5, And SCD6 serves as a fourth terminal control signal to sixth terminal control signals TCS4, TCS5, and TCS6.

如上所述,強度碼SCD(即,強度碼位元SCD1至SCD6)可與資料速率或操作頻率相關聯。因此,當資料速率相對高時,藉由減小終端阻抗,通道被快速地充電/放電。當資料速率相對低時,藉由增大終端阻抗以減小流經通道的直流(direct current,DC)電流,電流消耗可降低。As described above, the intensity code SCD (i.e., the intensity code bits SCD1 through SCD6) can be associated with a data rate or operating frequency. Therefore, when the data rate is relatively high, the channel is quickly charged/discharged by reducing the terminal impedance. When the data rate is relatively low, the current consumption can be reduced by increasing the termination impedance to reduce the direct current (DC) current flowing through the channel.

儘管第一電阻器R1至第六電阻器R6中的每一者在圖6中被示為單個電阻器,然而在示例性實施例中,第一電阻器R1至第六電阻器R6中的每一者可實作有並聯連接及/或串聯連接的多個電阻器以及用於控制所述多個電阻器的連接的多個電晶體。Although each of the first to sixth resistors R1 to R6 is illustrated as a single resistor in FIG. 6, in the exemplary embodiment, each of the first to sixth resistors R1 to R6 One may be implemented as a plurality of resistors having parallel connections and/or series connections and a plurality of transistors for controlling the connection of the plurality of resistors.

圖6示出圖14A及圖14B所示中心分接終端方案的示例性實施例,且可根據其來理解偽開放汲極終端方案。自圖6省略上拉終端控制單元330及上拉驅動器360的配置對應於圖15A及圖15B所示第一偽開放汲極終端,且自圖6省略下拉終端控制單元340及下拉驅動器370的配置對應於圖16A及圖16B所示第二偽開放汲極終端。FIG. 6 illustrates an exemplary embodiment of the center tap terminal scheme illustrated in FIGS. 14A and 14B, and the pseudo open gate terminal scheme can be understood therefrom. The configuration of the pull-up terminal control unit 330 and the pull-up driver 360 is omitted from FIG. 6 corresponding to the first pseudo-opening terminal shown in FIGS. 15A and 15B, and the configuration of the pull-down terminal control unit 340 and the pull-down driver 370 is omitted from FIG. Corresponding to the second pseudo open dipole terminal shown in FIGS. 16A and 16B.

圖7、圖8A、及圖8B是示出根據本發明概念示例性實施例的在寫入操作中控制晶粒內終端之方法的圖式。7, FIG. 8A, and FIG. 8B are diagrams illustrating a method of controlling a terminal within a die in a write operation, according to an exemplary embodiment of the inventive concept.

如圖7中所示,藉由資料輸入-輸出接腳PADC及PAD1至PADM以及傳輸線TL將記憶體控制器MC並聯連接至所述多個記憶體排RNK1至RNKM。傳輸線TL在記憶體排RNK1至RNKM的資料輸入-輸出接腳PAD1至PADM的共用節點NC處分支。As shown in FIG. 7, the memory controller MC is connected in parallel to the plurality of memory banks RNK1 to RNKM by the data input-output pins PADC and PAD1 to PADM and the transmission line TL. The transmission line TL branches at the shared node NC of the data input-output pins PAD1 to PADM of the memory banks RNK1 to RNKM.

圖7示出其中第一記憶體排RNK1對應於寫入目標記憶體排且其他記憶體排RNK2至RNKM對應於非目標記憶體排的示例性情形。在圖7中,賦能元件標有影線。在寫入操作中,在與資料發射器裝置對應的記憶體控制器MC中傳輸驅動器DR0被賦能且接收緩衝器BF0被去能。另外,在與資料接收器裝置對應的寫入目標記憶體排RNK1中接收緩衝器BF1被賦能,然而寫入目標記憶體排RNK1中的傳輸驅動器DR1、非目標記憶體排RNK2至RNKM中的接收緩衝器BF2至BFM及傳輸驅動器DR2至DRM則被去能。FIG. 7 shows an exemplary case in which the first memory bank RNK1 corresponds to the write target memory bank and the other memory banks RNK2 to RNKM correspond to the non-target memory bank. In Figure 7, the energizing elements are marked with hatching. In the write operation, the transfer driver DR0 is enabled and the receive buffer BF0 is disabled in the memory controller MC corresponding to the data transmitter device. Further, the reception buffer BF1 is enabled in the write target memory bank RNK1 corresponding to the data sink device, but is written in the transfer driver DR1 in the target memory bank RNK1, and in the non-target memory banks RNK2 to RNKM. The receive buffers BF2 to BFM and the transfer drivers DR2 to DRM are disabled.

根據示例性實施例,在寫入操作期間,寫入目標記憶體排RNK1中的晶粒內終端電路TER1及非目標記憶體排RNK2至RNKM中的晶粒內終端電路TER2至TERM均被賦能。記憶體控制器MC中的晶粒內終端電路TER0被去能。自記憶體控制器MC中的傳輸驅動器DR0至記憶體排RNK1至RNKM中的晶粒內終端電路TER1至TERM中的所有者可形成電流路徑且因此訊號反射可減少且訊號完整性可增強。According to an exemplary embodiment, during the write operation, the intra-die terminal circuits TER1 in the write target memory bank RNK1 and the intra-die terminal circuits TER2 to TERM in the non-target memory banks RNK2 to RNKM are enabled. . The intra-die termination circuit TER0 in the memory controller MC is disabled. The current path from the transfer driver DR0 in the memory controller MC to the intra-die termination circuits TER1 to TERM in the memory banks RNK1 to RNKM can form a current path and thus signal reflection can be reduced and signal integrity can be enhanced.

在圖8A及圖8B中,時間點Ta0至Tf1對應於操作時鐘訊號對CK_T及CK_C的邊緣。第一排選擇訊號CS_RNK1及第一命令訊號CMD_RNK1專用於第一記憶體排RNK1,且第二排選擇訊號CS_RNK2及第二命令訊號CMD_RNK2專用於第二記憶體排RNK2。資料選通訊號對WCK_T及WCK_C以及資料訊號DQ_[15:0]被自記憶體控制器MC提供至寫入目標記憶體排RNK1。ODT_RNK1表示第一記憶體排RNK1的晶粒內終端狀態,且ODT_RNK2表示第二記憶體排RNK2的晶粒內終端狀態。DES表示「解除選擇(deselect)」且TRANSITION表示當晶粒內終端狀態改變時的轉變間隔(transition interval)。In FIGS. 8A and 8B, time points Ta0 to Tf1 correspond to edges of the operation clock signal pair CK_T and CK_C. The first row selection signal CS_RNK1 and the first command signal CMD_RNK1 are dedicated to the first memory bank RNK1, and the second row selection signal CS_RNK2 and the second command signal CMD_RNK2 are dedicated to the second memory bank RNK2. The data selection communication number pair WCK_T and WCK_C and the data signal DQ_[15:0] are supplied from the memory controller MC to the write target memory bank RNK1. ODT_RNK1 represents the intra-die terminal state of the first memory bank RNK1, and ODT_RNK2 represents the intra-die terminal state of the second memory bank RNK2. DES stands for "deselect" and TRANSITION indicates the transition interval when the state of the terminal in the die changes.

圖8A及圖8B示出當第一記憶體排RNK1對應於寫入目標記憶體排且第二記憶體排RNK2對應於非目標記憶體排時進行的寫入操作的示例性情形。在第一排選擇訊號CS_RNK1被激活的同時,藉由第一命令訊號CMD_RNK1來傳送命令位址訊號命令及寫入命令WR,且第二排選擇訊號CS_RNK2及第二命令訊號CMD_RNK2維持去激活狀態。8A and 8B illustrate an exemplary case of a write operation performed when the first memory bank RNK1 corresponds to the write target memory bank and the second memory bank RNK2 corresponds to the non-target memory bank. While the first row of selection signals CS_RNK1 is activated, the command bit signal command and the write command WR are transmitted by the first command signal CMD_RNK1, and the second row selection signal CS_RNK2 and the second command signal CMD_RNK2 are maintained in a deactivated state.

根據示例性實施例,在寫入操作期間,寫入目標記憶體排RNK1中的晶粒內終端電路及非目標記憶體排RNK2中的晶粒內終端電路被賦能。在示例性實施例中,如圖8A中所示,在用於寫入操作的資料訊號DQ_[15:0]進行雙態觸變的同時,寫入目標記憶體排RNK1中的晶粒內終端電路及非目標記憶體排RNK2中的晶粒內終端電路維持初始狀態NT-ODT。在示例性實施例中,在用於寫入操作的資料訊號DQ_[15:0]進行雙態觸變的同時,非目標記憶體排RNK2中的晶粒內終端電路維持初始狀態NT-ODT且寫入目標記憶體排RNK1中的晶粒內終端電路改變成狀態TG-ODT,狀態TG-ODT具有與初始狀態NT-ODT的電阻值不同的電阻值。儘管以上闡述具有16位元資料的資料訊號,然而本發明概念並非僅限於此,乃因在替代實施例中所述資料的大小可小於16個位元或大於16個位元。According to an exemplary embodiment, during the write operation, the intra-die termination circuitry in the write target memory bank RNK1 and the intra-die termination circuitry in the non-target memory bank RNK2 are enabled. In an exemplary embodiment, as shown in FIG. 8A, the intra-die termination in the target memory bank RNK1 is written while the data signal DQ_[15:0] for the write operation is toggled. The intra-die termination circuitry in the circuit and non-target memory bank RNK2 maintains the initial state NT-ODT. In an exemplary embodiment, while the data signal DQ_[15:0] for the write operation is in a two-state thixotropic, the intra-die termination circuit in the non-target memory bank RNK2 maintains the initial state NT-ODT and The intra-die terminal circuit written in the target memory bank RNK1 is changed to the state TG-ODT, and the state TG-ODT has a resistance value different from that of the initial state NT-ODT. Although the data signal having 16-bit data is set forth above, the inventive concept is not limited thereto, as the size of the material may be less than 16 bits or greater than 16 bits in alternative embodiments.

圖9及圖10是示出根據本發明概念示例性實施例的在讀取操作中控制晶粒內終端之方法的圖式。9 and 10 are diagrams illustrating a method of controlling a terminal within a die in a read operation, according to an exemplary embodiment of the inventive concept.

如圖9中所示,藉由資料輸入-輸出接腳PADC及PAD1至PADM以及傳輸線TL將記憶體控制器MC並聯連接至所述多個記憶體排RNK1至RNKM。傳輸線TL在記憶體排RNK1至RNKM的資料輸入-輸出接腳PAD1至PADM的共用節點NC處分支。As shown in FIG. 9, the memory controller MC is connected in parallel to the plurality of memory banks RNK1 to RNKM by the data input-output pins PADC and PAD1 to PADM and the transmission line TL. The transmission line TL branches at the shared node NC of the data input-output pins PAD1 to PADM of the memory banks RNK1 to RNKM.

