TW201837865A - Method for inspecting a substrate and computer readable medium having instructions stored thereon - Google Patents

Method for inspecting a substrate and computer readable medium having instructions stored thereon Download PDF

Info

Publication number
TW201837865A
TW201837865A TW106143405A TW106143405A TW201837865A TW 201837865 A TW201837865 A TW 201837865A TW 106143405 A TW106143405 A TW 106143405A TW 106143405 A TW106143405 A TW 106143405A TW 201837865 A TW201837865 A TW 201837865A
Authority
TW
Taiwan
Prior art keywords
substrate
grain
charged particle
images
particle beam
Prior art date
Application number
TW106143405A
Other languages
Chinese (zh)
Other versions
TWI734875B (en
Inventor
博海德 穆勒
張雪娜
彼得 努南
庫普利特賽恩 維迪
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201837865A publication Critical patent/TW201837865A/en
Application granted granted Critical
Publication of TWI734875B publication Critical patent/TWI734875B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/226Image reconstruction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2611Stereoscopic measurements and/or imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/2811Large objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A method for inspecting a substrate is described. The method includes providing the substrate being a large area substrate in a vacuum chamber, wherein the substrate has a thin-film with a grain structure deposited on the substrate; generating a primary charged particle beam with an imaging charged particle beam microscope, wherein the primary charged particle beam impinges on the substrate in the vacuum chamber; and generating one or more images from signal particles released from the substrate upon impingement of the primary charged particle beam, wherein the one or more images are topographic images.

Description

檢查基板的方法和具有複數個指令儲存於其上的電腦可讀取媒體Method of inspecting a substrate and computer readable medium having a plurality of instructions stored thereon

本揭露內容是有關於低溫多晶矽(Low Temperature Poly Silicon;LTPS)層的檢測以及一種檢查一基板的方法。更具體地,本文所述的實施例有關於一種檢查用於顯示器製造的基板的方法,更具體地有關於用於顯示器製造的大面積基板。The disclosure relates to the detection of a low temperature polysilicon (LTPS) layer and a method of inspecting a substrate. More specifically, the embodiments described herein relate to a method of inspecting a substrate for display fabrication, and more particularly to a large area substrate for display fabrication.

在許多的應用中,需要將薄膜沈積在基板上,例如是在玻璃基板上。傳統上,基板在不同塗佈設備的腔室中進行塗佈。在一些應用上,使用氣相沈積技術在真空中塗佈基板。在過去的幾年中,電子裝置且特別是光電裝置的價格大幅降低。此外,顯示器中的畫素密度不斷增加。對於薄膜電晶體(TFT)顯示器,需要高密度的TFT整合。然而,即使裝置內的薄膜電晶體(TFT)的數量增加,仍盡可能增加產率並盡可能降低製造成本。In many applications, it is desirable to deposit a film on a substrate, such as on a glass substrate. Traditionally, substrates have been coated in chambers of different coating equipment. In some applications, the substrate is coated in a vacuum using a vapor deposition technique. In the past few years, the price of electronic devices, and in particular optoelectronic devices, has been greatly reduced. In addition, the pixel density in the display continues to increase. For thin film transistor (TFT) displays, high density TFT integration is required. However, even if the number of thin film transistors (TFTs) in the device is increased, the yield is increased as much as possible and the manufacturing cost is as low as possible.

增加畫素密度的一個方面是採用低溫多晶矽薄膜電晶體(Low Temperature Poly Silicon-TFT;LTPS-TFT),LTPS-TFT可以用於例如液晶顯示器(LCD)或主動式有機發光顯示器(AMOLED displays)。在LTPS-TFT的製造中,閘電極可以用作對電晶體的主動層與源極和汲極的接觸區域進行摻雜的遮罩。這種自對準摻雜的品質可以決定製造流程的產率,因此,需要改進和控制此過程。然而,除了LTPS-TFT的製程之外的其他自對準摻雜應用也可以受益於一改進的製程。One aspect of increasing the pixel density is the use of low temperature polysilicon-TFT (LTPS-TFT), which can be used, for example, in liquid crystal displays (LCDs) or active organic light emitting displays (AMOLED displays). In the fabrication of LTPS-TFTs, the gate electrode can be used as a mask for doping the active layer of the transistor with the source and drain contact regions. The quality of this self-aligned doping can determine the yield of the manufacturing process and, therefore, the process needs to be improved and controlled. However, other self-aligned doping applications other than the LTPS-TFT process can also benefit from an improved process.

