TW201838655A - 抑制低密度脂蛋白受體相關蛋白5以抑制腫瘤形成 - Google Patents

抑制低密度脂蛋白受體相關蛋白5以抑制腫瘤形成 Download PDF

Info

Publication number
TW201838655A
TW201838655A TW107109145A TW107109145A TW201838655A TW 201838655 A TW201838655 A TW 201838655A TW 107109145 A TW107109145 A TW 107109145A TW 107109145 A TW107109145 A TW 107109145A TW 201838655 A TW201838655 A TW 201838655A
Authority
TW
Taiwan
Prior art keywords
cells
antibody
dkk2
antibodies
cancer
Prior art date
Application number
TW107109145A
Other languages
English (en)
Inventor
殿青 吳
肖倩
Original Assignee
耶魯大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 耶魯大學 filed Critical 耶魯大學
Publication of TW201838655A publication Critical patent/TW201838655A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本發明係關於抑制Dickkopf2(DKK2)和低密度脂蛋白(LDL)受體相關蛋白5(LRP5)之間的交互作用及/或抑制LRP5以遏止腫瘤形成。因此,在本文所述的各種實施例中,本發明的方法涉及透過向患者施用有效劑量的抑制劑,以阻斷DKK2和LRP5之間的相互作用來治療癌症的方法、透過向患者施用有效劑量的LRP5剔除試劑以治療癌症的方法、在受試者中提供抗腫瘤免疫的方法,以及在受試者中激發對細胞群或組織的NK和T細胞介導免疫反應的方法。此外,本發明包括用於治療癌症的醫藥組合物。