圖9示出其中第一記憶體排RNK1對應於讀取目標記憶體排且其他記憶體排RNK2至RNKM對應於非目標記憶體排的示例性情形。在圖9中,賦能元件標有影線。在讀取操作中,在與資料接收器裝置對應的記憶體控制器MC中接收緩衝器BF0被賦能且傳輸驅動器DR0被去能。另外,在與資料發射器裝置對應的讀取目標記憶體排RNK1中傳輸驅動器DR1被賦能,而讀取目標記憶體排RNK1中的接收緩衝器BF1、非目標記憶體排RNK2至RNKM中的接收緩衝器BF2至BFM及傳輸驅動器DR2至DRM則被去能。FIG. 9 shows an exemplary case in which the first memory bank RNK1 corresponds to the read target memory bank and the other memory banks RNK2 to RNKM correspond to the non-target memory bank. In Figure 9, the energizing elements are marked with hatching. In the read operation, the receive buffer BF0 is enabled and the transfer driver DR0 is disabled in the memory controller MC corresponding to the data sink device. In addition, the transfer driver DR1 is enabled in the read target memory bank RNK1 corresponding to the data transmitter device, and the read buffer BF1 in the target memory bank RNK1 is read, and the non-target memory banks RNK2 to RNKM are read. The receive buffers BF2 to BFM and the transfer drivers DR2 to DRM are disabled.

根據示例性實施例,在讀取操作期間,寫入目標記憶體排RNK1中的晶粒內終端電路TER1被去能且非目標記憶體排RNK2至RNKM中的晶粒內終端電路TER2至TERM被賦能。記憶體控制器MC中的晶粒內終端電路TER0被賦能。自讀取目標記憶體排RNK1中的傳輸驅動器DR1至傳輸驅動器DR0中的晶粒內終端電路TER0及至非目標記憶體排RNK2至RNKM中的晶粒內終端電路TER2至TERM可形成電流路徑且因此訊號反射可減少且訊號完整性可增強。According to an exemplary embodiment, during the read operation, the intra-die terminal circuits TER1 in the write target memory bank RNK1 are disabled and the intra-die terminal circuits TER2 to TERM in the non-target memory banks RNK2 to RNKM are Empowerment. The intra-die termination circuit TER0 in the memory controller MC is energized. The self-reading intra-die terminal circuit TER0 in the target memory bank RNK1 to the intra-die terminal circuit TER0 in the transfer driver DR0 and the non-target memory banks RNK2 to RNKM can form a current path and thus Signal reflection can be reduced and signal integrity can be enhanced.

在圖10中,時間點Ta0Tf1對應於操作時鐘訊號對CK_T及CK_C的邊緣。第一排選擇訊號CS_RNK1及第一命令訊號CMD_RNK1專用於第一記憶體排RNK1,且第二排選擇訊號CS_RNK2及第二命令訊號CMD_RNK2專用於第二記憶體排RNK2。資料選通訊號對WCK_T及WCK_C以及資料訊號DQ_[15:0]被自讀取目標記憶體排RNK1提供至記憶體控制器MC。ODT_RNK1表示第一記憶體排RNK1的晶粒內終端狀態,且ODT_RNK2表示第二記憶體排RNK2的晶粒內終端狀態。DES表示「解除選擇」且TRANSITION表示當晶粒內終端狀態改變時的轉變間隔。In FIG. 10, the time point Ta0Tf1 corresponds to the edge of the operation clock signal pair CK_T and CK_C. The first row selection signal CS_RNK1 and the first command signal CMD_RNK1 are dedicated to the first memory bank RNK1, and the second row selection signal CS_RNK2 and the second command signal CMD_RNK2 are dedicated to the second memory bank RNK2. The data selection communication number is supplied to the memory controller MC from the read target memory bank RNK1 to the WCK_T and WCK_C and the data signal DQ_[15:0]. ODT_RNK1 represents the intra-die terminal state of the first memory bank RNK1, and ODT_RNK2 represents the intra-die terminal state of the second memory bank RNK2. DES means "deselection" and TRANSITION indicates the transition interval when the state of the terminal in the die changes.

圖10示出當第一記憶體排RNK1對應於讀取目標記憶體排且第二記憶體排RNK2對應於非目標記憶體排時進行的讀取操作的示例性情形。在第一排選擇訊號CS_RNK1被激活的同時,藉由第一命令訊號CMD_RNK1來傳送命令位址訊號命令及讀取命令RD,且第二排選擇訊號CS_RNK2及第二命令訊號CMD_RNK2維持去激活狀態。FIG. 10 shows an exemplary case of a read operation performed when the first memory bank RNK1 corresponds to the read target memory bank and the second memory bank RNK2 corresponds to the non-target memory bank. While the first row of selection signals CS_RNK1 is activated, the command bit signal command and the read command RD are transmitted by the first command signal CMD_RNK1, and the second row selection signal CS_RNK2 and the second command signal CMD_RNK2 are maintained in a deactivated state.

根據示例性實施例,在讀取操作期間,讀取目標記憶體排RNK1中的晶粒內終端電路被去能且非目標記憶體排RNK2中的晶粒內終端電路被賦能。在示例性實施例中,如圖10中所示,在用於讀取操作的資料訊號DQ_[15:0]進行雙態觸變的同時,非目標記憶體排RNK2中的晶粒內終端電路維持初始狀態NT-ODT且讀取目標記憶體排RNK1中的晶粒內終端電路改變成去能狀態NT-ODT OFF。According to an exemplary embodiment, during the read operation, the intra-die termination circuitry in the read target memory bank RNK1 is disabled and the intra-die termination circuitry in the non-target memory bank RNK2 is enabled. In an exemplary embodiment, as shown in FIG. 10, the intra-die termination circuit in the non-target memory bank RNK2 while the data signal DQ_[15:0] for the read operation is performing the two-state thixotropic The initial state NT-ODT is maintained and the intra-die termination circuit in the read target memory bank RNK1 is changed to the disable state NT-ODT OFF.

圖11是示出根據本發明概念示例性實施例的應用於晶粒內終端之控制方法的電阻設定的實施例的圖式。11 is a diagram showing an embodiment of resistance setting applied to a control method of a terminal in a die according to an exemplary embodiment of the inventive concept.

參照圖11,在讀取操作期間,目標記憶體排RNK_TG中的晶粒內終端電路被去能且非目標記憶體排RNK_NT及記憶體控制器MC中的晶粒內終端電路具有第一電阻值M*Rtt。在寫入操作期間,目標記憶體排RNK_TG及非目標記憶體排RNK_NT中的晶粒內終端電路具有第一電阻值M*Rtt且記憶體控制器MC中的晶粒內終端電路被去能。第一電阻值M*Rtt可對應於上述初始狀態的電阻值。因此,如參照圖8A所述,在寫入操作期間,目標記憶體排RNK_TG中的晶粒內終端電路及非目標記憶體排RNK_NT中的晶粒內終端電路可維持初始狀態以具有第一電阻值M*Rtt。Referring to FIG. 11, during the read operation, the intra-die termination circuit in the target memory bank RNK_TG is disabled and the intra-die termination circuit in the non-target memory bank RNK_NT and the memory controller MC has the first resistance value. M*Rtt. During the write operation, the intra-die termination circuitry in the target memory bank RNK_TG and the non-target memory bank RNK_NT has a first resistance value M*Rtt and the intra-die termination circuitry in the memory controller MC is disabled. The first resistance value M*Rtt may correspond to the resistance value of the initial state described above. Therefore, as described with reference to FIG. 8A, during the write operation, the intra-die termination circuit in the target memory bank RNK_TG and the intra-die termination circuit in the non-target memory bank RNK_NT can maintain the initial state to have the first resistance. The value is M*Rtt.

圖12是用於闡述與圖11所示電阻設定對應的在寫入操作中的晶粒內終端電路的等效電阻的圖式。Figure 12 is a diagram for explaining the equivalent resistance of the intra-die termination circuit in the write operation corresponding to the resistance setting shown in Figure 11.

參照圖12,在將資料自記憶體控制器MC傳送至目標記憶體排RNK1的同時進行寫入操作期間,目標記憶體排RNK1及非目標記憶體排RNK2至RNKM中的所有晶粒內終端電路具有第一電阻值M*Rtt。當所述多個記憶體排RNK1至RNKM的數目為M時,在共用節點NC與電源電壓VDDQ之間並聯連接有具有第一電阻值M*Rtt的M個電阻器,且共用節點NC與電源電壓VDDQ之間的等效電阻值對應於Rtt。以同樣的方式,共用節點NC與接地電壓VSSQ之間的等效電阻值對應於Rtt。以下將參照圖14A至圖16B闡述與等效電阻值Rtt對應的各種終端方案。Referring to FIG. 12, all intra-die terminal circuits in the target memory bank RNK1 and the non-target memory banks RNK2 to RNKM during the write operation while transferring data from the memory controller MC to the target memory bank RNK1 There is a first resistance value M*Rtt. When the number of the plurality of memory banks RNK1 to RNKM is M, M resistors having a first resistance value M*Rtt are connected in parallel between the common node NC and the power supply voltage VDDQ, and the common node NC and the power source are connected. The equivalent resistance value between the voltages VDDQ corresponds to Rtt. In the same manner, the equivalent resistance value between the common node NC and the ground voltage VSSQ corresponds to Rtt. Various terminal schemes corresponding to the equivalent resistance value Rtt will be explained below with reference to FIGS. 14A to 16B.

圖13是用於闡述與圖11所示電阻設定對應的在讀取操作中的晶粒內終端電路的等效電阻的圖式。Figure 13 is a diagram for explaining the equivalent resistance of the intra-die termination circuit in the read operation corresponding to the resistance setting shown in Figure 11.

參照圖13,在將資料自目標記憶體排RNK1傳送至記憶體控制器MC的同時進行讀取操作期間,目標記憶體排RNK1中的晶粒內終端電路被去能且非目標記憶體排RNK2至RNKM及記憶體控制器MC中的晶粒內終端電路具有第一電阻值M*Rtt。當所述多個記憶體排RNK1至RNKM的數目為M時,在共用節點NC與電源電壓VDDQ之間並聯連接有具有第一電阻值M*Rtt的M個電阻器,且共用節點NC與電源電壓VDDQ之間的等效電阻值對應於Rtt。以同樣的方式,共用節點NC與接地電壓VSSQ之間的等效電阻值對應於Rtt。以下將參照圖14A至圖16B闡述與等效電阻值Rtt對應的各種終端方案。圖14A至圖16B所示配置是用於闡述幾個可能的終端方案的示例性實施例,但傳輸驅動器及晶粒內終端電路的配置並非僅限於此。舉例而言,可將N型電晶體與P型電晶體互換及/或可向傳輸驅動器添加用於電力閘控(power gating)的電晶體。Referring to FIG. 13, during the read operation while transferring data from the target memory bank RNK1 to the memory controller MC, the intra-die terminal circuit in the target memory bank RNK1 is disabled and the non-target memory bank RNK2 The intra-die termination circuit in the RNKM and the memory controller MC has a first resistance value M*Rtt. When the number of the plurality of memory banks RNK1 to RNKM is M, M resistors having a first resistance value M*Rtt are connected in parallel between the common node NC and the power supply voltage VDDQ, and the common node NC and the power source are connected. The equivalent resistance value between the voltages VDDQ corresponds to Rtt. In the same manner, the equivalent resistance value between the common node NC and the ground voltage VSSQ corresponds to Rtt. Various terminal schemes corresponding to the equivalent resistance value Rtt will be explained below with reference to FIGS. 14A to 16B. The configuration shown in FIGS. 14A to 16B is an exemplary embodiment for explaining several possible terminal schemes, but the configuration of the transmission driver and the intra-die termination circuit is not limited thereto. For example, an N-type transistor can be interchanged with a P-type transistor and/or a transistor for power gating can be added to the transmission driver.