對於此些製程,監控基板的品質以檢查基板是有益的,基板也就是沈積層,具體為低溫多晶矽(LTPS)層。例如,為了顯示器市場,係製造其上沈積有塗層材料層的玻璃基板。顯示器通常在大面積基板上製造,並且基板的尺寸不斷增大。此外,例如是TFT顯示器等之顯示器也在進行不斷的改進。舉例而言,低溫多晶矽(LTPS)是一種可以實現低能耗和改善背光特性的發展。For such processes, it is beneficial to monitor the quality of the substrate to inspect the substrate, which is the deposited layer, specifically a low temperature polysilicon (LTPS) layer. For example, for the display market, a glass substrate on which a layer of coating material is deposited is fabricated. Displays are typically fabricated on large area substrates and the size of the substrates continues to increase. In addition, displays such as TFT displays are also being continuously improved. For example, low temperature polysilicon (LTPS) is a development that can achieve low power consumption and improved backlight characteristics.

基板的檢查可以通過例如是光學系統來執行。然而,低溫多晶矽(LTPS)之晶粒邊界處的晶粒結構、晶粒尺寸和晶粒的形貌特別難以用光學系統進行觀察,這是由於晶粒尺寸可能低於光學解析度,使得晶粒對於光學系統而言是不可見的。基板的小部分的檢查亦已經使用帶電粒子束裝置搭配表面蝕刻來進行。表面蝕刻可以增強例如晶界的對比,但免不了破壞玻璃基板,因而是對基板的小片部分而非基板的整體來進行檢查。因此,在檢查基板之後,便不可能繼續處理基板,例如檢查晶粒結構對最終產品的影響。The inspection of the substrate can be performed by, for example, an optical system. However, the grain structure, grain size and grain morphology at the grain boundaries of low temperature polysilicon (LTPS) are particularly difficult to observe with optical systems because the grain size may be lower than the optical resolution, resulting in grain It is invisible to the optical system. Inspection of a small portion of the substrate has also been performed using a charged particle beam device in conjunction with surface etching. Surface etching can enhance the contrast of, for example, grain boundaries, but inevitably damages the glass substrate and is therefore inspected for the small portion of the substrate rather than the entirety of the substrate. Therefore, after the substrate is inspected, it is impossible to continue processing the substrate, for example, to check the influence of the grain structure on the final product.

因此,由於例如對大面積基板上的顯示器的品質的要求越來越高,因此需要一種用於檢查大面積基板的改進方法。Therefore, there is a need for an improved method for inspecting large area substrates due to, for example, the increasing demand for quality of displays on large area substrates.

本文提供一種檢查一基板的方法以及使用此方法的一設備。經由申請專利範圍、發明說明及所附圖式的內容,對於本揭露內容所述之多個方面、優點及特徵可進一步明確了解。Provided herein is a method of inspecting a substrate and an apparatus using the same. The aspects, advantages, and features of the present disclosure will be more clearly understood from the scope of the appended claims.

根據一實施例,提供一種檢查一基板的方法。此方法包括:提供基板至一真空腔室中,基板係為一大面積基板,其中基板具有一薄膜,此薄膜具有沈積在基板上的一晶粒結構;利用一成像帶電粒子束顯微鏡產生一主要帶電粒子束,其中主要帶電粒子束撞擊在真空腔室中的基板上;以及從基板在主要帶電粒子束撞擊時所釋放的信號粒子產生一個或多個影像,其中此一個或多個影像係為地形影像(topographic images)。According to an embodiment, a method of inspecting a substrate is provided. The method comprises: providing a substrate to a vacuum chamber, wherein the substrate is a large area substrate, wherein the substrate has a film having a grain structure deposited on the substrate; and utilizing an imaged charged particle beam microscope to generate a main a charged particle beam, wherein a primary charged particle beam impinges on a substrate in a vacuum chamber; and one or more images are generated from signal particles released by the substrate upon impact of the primary charged particle beam, wherein the one or more images are Topographic images.

一些實施例中,本文所述的一些創新方法可以在一電腦可讀取媒體中實施。此電腦可讀取媒體具有複數個指令儲存於其上,當指令在被執行時,使一帶電粒子束顯微鏡執行如本文所述的任意一種檢查一基板的方法。In some embodiments, some of the innovative methods described herein can be implemented in a computer readable medium. The computer readable medium has a plurality of instructions stored thereon, and when executed, causes a charged particle beam microscope to perform any of the methods of inspecting a substrate as described herein.

以下參照圖式對多個實施例進行詳細說明,各個圖式係描述其中的一個或多個例子。各個例子係用於舉例說明而非作為本揭露內容的限制。舉例而言,在一個實施例中說明或敘述的特徵可以使用於其他實施例或與其他實施例結合以衍生再進一步的實施例。本揭露內容包括上述的調整及變化。A plurality of embodiments are described in detail below with reference to the drawings, which illustrate one or more examples. The examples are intended to be illustrative and not limiting as to the disclosure. For example, features illustrated or described in one embodiment can be used in other embodiments or in combination with other embodiments to derive further embodiments. The disclosure includes the above adjustments and variations.

