TW201842725A - Slew control for high-side switch - Google Patents
Slew control for high-side switch Download PDFInfo
- Publication number
- TW201842725A TW201842725A TW107112217A TW107112217A TW201842725A TW 201842725 A TW201842725 A TW 201842725A TW 107112217 A TW107112217 A TW 107112217A TW 107112217 A TW107112217 A TW 107112217A TW 201842725 A TW201842725 A TW 201842725A
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- sampling
- charge
- side switch
- capacitor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0006—Arrangements for supplying an adequate voltage to the control circuit of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0029—Circuits or arrangements for limiting the slope of switching signals, e.g. slew rate
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
- H02M1/096—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the power supply of the control circuit being connected in parallel to the main switching element
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K17/063—Modifications for ensuring a fully conducting state in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
- H03K17/162—Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
- H03K17/163—Soft switching
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0063—High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electronic Switches (AREA)
Abstract
Description
本發明係關於基於電晶體之開關,且更特定言之係關於用於一高側開關之轉換控制。The present invention relates to a transistor-based switch, and more particularly to a switching control for a high-side switch.
高側開關可用於驅動多種負載,且因此可於許多不同應用中使用。用於驅動一高側開關之典型系統及方法利用一電荷泵。一電荷泵係使用電容器作為能量儲存元件以建立一較高電壓或較低電壓電源之一DC轉DC轉換器(DC to DC converter)。關於高側開關,除供應一DC電流以驅動高側開關之外,亦依賴電荷泵來供應其他電路組件(諸如放大器)。此方法需要在電荷泵內使用大電容器以供應DC負載電流。若要求一晶片上整合解決方案,則大電容器可佔據珍貴的表面積。為解決此問題,一些系統實施外部電容器來供應DC電流。雖然此減小晶片之所需表面積,但接著包含額外引腳以連接外部電容器。使用一電荷泵設計來驅動一高側開關不利於要求一減小的晶片大小之情境或對成本敏感且因此要求減小數目之引腳之情境。另外,使用一電荷泵設計不利於要求儘可能少的外部組件(諸如外部電容器)之情境,此係因為外部組件亦增加整體材料清單(BOM)及成本。 一般而言,高側開關包含三個主要元件:一通道元件、一閘極控制塊及一輸入邏輯塊。通道元件通常為一電晶體,其通常為一金屬氧化物半導體場效電晶體(MOSFET)或一橫向擴散金屬氧化物半導體電晶體(LDMOS)。一LDMOS電晶體被認為是一類型之MOSFET。通道元件在線性區域中操作以將電流自一電源傳遞至一負載。閘極控制塊將一電壓提供至通道元件之閘極以將其「接通」或「關斷」。輸入邏輯塊解譯接通/關斷信號且觸發閘極控制塊以將通道元件「接通」或「關斷」。 在電子器件中,轉換速率定義為每單位時間之電壓變化。超過一電路之轉換速率可引起信號失真。再者,超過轉換速率可引起一增大的電磁輻射(EME)量,藉此違反電磁相容性(EMC)標準,且可能干擾其他電子裝置。因此,轉換速率可對一對應電路之操作造成明顯限制。添加限流器可提供對轉換速率之一些控制,但此解決方案仍要求使用一大的電荷泵。 圖1係用於驅動一高側開關之具有額外限流器之一已知系統及方法之一電路層級示意圖。如所示,一電荷泵2連接至一電流控制器4。電流控制器4包含一放大器6及一電晶體10。此處,所使用之電晶體10係一p通道金屬氧化物半導體(pMOS)。電流控制器4由電荷泵2供電且基於源於電阻器12、24之電壓差而控制一輸出。放大器6之正軌由電荷泵2供電且放大器6之負軌由一供應電壓8供電。一電流感測電阻器12連接在電荷泵2與放大器6之間。一電流感測FET 14連接在放大器6與一輸出引腳18之間。一高側開關FET 16具有連接至電荷泵2之汲極側,閘極側經由電晶體10連接至放大器6之輸出端,且源極側連接至輸出引腳18。使用輸出引腳18來將系統連接至一電路負載20。另外,一電阻器32連接在FET 16之閘極側與源極側之間。電路進一步包含一時脈產生器22。一電阻器24連接在電荷泵2與放大器6之間。電路進一步包含一負載參考26。亦展示,當高側開關FET 16 「斷開」時,一FET 28與一電阻器30串聯連接。使用限流器34來提供對高側開關FET 16之轉換速率之一些控制。 仍參考圖1,電荷泵2歸因於其連接至放大器6及高側開關FET 16而需要遞送一大的輸出電流。運用電流控制器4將高側開關之閘極快速充電至所要電壓VGS 從電荷泵2汲取大量電流。因此,電荷泵2包含相對較大電容器,此使得難以將圖1之電路整合至一單一晶片上。大整合電容器增大矽晶粒大小及藉此產品成本。若大電容器定位在外部,則額外引腳成為必要,且任何外部電容器可能增加BOM成本,因此增加整體系統之成本。運用限流器34控制高側開關FET 16之轉換速率導致需要一大電荷泵2。 因此,需要一種用於控制一高側開關之轉換速率之經改良系統及方法。High-side switches can be used to drive a variety of loads, and therefore can be used in many different applications. A typical system and method for driving a high-side switch utilizes a charge pump. A charge pump uses a capacitor as an energy storage element to create a DC to DC converter that is one of a higher voltage or a lower voltage power source. Regarding the high-side switch, in addition to supplying a DC current to drive the high-side switch, it also relies on a charge pump to supply other circuit components (such as amplifiers). This method requires the use of large capacitors in the charge pump to supply the DC load current. If an integrated solution on a chip is required, large capacitors can occupy precious surface area. To address this issue, some systems implement external capacitors to supply DC current. Although this reduces the required surface area of the wafer, it then includes additional pins to connect external capacitors. Using a charge pump design to drive a high-side switch is detrimental to situations that require a reduced chip size or situations that are cost sensitive and therefore require a reduced number of pins. In addition, the use of a charge pump design is not conducive to situations that require as few external components as possible, such as external capacitors, because external components also increase the overall bill of materials (BOM) and cost. Generally speaking, a high-side switch includes three main components: a channel component, a gate control block, and an input logic block. The channel element is usually a transistor, which is usually a metal oxide semiconductor field effect transistor (MOSFET) or a laterally diffused metal oxide semiconductor transistor (LDMOS). An LDMOS transistor is considered a type of MOSFET. Channel elements operate in a linear region to pass current from a power source to a load. The gate control block provides a voltage to the gate of the channel element to "turn on" or "off" it. The input logic block interprets the on / off signal and triggers the gate control block to "turn on" or "off" the channel element. In electronics, slew rate is defined as the change in voltage per unit time. Signal slew rates that exceed a circuit's slew rate can cause distortion. Furthermore, exceeding the slew rate can cause an increased amount of electromagnetic radiation (EME), thereby violating electromagnetic compatibility (EMC) standards, and may interfere with other electronic devices. Therefore, the slew rate can significantly limit the operation of a corresponding circuit. Adding a current limiter provides some control over the slew rate, but this solution still requires the use of a large charge pump. FIG. 1 is a circuit level diagram of a known system and method with additional current limiters for driving a high-side switch. As shown, a charge pump 2 is connected to a current controller 4. The current controller 4 includes an amplifier 6 and a transistor 10. Here, the transistor 10 used is a p-channel metal oxide semiconductor (pMOS). The current controller 4 is powered by the charge pump 2 and controls an output based on the voltage difference from the resistors 12, 24. The positive rail of the amplifier 6 is powered by the charge pump 2 and the negative rail of the amplifier 6 is powered by a supply voltage 8. A current sense resistor 12 is connected between the charge pump 2 and the amplifier 6. A current sensing FET 14 is connected between the amplifier 6 and an output pin 18. A high-side switching FET 16 has a drain side connected to the charge pump 2, a gate side connected to the output terminal of the amplifier 6 via a transistor 10, and a source side connected to the output pin 18. The output pin 18 is used to connect the system to a circuit load 20. In addition, a resistor 32 is connected between the gate side and the source side of the FET 16. The circuit further includes a clock generator 22. A resistor 24 is connected between the charge pump 2 and the amplifier 6. The circuit further includes a load reference 26. It is also shown that when the high-side switching FET 16 is "off", a FET 28 is connected in series with a resistor 30. A current limiter 34 is used to provide some control over the slew rate of the high-side switching FET 16. Still referring to FIG. 1, the charge pump 2 needs to deliver a large output current due to its connection to the amplifier 6 and the high-side switching FET 16. The current controller 4 is used to quickly charge the gate of the high-side switch to the desired voltage V GS to draw a large amount of current from the charge pump 2. Therefore, the charge pump 2 contains a relatively large capacitor, which makes it difficult to integrate the circuit of FIG. 1 onto a single chip. Large integrated capacitors increase the size of the silicon grains and thus the cost of the product. If large capacitors are located externally, additional pins become necessary, and any external capacitors may increase BOM cost, thus increasing the cost of the overall system. Using the current limiter 34 to control the slew rate of the high-side switching FET 16 results in the need for a large charge pump 2. Therefore, there is a need for an improved system and method for controlling the slew rate of a high-side switch.
經由用於控制一高側開關轉換速率之包含一取樣及位準移位電路的當前揭示之系統及方法來滿足前述需求。 本發明揭示一種用於一高側開關之轉換速率控制之例示性電路。該電路包括一取樣及位準移位電路。該取樣及位準移位電路連接至該高側開關。該電路進一步包括一取樣電容器,且該取樣電容器經組態以對對應於該取樣及位準移位電路之一輸入電壓取樣。另外,該電路包含可實施為一電路之一電荷限制機構。該取樣電容器經組態以對該高側開關之一閘極電容充電。該電荷限制機構經組態以限制每單位時間轉移至該高側開關之該閘極電容之一電荷速率。 本發明揭示一種用於控制一高側開關之一轉換速率之例示性方法。該方法包括將一輸入電流供應至一取樣及位準移位電路。該方法進一步包含對一輸入電壓取樣。一取樣電容器經組態用於該輸入電壓之該取樣。另外,該方法包含對輸入電壓進行位準移位。該方法包含使用該取樣電容器來對該高側開關之一閘極電容充電。此外,該方法包含限制供應至該取樣電容器之一電荷,藉由至少一個電流槽限制該電荷。The foregoing needs are met by currently disclosed systems and methods including a sampling and level shifting circuit for controlling a high-side switching slew rate. An exemplary circuit for slew rate control of a high-side switch is disclosed. The circuit includes a sampling and level shifting circuit. The sampling and level shifting circuit is connected to the high-side switch. The circuit further includes a sampling capacitor, and the sampling capacitor is configured to sample an input voltage corresponding to the sampling and level shifting circuit. In addition, the circuit includes a charge limiting mechanism that can be implemented as a circuit. The sampling capacitor is configured to charge a gate capacitance of one of the high-side switches. The charge limiting mechanism is configured to limit a charge rate of the gate capacitance transferred to the high-side switch per unit time. The invention discloses an exemplary method for controlling a slew rate of a high-side switch. The method includes supplying an input current to a sampling and level shifting circuit. The method further includes sampling an input voltage. A sampling capacitor is configured for the sampling of the input voltage. In addition, the method includes level shifting the input voltage. The method includes using the sampling capacitor to charge a gate capacitance of one of the high-side switches. In addition, the method includes limiting a charge supplied to the sampling capacitor, and limiting the charge by at least one current sink.