圖14A及圖14B是用於闡述中心分接終端(CTT)的圖式。14A and 14B are diagrams for explaining a center tap terminal (CTT).

參照圖14A,發射器裝置中的傳輸驅動器70基於來自所述發射器裝置的內部訊號的傳輸訊號ST驅動輸入-輸出接墊PADH。發射器裝置的輸入-輸出接墊PADH藉由傳輸線TL連接至接收器裝置的輸入-輸出接墊PADS。中心分接終端方案的終端電路80連接至接收器裝置的輸入-輸出接墊PADS以進行阻抗匹配。接收器裝置中的接收緩衝器BF可藉由輸入-輸出接墊PADS將輸入訊號SI與參考電壓VREF進行比較以將緩衝器訊號SB提供至所述接收器裝置的內部電路。Referring to Figure 14A, the transmission driver 70 in the transmitter device drives the input-output pad PADH based on the transmission signal ST from the internal signal of the transmitter device. The input-output pad PADH of the transmitter device is connected to the input-output pad PADS of the receiver device via a transmission line TL. The termination circuit 80 of the central tap terminal scheme is connected to the input-output pad PADS of the receiver device for impedance matching. The receive buffer BF in the receiver device can compare the input signal SI with the reference voltage VREF by the input-output pad PADS to provide the buffer signal SB to the internal circuit of the receiver device.

傳輸驅動器70可包括連接於第一電源電壓VDDQ與輸入-輸出接墊PADH之間的上拉單元及連接於輸入-輸出接墊PADH與低於第一電源電壓VDDQ的第二電源電壓VSSQ之間的下拉單元。上拉單元可包括響應於傳輸訊號ST來進行開關的接通電阻器(turn-on resistor)RON及p通道金屬氧化物半導體(PMOS)電晶體TP1。下拉單元可包括響應於傳輸訊號ST來進行開關的接通電阻器RON及n通道金屬氧化物半導體(NMOS)電晶體TN1。可省略接通電阻器RON且每一接通電阻器RON可表示當電晶體TP1及TN1中的每一者被接通時電壓節點與輸入-輸出接墊PADH之間的電阻。The transfer driver 70 may include a pull-up unit connected between the first power supply voltage VDDQ and the input-output pad PADH and a second power supply voltage VSSQ connected to the input-output pad PADH and lower than the first power supply voltage VDDQ. Drop-down unit. The pull-up unit may include a turn-on resistor RON and a p-channel metal oxide semiconductor (PMOS) transistor TP1 that switch in response to the transmission signal ST. The pull-down unit may include a turn-on resistor RON and an n-channel metal oxide semiconductor (NMOS) transistor TN1 that are switched in response to the transmission signal ST. The turn-on resistor RON may be omitted and each turn-on resistor RON may represent a resistance between the voltage node and the input-output pad PADH when each of the transistors TP1 and TN1 is turned on.

中心分接終端方案的終端電路80可包括連接於第一電源電壓VDDQ與輸入-輸出接墊PADS之間的第一子終端電路及連接於輸入-輸出接墊PADS與第二電源電壓VSSQ之間的第二子終端電路。第一子終端電路可包括響應於低電壓而被接通的終端電阻器Rtt及PMOS電晶體TP2。第二子終端電路可包括響應於高電壓而被接通的終端電阻器Rtt及NMOS電晶體TN2。可省略終端電阻器Rtt且每一終端電阻器Rtt可表示當電晶體TP2及TN2中的每一者被接通時電壓節點與輸入-輸出接墊PADS之間的電阻。The terminal circuit 80 of the central tap terminal scheme may include a first sub-terminal circuit connected between the first power supply voltage VDDQ and the input-output pad PADS and connected between the input-output pad PADS and the second power supply voltage VSSQ The second sub-terminal circuit. The first sub-terminal circuit may include a termination resistor Rtt and a PMOS transistor TP2 that are turned on in response to a low voltage. The second sub-terminal circuit may include a terminating resistor Rtt and an NMOS transistor TN2 that are turned on in response to a high voltage. The terminating resistor Rtt may be omitted and each terminating resistor Rtt may represent the resistance between the voltage node and the input-output pad PADS when each of the transistors TP2 and TN2 is turned "on".

在圖14A中的中心分接終端方案的終端電路80的情形中,輸入訊號SI的高電壓位準VIH及低電壓位準VIL可被表示成圖14B。可假定第二電源電壓VSSQ為接地電壓(即,VSSQ=0),且可忽略沿傳輸線TL的壓降(voltage drop)。因此,可根據表達式1來計算高電壓位準VIH、低電壓位準VIL、及最佳參考電壓VREF。 表達式1: VIH=VDDQ*(RON+Rtt)/(2RON+Rtt), VIL=VDDQ*RON/(2RON+Rtt), VREF=(VIH+VIL)/2=VDDQ/2In the case of the terminal circuit 80 of the center tap terminal scheme in FIG. 14A, the high voltage level VIH and the low voltage level VIL of the input signal SI can be represented as FIG. 14B. It can be assumed that the second power supply voltage VSSQ is the ground voltage (ie, VSSQ = 0), and the voltage drop along the transmission line TL can be ignored. Therefore, the high voltage level VIH, the low voltage level VIL, and the optimum reference voltage VREF can be calculated according to Expression 1. Expression 1: VIH=VDDQ*(RON+Rtt)/(2RON+Rtt), VIL=VDDQ*RON/(2RON+Rtt), VREF=(VIH+VIL)/2=VDDQ/2

圖15A及圖15B是用於闡述第一偽開放汲極(POD)終端的圖式。15A and 15B are diagrams for explaining a first pseudo open bungee (POD) terminal.

參照圖15A,發射器裝置中的傳輸驅動器70基於來自所述發射器裝置的內部訊號的傳輸訊號ST驅動輸入-輸出接墊PADH。發射器裝置的輸入-輸出接墊PADH藉由傳輸線TL連接至接收器裝置的輸入-輸出接墊PADS。第一偽開放汲極終端方案的終端電路81可連接至接收器裝置的輸入-輸出接墊PADS以進行阻抗匹配。接收器裝置中的接收緩衝器BF可藉由輸入-輸出接墊PADS將輸入訊號SI與參考電壓VREF進行比較以將緩衝器訊號SB提供至所述接收器裝置的內部電路。Referring to Figure 15A, the transmission driver 70 in the transmitter device drives the input-output pad PADH based on the transmission signal ST from the internal signal of the transmitter device. The input-output pad PADH of the transmitter device is connected to the input-output pad PADS of the receiver device via a transmission line TL. The terminal circuit 81 of the first pseudo open end terminal scheme can be connected to the input-output pad PADS of the receiver device for impedance matching. The receive buffer BF in the receiver device can compare the input signal SI with the reference voltage VREF by the input-output pad PADS to provide the buffer signal SB to the internal circuit of the receiver device.

傳輸驅動器70可包括連接於第一電源電壓VDDQ與輸入-輸出接墊PADH之間的上拉單元及連接於輸入-輸出接墊PADH與低於第一電源電壓VDDQ的第二電源電壓VSSQ之間的下拉單元。上拉單元可包括響應於傳輸訊號ST來進行開關的接通電阻器RON及PMOS電晶體TP1。下拉單元可包括響應於傳輸訊號ST來進行開關的接通電阻器RON及NMOS電晶體TN1。可省略接通電阻器RON且每一接通電阻器RON可表示當電晶體TP1及TN1中的每一者被接通時電壓節點與輸入-輸出接墊PADH之間的電阻。The transfer driver 70 may include a pull-up unit connected between the first power supply voltage VDDQ and the input-output pad PADH and a second power supply voltage VSSQ connected to the input-output pad PADH and lower than the first power supply voltage VDDQ. Drop-down unit. The pull-up unit may include a turn-on resistor RON and a PMOS transistor TP1 that perform switching in response to the transmission signal ST. The pull-down unit may include a turn-on resistor RON and an NMOS transistor TN1 that perform switching in response to the transmission signal ST. The turn-on resistor RON may be omitted and each turn-on resistor RON may represent a resistance between the voltage node and the input-output pad PADH when each of the transistors TP1 and TN1 is turned on.

第一偽開放汲極終端方案的終端電路81可包括響應於高電壓而被接通的終端電阻器Rtt及NMOS電晶體TN2。可省略終端電阻器Rtt且終端電阻器Rtt可表示當NMOS電晶體TN2被接通時電壓節點與輸入-輸出接墊PADS之間的電阻。The terminal circuit 81 of the first pseudo open gate terminal scheme may include a terminating resistor Rtt and an NMOS transistor TN2 that are turned on in response to a high voltage. The terminating resistor Rtt may be omitted and the terminating resistor Rtt may represent the resistance between the voltage node and the input-output pad PADS when the NMOS transistor TN2 is turned on.

在圖15A中的第一偽開放汲極終端方案的終端電路81的情形中,輸入訊號SI的高電壓位準VIH及低電壓位準VIL可被表示成圖15B。可假定第二電源電壓VSSQ為接地電壓(即,VSSQ=0),且可忽略沿傳輸線TL的壓降。因此,可根據表達式2來計算高電壓位準VIH、低電壓位準VIL、及最佳參考電壓VREF。 表達式2: VIH=VDDQ*RTT/(RON+RTT), VIL=VSSQ=0, VREF=(VIH+VIL)/2=VDDQ*RTT/2(RON+RTT)In the case of the terminal circuit 81 of the first pseudo open dipole termination scheme of FIG. 15A, the high voltage level VIH and the low voltage level VIL of the input signal SI can be represented as FIG. 15B. It can be assumed that the second power supply voltage VSSQ is the ground voltage (ie, VSSQ = 0), and the voltage drop along the transmission line TL can be ignored. Therefore, the high voltage level VIH, the low voltage level VIL, and the optimum reference voltage VREF can be calculated according to Expression 2. Expression 2: VIH=VDDQ*RTT/(RON+RTT), VIL=VSSQ=0, VREF=(VIH+VIL)/2=VDDQ*RTT/2(RON+RTT)

圖16A及圖16B是用於闡述第二偽開放汲極終端的圖式。16A and 16B are diagrams for explaining a second pseudo open dipole terminal.