在下述有關圖式之說明中,相同的參考編號係指相同的元件。僅對各個實施例之不同之處係進行說明。圖式中的結構並非必然以實際的真實比例繪示,而是用於更佳地理解實施例。In the following description of the drawings, the same reference numerals refer to the same elements. Only the differences of the respective embodiments will be described. The structures in the drawings are not necessarily shown in actual true scale, but are used to better understand the embodiments.

本文所述之「基板」之用語包含非可撓性基板,例如玻璃基板或玻璃板;以及可撓性基板,例如卷材(web)和箔。基板可以是塗佈的基板,其中一層或多層材料塗佈或沈積在基板上,並藉由例如物理氣相沈積(PVD)製程或化學氣相沈積(CVD)製程而完成。The term "substrate" as used herein includes a non-flexible substrate such as a glass substrate or a glass plate; and a flexible substrate such as a web and a foil. The substrate may be a coated substrate in which one or more layers of material are coated or deposited on the substrate and are completed by, for example, a physical vapor deposition (PVD) process or a chemical vapor deposition (CVD) process.

本文所述的實施例有關於大面積基板,特別是用於顯示器市場的大面積基板。根據一些實施例,大面積基板或對應的各個基板支撐件可具有至少1平方公尺的尺寸。此尺寸可以從約1.375平方公尺(1100毫米×1250毫米 - 第5代)至約9平方公尺,更具體地從約2平方公尺至約9平方公尺或甚至高達12平方公尺。根據本文所述的一些實施例的結構、設備和方法所提供的基板或基板接收區可以是如本文所述的大面積基板。舉例而言,大面積基板或載體可以是第5代(GEN 5),其對應於約1.375平方公尺的基板(1.1公尺×1.25公尺);第7.5代(GEN 7.5),其對應於約4.39平方公尺的基板(1.95公尺×2.25公尺);第8.5代(GEN 8.5),其對應於至約5.7平方公尺的基板(2.2公尺×2.5公尺);或者第10代(GEN10),其對應於約9平方公尺的基板(2.88公尺×3130公尺)。甚至更高階代,如第11代(GEN 11)和第12代(GEN 12)以及其對應的基板區可以藉由類似地方式實施。The embodiments described herein relate to large area substrates, particularly large area substrates for the display market. According to some embodiments, the large area substrate or corresponding respective substrate support may have a size of at least 1 square meter. This size may range from about 1.375 square meters (1100 mm x 1250 mm - 5th generation) to about 9 square meters, more specifically from about 2 square meters to about 9 square meters or even up to 12 square meters. The substrate or substrate receiving region provided in accordance with the structures, devices, and methods of some embodiments described herein can be a large area substrate as described herein. For example, the large-area substrate or carrier may be the 5th generation (GEN 5), which corresponds to a substrate of about 1.375 square meters (1.1 meters x 1.25 meters); the 7.5th generation (GEN 7.5), which corresponds to A substrate of approximately 4.39 square meters (1.95 meters x 2.25 meters); 8.5th generation (GEN 8.5), which corresponds to a substrate of approximately 5.7 square meters (2.2 meters x 2.5 meters); or the 10th generation (GEN10), which corresponds to a substrate of about 9 square meters (2.88 meters x 3130 meters). Even higher orders, such as the 11th generation (GEN 11) and the 12th generation (GEN 12) and their corresponding substrate regions can be implemented in a similar manner.

在不限制本申請的保護範圍的情況下,在本文以下之內容中,帶電粒子束裝置例如是帶電粒子束顯微鏡或其部件,將被例示地稱作帶電粒子束裝置,其包括二次粒子或背散射粒子的偵測,二次粒子或背散射粒子例如是電子。多個實施例仍可以應用於用以獲得樣本影像的微粒(corpuscles)之檢測的設備和部件,微粒例如是具有電子或離子、光子、X射線或其他信號形式的二次和/或背散射帶電粒子。當本文述及微粒時,微粒應被理解為光信號,其中微粒是光子以及粒子,而其中微粒是粒子時則是離子、原子、電子或其他粒子。如本文所述,關於偵測的討論和描述是針對掃描電子顯微鏡中的電子而例示地描述。其他類型的帶電粒子,例如正離子,可以被用於各種不同儀器的裝置中。Without limiting the scope of protection of the present application, in the following context, a charged particle beam device, such as a charged particle beam microscope or a component thereof, will be exemplarily referred to as a charged particle beam device, including secondary particles or Detection of backscattered particles, secondary particles or backscattered particles are, for example, electrons. Various embodiments may still be applied to devices and components for obtaining detection of corpuscles of sample images, such as secondary and/or backscattered charging in the form of electrons or ions, photons, X-rays, or other signals. particle. When a particle is referred to herein, a particle is understood to mean an optical signal, wherein the particles are photons and particles, and wherein the particles are ions, atoms, electrons or other particles. As discussed herein, the discussion and description of detection is exemplarily described for electrons in a scanning electron microscope. Other types of charged particles, such as positive ions, can be used in devices of a variety of different instruments.