申請案優先權 本申請案主張2017年4月10日申請之印度申請案第201711012738號之優先權,該案之全部內容特此併入。 在詳細說明本發明之任何實施例之前,應瞭解,本發明在其應用方面不限於在以下描述中闡述或在以下圖式中繪示的組件之構造及配置之細節。本發明可有其他實施例且能夠以各種方式實踐或實行。再者,應瞭解,本文中使用之措詞及術語係用於描述之目的且不應視為限制。本文中使用「包含」、「包括」或「具有」及其等變體意謂涵蓋其後列出之品項及其等效物以及額外品項。除非另有指定或限制,否則術語「安裝」、「連接」、「支撐」及「耦合」及其等變體廣泛地使用且涵蓋直接及間接安裝、連接、支撐及耦合。此外,「連接」及「耦合」不限於實體或機械連接或耦合。 呈現以下論述以使熟習此項技術者能夠進行且使用本發明之實施例。熟習此項技術者將容易明白所繪示實施例之各種修改,且本文中之一般原理可應用於其他實施例及應用而不脫離本發明之實施例。因此,本發明之實施例並不意欲限於所展示之實施例,而是被賦予與本文中揭示之原理及特徵一致之最廣範疇。將參考圖閱讀以下詳細描述,其中不同圖中之相同元件具有相同元件符號。不一定按比例之圖描繪選定實施例且不意欲限制本發明之實施例之範疇。熟習此項技術者將認知,本文中提供之實例具有落在本發明之實施例之範疇內之許多有用替代例。 本發明之實施例提供一種用於控制一高側開關之轉換速率之系統及方法,該高側開關用於選擇性地提供電力至一輸出負載。 圖2係根據本發明之用於控制一高側開關之一轉換速率之一系統及方法之一項實施例之一電路層級示意圖。在一項實施例中,可提供一取樣及位準移位電路40。取樣及位準移位電路40可連接至一電壓供應42。電壓供應42可為一放大器(例如,一運算放大器)之輸出。或者,電壓供應42可供應一固定或可變供應電壓。在某些實施例中,電壓供應42有利地可為1.8伏特、2.5伏特、3.3伏特或5伏特。或者,可藉由電壓供應42供應任何其他電壓位準。取樣及位準移位電路40可包含複數個開關50、52、54、56。取樣及位準移位電路40可進一步包含一取樣電容器58。另外,取樣及位準移位電路40可包含一場效電晶體(FET) 60。一轉換控制件80可包含可並聯連接之電流槽82、84、86。轉換控制件80可與FET 60並聯連接。 在一個非限制性實例中,如由圖2展示,一高側開關70可為一n通道金屬氧化物半導體場效電晶體(nMOS電晶體)或一n通道橫向擴散金屬氧化物半導體電晶體(nLDMOS電晶體)。一nLDMOS電晶體被認為是一類型之nMOS電晶體。在某些情境中,使用一不同類型之電晶體可為有利的。取樣及位準移位電路40之一個輸出端可連接至高側開關70之閘極側。高側開關70之汲極側可連接至一電壓供應48。輸出引腳72可連接至一電路負載。在某些非限制性實施例中,一低側開關可經包含且連接至輸出引腳72,使得高側開關70及低側開關構成一半橋組態。 仍參考圖2,取樣及位準移位電路40可消除在驅動高側開關70時對一電荷泵之一需求。取樣電容器58可對電壓供應42之電壓取樣。接著,可使用取樣電容器58來對高側開關70之閘極側電容充電。對閘極側電容之充電可使高側開關70 「導通」。在一項非限制性實施例中,當高側開關70 「接通」時,可將一輸入電壓供應至一電路負載。 在另一非限制性實施例中,高側開關70之閘極電容可用作一保持電容器。因此,可能不存在一保持電容器所需之DC負載。取樣及位準移位電路40可不提供任何DC電流。在另一非限制性實施例中,一顯式保持電容器可並聯連接至高側開關70之閘極電容。再次,可能不存在一保持電容器所需之DC負載。 在某些非限制性實施例中,與具有電荷泵功率放大器相反,電壓供應48、42可供應一固定電壓。在其中一放大器用作電壓供應42之情境中,放大器可用作一短路電流控制器。在某些情境中,使用不同放大器組態或一不同類型之放大器可為有利的。在某些情境中,包含經組態以在自電壓供應48下至低於電壓供應48數伏特之一共模電壓範圍內運作之一放大器可為有利的。放大器可經特別設計以處置一高輸入共模電壓以及一低輸出共模電壓。 在某些情境中,包含提供3.3伏特之一電壓供應48、42可為有利的。或者,電壓供應48、42可供應任何其他預定電壓位準,包含5伏特、12伏特、14伏特、24伏特及48伏特。在某些情境中,將一車輛電池用於電壓供應48、42之至少一者可為有利的。在某些情境中,使電壓供應48、42之至少一者具有在4.5伏特至60伏特範圍內之一供應電壓可為有利的。在一項非限制性實施例中,電壓供應48、42可經組態以在一預定時間內增大各自供應電壓(即,斜升電壓)。 在一項非限制性實施例中,所揭示系統可為一單一晶片上之一積體電路。積體電路可使用由如由圖1展示之電荷泵系統使用之晶片表面積之1/3。或者,所揭示系統可使用由如由圖1展示之電荷泵系統使用之晶片表面積之至多99%。在某些情境中,在一單一晶片上之積體電路內特別包含取樣電容器58可為有利的。在一項非限制性實施例中,取樣電容器58可小於與由圖1展示之電荷泵系統相關聯之電容器。在一些非限制性實施例中,取樣電容器可在2 pF至250 pF之一電容範圍內。 在一項非限制性實施例中,本發明所包含之引腳之數目可小於由如由圖1展示之電荷泵系統包含之引腳之數目。在一個非限制性實例中,本發明可包含比如由圖1展示之電荷泵系統少一個之引腳。在另一非限制性實例中,本發明可包含至多比如由圖1展示之電荷泵系統少三個之引腳。 在一項非限制性實施例中,電流槽82、84、86可各自控制儲存於取樣電容器58中之電荷量。藉由選擇電流槽82、84、86中正操作之電流槽,亦可選擇對高側開關70充電之轉換速率。因此,電流槽82、84、86之各者可對應於高側開關70之一不同轉換速率的充電。當不期望轉換速率控制時,可使用FET 60來短接電流槽82、84、86之各者。藉由控制儲存於取樣電容器58中之電荷量,可控制對高側開關70之VGS 之充電率。當FET 60短接電流槽82、84、86時,取樣電容器58可達到一滿量充電,且對高側開關70充電之轉換速率可相對較高。高側開關70之轉換速率可為可程式化的。 圖3係根據本發明之用於控制一高側開關之一轉換速率之一系統及方法之另一實施例之一電路層級示意圖。在一項實施例中,可提供一取樣及位準移位電路40。取樣及位準移位電路40可連接至一電壓供應42。電壓供應42可為一放大器(例如,一運算放大器)之輸出。或者,電壓供應42可供應一固定或可變供應電壓。在某些實施例中,電壓供應42有利地可為1.8伏特、2.5伏特、3.3伏特或5伏特。或者,可藉由電壓供應42供應任何其他電壓位準。取樣及位準移位電路40可包含複數個開關50、52、54、56。取樣及位準移位電路40可進一步包含一取樣電容器58。另外,取樣及位準移位電路40可包含一場效電晶體(FET) 60。一轉換控制件88可包含可調諧之至少一個電流槽82。轉換控制件88可與FET 60並聯連接。 在一個非限制性實例中,如由圖3展示,一高側開關70可為一n通道金屬氧化物半導體場效電晶體(nMOS電晶體)或一n通道橫向擴散金屬氧化物半導體電晶體(nLDMOS電晶體)。一nLDMOS電晶體被認為是一類型之nMOS電晶體。在某些情境中,使用一不同類型之電晶體可為有利的。取樣及位準移位電路40之一個輸出端可連接至高側開關70之閘極側。高側開關70之汲極側可連接至一電壓供應48。輸出引腳72可連接至一電路負載。在某些非限制性實施例中,一低側開關可經包含且連接至輸出引腳72,使得高側開關70及低側開關構成一半橋組態。 仍參考圖3,取樣及位準移位電路40可消除在驅動高側開關70時對一電荷泵之一需求。取樣電容器58可對電壓供應42之電壓取樣。接著,可使用取樣電容器58來對高側開關70之閘極側電容充電。對閘極側電容之充電可使高側開關70 「導通」。在一項非限制性實施例中,當高側開關70 「接通」時,可將一輸入電壓供應至一電路負載。 在一項非限制性實施例中,電流槽82控制儲存於取樣電容器58中之電荷量。藉由選擇電流槽82,亦可選擇對高側開關70充電之轉換速率。當不期望轉換速率控制時,可使用FET 60來短接電流槽82。藉由控制儲存於取樣電容器58中之電荷量,可控制對高側開關70之VGS 之充電率。當FET 60短接電流槽82時,取樣電容器58可達到一滿量充電,且對高側開關70充電之轉換速率可相對較高。高側開關70之轉換速率可為可程式化的。 參考圖2及圖3,顯而易見的是,當實施至少一個電流槽82時,可實施任何數目個電流槽。參考圖2,一項非限制性實例實施例包含並聯連接之三個電流槽82、84、86。或者,可包含並聯連接之任何數目個電流槽。電流槽82、84、86之任一者可為可調諧的且可選擇的。 圖4係根據本發明之用於控制一高側開關之一轉換速率之一系統及方法之另一實施例之一電路層級示意圖。在一項實施例中,可提供一取樣及位準移位電路90。取樣及位準移位電路90可連接至一電壓供應42。電壓供應42可為一放大器(例如,一運算放大器)之輸出。或者,電壓供應42可供應一固定或可變供應電壓。在某些實施例中,電壓供應42有利地可為1.8伏特、2.5伏特、3.3伏特或5伏特。或者,可藉由電壓供應42供應任何其他電壓位準。取樣及位準移位電路90可包含複數個開關50、52、54、56。取樣及位準移位電路90可進一步包含一取樣電容器92。可經由取樣電容器92實施轉換控制。 在一個非限制性實例中,如由圖4展示,一高側開關70可為一n通道金屬氧化物半導體場效電晶體(nMOS電晶體)或一n通道橫向擴散金屬氧化物半導體電晶體(nLDMOS電晶體)。一nLDMOS電晶體被認為是一類型之nMOS電晶體。在某些情境中,使用一不同類型之電晶體可為有利的。取樣及位準移位電路90之一個輸出端可連接至高側開關70之閘極側。高側開關70之汲極側可連接至一電壓供應48。輸出引腳72可連接至一電路負載。在某些非限制性實施例中,一低側開關可經包含且連接至輸出引腳72,使得高側開關70及低側開關構成一半橋組態。 仍參考圖4,取樣及位準移位電路90可消除在驅動高側開關70時對一電荷泵之一需求。取樣電容器92可對電壓供應42之電壓取樣。接著,可使用取樣電容器92來對高側開關70之閘極側電容充電。對閘極側電容之充電可使高側開關70 「導通」。在一項非限制性實施例中,當高側開關70 「接通」時,可將一輸入電壓供應至一電路負載。 在一項非限制性實施例中,取樣電容器92可為可調整的。在某些情境中,包含一可調整取樣電容器92可為有利的,此係因為接著可使用取樣電容器92作為一電荷限制機構。在此非限制性實施例中,取樣電容對應於取樣及位準移位電路。因此,調整取樣電容器92之電容可實現對高側開關70之轉換控制。 圖5係根據本發明之用於控制一高側開關之一轉換速率之一系統及方法之另一實施例之一電路層級示意圖。在一項實施例中,可提供一取樣及位準移位電路96。取樣及位準移位電路96可連接至一電壓供應98。取樣及位準移位電路96可包含複數個開關50、52、54、56。取樣及位準移位電路96可進一步包含一取樣電容器58。 在一個非限制性實例中,如由圖5展示,一高側開關70可為一n通道金屬氧化物半導體場效電晶體(nMOS電晶體)或一n通道橫向擴散金屬氧化物半導體電晶體(nLDMOS電晶體)。一nLDMOS電晶體被認為是一類型之nMOS電晶體。在某些情境中,使用一不同類型之電晶體可為有利的。取樣及位準移位電路96之一個輸出端可連接至高側開關70之閘極側。高側開關70之汲極側可連接至一電壓供應48。輸出引腳72可連接至一電路負載。在某些非限制性實施例中,一低側開關可經包含且連接至輸出引腳72,使得高側開關70及低側開關構成一半橋組態。 仍參考圖5,取樣及位準移位電路96可消除在驅動高側開關70時對一電荷泵之一需求。取樣電容器58可對電壓供應98之電壓取樣。接著,可使用取樣電容器58來對高側開關70之閘極側電容充電。對閘極側電容之充電可使高側開關70 「導通」。在一項非限制性實施例中,當高側開關70 「接通」時,可將一輸入電壓供應至一電路負載。 電壓供應98可供應一固定或可變供應電壓。在某些實施例中,電壓供應42有利地可為1.8伏特、2.5伏特、3.3伏特或5伏特。或者,可藉由電壓供應42供應任何其他電壓位準。在一項非限制性實施例中,電壓供應98可經組態以在一預定時間內增大供應電壓(即,斜升電壓)。在一項非限制性實施例中,可使用電壓供應98作為一電荷限制機構。一可調整電壓供應98可限制對應於對取樣電容器充電之一電壓。因而,可控制高側開關之轉換速率。 在一項非限制性實施例中,轉換控制電路可包含其他類型之電荷限制機構。電荷限制機構可限制取樣電容器58之取樣電流。在某些非限制性實施例中,電荷限制機構可限制取樣電容器58之取樣電壓。取樣電流可在5 mA至5 mA之範圍內。