參照圖16A,發射器裝置中的傳輸驅動器70基於來自所述發射器裝置的內部訊號的傳輸訊號ST驅動輸入-輸出接墊PADH。發射器裝置的輸入-輸出接墊PADH藉由傳輸線TL連接至接收器裝置的輸入-輸出接墊PADS。第二偽開放汲極終端方案的終端電路82連接至接收器裝置的輸入-輸出接墊PADS以進行阻抗匹配。接收器裝置中的接收緩衝器BF可藉由輸入-輸出接墊PADS將輸入訊號SI與參考電壓VREF進行比較以將緩衝器訊號SB提供至所述接收器裝置的內部電路。Referring to Figure 16A, the transmission driver 70 in the transmitter device drives the input-output pad PADH based on the transmission signal ST from the internal signal of the transmitter device. The input-output pad PADH of the transmitter device is connected to the input-output pad PADS of the receiver device via a transmission line TL. The terminal circuit 82 of the second pseudo open terminal scheme is connected to the input-output pad PADS of the receiver device for impedance matching. The receive buffer BF in the receiver device can compare the input signal SI with the reference voltage VREF by the input-output pad PADS to provide the buffer signal SB to the internal circuit of the receiver device.

傳輸驅動器70可包括連接於第一電源電壓VDDQ與輸入-輸出接墊PADH之間的上拉單元及連接於輸入-輸出接墊PADH與低於第一電源電壓VDDQ的第二電源電壓VSSQ之間的下拉單元。上拉單元可包括響應於傳輸訊號ST來進行開關的接通電阻器RON及PMOS電晶體TP1。下拉單元可包括響應於傳輸訊號ST來進行開關的接通電阻器RON及NMOS電晶體TN1。可省略接通電阻器RON且每一接通電阻器RON可表示當電晶體TP1及TN1中的每一者被接通時電壓節點與輸入-輸出接墊PADH之間的電阻。The transfer driver 70 may include a pull-up unit connected between the first power supply voltage VDDQ and the input-output pad PADH and a second power supply voltage VSSQ connected to the input-output pad PADH and lower than the first power supply voltage VDDQ. Drop-down unit. The pull-up unit may include a turn-on resistor RON and a PMOS transistor TP1 that perform switching in response to the transmission signal ST. The pull-down unit may include a turn-on resistor RON and an NMOS transistor TN1 that perform switching in response to the transmission signal ST. The turn-on resistor RON may be omitted and each turn-on resistor RON may represent a resistance between the voltage node and the input-output pad PADH when each of the transistors TP1 and TN1 is turned on.

第二偽開放汲極終端方案的終端電路82可包括響應於低電壓而被接通的終端電阻器Rtt及PMOS電晶體TP2。可省略終端電阻器Rtt且終端電阻器Rtt可表示當NMOS電晶體TN2被接通時電壓節點與輸入-輸出接墊PADS之間的電阻。The termination circuit 82 of the second pseudo open termination terminal scheme may include a termination resistor Rtt and a PMOS transistor TP2 that are turned on in response to a low voltage. The terminating resistor Rtt may be omitted and the terminating resistor Rtt may represent the resistance between the voltage node and the input-output pad PADS when the NMOS transistor TN2 is turned on.

在圖16A中的第一偽開放汲極終端方案的終端電路82的情形中,輸入訊號SI的高電壓位準VIH及低電壓位準VIL可被表示成圖16B。可假定第二電源電壓VSSQ為接地電壓(即,VSSQ=0),且可忽略沿傳輸線TL的壓降。因此,可根據表達式3來計算高電壓位準VIH、低電壓位準VIL、及最佳參考電壓VREF。 表達式3: VIH=VDDQ, VIL=VDDQ*RON/(RON+Rtt), VREF=(VIH+VIL)/2=VDDQ*(2RON+Rtt)/2(RON+Rtt)In the case of the terminal circuit 82 of the first pseudo open dipole termination scheme of FIG. 16A, the high voltage level VIH and the low voltage level VIL of the input signal SI can be represented as FIG. 16B. It can be assumed that the second power supply voltage VSSQ is the ground voltage (ie, VSSQ = 0), and the voltage drop along the transmission line TL can be ignored. Therefore, the high voltage level VIH, the low voltage level VIL, and the optimum reference voltage VREF can be calculated according to Expression 3. Expression 3: VIH=VDDQ, VIL=VDDQ*RON/(RON+Rtt), VREF=(VIH+VIL)/2=VDDQ*(2RON+Rtt)/2(RON+Rtt)

如此一來,根據至少一個示例性實施例的晶粒內終端電路可採用各種終端方案。在示例性實施例中,根據表達式1、表達式2、及表達式3進行訓練過程(training process)以獲得最佳參考電壓VREF。在示例性實施例中,記憶體控制器慮及被連續賦能的非目標記憶體排的晶粒內終端電阻器以調整所述記憶體控制器中的晶粒內終端電路的電阻值或所述記憶體控制器中的傳輸驅動器的接通電阻值。As such, the intra-die termination circuitry in accordance with at least one example embodiment may employ various termination schemes. In an exemplary embodiment, a training process is performed according to Expression 1, Expression 2, and Expression 3 to obtain an optimum reference voltage VREF. In an exemplary embodiment, the memory controller takes into account the intra-die termination resistors of the continuously enabled non-target memory banks to adjust the resistance values or locations of the intra-die termination circuits in the memory controller. The on-resistance value of the transfer driver in the memory controller.

圖17是示出應用於根據本發明概念示例性實施例的晶粒內終端之控制方法的電阻設定的實施例的圖式。17 is a diagram showing an embodiment of resistance setting applied to a control method of a terminal in a die according to an exemplary embodiment of the inventive concept.

參照圖17,在讀取操作期間,目標記憶體排RNK_TG中的晶粒內終端電路被去能且非目標記憶體排RNK_NT及記憶體控制器MC中的晶粒內終端電路具有第一電阻值M*Rtt。在寫入操作期間,目標記憶體排RNK_TG中的晶粒內終端電路具有與第一電阻值M*Rtt不同的第二電阻值M*Rtt+Rtg,非目標記憶體排RNK_NT中的晶粒內終端電路具有第一電阻值M*Rtt且記憶體控制器MC中的晶粒內終端電路被去能。第一電阻值M*Rtt可對應於以上提及的初始狀態的電阻值。舉例而言,第一電阻值M*Rtt可為約70歐姆(Ω)且第二電阻值M*Rtt+Rtg可為約150歐姆。因此,如參照圖8B所述,在寫入操作期間,目標記憶體排RNK_TG中的晶粒內終端電路的電阻值可自第一電阻值M*Rtt改變成第二電阻值M*Rtt+Rtg且非目標記憶體排RNK_NT中的晶粒內終端電路可維持初始狀態以具有第一電阻值M*Rtt。在實施例中,第二電阻值大於第一電阻值,在讀取操作期間目標記憶體排RNK_TG的晶粒內終端電路被去能且非目標記憶體排RNK_NT的晶粒內終端電路被賦能且被設定成第一電阻值,且在寫入操作期間目標記憶體排的晶粒內終端電路被賦能且被設定成第二電阻值。Referring to FIG. 17, during the read operation, the intra-die termination circuit in the target memory bank RNK_TG is disabled and the intra-die termination circuit in the non-target memory bank RNK_NT and the memory controller MC has the first resistance value. M*Rtt. During the write operation, the intra-die termination circuit in the target memory bank RNK_TG has a second resistance value M*Rtt+Rtg different from the first resistance value M*Rtt, and the intra-grain in the non-target memory bank RNK_NT The termination circuit has a first resistance value M*Rtt and the intra-die termination circuitry in the memory controller MC is disabled. The first resistance value M*Rtt may correspond to the resistance value of the initial state mentioned above. For example, the first resistance value M*Rtt can be about 70 ohms (Ω) and the second resistance value M*Rtt+Rtg can be about 150 ohms. Therefore, as described with reference to FIG. 8B, during the write operation, the resistance value of the intra-die termination circuit in the target memory bank RNK_TG can be changed from the first resistance value M*Rtt to the second resistance value M*Rtt+Rtg. And the intra-die termination circuit in the non-target memory bank RNK_NT can maintain the initial state to have the first resistance value M*Rtt. In an embodiment, the second resistance value is greater than the first resistance value, the intra-die termination circuit of the target memory bank RNK_TG is disabled during the read operation and the intra-die termination circuit of the non-target memory bank RNK_NT is enabled And being set to the first resistance value, and the intra-die termination circuit of the target memory bank is enabled and set to the second resistance value during the write operation.

圖18是示出根據示例性實施例的命令位址訊號命令的圖式。FIG. 18 is a diagram showing a command address signal command, according to an exemplary embodiment.

圖18示出符合低功率雙倍資料速率5(low power double data rate 5,LPDDR5)標準的示例性命令位址訊號命令。參照圖18,命令位址訊號命令可被表示成命令位址訊號CA0至CA5的組合。「L」表示邏輯低位準,「H」表示邏輯高位準,EDC_EN、WS_RD、WS_FAST、DC0至DC3、NT0、NT1、及BL表示形成命令位址訊號命令的欄位值(field value)。具體而言,NT0及NTI表示終端控制的欄位值。Figure 18 illustrates an exemplary command address signal command conforming to the low power double data rate 5 (LPDDR5) standard. Referring to Figure 18, the command address signal command can be represented as a combination of command address signals CA0 through CA5. "L" indicates a logic low level, "H" indicates a logic high level, and EDC_EN, WS_RD, WS_FAST, DC0 to DC3, NT0, NT1, and BL indicate a field value that forms a command address signal command. Specifically, NT0 and NTI represent field values controlled by the terminal.

如圖18中所示,當採用根據示例性實施例的靜態晶粒內終端控制時,可省略NT0及NT1且可將對應的部分留作未來使用(reserved for future use,RFU)。As shown in FIG. 18, when static intra-die terminal control according to an exemplary embodiment is employed, NT0 and NT1 may be omitted and the corresponding portion may be reserved for future use (RFU).

圖19A及圖19B是用於闡述根據示例性實施例的用於晶粒內終端的模式暫存器的圖式。19A and 19B are diagrams for explaining a mode register for an intra-die terminal, according to an exemplary embodiment.

晶粒內終端控制的資訊可儲存於圖4中的模式暫存器412中。舉例而言,模式暫存器412的對應的部分可具有如圖19A及圖19B中所示模式暫存器設定MRSET。運算元OP0至OP7的一些值可表示關於晶粒內終端電路的電阻值的資訊。Information on intra-die terminal control can be stored in mode register 412 in FIG. For example, a corresponding portion of mode register 412 can have a mode register setting MRSET as shown in Figures 19A and 19B. Some values of operands OP0 through OP7 may represent information about the resistance value of the termination circuitry within the die.