根據可以與其他實施例組合的本文的一些實施例,一信號(帶電粒子)束或一信號(帶電粒子)子束(beamlet)被稱為一二次和/或背散射粒子束。典型地,信號束或二次束是經由主要束或主要子束撞擊在試樣上而產生。主要帶電粒子束或主要帶電粒子子束是經由一粒子束源而產生,並且被導向且在待檢查或待成像的試樣上偏轉。According to some embodiments herein, which may be combined with other embodiments, a signal (charged particle) beam or a signal (charged particle) beamlet is referred to as a secondary and/or backscattered particle beam. Typically, the signal beam or secondary beam is generated by impinging on the sample via a primary beam or a primary beam. The primary charged particle beam or the predominantly charged particle beamlet is generated via a particle beam source and directed and deflected on the sample to be inspected or to be imaged.

第1圖繪示一種帶電粒子束裝置或一種帶電粒子束顯微鏡100。電子束(未示出)可以經由電子束源112而產生。在槍腔室110內可設置另外的束成形裝置(beam shaping means),例如是抑制件、提取器和/或陽極。束可以與限束孔徑(beam limiting aperture)對準,限束孔徑的尺寸被設計成使束成形,也就是阻擋一部份的束。電子束源艙包括TFE發射器。槍腔室可以被抽真空至10-8 毫巴至10-9 毫巴的壓力。FIG. 1 illustrates a charged particle beam device or a charged particle beam microscope 100. An electron beam (not shown) may be generated via electron beam source 112. Additional beam shaping means, such as suppressors, extractors and/or anodes, may be provided within the gun chamber 110. The beam can be aligned with a beam limiting aperture that is sized to shape the beam, i.e., block a portion of the beam. The electron beam source compartment includes a TFE emitter. The gun chamber can be evacuated to a pressure of 10 -8 mbar to 10 -9 mbar.

在帶電粒子束顯微鏡100的束柱的一另外的真空腔室120中可以設置一聚光器透鏡(condenser lens)。舉例而言,聚光器透鏡可以包括一磁極片122和線圈124。在另外的真空腔室中可以設置另外的電子光學元件126。另外的電子光學元件126可以選自由消象散器、用於色差和/或球面像差的校正元件、以及用於將主要帶電粒子束與物鏡(objective lens)140的光軸對準的對準致偏器所組成的群組。A condenser lens may be disposed in an additional vacuum chamber 120 of the beam column of the charged particle beam microscope 100. For example, the concentrator lens can include a pole piece 122 and a coil 124. Additional electro-optical elements 126 may be provided in additional vacuum chambers. The additional electro-optical element 126 may be selected from the group consisting of an astigmatism device, a correction element for chromatic aberration and/or spherical aberration, and an alignment for aligning the main charged particle beam with the optical axis of the objective lens 140. A group of polarizers.

主要電子束可以透過物鏡140而聚焦在基板10上。基板10定位於基板支撐件150上的一基板位置上。當電子束撞擊到基板10上時,信號電子從基板10釋放,且可以由偵測器139所偵測,而信號電子例如是二次和/或背散射電子、和/或x射線。The main electron beam can be focused on the substrate 10 through the objective lens 140. The substrate 10 is positioned at a substrate location on the substrate support 150. When the electron beam impinges on the substrate 10, the signal electrons are released from the substrate 10 and can be detected by the detector 139, which is, for example, secondary and/or backscattered electrons, and/or x-rays.