取樣電壓可在最終目標閘極-源極電壓之0%至100%之範圍內。電荷限制機構可經組態以限制對應於一取樣及位準移位電路之一頻率。 熟習此項技術者將瞭解,雖然上文已結合特定實施例及實例描述本發明,但本發明不一定如此受限,且許多其他實施例、實例、用途、修改及該等實施例、實例及用途之偏離例意欲由此處所附之發明申請專利範圍涵蓋。本文中引用之各專利及公開案之全部揭示內容以引用的方式併入,宛如各個此專利或公開案以引用的方式個別地併入本文中。以下發明申請專利範圍中闡述本發明之各種特徵及優點。Priority of Application This application claims the priority of Indian Application No. 201711012738 filed on April 10, 2017, the entire contents of which are hereby incorporated. Before explaining any embodiment of the invention in detail, it should be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or carried out in various ways. Furthermore, it should be understood that the words and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of "including", "including" or "having" and variations thereof in this document means to cover the items listed thereafter and their equivalents and additional items. Unless otherwise specified or limited, the terms "installation,""connection,""support," and "coupling" and variations thereof are widely used and encompass direct and indirect installation, connection, support, and coupling. In addition, "connected" and "coupled" are not limited to physical or mechanical connections or couplings. The following discussion is presented to enable those skilled in the art to make and use embodiments of the invention. Those skilled in the art will readily understand various modifications to the illustrated embodiments, and the general principles herein may be applied to other embodiments and applications without departing from the embodiments of the present invention. Therefore, the embodiments of the present invention are not intended to be limited to the embodiments shown, but are given the broadest scope consistent with the principles and features disclosed herein. The following detailed description will be read with reference to the drawings, in which the same components in different drawings have the same component symbols. The selected embodiments are not necessarily drawn to scale and are not intended to limit the scope of the embodiments of the invention. Those skilled in the art will recognize that the examples provided herein have many useful alternatives that fall within the scope of embodiments of the invention. Embodiments of the present invention provide a system and method for controlling a slew rate of a high-side switch for selectively supplying power to an output load. FIG. 2 is a circuit level diagram of an embodiment of a system and method for controlling a slew rate of a high-side switch according to the present invention. In one embodiment, a sampling and level shifting circuit 40 may be provided. The sampling and level shifting circuit 40 can be connected to a voltage supply 42. The voltage supply 42 may be the output of an amplifier (eg, an operational amplifier). Alternatively, the voltage supply 42 may supply a fixed or variable supply voltage. In some embodiments, the voltage supply 42 may advantageously be 1.8 volts, 2.5 volts, 3.3 volts, or 5 volts. Alternatively, any other voltage level may be supplied by the voltage supply 42. The sampling and level shifting circuit 40 may include a plurality of switches 50, 52, 54, and 56. The sampling and level shifting circuit 40 may further include a sampling capacitor 58. In addition, the sampling and level shifting circuit 40 may include a field effect transistor (FET) 60. A conversion control member 80 may include current slots 82, 84, 86 that can be connected in parallel. The switching control 80 may be connected in parallel with the FET 60. In a non-limiting example, as shown in FIG. 2, a high-side switch 70 may be an n-channel metal oxide semiconductor field effect transistor (nMOS transistor) or an n-channel laterally diffused metal oxide semiconductor transistor ( nLDMOS transistor). An nLDMOS transistor is considered a type of nMOS transistor. In some scenarios, it may be advantageous to use a different type of transistor. One output terminal of the sampling and level shift circuit 40 can be connected to the gate side of the high-side switch 70. The drain side of the high-side switch 70 may be connected to a voltage supply 48. The output pin 72 can be connected to a circuit load. In some non-limiting embodiments, a low-side switch may be included and connected to the output pin 72 such that the high-side switch 70 and the low-side switch constitute a half-bridge configuration. Still referring to FIG. 2, the sample and level shift circuit 40 can eliminate one of the requirements for a charge pump when driving the high-side switch 70. The sampling capacitor 58 can sample the voltage of the voltage supply 42. The sampling capacitor 58 can then be used to charge the gate-side capacitance of the high-side switch 70. Charging the gate-side capacitor can “turn on” the high-side switch 70. In one non-limiting embodiment, when the high-side switch 70 is "on", an input voltage can be supplied to a circuit load. In another non-limiting embodiment, the gate capacitance of the high-side switch 70 can be used as a hold capacitor. Therefore, there may not be a DC load required to hold the capacitor. The sampling and level shifting circuit 40 may not provide any DC current. In another non-limiting embodiment, an explicit holding capacitor may be connected in parallel to the gate capacitance of the high-side switch 70. Again, there may not be a DC load required to hold the