Description

抑制低密度脂蛋白受體相關蛋白5以抑制腫瘤形成
本申請案依據35 U.S.C.§ 119(e)要求以下美國臨時申請案之優先權:於2017年3月24日提交,申請號為62/476,109。前述案件通過引用而將其整體納為本申請案揭露之一部分。
關於聯邦政府贊助研究或開發的聲明
本發明是在政府支持下完成,由國立衛生研究院授予補助GM112182和CA214703。政府對本發明享有一定的權利。
癌症是造成人類死亡的主要原因。在過去的幾十年中,癌症治療和診斷方面有顯著的進展。癌症的治療方案包括手術、化學治療、放射線治療及免疫治療。最近,對於旨在刺激免疫系統的免疫治療特別吸引了大量的研究目光。免疫系統能夠辨識並抑制癌症的形成,然而,免疫查核點路徑會被癌症改變或誤導,以逃避免疫破壞,使得免疫系統受到免疫查核點路徑的阻礙。擾亂免疫查核點的免疫治療藥物已有研究顯示其臨床療效,其包括抗PD1(anti-PD1)、抗CTLA4(anti-CTLA4)及其他開發中的免疫治療藥物。查核點抑制劑(Checkpoint inhibitor)已通過審查,並且在許多腫瘤的臨床試驗中證實其具有效力,前述腫瘤包括晚期黑色素瘤(advanced melanoma)、鱗狀NSCLC、腎細胞惡性腫瘤(renal cell carcinoma)及何杰金氏淋巴瘤(Hodgkin’s lymphoma)。現有的查核點抑制劑似乎對大腸直腸癌(colorectal cancer,CRC)不具有療效(Brahmer,J.,et al.,2012,N Engl J Med,366:2455-2465;Chung,K.,et al.,2010,J Clin Oncol,28:3485-3490;Topalian,S.et al.,2015,Cancer Cell 27:450-461;Topalian,S.et al., 2012,N Engl J Med 366:2443-2454)。這些效用不一的情況,反映出已知的免疫查核點機制在不同癌症及/或不同患者個體中存在差異,並顯示還存在著尚未被發現的腫瘤逃脫(tumor evasion)機制。
雖然免疫治療可能非常有效,但只有少部分的患者對免疫治療有反應(不論腫瘤起源的器官為何)。因此,顯然在本領域中需要有對於改善免疫治療的功效和專一性的新發現。
Wnt訊息傳遞路徑控制了各種細胞過程,包括細胞命運(cell fate determination)、分化(differentiation)、極性(polarity)、增殖(proliferation)及遷移(migration)。Wnt家族分泌蛋白可結合幾個種類的受體,例如低密度脂蛋白受體相關蛋白5及6(low-density lipoprotein receptor related proteins 5 and 6,LRP5/6),導致幾種不同的細胞內訊息信號級聯的活化,包括Wnt/β-連環蛋白(Wnt/β-catenin)、Wnt/鈣及Wnt/Jnk路徑。Wnt與LRP5/6的結合,是透過阻斷引發β-連環蛋白降解的多蛋白複合體(multiprotein complex)的功能,來專一性活化Wnt/β-連環蛋白路徑,進一步導致β-連環蛋白在細胞質及細胞核中的累積。核β-連環蛋白係與Lef/TCF家族的轉錄因子複合並活化基因表現。儘管研究顯示LRP5在非生理條件下的過度表現,可介導Wnt刺激的β-連環蛋白訊息傳遞;然而,體內(in vivo)喪失功能的研究顯示,LRP6是調節β-連環蛋白訊息傳遞的主要Wnt共受體(co-receptor)。此外,取決於分析哪個組織,LRP5基因的失活對Wnt-β-連環蛋白訊息傳遞沒有顯示出任何影響或邊際效應。
可能由幹細胞功能改變引起的病理狀態,例如退化性疾病(degenerative diseases)和癌症,通常與Wnt/β-連環蛋白路徑活性的改變有關。事實上,Wnt/β-連環蛋白路徑的過度活化被認為誘導了幹細胞的未成熟衰老(premature senescence)及與年齡相關的幹細胞功能喪失(Brack et al.,Science,2007,Vol.317 no.5839 pp.807-810;Liu et al.,Science,2007,Vol.317 no.5839 pp.803-806)。在癌症中,Wnt/β-連環蛋白路徑的過度活化,常常與其他細胞生長調節基因中的突變連結,導致了細胞的異常生長(Reya and Clevers,Nature,2005,434(7035):843-50)。因此,許多正在進行的研究,係集中於將Wnt/β-連環蛋白路徑作為癌症治療的潛在標靶(Breuhahn et al., Oncogene,2006,25:3787-3800;Greten et al.,Br J Cancer,2009,100:19-23)。具體而言,包括癌症基因體定序計畫在內的一些研究顯示,超過80%的大腸癌具有突變,甚至缺失腺瘤性結腸息肉(adenomatous polyposis coli,APC)基因,此基因是Wnt/β-連環蛋白路徑的主要抑制因子(Kinzler and Vogelstein,Cell.1996,Oct 18;87(2):159-70.Review;Sjoblom et al.,Science,2006,Oct 13;314(5797):268-74;Mann et al.,Proc Natl Acad Sci U S A,1999.96(4):p.1603-8)。APC與例如GSK3β和Axin等的蛋白質形成一個複合體,用以標記β-連環蛋白並使其降解。APC中的突變,會破壞這種複合體,並導致細胞質β-連環蛋白的含量增加及其核易位(translocation)。由於β-連環蛋白是Wnt訊息傳遞的最重要的承接分子,它對Wnt配位子產生反應並促進致癌因子的表現。
Wnt訊息傳遞也受到許多分泌型多肽拮抗劑(polypeptide antagonists)的調控,包括四種分泌型Dickkopf(DKK)蛋白(Monaghan et al.,Mech Dev,1999.87:45-56;Krupnik et al.,Gene,1999.238:301-13)。在這四種DKK蛋白質中,DKK1、2及4已被證實是典型Wnt訊息傳遞的有效拮抗劑(Mao et al.,Nature,2001.411:321-5;Semenov et al.,Curr Biol,2001.11:951-61;Bafico et al.,Nat Cell Biol,2001.3:683-6;Niehrs,Nature,2006.25:7469-81),其以高親和力與Wnt共受體LRP 5/6直接結合(Mao et al.,Nature,2001.411:321-5;Semenov et al.,Curr Biol,2001.11:951-61;Bafico et al.,Nat Cell Biol,2001.3:683-6)。鑑於DKK蛋白質是Wnt拮抗劑,傳統的觀點是DKK的失活會增加Wnt活性,並因此加速癌症形成。
DKK分子含有兩個保留性(conserved)且富含半胱胺酸(cysteine-rich)的結構(Niehrs,Nature,2006.25:7469-81)。先前的研究顯示DKK1及DKK2的第二個富含Cys的結構域(domain)在抑制典型Wnt訊息傳遞中發揮更重要的作用(Li et al.,J Biol Chem,2002.277:5977-81;Brott and Sokol Mol.Cell.Biol.,2002.22:6100-10)。近來,DKK2的第二個富含Cys的結構域的結構已被解開,並界定了DKK與LRP5/6及Kremens相互作用所需的結構域上的胺基酸殘基(Chen et al.,J Biol Chem,2008.283:23364-70;Wang et al.,J Biol Chem,2008.283:23371-5)。DKK與LRP5/6的 相互作用構成了DKK介導的Wnt抑制作用的主要機制。儘管DKK與Kremen(亦是跨膜蛋白)的相互作用顯示會促進Wnt信號的DKK拮抗作用,但這種相互作用可能具有其他尚未解開的功能。
Wnt訊息傳遞也受到Wnt共受體LRP 5/6的介導。LRP5在調節骨質量方面有著重要的作用。突變導致功能喪失的LRP5已顯示會導致體染色體隱性疾病,其特徵為低骨質量,而使功能提高的LRP5突變被發現會出現在高骨質量體染色體顯性的個體。DKK蛋白質與由Wnt訊息傳遞所調控的骨質形成和骨質損失(在癌症及其他疾病中)有關。然而,目前尚未有研究直接針對在不改變Wnt訊息傳遞活性的情況下,是否能夠透過Wnt共受體LRP5/6來進行DKK所介導的訊息傳遞。
顯然目前仍需要新的方法來減少癌細胞增生、誘導癌細胞死亡、以及治療癌症。本發明滿足了這些需求。此外,本發明亦滿足了改善抗癌免疫治療及癌症診斷的需求。
本發明涉及在有需要的受試者中治療癌症的醫藥組合物和方法。治療癌症的方法包括向受試者施用具有有效劑量且在醫藥上可接受的載體中的抑制劑,抑制劑係阻斷Dickkopf 2(DKK2)與低密度脂蛋白(Low-Density Lipoprotein,LDL)受體相關蛋白質5(LRP5)之間的相互作用。
在另一實施例中,本發明提供一種在受試者中提供抗腫瘤免疫的方法。該方法包括向受試者施用有效劑量的抑制劑以及醫藥上可接受的載體,抑制劑係阻斷DKK2與低密度脂蛋白受體相關蛋白質5之間的相互作用。在另一實施例中,本發明提供一種在受試者中激發對細胞群或組織的T細胞介導免疫反應的方法,該方法包括向受試者施用有效劑量的抑制劑以及醫藥上可接受的載體,抑制劑係阻斷DKK2與低密度脂蛋白受體相關蛋白質5之間的相互作用。在另一實施例中,本發明提供一種在受試者中激發對細胞群或組織的自然殺手(Natural Killer,NK)細胞免疫反應的方法,該方法包括向受試者施用有效劑量的抑制劑以及醫藥上可接受的 載體,抑制劑係阻斷DKK2與低密度脂蛋白受體相關蛋白質5之間的相互作用。
在一些實施例中,抑制劑係選自於下列群組中的至少一個:DKK2拮抗劑(antagonist)或其片段、DKK2抗體或其片段、低密度脂蛋白受體相關蛋白質5拮抗劑或其片段、低密度脂蛋白受體相關蛋白質5抗體或其片段、siRNA、核醣體、反義分子(antisense molecule)、適配體(aptamer)、擬肽物(peptidomimetic)、小分子、CRISPR/Cas9編輯系統以及其組合。在其他實施例中,DKK2抗體是5F8。
在又一實施例中,本發明包括一種透過向受試者施用有效劑量的低密度脂蛋白受體相關蛋白質5基因剔除劑及醫藥上可接受的載體以治療癌症的方法。
在另一實施例中,本發明包括一種用於在受試者中治療癌症的醫藥組合物。本發明的醫藥組合物包括低密度脂蛋白受體相關蛋白質5剔除劑及醫藥上可接受的載體。
在又一其他實施例中,本發明提供一種用於在受試者中提供抗腫瘤免疫的方法,該方法包括向受試者施用有效劑量的低密度脂蛋白受體相關蛋白質5抗體或其片段以及醫藥上可接受的載體。在另一實施例中,本發明提供一種在受試者中激發對細胞群或組織的T細胞介導免疫反應的方法,該方法包括向受試者施用有效劑量的低密度脂蛋白受體相關蛋白質5抗體或其片段以及醫藥上可接受的載體。在一些實施例中,T細胞介導免疫反應係CD8+細胞毒性T淋巴細胞(cytotoxic T lymphocyte,CTL)反應。在另一實施例中,本發明提供一種在受試者激發對細胞群或組織中的一自然殺手細胞免疫反應的方法,該方法包括向受試者施用有效劑量的低密度脂蛋白受體相關蛋白質5抗體或其片段以及醫藥上可接受的載體。
在一些實施例中,低密度脂蛋白受體相關蛋白質5剔除劑係選自於低密度脂蛋白受體相關蛋白質5抗體、siRNA、核醣體、反義分子、適配體、擬肽物、小分子、CRISPR/Cas9編輯系統以及其組合所組成的群組。在其他實施例中,低密度脂蛋白受體相關蛋白質5剔除劑具有中和活性。在又一其他實施例中,低密度脂蛋白受體相關蛋白質5剔除劑不影響 典型Wnt/β-連環蛋白訊息傳遞。
在一些實施例中,低密度脂蛋白受體相關蛋白質5抗體包括抗體,抗體係選自於多株抗體、單株抗體、人源化抗體、合成抗體、重鏈抗體、人類抗體、抗體的生物活性片段、抗體模擬物及其任何組合所組成的群組。
在其他實施例中,癌症係選自於大腸直腸癌、胰腺癌、胃癌、腸癌、胰腺癌、食道癌、皮膚癌及肺癌所組成的群組。
在一些實施例中,本發明的方法及醫藥組合物包括額外的藥劑,其係選自於化學治療劑、抗細胞增殖劑、免疫治療劑及其任何組合所組成的群組。在其他實施例中,額外的藥劑係程序性細胞死亡1抗體。在其他實施例中,低密度脂蛋白受體相關蛋白質5剔除試劑以及額外的藥劑係共同施用於受試者。在又一其他實施例中,施用的途徑係選自於吸入、口服、直腸、陰道、非腸胃道、局部、經皮、肺部、鼻內、口腔、眼部、鞘內以及其任何組合所組成的群組。
在一些實施例中,受試者係哺乳動物。在其他實施例中,哺乳動物係人類。
為了說明本發明,在圖式中描繪了本發明的某些實施例。然而,本發明不限於圖式中所描繪的實施例的精確安排及手段。
圖1A至圖1G是一系列的直條圖及圖片,用以說明DKK2的阻斷減少了APCKO(APCminDKK2-/-)小鼠中的腫瘤負荷。圖1A至圖1C,顯示DKK2基因的破壞降低了APCMin/+小鼠中的腫瘤負荷。同窩出生的小鼠在特定的無病原體條件下飼養20週(雌性)或22週(雄性)。圖1A:腫瘤/息肉數量n>5,**P<0.01。圖1B:腫瘤/息肉尺寸:APCKO小鼠的腫瘤傾向小於APC小鼠的腫瘤,n>5,**P<0.01;*P<0.05。圖1C:代表性蘇木素-伊紅染色(H and E staining)的結果顯示,APCKO小鼠中腫瘤較小及腫瘤出現的頻率較少。圖1D:ELISA結果顯示5F8會專一性地結合DKK2蛋白,但不結合 DKK1蛋白。圖1E:5F8會拮抗由Wnt3A所誘發而由DKK2所介導的Wnt報導基因活性抑制。HEK293細胞係用Wnt報導基因TOPFlash進行轉染,並用Wnt3A條件培養基(conditioned medium,CM)、DKK2 CM,或5F8(120nM)進行處理。圖1F:5F8會抑制DKK2與LRP5的結合。用LacZ(對照組)或LRP5表現質體轉染HEK293細胞。在存在或不存在5F8(120nM)的情況下,測量DKK2-AP融合蛋白與細胞的結合。圖1G:5F8降低APCMin/+小鼠的腫瘤負荷。用5F8及IgG3(8mg/kg,每週兩次,腹膜內注射)處理小鼠(10週,雌性)8週。腫瘤/息肉數量n=8,**P<0.01。
圖2A至圖2H是一系列圖表、直條圖和圖片,用以說明DKK的阻斷抑制腫瘤進展是透過增加細胞凋亡的情況,但不會改變細胞的增生或血管的生成,其測量到顆粒酶B(granzyme B,gzmb)和活化的凋亡蛋白酶3(Activated caspase 3,Act.caspase 3)有提高的現象。圖2A至圖2B及圖2D至2G:使用同基因型小鼠腫瘤模型,其中C57BL小鼠被皮下接種3x103個MC38細胞,從第14天開始進行5F8治療(10mg/kg,每三天一次,腹腔內注射)。圖2A:腫瘤體積和重量。在第14、17、20和22天收集腫瘤用以確定尺寸。第22天收集腫瘤用以稱重。n=5,**P<0.01;n=5。圖2B:生存率評估。用5F8處理的小鼠的存活率有獲得改善。n=10。圖2C:5F8不影響培養基中MC38細胞的生長。圖2D至圖2G,5F8的處理不會改變腫瘤血管生成(圖2D)或腫瘤細胞增生(圖2E),但5F8的處理顯著增加了切除腫瘤內的細胞凋亡(圖2F)及顆粒酶B呈現陽性的細胞(圖2G)。對圖2A中所收集的腫瘤切片,進行CD31、Ki67、活化的凋亡蛋白酶3或顆粒酶B的染色,並用DAPI進行對比染色(counter-stained)。n=5,**P<0.01。圖2H:DKK2缺陷會增加APCMin/+小鼠息肉中的細胞凋亡的情況和顆粒酶B為陽性的細胞。從APCMin/+和APCMin/+DKK2-/-小鼠(20週)所收集到的息肉組織切片,用活化的凋亡蛋白酶3抗體或顆粒酶B抗體以及DAPI進行染色。比例尺為150μm。
圖3A至圖3J是一系列圖表及直條圖,顯示DKK2的阻斷增強了細胞毒性免疫細胞的活化。圖3A至圖3B,5F8無法改變NOD scid gamma(NSG)小鼠中的腫瘤進展。在NSG小鼠(n=5)中皮下注射接種MC38細胞 (5x103),並在第6天開始用5F8或IgG對照組(10mg/kg,每三天一次)進行處理。圖3C至3H,在急性5F8處理24小時後,以流式細胞儀分析腫瘤浸潤的白血球。在C57BL小鼠中以皮下注射接種MC38細胞(1x105)。當腫瘤達到平均大小600mm3時,給小鼠注射一次5F8(10mg/kg,腹腔內注射),在24小時內收集腫瘤以流式細胞儀進行分析。圖3C至圖3D:CD8+細胞或NK細胞的細胞群大小沒有變化。圖3E至圖3F:用5F8處理,相對於對照組IgG,其顆粒酶b(gzmb)的表現量大幅地提高。圖3G至圖3H:急性5F8處理會誘發CD8+和NK細胞活化標誌物的顯著增加。圖3C是針對CD45進行預先框選(pre-gated)後的結果,圖3D、圖3E及圖3G是衍生自圖3C。圖3F是從圖3D衍生的。MFI,平均熒光強度(mean fluorescence intensity)。n=10,**P<0.01;*P<0.05。圖3I至圖3J:NK1.1+或CD8+細胞的清除(cell depletion)減少了5F8的腫瘤抑制作用。C57BL小鼠皮下注射接種5x103個MC38細胞。為了清除NK細胞,在腫瘤細胞接種後的第1、5、11和17天以300ug/小鼠的劑量在腹腔內注射抗NK1.1(anti-NK1.1)或同型(isotype,Iso)對照組。為了清除CD8+細胞,在腫瘤細胞接種後的第12、15和19天以300ug/小鼠的劑量在腹腔內注射抗CD8α(anti-CD8α)或同型(isotype)對照組。在NK細胞清除實驗中,5F8(10mg/kg,每三天一次,腹腔內注射)的處理是在第12天開始;而在CD8+細胞清除實驗中,5F8(10mg/kg,每三天一次,腹腔內注射)的處理是在第13天開始。n=5;**P<0.01;*P<0.05。
圖4A至圖4H是一系列圖表及直條圖,其顯示DKK2的抑制活化了NK細胞。圖4A至圖4D:用5F8抗體來處理共培養的NK細胞及腫瘤細胞,會增加了NK細胞中的顆粒酶b(gzmb)並降低了腫瘤細胞的存活率。5F8的重演(recapitulation)會對NK細胞及腫瘤細胞在共培養時造成影響。將用IL-15所擴增的初代小鼠NK細胞加入YUMM1.7或MC38細胞中,YUMM1.7或MC38細胞以5F8或IgG3(250nM)處理9小時,且係於處理的前一天進行接種(seeding)。透過流式細胞儀檢測NK細胞中的顆粒酶B表現(圖4A,圖4D),而透過Guava流式細胞儀檢測活腫瘤細胞(圖4B至圖4C)。圖4A:流式細胞儀的結果顯示,與YUMM1.7細胞或與MC38 細胞共培養的NK細胞,其顆粒酶B的表現有上升。圖4B至圖4C:流式細胞儀的結果顯示,與IgG處理的對照組相比,用5F8處理共培養物時,腫瘤細胞的存活率降低。圖4D:單獨用5F8處理初代NK細胞不會增強顆粒酶B的產生。圖4E至圖4F:DKK2直接抑制了NK活性及顆粒酶B(gzmb)的產生。分離出來的初代小鼠NK細胞用IL-15(50ng/ml)培養24小時,接著再加入DKK2蛋白(8nM)培養24小時,然後進行流式細胞儀分析。n>3;**P<0.01;*P<0.05。圖4G:以DKK2處理的NK細胞,其細胞毒殺活性降低。初代NK細胞在IL-15(50ng/ml)中擴增24小時,然後不加入或加入DKK2(8nM)處理24小時。接著將NK細胞加入前一天以7:1比例接種的MC38細胞中。於共培養6小時後檢測MC38細胞的凋亡細胞數,以及在共培養9小時後檢測MC38細胞的活細胞數。「-」:未添加,**p<0.01。圖4H:WNT3A或GSK抑制劑不影響NK活化。分離出來的初代小鼠NK細胞用IL-15(50ng/ml)培養24小時,接著加入DKK2蛋白(8nM)、WNT3a(2nM)及GSK3抑制劑CHIR99021(CHIR,1μM)再培養24小時,然後以流式細胞儀進行分析。n>3;**P<0.01;*P<0.05。
圖5A至圖5E是一系列圖片,顯示DKK2會阻礙磷酸化-STAT5(phospho-STAT5)的核定位(nuclear localization)。圖5A至圖5C,DKK損害了磷酸化STAT5的核定位。初代小鼠NK細胞的製備及處理方式,與圖4E所代表的實驗其方式相同。圖5A:西方墨點法分析顯示,用DKK2處理降低了顆粒酶b及穿孔蛋白(perforin)的表現量。圖5B:用DKK2處理可檢測到磷酸化-STAT的細胞質定位(Cytosolic localization)。使用抗磷酸化-STAT5、抗RAB8(作為細胞質標記)及DAPI進行免疫染色,接著使用AlexaFluor®647及FITC標記的二級抗體。比例尺為5μm。圖5C:從5F8-處理的腫瘤所分離出的NK細胞中,磷酸化-STAT5的細胞質定位情況下降。透過FACS,從用IgG3或5F8處理6天(10mg/kg注射兩次)的MC38腫瘤,分離出腫瘤浸潤的NK細胞。將細胞固定,透化並用抗RAB8(細胞質液標記)、抗磷酸化-STAT5(anti-p-STAT5)及DAPI進行染色,接著使用AlexaFluor®647及FITC標記的二級抗體。比例尺為5μm。圖5D至圖5E:在DKK2處理中,磷酸化STAT5與早期/再循環胞內體 (early/recycling endosomes)中的EEA1共定位,但不與晚期胞內體標記LAMP1共定位。初代小鼠NK細胞如A中所述方法製備及處理,隨後使用抗磷酸化-STAT5、DAPI及抗EEA-1進行免疫染色(圖5D)或抗LAMP1(圖5E),接著使用AlexaFluor®647及FITC標記的二級抗體。比例尺為5μm。
圖6A至圖6I是一系列圖表、直條圖及圖片,顯示DKK2需要有LRP5存在才能抑制NK的活化。圖6A至圖6B:從WT和LRP5-/-小鼠製備初代小鼠NK細胞,並以如上所述的方法處理,接著以流式細胞儀及西方墨點法分析(圖6A)及以如圖5B所述的方法進行免疫染色(圖6B)。圖6A:DKK2未抑制LRP5-/-細胞中的NK細胞活化。西方墨點法分析結果證實LRP5-/-細胞缺乏LRP5蛋白,但LRP6蛋白仍維持正常的表現量。圖6B:DKK2未阻礙LRP5-/-細胞中的磷酸化STAT5定位,使其定位於細胞核而非胞內體。在WT細胞中,DKK2的處理誘使磷酸化STAT5定位至胞內體。圖6C:造血(Hematopoietic)LRP5缺陷損害了移殖的MC38腫瘤進展,並消除5F8對腫瘤進展的影響。接受LRP5f/fMX1Cre((LRP5-/-)或LRP5f/f(WT)骨髓的C57BL小鼠,用poly-I:C處理,然後皮下注射接種5x103個MC38細胞,在第12、17及20天給予5F8(10mg/kg,腹腔內注射)處理。**P<0.01。圖6D:在轉染的HEK293細胞中,將LRP5胞內結構域C(LRP5 intracellular domain C,LRP5C)及STAT5進行共免疫沉澱(co-immunoprecipitate)。圖6E至圖6F:在重組的HEK293細胞中,LRP5C透過IL-15的誘導,抑制了STAT5報導基因的活性。用表現JAK3、IL2/15Rβ及普通γ次單元(common γ subunit,Rγc)的慢病毒感染細胞,接著用帶有LRP5胞內結構域(LRP5C),STAT5-luc報導基因及RFP(內部對照)的質體轉染細胞24小時。在測定報導基因(圖6E)及進行西方墨點法分析(圖6F)之前,細胞用IL-15及IL15Rα-Fc刺激6小時。圖6G至圖6H:LRP5C抑制了由活化的JAK1所誘導的STAT5報導基因的活性,但不影響STAT5磷酸化。如圖所示,將帶有STAT5報導基因的質體及帶有活化JAK1(JAK1CA,V658F)或LRP5C的質體對HEK293細胞進行共轉染。24小時後,進行西方墨點法(圖6G)或用磷酸化-STAT5抗體和DAPI免疫進行 染色(圖6H),來分析細胞的報導基因活性。免疫染色的細胞透過共軛焦顯微鏡檢測並以假色(pseudocolor)呈現。比例尺為8μm。圖6I,DKK2會誘導LRP5使其進行內化(internalization),但不誘導LRP6。用DKK2(4nM)以圖所示的時間來處理HEK293細胞。細胞表面蛋白質被生物素化(biotinylated)。通過西方墨點法分析生物素化的細胞表面蛋白質和細胞裂解產物中的蛋白質。
圖7A至圖7G是一系列的圖片,顯示DKK2和PD-1阻斷的組合,增強了抗腫瘤作用及免疫反應。圖7A:DKK2和PD-1阻斷劑的組合,在MC38腫瘤模型中增強了抗腫瘤作用。C57BL/6小鼠皮下注射接種MC38細胞。從第18天開始每5天以5F8及/或抗PD-1(10mg/kg,腹腔內注射)處理一次。以Log-rank(Mantel-Cox)檢測來評估存活率(所有的顯著差異均已標記;*,<0.05;**,p<0.01)。在圖13A中顯示了個別腫瘤的生長曲線。圖7B至圖7D:抗體處理對細胞毒性免疫細胞的影響。C57BL/6小鼠皮下注射接種MC38細胞。在第13天和第18天用5F8及/或抗PD-1(10mg/kg,腹腔內注射)處理。在第20天收集腫瘤以流式細胞儀進行分析。數據以平均值±平均值標準誤差(means±sem)表示(*,<0.05;**,p<0.01;變異數分析(Anova test))。圖7E:DKK2重組蛋白對細胞毒性免疫細胞受到PD-1阻斷時所產生的影響。C57BL/6小鼠皮下注射接種MC38細胞。當腫瘤長到500mm3時,每8小時注射DKK2蛋白(600ng/25μl/腫瘤;每個腫瘤多個注射部位)三次。最後一次注射後1小時,收集腫瘤,透過流式細胞儀分析浸潤的白血球。數據以means±sem表示(*,<0.05;**,p<0.01;Anova test)。圖7F:YUMM1.7腫瘤模型中,DKK2和PD-1阻斷劑的抗腫瘤作用。C57BL/6小鼠皮下注射接種YUMM1.7細胞。從第12天開始每5天進行一次5F8及/或抗PD-1(10mg/kg,腹腔內注射)的處理。以Log-rank(Mantel-Cox)檢測來評估存活率(所有的顯著差異均已標記;*,<0.05;**,p<0.01)。平均和個別腫瘤生長的曲線顯示在圖13D至圖13E。圖7G:抗體處理對細胞毒性免疫細胞的影響。C57BL/6小鼠皮下注射接種YUMM1.7細胞。在第16天和第20天用5F8及/或抗PD-1(10mg/kg,腹腔內注射)處理。在第21天收集腫瘤,以流式細胞儀進行分析。數據以 means±sem表示(*,<0.05;**,p<0.01;Anova test)。
圖8A至圖8G是一系列圖和圖片,用以說明透過APC缺失調高了DKK2的表現量。圖8A:在人類CRC樣品中(相較於正常大腸直腸樣品),以及在MSS CRCs中(相較於MSI CRCs),DKK2表現量上升。圖表中的數字表示樣品大小。圖8B至圖8C:在小鼠小腸息肉中,DKK2表現量上升。從正常小鼠小腸和從24週齡APCMin/+小鼠解剖後取得息肉(B)中分離出RNA,透過定量RT-PCR確定DKK2 mRNA的表現量,並透過使用抗DKK2抗體免疫染色腸切片來檢測DKK2蛋白。圖8D至圖8E:在APC缺失的MC38細胞中,DKK2表現量上升。自具有或不具有APC突變的MC38細胞(圖8D)中,或從用不同β-連環蛋白siRNA所轉染的APC突變MC38細胞中(圖8E)分離出RNA,透過定量RT-PCR確定DKK2的表現量。圖中也顯示了β-連環蛋白表現量的西方墨點法分析結果。圖8F:在APC缺失的HCT116人類大腸癌細胞中,DKK2表現量上升。透過定量RT-PCR檢測DKK2的表現量。圖8G:DKK2表現量與CRC患者存活率之間的相關性。透過Mantel-Cox Log-Rank檢驗,在大腸直腸癌的TCGA臨時數據組(provisional datasets)中找出DKK2表現較高(前15個百分點)與DKK2表現較低(下15個百分點)的數據,並進行總體和無復發存活率的比較(圖8A;總體存活率n=56,n=50無復發存活率)。
圖9A至圖9R是一系列圖,直條圖和圖片,用以描述5F8處理在CD8+和NK細胞中會促使活化顆粒酶b的產生,但不會改變細胞群體。圖9A至圖9G,以流式細胞儀分析腫瘤浸潤的白血球。C57BL小鼠皮下注射接種5x103個MC38細胞,在第9天和第12天開始用5F8處理(10mg/kg,每三天一次,腹腔內注射),在第14天收集腫瘤。用膠原蛋白酶分解腫瘤,並藉由流式細胞儀來分析細胞。圖9D至圖9F是從圖9C衍生的,而圖9G是從圖9E衍生的。N=5;*P<0.05。圖9A:與對照組(IgG)相比,5F8治療抑制了腫瘤進展,如圖所示,其腫瘤體積及重量均降低。圖9B至圖9E:骨髓細胞(Gr1highCD11bhigh或Gr1lowCD11bhigh)、CD4+、CD8+、調節T細胞(CD4+ CD25+ Foxp3+)或NK1.1+細胞的百分比在5F8及其同型處理的樣品之間沒有顯著差異。圖9F至圖9G:5F8在CD8+和NK1.1+細胞中調高顆 粒酶B的表現。圖9H至圖9K:腫瘤引流淋巴結(tumor draining lymph nodes)的流式細胞儀分析結果。從上述小鼠收集腹股溝淋巴結,並透過流式細胞儀進行分析。n=5。圖9H至圖9J:用5F8處理對於CD4+、CD8+、或NK1.1+細胞的百分比沒有造成顯著差異。圖9I:在5F8處理的CD8+細胞中有顆粒酶B增加的趨勢。圖9K:用5F8處理的NK1.1.+細胞,其顆粒酶B有顯著增加。圖9L至圖9O,對APCMin/+或APCMin/+ DKK2-/-小鼠(20週齡)集結淋巴結(培氏斑,Peyer’s patches,PPs)中的白血球,以流式細胞儀進行分析。圖9L至圖9M:在APCMin/+或APCMin/+ DKK2-/-小鼠,或者注射5F8(8mg/kg8mg/kg)24小時後的APCMin/+小鼠中,CD4+或CD8+細胞分布的差異很小(圖9N至圖9O)。圖9N至圖9O:用5F8處理的APCMin/+小鼠中,顆粒酶B為陽性的CD8+細胞,相對於對照組有急遽增加。顯示的細胞群是以CD45進行預先框選(pre-gated)。圖9P至圖9R:來自圖3I至圖3J的腫瘤浸潤白血球,透過流式細胞儀來分析,以確認清除效率。
圖10A至圖10E是與圖4A至圖4H相關的一系列圖片和圖式,顯示DKK2會直接抑制NK細胞活性。圖10A,DKK2抑制人類NK細胞。從多個正常個體匯集的周邊血液中,分離出人類NK細胞,並在用流式細胞儀分析之前,與含有或不含有10nM人類DKK2蛋白的人類IL-15(50ng/ml)培養24小時。圖10B,DKK2抑制了IL-15所介導的小鼠初代CD8+T細胞活化。從脾臟中分離出初代CD8+細胞,並在IL-15+IL15Rα-Fc中培養4天。然後在流式細胞儀分析之前加入DKK2(10nM)24小時。數據以means±sem表示(*,<0.01;**,p<0.05;學生t檢定(Student’s t-test))。圖10C,DKK2抑制小鼠IECs。從正常小鼠小腸中分離出小鼠IECs,並在用流式細胞儀分析之前,與含或不含10nM DKK2蛋白的IL-15(100ng/ml)培養24小時。圖10D,TOPFLASH Wnt報導基因的檢測。在前一天用TOPFLASH所轉染的細胞中,加入DKK2(5nM)、Wnt3a(2nM),和GSK3抑制劑CHIR(1μM)6小時。圖10E,LRP5缺陷不影響初代小鼠NK細胞中由WNT3A所誘發的β-連環蛋白累積。分離出的初代小鼠NK細胞,用IL-15(50ng/ml)擴增24小時,然後與WNT3A(5nM)培養24小時,並透過西方墨點法進行分析。
圖11A至圖11E是與圖6A至圖6I相關的一系列圖式,證明DKK2係透過LRP5來抑制NK細胞,而非LRP6。圖11A:DKK2所介導的NK活化抑制,不需要LRP6。從WT和Lrp6-/-小鼠製備初代小鼠NK細胞,並如圖6A處理,然後進行流式細胞儀和西方墨點法分析。數據以means±sem表示(*,<0.01;**,p<0.05;Student’s t-test)。圖11B:在NK細胞中WNT3A所誘發的β-連環蛋白穩定化(stabilization)需要LRP6,按照圖10E來處理小鼠NK細胞。圖11C至圖11D:圖6C中所描述的腫瘤中,浸潤白血球的流式細胞儀分析結果。數據以means±sem表示(*,<0.01;**,p<0.05;Student’s t-test)。圖11E:DKK2提供腫瘤免疫逃脫的模型。由腫瘤細胞所產生的,和可能由腫瘤浸潤的基質細胞所產生的DKK2,結合至NK細胞上的LRP5,其造成磷酸化的STAT5被隔離(sequestration)於胞內體,並減少其核定位。這繼而阻礙了NK細胞的活化,包括減少顆粒酶B的產生和減弱由NK所介導的腫瘤細胞殺傷。
圖12A至圖12C是與圖7相關的一系列圖片,用以說明DKK2表現與患者存活率之間的校正(corrections)。透過Mantel-Cox Log-Rank檢驗,在下列癌症的TCGA臨時數據中找出DKK2表現較高(前15個百分點)與DKK2表現較低(下15個百分點)的數據,並進行總體和無復發存活率的比較;大腸直腸癌(圖12A;總體存活率n=56,n=50無復發存活率)、腎乳突癌(kidney renal papillary carcinoma,圖12B;n=43,總存活率n=43,無復發存活率n=40)和膀胱泌尿上皮癌(bladder urothelial carcinoma,圖12C,總存活率n=61,無復發存活率n=48)。
圖13A至圖13D是與圖5A至圖5E相關的一系列圖表及圖片,顯示DKK2會阻礙磷酸化-STAT5的核定位。圖13A至圖13B,RNA定序結果的分析結果,揭示了DKK2處理與小鼠NK細胞中STAT訊息的關係。如圖4D製備及處理小鼠NK細胞,並對從這些NK細胞所分離出來的mRNA進行測定。圖13A顯示反應途徑富及(pathway enrichment),而圖13B顯示STAT5基序(motif)基因的改變。基因名稱列在圖15中。圖13C至圖13D:圖5B至圖5C的個別通道。