圖19A示出如參照圖8A所述用於共同控制目標記憶體排中的晶粒內終端電路及非目標記憶體排中的晶粒內終端電路的電阻值的值ODT。圖19B示出如參照圖8B所述用於控制目標記憶體排中的晶粒內終端電路的第一電阻值的第一值TG-ODT及用於控制非目標記憶體排中的晶粒內終端電路的第二電阻值的第二值NT-ODT。儲存於模式暫存器412中的值ODT、TG-ODT、及NT-ODT可藉由模式暫存器寫入操作而被自記憶體控制器提供至記憶體排。以上提及的強度碼SCD可基於值ODT、TG-ODT、及NT-ODT來提供。FIG. 19A shows the value ODT of the resistance value for collectively controlling the intra-die termination circuit in the target memory bank and the intra-die termination circuit in the non-target memory bank as described with reference to FIG. 8A. 19B shows a first value TG-ODT for controlling the first resistance value of the intra-die termination circuit in the target memory bank as described with reference to FIG. 8B and for controlling the intra-grain in the non-target memory bank A second value NT-ODT of the second resistance value of the termination circuit. The values ODT, TG-ODT, and NT-ODT stored in the mode register 412 can be provided from the memory controller to the memory bank by a mode register write operation. The intensity code SCD mentioned above can be provided based on the values ODT, TG-ODT, and NT-ODT.

圖20是示出根據本發明概念示例性實施例的半導體記憶體裝置的結構圖。FIG. 20 is a block diagram showing a semiconductor memory device according to an exemplary embodiment of the inventive concept.

參照圖20,半導體記憶體裝置900包括第一半導體積體電路層LA1至第k半導體積體電路層LAk,在第一半導體積體電路層LA1至第k半導體積體電路層LAk中,最低的第一半導體積體電路層LA1被假定為介面或控制晶片(control chip),且其他半導體積體電路層LA2至LAk被假定為包括核心記憶體晶片的從晶片(slave chip)。從晶片可形成如上所述的多個記憶體排。Referring to Fig. 20, the semiconductor memory device 900 includes first semiconductor integrated circuit layers LA1 to kth semiconductor integrated circuit layers LAk, among the first semiconductor integrated circuit layers LA1 to kth semiconductor integrated circuit layers LAk, the lowest The first semiconductor integrated circuit layer LA1 is assumed to be an interface or a control chip, and the other semiconductor integrated circuit layers LA2 to LAk are assumed to be a slave chip including a core memory wafer. A plurality of memory banks as described above can be formed from the wafer.

第一半導體積體電路層LA1至第k半導體積體電路層LAk可經由基板穿孔TSV(例如,矽穿孔)而在各層之間傳輸及接收訊號。作為介面或控制晶片的最低的第一半導體積體電路層LA1可經由形成於外部表面上的導電結構而與外部記憶體控制器進行通訊。The first semiconductor integrated circuit layer LA1 to the kth semiconductor integrated circuit layer LAk can transmit and receive signals between the layers via the substrate via TSV (for example, germanium via). The lowest first semiconductor integrated circuit layer LA1 as an interface or control wafer can communicate with an external memory controller via a conductive structure formed on the external surface.

第一半導體積體電路層910至第k半導體積體電路層920中的每一者可包括記憶體區921及用於驅動記憶體區921的周邊電路922。舉例而言,周邊電路922可包括行驅動器(row-driver)、列驅動器(column-driver)、資料輸入-輸出電路、命令緩衝器、及位址緩衝器,行驅動器用於驅動記憶體的字元線,列驅動器用於驅動所述記憶體的位元線,資料輸入-輸出電路用於控制資料的輸入-輸出,命令緩衝器用於自外部來源接收命令並對所述命令進行緩衝,位址緩衝器用於自外部來源接收位址並對所述位址進行緩衝。Each of the first semiconductor integrated circuit layer 910 to the kth semiconductor integrated circuit layer 920 may include a memory region 921 and a peripheral circuit 922 for driving the memory region 921. For example, the peripheral circuit 922 can include a row-driver, a column-driver, a data input-output circuit, a command buffer, and an address buffer, and the row driver is used to drive the word of the memory. a line line, a column driver for driving the bit line of the memory, a data input-output circuit for controlling input/output of the data, and a command buffer for receiving a command from an external source and buffering the command, the address The buffer is used to receive the address from an external source and buffer the address.

第一半導體積體電路層910可更包括控制電路。控制電路可基於來自記憶體控制器的命令及位址訊號來控制對記憶體區921的存取且可產生用於存取記憶體區921的控制訊號。The first semiconductor integrated circuit layer 910 may further include a control circuit. The control circuit can control access to the memory area 921 based on commands and address signals from the memory controller and can generate control signals for accessing the memory area 921.

圖21是示出根據本發明概念示例性實施例的行動系統的方塊圖。FIG. 21 is a block diagram showing a mobile system according to an exemplary embodiment of the inventive concept.

參照圖21,行動系統1200包括應用處理器(application processor,AP)1210、連接性電路(connectivity circuit)1220、揮發性記憶體(volatile memory,VM)裝置1230、非揮發性記憶體(nonvolatile memory,NVM)裝置1240、使用者介面1250、及電源1260。Referring to FIG. 21, the mobile system 1200 includes an application processor (AP) 1210, a connectivity circuit 1220, a volatile memory (VM) device 1230, and a nonvolatile memory (nonvolatile memory). NVM) device 1240, user interface 1250, and power supply 1260.

應用處理器1210可執行儲存於電腦可讀取媒體(例如,記憶體裝置)中的電腦指令,所述電腦指令包括例如網頁瀏覽器、遊戲應用、視訊播放機等應用。連接性電路1220可進行與外部裝置的有線或無線通訊。揮發性記憶體裝置1230可儲存由應用處理器1210處理的資料,或可作為工作記憶體(working memory)運作。舉例而言,揮發性記憶體裝置1230可為動態隨機存取記憶體,例如雙倍資料速率同步動態隨機存取記憶體(double data rate synchronous dynamic random-access memory,DDR SDRAM)、低功率雙倍資料速率同步動態隨機存取記憶體(low power double data rate synchronous dynamic random-access memory,LPDDR SDRAM)、圖形雙倍資料速率同步動態隨機存取記憶體(graphics double data rate synchronous dynamic random-access memory,GDDR SDRAM)、蘭巴斯動態隨機存取記憶體(Rambus dynamic random-access memory,RDRAM)等。非揮發性記憶體裝置1240可儲存用於啟動行動系統1200的啟動影像(boot image)。使用者介面1250可包括至少一個輸入裝置(例如,小鍵盤、觸控螢幕等)及至少一個輸出裝置(例如,揚聲器、顯示裝置等)。電源1260可將電源電壓供應至行動系統1200。在示例性實施例中,行動系統1200更包括照相機影像處理器(camera image processor,CIS)及/或例如記憶體卡、固態驅動機(solid state drive,SSD)、硬碟驅動機(hard disk drive,HDD)、光碟唯讀記憶體(compact disc read only memory,CD-ROM)等儲存裝置。The application processor 1210 can execute computer instructions stored in a computer readable medium (eg, a memory device) including applications such as a web browser, a gaming application, a video player, and the like. The connectivity circuit 1220 can perform wired or wireless communication with an external device. The volatile memory device 1230 can store data processed by the application processor 1210 or can operate as a working memory. For example, the volatile memory device 1230 can be a dynamic random access memory, such as double data rate synchronous dynamic random access memory (DDR SDRAM), low power double Low power double data rate synchronous dynamic random access memory (LPDDR SDRAM), graphics double data rate synchronous dynamic random access memory (graphics double data rate synchronous dynamic random access memory) GDDR SDRAM), Rambus dynamic random-access memory (RDRAM), etc. The non-volatile memory device 1240 can store a boot image for launching the mobile system 1200. The user interface 1250 can include at least one input device (eg, a keypad, a touch screen, etc.) and at least one output device (eg, a speaker, display device, etc.). A power supply 1260 can supply a supply voltage to the mobile system 1200. In an exemplary embodiment, the mobile system 1200 further includes a camera image processor (CIS) and/or, for example, a memory card, a solid state drive (SSD), a hard disk drive (hard disk drive). , HDD), storage device such as compact disc read only memory (CD-ROM).

揮發性記憶體裝置1230及/或非揮發性記憶體裝置1240可具有用於進行根據如參照圖1至圖19B所述示例性實施例的晶粒內終端之控制方法的配置。The volatile memory device 1230 and/or the non-volatile memory device 1240 may have a configuration for performing a control method according to the intra-die terminal of the exemplary embodiment as described with reference to FIGS. 1 through 19B.

如上所述,根據示例性實施例的晶粒內終端之控制方法及進行所述方法之系統可藉由靜態晶粒內終端控制來降低功耗及增強訊號完整性,以使得在讀取操作期間目標記憶體排的晶粒內終端電路及非目標記憶體排的晶粒內終端電路大體維持於賦能狀態,而讀取目標記憶體排的晶粒內終端電路則被去能。As described above, the method of controlling an intra-die terminal according to an exemplary embodiment and the system for performing the method can reduce power consumption and enhance signal integrity by static intra-die terminal control, so that during a read operation The intra-gate termination circuit of the target memory bank and the intra-die termination circuit of the non-target memory bank are generally maintained in an enabled state, and the intra-die termination circuit of the read target memory bank is disabled.

本發明概念的實施例可應用於包括記憶體裝置的各種裝置及系統。舉例而言,本發明概念可應用於例如記憶卡、行動電話、智慧型電話、個人數位助理(personal data assistant,PDA)、可攜式多媒體播放機(portable multimedia player,PMP)、數位照相機、攝錄影機(camcorder)、個人電腦(personal computer,PC)、伺服器電腦(server computer)、工作站(workstation)、膝上型電腦、數位電視(digital TV)、機上盒(set-top box)、可攜式遊戲機(portable game console)、導航系統等系統。Embodiments of the inventive concept are applicable to various devices and systems including memory devices. For example, the inventive concept can be applied to, for example, a memory card, a mobile phone, a smart phone, a personal data assistant (PDA), a portable multimedia player (PMP), a digital camera, and a camera. Camcorder, personal computer (PC), server computer, workstation, laptop, digital TV, set-top box , portable game console (portable game console), navigation system and other systems.

上述是對本發明概念示例性實施例的說明而不應被視為對其的限制。儘管已闡述了幾個示例性實施例,然而熟習此項技術者應易於理解,在不本質上背離本發明概念的條件下可對示例性實施例作出諸多潤飾。The above is a description of the exemplary embodiments of the inventive concept and should not be construed as limiting. While a few exemplary embodiments have been described, it will be readily understood by those skilled in the art that many modifications may be made to the exemplary embodiments without departing from the inventive concept.