capacitor. In some non-limiting embodiments, as opposed to having a charge pump power amplifier, the voltage supplies 48, 42 may supply a fixed voltage. In the case where one amplifier is used as the voltage supply 42, the amplifier can be used as a short-circuit current controller. In some scenarios, it may be advantageous to use different amplifier configurations or a different type of amplifier. In some scenarios, it may be advantageous to include an amplifier configured to operate in a common mode voltage range from the voltage supply 48 to a few volts below the voltage supply 48. The amplifier can be specifically designed to handle a high input common-mode voltage and a low output common-mode voltage. In some scenarios, it may be advantageous to include a supply of one of 3.3 volts 48, 42. Alternatively, the voltage supplies 48, 42 can supply any other predetermined voltage levels, including 5 volts, 12 volts, 14 volts, 24 volts, and 48 volts. In some scenarios, it may be advantageous to use a vehicle battery for at least one of the voltage supplies 48,42. In some scenarios, it may be advantageous to have at least one of the voltage supplies 48, 42 have a supply voltage in the range of 4.5 volts to 60 volts. In one non-limiting embodiment, the voltage supplies 48, 42 may be configured to increase the respective supply voltage (ie, the ramp-up voltage) for a predetermined time. In a non-limiting embodiment, the disclosed system may be an integrated circuit on a single chip. The integrated circuit can use 1/3 of the surface area of the wafer used by the charge pump system as shown in FIG. 1. Alternatively, the disclosed system can use up to 99% of the surface area of the wafer used by the charge pump system as shown by FIG. 1. In some scenarios, it may be advantageous to specifically include the sampling capacitor 58 in the integrated circuit on a single chip. In one non-limiting embodiment, the sampling capacitor 58 may be smaller than the capacitor associated with the charge pump system shown by FIG. 1. In some non-limiting embodiments, the sampling capacitor may be in a capacitance range of 2 pF to 250 pF. In a non-limiting embodiment, the number of pins included in the present invention may be less than the number of pins included by the charge pump system as shown in FIG. 1. In one non-limiting example, the present invention may include one less pin for a charge pump system such as that shown in FIG. In another non-limiting example, the invention may include up to three pins, such as the charge pump system shown in FIG. 1. In a non-limiting embodiment, the current sinks 82, 84, 86 can each control the amount of charge stored in the sampling capacitor 58. By selecting the current slots 82, 84, 86 that are operating, the conversion rate for charging the high-side switch 70 can also be selected. Therefore, each of the current sinks 82, 84, 86 may correspond to the charging of a different slew rate of one of the high-side switches 70. When slew rate control is not desired, FET 60 may be used to short each of the current sinks 82, 84, 86. By controlling the amount of charge stored in the sampling capacitor 58, the charge rate of V GS to the high-side switch 70 can be controlled. When the FET 60 is short-circuited to the current slots 82, 84, 86, the sampling capacitor 58 can reach a full charge, and the conversion rate for charging the high-side switch 70 can be relatively high. The slew rate of the high-side switch 70 may be programmable. FIG. 3 is a circuit level diagram of another embodiment of a system and method for controlling a slew rate of a high-side switch according to the present invention. In one embodiment, a sampling and level shifting circuit 40 may be provided. The sampling and level shifting circuit 40 can be connected to a voltage supply 42. The voltage supply 42 may be the output of an amplifier (eg, an operational amplifier). Alternatively, the voltage supply 42 may supply a fixed or variable supply voltage. In some embodiments, the voltage supply 42 may advantageously be 1.8 volts, 2.5 volts, 3.3 volts, or 5 volts. Alternatively, any other voltage level may be supplied by the voltage supply 42. The sampling and level shifting circuit 40 may include a plurality of switches 50, 52, 54, and 56. The sampling and level shifting circuit 40 may further include a sampling capacitor 58. In addition, the sampling and level shifting circuit 40 may include a field effect transistor (FET) 60. A conversion control 88 may include at least one current slot 82 that is tunable. The switching control 88 may be connected in parallel with the FET 60. In a non-limiting example, as shown in FIG. 3, a high-side switch 70 may be an n-channel metal oxide semiconductor field effect transistor (nMOS transistor) or an n-channel laterally diffused metal oxide semiconductor transistor ( nLDMOS transistor). An nLDMOS transistor is considered a type of nMOS transistor. In some scenarios, it may be advantageous to use a different type of transistor. One output terminal of the sampling and level shift circuit 40 can be connected to the gate side of the high-side switch 70. The drain side of the high-side switch 70 may be connected to a voltage supply 48. The output pin 72 can be connected to a circuit load. In some non-limiting embodiments, a low-side switch may be included and connected to the output pin 