圖14A至圖14G是與圖7A至圖7G相關的一系列圖表,用以說明DKK2 和PD-1的合併阻斷,會增強抗腫瘤作用的。圖14A:圖7A的個別腫瘤生長曲線。圖14B:在含有PTEN缺失及/或PI3K活化突變的人類黑色素瘤中,DKK2會上升。圖表中的數字表示樣品大小。圖14C:在對於抗PD-1治療具有耐受性的黑色素瘤中,DKK2表現量有上升的趨勢。圖14D:PI3K抑制劑渥曼青黴素(Wortmannin),會減少YUMM1.7細胞中的DKK2表現。用渥曼青黴素(5μM)處理細胞24小時,透過qRT-PCR來檢測DKK2 mRNA表現量。圖14E至圖14F:圖7F的個別及平均腫瘤生長曲線。圖14G:圖7G的附加結果。圖14H:DKK2表現與癌症患者存活率之間的相關性。透過Mantel-Cox Log-Rank檢驗,在腎乳突癌(N=43)及膀胱泌尿上皮癌(N=61)的TCGA臨時數據中找出DKK2表現較高(前15個百分點)與DKK2表現較低(下15個百分點)的數據,並進行總體和無復發存活率的比較。
圖15是列出了小鼠NK細胞中如上下文所述的RNA定序中的基因名稱和統計數字的表格,詳細敘述請見圖13A至圖13C。
圖16是本文用作引子的核酸序列的列表(SEQ ID NO:1-18)。
圖17是在小鼠NK細胞中,以DKK2處理後,於STAT5訊息傳遞路徑中有改變的關鍵基因列表,其係進行如本文所述的RNA定序的結果(參見圖13A至圖13C及圖15)。
本發明涉及意想不到的發現,即抑制Dickkopf 2(DKK2)和低密度脂蛋白(LDL)受體相關蛋白5(LRP5)之間的相互作用,或直接抑制LRP5,會抑制腫瘤形成,同時,其會增加免疫作用細胞(包括自然殺手(NK)細胞及CD8+毒殺T淋巴細胞(CTL))的細胞毒殺活性,也會增進腫瘤細胞凋亡。在本文所述的各種實施例中,本發明的方法,涉及透過向患者施用有效劑量的(1)阻斷DKK2和LRP5之間相互作用的抑制劑,或(2)LRP5基因剔除試劑以治療癌症的方法、在受試者中提供抗腫瘤免疫的方法,以及激發對細胞群或組織的T細胞介導免疫反應的方法。此外,本發明包括用於治療癌症的醫藥組合物。
定義
除非另外定義,否則本文使用的所有技術和科學術語具有與本發明所屬技術領域的通常知識者理解的相同的含義。儘管在本發明的測試實驗中可以使用與本文描述的那些相似或等同的任何方法和材料,但是本文描述了優選的材料和方法。在描述和要求保護本發明時,將使用以下術語。
應該理解的是,這裡使用的術語的目的僅用於描述特定實施例,而非對本發明的限制。
如本文所使用的,「一」及「一個」是指一個或多於一個(即至少一個)的物體。舉例來說,「一個元件」是指一個元件或多於一個元件。
如本文所使用的,當提及例如量、持續時間等的可測量值時,術語「約」意味著包括距離特定值±20%或±10%的變化範圍、更優選地為±5%、甚至更優選地為±1%、還更優選地為±0.1%,因為這樣的變化適合用於執行本文所揭露的方法。
如本文所使用的,「大於10%」是指表現水平至少為10%或更多,例如高於20%,30%,40%或50%,60%,70%,80%,90%或更多,以及/或高於1.1倍,1.2倍,1.4倍,1.6倍,1.8倍,2.0倍或更高,以及它們之間相對於對照組的任何、及全部、或部分增量。
如本文所使用的,術語「對照組(control)」或「參考組(reference)」可交替使用,並作為比較用的標準值(例如,健康受試者中的LRP5表現水平)。
如本文所使用的,「受試者」或「患者」可以是人類或非人類哺乳動物。非人哺乳動物包括例如家畜和寵物,例如綿羊,牛,豬,犬科動物,貓科動物和鼠類哺乳動物。優選地,受試者是人類。
如本文所使用的,「突變」是DNA序列的改變,導致其自然狀態的改變。該突變可以包括至少一個去氧核糖核酸鹼基例如嘌呤(腺嘌呤及/或胸腺嘧啶)及/或嘧啶(鳥糞嘌呤及/或胞嘧啶)的缺失及/或插入及/或複製及/或取代。突變可能會,或可能不會,在生物(受試者)的可觀察特徵(表型)中產生可辨別的變化。
如本文所使用的,術語「免疫原性」是特定物質(例如抗原 或表位)在哺乳動物體內引發免疫反應的能力。這種免疫反應可以是體液及/或細胞所介導的。
如本文所使用的,術語「活化」是指,在足夠的細胞表面部分連接以誘發顯著的生物化學或形態變化後,細胞的狀態。在T細胞方面,這種活化是指,T細胞已經充分刺激而誘發細胞增生的狀態。T細胞的活化還可以誘發細胞激素(cytokine)的產生、以及調控或細胞溶解作用功能的表現。在其他細胞方面,該術語意味著特定物理-化學過程的上調或下調。術語「活化的T細胞」表示目前正在進行細胞分裂、細胞激素產生,表現出調控或細胞溶解作用功能,及/或最近經歷了「活化」過程的T細胞。
如本文所使用的,術語「肽」、「多肽」和「蛋白質」可交替使用,並且指由透過肽鍵共價連接的胺基酸殘基所組成的化合物。蛋白質或肽必須含有至少兩個胺基酸,且不限制蛋白質或肽序列可包含的胺基酸的最大數量。多肽包括任何肽或蛋白質,其包含透過肽鍵彼此連接的兩個或更多個胺基酸。如本文所使用的,該術語是指短鏈,其在本領域中通常也稱為肽、寡肽及寡聚物;例如較長的鏈,其在本領域通常稱為蛋白質,其中有很多種類。「多肽」包括,例如,生物活性片段、基本上同源的多肽(substantially homologous polypeptides)、寡肽、同二聚體(homodimers)、異二聚體(heterodimers)、多肽變異體(variants)、修飾的多肽、衍生物、類似物、融合蛋白等等。多肽包括天然肽、重組肽、合成肽或其組合。
在本發明的上下文中,使用以下縮寫表示通常存在的核酸鹼基。「A」是指腺苷(adenosine)、「C」是指胞嘧啶(cytosine)、「G」是指鳥苷(guanosine)、「T」是指胸苷(thymidine)、「U」是指尿苷(uridine)。
如本文所使用的,術語「RNA」被定義為核糖核酸。
如本文所使用的,術語「免疫治療劑」意指包括調節患者免疫系統的任何藥劑。「免疫治療」是指改變患者免疫系統的治療。
如本文所使用的,術語「治療」(therapeutic)意指治療處理及/或預防。治療效果係透過抑制、緩解或根除疾病狀態來獲得。
如本文所使用的,術語「處理」(treatment)意指包括治療性處理以及疾病或病症的預防性或抑制性措施。因此,例如,術語處理包 括在疾病或病症發作之前,或之後,施用藥劑,從而預防或消除疾病或病症的所有症狀。另一個例子是,在疾病的臨床表現之後施用藥物以對抗疾病的症狀,也會包括對該疾病的「處理」。本術語包括了預防癌症。
術語「生物樣品」是指從生物體或生物體的組成(例如細胞)獲得的樣品。樣品可以是任何生物組織或液體。樣品通常是一個「臨床樣品」,其是來自患者的樣品。這些樣品包括但不限於骨髓、心臟組織、痰液、血液、淋巴液、血球細胞(例如白血球)、組織或細針活檢樣品(fine needle biopsy sample)、尿、腹膜液及胸水或來自於這些檢體的細胞。生物樣品還可以包括部分組織,例如為了組織學目的而取得的冷凍切片。
「DKK蛋白質」是指含有一個或多個富含半胱胺酸結構域的DKK蛋白質家族中的蛋白質。DKK蛋白質家族包括DKK1,DKK2,DKK3和DKK4,以及以序列為標準來說,其他任何在結構或功能上與這些蛋白質中的一種或多種充分相關的蛋白質。該蛋白質家族例如描述於Krupnik et al.(1999)Gene 238:301。例如本文所述的那些DKK蛋白質的等位基因變異體(variants)和突變體(mutants),也包括在此定義中。
術語「等同」(equivalent)用於核苷酸序列時,應理解為意指編碼有等同功能多肽的核苷酸序列。等同的核苷酸序列將包括一或多個核苷酸發生取代、添加或缺失(例如等位基因變體)的不同序列;因此,並且會包括由於遺傳密碼的簡併性(degeneracy)而不同於本文描述核苷酸序列的核酸序列。
「顆粒酶B」是指來自毒殺性淋巴細胞的顆粒的酶,其在進入細胞的細胞質液時,會誘發凋亡及/或核DNA斷裂。
「雜交」是指核酸股透過鹼基配對與互補股結合的任何過程。兩條單股核酸在形成雙股時「雜交」。雙股區域可以包括前述單股核酸中的一個或兩個的全長,或全部單股核酸和另一單股核酸的子序列,或者,雙股區域可以包括各自核酸的子序列。雜交還包括形成含有某些錯誤配對的雙股體,條件是兩股仍然形成雙股螺旋。「嚴格雜交條件」(Stringent hybridization conditions)是指導致基本上專一性雜交(specific hybridization)的雜交條件。探針與模板核酸目標位置(target site)的「專一性雜交」,是 指探針主要與標的雜交,使得雜交信號可以被清楚地解釋。如本文進一步所述的,導致專一性雜交的這些條件會根據同源區域的長度、區域的GC含量,雜交體的解鏈溫度「Tm」而變化。因此,雜交條件將隨著雜交溶液和洗滌劑的鹽含量、酸度及溫度而變化。
如本文針對核酸(例如DNA或RNA)所使用的術語「分離」(isolated),是指從存在於大分子的天然來源中的其他DNA或RNA對應分離出來的DNA或RNA分子。本文使用的術語「分離」還指當透過重組DNA技術產生時,基本上不含細胞物質、病毒物質或培養基、或化學合成時的化學前驅物或其他化學物質的核酸或肽。此外,「分離的核酸」意指包括非天然產生的核酸片段,並且不會在天然狀態被發現。術語「分離」在本文中也用於意指從其他細胞蛋白中分離出來的多肽,並且意在包括純化及重組的多肽。「分離的細胞」或「分離的細胞群」是不存在於其天然環境中的細胞或細胞群。
「LRP5」或「低密度脂蛋白受體相關蛋白5」,是指LRP5的所有脊椎動物核酸和多肽的形式。LRP5是細胞表面跨膜受體,其響應於配位子(ligands,如DKK蛋白質)的結合而起作用。LRP5與共受體LRP6可一起介導典型的Wnt訊息傳遞。LRP5的訊息傳遞也可獨立於LRP6而發生。
「LRP6」或「低密度脂蛋白受體相關蛋白6」,是指LRP6的所有脊椎動物核酸和多肽的形式。LRP6是細胞表面跨膜受體,其響應於配位子(如DKK蛋白質)的結合而起作用。LRP6與共受體LRP5可一起介導典型的Wnt訊息傳遞。LRP6訊息傳遞也可獨立於LRP5而發生。
如本文所使用的,術語「核酸」是指多核苷酸例如去氧核糖核酸(DNA),以及核糖核酸(RNA)。該術語還應該理解為,包括作為等同物由核苷酸類似物所製備的RNA或DNA類似物,並且如應用於本文所描述的實施例中,單股(有義或反義)和雙股多核苷酸。ESTs、染色體、cDNAs、mRNAs及rRNAs是可能被稱為核酸分子的代表性例子。
「穿孔蛋白」是指插入膜中產生寡聚物並形成孔的蛋白質。穿孔蛋白透化細胞質膜,以允許分子(如顆粒酶)進入目標細胞。
「幹細胞」是指能夠分化成所需細胞類型的細胞。幹細胞包括胚胎幹(ES)細胞;成人幹細胞;和體細胞幹細胞,例如來自未定型中胚層的SP細胞。「全能」幹細胞能夠分化成所有組織類型,包括中,內和外胚層細胞。「多潛能幹細胞」或「多功能幹細胞」是能夠分化成至少兩種命運的細胞。
當在多核苷酸序列的上下文中使用時,術語「變異體」可以涵蓋與基因或其編碼序列相關的多核苷酸序列。該定義還可以包括例如「等位基因」、「剪接」(splice)、「物種」(species)或「多型」(polymorphic)變異體。這些多肽通常會相對於彼此具有顯著的胺基酸同一性。多型變異體是給定物種和個體之間特定基因的多核苷酸序列的變異。多型變異體可以包含「單核苷酸多型性」(single nucleotide polymorphisms,SNP),其係指其多核苷酸序列中有一個鹼基的變化。SNP的存在可能顯示例如特定群體、疾病狀態或疾病狀態的傾向。
術語「Wnt拮抗劑」或「Wnt抑制劑」,是指透過Wnt途徑(例如抑制或阻斷)會調降其訊息傳遞的分子或組合物。調降可以是直接發生的,例如透過抑制Wnt訊息傳遞路徑中蛋白質的生物活性,或間接發生的,例如透過抑制Wnt訊息傳遞的下游介質(如TCF3)或透過降低β-連環蛋白的穩定性。Wnt拮抗劑包括但不限於DKK多肽(Glinka et al.,Nature,1998,391:357-62;Niehrs,Trends Genet,1999,15(8):314-9)、新月形(crescent)多肽(Marvin et al.,Genes & Dev.,2001,15:316-327)、cerberus多肽(U.S.Pat.No.6,133,232)、WISE/骨細胞分泌硬化素(WISE/Sclerostin,Li et al.,J Biol Chem,2005.280:19883-7)、axin多肽(Zeng et al.,Cell,1997,90(1):181-92;Itoh et al.,Curr Biol,1998,8(10):591-4;Willert et al.,Development,1999,126(18):4165-73)、Frzb多肽(Cadigan et al.,Cell,1998,93(5):767-77;U.S.Pat.No.6,133,232;U.S.Pat.No.6,485,972)、肝醣合成酶激酶(glycogen synthase kinase,GSK)多肽(He et al.,Nature,1995)374(6523):617-22)、T細胞因子(TCF)多肽(Molenaar et al.,Cell,1996,86(3):391-9)、顯性負性散亂(dominant negative dishevelled)多肽(Wallingford et al.,Nature,2000,405(6782):81-5)、顯性負性N-黏附蛋白(N-cadherin)多肽(U.S.Pat. No.6,485,972)、顯性負性β-連環蛋白多肽(U.S.Pat.No.6,485,972)、下游轉錄因子(例如TCF等)的顯性負性試劑、Wnt多肽的顯性負性試劑、破壞LRP-frizzled-wnt複合體的試劑,以及隔絕Wnt(例如新月形及抗Wnts的抗體)的試劑。Wnt拮抗劑多肽可以是哺乳動物來源的,例如人類、小鼠、大鼠、犬科動物、貓科動物、牛科動物或綿羊,或非哺乳動物來源例如來自爪蟾、斑馬魚、果蠅、雞或鵪鶉。Wnt拮抗劑還包括各種多肽的片段、同系物、衍生物、等位基因變異體和擬肽(peptidomimetics),所述多種多肽包括但不限於DKK、新月形、cerberus、axin、Frzb、GSK、TCF、顯性負性散亂蛋白,顯性負性N-黏附蛋白、和顯性負性β-連環蛋白多肽。在其他實施例中,Wnt拮抗劑還包括抗體(例如Wnt專一性抗體)、多核苷酸和小分子。
如本文所使用的,術語「癌症」包括任何惡性腫瘤,包括但不限於癌(carcinoma)、肉瘤(sarcoma)。癌症起因於細胞不受控制及/或異常分裂,然後侵入並破壞周圍組織。如本文所使用的,「增生」和「增殖」是指進行有絲分裂的細胞。如本文所使用的,「轉移」是指惡性腫瘤遠離其起源區域。癌細胞可以透過血流、透過淋巴系統、穿過體腔或其任何組合而轉移。
術語「癌」是指惡性新生長,其傾向於滲入周圍組織的上皮細胞並且引起轉移。
術語「癌症疫苗」是指一種疫苗,其會刺激免疫系統以對抗癌症,或對抗有助於癌症發展的介質。有兩種廣泛類型的癌症疫苗:預防性癌症疫苗,其旨在避免癌症在健康受試者中發展;和治療性癌症疫苗,其旨在透過加強身體對抗癌症的天然防禦,來治療現有的癌症(Lollini et al.,Nature Reviews Cancer,2006;6(3):204-216)。如本文所使用的,術語「癌症疫苗」應被解釋為包括預防性和治療性癌症疫苗。
術語「轉移」是指癌症從一個器官或器官的部分擴散到另一個非相鄰器官或器官的部分。
術語「血管生成」是指新血管的產生,其通常發生在組織或器官周圍,或者會進入組織或器官。在正常的生理條件下,只有在非常特 殊的限制條件下,人類或動物才會發生血管生成。例如,血管生成通常在傷口癒合、胎兒和胚胎發育以及黃體、子宮內膜及胎盤的形成中觀察到。不受控制的(持續的及/或不受調控的)血管生成與各種疾病狀態有關,並且發生在腫瘤生長及轉移的過程中。
術語「改善」或「治療」意指因所執行的行為,而減輕癌症或黑色素瘤相關的臨床症狀及/或病徵。要監測的症狀或病徵會是特定癌症或黑色素瘤的特徵,並且對於熟練的臨床醫生而言是眾所周知的。對於監測症狀或病徵的方法也是如此。例如,熟練的臨床醫生將知道,使用通常用於特定腫瘤的診斷成像方法(例如,使用超音波或磁振造影(magnetic resonance image,MRI)來監測腫瘤)可以監測腫瘤的大小或生長速率。
如本文所使用的,術語「醫藥組合物」是指本發明的至少一種化合物與其它化學組分(如載體、穩定劑、稀釋劑、分散劑、懸浮劑、增稠劑及/或賦形劑)的混合物。該醫藥組合物有助於將化合物施用於生物體。本領域存在多種施用化合物的技術,包括但不限於:靜脈內、口服、噴霧劑、非腸胃道、眼部、肺部及局部施用。
術語「醫藥上可接受的載體」包括醫藥上可接受的鹽類、醫藥上可接受的材料、組合物或載體,例如液體或固體填充劑、稀釋劑、賦形劑、溶劑或包封材料,其可將本發明可用的化合物攜帶或運輸到受試者體內使化合物發揮其預期的功能。通常,這些化合物從一個器官或身體的一部分,被攜帶或運輸到另一個器官或身體的一部分。每種鹽類或載體必須是「可接受的」的意義是,其與製劑的其他成分(包括可用於本發明的化合物)相容且對受試者無害。可用作醫學上可接受的載體的材料的實例包括:糖,例如乳糖、葡萄糖及蔗糖;澱粉,例如玉米澱粉及馬鈴薯澱粉;纖維素及其衍生物,例如鈉羧甲基纖維素、乙基纖維素及醋酸纖維素;粉狀黃蓍膠;麥芽;明膠;滑石;賦形劑,例如可可脂及栓劑蠟;油,例如花生油、棉籽油、紅花子油、芝麻油、橄欖油、玉米油及大豆油;二醇類,例如丙二醇;多元醇,例如甘油、山梨醇、甘露醇及聚乙二醇;酯類,例如油酸乙酯及月桂酸乙酯;瓊脂;緩衝劑,例如氫氧化鎂及氫氧化鋁;海藻酸;無熱原水;等滲鹽水;林格氏溶液(Ringer’s solution);乙醇;磷酸 鹽緩衝溶液;稀釋劑;製粒劑;潤滑劑;黏合劑;崩散劑;潤濕劑;乳化劑;著色劑;釋放劑;塗佈劑;甜味劑;調味劑;芳香劑;防腐劑;抗氧化劑;塑化劑;膠凝劑;增稠劑;硬化劑;定型劑;懸浮劑;界面活性劑;保濕劑;載體;穩定劑;和醫物製劑中使用的其他無毒相容物質,或其任何組合。如本文所使用的,術語「醫藥上可接受的載體」亦包含任何及所有的塗層(coating)、抗細菌及抗真菌劑以及吸收延遲劑等,其與化合物的活性相容,並且對於受試者是生理上可接受的。補充活性化合物也可以納入組合物中。
如本文所使用的,術語「抗體」或「Ab」是指源自免疫球蛋白分子的蛋白質或多肽序列,其專一性結合抗原上的特定表位。抗體可以是源自天然來源或來自重組來源的完整免疫球蛋白,並且可以是完整免疫球蛋白中的可產生免疫反應部分。可用於本發明的抗體可以以多種形式存在,包括例如多株抗體、單株抗體、細胞內抗體(「胞內抗體」)、Fv、Fab及F(ab)2以及單鏈抗體(single chain antibodies,scFv)和人源化抗體(Harlow et al.,1998,Using Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,NY;Harlow et al.,1989,Antibodies:A Laboratory Manual,Cold Spring Harbor,New York;Houston et al.,1988,Proc.Natl.Acad.Sci.USA 85:5879-5883;Bird et al.,1988,Science 242:423-426)。抗體可以來自天然來源或來自重組來源。抗體通常是免疫球蛋白分子的四聚體。
如本文所使用的,術語「合成抗體」是指使用重組DNA技術產生的抗體,例如本文所述的由噬菌體所表現的抗體。該術語還應該解釋為,透過合成方式,編碼有抗體的DNA分子所產生的抗體,並且該DNA分子會表現抗體蛋白質或指定抗體的胺基酸序列,可以使用本領域所習知的合成DNA或胺基酸序列技術來獲得DNA或胺基酸序列。
術語「抗體片段」是指完整抗體或其重組變異體的至少一部分,並且是指抗原結合結構域,例如完整抗體的抗原決定可變區、其足以賦予該抗體片段辨別和與目標專一性(例如抗原)結合的能力。抗體片段的實例包括但不限於Fab、Fab'、F(ab)2和Fv片段、scFv抗體片段、線性抗體、單結構域抗體如sdAb(VL或VH),VHH結構域,和由抗體片段形 成的多專一性抗體。術語「scFv」是指包含至少一個抗體片段的融合蛋白,該抗體片段包含輕鏈可變異區或重鏈可異變區,其中輕鏈和重鏈可變異區透過由短的彈性多肽接頭(polypeptide linker)連續連接,並且能夠被表現為單鏈多肽,並且其中所述seFv保留其來源的完整抗體的專一性。除非特別指出,否則如本文所使用的,scFv可具有任一順序的VL和VH可變異區,例如相對於多肽的N-端和C-端,scFv可包含VL-連接子-VH或可包含VH-連接子-VL。
如本文所使用的,「抗體重鏈」是指於抗體分子的天然構形中,兩種多肽鏈中較大的那一個,其通常決定抗體所屬的類別。
如本文所使用的,「抗體輕鏈」是指抗體分子的天然構形中,兩種多肽鏈中較小的那一個。Kappa(κ)和lambda(λ)輕鏈,是兩種主要的抗體輕鏈同型。
如本文所使用的,術語「重組抗體」是指使用重組DNA技術所產生的抗體,例如由噬菌體或酵母表現系統表現的抗體。該術語還應該解釋為由人工合成且編碼有該抗體的DNA分子所產生的抗體,該DNA分子會表現抗體蛋白或指定抗體的胺基酸序列,其中DNA或胺基酸序列是應用本領域已知的重組DNA或胺基酸序列技術所獲得。
如本文所使用的,術語「抗原」或「Ag」被定義為會引起免疫反應的分子。這種免疫反應可能涉及抗體產生,或特定的免疫活性細胞的活化,或兩者。本領域技術人員會理解,任何大分子,包括幾乎所有的蛋白質或肽,都可以用作抗原。此外,抗原可以衍生自重組或基因體DNA。本領域技術人員會理解,任何DNA,包含編碼有引發免疫反應的蛋白質的核苷酸序列或部分核苷酸序列,係編碼有本文的術語「抗原」。此外,本領域技術人員理解,抗原不需要由整段基因的核苷酸序列來編碼。顯而易見的是,本發明包括,但不限於,使用多於一個基因的部分核苷酸序列,並且這些核苷酸序列以各種組合排列以引起所需的免疫反應。再者,本領域技術人員理解抗原不需要由「基因」編碼。顯而易見的是,抗原可以是合成的,或可以從生物樣品中獲得。這樣的生物樣品可以包括但不限於組織樣品,腫瘤樣品,細胞或生物流體。
術語「施加裝置」(applicator)在本文中使用時,表示用於施用本發明的化合物和組合物的任何裝置,包括但不限於皮下注射器、移液管等。
如本文所使用的,「適配體」是指可與另一分子專一性結合的小分子。適配體通常是基於多核苷酸或肽的分子。多核苷酸適配體是DNA或RNA分子,其通常包含數條核酸鏈,該數條核酸鏈會形成有非常特殊的三維構形,該構形被設計為對於特定目標分子如肽、蛋白質、藥物、維生素、其他有機和無機分子等,具有適當的結合親和力和專一性。這種多核苷酸適配體,可以從大量的隨機序列中選擇出來,其係透過以指數富集(exponential enrichment)的方式,以其配位體來進行系統進化。肽適配體通常是約10至約20個胺基酸所構成的環狀結構,其係連接至與特定配位體所結合的蛋白質支架。使用例如酵母菌雙雜交系統的方法,可以從組合庫(combinatorial libraries)中鑑定和分離肽適配體。
如本文所使用的,術語「抗腫瘤作用」是指可以透過各種手段表現的生物學效應,包括但不限於例如腫瘤體積減小,腫瘤細胞數量減少,轉移的數量減少,預期壽命的增加,腫瘤細胞增殖的減少,腫瘤細胞存活的減少或與癌症相關的各種生理症狀的改善。「抗腫瘤效應」也可以透過本發明的肽、多核苷酸、細胞和抗體首先預防腫瘤發生的能力來表現。
如本文所使用的,術語「異種移植」指從一種物種的供給者獲取組織移植物,並移植到另一物種的接受者中。
如本文所使用的,術語「同種移植」指從一種物種的供給者獲取組織移植物,並移植到相同物種的接受者中。
如本文所使用的,「ShRNA」或「小髮夾RNA」(short hairpin RNA)是一種干擾RNA序列,且為一種雙股RNA。當ShRNA與標靶基因或序列處於相同細胞中時,能夠減少或抑制標靶基因或序列表現的。ShRNA可以在標靶細胞內,利用DNA構築(DNA construct)來連續產生。前述DNA構築可以整合到標靶細胞的細胞核中,或獨立存在於標靶細胞中。因此,該DNA導向(DNA-directed)的ShRNA,可以在標靶細胞內連續產生干擾RNA。
範圍:在本發明全文中,各個實施例可以以範圍的形式呈現。應該理解的是,範圍形式的描述僅僅是為了方便及簡潔,不應該被解釋為對本發明範圍的限制。因此,範圍的描述應被視為是具體公開了所有可能的子範圍以及該範圍內的單一數值。例如,從1到6的範圍的描述應該被視為具有特定公開的子範圍,例如1到3、1到4、1到5、2到4、2到6、3到6等,以及在該範圍內的單一及部分數字,例如1、2、2.7、3、4、5、5.3及6。無論何種大小的範圍皆適用。
實施例
免疫系統在激活和抑制之間保持平衡。免疫監視的逃脫是腫瘤形成的先決條件之一。腫瘤逃脫免疫監視的一種方法,是產生(與正常情況相較)更為大量的免疫抑制分子。多年來,越來越多的免疫抑制分子和機制獲得確認,且已經證實,這些免疫抑制分子或其同源訊息傳遞受體的中和,在治療各種惡性腫瘤中是有效的。
本發明涉及膜結合受體LRP5與DKK蛋白質結合以抑制自然殺手(NK)細胞和CD8+毒殺性T淋巴細胞(CTL)活性,但不影響NK或CTL中的典型Wnt-β-連環蛋白訊息傳遞。研究顯示,在非生理條件下,LRP5的過度表現可介導Wnt誘導的β-連環蛋白穩定化和β-連環蛋白下游的訊息傳遞;並且,這些由LRP5所介導的效應可以被DKK抑制。然而,本文描述的實驗證據顯示,在NK和CTL細胞中,LRP5,而非LRP6,具有Wnt依賴性訊息傳遞功能。本文公開的實驗證據顯示,LRP5抑制劑和中和抗體,是用於治療表現有DKK的癌症,關鍵的免疫調節和抑制腫瘤形成的因子。因此LRP5是治療癌症的有希望靶標。
本發明的方法
本發明涉及在有需要的受試者中治療癌症的方法。該方法包括向受試者施用有效劑量且在醫藥上可接受的載體中的抑制劑,抑制劑係阻斷DKK2與LRP5之間的相互作用。在一些實施例中,抑制劑係選自於下列群組中的至少一個:DKK2拮抗劑或其片段、DKK2抗體或其片段、LRP5拮抗劑或其片段、LRP5抗體或其片段、siRNA、核醣體、反義分子、適配體、擬肽物、小分子、CRISPR/Cas9編輯系統以及其組合。
本發明也涉及在有需要的受試者中治療癌症的方法。該方法包括向受試者施用有效劑量的LRP5基因剔除劑及醫藥上可接受的載體。術語「LRP5基因剔除劑」是指抑制或降低LRP5表現或抑制或降低細胞、組織或體液中的LRP5活性的任何藥劑。
小干擾RNA(Small Interfering RNA,siRNA)
在一實施例中,剔除劑是小干擾RNA(siRNA)。siRNA是一種RNA分子,其包含靶向目標基因或多核苷酸(a gene or polynucleotide of interest)的一組核苷酸。如本文所使用的,術語「siRNA」涵蓋所有形式的siRNA,包括但不限於(i)雙股RNA多核苷酸,(ii)單股多核苷酸,和(iii)(i)或(ii)的多核苷酸,其中所述多核苷酸具有一個、兩個、三個、四個或更多個核苷酸的改變或取代。siRNAs及其用於抑制基因表現的用途,在本領域中是眾所周知的(Elbashir et al.,Nature,2001,411(6836):494-988)。在本發明中,siRNA能夠干擾目標基因如LRP5的表現及/或活性。
核酶:
在另一實施例中,剔除劑是核酶。核酶及其用於抑制基因表現的用途在本領域中也是眾所周知的(Cech et al.,1992,J.Biol.Chem.267:17479-17482;Hampel et al,1989,Biochemistry 28:4929-4933;Eckstein et al.,International Publication No.WO 92/07065;Altaian et al.,美國專利號5,168,053)。核酶是一種RNA分子,其具有以類似於DNA限制性內切核酸酶的方式來專一性切割其他單股RNA的能力。透過修飾編碼有這些RNA的核苷酸序列,可以改造該分子使其能辨識RNA分子中的特定核苷酸序列並將其切割(Cech,1988,J.Amer.Med.Assn.260:3030)。這種方法的一個主要優點為,核酶是序列專一性的。核酶有兩種基本類型,即四膜蟲型(tetrahymena,Hasselhoff,1988,Nature 334:585)和鎚頭型(hammerhead)。四膜蟲型核酶辨識長度為四個鹼基的序列,而鎚頭型核酶辨識長度為11-18個鹼基的鹼基序列。序列越長,該序列僅在目標mRNA分子中出現的可能性就越大。因此,以讓特定的mRNA分子失去活性來看,鎚頭型核酶優於四膜蟲型核酶,並且18個鹼基的辨識序列也優於較短的辨識序列,較短辨 識序列會在各種不相關的mRNA分子內隨機出現。可用於抑制目標基因(即LRP5)表現的核酶可透過將標靶序列併入與所需基因的mRNA序列互補的鹼性核酶結構中來設計。靶向目標基因的核酶,可以使用市售試劑(Applied Biosystems,Inc.,Foster City,CA)來合成,或者它們可以從編碼它們的DNA中遺傳地表現。
反義分子:
在另一實施例中,剔除劑是反義核酸序列。反義分子及其用於抑制基因表現的用途在本領域中是眾所周知的(Cohen,1989,Oligodeoxyribonucleotides,Antisense Inhibitors of Gene Expression,CRC Press)。反義核酸是互補的DNA或RNA分子,正如該術語在本文其他地方所定義的,互補於特定mRNA分子的至少一部分(Weintraub,1990,Scientific American 262:40)。在細胞中,反義核酸與相對應的mRNA雜交,形成雙股分子,從而抑制基因的轉譯。如Inoue,1993,美國專利號5,190,931所描述的,可以使用編碼有反義分子的DNA,藉由遺傳表現將反義分子提供給細胞。或者,可以以人工合成的方式來製備反義分子,然後將其提供給細胞。約10至約30的反義寡聚物是優選的,因為它們易於合成,並且易被引入到標靶細胞中。本發明實施例中以合成方式所製備的反義分子,包括本領域已知的寡核苷酸衍生物,其與未修飾的寡核苷酸相比,具有較佳的生物學活性(美國專利號5,023,243)。
CRISPR/Cas9系統
CRISPR/Cas9系統是一種簡便且高效的系統,係用於針對性地誘發遺傳改變。透過Cas9蛋白來進行的目標辨別,在引導RNA(guide RNA,gRNA)內需要具有「種子」序列,並且在gRNA結合區域上游也需要具有protospacer adjacent motif(PAM)序列,其含有保留性的二核苷酸。因此,透過設計不同的gRNA(例如在293T細胞等細胞株中的,或初代細胞中的gRNA),原則上可以讓CRISPR/Cas9系統來切割任何DNA序列。透過共同表現單個Cas9蛋白與兩種或更多種的gRNA,可以讓CRISPR/Cas9系統能夠同時靶向多個基因組位點,使得該系統特別適用於多基因編輯,或標靶基因的協同活化。
小分子抑制劑
本領域眾所周知的是,位於人類LRP5的第三YWTD重複結構域β-螺旋體(β-propeller)結構頂部空腔處的一些胺基酸殘基,對DKK結合和DKK所介導的Wnt拮抗作用來說是很重要的(Zhang et al.,Mol Cell Biol.2004;24:4677-4684)。在本發明的一個實施例中是小分子,其可以破壞DKK2和LRP5之間的相互作用,並且起到LRP5抑制劑的作用,其會不影響藉由Wnt共受體LRP 5/6所進行的典型Wnt-β-連環蛋白訊息傳遞。
抗體
本發明使用包含抗DKK2抗體(例如5F8、SEQ ID NOs:21-23)及/或抗LRP5抗體的組合物,作為阻斷DKK2和LRP5之間相互作用的藥劑。在一個實施例中,抗體包含選自多株抗體、單株抗體、人源化抗體、合成抗體、重鏈抗體、人類抗體和抗體的生物活性片段及其任何組合的抗體。
生產抗體的方法是本領域已知的。根據本發明用來生產抗體的示例性技術如本處所述。本領域技術人員會理解,抗體包含任何免疫球蛋白分子,其無論源自天然來源還是來自重組來源,都能夠專一性結合存在於標靶分子上的表位。在一個實施例中,標靶分子包含
當用於本發明組合物和方法中會針對標靶分子的抗體是多株抗體(IgG)時,該抗體係透過對一適合動物體接種一胜肽來產生,該胜肽包括完整的標靶蛋白或其片段、上游調控因子或其片段。這些多肽或其片段可以透過本領域已知的任何方法獲得,包括化學合成和生物合成。
然後從得自動物的體液中分離出接種動物中產生的與標靶分子或其片段專一性結合的抗體。
可以用這種方式在幾種非人類哺乳動物中產生抗體,所述哺乳動物例如但不限於山羊、綿羊、馬、駱駝、兔和驢。用於產生多株抗體的方法是本領域公知的,並且描述於例如Harlow et al.,1998,In:Antibodies,A Laboratory Manual,Cold Spring Harbor,NY中。
針對全長標靶分子的單株抗體或其片段,可使用任何公知的單株抗體製備程序來製備,例如在Harlow等人(1998,In:Antibodies,A Laboratory Manual,Cold Spring Harbor,NY)和Tuszynski等人(1988,Blood,72:109-115)中所描述的。人類單株抗體可以透過美國專利公開號2003/0224490中所述的方法製備。針對抗原的單株抗體,係以本文所提及的標準程序,以該抗原對小鼠進行免疫的方式來產生。使用本文所述程序所獲得編碼有單株抗體的核酸,可以使用本領域可用的技術進行克隆和定序,並且其係描述於例如Wright et al.,1992,Critical Rev.Immunol.12(3,4):125-168,以及其所引用的參考文獻中。
當用於本發明方法中的抗體,是對應於全長標靶分子的抗體(或其片段)的生物活性抗體片段或合成抗體時,該抗體製備如下:將編碼有所需抗體或片段的核酸轉殖到合適的載體中。將載體轉染至適於產生大量抗體或其片段的細胞中。然後,編碼有所需抗體的DNA係在細胞中表現,從而產生抗體。編碼有所需肽的核酸可以使用本領域可獲得的技術來進行克隆和定序,其係描述於例如Wright et al.,1992,Critical Rev.in Immunol.12(3,4):125-168,以及其所引用的參考文獻中。或者,化學合成技術還可以用來合成出預計數量的所需抗體或其片段。如果抗體的胺基酸序列是已知的,則可以使用本領域已知的方法化學合成所需的抗體。