在第1圖所對應描述的一些實施例中,提供一聚光器透鏡123。在聚光器透鏡與例如限束孔徑之間可以設置一個兩級致偏系統(two-stage deflection system)(未示出),用於將束對準孔徑,而限束孔徑例如是束成形孔徑(beam shaping aperture)。如第1圖所示,物鏡140具有一磁性透鏡部件,其具有磁極片142和146,並具有線圈144。物鏡將主要電子束聚焦在基板10上。此外,一上電極152和一下電極154形成物鏡140的一個靜電透鏡部件。In some embodiments, corresponding to that depicted in FIG. 1, a concentrator lens 123 is provided. A two-stage deflection system (not shown) may be provided between the concentrator lens and, for example, the beam limiting aperture, for aligning the beam with the aperture, and the beam limiting aperture is, for example, a beam shaping aperture. (beam shaping aperture). As shown in Fig. 1, the objective lens 140 has a magnetic lens member having pole pieces 142 and 146 and having a coil 144. The objective lens focuses the main electron beam on the substrate 10. Further, an upper electrode 152 and a lower electrode 154 form an electrostatic lens component of the objective lens 140.

此外,可以提供一掃描致偏器組件170。掃描致偏器組件170可以例如是一磁性組件,但較佳為一靜電掃描致偏器組件,其係配置用於高畫素速率。掃描致偏器組件170可以是一單級組件,如第1圖所示。另外,也可以設置一兩級致偏器組件甚至一三級致偏器組件用於掃描。各個級(stage)具有沿光軸的不同位置。Additionally, a scan deflector assembly 170 can be provided. The scan deflector assembly 170 can be, for example, a magnetic component, but is preferably an electrostatic scan deflector assembly configured for high pixel rates. Scanning deflector assembly 170 can be a single stage component, as shown in FIG. Alternatively, a two-stage deflector assembly or even a three-stage deflector assembly can be provided for scanning. Each stage has a different position along the optical axis.

下電極154連接到一電壓源(未示出)。下電極作為物鏡的浸入式透鏡部件的減速電極,浸入式透鏡部件而也就是減速電場(retarding field)透鏡部件,下電極通常處於一電位,此電位使基板上的帶電粒子具有等於或小於2 keV的著陸能量,例如是500 V或1 keV。如第1圖所示,根據一些實施例,基板支撐件150可以設置為接地電位。因此,下電極154可以具有約200 V至1 kV的正電壓,例如用以產生200 eV到1 keV的著陸能量。The lower electrode 154 is connected to a voltage source (not shown). The lower electrode serves as the decelerating electrode of the immersed lens member of the objective lens, the immersed lens member, that is, the retarding field lens member, and the lower electrode is usually at a potential which causes the charged particles on the substrate to have a wavelength equal to or less than 2 keV. The landing energy is, for example, 500 V or 1 keV. As shown in FIG. 1, according to some embodiments, the substrate support 150 can be set to a ground potential. Thus, the lower electrode 154 can have a positive voltage of about 200 V to 1 kV, for example to generate a landing energy of 200 eV to 1 keV.

根據可以與其他實施例組合的本文的一些實施例,可以在基板10的附近使主要帶電粒子束減速,例如是在物鏡內、物鏡後、或其組合。可以經由下電極154,也就是減速電場透鏡,來各別地提供減速。可以經由例如物鏡的靜電透鏡部件來提供減速。 舉例而言,更進一步地或替代地,可以施加一減速偏壓電壓到基板10和/或基板支撐件,以提供根據本文所述的一些實施例的一減速電場透鏡部件。物鏡可以是一個靜電-磁性複合透鏡,其具有例如一軸向間隙或徑向間隙,或者物鏡可以是一靜電減速電場透鏡。According to some embodiments herein, which may be combined with other embodiments, the primary charged particle beam may be decelerated in the vicinity of the substrate 10, such as within an objective lens, behind an objective lens, or a combination thereof. Deceleration can be provided separately via the lower electrode 154, that is, the decelerating electric field lens. Deceleration can be provided via an electrostatic lens component such as an objective lens. For example, further or alternatively, a deceleration bias voltage can be applied to the substrate 10 and/or the substrate support to provide a decelerating electric field lens component in accordance with some embodiments described herein. The objective lens may be an electrostatic-magnetic composite lens having, for example, an axial gap or a radial gap, or the objective lens may be an electrostatically decelerating electric field lens.

根據可以與其他實施例組合的本文的一些實施例,物鏡的下部或邊緣與基板或基板支撐件之間的距離可為1毫米(mm)至3毫米,例如是1.5毫米,而物鏡的下部或邊緣例如是下電極154。在大面積基板上測量的影像的解析度係為低於15奈米,例如是3奈米至12奈米,例如約10奈米,而所述大面積基板例如是具有面積為等於或大於1平方公尺、例如是等於或大於1.5平方公尺的基板。解析度主要由大面積基板的基板支撐件的尺寸以及由基板支撐件的尺寸引起的振動和運動來分隔。According to some embodiments herein, which may be combined with other embodiments, the distance between the lower portion or edge of the objective lens and the substrate or substrate support may be from 1 millimeter (mm) to 3 millimeters, for example 1.5 millimeters, while the lower portion of the objective lens or The edge is, for example, the lower electrode 154. The resolution of the image measured on the large-area substrate is less than 15 nm, for example, 3 nm to 12 nm, for example, about 10 nm, and the large-area substrate has, for example, an area equal to or greater than 1 The square meter is, for example, a substrate equal to or larger than 1.5 square meters. The resolution is primarily separated by the size of the substrate support of the large area substrate and the vibration and motion caused by the size of the substrate support.