10‧‧‧多排式系統10‧‧‧Multiple-row system

20、MC‧‧‧記憶體控制器20, MC‧‧‧ memory controller

30‧‧‧記憶體子系統/記憶體裝置30‧‧‧Memory Subsystem/Memory Device

70‧‧‧傳輸驅動器70‧‧‧Transfer driver

80、81、82‧‧‧終端電路80, 81, 82‧‧‧ terminal circuits

300‧‧‧晶粒內終端電路300‧‧‧In-die terminal circuit

310‧‧‧終端控制單元310‧‧‧Terminal Control Unit

330‧‧‧上拉終端控制單元330‧‧‧Upper Terminal Control Unit

334‧‧‧第一選擇器334‧‧‧First selector

335‧‧‧第二選擇器335‧‧‧Second selector

336‧‧‧第三選擇器336‧‧‧ third selector

340‧‧‧終端電阻器單元/下拉終端控制單元340‧‧‧Terminal Resistor Unit / Pull-down Terminal Control Unit

344‧‧‧第四選擇器344‧‧‧fourth selector

345‧‧‧第五選擇器345‧‧‧ fifth selector

346‧‧‧第六選擇器346‧‧‧ sixth selector

350‧‧‧終端電阻器單元350‧‧‧Terminal resistor unit

360‧‧‧上拉驅動器360‧‧‧ Pull-up drive

361‧‧‧第一PMOS電晶體361‧‧‧First PMOS transistor

362‧‧‧第二PMOS電晶體362‧‧‧Second PMOS transistor

363‧‧‧第三PMOS電晶體363‧‧‧ Third PMOS transistor

370‧‧‧下拉驅動器370‧‧‧ Pulldown drive

371‧‧‧第一NMOS電晶體371‧‧‧First NMOS transistor

372‧‧‧第二NMOS電晶體372‧‧‧Second NMOS transistor

373‧‧‧第三NMOS電晶體373‧‧‧ Third NMOS transistor

400、MEM‧‧‧記憶體裝置400, MEM‧‧‧ memory device

410‧‧‧控制邏輯410‧‧‧Control logic

411‧‧‧命令解碼器411‧‧‧Command decoder

412‧‧‧模式暫存器/模式暫存器集合412‧‧‧Mode Register/Mode Register

420‧‧‧位址暫存器420‧‧‧ address register

430‧‧‧儲存庫控制邏輯430‧‧‧Repository Control Logic

440‧‧‧行位址多工器440‧‧‧ address multiplexer

445‧‧‧刷新計數器445‧‧‧Refresh counter

460‧‧‧行解碼器460‧‧‧ line decoder

460a、460h‧‧‧儲存庫行解碼器460a, 460h‧‧‧Repository Row Decoder

470‧‧‧列解碼器470‧‧‧ column decoder

470a、470h‧‧‧儲存庫列解碼器470a, 470h‧‧‧Repository Column Decoder

480‧‧‧記憶體胞元陣列480‧‧‧ memory cell array

480a、480h‧‧‧儲存庫陣列480a, 480h‧‧‧repository array

485‧‧‧感測放大器/感測放大器單元485‧‧‧Sense Amplifier/Sensor Amplifier Unit

485a、485h‧‧‧儲存庫感測放大器485a, 485h‧‧‧Repository sense amplifier

490‧‧‧輸入-輸出閘控電路490‧‧‧Input-output gate control circuit

500‧‧‧資料輸入/輸出電路500‧‧‧Data input/output circuit

600‧‧‧資料輸入-輸出接腳600‧‧‧Data input-output pin

710、DR0、DR1、DR2、DRM‧‧‧傳輸驅動器710, DR0, DR1, DR2, DRM‧‧‧ transmission drive

720、BF、BF0、BF1、BF2、BFM‧‧‧接收緩衝器720, BF, BF0, BF1, BF2, BFM‧‧‧ receive buffer

900‧‧‧半導體記憶體裝置900‧‧‧Semiconductor memory device

910‧‧‧第一半導體積體電路層910‧‧‧First semiconductor integrated circuit layer

920‧‧‧第k半導體積體電路層920‧‧‧kth semiconductor integrated circuit layer

921‧‧‧記憶體區921‧‧‧ memory area

922‧‧‧周邊電路922‧‧‧ peripheral circuits

1200‧‧‧行動系統1200‧‧‧Mobile System

1210‧‧‧應用處理器1210‧‧‧Application Processor

1220‧‧‧連接性電路1220‧‧‧Connected circuit

1230‧‧‧揮發性記憶體裝置1230‧‧‧Volatile memory device

1240‧‧‧非揮發性記憶體裝置1240‧‧‧Non-volatile memory device

1250‧‧‧使用者介面1250‧‧‧User interface

1260‧‧‧電源1260‧‧‧Power supply

ADDR‧‧‧位址ADDR‧‧‧ address

AP‧‧‧應用處理器AP‧‧‧Application Processor

BANK_ADDR‧‧‧儲存庫位址BANK_ADDR‧‧‧ repository address

BL、DC0、DC1、DC2、DC3、EDC_EN、NT0、NT1、WS_FAST、WS_RD、WS_WR‧‧‧欄位值BL, DC0, DC1, DC2, DC3, EDC_EN, NT0, NT1, WS_FAST, WS_RD, WS_WR‧‧‧ field values

CA0、CA1、CA2、CA3、CA4、CA5、CA6、CAS‧‧‧命令位址訊號CA0, CA1, CA2, CA3, CA4, CA5, CA6, CAS‧‧‧ command address signals

CK_C、CK_T‧‧‧操作時鐘訊號對CK_C, CK_T‧‧‧ operation clock signal pair

CMD‧‧‧命令CMD‧‧‧ Order

CMD_RNK1‧‧‧第一命令訊號CMD_RNK1‧‧‧ first command signal

CMD_RNK2‧‧‧第二命令訊號CMD_RNK2‧‧‧second command signal

COL_ADDR‧‧‧列位址COL_ADDR‧‧‧ column address

CS_RNK1‧‧‧第一排選擇訊號CS_RNK1‧‧‧first row selection signal

CS_RNK2‧‧‧第二排選擇訊號CS_RNK2‧‧‧Second row of selection signals

CTRL‧‧‧控制訊號CTRL‧‧‧ control signal

DATA、DQ‧‧‧資料DATA, DQ‧‧‧ data

DES‧‧‧解除選擇DES‧‧‧Deselection

DQ_[15:0]‧‧‧資料訊號DQ_[15:0]‧‧‧Information Signal

H‧‧‧邏輯高位準H‧‧‧Logic high standard

L‧‧‧邏輯低位準L‧‧‧Logic low level

LA1‧‧‧第一半導體積體電路層LA1‧‧‧First semiconductor integrated circuit layer

LA(K-1)‧‧‧半導體積體電路層/第k-1半導體積體電路層LA(K-1)‧‧‧Semiconductor integrated circuit layer/k-1 semiconductor integrated circuit layer

LAk‧‧‧半導體積體電路層/第k半導體積體電路層LAk‧‧‧Semiconductor integrated circuit layer / kth semiconductor integrated circuit layer

M*Rtt‧‧‧第一電阻值M*Rtt‧‧‧first resistance value

M*Rtt+Rtg‧‧‧第二電阻值M*Rtt+Rtg‧‧‧second resistance value

MRSET‧‧‧模式暫存器設定MRSET‧‧‧ mode register setting

NC‧‧‧共用節點NC‧‧‧ shared node

NT-ODT‧‧‧值/初始狀態/第二值NT-ODT‧‧‧ value / initial state / second value

NT-ODT OFF‧‧‧去能狀態NT-ODT OFF‧‧‧Enable status

OEN‧‧‧輸出賦能訊號OEN‧‧‧ output enable signal

ODT‧‧‧值ODT‧‧ value

ODT_RNK1‧‧‧第一記憶體排的晶粒內終端狀態ODT_RNK1‧‧‧In-die terminal state of the first memory bank

ODT_RNK2‧‧‧第二記憶體排的晶粒內終端狀態ODT_RNK2‧‧‧In-die terminal state of the second memory bank

OP0、OP1、OP2、OP3、OP4、OP5、OP6、OP7‧‧‧運算元OP0, OP1, OP2, OP3, OP4, OP5, OP6, OP7‧‧‧ operands

PAD1、PAD2、PADC、PADM‧‧‧資料輸入-輸出接腳PAD1, PAD2, PADC, PADM‧‧‧ data input-output pins

PADH、PADS輸入-輸出接墊PADH, PADS input-output pad

R1‧‧‧第一電阻器R1‧‧‧ first resistor

R2‧‧‧第二電阻器R2‧‧‧second resistor

R3‧‧‧第三電阻器R3‧‧‧ third resistor

R4‧‧‧第四電阻器R4‧‧‧ fourth resistor

R5‧‧‧第五電阻器R5‧‧‧ fifth resistor

R6‧‧‧第六電阻器R6‧‧‧ sixth resistor

RA、ROW_ADDR‧‧‧行位址RA, ROW_ADDR‧‧‧ address

RD‧‧‧讀取命令RD‧‧‧ read command

REF_ADDR‧‧‧刷新行位址REF_ADDR‧‧‧ Refresh row address

RNK_NT‧‧‧非目標記憶體排RNK_NT‧‧‧ non-target memory row

RNK_TG‧‧‧目標記憶體排RNK_TG‧‧‧target memory row

RNK1‧‧‧記憶體排/第一記憶體排/目標記憶體排/寫入目標記憶體排/讀取目標記憶體排RNK1‧‧‧ memory row/first memory bank/target memory bank/write target memory bank/read target memory bank

RNK2、RNKM‧‧‧記憶體排/第二記憶體排/非目標記憶體排RNK2, RNKM‧‧‧ memory row / second memory row / non-target memory row

RON‧‧‧接通電阻器RON‧‧‧Connected resistor

Rtt‧‧‧等效電阻值/終端電阻器Rtt‧‧‧ equivalent resistance value / terminating resistor

S100、S200、S300‧‧‧步驟S100, S200, S300‧‧‧ steps

SB‧‧‧緩衝器訊號SB‧‧‧buffer signal

SCD‧‧‧強度碼SCD‧‧‧ intensity code

SCD1‧‧‧強度碼位元/第一強度碼位元SCD1‧‧‧ intensity code bit/first intensity code bit

SCD2‧‧‧強度碼位元/第二強度碼位元SCD2‧‧‧ intensity code bit/second intensity code bit

SCD3‧‧‧強度碼位元/第三強度碼位元SCD3‧‧‧ intensity code bit/third intensity code bit

SCD4‧‧‧強度碼位元/第四強度碼位元SCD4‧‧‧ intensity code bit/fourth intensity code bit

SCD5‧‧‧強度碼位元/第五強度碼位元SCD5‧‧‧ intensity code bit/fifth intensity code bit

SCD6‧‧‧強度碼位元/第六強度碼位元SCD6‧‧‧ intensity code bit/sixth intensity code bit

SI‧‧‧輸入訊號SI‧‧‧ input signal

ST‧‧‧傳輸訊號ST‧‧‧ transmission signal

T1、T2、T3、T4、T5、T6、T7、T8、Ta0、Ta1、Ta2、Ta3、Tb0、Tb1、Tb2、Tc0、Tc1、Tc2、Tc3、Td0、Td1、Te0、Te1、Tf0、Tf1‧‧‧時間點T1, T2, T3, T4, T5, T6, T7, T8, Ta0, Ta1, Ta2, Ta3, Tb0, Tb1, Tb2, Tc0, Tc1, Tc2, Tc3, Td0, Td1, Te0, Te1, Tf0, Tf1‧ ‧ ‧ time point