72 such that the high-side switch 70 and the low-side switch constitute a half-bridge configuration. Still referring to FIG. 3, the sample and level shift circuit 40 can eliminate one of the requirements for a charge pump when driving the high-side switch 70. The sampling capacitor 58 can sample the voltage of the voltage supply 42. The sampling capacitor 58 can then be used to charge the gate-side capacitance of the high-side switch 70. Charging the gate-side capacitor can “turn on” the high-side switch 70. In one non-limiting embodiment, when the high-side switch 70 is "on", an input voltage can be supplied to a circuit load. In one non-limiting embodiment, the current sink 82 controls the amount of charge stored in the sampling capacitor 58. By selecting the current slot 82, the conversion rate for charging the high-side switch 70 can also be selected. When slew rate control is not desired, the FET 60 may be used to short the current sink 82. By controlling the amount of charge stored in the sampling capacitor 58, the charge rate of V GS to the high-side switch 70 can be controlled. When the FET 60 is shorted to the current slot 82, the sampling capacitor 58 can reach a full charge, and the conversion rate for charging the high-side switch 70 can be relatively high. The slew rate of the high-side switch 70 may be programmable. Referring to FIGS. 2 and 3, it is apparent that when at least one current slot 82 is implemented, any number of current slots may be implemented. Referring to FIG. 2, a non-limiting example embodiment includes three current slots 82, 84, 86 connected in parallel. Alternatively, any number of current sinks connected in parallel may be included. Any of the current slots 82, 84, 86 may be tunable and selectable. FIG. 4 is a circuit level diagram of another embodiment of a system and method for controlling a slew rate of a high-side switch according to the present invention. In one embodiment, a sampling and level shifting circuit 90 may be provided. The sampling and level shifting circuit 90 can be connected to a voltage supply 42. The voltage supply 42 may be the output of an amplifier (eg, an operational amplifier). Alternatively, the voltage supply 42 may supply a fixed or variable supply voltage. In some embodiments, the voltage supply 42 may advantageously be 1.8 volts, 2.5 volts, 3.3 volts, or 5 volts. Alternatively, any other voltage level may be supplied by the voltage supply 42. The sampling and level shifting circuit 90 may include a plurality of switches 50, 52, 54, and 56. The sampling and level shifting circuit 90 may further include a sampling capacitor 92. Conversion control can be performed via the sampling capacitor 92. In a non-limiting example, as shown in FIG. 4, a high-side switch 70 may be an n-channel metal oxide semiconductor field effect transistor (nMOS transistor) or an n-channel laterally diffused metal oxide semiconductor transistor ( nLDMOS transistor). An nLDMOS transistor is considered a type of nMOS transistor. In some scenarios, it may be advantageous to use a different type of transistor. One output terminal of the sampling and level shifting circuit 90 can be connected to the gate side of the high-side switch 70. The drain side of the high-side switch 70 may be connected to a voltage supply 48. The output pin 72 can be connected to a circuit load. In some non-limiting embodiments, a low-side switch may be included and connected to the output pin 72 such that the high-side switch 70 and the low-side switch constitute a half-bridge configuration. Still referring to FIG. 4, the sampling and level shifting circuit 90 can eliminate the need for a charge pump when driving the high-side switch 70. The sampling capacitor 92 can sample the voltage of the voltage supply 42. Then, the sampling capacitor 92 can be used to charge the gate-side capacitance of the high-side switch 70. Charging the gate-side capacitor can “turn on” the high-side switch 70. In one non-limiting embodiment, when the high-side switch 70 is "on", an input voltage can be supplied to a circuit load. In a non-limiting embodiment, the sampling capacitor 92 may be adjustable. In some situations, it may be advantageous to include an adjustable sampling capacitor 92 because the sampling capacitor 92 may then be used as a charge limiting mechanism. In this non-limiting embodiment, the sampling capacitor corresponds to a sampling and level shifting circuit. Therefore, adjusting the capacitance of the sampling capacitor 92 can realize the switching control of the high-side switch 70. 5 is a schematic diagram of a circuit level of another embodiment of a system and method for controlling a slew rate of a high-side switch according to the present invention. In one embodiment, a sampling and level shifting circuit 96 may be provided. The sampling and level shifting circuit 96 can be connected to a voltage supply 98. The sampling and level shifting circuit 96 may include a plurality of switches 50, 52, 54, and 56. The sampling and level shifting circuit 96 may further include a sampling capacitor 58. In a non-limiting example, as shown in FIG. 5, a high-side switch 70 may be an n-channel metal oxide semiconductor field effect transistor (nMOS transistor) or an n-channel laterally diffused metal oxide semiconductor transistor ( nLDMOS transistor). An nLDMOS transistor is considered a