具有等於或小於2 keV的著陸能量,特別是等於或小於1 keV的著陸能量的優點在於,與高能量電子束相比,撞擊到基板上的主要電子束產生更強的信號。由於沈積在基板上的層很薄,此些層例如是LTPS層,並且由於高能量電子穿透進入基板深處中,也就是到層之下,只有少量電子可以產生包含關於沈積層的信息的偵測器信號。相比之下,例如是具有等於或小於2 keV的著陸能量的電子之低能量電子僅穿透進入基板的淺區域,因而提供關於沈積層的更多信息。因此,即使當基板並未進行表面蝕刻時,如本文所述的一些實施例可以提供一改進的影像,例如是晶界的改進的影像。此外,本文所述的一些實施例提供了在大面積基板上的真空條件下的電子顯微鏡影像,其中大面積基板也就是面積為等於或大於1平方公尺的基板。在真空下提供電子顯微鏡影像,藉此容許了具有例如是等於或小於2 keV的低著陸能量,例如是等於或小於1 keV。An advantage of having a landing energy equal to or less than 2 keV, in particular a landing energy equal to or less than 1 keV, is that the main electron beam impinging on the substrate produces a stronger signal than the high energy electron beam. Since the layers deposited on the substrate are very thin, such layers are, for example, LTPS layers, and because high energy electrons penetrate deep into the substrate, ie below the layer, only a small amount of electrons can produce information containing information about the deposited layer. Detector signal. In contrast, low energy electrons, such as electrons having landing energy equal to or less than 2 keV, penetrate only into the shallow regions of the substrate, thus providing more information about the deposited layer. Thus, some embodiments as described herein can provide an improved image, such as an improved image of a grain boundary, even when the substrate is not surface etched. Moreover, some embodiments described herein provide an electron microscope image under vacuum conditions on a large area substrate, wherein the large area substrate is a substrate having an area equal to or greater than 1 square meter. An electron microscope image is provided under vacuum, thereby allowing a low landing energy having, for example, 2 keV or less, for example, equal to or less than 1 keV.

對於高解析度的應用,提供例如是等於或小於2 keV的著陸能量、並且在束柱中具有高帶電粒子束能量係為有益的,而等於或小於2 keV的著陸能量比方是等於或小於1 keV,高帶電粒子束能量例如是等於或大於10 keV的束能量,比方是等於或大於30 keV。一些實施例可以包括在基板10之前的減速,例如在物鏡內和/或在物鏡與基板10之間的一係數係為等於或大於5,比方是等於或大於10的一係數。對於其他的應用,也可以提供例如是等於或小於2 keV的低著陸能量而不需要減速,例如是在束柱內的束能量不高於2 keV的情況下。For high-resolution applications, it is beneficial to provide, for example, a landing energy equal to or less than 2 keV and a high charged particle beam energy in the beam column, and a landing energy equal to or less than 2 keV is equal to or less than 1 keV, the high charged particle beam energy is, for example, a beam energy equal to or greater than 10 keV, such as equal to or greater than 30 keV. Some embodiments may include deceleration prior to the substrate 10, such as within the objective lens and/or a coefficient between the objective lens and the substrate 10 being equal to or greater than 5, such as a factor equal to or greater than 10. For other applications, it is also possible to provide low landing energy, for example equal to or less than 2 keV, without deceleration, for example if the beam energy in the beam column is not higher than 2 keV.

根據可以與其他實施例組合的本文的一些實施例,係提供具有晶粒的薄膜的電子顯微鏡影像。舉例而言,係提供一部分之沈積在大面積基板上的薄膜的掃描式電子顯微鏡影像。此影像是在允許低能量成像的真空條件下所提供,其中薄膜上的電子束的著陸能量為等於或小於2 keV,例如約1 keV。因此,與例如是使用空氣掃描式電子顯微鏡(AIR SEM)的高能量電子束成像(< 7 keV)相比,本揭露內容之關於低能量成像的實施例提供了非破壞性成像。因此,可以在製造光電裝置的過程中提供電子束觀察,而光電裝置例如是製造在大面積基板上的顯示器。According to some embodiments herein, which may be combined with other embodiments, an electron microscope image of a film having crystal grains is provided. For example, a scanning electron microscope image of a portion of a film deposited on a large area substrate is provided. This image is provided under vacuum conditions that allow low energy imaging where the beam energy of the electron beam on the film is equal to or less than 2 keV, such as about 1 keV. Thus, embodiments of the present disclosure relating to low energy imaging provide non-destructive imaging as compared to, for example, high energy electron beam imaging (< 7 keV) using an air scanning electron microscope (AIR SEM). Thus, electron beam observation can be provided during the manufacture of an optoelectronic device, such as a display fabricated on a large area substrate.