TCS‧‧‧終端控制訊號TCS‧‧‧ terminal control signal

TCS1‧‧‧第一終端控制訊號TCS1‧‧‧ first terminal control signal

TCS2‧‧‧第二終端控制訊號TCS2‧‧‧second terminal control signal

TCS3‧‧‧第三終端控制訊號TCS3‧‧‧ third terminal control signal

TCS4‧‧‧第四終端控制訊號TCS4‧‧‧ fourth terminal control signal

TCS5‧‧‧第五終端控制訊號TCS5‧‧‧ fifth terminal control signal

TCS6‧‧‧第六終端控制訊號TCS6‧‧‧ sixth terminal control signal

TER0、TER1、TER2、TERM‧‧‧晶粒內終端電路TER0, TER1, TER2, TERM‧‧‧ die terminal circuit

TG-ODT‧‧‧狀態/值/第一值TG-ODT‧‧‧Status/Value/First Value

TL‧‧‧傳輸線TL‧‧‧ transmission line

TN1、TN2‧‧‧電晶體/NMOS電晶體TN1, TN2‧‧‧ transistor/NMOS transistor

TP1、TP2‧‧‧電晶體/PMOS電晶體TP1, TP2‧‧‧Opto/PMOS transistor

TSV‧‧‧基板穿孔TSV‧‧‧ substrate perforation

VDDQ‧‧‧電源電壓/第一電源電壓VDDQ‧‧‧Power supply voltage / first supply voltage

VIH‧‧‧高電壓位準VIH‧‧‧High voltage level

VIL‧‧‧低電壓位準VIL‧‧‧low voltage level

VREF‧‧‧參考電壓/最佳參考電壓VREF‧‧‧reference voltage / optimal reference voltage

VSSQ‧‧‧接地電壓/第二電源電壓VSSQ‧‧‧ Ground Voltage / Second Supply Voltage

WCK_C、WCK_T‧‧‧資料選通訊號對WCK_C, WCK_T‧‧‧ data selection communication number pair

WR‧‧‧寫入命令WR‧‧‧Write command

圖1是示出根據本發明概念示例性實施例的晶粒內終端(ODT)之控制方法的流程圖。 圖2是示出根據本發明概念示例性實施例的晶粒內終端之控制方法的時序圖。 圖3是示出根據本發明概念示例性實施例的多排式系統(multi-rank system)的方塊圖。 圖4是示出圖3所示多排式系統中所包含的記憶體裝置的示例性實施例的方塊圖。 圖5是示出根據本發明概念示例性實施例的圖4所示記憶體裝置中所包含的資料輸入-輸出電路的實施例的方塊圖。 圖6是示出根據本發明概念示例性實施例的圖5所示資料輸入-輸出電路中所包含的晶粒內終端電路的電路圖。 圖7、圖8A及圖8B是示出根據本發明概念示例性實施例的在寫入操作中控制晶粒內終端之方法的圖式。 圖9及圖10是示出根據本發明概念示例性實施例的在讀取操作中控制晶粒內終端之方法的圖式。 圖11是示出根據本發明概念示例性實施例的應用於晶粒內終端之控制方法的電阻設定的實施例的圖式。 圖12是用於闡述與圖11所示電阻設定對應的在寫入操作中的晶粒內終端電路的等效電阻的圖式。 圖13是用於闡述與圖11所示電阻設定對應的在讀取操作中的晶粒內終端電路的等效電阻的圖式。 圖14A及圖14B是用於闡述中心分接終端(center-tapped termination,CTT)的圖式。 圖15A及圖15B是用於闡述第一偽開放汲極(pseudo-open drain,POD)終端的圖式。 圖16A及圖16B是用於闡述第二偽開放汲極終端的圖式。 圖17是示出應用於根據本發明概念示例性實施例的晶粒內終端之控制方法的電阻設定的實施例的圖式。 圖18是示出根據本發明概念示例性實施例的命令位址訊號(command-address signal,CAS)命令的圖式。 圖19A及圖19B是用於闡述根據本發明概念示例性實施例的用於晶粒內終端的模式暫存器(mode register)的圖式。 圖20是示出根據本發明概念示例性實施例的半導體記憶體裝置的結構圖。 圖21是示出根據本發明概念示例性實施例的行動系統的方塊圖。FIG. 1 is a flowchart illustrating a method of controlling an intra-die terminal (ODT) according to an exemplary embodiment of the inventive concept. FIG. 2 is a timing diagram illustrating a method of controlling a terminal within a die according to an exemplary embodiment of the inventive concept. FIG. 3 is a block diagram showing a multi-rank system according to an exemplary embodiment of the inventive concept. 4 is a block diagram showing an exemplary embodiment of a memory device included in the multi-row system of FIG. FIG. 5 is a block diagram showing an embodiment of a data input-output circuit included in the memory device shown in FIG. 4, according to an exemplary embodiment of the inventive concept. FIG. 6 is a circuit diagram showing an intra-die terminal circuit included in the data input-output circuit shown in FIG. 5, according to an exemplary embodiment of the inventive concept. 7, FIG. 8A and FIG. 8B are diagrams illustrating a method of controlling a terminal within a die in a write operation, according to an exemplary embodiment of the inventive concept. 9 and 10 are diagrams illustrating a method of controlling a terminal within a die in a read operation, according to an exemplary embodiment of the inventive concept. 11 is a diagram showing an embodiment of resistance setting applied to a control method of a terminal in a die according to an exemplary embodiment of the inventive concept. Figure 12 is a diagram for explaining the equivalent resistance of the intra-die termination circuit in the write operation corresponding to the resistance setting shown in Figure 11. Figure 13 is a diagram for explaining the equivalent resistance of the intra-die termination circuit in the read operation corresponding to the resistance setting shown in Figure 11. 14A and 14B are diagrams for explaining a center-tapped termination (CTT). 15A and 15B are diagrams for explaining a first pseudo-open drain (POD) terminal. 16A and 16B are diagrams for explaining a second pseudo open dipole terminal. 17 is a diagram showing an embodiment of resistance setting applied to a control method of a terminal in a die according to an exemplary embodiment of the inventive concept. FIG. 18 is a diagram showing a command-address signal (CAS) command according to an exemplary embodiment of the inventive concept. 19A and 19B are diagrams for explaining a mode register for an intra-die terminal according to an exemplary embodiment of the inventive concept. FIG. 20 is a block diagram showing a semiconductor memory device according to an exemplary embodiment of the inventive concept. FIG. 21 is a block diagram showing a mobile system according to an exemplary embodiment of the inventive concept.

Claims (20)