本發明還可以包括對標靶分子上的表位有專一性反應的人源化抗體的用途。這些抗體能夠與標靶分子結合。用於本發明的人源化抗體,具有人類骨架區(framework),並具有來自一抗體的一或多個互補性決定區(complementarity determining regions,CDR),前述抗體通常是小鼠抗體,其專一性地與標靶細胞表面分子反應。
當用於本發明的抗體被人源化時,抗體可以如Queen等人(美國專利號6,180,370),Wright等人,1992,Critical Rev.Immunol.12(3,4):125-168、或在Gu等人,1997,Thrombosis & Hematocyst 77(4):755-759中所述的方法來產生,或使用其他本領域已知用來產生人源化抗體的方法來產生。Queen等人公開的方法係部分地針對人源化免疫球蛋白的設計,所述人源化免疫球蛋白係將一重組DNA片段連接於編碼有受體的人類框架區DNA片段,並將其表現來產生的,前述重組DNA片段編碼有得自一捐贈者免疫球蛋白的重鏈和輕鏈互補性決定區(CDR),而前述免疫球蛋白具 有可與所需抗原結合的能力。一般來說,根據Queen的發明專利所揭露的方式,基本上能夠設計出任何一種人類免疫球蛋白。Queen解釋說,DNA片段通常包括DNA表現控制序列,其與人源化免疫球蛋白編碼序列可操作連接,且包括天然相關或異源啟動子區域。表現控制序列可以是能夠轉形或轉染真核宿主細胞的載體中的真核啟動子系統,或者是能夠轉形或轉染原核宿主細胞的載體中的原核啟動子系統。一旦載體已經整合到適當的宿主中,該宿主就會被維持在適合該引入核苷酸序列進行大量表現的培養條件下,接著,根據需要,會收集和純化人源化輕鏈、重鏈、輕/重鏈二聚體或完整的抗體、結合片段或其他免疫球蛋白形式(Beychok,Cells of Immunoglobulin Synthesis,Academic Press,New York,1979,該文獻藉由引用而納為本文的一部份)。
人類抗體的DNA序列,特別是互補性決定區(CDR),可根據本領域公知的程序來加以分離。優選地,如國際專利申請公開號WO 1987/02671中所述,從不朽B細胞中分離出人類CDRs的DNA序列。適合產生本發明抗體的CDR,可以類似方式,自編碼有能夠結合標靶分子單株抗體的DNA中來取得。這種人源化抗體可以使用習知的方法,在任何適宜且能夠產生抗體的哺乳動物來源中生成,其包括但不限於小鼠、大鼠、駱駝、駱馬、兔子或其他脊椎動物。穩定區(constant region)和骨框區DNA序列的適合來源細胞、以及用於表現和分泌抗體的宿主細胞,可以從許多來源獲得,例如美國菌種中心(American Type Culture Collection),馬納沙斯,VA。
另一種產生會對LRP5有反應性專一性抗體或抗體片段的方法,涉及在表現庫中篩選編碼有免疫球蛋白基因或其部分,該免疫球蛋白基因或其部分係在細菌中與LRP5蛋白或胜肽共同表現。例如,可以使用噬菌體表現庫,在細菌中表現完整的Fab片段、VH區和Fv區。參見例如Ward et al.,Nature,1989,341:544-546;Huse et al.,Science,1989,246:1275-1281;和McCafferty et al.,Nature,1990,348:552-554。用例如DKK2或LRP5胜肽來篩選這樣的表現庫,可以鑑定出與DKK2或LRP5反應的免疫球蛋白。或者,可用SCID-hu小鼠(可從Genpharm獲得)來產生抗體或 其片段。
在另一個實施例中,抗體或抗體片段可以從抗體噬菌體庫中分離出來,該抗體噬菌體庫係以McCafferty等人,Nature,1990,348:552-554所描述的技術來產生的。Clackson等人,Nature,1991,352:624-628及Matks等人,J Mol Biol,1991,222:581-597分別描述了以噬菌體庫來分離出鼠類和人類抗體。之後的公開文獻,描述了藉由鏈改組(chain shuffling)來產生高親和力(nM範圍)的人類抗體的方法(Marks et al.,BioTechnology,1992,10:779-783),同時也描述了以組合感染和體內重組來建構出超大型噬菌體庫的方法(Waterhouse et al.,Nuc.Acids.Res.,1993,21:2265-2266)。因此,這些技術都可以替代傳統上用來分離單株抗體的融合瘤技術。
DNA也可以被修飾,例如,透過用人類重鏈和輕鏈穩定區的編碼序列來取代同源鼠類序列(美國專利號4,816,567;Morrison,et al.,Proc.Natl.Acad.Sci.USA,1984,81:6851),或將免疫球蛋白編碼序列共價連接至非免疫球蛋白多肽編碼序列的全部或部分。通常來說,前述的非免疫球蛋白多肽係用來取代抗體的穩定區,或者,其係用來取代抗體一個抗原結合位的可變異區域,以產生嵌合二價抗體,其具有一個對第一抗原有專一性的抗原結合位,以及另一個對不同抗原有專一性的抗原結合位。
目前已經開發出多種用於生產功能性抗體片段的技術。抗體片段可以包括抗體的可變異區或抗原結合區。傳統上,這些片段係將完整抗體進行蛋白水解所產生的(參見例如Morimoto et al.,Journal of Biochemical and Biophysical Methods,1992,24:107-117 and Brennan et al.,Science,1985,229:81)。然而,這些片段現在可以直接由重組宿主細胞來產生。例如,抗體片段可以從上述抗體噬菌體庫中分離出來。或者,直接從大腸桿菌回收Fab'-SH片段並將其進行化學偶聯,可以形成F(ab')2片段(Carter et al.,Bio/Technology,1992,10:163-167)。根據另一種方法,F(ab')2片段可以從重組宿主細胞的培養物中直接分離出來。其它產生抗體片段的技術,對熟練的技術人員來說係顯而易知的。在其他實施例中,所選擇的抗體是單鏈Fv片段(scFv)。參見WO 93/16185;美國專利號5,571,894;及美國專利號5,587,458。該抗體片段還可以是「線性抗體」,例如在美國專 利號5,641,870中所述的。這種線性抗體片段可以是單專一性的或雙專一性的。
抗體類似物或「非抗體結合蛋白」係使用非免疫球蛋白支架,其包括adnectins、avimer、單鏈多肽結合分子及類抗體結合擬肽(antibody-like binding peptidomimetics),其係將非免疫球蛋白支架用來替代抗體可變異區的蛋白骨架區(美國專利號5,260,203;5,770,380;6,818,418及7,115,396)。目前已經開發出其他化合物,其以類似於抗體的方式靶向和結合標靶。這些「抗體類似物」中的某些,係使用非免疫球蛋白支架來替代抗體可變異區的蛋白質骨架區。以「類抗體結合擬肽」(antibody-like binding peptidomimetics,ABiP)法,來將抗體降低為更小的肽類似物(peptidomimetics),其也可作為抗體的替代物(Murali et al.Cell Mol Biol.,2003,49(2):209-216)。
以體外外顯子改組和噬菌體呈現(phage display)方式製備,從人類胞外受體結構域發展而來的融合蛋白,係為一種單鏈結構的多肽,該多肽鏈包括有多個稱為「avimers」的結構域,是一種與抗體類似,對其各種標靶分子具有親和力和專一性的結合蛋白(Silverman et al.Nat Biotechnol,2005,23:1556-1561)。由此產生的多結構域蛋白,可以包括多個獨立的結合結構域。與單表位結合蛋白相比,這些結構域可以表現出較佳的親和力(在某些情況下為亞奈摩爾(sub-nanomolar)等級)及專一性。其他關於avimers的建構和使用方法的細節,係公開於例如美國專利申請公開號20040175756、20050048512、20050053973、20050089932及20050221384中。
除了利用非免疫球蛋白來做為抗體變異區的蛋白骨架區之外,目前也可利用包括但不限於RNA分子和非天然寡聚體(例如,蛋白酶抑制劑,苯二氮平(benzodiazepines)、嘌呤衍生物及beta-轉角模擬物)等化合物來製備抗體模擬物,而上述所有方式都適用於本發明。這些方式係藉由全體外製備技術來設計專一性抗體,以規避在動物體內產生抗體方式的局限性。
如本領域所知的,適配體是由緊密結合特定分子標靶的核酸 所組成的大分子。Tuerk和Gold(Science,1990,249:505-510)公開了用於選擇適配體的SELEX(透過指數增強進行的配體系統性進化,Systematic Evolution of Ligands by Exponential Enrichment)方法。在SELEX方法中,用目標分子產生及/或篩選核酸分子的大型庫(例如,1015個不同的分子)。然後,分離的適配體可以進一步進行精製,以消除任何對靶標結合及/或適配體結構無貢獻的核苷酸(即適配體被截斷至其核心結合域)。參見例如Jayasena於1999年在Clin.Chem.45:1628-1650中所發表的關於適配體技術的回顧性論文。
關於本發明的抗DKK2及/或抗LRP5抗體的「中和」,或片語「中和DKK2活性的抗體」或「中和LRP5活性的抗體」,旨在指出該抗體與LRP5接觸或結合,會抑制細胞增生活性、癌症轉移、癌細胞侵入或癌細胞遷移、由DKK2及/或LRP5誘發的促進腫瘤形成微環境的建立。由於DKK2會分泌至細胞外,並作為癌細胞增生、遷移、侵入和轉移的重要因子,某些抗DKK2抗體及/或LRP5抗體可以中和這些活性。本發明中的中和抗體在下列治療應用中特別有用:預防或治療難醫治的疾病癌症和癌症轉移。在一些實施例中,本發明的中和抗體可以施用於患者,或與細胞接觸,以抑制以DKK2的過表現為特徵的癌症轉移。
本發明的抗體可以任何透過本領域已知的方法來評估其免疫結合的專一性。可以使用的免疫測定法包括但不限於使用例如西方墨點法、放射性免疫測定法、ELISA(enzyme linked immunosorbent assay,酵素免疫測定法)、「三明治」免疫測定法、免疫沉澱測定法、沉澱素反應法(precipitin reactions)、凝膠擴散沉澱反應法(gel diffusion precipitin reactions)、免疫擴散測定法(immunodiffusion assays)、凝集測定法(agglutination assays)、補體結合試驗(complement-fixation assays),放射免疫分析法(immunoradiometric assays)、螢光免疫分析(fluorescent immunoassays)、蛋白質A免疫測定,等等。這樣的測定是常規的並且是本領域所習知的(參見例如Current Protocols in Molecular Biology,(Ausubel et al.,eds.),Greene Publishing Associates and Wiley-Interscience,New York,2002)。
組合療法
當本文所述方法中的化合物與至少一種其他可用於治療癌症的化合物組合時,也可用於本發明的方法中。其他的化合物可以包含本文的化合物,或已知用於治療、預防或減輕癌症及/或轉移症狀的化合物,例如市售化合物。
在一實施例中,可用於本發明的試劑可以與治療劑(例如抗腫瘤劑)組合使用,所述治療劑包括但不限於化學治療劑、免疫治療劑、抗細胞增殖劑或前述製劑的任何組合。例如,任何下列非限制性示例類別的常規化學治療劑,都包括在本發明中:烷化劑、亞硝基脲(nitrosoureas)、抗代謝劑、抗腫瘤抗生素、植物生物鹼(plant alkyloids)、紫杉烷類、激素藥劑、和其他藥劑(miscellaneous agents)。
烷化劑因其存在於細胞中的條件下能向許多負電性基團添加烷基的能力而得名,從而其可干擾DNA複製以防止癌細胞繁殖。大多數烷化劑是細胞週期非特異性的。在特定實施例中,它們是藉由與DNA雙股螺旋中的鳥糞嘌呤鹼基發生交聯來阻止腫瘤生長。非限制性的實例包括,硫酸布他卡因(busulfan)、卡鉑(carboplatin)、苯丁酸氮芥(Chlorambucil)、順鉑(Cisplatin)、環磷醯胺(Cyclophosphamide)、達卡巴仁(dacarbazine)、異環磷醯胺(ifosfamide)、鹽酸二氯甲基二乙酸(mechlorethamine hydrochloride)、馬法蘭(Melphalan)、甲基苄肼(procarbazine)、噻替派(thiotepa)和尿嘧啶芥(uracil mustard)。
抗代謝劑在細胞週期的合成(S)階段會阻止鹼基併入DNA中,從而抑制細胞正常發育和分裂。抗代謝劑的非限制性實例包括以下藥物,如5-氟尿嘧啶(5-fluorouracil),6-巰基嘌呤(6-mercaptopurine)、截瘤達錠(capecitabine),阿糖胞苷(cytosine arabinoside)、氟苷(floxuridine)、福達樂(fludarabine)、吉西他濱(gemcitabine)、滅殺除癌錠(methotrexate)及硫鳥嘌呤(thioguanine)。
抗腫瘤抗生素通常透過干擾細胞分裂所需的酶,或透過改變細胞周圍的膜來防止細胞分裂。這一類藥劑,包括蒽環類抗腫瘤抗生素(anthracyclines),如艾黴素(doxorubicin),係透過破壞DNA結構和終止 其功能來防止細胞分裂。這些藥劑是細胞週期非特異性的。抗腫瘤抗生素的非限制性實例包括:阿克拉黴素(aclacinomycin)、放線菌素(actinomycin)、安曲霉素(anthramycin)、重氮絲氨酸(azaserine)、博來黴素(bleomycins)、放線菌素C(cactinomycin)、卡奇黴素(calicheamicin)、卡米諾黴素(carubicin)、洋紅黴素(caminomycin)、嗜癌素(carzinophilin)、色黴素(chromomycin)、放線菌素D(dactinomycin)、唐黴素(daunorubicin)、地托比星(detorubicin)、6-重氮-5-氧代-L-正亮胺酸(6-diazo-5-oxo-L-norleucine)、艾黴素(doxorubicin)、泛艾黴素(epirubicin)、依索比星(esorubicin)、艾達黴素(idarubicin)、麻西羅黴素(marcellomycin)、絲裂黴素(mitomycins)、米托蒽醌(mitoxantrone)、霉酚酸(mycophenolic acid)、諾拉黴素(nogalamycin)、橄欖黴素(olivomycins)、培洛黴素(peplomycin)、泊非黴素(porfiromycin)、嘌呤黴素(puromycin)、三鐵阿黴素(quelamycin)、阿黴素(rodorubicin)、棕黴素(streptonigrin)、鏈佐菌素(streptozocin)、殺結核菌素(tubercidin)、倍司他定(ubenimex)、淨司他丁斯(zinostatin)、佐柔比星(zorubicin)。
植物生物鹼會抑制或終止有絲分裂、或抑制阻止細胞產生細胞生長所需蛋白質的酶。常用的植物生物鹼包括長春鹼(vinblastine)、長春新鹼(vincristine)、長春地辛(vindesine)和長春瑞濱(vinorelbine)。然而,本發明不應被解釋為僅限於這些植物生物鹼。
紫杉烷會影響被稱為微管的細胞結構,其在細胞功能中扮演重要的角色。在正常的細胞生長中,微管會在細胞開始分裂時形成,而一旦細胞停止分裂,微管就被分解或破壞。紫杉烷會阻止微管分解,使得癌細胞被微管所堵塞,導致它們不能生長和分裂。示例性但非限制性的紫杉烷,包括太平洋紫杉醇(paclitaxel)和歐洲紫杉醇(docetaxel)。
激素藥劑和類激素藥劑被用於治療某些類型的癌症,包括例如白血病、淋巴瘤和多發性骨髓瘤。他們經常與其他類型的化療藥物一起使用,以提高其療效。性激素用於改變雌性或雄性激素的作用或生成,並用於減緩乳癌、攝護腺癌和子宮內膜癌的生長。通常可以使用抑制這些激素的產生(芳香環轉化酶抑制劑,aromafase inhibitors)或作用(泰莫西芬, tamoxifen)作為治療的輔助手段。有某些其他腫瘤也是激素依賴性的。泰莫西芬是激素藥劑的一個非限制性實例,其係用於干擾促進乳癌細胞生長的雌性激素活性。
其他藥劑包括化療藥物如博來黴素(bleomycins)、羥基脲(hydroxyurea)、L-天門冬醯胺酶(L-asparaginase)和甲基苄肼(procarbazine)。
化學治療劑的其它實例,包括但不限於下列藥劑及其醫藥上可接受的鹽類、酸和衍生物:氮芥(nitrogen mustards),例如苯丁酸氮芥(Chlorambucil)、萘氮芥(chlomaphazine)、氯磷醯胺(chlorophosphamide)、抑癌膠囊(estramustine)、異環磷醯胺(ifosfamide)、二氯甲基二乙酸(mechlorethamine hydrochloride)、氧化鹽酸二氯甲基二乙酸(mechlorethamine oxide hydrochloride)、馬法蘭(Melphalan)、新氮芥(novembichin)、苯芥膽甾醇(phenesterine)、潑尼莫司汀(prednimustine)、曲洛磷胺(trofosfamide)、尿嘧啶芥(uracil mustard);亞硝基脲(nitrosoureas)例如卡莫司汀(carmustine)、氯乙鏈脲菌素(chlorozotocin)、福莫司汀(fotemustine)、洛莫司汀(lomustine)、尼莫司汀(nimustine)、雷莫司汀(ranimustine);嘌呤類似物如福達樂(fludarabine)、6-巰基嘌呤(6-mercaptopurine)、硝咪硫鳥嘌呤(thiamiprine)、硫鳥嘌呤(thioguanine);嘧啶類似物如安西他濱(ancitabine)、阿紮胞苷(azacitidine)、6-氮雜尿苷(6-azauridine)、卡莫氟(carmofur)、阿糖胞苷(cytarabine)、雙脫氧尿苷(dideoxyuridine)、去氧氟尿苷(doxifluridine)、依諾他濱(enocitabine)、氟苷(floxuridine)、5-FU;雄性激素如卡魯睪酮(calusterone)、屈他雄酮丙酸酯(dromostanolone propionate)、環硫雄醇(epitiostanol)、美雄烷(mepitiostane)、睾內酯(testolactone);抗腎上腺素如氨苯乙呱啶酮(aminoglutethimide)、密妥坦(mitotane)、曲洛司坦(trilostane);葉酸補充劑如亞葉酸(frolinic acid)、醋葡醛內酯(aceglatone)、醛磷醯胺糖香(aldophosphamide glycoside)、胺基乙醯丙酸(aminolevulinic acid)、安吖啶(amsacrine)、倍曲布西(bestrabucil)、比生群(bisantrene)、依達曲沙(edatrexate)、地磷醯胺(defofamine)、秋水仙胺(demecolcine)、亞絲醌 (diaziquone)、依氟鳥氨酸(eflornithine)、依利醋銨(elliptinium acetate)、依託格魯(etoglucid)、氮化鎵(gallium nitrate)、羥基脲(hydroxyurea)、香菇多糖(lentinan)、氯尼達明(lonidamine)、米托胍腙(mitoguazone)、米托蒽醌(mitoxantrone)、莫呱達醇(mopidamol)、尼曲吖啶(nitracrine)、噴司他丁(pentostatin)、蛋氨氮芥(phenamet)、吡柔比星(pirarubicin)、鬼臼酸(podophyllinic acid)、2-乙基醯胼(2-ethylhydrazide)、甲基苄肼(procarbazine)、PSK@雷佐生(razoxane)、西佐喃(sizofuran)、鍺螺胺(spirogermanium)、細格孢氮雜酸(tenuazonic acid)、三亞胺醌(triaziquone)、2,2',2"-三氯三乙胺(2,2',2"-trichlorotriethylamine)、氨基甲酸乙酯(urethan)、長春地辛(vindesine)、達卡巴仁(dacarbazine)、甘露醇氮芥(mannomustine)、二溴甘露醇(mitobronitol)、二溴衛矛醇(mitolactol)、呱泊溴烷(pipobroman)、格塞圖辛(gacytosine)、阿拉伯糖苷(「Ara-C」)、環磷醯胺(Cyclophosphamide)、噻替派(thiotepa);紫杉醇類,例如太平洋紫杉醇(paclitaxel)(TAXOLO,Bristol-Myers Squibb Oncology,Princeton,N.J.)和歐洲紫杉醇(docetaxel)(TAXOTERE,Rhone-Poulenc Rorer,Antony,France)、苯丁酸氮芥(Chlorambucil)、吉西他濱(gemcitabine)、6-硫鳥嘌呤(6-thioguanine)、巰基嘌呤(mercaptopurine)、滅殺除癌錠(methotrexate)、鉑類似物如順鉑(cisplatin)和卡鉑(carboplatin)、長春鹼(vinblastine)、鉑、依託泊苷(etoposide)(VP-16)、異環磷醯胺(ifosfamide)、絲裂黴素C(mitomycin C)、米托蒽醌(mitoxantrone)、長春新鹼(vincristine)、長春瑞濱(vinorelbine)、溫諾平(navelbine)、雙羥蒽醌(novantrone)、替尼泊苷(teniposide)、唐黴素(daunomycin)、氨基翼素(aminopterin)、截瘤達(xeloda)、伊班膦酸鈉(ibandronate)、CPT-11、拓撲異構酶抑制劑RFS 2000、二氟甲基鳥氨酸(difluoromethylornithine,DMFO)、視黃酸(retinoic acid)、esperamicins、和截瘤達錠(capecitabine)。
抗細胞增殖劑可以進一步定義為細胞凋亡誘導劑或細胞毒性劑。凋亡誘導劑可以是顆粒酶、Bcl-2家族成員、細胞色素C、凋亡蛋白酶或其組合。示例性的顆粒酶包括,顆粒酶A、顆粒酶B、顆粒酶C、顆粒 酶D、顆粒酶E、顆粒酶F、顆粒酶G、顆粒酶H、顆粒酶I、顆粒酶J、顆粒酶K、顆粒酶L、顆粒酶M、顆粒酶N,或前述顆粒酶的組合。在其他實施例中,Bcl-2家族成員是例如Bax、Bak、Bcl-Xs、Bad、Bid、Bik、Hrk、Bok,或前述成員的組合。
另一實施例中,凋亡蛋白酶是凋亡蛋白酶-1、凋亡蛋白酶-2、凋亡蛋白酶-3、凋亡蛋白酶-4、凋亡蛋白酶-5、凋亡蛋白酶-6、凋亡蛋白酶-7、凋亡蛋白酶-8、凋亡蛋白酶-9、凋亡蛋白酶-10、凋亡蛋白酶11、凋亡蛋白酶-12、凋亡蛋白酶-13、凋亡蛋白酶-14或其組合。在具體的實施例中,細胞毒性劑是TNF-α、細胞毒素(gelonin)、靈菌紅素(Prodigiosin),核醣體抑制蛋白(ribosome-inhibiting protein,RIP)、假單胞菌外毒素(Pseudomonas exotoxin),困難梭狀芽孢桿菌毒素B(Clostridium difficile Toxin B)、幽門螺旋桿菌VacA(Helicobacter pylori VacA)、小腸大腸炎耶氏桿菌YopT(Yersinia enterocolitica YopT)、紫色桿菌素(Violacein)、二乙基三胺五醋酸(diethylenetriaminepentaacetic acid)、伊洛福芬(irofulven)、白喉毒素(Diptheria Toxin)、米托潔林(mitogillin)、蓖麻毒素(ricin)、肉毒桿菌毒素(botulinum toxin)、霍亂菌毒素(cholera toxin)、皂草毒素6(saporin 6)或其組合。
免疫治療劑可以是,但不限於,介白素-2或其他細胞激素、程序性細胞死亡蛋白1(PD-1)信息傳導的抑制劑(例如與PD-1結合的單株抗體)、或益伏注射劑(ipilimumab)。免疫治療劑還可以阻斷細胞毒性T淋巴細胞相關抗原A-4(CTLA-4)的信息傳導,並且其還可以涉及癌症疫苗和基於樹突細胞的療法。
免疫治療劑還可以是活化和擴增的NK細胞,其活化和擴增是透過細胞激素處理,或以過繼細胞療法(adoptive cell therapy)及/或以移植造血幹細胞的方式轉移外源性細胞來進行。適用於過繼細胞療法的NK細胞,可以源自不同的來源,包括離體擴增的同種異體NK細胞、來自周邊血的未刺激或擴增的同種異體NK細胞、來自周邊血和臍帶血的CD34+血液前驅幹細胞,和NK細胞株。本發明也包括以表達嵌合抗原受體或細胞因子的基因所修飾的NK細胞。用於本發明的另一種免疫治療劑,是基 於過繼T細胞療法(adoptive T cell therapy,ACT)的試劑,其中將腫瘤浸潤淋巴細胞(tumor-infiltrating lymphocytes,TIL)施用於患者。施用的T細胞可以被遺傳工程化以表達腫瘤特異性抗原受體。這些受體可以例如是嵌合抗原受體(chimeric antigen receptors,CAR),其以非主要組織相容性(non-major histocompatibility)限制方式來辨識細胞表面抗原;或者,可以是傳統的αβ TCRs,其會辨識由MHC分子所呈現的細胞內抗原的表位。
醫藥組合物和製劑。
本發明將包含有LRP5剔除試劑的醫藥組合物用於本發明方法中的用途。
醫藥組合物係以適於施用於受試者的形式存在,或者醫藥組合物可以進一步包含一或多種醫藥上可接受的載體、一種或多種額外的成分,或前述型態的組合。醫藥組合物的各種成分,可以以生理學上可接受的鹽類的形式存在,例如本領域所熟知的,其係與生理上可接受的陽離子或陰離子結合。
在一實施例中,用於實施本發明方法的醫藥組合物,可以傳遞1毫微克/公斤/天至100毫克/公斤/天的劑量來施用。在另一實施例中,用於實施本發明的醫藥組合物,可以傳遞1毫微克/公斤/天至500毫克/公斤/天的劑量來施用。
本發明醫藥組合物中活性成分、醫藥上可接受的載體,和任何額外成分的相對量,將根據所治療受試者的身份、大小和狀況而變化,並且還取決於組合物的施用途徑。舉例來說,組合物可以包含0.1%至100%(w/w)的活性成分。
可用於本發明方法的醫藥組合物,其適合的施用方法為吸入、口服、直腸、陰道、非腸胃道、局部、經皮、肺部、鼻內、口腔、眼部、鞘內、靜脈內或另一種施用途徑。其他適用的劑型包括投放性的奈米顆粒、微脂體製劑、含有活性成分的再密封紅血球,和基於免疫學的製劑。給藥途徑對於本領域技術人員而言是顯而易見的,並取決於許多因素,包括待治療的疾病類型和嚴重程度、待治療的家畜或人類患者的類型和年齡等。
本文描述的醫藥組合物的製劑可以透過任何藥理學領域所習知或之後開發的方法來製備。通常,這樣的製備方法包括使活性成分與載體或一種或多種其他輔助成分結合的步驟,然後如果需要或可行的話,會將產品成形或包裝成所需的單劑量或多劑量單位。
如本文所使用的,「單位劑量」是包含有預定量活性成分的醫藥組合物的離散量。活性成分的劑量,通常等於將被施用於受試者的活性成分的劑量,或為該劑量的適當分數,例如該劑量的一半或三分之一。單位劑量的劑型,可以是用在每日單次方式給藥的劑型,或者是用在每日多次方式給藥(例如,每天約1至4次,或更多次)中一次給藥的劑型。當以每日多次的方式來給藥時,每次給藥的單位劑量劑型可以相同或不同。
儘管本文提供的醫藥組合物的描述,主要涉及適合於以合乎醫學倫理方式對人進行給藥的醫藥組合物。但是本領域技術人員應該理解,這樣的組合物通常適於給予各種動物。為了使組合物適合施用於各種動物,對醫藥組合物進行改良是可理解的,普通技術人員的獸醫藥理學家僅需要透過普通的(如果有的話)實驗就可以設計和實施這種改良。預期可施用本發明醫藥組合物的受試者包括但不限於人類和其他靈長類,哺乳動物包括商業相關的哺乳動物,例如牛、豬、馬、綿羊、貓和狗。
在一實施例中,其係使用一種或多種醫藥上可接受的賦形劑或載體來配製組合物。在一實施例中,醫藥組合物包含治療有效劑量的LRP5剔除劑和醫藥上可接受的載體。可用的醫藥上可接受的載體包括但不限於甘油、水、食鹽水、乙醇和其他醫藥上可接受的鹽溶液,例如磷酸鹽和有機酸鹽。這些和其他醫藥上可接受的載體的實例描述於Remington's Pharmaceutical Sciences,1991,Mack Publication Co.,New Jersey中。
載體可以是溶劑或分散介質,其含有例如水、乙醇、多元醇(例如甘油、丙二醇和液態聚乙二醇等),其適合的混合物和植物油。適當的流動性可以例如,透過使用如卵磷脂的塗層、透過在分散的情況下維持所需的顆粒尺寸、及透過使用介面活性劑來維持。可以透過各種抗菌劑和抗真菌劑,例如對羥基苯甲酸酯類(parabens)、氯丁醇、苯酚、抗壞血酸、乙汞硫柳酸鈉(thimerosal)等來防止微生物的作用。在許多情況下,優選 在組合物中包含等滲劑,例如糖,氯化鈉或多元醇如甘露醇和山梨糖醇。可以透過在組合物中加入延遲吸收的試劑(例如單硬脂酸鋁或明膠)來延長可注射組合物的吸收。
製劑可以與常規賦形劑混合使用,即醫藥上可接受的有機或無機載體,適用於口服、非腸胃道、鼻腔、靜脈內、皮下、腸內或其它任何本領域已知適合的施用模式。藥物製劑可以經過滅菌處理,並且如果需要,可以與輔助劑例如潤滑劑、防腐劑、穩定劑、潤濕劑、乳化劑、影響滲透壓緩衝液的鹽類、著色劑、調味劑及/或芳香物質等進行混合。如果需要,也可以將它們與其它活性劑,例如其他鎮痛劑進行組合。
本發明的組合物可以包含佔組合物總重量約0.005%至2.0%的防腐劑。防腐劑用於防止組合物暴露於環境中的污染物時發生腐敗。根據本發明有用的防腐劑的實例,包括但不限於選自苯甲醇、山梨酸、對羥基苯甲酸酯類、咪唑烷基脲(imidurea)及其組合。特別優選的防腐劑是約0.5%至2.0%苯甲醇和0.05%至0.5%山梨酸的組合。
優選的,組合物係包含抗氧化劑和抑制化合物降解的螯合劑。對於一些化合物而言,優選的抗氧化劑是BHT,BHA,維生素E和抗壞血酸,優選範圍為組合物總重量的約0.01%至0.3%,更優選的BHT範圍為組合物總重量的0.03%至0.1%。優選地,螯合劑以組合物總重量的0.01重量%至0.5重量%的含量存在。特別優選的螯合劑包括按組合物總重量計約0.0%至0.20%的乙二胺四乙酸鹽(例如二鈉依地酸)和檸檬酸,更優選的重量範圍為組合物總重量的0.02%至0.10%。螯合劑有助於螯合組合物中的金屬離子,而金屬離子可能會縮短製劑的保存期限。雖然BHT和二鈉依地酸分別是一些化合物的特別優選的抗氧化劑和螯合劑,但是如本領域技術人員所知,其可以用其他合適的和等同的抗氧化劑和螯合劑取代。
施用/投藥
施用方案可能影響有效劑量的內容。例如,可以在與癌症有關的外科手術之前或之後、或者在患者被診斷為患有癌症之後不久,將治療性製劑給予患者。此外,可以每天或依序、分開或交錯的給予若干劑量,或者可以連續輸注劑量,或者可以是快速推注。此外,如治療或預防情況 的迫切情況所示,治療製劑的劑量可按比例增加或減少。
將本發明組合物施用於患者,優選的為哺乳動物,更優選的為人類,可以使用已知的程序,以有效治療患者癌症的劑量和時間區段來進行。實現治療效果所需的治療化合物的有效劑量,可根據如下列因素而變化:所使用的具體化合物活性、施用時間、化合物的排泄率、治療的持續時間、與該化合物組合使用的其他藥物、化合物或材料、所治療的患者的疾病或病症的狀態、年齡、性別、體重、狀況、患者的一般健康狀態和先前病史,以及醫學領域中眾所周知的類似因素。可調整劑量方案以提供最佳的治療反應。例如,可以每天分開施用幾個劑量,或者如治療情況的迫切情況所示,可以按比例減少劑量。本發明治療性化合物的有效劑量範圍的非限制性實例為約0.01至50毫克/公斤體重/每天。本領域的普通技術人員將能夠研究相關因素並且在不進行過度實驗的情況下確定治療性化合物的有效劑量。
化合物可以每天數次的頻率施用於動物,或者可以較低頻率的方式來施用,例如每天一次、每週一次、每兩週一次、每月一次、或者甚至更低的頻率,如每隔幾個月一次甚至每年一次或更少。可以理解的是,在非限制性實例中每天施用的化合物劑量可以是每天、每隔一天、每2天、每3天、每4天或每5天給藥。例如,每隔一天給藥一次、每週5毫克劑量可以在周一開始,其中在周三施用第一個隨後的5毫克/天劑量,在周五施用第二個隨後的5毫克/天劑量,等等。劑量的頻率對於本領域技術人員而言是顯而易見的,並取決於許多因素,例如但不限於所治療的疾病的類型和嚴重程度,以及動物的類型和年齡。本發明醫藥組合物中活性成分的實際劑量水平可以改變,以獲得有效實現特定患者、組合物和給藥模式的所需治療反應且對患者不造成毒性的活性成分的劑量。醫學醫生,例如具有本領域通常知識的醫師或獸醫可以容易地確定和開出所需醫藥組合物的有效劑量。例如,醫師或獸醫可以從低於實現所需治療效果所需的含有本發明化合物的醫藥組合物水平的劑量開始,並逐漸增加劑量直至達到所需效果。
在具體的實施例中,為了便於施用和給藥的一致性,以劑量 單位形式配製化合物是特別有利的。如本文所使用的,劑量單位形式是指適合作為待治療患者的單位劑量的物理分離單位;每個單位含有預定劑量的治療化合物,其經計算與所需的藥物載體結合產生所需的治療效果。本發明的劑量單位形式取決於(a)治療化合物的獨特特徵和待實現的特定治療效果,以及(b)調配/配製這種治療化合物用於治療患者的癌症在本領域中固有的限制。
施用途徑
本領域的技術人員能夠理解,雖然可以使用多於一種途徑用於給藥,但是某個特定途徑可以提供比另一種途徑更為快速和更有效的反應。