如第1圖所示的帶電粒子束顯微鏡100包括一偵測器139,偵測器139位於一偵測真空區域130中。亦如第2圖所示的偵測器139包括一閃爍器裝置136。閃爍體裝置136具有一開孔201,例如是位於閃爍器裝置的中心的開孔。開孔201用於使主要帶電粒子束的路徑通過偵測器139。The charged particle beam microscope 100 as shown in FIG. 1 includes a detector 139 located in a detection vacuum region 130. The detector 139, also shown in FIG. 2, includes a scintillator device 136. The scintillator device 136 has an opening 201, such as an opening in the center of the scintillator device. The opening 201 is for passing the path of the main charged particle beam through the detector 139.

閃爍器裝置136被分段以具有兩個或更多個閃爍器分段236。根據可以與其他實施例組合的本文的一些實施例,可具有四個閃爍器分段,也就是提供一四段偵測器(Quad detector)。四個分段使得可呈現在基板平面的x和y之兩個維度上的地形圖像。各個影像如第3A圖所示。The scintillator device 136 is segmented to have two or more scintillator segments 236. According to some embodiments herein, which may be combined with other embodiments, there may be four scintillator segments, that is, a quad detector. The four segments make it possible to present a topographic image in both dimensions x and y of the substrate plane. Each image is shown in Figure 3A.

一光導134連接到各個閃爍器分段236。此外,可為各個光導提供一個光電倍增器或另一個信號偵測元件132。因此,可以與其他實施例組合的本文的一些實施例包括一Everhart-Thornley偵測器裝置,其作為一個偵測器139。一些實施例亦可使用一雪崩光電二極管(avalanche photodiode)作為一信號偵測元件或一微通道板。A light guide 134 is coupled to each of the scintillator segments 236. Additionally, one photomultiplier or another signal detecting element 132 can be provided for each light guide. Accordingly, some embodiments herein that may be combined with other embodiments include an Everhart-Thornley detector device as a detector 139. Some embodiments may also use an avalanche photodiode as a signal detecting component or a microchannel plate.

根據可以與其他實施例組合的本文的一些實施例,閃爍器裝置可由具有較低帶寬的低噪聲閃爍器製造,這導致較好的信噪比,而此信噪比可更進一步藉由平均閃爍器裝置136的多個片段而改善。例如,閃爍器可具有50奈秒至100奈秒的衰減時間,例如約60奈秒。根據本揭露內容的一些實施例之測量可以具有3 MHz至10 MHz的畫素速率,例如大約5 MHz。According to some embodiments herein, which may be combined with other embodiments, the scintillator device may be fabricated from a low noise scintillator having a lower bandwidth, which results in a better signal to noise ratio, which may be further averaged by flicker The plurality of segments of the device 136 are improved. For example, the scintillator can have a decay time of 50 nanoseconds to 100 nanoseconds, such as about 60 nanoseconds. Measurements in accordance with some embodiments of the present disclosure may have a pixel rate of 3 MHz to 10 MHz, such as approximately 5 MHz.

在可以與其他實施例組合的本文的一些實施例中,可使主要帶電粒子束傾斜,以在一預定傾斜束著陸角度下撞擊在基板上。例如,傾斜的主要帶電粒子束可以具有一傾角(相對於基板上的法線),也就是大於5°、例如是10°至20°、例如是大約15°的一入射角。未傾斜的主要帶電粒子束可以具有小於3°的入射角。根據本文所述的一些實施例,如本文所述的成像帶電粒子束顯微鏡可以經由一個或多個傾斜束來進行成像。因此,3D成像、步驟的成像和其它高度結構的成像可以得到改善。In some embodiments herein, which may be combined with other embodiments, the primary charged particle beam may be tilted to impinge on the substrate at a predetermined oblique beam landing angle. For example, the inclined primary charged particle beam can have an angle of inclination (relative to the normal on the substrate), that is, an angle of incidence greater than 5°, such as 10° to 20°, such as about 15°. The un-tilted primary charged particle beam may have an angle of incidence of less than 3°. According to some embodiments described herein, an imaged charged particle beam microscope as described herein can be imaged via one or more oblique beams. Thus, 3D imaging, imaging of steps, and other highly structured imaging can be improved.