type of nMOS transistor. In some scenarios, it may be advantageous to use a different type of transistor. One output terminal of the sampling and level shifting circuit 96 can be connected to the gate side of the high-side switch 70. The drain side of the high-side switch 70 may be connected to a voltage supply 48. The output pin 72 can be connected to a circuit load. In some non-limiting embodiments, a low-side switch may be included and connected to the output pin 72 such that the high-side switch 70 and the low-side switch constitute a half-bridge configuration. Still referring to FIG. 5, the sampling and level shifting circuit 96 can eliminate one of the requirements for a charge pump when driving the high-side switch 70. The sampling capacitor 58 can sample the voltage of the voltage supply 98. The sampling capacitor 58 can then be used to charge the gate-side capacitance of the high-side switch 70. Charging the gate-side capacitor can “turn on” the high-side switch 70. In one non-limiting embodiment, when the high-side switch 70 is "on", an input voltage can be supplied to a circuit load. The voltage supply 98 can supply a fixed or variable supply voltage. In some embodiments, the voltage supply 42 may advantageously be 1.8 volts, 2.5 volts, 3.3 volts, or 5 volts. Alternatively, any other voltage level may be supplied by the voltage supply 42. In one non-limiting embodiment, the voltage supply 98 may be configured to increase the supply voltage (ie, the ramp-up voltage) for a predetermined time. In a non-limiting embodiment, a voltage supply 98 may be used as a charge limiting mechanism. An adjustable voltage supply 98 may limit a voltage corresponding to charging the sampling capacitor. Therefore, the slew rate of the high-side switch can be controlled. In one non-limiting embodiment, the switching control circuit may include other types of charge limiting mechanisms. The charge limiting mechanism can limit the sampling current of the sampling capacitor 58. In some non-limiting embodiments, the charge limiting mechanism may limit the sampling voltage of the sampling capacitor 58. The sampling current can be in the range of 5 mA to 5 mA. The sampling voltage can be in the range of 0% to 100% of the final target gate-source voltage. The charge limiting mechanism may be configured to limit a frequency corresponding to a sampling and level shifting circuit. Those skilled in the art will understand that although the present invention has been described above in connection with specific embodiments and examples, the present invention is not necessarily so limited, and many other embodiments, examples, uses, modifications, and those embodiments, examples, and Examples of deviations in use are intended to be covered by the scope of the patent application for inventions attached hereto. The entire disclosures of each patent and publication cited herein are incorporated by reference, as if each such patent or publication was individually incorporated herein by reference. Various features and advantages of the present invention are described in the scope of the following invention application patents.
2‧‧‧電荷泵2‧‧‧ charge pump
4‧‧‧電流控制器4‧‧‧Current Controller
6‧‧‧放大器6‧‧‧ amplifier
8‧‧‧供應電壓8‧‧‧ supply voltage
10‧‧‧電晶體10‧‧‧ Transistor
12‧‧‧電流感測電阻器12‧‧‧ current sense resistor
14‧‧‧電流感測場效電晶體(FET)14‧‧‧Current sensing field effect transistor (FET)
16‧‧‧高側開關場效電晶體(FET)16‧‧‧High-side switching field effect transistor (FET)
18‧‧‧輸出引腳18‧‧‧ output pin
20‧‧‧電路負載20‧‧‧Circuit Load
22‧‧‧時脈產生器22‧‧‧ Clock Generator
24‧‧‧電阻器24‧‧‧ Resistor
26‧‧‧負載參考26‧‧‧Load reference
28‧‧‧場效電晶體(FET)28‧‧‧Field Effect Transistor (FET)
30‧‧‧電阻器30‧‧‧ Resistor
32‧‧‧電阻器32‧‧‧ Resistor
34‧‧‧限流器34‧‧‧ current limiter
40‧‧‧取樣及位準移位電路40‧‧‧Sampling and level shifting circuit
42‧‧‧電壓供應42‧‧‧Voltage supply
48‧‧‧電壓供應48‧‧‧ Voltage Supply
50‧‧‧開關50‧‧‧ switch
52‧‧‧開關52‧‧‧Switch
54‧‧‧開關54‧‧‧Switch
56‧‧‧開關56‧‧‧Switch
58‧‧‧取樣電容器58‧‧‧Sampling capacitor
60‧‧‧場效電晶體(FET)60‧‧‧Field Effect Transistor (FET)
70‧‧‧高側開關70‧‧‧High-side switch
72‧‧‧輸出引腳72‧‧‧ output pin
80‧‧‧轉換控制件80‧‧‧ Conversion control
82‧‧‧電流槽82‧‧‧Current Slot
84‧‧‧電流槽84‧‧‧Current Slot
86‧‧‧電流槽86‧‧‧Current Slot
88‧‧‧轉換控制件88‧‧‧ Conversion control
90‧‧‧取樣及位準移位電路90‧‧‧Sampling and level shifting circuit
92‧‧‧取樣電容器92‧‧‧Sampling capacitor
96‧‧‧取樣及位準移位電路96‧‧‧Sampling and level shifting circuit
98‧‧‧電壓供應98‧‧‧Voltage Supply
圖1係用於驅動一高側開關之具有限流器的一已知系統及方法之一電路層級示意圖。 圖2係根據本發明之用於控制一高側開關之轉換速率之一系統及方法之一項實施例之一電路層級示意圖。 圖3係根據本發明之用於控制一高側開關之轉換速率之一系統及方法之另一實施例之一電路層級示意圖。 圖4係根據本發明之用於控制一高側開關之轉換速率之一系統及方法之另一實施例之一電路層級示意圖。 圖5係根據本發明之用於控制一高側開關之轉換速率之一系統及方法之另一實施例之一電路層級示意圖。FIG. 1 is a circuit level diagram of a known system and method with current limiter for driving a high-side switch. FIG. 2 is a circuit level diagram of an embodiment of a system and method for controlling a slew rate of a high-side switch according to the present invention. FIG. 3 is a circuit level diagram of another embodiment of a system and method for controlling a slew rate of a high-side switch according to the present invention. FIG. 4 is a circuit level diagram of another embodiment of a system and method for controlling a slew rate of a high-side switch according to the present invention. 5 is a schematic diagram of a circuit level of another embodiment of a system and method for controlling a slew rate of a high-side switch according to the present invention.