任何本發明組合物的施用途徑包括吸入、口服、鼻腔、直腸,非腸胃道、舌下、經皮、經黏膜(例如舌下、舌側、(經)口腔、(經)尿道、陰道(例如,經陰道及經陰道周圍)、鼻腔內、及(經)直腸、膀胱內、肺內、十二指腸內、胃內、鞘內、皮下、肌肉內、皮內、動脈內、靜脈內、支氣管內、吸入及局部施用。適合的組合物及劑型包括例如片劑、膠囊、膠囊型錠劑、丸劑、凝膠帽、錠劑、分散劑、懸浮劑、溶液劑、糖漿劑、顆粒劑、珠劑、經皮貼劑、凝膠劑、粉劑、粒劑、糜劑(magmas)、霜劑、膏劑(pastes)、硬膏劑(plasters)、洗劑、盤劑(discs)、栓劑、用於鼻或口服施用的液體噴霧劑、用於吸入的乾粉或霧化製劑、用於膀胱內施用的組合物及製劑等。應該理解的是,可用於本發明的製劑及組合物不限於本文所述的特定製劑及組合物。
控釋製劑及藥物傳輸系統:
本發明醫藥組合物的控釋或緩釋製劑可以使用常規技術製備。在一些情況下,待使用的劑型可以所使用到的一或多種活性成分的緩釋或控釋形式來提供,其透過使用例如羥丙基甲基纖維素、其他聚合物基質、凝膠、可滲透膜、滲透系統、多層塗層、微粒子、微脂體或微球體或其組合以提供不同比例的所需釋放曲線。本領域普通技術人員可容易地選擇已知適合的控釋製劑(包括本文所述的那些)來用於本發明的醫藥組合物。因此,本發明涵蓋了適用於口服給藥的單一單位劑型,例如適用於控 制釋放的片劑、膠囊、軟膠囊和膠囊型錠劑。
相較於非控釋形式,大多數控釋型藥品的共同目標是能有較好的療效。理想情況下,在治療中使用最佳設計的控釋製劑,其特點是能在最短的時間內使用最少量的藥物來治癒或控制病症。控釋製劑的優點包括藥物活性的延長,減少給藥的頻率和增加的患者順應性。另外,控釋製劑可用於影響作用發生的時間或其他特徵,如藥物的血液濃度,因此可影響副作用的發生。
免疫反應激發
在一實施例中,本發明包括透過向受試者施用有效劑量會阻斷DKK2和LRP5之間相互作用的抑制劑,來提供抗腫瘤免疫和用於刺激T細胞介導的免疫反應的方法。在另一實施例中,本發明包括透過向受試者施用有效劑量的LRP5抗體或其片段及醫藥上可接受的載體,來提供抗腫瘤免疫和用於刺激T細胞介導的免疫反應的方法,所述LRP5抗體或其片段會抑制或降低LRP5表現或活性。
活化的T淋巴細胞(T細胞)及將其用於治療癌症和感染性疾病等免疫治療中的用途,在本領域中是公知的(Melief et al.,Immunol.Rev.,1995,145:167-177;Riddell et al.,Annu.Rev.Immunol.,1995,13:545-586)。如本發明所公開的,LRP5的消除會導致CD8+細胞毒性T淋巴細胞(cytotoxic T lymphocytes,CTL)的活化和腫瘤的抑制。
用於CTL活化的標誌物可以是,但不限於,如穿孔蛋白、顆粒酶及顆粒溶解素(granulysin)等的細胞毒素、細胞激素、IL-2、IL-4、IFN-γ、PD-1、CD25、CD54、CD69、CD38、CD45RO、CD49d、CD40L、CD107a、CD137、CD134、CD314。如本文實施例中所述的,測量樣本中至少一個前述標誌物中的的量,可評估CTL活化情況。T細胞的分選,或基本上任何本發明的細胞的分選,可以使用多種市售細胞分選儀中的任一種來進行,其包括但不限於MoFlo分選儀(DakoCytomation,Fort Collins,Colo.)、FACSAriaTM、FACSArrayTM、FACSVantageTM、BDTM LSR II、及FACSCaliburTM(BD Biosciences,San Jose,Calif.)。
自然殺手細胞(NK細胞)的活化及將其用於治療癌症和感 染性疾病等免疫治療中的用途,在本領域是公知的(Crouse,J.et al.,2015,Trends Immunol,36:49-58;Marcus,A.,et al.,2014,Adv Immunol 122:91-128;Palucka,A.,et al.,2016,Cell 164:1233-1247)。如本發明所公開的,消除LRP5會導致自然殺手細胞(NK)的活化和腫瘤的抑制。
NK細胞活化的標誌物可以是,但不限於,如穿孔蛋白、顆粒酶及顆粒溶解素(granulysin)等細胞毒素、細胞激素、IL-2、IL-4、IL-15、IFN-γ、MHC-I單倍型,NKG2D配位子(RAE-1α-ε、MULT-1和H60a-c)、Fas、TRAILR1/2、PD-1、CD25、CD54、CD69、CD38、CD45RO、CD49d、CD40L、CD107a、CD137、CD134、CD314。如本文實施例中所述的,在樣品中測量至少一個前述標誌物的量,可評估NK細胞的活化情況。NK細胞的分選,或基本上本發明任何細胞的分選,可以使用多種市售細胞分選儀中的任一種來進行,其包括但不限於MoFlo分選儀(DakoCytomation,Fort Collins,Colo.)、FACSAriaTM、FACSArrayTM、FACSVantageTM、BDTM LSR II、及FACSCaliburTM(BD Biosciences,San Jose,Calif.)。
血管生成
血管生成是生長、發育以及傷口癒合和肉芽組織形成中一個正常和重要的過程。正常情況下,血管生成的調節是受到血管形成誘發因子與停止或抑制該過程的因子之間的良好平衡所支配。當這種平衡被破壞時,通常會導致病理性血管生成,其係造成血管形成增加。病理性血管生成是癌症和各種缺血性和炎性疾病(例如心血管疾病)的標誌。由於腫瘤不能生長超過一定的大小,或在沒有血液供應的情況下擴散,因此阻斷腫瘤血管生成是抗癌療法中的有效方法。此外,血管生成抑制劑(也稱為抗血管生成劑)的使用,在本領域中已知與治療缺血性和炎性疾病相關。
癌症的治療
在本發明的一些實施例中,癌症的治療可以包括治療實體腫瘤或治療轉移。轉移是癌症的一種形式,其中轉化的或惡性的細胞會移動,並將癌症從一個位置擴散到另一個位置。這些癌症包括皮膚癌、乳癌、腦癌、子宮頸癌、睾丸癌等。具體而言,癌症可以包括但不限於以下器官或系統:心臟、肺、胃腸、生殖泌尿道、肝臟、骨骼、神經系統、婦科、血 液學、皮膚和腎上腺。更特別地,本文的方法可用於治療神經膠質瘤(神經鞘瘤、神經膠母細胞瘤、星狀細胞瘤)、神經母細胞瘤、嗜鉻細胞瘤、副神經節瘤、腦脊髓膜瘤、腎上腺皮質癌、腎癌,各種類型的血管癌,成骨細胞骨肉瘤、前列腺癌、卵巢癌、子宮肌瘤、唾液腺癌、脈絡叢癌、乳腺癌、胰腺癌、大腸癌和巨核血球白血病。皮膚癌包括惡性黑素瘤、基底細胞癌、鱗狀細胞癌、Karposi氏肉瘤,痣異常增生(moles dysplastic nevi)、脂瘤、血管瘤、皮膚纖維瘤、瘢痕瘤和牛皮癬。
測量方法
任何本領域技術人員已知的方法,都可以用來確定DKK2或LRP5的表現量。例如,可以使用微陣列。微陣列在本領域中是已知的,並由與基因產物(例如mRNA,多肽,其片段等)序列相應的探針構成其表面,基因產物可以與在已知位置的探針進行專一性雜交鍵結。為了檢測至少一種感興趣的基因,會讓測試樣品與至少一種核酸探針接觸,來形成雜交樣品。用於檢測DKK2或LRP5的優選探針,是分別能夠與DKK2或LRP5 mRNA雜交的標記核酸探針。核酸探針可以是例如全長核酸分子或其部分,例如長度為至少10、15或20個核苷酸的寡核苷酸,並且足以在嚴格條件下與適當的目標進行專一性雜交。雜交樣品保持在足以允許核酸探針與感興趣的目標進行專一性雜交的條件下。視情況,專一性雜交可以在高度嚴格條件或中等嚴格條件下進行。在一個優選的實施例中,用於專一性雜交的雜交條件是高度嚴格的。特定的雜交,如果存在的話,是使用標準方法進行檢測。如果核酸探針與測試樣品中的基因之間發生專一性雜交,則存在於核酸探針中的序列也會存在於受試者的mRNA中。也可以使用多於一個的核酸探針。由掃描儀檢測到的雜交強度數據,係由Affymetrix Microarray Suite(MASS)軟體自動採集和處理。使用150的目標強度將原始數據標準化為表現量。另一種測量少量不同基因的mRNA表現量的方法,是透過例如,典型TaqMan®基因表現分析或TaqMan®低密度陣列微流體卡(TaqMan® Low Density Array-micro fluidic cards,Applied Biosystems)。具體而言,本發明優選地為使用qPCR系統。非限制性實例包括商售試劑盒,例如可從Bio-rad(Berkley,California)商購獲得的 PrimePCRPathways®。
樣品的轉錄狀態,特別是mRNA,也可以透過本領域已知的其他核酸表現技術來測量。可以使用本領域技術人員已知的任何方法從樣品中分離mRNA。非限制性實例包括商售試劑盒,例如可從Qiagen(荷蘭)商購獲得的RNeasy®或可從分子研究中心公司(Molecular Research Center,Inc,Cincinnati,Ohio)商購獲得的TRI Reagent®的Mini Kit,可用於分離RNA。通常,可以使用本領域已知的方法來擴增分離出的mRNA。利用例如PCR或RT-PCR方法的擴增系統是本領域技術人員已知的。關於擴增技術的一般概述,請參見例如Dieffenbach等人,PCR Primer:A Laboratory Manual,Cold Spring Harbor Laboratory Press,New York(1995)。
另一種用於分析mRNA表現的精確方法,其可以使用次世代定序(Next Generation Sequencing,NGS),包括第一、第二、第三以及隨後的次世代定序技術。
在本發明的其他實施例中,檢測肽或多肽的含量或生物活性,可透過本領域中用於檢測樣品中肽或多肽的含量的所有已知手段來實現。這些手段包括免疫測定裝置和方法,其可以將標誌分子用於各種夾心式、競爭式或其他測定形式中。此類測定將產生指示肽或多肽是否存在的信號。此外,信號強度可以優選地與樣品中的多肽含量直接或間接相關(例如,反比)。其他適合的方法還包括測量肽或多肽特異的物理或化學性質,例如其精確的分子量或NMR光譜。所述方法優選地包括生物感測器,與免疫測定耦連的光學裝置、生物芯片、分析裝置如質譜儀、NMR-分析儀或層析裝置。此外,方法還包括基於微板ELISA(micro-plate ELISA-based)的方法,全自動或機器人免疫測定法(可用於例如ElecsysTM分析儀)、CBA(酵素催化鈷結合測定,enzymatic Cobalt Binding Assay,其可在例如Roche-HitachiTM分析儀上進行)和乳膠凝集分析(例如可在Roche-HitachiTM分析儀上進行)。
實施例
以下實施例用於描述本發明,這些實施例僅用於說明而非對本發明造成限制,本發明涵蓋由本文提供的教示以及顯而易見的所有變化。
本領域的普通技術人員可以在沒有進一步的描述的情況下使用如前所述和如下的說明性實施例來製造和利用本發明的化合物並且實踐所要求保護的方法。因此下面的實施例具體指出了本發明的優選地實施方式,但不應被解釋為對於本發明的限制。
實驗中使用的材料和方法如下所述。
小鼠
從傑克森實驗室取得ApcMin/+(C57BL/6J-ApcMin/J)和MX1Cre[B6.Cg-Tg(Mx1-cre)1Cgn/J]小鼠。野生型C57BL/6小鼠購自Envigo(Harlan)。從Bart Williams(54)取得LoxP-floxed Lrp5(Lrp5f/f)和Lrp6(Lrp6f/f)小鼠。在與MX1Cre雜交之前,Lrp5f/fLrp6f/f小鼠與C57/BL6回交超過7代。對Lrp5fl/flMX1Cre小鼠每隔一天腹腔內注射40μl的poly-I:C(10mg/mL),進行4次處理,藉此來誘發LRP5和LRP6基因破壞。在poly-I:C處理後三週,分離出小鼠的NK細胞。對於過繼骨髓移植,將來自Lrp5fl/flMX1Cre小鼠的骨髓,透過眼窩注射轉移至經過致死照射(lethally irradiated)的C57/BL6小鼠中(8週齡)。恢復後(8週),用poly-I:C處理小鼠,並在poly-I:C處理後三周進行實驗。
抗體
將磷酸化Stat5(Tyr694)(CST,4322s)、LAMP1(sc-19992,Santa Cruz),EEA1(BD Bioscience,612006)、磷酸化-AKT(絲胺酸473)(CST,4060)、AKT1(CST,9272)、磷酸化ERK1/2(Thr202/Tyr204)(CST,4377)、ERK1/2(CST9102)、穿孔蛋白(CST,3693)、顆粒酶B(CST,4275)、β-肌動蛋白(CST,3700)、FLAG(Sigma Aldrich,F3165)、β-連環蛋白(BD Bioscience,610153)、LRP5(CST,5731)、LRP6(CST,3395)、小鼠CD4-PE(eBioscience,12-0042-82)、小鼠NK1.1(BioLegend,108710)、小鼠CD8a-PE-Cyanine7(eBioscience,25-0081-82)、小鼠CD69-PE(Biolegend,104508)、人類/小鼠顆粒酶B-FITC(BioLegend,515403)、小鼠CD314(NKG2D)-PE-Cyanine7(eBioscience,25-5882-81)、小鼠CD3e-PE(eBioscience,12-0031-82)、小鼠IFNγ-PE(eBioscience,12-7311-81)、CTLA-4/CD152(1B8)-FITC(Thermo Fisher,HMCD15201)、 人類CD45-450(eBioscience,48-0459-41)、小鼠CD107a-V450(BD,560648)、小鼠CD8a-APC(eBioscience,17-0081-81)、小鼠CD25-Alexa Fluor 488(eBioscience,53-0251-82)、小鼠CD279(PD-1)-PE(BioLegend,135205)、Ki67(Abcam ab,15580)、裂解的凋亡蛋白酶-3(Asp175)、(CST,9661S)、CD31(Abcam ab,28364)、熒光素(FITC)標記的AffiniPure F(ab')2片段驢抗小鼠IgG(H+L)(傑克森實驗室,715-096-151),小鼠整合素alpha 4 beta 7(LPAM-1)APC(eBioscience,17-5887-80)、人類CD56(NCAM)APC(eBioscience,17-0566-41)、人類CD16PE(eBioscience,12-0167-42)、人類CD3 450(eBioscience,48-0037-42)和Alexa 647-標記的AffiniPure F(ab')2片段山羊抗兔子IgG(H+L)(傑克森實驗室,111-606-045)。使用標準融合瘤技術,在AbMax(北京,中國)以人類DKK2的合成肽(KLNSIKSSLGGETPGC;SEQ ID NO:21)進行小鼠免疫,來產生小鼠單株抗體DKK2(5F8)。5F8的重鏈和輕鏈肽序列分別如下: (SEQ ID NO:22)和 (SEQ ID NO:23)。其他DKK2的小鼠單株抗體也可以用於本發明,例如但不限於使用標準融合瘤技術,在AbMax(中國北京)以人類DKK2的合成肽(CKVWKDATYSSKAR;SEQ ID NO:24)進行小鼠免疫而產生的抗體1A10。1A10的重鏈和輕鏈肽序列分別如下: (SEQ ID NO:25)和 (SEQ ID NO:26)。治療性抗PD-1抗體是倉鼠mAb克隆G4(Hirano,F.et al.Cancer Res.65,1089-1096(2005))和克隆J43(BioXcell,BP0033-2) 並用亞美尼亞倉鼠多株IgG抗體(BioXcell,BE0091)的作為對照組IgG。
定量RT-PCR
使用RNeasy Plus Mini Kit(QIAGEN)從細胞中分離出全RNA。使用iScript cDNA合成試劑盒(Bio-Rad),從RNA合成互補的DNA。使用iTaq Universal SYBR Green Supermix(Bio-Rad)來進行定量PCR。引子序列列於圖16(SEQ ID NO:1-4)。
ELISA
將含有小鼠DKK2或DKK1重組蛋白(20ng/ml,R&D)的封閉緩衝液(blocking buffer,PBS中有1%BSA)置於384-孔微量滴定盤中,在4℃下孵育至隔天。用PBS洗滌滴定盤兩次,並在室溫下與封閉緩衝液共同孵育1小時。然後將滴定盤與在封閉緩衝液中的抗DKK2 5F8抗體在室溫下孵育1小時。反覆洗滌後,在室溫下將滴定盤與耦連有HRP的二抗孵育1小時。將化學發光基質(Thermo Fisher 37070)加入滴定盤中,並透過EnVision平盤分析儀分析滴定盤。
DKK2-AP結合測定
如前述方式(56)進行結合測定。簡言之,使用Lipofectamine Plus將HEK293T細胞用LacZ或LRP5轉染24小時。細胞用冷的洗滌緩衝液(含1%牛血清白蛋白,20mM HEPES和0.5%NaN3的Hanks緩衝鹽溶液)洗滌一次,並與含有20%DKK2-AP條件培養基的洗滌緩衝液一起在冰上孵育2小時,接著用洗滌緩衝液洗滌細胞三次,並用1%Triton X-100和20mM Tris-HCl(pH7.5)來裂解細胞。將裂解所得的產物在65℃下加熱10分鐘,以滅活內源性AP,接著添加化學發光AP基質(Thermo Fisher T1015)並透過EnVision平盤分析儀測量。
腫瘤移植。
將MC38或YUMM1.7黑色素瘤細胞(0.5~1X106)與BD Matrigel(降低的基質生長因子,BD 354230)以100μl混合,並在雌性C57/BL小鼠(8至10週齡)背部右側進行皮下接種。透過測徑器測量腫瘤生長情況,腫瘤體積以垂直高度乘乘以方形寬度的一半來表示,並以立方毫米為單位。關於抗體處理,將對照組IgG3抗體和抗DKK2抗體以PBS進行稀 釋,並在腹腔內注射100μl,注射間隔如圖中所示。關於存活率測試,當MC38的腫瘤尺寸超過1800mm3且YUMM1.7的腫瘤尺寸超過1200mm3時,將小鼠安樂死。
腫瘤浸潤性白血球的製備。
使用剪刀和解剖刀將腫瘤切碎,並在37℃下的振盪器中用消化緩衝液孵育2小時。消化緩衝液含有RPMI1640、5%FBS、1%PS、25mM HEPES和300U膠原蛋白酶(Sigma C0130)。以70μm細胞過濾器來過濾分散後的細胞,以消除團塊和碎片。在4℃下離心5分鐘(500xg)後,將細胞沉澱物重新懸浮於紅血球裂解緩衝液(Sigma R7757)中,並在室溫下孵育5分鐘,以除去紅血球。將細胞再次沉澱,重新懸浮,並在37℃下於0.05%胰蛋白酶/EDTA中孵育5分鐘;接著添加I型DNase(終濃度1μg/ml,Sigma D4263)進行DNA分解5分鐘,之後加入FBS至5%以終止胰蛋白酶消化,並用40μm細胞過濾器再次過濾細胞。最後,將細胞再次沉澱並以2×107的濃度重新懸浮於PBS中。
流式細胞儀
單細胞懸浮液中的細胞用2%PFA(Santa-Cruz sc-281692)固定。用流式細胞儀染色緩衝液(Flow Cytometry Staining Buffer,eBioscience 00-4222-26)洗滌後,細胞在冰上用細胞表面標記抗體在黑暗中染色1小時。關於細胞內蛋白質的染色,係將細胞洗滌,並重新懸浮於透化緩衝液(Permeabilization Buffer,BD 554723)中,在黑暗中在冰上用透化緩衝液中的抗體染色1小時,接著使細胞沉澱並重新懸浮於流式細胞儀染色緩衝液中,以進行流式細胞術分析。
腫瘤切片和免疫染色。
將組織用4%PFA(Santa-Cruz sc-281692)在4℃振盪器上固定4至6小時,接著用PBS洗滌三次,並在4℃下用含有20%蔗糖溶液的PBS灌注至隔天。隨後將組織裝載在OCT包埋化合物中,並先在-20℃接著在-80℃下進行冷凍。使用恆溫器,以8μm厚度製備組織切片,並將其裝載到有明膠塗佈的組織載玻片上,儲存在-80℃的環境下。
關於免疫染色,將載玻片解凍至室溫,並在預冷的丙酮中固 定10分鐘,然後在PBS中復水10分鐘。在封閉緩衝液(含有1%馬血清和0.02%Tween 20的PBS)中將載玻片在室溫下孵育1至2小時,接著與一級抗體在4℃中孵育至隔天,其中一級抗體是用孵育緩衝液(含有1%馬血清和0.02%Tween 20的PBS)所稀釋。接著,將載玻片用PBS洗滌三次,並在室溫下與孵育緩衝液中的驢抗兔IgG H&L(DyLight® 550)預吸附二級抗體(abcam ab96920)孵育1小時。反覆清洗後,將包含有DAPI(Thermo Fisher P36931)的防褪色固定介質加到載玻片上,並使用共軛焦顯微鏡觀察。
清除作用型免疫細胞。
為了清除NK細胞,在腫瘤細胞接種後的第1、5、11及17天,將抗NK1.1(PK136,BioXcell BE0036)或同型對照組(BioXcell BE0085),以300ug/小鼠的劑量,對小鼠進行腹腔內注射。為了清除CD8,在腫瘤細胞接種後的第12、15和19天,將抗CD8α(YTS169.4,BioXcell BE0117)或同型對照組(克隆LTF-2,BioXcell BE0090),以300ug/小鼠的劑量,對小鼠進行腹腔內注射。
小鼠初代NK、CD8+和IEL細胞的製備和處理。
以NK細胞和CD8+ T細胞分離試劑盒,分別根據製造商的說明書(Miltenyi Biotec # 130-090-864和# 130-104-075),從脾臟中分離出小鼠初代NK和CD8+ T細胞。在用DKK2,CHIR99021或WNT3A處理之前,將初代NK細胞在補充有10%FBS、青黴素(100U/ml)、鏈黴素(100μg/ml)、2-巰基乙醇(500μM)和HEPES(10mM)的RPMI-1640(Gibco,11875-093)中,在存在鼠類重組IL-15(50ng/ml)的情況下,於37℃的環境下(補充有5%CO2)培養24小時。在DKK2處理之前,將CD8+ T細胞在與NK細胞相同的培養基和條件下培養96小時,但額外補充了IL-15(200ng/ml)和IL-15 Rα(來自R&D的1μg/ml小鼠重組IL-15受體αFc嵌合體蛋白)。使用如Little等人(The Journal of Immunology 175,6713-6722(2005))及Li等人(Infect Immun 80,565-574(2012))所述的方法,來製備小鼠初代上皮內淋巴細胞(IEL)。簡言之,將小腸外翻,分成四塊,並在含有100U/ml青黴素/鏈黴素的磷酸鹽緩衝鹽水(PBS)中洗滌兩次。然後將標本放置在含有100U/ml青黴素-鏈黴素、5%胎牛血清(FCS)、2mM二 硫蘇糖醇(dithiothreitol,DTT)和5mM EDTA的Hanks'溶液(經預熱,且不含Ca2+和Mg2+)中,於37℃下攪拌孵育30分鐘,然後劇烈搖動30秒。將上清液通過兩個尼龍羊毛管柱,以除去未消化的組織碎片。將獲得的淋巴細胞合併,並以不連續(40%和70%)Percoll密度梯度富集(enriched)之。收集40%至70%部分(IELs)間界面處的細胞,用IL-15(200ng/ml)和DKK2(200ng/ml)處理,然後進行流式細胞儀分析。
人類NK細胞的製備。
正常人類的周邊血單核細胞,係購自ZenBio(SER-PBMC-200)。以人類NK細胞分離試劑盒,根據生產商的說明書(Miltenyi Biotec # 130-092-657),從PBMC分離出人類NK細胞。在用重組人類DKK2蛋白處理前,將人類NK細胞在補充有10%熱失活的FBS、青黴素(100U/ml)、鏈黴素(100μg/ml)、2-巰基乙醇(500μM)和HEPES(10mM)的RPMI-1640(Gibco,11875-093)中,在存在有人類重組IL-15(50ng/ml)的37℃環境下(補充有5%CO2)進行培養。
NK和腫瘤細胞共培養。
用如上所述的方法,從脾臟中分離出初代NK細胞,並在50ng/ml鼠類重組IL-15存在的環境下培養24小時。同時,將腫瘤細胞接種在96孔盤中至隔天。在存在IgG3抗體或抗DKK2 5F8的條件下,將NK細胞以7:1的比例加入腫瘤細胞中,在37℃培養9小時。為了測試DKK2在共培養中的作用,將分離的NK細胞在50ng/ml鼠類重組IL-15存在下培養24小時;接著,將NK細胞於存在或不存在DKK2的情況下再培養24小時,之後再將NK細胞以7:1(NK:MC38)的比例加入預先接種的MC38細胞。透過Guava流式細胞儀(EMD millipore)來測定活腫瘤細胞的數量,而使用Annexin V凋亡檢測試劑盒(eBioscience,88-8007)以流式細胞儀評估細胞凋亡。
免疫細胞染色
用如上所述的方法來製備初代NK細胞,並以如圖所示的方式進行處理。接著,將細胞放置於塗佈有聚離胺酸的蓋玻片上,並在室溫下孵育30分鐘。以如圖所示的方式來轉染並且刺激在蓋玻片上生長的 HEK293T細胞。細胞在室溫下用4%PFA固定10分鐘,並在-20℃下用冰的甲醇透化10分鐘後,用PBS洗滌3次後,並在室溫下用封閉緩衝液(含有5%正常驢血清和0.5%triton的PBS)封閉細胞1小時。然後將一級抗體稀釋於含有0.5%BSA的PBS中,並在4℃下與細胞孵育至隔天。用PBS洗滌細胞3次,並在室溫下用稀釋的耦聯有螢光染料的二級抗體(在含有1%BSA的PBS中)孵育1小時。最後,用PBS洗滌細胞3次,並用Prolong Gold Antifade溶液(Thermo Fisher)固定,以共軛焦顯微鏡進行分析。
免疫沉澱。
將編碼有STAT5及/或LRP5C-Flag的質體,用Lipofectamine Plus來轉染293T細胞。轉染24小時後,在冰上用含有蛋白酶抑制劑混合物(protease inhibitors cocktail,Roche)及磷酸酶抑制劑(來自Roche的Phospo-stop)的裂解緩衝液(50mM HEPES(pH 7.4),150mM NaCl,1%Triton X-100,10%甘油,2mM MgCl2,2mM EGTA)來裂解細胞。離心細胞裂解物,以去除不溶性物質。用抗Flag抗體進行免疫沉澱至隔天,然後在4℃下用Protein-A/G Plus珠子(Santa Cruz)孵育2小時。重複洗滌珠子,並透過西方墨點法分析結合的蛋白質。
報導基因分析。
Stat5報導基因分析係在HEK293T細胞中進行,以分析激活JAK1所誘發的活性,或在那些穩定表現有JAK3、IL2/15Rβ和共同受體γ次單元(common receptor γ subunit)的細胞中進行,以分析IL15所誘發的活性。將細胞以每孔8X104個細胞接種於48孔盤中。第二天,用Lipofectamine 2000(Invitrogen)將pGL4.52-STAT5-螢光素酶(Promega)和tagRFP(內部對照組)質體與其他表現目標基因的質體,一起轉染細胞。質體總量保持在125ng/孔。轉染IL15/IL15Rα-Fc複合物或空白對照組後24小時添加細胞。6小時後,將細胞裂解,並使用Envision Multilabel平盤分析儀來測量RFP螢光和螢光素酶發光情況。所顯示的報導基因活性是先用RFP讀數來進行標準化。LEF報導基因測定是在用TOPFlash和GFP質體所轉染的HEK293細胞中進行,其餘部分與上述相同,所顯示的報導基因活性是先用GFP讀數進行標準化。
APC突變細胞的生成。
如先前所述(Ran等人,Nat.Protoc 8,2281-2308(2013)),使用CRISPR-Cas9系統來編輯MC38和HCT116細胞的APC基因。用兩種表現有靶向APC基因引導RNA的Cas9質體來轉染細胞。這將導致基因的缺失和APC基因的框移(frameshift)。由於這兩種引導RNA分別與GFP或RFP共表現,所以將GFP+RFP+細胞以1.2個細胞/孔的密度直接分選到96孔盤中。透過PCR檢測APC的同源性缺失(Homozygous deletion),並透過DNA定序證實。匯集陽性克隆以避免克隆效應。引導序列和PCR序列已列在圖16中。
LRP內化測定。
在培養基中,以空白對照組或小鼠重組DKK2蛋白(4nM)持續處理HEK293細胞至指示的時間。將細胞用預冷的PBS洗滌,並且將細胞表面蛋白質以含有0.5mg/ml的EZ-Link Sulfo-NHS-SS-生物素(Thermo Fisher,21445)的PBS緩衝液,在冰上進行生物素化30分鐘。加入含有50mM NH4Cl的冰PBS終止反應,然後用冰PBS重複洗滌,接著將細胞在含有1.25%Triton X-100、0.25%SDS、50mM Tris HCl PH8.0、150mM NaCl、5mM EDTA、5mg/ml碘乙醯胺、10ug/ml PMSF和Roche蛋白酶抑制劑混合物的緩衝液中裂解。離心後,取等分試樣作為裂解物對照組,其餘上清液以NeutrAvidin珠子(Thermo Fisher,29200)來拉下(pull-down)蛋白質,隨後透過西方墨點法分析。
RNA定序和數據分析。
用如上所述的方法,從脾臟中分離出初代NK細胞,並在50ng/ml鼠類重組IL-15存在下培養24小時,然後在存在或不存在10nM DKK2的情況下再培養24小時。接著分離出mRNA,並且以RNeasy Plus Mini Kit(Qiagen)進行純化。以TrueSeq Stranded Total RNA Library Prep Kit(Illumina)製備RNA-seq庫,並以Illumina HiSeq 2500來進行50個鹼基的單端定序。如先前所述的方式來製備並進行基因表現分析(Trapnell et al.,Nat Protoc 7,562-578(2012)with GENCODE annotation M1)。RNA定序結果的分析途徑在www.amp.pharm.mssm.edu/Enrichr/enrich進行。用Motif 基因組(Motif Gene Set,software.broadinstitute.org/gsea/msigdb/index.jsp,Subramanian et al.,PNAS 102,15545-15550(2005))來進行基因富集分析。
DKK2表現與患者存活率的相關性。
從截至2016年7月20日的TCGA臨時數據集中取得DKK2表現、總體存活率和無復發存活率的數據。使用任意截斷的15%百分位數,將高和低DKK2表現者進行分組。Mantel-Cox Log-Rank測試使用GraphPad Prism 7軟體完成。
在下列的實施例中描述實驗的結果。
實施例A:APC缺失會驅動DKK2表現。
在Oncomine數據庫(www.oncomine.org)上對Gaedcke群組(Gaedcke et al.,Genes Chromosomes Cancer 49,1024-1034(2010))的分析顯示,人類CRC樣品相較於非腫瘤大腸直腸組織中的DKK2表現顯著上升(圖8A)。這一觀察結果與先前報導(Matsui et al.,Cancer Sci 100,1923-1930(2009))的發現一致。此外,基於對癌症基因體圖譜網路(The cancer Genome Atlas Network,Nature 487,330-337(2012))中報導的數據庫的分析,微衛星穩定(microsatellite-stable,MSS)CRC中超過80%具有APC突變,其DKK2的表現顯著高於微衛星不穩定(microsatellite-instable,MSI)CRC(圖8A)。從ApcMin/+小鼠的小腸中所分離出的息肉中,檢測其DKK2 mRNA含量,結果顯示DKK2的表現水平比正常小腸高約四倍(圖8B)。由於野生型等位基因的自發性缺失,ApcMin/+小鼠在Apc等位基因之一中具有突變並且頻繁的產生小腸腫瘤(Su et al.,Science 256,668-670(1992))。此外,DKK2蛋白的免疫染色證實了來自ApcMin/+小鼠的息肉中DKK2表現的上升(圖8C)。為了測試APC的缺失是否是透過Wnt-p-連環蛋白路徑來驅動DKK2表現,以CRISPR/Cas9技術使Apc基因在MC38細胞中突變,以引起APC蛋白從Gly-855開始的同源性C端缺失,並且觀察到在無APC的MC38細胞中DKK2表現顯著上升(圖8D)。DKK2表現的上升可以被P-連環蛋白的siRNA來抑制(圖8E),表示p-連環蛋白參與驅動DKK2的表現。APC基因也在HCT116人類大腸癌細胞中,透過分別從Gly-857和Ser-1346開始引入APC蛋白的同源性C端缺失而突變。儘管這些細胞中存在一個p- 連環蛋白等位基因的穩定突變,APC突變會導致DKK2表現顯著增加(圖8F)。因此,這些結果綜合證實APC的缺失可以驅動小鼠和人類中的DKK2表現。
實施例2:阻斷DKK2抑制APC缺失會誘發的腫瘤形成
對TCGA數據庫中CRC群組的分析揭示了高DKK2表現與低存活率之間的顯著相關性(圖8G)。這顯示DKK2可能在CRC中發揮重要作用。鑑於DKK2是Wnt拮抗劑,傳統的觀點是DKK2的失活可能增加Wnt活性,並因此導致或加速癌症形成。為了研究DKK2是否參與腫瘤形成,觀察DKK2-/-小鼠長達一年,並且在包括胃腸道的組織中沒有發現組織學上可辨別的發育不良。藉由檢查DKK-2缺陷對APCMin/+小鼠(稱為APC)和APCMin/+ DKK2-/-(APCKO)小鼠的息肉形成的影響,進一步測試DKK2在腫瘤形成中的作用。小鼠被安置在特定的無病原體動物飼養室中,並餵飼普通或高脂食物。將小腸切片用亞甲基藍染色,並在立體顯微鏡下計數息肉。在不存在DKK2的情況下,因其小腸息肉數量和尺寸較小(圖1A和1B),表示腫瘤形成顯著減少。在高脂和低脂飲食的雄性和雌性小鼠組別中,皆有觀察到這種現象,其結果一致。正如來自餵飼普通食物的雄性小鼠以蘇木素及伊紅染色的小腸代表性組織切片所示,與APCMin/+小鼠相比,APCMin/+ DKK2-/-小鼠的小腸息肉較小且較少,如圖1C所示。綜上所述,這些數據強烈顯示,沒有DKK2所介導的訊息傳遞,大腸癌的進展顯著降低。