一種在包括多個記憶體排的多排式記憶體系統中控制晶粒內終端(ODT)之方法,所述方法包括: 當所述多排式記憶體系統被通電時,將所述多個記憶體排的晶粒內終端電路賦能成初始狀態; 在寫入操作期間,將所述多個記憶體排中的寫入目標記憶體排的所述晶粒內終端電路及非目標記憶體排的所述晶粒內終端電路賦能;以及 在讀取操作期間,將所述多個記憶體排中的讀取目標記憶體排的所述晶粒內終端電路去能,同時將所述多個記憶體排中的非目標記憶體排的所述晶粒內終端電路賦能。A method of controlling an intra-die termination (ODT) in a multi-row memory system including a plurality of memory banks, the method comprising: when the multi-row memory system is powered on, The intra-gate termination circuit of the memory bank is enabled to be in an initial state; during the writing operation, the intra-gate termination circuit and the non-target memory row of the plurality of memory banks written into the target memory bank The intra-die termination circuit is enabled; and during the read operation, the intra-die termination circuit of the read target memory bank of the plurality of memory banks is disabled, and the plurality of The intra-die termination circuit of the non-target memory banks in the memory bank is enabled. 如申請專利範圍第1項所述的方法,其中所述多個記憶體排的所述晶粒內終端電路中的每一者在所述初始狀態中具有第一電阻值。The method of claim 1, wherein each of the intra-grain termination circuits of the plurality of memory banks has a first resistance value in the initial state. 如申請專利範圍第2項所述的方法,其中在所述寫入操作期間將所述晶粒內終端電路賦能包括: 在所述寫入操作期間,將所述多個記憶體排的所述晶粒內終端電路維持於所述初始狀態以具有所述第一電阻值。The method of claim 2, wherein the enabling the intra-gate termination circuit during the writing operation comprises: arranging the plurality of memory banks during the writing operation The intra-die terminal circuit is maintained in the initial state to have the first resistance value. 如申請專利範圍第2項所述的方法,其中在所述寫入操作期間將所述晶粒內終端電路賦能更包括: 在所述寫入操作期間,將所述寫入目標記憶體排的所述晶粒內終端電路的電阻值自所述第一電阻值改變成與所述第一電阻值不同的第二電阻值。The method of claim 2, wherein the enabling the intra-gate termination circuit during the writing operation further comprises: writing the write target memory during the writing operation The resistance value of the intra-die termination circuit is changed from the first resistance value to a second resistance value different from the first resistance value. 如申請專利範圍第2項所述的方法,其中在所述讀取操作期間將所述非目標記憶體排的所述晶粒內終端電路賦能包括: 在所述讀取操作期間,將所述非目標記憶體排的所述晶粒內終端電路維持於所述初始狀態以具有所述第一電阻值。The method of claim 2, wherein the enabling the intra-gate termination circuit of the non-target memory bank during the read operation comprises: during the read operation, The intra-die termination circuit of the non-target memory bank is maintained in the initial state to have the first resistance value. 如申請專利範圍第1項所述的方法,其中所述多個記憶體排的所述晶粒內終端電路被配置成終止所述多個記憶體排的資料輸入-輸出接腳。The method of claim 1, wherein the intra-die termination circuitry of the plurality of memory banks is configured to terminate data input-output pins of the plurality of memory banks. 如申請專利範圍第6項所述的方法,其中即使在不進行經過所述資料輸入-輸出接腳的資料輸入-輸出操作時,所述多個記憶體排的所述晶粒內終端電路亦維持所述初始狀態。The method of claim 6, wherein the intra-gate termination circuit of the plurality of memory banks is even when data input-output operation through the data input-output pin is not performed The initial state is maintained. 如申請專利範圍第1項所述的方法,其中無論來自記憶體控制器的記憶體存取命令如何,所述多個記憶體排中除所述寫入目標記憶體排或所述讀取目標記憶體排外的所述非目標記憶體排的所述晶粒內終端電路均具有恆定的電阻值。The method of claim 1, wherein the plurality of memory banks are divided by the write target memory bank or the read target regardless of a memory access command from the memory controller. The intra-grain termination circuits of the non-target memory banks excluding the memory have constant resistance values. 如申請專利範圍第8項所述的方法,其中所述非目標記憶體排的所述恆定的電阻值是基於在所述多排式記憶體系統的模式暫存器中所儲存的值來確定。The method of claim 8, wherein the constant resistance value of the non-target memory bank is determined based on a value stored in a mode register of the multi-row memory system. . 如申請專利範圍第1項所述的方法,其中所述寫入目標記憶體排的所述晶粒內終端電路的電阻值被設定成等於所述多個記憶體排中除所述寫入目標記憶體排外的所述非目標記憶體排的所述晶粒內終端電路的電阻值。The method of claim 1, wherein the resistance value of the intra-die termination circuit of the write target memory bank is set equal to the write target of the plurality of memory banks a resistance value of the intra-die termination circuit of the non-target memory bank outside the memory. 如申請專利範圍第1項所述的方法,其中所述寫入目標記憶體排的所述晶粒內終端電路的電阻值被設定成不同於所述多個記憶體排中除所述寫入目標記憶體排外的所述非目標記憶體排的所述晶粒內終端電路的電阻值。The method of claim 1, wherein the resistance value of the intra-die termination circuit of the write target memory bank is set to be different from the plurality of memory banks except the write A resistance value of the intra-die termination circuit of the non-target memory bank outside the target memory. 如申請專利範圍第11項所述的方法,其中所述寫入目標記憶體排的所述晶粒內終端電路的所述電阻值被設定成大於所述非目標記憶體排的所述晶粒內終端電路的所述電阻值。The method of claim 11, wherein the resistance value of the intra-grain termination circuit of the write target memory bank is set to be larger than the grain of the non-target memory bank The resistance value of the internal termination circuit. 如申請專利範圍第1項所述的方法,其中為進行所述寫入操作或所述讀取操作,所述寫入目標記憶體排或所述讀取目標記憶體排被自斷電模式轉換至正常操作模式,且所述多個記憶體排中除所述寫入目標記憶體排或所述讀取目標記憶體排外的所述非目標記憶體排在所述寫入操作期間或所述讀取操作期間維持所述斷電模式。The method of claim 1, wherein the write target memory bank or the read target memory bank is switched from a power-off mode in order to perform the write operation or the read operation Up to a normal operation mode, and the non-target memory of the plurality of memory banks except the write target memory bank or the read target memory bank is discharged during the writing operation or The power down mode is maintained during a read operation. 一種系統,包括: 多個記憶體排,包括多個記憶體裝置;以及 記憶體控制器,被配置成控制所述多個記憶體排, 其中所述多個記憶體排的晶粒內終端(ODT)電路在所述系統被通電時被賦能成初始狀態,所述多個記憶體排的所述晶粒內終端電路在對所述多個記憶體排中的寫入目標記憶體排及非目標記憶體排進行寫入操作期間被賦能,且在讀取操作期間,所述多個記憶體排中的讀取目標記憶體排的所述晶粒內終端電路被去能、同時所述多個記憶體排中的非目標記憶體排的所述晶粒內終端電路被賦能。A system comprising: a plurality of memory banks including a plurality of memory devices; and a memory controller configured to control the plurality of memory banks, wherein the plurality of memory banks have intra-die terminations ( An ODT) circuit is enabled to be in an initial state when the system is powered on, and the intra-gate termination circuit of the plurality of memory banks is in a write target memory row and non-distribution to the plurality of memory banks The target memory bank is enabled during a write operation, and during the read operation, the intra-die termination circuitry of the read target memory bank of the plurality of memory banks is disabled, while The intra-die termination circuitry of the non-target memory banks in the plurality of memory banks is enabled. 如申請專利範圍第14項所述的系統,其中無論來自所述記憶體控制器的記憶體存取命令如何,所述多個記憶體排中除所述寫入目標記憶體排或所述讀取目標記憶體排外的所述非目標記憶體排的所述晶粒內終端電路均具有恆定的電阻值。The system of claim 14, wherein the plurality of memory banks are divided by the write target memory bank or the read regardless of a memory access command from the memory controller. The intra-grain termination circuits of the non-target memory banks that are excluded from the target memory have constant resistance values. 一種系統,包括: 第一記憶體排,包括連接至第一晶粒內終端(ODT)電路的多個第一記憶體裝置;以及 第二記憶體排,包括連接至第二晶粒內終端電路的多個第二記憶體裝置, 其中所述第一晶粒內終端電路及所述第二晶粒內終端電路在所述第一記憶體排的寫入操作期間被賦能,且在所述第一記憶體排的讀取操作期間,所述第一晶粒內終端電路被去能且所述第二晶粒內終端電路被賦能。A system comprising: a first memory bank comprising a plurality of first memory devices coupled to a first intra-die termination (ODT) circuit; and a second memory bank including a termination to a second intra-die termination circuit a plurality of second memory devices, wherein the first intra-gate termination circuit and the second intra-die termination circuit are energized during a write operation of the first memory bank, and During the read operation of the first bank of memories, the first intra-gate termination circuitry is disabled and the second intra-die termination circuitry is enabled. 如申請專利範圍第16項所述的系統,其中被賦能的晶粒內終端電路中的每一者對耦合至對應的所述記憶體排的資料輸入-輸出接腳的傳輸線提供終端阻抗。The system of claim 16, wherein each of the enabled intra-die termination circuits provides a termination impedance to a transmission line coupled to a data input-output pin of the corresponding memory bank. 如申請專利範圍第17項所述的系統,其中僅當自所述資料輸入-輸出接腳輸出與所述讀取操作對應的讀取資料時,所述第一晶粒內終端電路才在所述讀取操作期間被去能。The system of claim 17, wherein the first intra-gate terminal circuit is in use only when the data input-output pin outputs read data corresponding to the read operation. It is disabled during the read operation. 如申請專利範圍第16項所述的系統,其中在所述寫入操作期間,所述第一晶粒內終端電路的電阻值被設定成等於所述第二晶粒內終端電路的電阻值。The system of claim 16, wherein during the writing operation, the resistance value of the termination circuit in the first die is set equal to the resistance value of the termination circuit in the second die. 如申請專利範圍第16項所述的系統,其中在所述寫入操作期間,所述第一晶粒內終端電路的電阻值被設定成不同於所述第二晶粒內終端電路的電阻值。The system of claim 16, wherein during the writing operation, a resistance value of the first intra-gate termination circuit is set to be different from a resistance value of the termination circuit in the second die .
TW107109741A 2017-05-29 2018-03-22 Method of controlling on-die termination and system performing the same TWI763803B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
??10-2017-0066377 2017-05-29
KR10-2017-0066377 2017-05-29
KR20170066377 2017-05-29
KR1020170089692A KR20180130417A (en) 2017-05-29 2017-07-14 Method of controlling on-die termination and system performing the same
??10-2017-0089692 2017-07-14
KR10-2017-0089692 2017-07-14

Publications (2)

Publication Number Publication Date
TW201901457A true TW201901457A (en) 2019-01-01
TWI763803B TWI763803B (en) 2022-05-11

Family

ID=64669789

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107109741A TWI763803B (en) 2017-05-29 2018-03-22 Method of controlling on-die termination and system performing the same

Country Status (3)

Country Link
KR (1) KR20180130417A (en)
SG (1) SG10201804199UA (en)
TW (1) TWI763803B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705455B (en) * 2019-07-03 2020-09-21 友懋國際科技股份有限公司 Impedance transformation network and memory module including the same
CN114255801A (en) * 2020-09-24 2022-03-29 长鑫存储技术有限公司 Double-reference-voltage generator, equalizing circuit and memory
TWI785872B (en) * 2020-11-10 2022-12-01 南韓商三星電子股份有限公司 Apparatus, memory device, and method for storing multiple parameter codes for operation parameters
US11881281B2 (en) 2020-09-24 2024-01-23 Changxin Memory Technologies, Inc. Dual reference voltage generator, equalizer circuit, and memory

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112783824A (en) * 2019-11-07 2021-05-11 安徽寒武纪信息科技有限公司 Memory and device comprising same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259585B2 (en) * 2005-09-28 2007-08-21 International Business Machines Corporation Selective on-die termination for improved power management and thermal distribution
US7342411B2 (en) * 2005-12-07 2008-03-11 Intel Corporation Dynamic on-die termination launch latency reduction
WO2010144624A1 (en) * 2009-06-09 2010-12-16 Google Inc. Programming of dimm termination resistance values
US8966208B2 (en) * 2010-02-25 2015-02-24 Conversant Ip Management Inc. Semiconductor memory device with plural memory die and controller die
WO2013048493A1 (en) * 2011-09-30 2013-04-04 Intel Corporation Memory channel that supports near memory and far memory access

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705455B (en) * 2019-07-03 2020-09-21 友懋國際科技股份有限公司 Impedance transformation network and memory module including the same
CN114255801A (en) * 2020-09-24 2022-03-29 长鑫存储技术有限公司 Double-reference-voltage generator, equalizing circuit and memory
CN114255801B (en) * 2020-09-24 2023-09-15 长鑫存储技术有限公司 Dual reference voltage generator, equalizing circuit and memory
US11881281B2 (en) 2020-09-24 2024-01-23 Changxin Memory Technologies, Inc. Dual reference voltage generator, equalizer circuit, and memory
TWI785872B (en) * 2020-11-10 2022-12-01 南韓商三星電子股份有限公司 Apparatus, memory device, and method for storing multiple parameter codes for operation parameters
US11545196B2 (en) 2020-11-10 2023-01-03 Samsung Electronics Co., Ltd. Apparatus, memory device, and method for storing multiple parameter codes for operation parameters
US11688438B2 (en) 2020-11-10 2023-06-27 Samsung Electronics Co., Ltd. Apparatus, memory device, and method for storing multiple parameter codes for operation parameters

Also Published As

Publication number Publication date
TWI763803B (en) 2022-05-11
SG10201804199UA (en) 2018-12-28
KR20180130417A (en) 2018-12-07

Similar Documents

Publication Publication Date Title
CN108932960B (en) Method for controlling on-die terminator and system for executing the method
TWI763803B (en) Method of controlling on-die termination and system performing the same
US11176978B2 (en) Apparatuses and method for reducing row address to column address delay
US6147925A (en) Semiconductor device allowing fast sensing with a low power supply voltage
US10600472B2 (en) Systems and methods for memory cell array initialization
CN112242161B (en) Apparatus with biasing mechanism and method of operating the same
US10685697B2 (en) Semiconductor devices and operations thereof
US20200027490A1 (en) Apparatuses and methods for reducing row address to column address delay
US20210263685A1 (en) Methods for on-die memory termination and memory devices and systems employing the same
US5812492A (en) Control signal generation circuit and semiconductor memory device that can correspond to high speed external clock signal
KR100920829B1 (en) Semiconductor memory device
TWI685853B (en) Systems and methods for a centralized command address input buffer
US7532530B2 (en) Semiconductor memory device
US11302384B2 (en) Method of controlling on-die termination and memory system performing the same
JP2004152363A (en) Semiconductor memory
CN110998732B (en) Input buffer circuit
US20200097064A1 (en) Semiconductor devices providing a power-down mode and methods of controlling the power-down mode using the semiconductor devices
KR20180014948A (en) Semiconductor device