Claims (18)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201711012738 | 2017-04-10 | ||
IN201711012738 | 2017-04-10 | ||
US15/916,421 US10516333B2 (en) | 2018-03-09 | 2018-03-09 | Slew control for high-side switch |
US15/916,421 | 2018-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201842725A true TW201842725A (en) | 2018-12-01 |
Family
ID=63711294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107112217A TW201842725A (en) | 2017-04-10 | 2018-04-10 | Slew control for high-side switch |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR102498234B1 (en) |
CN (1) | CN110268630B (en) |
TW (1) | TW201842725A (en) |
WO (1) | WO2018191154A1 (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5258662A (en) * | 1992-04-06 | 1993-11-02 | Linear Technology Corp. | Micropower gate charge pump for power MOSFETS |
US5742193A (en) * | 1996-10-24 | 1998-04-21 | Sgs-Thomson Microelectronics, Inc. | Driver circuit including preslewing circuit for improved slew rate control |
US6566827B2 (en) * | 2000-11-09 | 2003-05-20 | Matsushita Electric Industrial Co., Ltd. | Disk drive apparatus and motor |
JP4168836B2 (en) * | 2003-06-03 | 2008-10-22 | ソニー株式会社 | Display device |
JP4360326B2 (en) * | 2005-01-21 | 2009-11-11 | サンケン電気株式会社 | Resonant switching power supply |
JP2008139697A (en) * | 2006-12-04 | 2008-06-19 | Nec Electronics Corp | Circuit and method for driving capacitive load, and method of driving liquid crystal display device |
JP2012109916A (en) * | 2010-11-19 | 2012-06-07 | Sanken Electric Co Ltd | Load drive circuit |
TWI465013B (en) * | 2012-03-15 | 2014-12-11 | Univ Nat Chiao Tung | High-side driver circuit |
JP6046988B2 (en) * | 2012-11-19 | 2016-12-21 | ローム株式会社 | Switch drive circuit |
KR101989575B1 (en) * | 2012-12-07 | 2019-06-14 | 삼성전자주식회사 | Adaptive power converting device |
US9240780B1 (en) * | 2014-07-21 | 2016-01-19 | Continental Automotive Systems, Inc. | Preventing voltage pulse propagation in a disabled capacitive feedback slew-controlled switch |
US9667245B2 (en) * | 2014-10-10 | 2017-05-30 | Efficient Power Conversion Corporation | High voltage zero QRR bootstrap supply |
CN107820679A (en) * | 2015-06-11 | 2018-03-20 | Ksr Ip控股有限责任公司 | DV/DT controls in MOSFET gate drivers |
-
2018
- 2018-04-09 WO PCT/US2018/026686 patent/WO2018191154A1/en active Application Filing
- 2018-04-09 KR KR1020197022569A patent/KR102498234B1/en active IP Right Grant
- 2018-04-09 CN CN201880011210.7A patent/CN110268630B/en active Active
- 2018-04-10 TW TW107112217A patent/TW201842725A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN110268630A (en) | 2019-09-20 |
CN110268630B (en) | 2023-09-05 |
KR102498234B1 (en) | 2023-02-09 |
KR20190133665A (en) | 2019-12-03 |
WO2018191154A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8222846B2 (en) | Output circuit | |
US8766671B2 (en) | Load driving apparatus | |
JP5394968B2 (en) | Differential amplifier circuit | |
US9722593B2 (en) | Gate driver circuit | |
EP2426820A1 (en) | Circuit controlling HS-NMOS power switches with slew-rate limitation | |
KR101297460B1 (en) | Apparatus for driving gate | |
US8283808B2 (en) | Switch arrangement and method for electrical switching | |
TWI656734B (en) | Circuit for controlling the rate of change of the high side switching element | |
JPWO2017086042A1 (en) | Overheat detection device and semiconductor device | |
US10666137B2 (en) | Method and circuitry for sensing and controlling a current | |
US10516333B2 (en) | Slew control for high-side switch | |
JP5012414B2 (en) | Drive circuit | |
JP2018182953A (en) | Parallel drive circuit of voltage driven type semiconductor device | |
EP2678941B1 (en) | Driver circuit for a semiconductor power switch | |
JP6478826B2 (en) | High-side driver circuit and semiconductor device | |
JP2023063081A (en) | Switching circuit, dc/dc converter, and control circuit for the same | |
KR102604578B1 (en) | Gate driver circuit for high-side switch | |
JP7307680B2 (en) | Slew control of high-side switch | |
JP2018207276A (en) | Gate drive circuit | |
WO2020003699A1 (en) | Driving circuit of switching-element | |
TW201842725A (en) | Slew control for high-side switch | |
US7924065B2 (en) | Control circuit for a power field-effect transistor and method for configuring a control circuit for a power field-effect transistor | |
JPWO2016002329A1 (en) | Power semiconductor device current detection device | |
US20150002974A1 (en) | Protection circuit | |
EP2066033A2 (en) | Output driver and method of operation thereof |