以所開發出的功能性小鼠單株抗DKK2抗體(5F8)來專一性靶向並中和DKK2,但不與DKK-1產生交叉反應。ELISA數據顯示,5F8抗體以劑量依賴性方式專一性結合DKK2抗原(圖1D)。DKK2以及其他DKK家族蛋白已經顯示,其透過高親和力與Wnt共受體LRP 5/6結合,並與Wnt分子競爭受體結合,藉此抑制典型Wnt訊息傳遞(MacDonald,B.,et al.,Dev Cell,2009.17(1):p.9-26;Bao,J.,et al.,Sci Signal,2012.5(224):pe22)。為了確定5F8是否降低了DKK2對Wnt訊息傳遞的抑制情況,檢測Wnt報導基因來測量Wnt活性。用Wnt報導基因TOPFlash來轉染HEK293細胞,並檢測Wnt報導基因活性。如圖1E所示,Wnt3a會增加Wnt報導 分子活性,但添加DKK2以及Wnt3a會抑制Wnt信號。綜合上述數據顯示,5F8係透過Wnt共受體LRP 5/6的活性來介導抗腫瘤形成反應。
為了檢查5F8是否阻斷LRP5與DKK2的結合,進行了結合測定。在該研究中,用LacZ(對照組質體)或LRP5表現質體來轉染HEK293細胞。在存在或不存在5F8的情況下,測量DKK2-AP融合蛋白與在細胞表面上過度表現的LRP5,兩者直接結合的情況。如圖1F所示,5F8抗體會阻斷DKK2與LRP5的結合。
為了研究5F8抗體是否類似於APCMin/+ DKK2-/-小鼠中的DKK2缺陷,會減少APCMin/+小鼠中的息肉形成,對處理組小鼠和對照組小鼠分析其腫瘤負荷。與未處理的小鼠相比,用5F8抗體所處理的APCMin/+小鼠,於8周時,其小腸息肉的數量顯著減少。此外,5F8處理APCMin/+小鼠的息肉數目,與5F8或對照組IgG處理APCMin/+ DKK2-/-小鼠中所發現的息肉數目,基本上相同(圖1G)。綜上所述,這些結果提供了證據證明5F8是DKK2的阻斷性抗體,其透過Wnt共受體LRP 5/6路徑來抑制腫瘤形成。此外,5F8會阻斷DKK2和LRP5之間的相互作用;但是這樣做時,5F8也促進了DKK2所介導的Wnt訊息傳遞去抑制。
實施例3:DKK2會阻斷劑調節腫瘤免疫微環境
來自C57BL小鼠大腸癌的MC38細胞,當移植到有正常免疫能力的WT C57BL小鼠時,進展非常快。因此,這種同種異體移植模型,也被稱為同基因型模型,可進行抗DKK2抗體5F8的體內測試,測試其於宿主免疫系統功能正常時的治療潛力。在一項研究中,將MC38細胞透過皮下(s.c.)途徑移植至C57BL小鼠(10週齡雌性小鼠,每組n=5)。14天後,每3天以小鼠IgG或5F8(8mg/kg)對小鼠進行腹腔內(i.p.)注射。在第22天收集腫瘤並稱重。圖2A至2B顯示,與對照組抗體(IgG3)處理相比,用5F8處理顯著抑制了C57BL小鼠皮下移植MC38細胞的致瘤性生長。這些結果顯示,儘管MC38細胞保留了有功能的APC(圖8D-8E),但它們會表現出足量的DKK以使抗DKK治療來發揮作用。因為使用腫瘤基因模型非常耗時且昂貴,所以會用這種同基因型癌症模型來確認以DKK2阻斷來抑制腫瘤進展的機制。因為5F8不影響MC38細胞在培養基中的生 長情況(圖2C),所以抗體可能透過改變腫瘤微環境來阻礙腫瘤進展。如果阻斷DKK2訊息傳遞不能減少腫瘤細胞生長,則抗DKK2訊息傳遞是透過另一路徑來介導腫瘤抑制。
為了測試5F8抗體對腫瘤細胞微環境的影響,如血管生成、增殖或凋亡的變化,以免疫組識學方法來檢測MC38腫瘤。在該研究中,C57BL小鼠(10週齡雌性小鼠,每組n=5)將MC38細胞透過皮下(s.c.)途徑移植。14天後,小鼠每三天以腹腔內(i.p.)注射方式施打小鼠IgG或5F8(10mg/kg)。對於MC38腫瘤的可視化,涉及血管生成的細胞外蛋白質CD31的表現,在處理組或對照組(IgG)的腫瘤(圖2D;圖表和代表性影像)中,其血管生成沒有顯著差異。以5F8或對照組(IgG)處理的MC38腫瘤,對於Ki67表現(與細胞增殖有關的蛋白質)的組織學分析也顯示,其腫瘤細胞增殖沒有顯著差異(圖2E)。為了測試DKK2表現是否可以改變腫瘤微環境,以透過適當的抗腫瘤免疫反應來誘發細胞凋亡,係測量細胞毒性作用型免疫細胞的數量和抗腫瘤活性。免疫細胞毒性細胞,如自然殺手細胞(NK)和CD8+ T淋巴細胞,能夠透過分泌含有穿孔蛋白和顆粒酶等預先形成的顆粒,直接殺死腫瘤細胞。攝入顆粒酶B(gzmb),其為絲胺酸蛋白酶,會造成標靶細胞的凋亡,其作用途徑涉及凋亡蛋白酶的水解活化,Bid的切斷和DNA片斷化(Thornberry et al.,J Biol Chem,1997.272(29):p.17907-11;Heusel et al.,Cell,1994.76(6):p.977-87)。MC38腫瘤的組織學分析結果,顯示5F8處理的細胞其顆粒酶B陽性細胞的數量與對照組(IgG)細胞相比有顯著增加(圖2G)。此外,MC38腫瘤中切割的凋亡蛋白酶3(即活化的凋亡蛋白酶3(Casp3),為一種透過凋亡路徑誘導死亡的細胞標記)的可視化結果,顯示5F8處理的細胞相較於對照組其細胞凋亡現象有顯著增高(圖2F)。綜上所述,這些數據顯示,5F8阻斷了DKK2,並提高腫瘤細胞(或腫瘤)內的細胞凋亡情況,但未改變腫瘤細胞微環境中腫瘤細胞增殖或血管生成。此外,數據顯示,阻斷由DKK2所介導的LRP5-信號,可以提高腫瘤細胞中的細胞凋亡,並且針對LRP5進行特異性抑制,可以增加腫瘤細胞凋亡的情況,而不改變血管生成或腫瘤細胞增殖。
此外,與ApcMin/+相比,在ApcMin/+ Dkk2 -/- 息肉中,還觀察到細胞凋亡和顆粒酶B染色的增加(圖2H)。顆粒酶B主要由細胞毒性免疫細胞,包括自然殺手(NK)和CD8+ T細胞來產生,並誘發標靶腫瘤細胞凋亡(Afonina et al.,Immunol Rev 235,105-116(2010))。因此,上述數據顯示,DKK2阻斷可能是透過調節免疫微環境來發揮作用。與此結論一致,當MC38細胞移植到缺乏成熟白血球(包括NK細胞和細胞毒性T淋巴細胞)的免疫缺陷NSG小鼠上時,5F8未展顯其腫瘤抑制效果(圖3A至圖3B)。綜上所述,這些數據顯示,透過Wnt共受體LRP5/6來最小化DKK2的訊息傳遞,基本上抑制了腫瘤生長,並提高動物存活率。阻斷LRP5所介導的DKK2訊息傳遞,不會改變Wnt的訊息傳遞,其可提供有效的治療劑,以增加腫瘤細胞的凋亡。此外,數據顯示,用LRP5專一性抗體來治療動物,可以提高腫瘤抑制效果和動物存活率。
實施例4:DKK2的阻斷會增強NK和CD8+細胞的活化。
為了理解免疫機制,以流式細胞儀來分析浸潤於經抗體處理的MC38腫瘤中的白血球(圖9A至圖9G)。骨髓細胞(Gr1highCD11bhigh or Gr1lowCD11bhigh)、CD4+、CD8+、T調節細胞(CD4+CD25+Foxp3+)或NK1.1+細胞的百分比,在5F8及其同型處理的樣品之間沒有顯著差異(圖9B至圖9E)。然而,5F8處理會導致CD8+和NK1.1+細胞中顆粒酶B有顯著增加(圖9F至圖9G)。這些結果與免疫染色的結果一致(圖2G),並顯示在免疫染色中所檢測到的顆粒酶B陽性細胞是NK和CD8+T細胞。另外,分析腫瘤引流淋巴結,儘管5F8和同型處理的樣品在CD4+、CD8+或NK1.1+細胞群中沒有顯著差異。
為了排除腫瘤尺寸對於流式細胞儀分析結果的影響,將具有MC38腫瘤的小鼠用5F8及其同型對照組只處理24小時,並收集腫瘤標本進行分析。在這個時間點,腫瘤尺寸無明顯差異。雖然CD4+、CD8+或NK1.1+細胞的分布仍然沒有顯著差異(圖3C至圖3D),但與同型處理的樣本相比,在5F8處理的樣本中,觀察到其腫瘤浸潤的CD8+和NK1.1+細胞出現顆粒酶B的劇烈增加(圖3E至圖3F)。檢測CD8+和NK細胞的其他活化標誌物後發現,在CD8+細胞上的CD69、CD107a、CD314和CD25, 以及NK細胞上的CD69和CD314,都有顯著的增加(圖3G至圖3H)。在5F8處理的樣本中,CD8+和NK1.1+細胞也出現IFNγ的增加(圖3G至圖3H),而CD8+細胞也出現PD-1增加(圖3G)的趨勢。類似地,與用對照組IgG處理的那些細胞相比,急性5F8處理也可顯著增加ApcMin/+小鼠PPs的顆粒酶B陽性CD8+細胞,而不影響T淋巴細胞的分布(圖9N至圖9O)。
為了評估細胞毒性免疫作用型細胞在DKK2阻斷所介導的腫瘤抑制中的重要性,在MC38腫瘤模型中分別用抗NK1.1抗體來清除NK細胞,並用抗CD8抗體來清除CD8+(圖9P至圖9L)。NK或CD8+細胞的清除大幅度地減少了5F8的腫瘤抑制作用,其中NK細胞的清除可能產生更強的作用(圖3I至圖3J)。這些結果顯示NK和CD8+細胞在DKK2阻斷所介導的腫瘤進展抑制中具有顯著作用。
實施例5:DKK2會直接抑制細胞毒性免疫細胞。
為了進一步了解抗DKK2抗體如何抑制腫瘤進展,在腫瘤細胞與初代NK細胞的共培養物中,檢測了DKK2阻斷劑促進腫瘤細胞死亡的能力。當IL-15擴增的初代小鼠NK細胞與MC38細胞共培養時,加入5F8會導致NK細胞中顆粒酶B表現有顯著增加(圖4A),並降低腫瘤細胞存活率(圖4B)。相反地,當單獨培養這些細胞時,5F8處理對於NK細胞中的顆粒酶B表現(圖4C)或MC38的存活率(圖2C)幾乎沒有影響。
進行微陣列基因表現分析,與經同型IgG處理的細胞相比,在5F8處理的MC38細胞或腫瘤中,確實顯示IL-2、IL-15、MHC-I單倍型、NKG2D配位子(RAE-1a-e、MULT-1及H60a-c)、Fas或TRAILR1/2表現的顯著改變,這些基因對於NK細胞活性都扮演重要的角色。此外,在NK細胞中,透過RT-PCR幾乎檢測不到DKK2 mRNA,而在MC38細胞中則容易檢測到DKK2 mRNA(圖8D至圖8E)。與上述共培養結果一起分析,由腫瘤細胞產生的DKK2可能直接作用於NK細胞。當將重組DKK2蛋白加到在IL-15存在下培養所分離出的初代NK細胞中時,會導致顆粒酶B以及包括CD69、IFNγ、CD107a和CD314在內的許多其他NK活化標誌有顯著減少(圖4D至圖4E)。DKK2對NK細胞活化的抑制作用呈劑量依賴性(圖4F)。這種DKK2蛋白對NK活化標誌的作用,可以轉化為對腫瘤 殺傷能力的顯著影響,因為用DKK2蛋白預處理的NK細胞,其引發腫瘤細胞凋亡和死亡的能力有降低(圖4G)。DKK2蛋白還可以抑制從周邊血所分離出的人類NK細胞中的顆粒酶B表現(圖10A)。此外,DKK2會直接抑制從脾臟(圖10B)和小腸CD8+上皮細胞(圖10C)所分離到的小鼠初代CD8+。因此,這些數據綜合顯示,DKK2可以直接抑制IL-15所介導的NK和CD8+細胞活化。
實施例6:DKK2阻斷增強了NK和CD8+細胞的活化。
為了理解DKK2阻斷的免疫機制,以流式細胞儀來分析浸潤至經過抗體處理的MC38腫瘤中的白血球(圖9A至圖9G)。骨髓細胞(Gr1highCD11bhigh or Gr1lowCD11bhigh)、CD4+、CD8+、T調節細胞(CD4+ CD25+ Foxp3+)或NK1.1+細胞的百分比,在5F8及其同型處理的樣品之間沒有顯著差異(圖9B至圖9E)。然而,5F8處理會導致CD8+和NK1.1+細胞中顆粒酶B有顯著增加(圖9F至圖9G)。這些結果與免疫染色結果一致(圖2G),並顯示在免疫染色中所檢測到的顆粒酶B陽性細胞是NK和CD8+T細胞。另外,腫瘤引流淋巴結的分析結果顯示,儘管5F8和同型處理的樣品的CD4+、CD8+或NK1.1+細胞分布沒有顯著差異(圖9H至圖9J),但與對照組(IgG3)處理的樣品相比,5F8處理的樣品其CD8+細胞中的顆粒酶B有增加的趨勢(圖9K),而其NK1.1+細胞中的顆粒酶B有顯著增加(圖9K)。另外,本實施例也檢測了作為腸腫瘤引流淋巴結的集結淋巴結(培氏斑,PPs)的顆粒酶B表現量。相較於APCMin/+小鼠,在DKK2-/-APCMin/+小鼠的培氏斑中,也觀察到顆粒酶B陽性CD8+ T細胞的增加;然而,動物間的CD4+或CD8+細胞分布差別不大(圖9L至圖9M)。
為了排除腫瘤尺寸對於流式細胞儀分析結果的影響,將具有MC38腫瘤的小鼠用5F8及其同型(IgG)對照組僅處理24小時,並收集腫瘤標本進行分析。在這個時間點,用5F8處理的動物和對照組動物之間的腫瘤尺寸無明顯差異。與本文先前的數據一致,處理組與對照組相比,CD4+、CD8+或NK1.1+細胞分布(圖3C至圖3D)沒有顯著差異;此外,以5F8處理樣本與同型處理的樣本相比,觀察到其腫瘤浸潤的CD8+和NK1.1+細胞出現顆粒酶B的劇烈增加(圖3E至圖3F)。檢測CD8+和NK 細胞的其他活化標誌物後發現,在CD8+細胞上的CD69、CD107a、CD314和CD25,以及NK細胞上的CD69和CD314,都有顯著增加(圖3G至圖3H)。在5F8處理的樣本中,CD8+和NK1.1+細胞也出現IFNγ的增加(圖3G至圖3H),而CD8+細胞也出現PD-1(圖3G)增加的趨勢。類似地,與用對照組IgG處理的那些細胞相比,急性5F8處理也可顯著增加ApcMin/+小鼠PPs的顆粒酶B陽性CD8+細胞,而不影響T淋巴細胞的分布(圖9N至圖9O)。
為了評估細胞毒性免疫作用型細胞在DKK2阻斷所介導的腫瘤抑制中的重要性,在MC38腫瘤模型中分別用抗NK1.1抗體來清除NK細胞,並用抗CD8抗體來清除CD8+。NK或CD8+細胞的清除大幅度的減少了5F8的腫瘤抑制作用(圖3I至圖3J);此外,數據顯示,在抵消5F8對腫瘤進展的改善作用方面,NK細胞清除比CD8+清除具有更強的作用(圖3I至圖3J)。這些結果顯示NK和CD8+細胞在DKK2阻斷所介導的腫瘤進展抑制中具有顯著作用。
實施例7:DKK2獨立於Wnt-β-連環蛋白訊息傳遞而抑制NK細胞活化。
鑑於DKK2可抑制Wnt-β-連環蛋白訊息傳遞的事實,本研究測試Wnt-β-連環蛋白訊息傳遞是否由DKK2負責進行NK細胞調控。在Wnt報導基因分析中,WNT3A蛋白會誘發報導基因活性的劇烈增加,其可被DKK2蛋白抑制(圖10D)。另外,WNT3A在初代NK細胞中誘發了β-連環蛋白的累積(圖10E)。然而,WNT3A對NK細胞中顆粒酶B表現沒有顯著影響(圖4H)。另外,本實施例測試了CHIR99021(一種GSK3抑制劑),其增加了繞過WNT及其受體的β-連環蛋白穩定性。儘管其對Wnt報導基因活性具有強烈影響(圖10D),但CHIR99021對初代NK細胞中的顆粒酶B沒有顯著影響(圖4H)。因此,導致NK細胞活化的DKK2訊息傳遞的抑制不可能歸因於其對Wnt-β-連環蛋白訊息傳遞的影響。上述結果,在DKK2的作用機制方面,也與最近指出在調控腫瘤免疫微環境時該機制係涉及Wnt-β-連環蛋白訊息傳遞的報導(D'Amico,L.,et.al.2016.J.Exp.Med.213(5):827-40;Malladi,S。等,2016.Cell.165:45-60) 有所不同。
實施例8:DKK2會阻止磷酸化的STAT5核定位。
為了理解DKK2如何透過IL-15來抑制細胞毒性免疫細胞的活化,本實施例檢測了DKK2處理對由IL-15刺激的各種訊息傳遞的影響。結果顯示,沒有檢測到磷酸化的STAT5、ERK和AKT有顯著變化(圖5A)。與流式細胞儀結果一致,在DKK2處理的樣品中觀察到顆粒酶B的減少(圖5A)。另外,在DKK2處理的樣品中觀察到穿孔蛋白的減少(圖5A)。然而,與來自空白對照組處理的那些細胞相比,來自DKK2處理的初代NK細胞,其mRNA的定序結果顯示DKK2處理(圖13A至圖13B,圖15和圖17)會改變STAT訊息傳遞。接下來,本實施例檢測磷酸化STAT5(磷酸化STAT)的定位。儘管IL15如預期地誘發磷酸-STAT5的核定位,但是在用DKK2處理的細胞中容易檢測到磷酸化STAT5的細胞質定位(圖5B和圖13C)。一致地,從5F8處理的腫瘤中所分離出的NK細胞,與對照組IgG處理的腫瘤分離出的細胞相比,其磷酸化STAT5的細胞質定位情況降低(圖5C)。一致地,從5F8處理的腫瘤中所分離出的NK細胞,與對照組IgG處理的腫瘤分離的細胞相比,其磷酸化STAT5細胞質定位情況降低(圖5C和圖13D)。在DKK2處理的NK細胞中,磷酸化STAT5似乎與早期胞內體標誌物:早期胞內體抗原1(Early Endosome Antigen,EEA1,圖5D)部分共定位,但不與晚期胞內體標誌物:溶體相關膜蛋白1(Lysosome Associated Membrane Protein 1,LAMP-1)共定位(圖5E)。這個數據顯示,磷酸化STAT5可能被隔離在早期/再循環胞內體上,包括EEA1陽性早期胞內體。因此,這些數據顯示,DKK2處理不會破壞IL-15訊息傳遞所導致的STAT5磷酸化機制,而是妨害磷酸化STAT5的核定位。
實施例9:DKK2透過LRP5發生作用,但非透過LRP6發生作用。
DKK2會與LRP5和LRP6結合。儘管DKK2仍然可以抑制缺乏LRP6的初代NK細胞的活化(圖11A),但它不能抑制LRP5缺陷的NK細胞活化(圖6A)。此外,DKK2未能妨礙缺乏LRP5的NK細胞中磷酸化STAT5的核定位(圖6B)。綜上所述,這些結果顯示,LRP5,而非 LRP6,才是DKK2對NK細胞發生作用所需的。在NK細胞中,LRP5缺失不會影響Wnt3A所刺激的β-連環蛋白累積(圖10E),進一步證實了DKK2-LRP5路徑對於NK活化的影響並非依賴於Wnt-β-連環蛋白的訊息傳遞。相反地,LRP6在NK細胞的Wnt-β-連環蛋白訊息傳遞中起了關鍵作用,因為WNT3A在LRP6缺陷的NK細胞中不會誘發β-連環蛋白的累積(圖11B)。
為了進一步測試LRP5在腫瘤進展中的重要性和DKK2阻斷的抗腫瘤作用,採用過繼細胞轉移模型進行測試。具體而言,將來自Lrp5fl/flMx1Cre小鼠的骨髓(BMs)轉移至經過致死照射的WT C57BL小鼠中。在經過恢復並誘發Cre表現後,將MC38細胞移植至前述小鼠。造血細胞中缺乏LRP5會顯著阻礙移植瘤的發展(圖6C)。重要的是,抗DKK2抗體5F8對腫瘤進展沒有顯著影響,但在接受WT BM轉移的小鼠中,仍然保持其腫瘤抑制效果(圖6C)。以流式細胞儀來分析腫瘤浸潤的白血球結果顯示,其與5F8透過LRP5來發揮其對細胞毒性免疫細胞活化和腫瘤抑制的作用的結果一致;此外,以5F8處理LRP5缺陷的造血細胞,其表型與5F8處理細胞毒性免疫細胞相同,並且在造血細胞中,LRP5缺陷廢除了5F8對細胞毒性免疫細胞所產生的活化作用(圖11B至圖11C)。這些數據連同圖1F中的數據一起確定了能夠最佳地抑制腫瘤形成的LRP5專一性抗體是有用的,因為它:(i)會阻斷DKK2與LRP5結合,也阻斷LRP5的信號轉導,並且(ii)對Wnt訊息傳導沒有影響,其主要由Wnt共受體LRP6所介導。
實施例10:LRP5C與STAT5相互作用並抑制STAT5。
為了更好地理解LRP5如何干擾磷酸化STAT5核定位,本實施例檢測了LRP5胞內結構域(LRP5C)和STAT5之間的相互作用。LRP5C和STAT5在HEK293細胞中共免疫沉澱(圖6D)。接下來,在表現JAK3、IL2/15 β和共同受體γ次單元(common receptor γ subunit)的HEK293細胞中測試LRP5C對IL-15所介導的STAT5報導基因活化的影響。當用IL-15刺激時,LRP5C的表現顯著抑制了STAT5報導基因的活性(圖6E),而不影響STAT5磷酸化(圖6F)。此外,LRP5C可以透過在HEK293細胞中所 表現的組成型活性(constitutively active)JAK1突變體(V658F),來抑制STAT5報導基因的活化(Haan,C.et al.,2011.Chem.Biol.18:314-323)(圖6G)。儘管LRP5C的表現不會改變STAT5磷酸化(圖6G),但它損害了由表現活化JAK1所誘發的磷酸化STAT5核定位(圖6H)。這些數據與在初代NK細胞中觀察的結果一致,並支持了DKK2係透過LRP5C與STAT5相互作用來阻礙磷酸化STAT5的核定位進而抑制IL-15訊息傳遞的結論。DKK2誘發LRP5的快速內化,而非LRP6,這個結果(圖6I)為圖7所示的機制提供了額外的支持,其顯示DKK2透過內化的LRP5而非LRP6在胞內體來誘發磷酸化STAT5的細胞質隔離。
實施例11:DKK2會抑制抗PD-1的腫瘤免疫反應。
為了評估DKK2阻斷的治療潛力,本實施例以MC38腫瘤模型來測試DKK2阻斷與PD-1阻斷的組合作用。儘管PD-1和DKK2阻斷均顯示出腫瘤抑制作用,但該組合產生了進一步的抗腫瘤作用(圖7A至圖7B和圖14A)。值得注意的是,用該組合治療的少部分腫瘤顯示完全消退(圖14A)。流式細胞儀的分析結果顯示,儘管個別阻斷會導致腫瘤浸潤的CD8+和NK細胞出現顆粒酶B表現量增加,但組合阻斷會導致這些細胞的顆粒酶B量出現更進一步的增加(圖7B至圖7D)。為了更直接地評估DKK2對由PD-1阻斷所引發的腫瘤免疫反應的影響,本實施例將重組DKK2蛋白施用於腫瘤內。DKK2蛋白會抑制PD-1阻斷所誘發的腫瘤浸潤CD45+和CD8+細胞的數量增加,並且誘發CD8+和NK細胞的活化(圖7E)。這些結果一起為組合阻斷的額外腫瘤抑制作用提供了解釋。
皮膚黑色素瘤(TCGA,臨時數據)群組的分析結果,揭示了PTEN-功能喪失和功能突變的PI3K增加與DKK2表現升高的相關性(圖14B)。這些突變會導致磷脂酸肌醇(3,4,5)-三磷酸在細胞中表現量增加。此外,在人類黑素瘤中,觀察到PD-1抗性與DKK2表現增加(圖14C,Hugo et al.,Cell 165,35-44(2016)),和PTEN缺失突變有顯著相關的趨勢(Peng et al.,Cancer Discov 6,202-216(2016))。使用YUMM1.7小鼠黑色素瘤細胞來測試DKK2阻斷的抗腫瘤作用,其透過比較PD-1阻斷或其組合來進行測試。YUMM1.7細胞係衍生自在C57BL/6小鼠所生長的 BrafV600EPten-/-Cdkn2a-/-黑色素瘤(Kaur et al.,Nature,(2016))。YUMM1.7細胞中的DKK2 mRNA表現量比MC38細胞高出10倍以上,以PI3K抑制劑渥曼青黴素的處理可以降低DKK2 mRNA表現量(圖14D),顯示DKK2表現受磷脂酸肌醇(3,4,5)-三磷酸的升高而被調控。重要的是,抗-DKK2抗體在YUMM1.7腫瘤模型中,顯著阻礙腫瘤進展,並延長患腫瘤小鼠的存活率(圖7F和圖14E至圖14F)。此外,DKK2阻斷顯示出比PD-1阻斷更好的總趨勢(圖7F和圖14E至圖14F)。當與MC38模型中的對照組相比時,組合用藥顯示出比個別阻斷更強的生存效益,其顯著優於YUMM1.7黑色素瘤模型(圖7F和圖14E至圖14F)的個別阻斷結果。另外,少部分用該組合處理的小鼠,顯示腫瘤完全消退(圖14E)。以流式細胞儀來分析腫瘤浸潤的白血球,顯示透過DKK2和PD-1阻斷的組合,CD8+和NK細胞的活化顯著更強(圖7G和圖14G)。這些數據支持先前提到的結論,並提示DKK2阻斷在腫瘤治療中具有更廣泛的適用性。
實施例12:總結
在這項研究中,揭示了以前未知的DKK2在促進腫瘤進展中的功能。其阻斷會抑制小鼠模型中的腫瘤進展。另外,結果顯示,DKK2阻斷所介導的腫瘤抑制取決於宿主免疫系統,特別是NK和CD8+細胞。並且,DKK2顯示出可以透過IL-15來直接抑制NK和CD8+細胞活化的能力,並且表徵了這種DKK2的作用機制。在此機制中,DKK2特異性地透過LRP5,而非LRP6,來阻斷磷酸化STAT5的核定位,(圖11E)。在NK細胞中,DKK2可以結合其所表現的LRP5(圖1F)和LRP6(Li et al.,PNAS 109,1140211407(2012))。目前仍不清楚為什麼只有LRP5是DKK2作用所需的。已知DKK2會誘發磷酸化STAT5被隔離在胞內體中,與LRP6相較(圖6I),LRP5對DKK2產生反應而內化的能力可以用來解釋前述現象。之前已有文獻報導,LRP6在配體結合後不會內化;並顯示DKK1(Semenov,et al.,J Biol Chem,(2008))和WNT3A(Kim et al.,J Cell Biol. 200,419-428(2013))均不誘導內源性LRP6的內化。LRP5和LRP6與它們內化能力有關的一個主要區別在於,LRP5具有三個推定的信號轉導接頭蛋白-2(adaptor protein-2,AP2)-結合基序(motifs)。但是,對比於LRP5,如先前文獻所 提到的,LRP6的胞內結構域只有一個這樣的基序(Kim et al.,J Cell Biol. 200,419-428(2013))。AP2是格形蛋白(clathrin)所介導的胞吞作用中的成分,其功能之一是貨物識別(cargo recognition,McMahon et al.,Nat Rev Mol Cell Biol 12,517-533(2011),Ohno,J Cell Sci 119,3719-3721(2006))。
DKK2對腫瘤中NK細胞的作用可能比體外試驗顯示的結果更有效,因為透過定量RT-PCR檢測,腫瘤浸潤NK細胞中的LRP5 mRNA水平比從脾臟中所分離出的初代NK細胞高出8倍。儘管如此,DKK2蛋白在體外對磷酸化STAT5的核定位產生明確的作用。然而,DKK2似乎並未完全從核中排除磷酸化STAT5(圖5B)。這種對磷酸化STAT5核定位的部分作用,可以解釋為什麼DKK2僅對NK細胞的活化具有部分但生物學上顯著的效應,但對NK細胞的發育缺乏強效作用。這也可以解釋為什麼DKK2抑制不會改變小鼠的NK細胞數量,因為STAT5或IL-15訊息傳遞特異性IL15受體α次單元的缺乏,對NK細胞發育具有深遠影響(K.Imada et al.,J Exp Med 188,2067-2074(1998);S.Teglund et al.,Cell 93,841-850(1998);E.Eckelhart et al.,Blood 117,1565-1573(2011))。這些結果也可能被解釋為,NK細胞發育和完全活化對於STAT5訊息傳遞具有不同的閾值。與此觀點一致,與顆粒酶B相比,DKK2似乎在IL-15活化的NK細胞中顯示出對干擾素γ不同程度的抑制(圖4F)。DKK2還可以抑制IL-15所介導的CD8+細胞活化(圖10B),大概是透過類似於其抑制NK細胞中STAT5訊傳遞的機制。值得注意的是,據報導,LRP5的表現在人類成熟CD8+細胞中係為上調(Wu et al.,Immunity 26,227-239(2007)),顯示出DKK2也可能對體內CD8+細胞具有更強的作用。然而,DKK2不抑制T細胞受體所介導的初代T細胞活化。這解釋了為何DKK2阻斷不能明顯影響T細胞分布。它還顯示了在小鼠中DKK2阻斷對CD8+細胞的活化,可能是由DKK2的直接調控和NK細胞所介導的間接調控,這兩者的組合來共同調控CD8+細胞。雖然IL-15-STAT5訊息傳遞在細胞毒性CD8+ T細胞的活化中具有直接作用,但NK細胞也可以增強適應性的抗腫瘤免疫(Crouse et al.,Trends Immunol 36,49-58(2015))。與IL-15-STAT5訊息傳遞在CD8+上皮細胞中的突出作用一致(Mishra et al.,Clin Cancer Res 20,2044-2050(2014)), DKK2能夠抑制從小鼠小腸所分離出的CD8+ IELs。DKK2對IELs的直接抑制,可能在Apcmin/+小腸腫瘤模型中的顆粒酶B陽性CD8+細胞與DKK2阻斷相關的增加具有更大的作用。綜上所述,DKK2在體內的強效抗腫瘤作用,可能不僅是其對NK和CD8+細胞直接作用的結果,而且也是這些免疫細胞相互作用的結果,並且這些機制的相對貢獻可能有上下游依賴性。
搜索基因表現圖譜(Gene Expression Atla)(www.ebi.ac.uk/gxa/home)顯示,DKK2在各種正常人類和小鼠組織,特別是免疫組織中,通常以低水平表現。這顯示DKK2抑制可能不是增加自身免疫的高風險因子。事實上,在長達12個月以特定無病原體條件所飼養的小鼠中,DKK2缺陷不會改變各種造血細胞的分布。如本研究中所證實的,DKK2表現可由人類和小鼠大腸細胞中APC的缺失所驅動(圖8A至8G)。因為將DKK2蛋白直接施用到腫瘤中,可以抑制由PD-1阻斷所引發的免疫反應(圖7E),所以在包括無APC的腫瘤中存在DKK2,將構成抵抗PD-1阻斷的機制。DKK2阻止PD-1阻斷作用的一種解釋,可能是由於需要受到DKK2阻斷影響的STAT5訊息傳遞和受PD-1阻斷影響但不受DKK2阻斷影響的TCR訊息傳遞,會充分活化抗腫瘤免疫力。這也可以解釋DKK2和PD-1阻斷劑組合的額外抗腫瘤作用,並且以PD-1阻斷來治療人類CRC效力較差的原因。
DKK2表現也受APC缺失以外的機制所調控。在人類黑色素瘤中,DKK2表現與導致磷脂酸肌醇(3,4,5)-三磷酸升高的突變相關(圖14B)。在具有PD-1抗性的人類黑色素瘤中,DKK2表現也有上升的趨勢(圖14C)。另外,最近有文獻指出,在人類黑色素瘤中,PTEN缺失和PD-1療法抗藥性的顯著修正(Peng et al.,Cancer Discov 6,202-216(2016))。PTEN缺失和DKK2表現之間的關係,也在小鼠黑色素瘤細胞株(YUMM1.7)中觀察到,該細胞株源自攜帶有PTEN缺失突變的基因改造黑色素瘤模型(圖14D)。在YUMM1.7腫瘤模型中,DKK2阻斷的強抗腫瘤作用,特別是DKK2和PD-1阻斷的組合,顯示DKK2阻斷可用於治療具有PD-1抗性的黑色素瘤及/或增強PD-1阻斷治療對於具有磷脂酸肌醇(3,4,5)-三磷酸提高突變的黑色素瘤的功效。TCGA臨時數據庫的分析,還揭示了高DKK2表現 與腎乳突癌和膀胱泌尿上皮癌存活率低下的顯著相關性(圖14H)。因此,DKK2阻斷也可以單獨用來治療這些人類癌症,或與其他查核點抑制劑進行聯合治療。這些可能性,和阻斷DKK2受體LRP5在人類癌症治療中的潛力,值得在未來進一步研究。
各專利、專利申請案、以及此處所引用的公開文獻,其全部內容皆藉由引用而納為本文揭露之一部。
本發明雖以參照前述實施例方式進行揭露,但對於其他本發明所屬技術領域具有通常知識者來說,仍可設計出未脫離本發明精神與範疇的其他實施例與變形,至為灼然。後附之申請專利範圍之解釋應包含所有此種實施例及等效變更。
<110> 耶魯大學 吳殿青 肖倩
<120> 抑制低密度脂蛋白受體相關蛋白5以抑制腫瘤形成
<130> 047162-7103WO1(00682)
<140> TW 107109145
<141> 2018-03-16
<150> US 62/476,109
<151> 2016-03-24
<160> 26
<170> PatentIn version 3.5
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 1
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 2
<210> 3
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 3
<210> 4
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 4
<210> 5
<211> 19
<212> RNA
<213> 人工序列
<220>
<223> 人工合成
<400> 5
<210> 6
<211> 19
<212> RNA
<213> 人工序列
<220>
<223> 人工合成
<400> 6
<210> 7
<211> 19
<212> RNA
<213> 人工序列
<220>
<223> 人工合成
<400> 7
<210> 8
<211> 19
<212> RNA
<213> 人工序列
<220>
<223> 人工合成
<400> 8
<210> 9
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 9
<210> 10
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 10
<210> 11
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 11
<210> 12
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 12
<210> 13
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 13
<210> 14
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 14
<210> 15
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 15
<210> 16
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 16
<210> 17
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 17
<210> 18
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 18
<210> 19
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 19
<210> 20
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工合成
<400> 20
<210> 21
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 人工合成
<400> 21
<210> 22
<211> 115
<212> PRT
<213> 人工序列
<220>
<223> 人工合成
<400> 22
<210> 23
<211> 104
<212> PRT
<213> 人工序列
<220>
<223> 人工合成
<400> 23
<210> 24
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> 人工合成
<400> 24
<210> 25
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> 人工合成
<400> 25
<210> 26
<211> 105
<212> PRT
<213> 人工序列
<220>
<223> 人工合成
<400> 26

Claims (36)

  1. 一種在有需要的一受試者中治療癌症的方法,該方法包括向該受試者施用一有效劑量且在一醫藥上可接受的載體中的一抑制劑,該抑制劑係阻斷Dickkopf 2(DKK2)與低密度脂蛋白(Low-Density Lipoprotein,LDL)受體相關蛋白質5(LRP5)之間的相互作用。
  2. 一種在一受試者中提供抗腫瘤免疫的方法,該方法包括向該受試者施用一有效劑量的一抑制劑以及一醫藥上可接受的載體,該抑制劑係阻斷DKK2與低密度脂蛋白受體相關蛋白質5之間的相互作用。
  3. 一種在一受試者中激發對一細胞群或一組織的一T細胞介導免疫反應的方法,該方法包括向該受試者施用一有效劑量的一抑制劑以及一醫藥上可接受的載體,該抑制劑係阻斷DKK2與低密度脂蛋白受體相關蛋白質5之間的相互作用。
  4. 一種在一受試者中激發對一細胞群或一組織的一自然殺手(Natural Killer,NK)細胞免疫反應的方法,該方法包括向該受試者施用一有效劑量的一抑制劑以及一醫藥上可接受的載體,該抑制劑係阻斷DKK2與低密度脂蛋白受體相關蛋白質5之間的相互作用。
  5. 如申請專利範圍第1項至第4項中任一項所述的方法,其中該抑制劑係選自於下列群組中的至少一個:DKK2拮抗劑(antagonist)或其片段、DKK2抗體或其片段、低密度脂蛋白受體相關蛋白質5拮抗劑或其片段、低密度脂蛋白受體相關蛋白質5抗體或其片段、siRNA、核醣體、反義分子(antisense molecule)、適配體(aptamer)、擬肽物(peptidomimetic)、小分子、CRISPR/Cas9編輯系統以及其組合。
  6. 如申請專利範圍第1項至第4項中任一項所述的方法,其中該DKK2抗體是5F8。
  7. 一種在有需要的一受試者中治療癌症的方法,該方法包括向該受試者施用一有效劑量且在一醫藥上可接受的載體中的一低密度脂蛋白受體相關蛋白質5基因剔除劑。
  8. 如申請專利範圍第7項所述的方法,其中該低密度脂蛋白受體相關蛋白質5基因剔除劑係選自於低密度脂蛋白受體相關蛋白質5抗體、siRNA、 核醣體、反義分子、適配體、擬肽物、小分子、CRISPR/Cas9編輯系統以及其組合所組成的群組。
  9. 如申請專利範圍第7項所述的方法,其中該低密度脂蛋白受體相關蛋白質5基因剔除劑具有中和(neutralizing)活性。
  10. 如申請專利範圍第1項所述的方法,其中該低密度脂蛋白受體相關蛋白質5基因剔除劑不影響典型Wnt/β-連環蛋白訊息傳遞(canonical Wnt/β-catenin signaling)。
  11. 如申請專利範圍第8項所述的方法,其中該低密度脂蛋白受體相關蛋白質5抗體包括一抗體,該抗體係選自於多株抗體、單株抗體、人源化抗體、合成抗體、重鏈抗體、人類抗體、抗體的生物活性片段、抗體模擬物及其任何組合所組成的群組。
  12. 如申請專利範圍第7項所述的方法,其中該癌症係選自於大腸直腸癌、胰腺癌、胃癌、腸癌、胰腺癌、食道癌、皮膚癌及肺癌所組成的群組。
  13. 如申請專利範圍第7項所述的方法,其更包括向該受試者施用一額外的藥劑,該額外的藥劑係選自於化學治療劑、抗細胞增殖劑、免疫治療劑及其任何組合所組成的群組。
  14. 如申請專利範圍第13項所述的方法,其中該額外的藥劑係程序性細胞死亡1(programmed cell death 1,PD-1)抗體。
  15. 如申請專利範圍第13項所述的方法,其中該低密度脂蛋白受體相關蛋白質5基因剔除試劑以及該額外的藥劑係共同施用於該受試者。
  16. 如申請專利範圍第7項所述的方法,其中該施用的途徑係選自於吸入、口服、直腸、陰道、非腸胃道、局部、經皮、肺部、鼻內、口腔、眼部、鞘內以及其任何組合所組成的群組。
  17. 一種用於在一受試者中治療癌症的醫藥組合物,該醫藥組合物包括一低密度脂蛋白受體相關蛋白質5基因剔除劑及一醫藥上可接受的載體。
  18. 如申請專利範圍第17項所述的醫藥組合物,其中該低密度脂蛋白受體相關蛋白質5基因剔除劑具有中和活性。
  19. 如申請專利範圍第17項所述的醫藥組合物,其中該低密度脂蛋白受體相關蛋白質5基因剔除劑不影響典型Wnt/β-連環蛋白訊息傳遞。
  20. 如申請專利範圍第17項所述的醫藥組合物,其中該低密度脂蛋白受體相關蛋白質5基因剔除劑係選自於低密度脂蛋白受體相關蛋白質5抗體、siRNA、核醣體、反義分子、適配體、擬肽物、小分子、CRISPR/Cas9編輯系統以及其組合所組成的群組。
  21. 如申請專利範圍第20項所述的醫藥組合物,其中該低密度脂蛋白受體相關蛋白質5抗體包括一抗體,該抗體係選自於多株抗體、單株抗體、人源化抗體、合成抗體、重鏈抗體、人類抗體、抗體的生物活性片段、抗體模擬物及其任何組合所組成的群組。
  22. 如申請專利範圍第11項所述的醫藥組合物,其更包括一額外的藥劑,該額外的藥劑係選自於化學治療劑、抗細胞增殖劑、免疫治療劑及其任何組合所組成的群組。
  23. 如申請專利範圍第22項所述的醫藥組合物,其中該額外的藥劑係程序性細胞死亡1抗體。
  24. 如申請專利範圍第22項所述的醫藥組合物,中該癌症係選自於大腸直腸癌、胰腺癌、胃癌、腸癌、胰腺癌、食道癌、皮膚癌及肺癌所組成的群組。
  25. 一種用於在一受試者中提供抗腫瘤免疫的方法,該方法包括向該受試者施用一有效劑量的一低密度脂蛋白受體相關蛋白質5抗體或其片段以及一醫藥上可接受的載體。
  26. 如申請專利範圍第25項所述的方法,其中該低密度脂蛋白受體相關蛋白質5抗體包括一抗體,該抗體係選自於多株抗體、單株抗體、人源化抗體、合成抗體、重鏈抗體、人類抗體、抗體的生物活性片段、抗體模擬物及其任何組合所組成的群組。
  27. 如申請專利範圍第25項所述的方法,其更包括向該受試者施用一額外的藥劑,該額外的藥劑係選自於化學治療劑、抗細胞增殖劑、免疫治療劑及其任何組合所組成的群組。
  28. 如申請專利範圍第27項所述的方法,其中該額外的藥劑係程序性細胞死亡1抗體。
  29. 如申請專利範圍第27項所述的方法,其中該低密度脂蛋白受體相關蛋 白質5抗體以及該額外的藥劑係共同施用於該受試者。
  30. 一種在一受試者中激發對一細胞群或一組織的一T細胞介導免疫反應的方法,該方法包括向該受試者施用一有效劑量的一低密度脂蛋白受體相關蛋白質5抗體或其片段以及一醫藥上可接受的載體。
  31. 如申請專利範圍第30項所述的方法,其中該低密度脂蛋白受體相關蛋白質5抗體包括一抗體,該抗體係選自於多株抗體、單株抗體、人源化抗體、合成抗體、重鏈抗體、人類抗體、抗體的生物活性片段、抗體模擬物及其任何組合所組成的群組。
  32. 如申請專利範圍第30項所述的方法,其中該T細胞介導免疫反應係CD8 +細胞毒性T淋巴細胞(cytotoxic T lymphocyte,CTL)反應。
  33. 一種在一受試者激發對一細胞群或一組織中的一自然殺手細胞免疫反應的方法,該方法包括向該受試者施用一有效劑量的一低密度脂蛋白受體相關蛋白質5抗體或其片段以及一醫藥上可接受的載體。
  34. 如申請專利範圍第33項所述的方法,其中該低密度脂蛋白受體相關蛋白質5抗體包括一抗體,該抗體係選自於多株抗體、單株抗體、人源化抗體、合成抗體、重鏈抗體、人類抗體、抗體的生物活性片段、抗體模擬物及其任何組合所組成的群組。
  35. 如申請專利範圍第1-4、7、25、30或33項中任一項所述的方法,其中該受試者係一哺乳動物。
  36. 如申請專利範圍第35項所述之方法,其中該哺乳動物係人類。
TW107109145A 2017-03-24 2018-03-16 抑制低密度脂蛋白受體相關蛋白5以抑制腫瘤形成 TW201838655A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762476109P 2017-03-24 2017-03-24
US62/476,109 2017-03-24

Publications (1)

Publication Number Publication Date
TW201838655A true TW201838655A (zh) 2018-11-01

Family

ID=63586136

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107109145A TW201838655A (zh) 2017-03-24 2018-03-16 抑制低密度脂蛋白受體相關蛋白5以抑制腫瘤形成

Country Status (5)

Country Link
US (1) US20200179510A1 (zh)
EP (1) EP3600418A4 (zh)
CN (1) CN110709102A (zh)
TW (1) TW201838655A (zh)
WO (1) WO2018174984A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12005080B2 (en) * 2018-03-26 2024-06-11 Oricell Therapeutics Co., Ltd. Method for promoting proliferation of immune cells
EP3946617A1 (en) * 2019-03-29 2022-02-09 Boehringer Ingelheim International GmbH Anticancer combination therapy
CN110013555B (zh) * 2019-04-18 2021-07-23 山东大学齐鲁医院 Lrp11作为靶点在制备治疗宫颈癌的制品中的应用
US20220275068A1 (en) * 2019-07-10 2022-09-01 Yale University Compositions and methods of using a humanized anti-dkk2 antibody
CN112592402B (zh) * 2020-12-02 2022-04-26 杭州奕安济世生物药业有限公司 抗dkk2抗体、包含该抗dkk2抗体的组合物及其用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002342734B2 (en) * 2001-05-17 2007-07-26 Oscient Pharmaceuticals Corporation Reagents and methods for modulating Dkk-mediated interactions
US8461155B2 (en) * 2003-09-22 2013-06-11 University Of Connecticut Sclerostin and the inhibition of WNT signaling and bone formation
US8790650B2 (en) * 2011-04-28 2014-07-29 Vanderbilt University Methods of using an antibody to inhibit WNT-mediated cardiac remodeling
WO2013126911A1 (en) * 2012-02-24 2013-08-29 Mount Sinai School Of Medicine Inhibitors and agonists of the low density lipoprotein receptor related domain of lrp6 and/or lrp5 and uses thereof
US10398765B2 (en) * 2014-07-03 2019-09-03 Yale University Dickkopf2 (Dkk2) inhibition suppresses tumor formation

Also Published As

Publication number Publication date
CN110709102A (zh) 2020-01-17
EP3600418A4 (en) 2021-01-13
WO2018174984A1 (en) 2018-09-27
US20200179510A1 (en) 2020-06-11
EP3600418A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
Xiao et al. DKK2 imparts tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation
US11708412B2 (en) Methods for treating hematologic cancers
US11497799B2 (en) Dickkopf2 (Dkk2) inhibition suppresses tumor formation
TW201838655A (zh) 抑制低密度脂蛋白受體相關蛋白5以抑制腫瘤形成
US20220185866A1 (en) Tnfrsf14 / hvem proteins and methods of use thereof
US20220162294A1 (en) Humanized anti-DKK2 antibody and uses thereof
Talebian et al. CD200 blockade modulates tumor immune microenvironment but fails to show efficacy in inhibiting tumor growth in a murine model of melanoma
CA3003252C (en) Humanized anti-dkk2 antibody and uses thereof
WO2021003687A1 (en) Compositions and methods of using a humanized anti-dkk2 antibody
Christmas Epigenetic reprogramming of myeloid-derived suppressor cells sensitizes breast and pancreatic cancers to immune checkpoint inhibition