根據一實施例,可以經由一預透鏡致偏單元(pre-lens deflection unit)而產生具有一傾角的一束傾斜(beam tilt),此預透鏡致偏單元可以包括兩個致偏線圈(deflection coils)用以將束偏轉離開光軸。由於這兩個級(stage),束可以被偏轉而看起來像是從與帶電粒子束源的明顯位置重合的一點而出現。預透鏡致偏單元可以配置在帶電粒子源和物鏡之間。一透鏡內致偏單元可以設置在物鏡的場內,使得各個場重疊。透鏡內致偏單元可以是一兩級單元,其包括兩個致偏線圈。透鏡內致偏單元可以重新導向束的方向,使得束在光軸處穿過物鏡的中心,也就是聚焦作用的中心。重新導向就是使得帶電粒子束從一個方向撞擊基板的表面,而此方向實質上與沒有束穿過光軸的方向係為相反。透鏡內致偏單元和物鏡的組合作用將主要帶電粒子束導向回光軸,使得主要帶電粒子束在預定傾斜束著陸角度下擊中樣品。According to an embodiment, a beam tilt having an inclination angle may be generated via a pre-lens deflection unit, and the pre-lens deflecting unit may include two deflection coils (deflection coils) ) to deflect the beam away from the optical axis. Due to these two stages, the beam can be deflected to appear to appear from a point coincident with the apparent location of the charged particle beam source. The pre-lens deflecting unit can be disposed between the charged particle source and the objective lens. An intra-lens deflecting unit may be disposed within the field of the objective lens such that the fields overlap. The in-lens deflecting unit can be a two-stage unit comprising two deflecting coils. The in-lens deflecting unit can redirect the direction of the beam such that the beam passes through the center of the objective lens at the optical axis, that is, the center of the focusing action. Reorientation is such that the charged particle beam strikes the surface of the substrate from one direction, and this direction is substantially opposite to the direction in which no beam passes through the optical axis. The combined action of the in-lens deflecting unit and the objective lens directs the primary charged particle beam back to the optical axis such that the primary charged particle beam hits the sample at a predetermined oblique beam landing angle.

根據另一實施例,可以經由包括兩個致偏器的一偏轉單元來產生一束傾斜,以將束偏轉離開光軸。由於這兩個級(stage),束可以被偏轉而看起來像是從與帶電粒子束源的明顯位置重合的一點而出現。預透鏡致偏單元可以配置在帶電粒子源和物鏡之間。在預透鏡致偏單元上方可以設置產生正交電磁場的一維恩濾波器(Wien filter)。帶電粒子束的離軸路徑通過物鏡導致第一色差。維恩濾波器的能量分散效應引入與第一色差相同種類的第二色差。經由適當地選擇維恩濾波器的電場E和磁場B的強度,可以將第二色差調整為與第一色差具有相同的大小但相反的方向。實際上,第二色差實質上補償了基板表面的平面中的第一色差。主要帶電粒子束藉由離軸行進通過物鏡以及物鏡的聚焦作用而傾斜。According to another embodiment, a beam tilt can be generated via a deflection unit comprising two deflectors to deflect the beam away from the optical axis. Due to these two stages, the beam can be deflected to appear to appear from a point coincident with the apparent location of the charged particle beam source. The pre-lens deflecting unit can be disposed between the charged particle source and the objective lens. A Wien filter that generates an orthogonal electromagnetic field may be disposed above the pre-lens deflecting unit. The off-axis path of the charged particle beam causes the first chromatic aberration through the objective lens. The energy dispersion effect of the Wien filter introduces the same kind of second chromatic aberration as the first chromatic aberration. By appropriately selecting the electric field E of the Wien filter and the intensity of the magnetic field B, the second chromatic aberration can be adjusted to have the same magnitude but opposite direction as the first chromatic aberration. In fact, the second chromatic aberration substantially compensates for the first chromatic aberration in the plane of the substrate surface. The main charged particle beam is tilted by the off-axis travel through the objective lens and the focusing action of the objective lens.

根據可以進一步地或替代地應用的另外的一些實施例,亦可以機械式地傾斜束柱以引入一束傾斜,也就是相對於基板的光軸。藉由在束柱內提供一傾斜束路徑來傾斜帶電粒子束提供了在數個束角度之間的更快速的切換,並且與機械運動相比減少了振動的引入。According to further embodiments, which may be further or alternatively applied, the beam column may also be mechanically tilted to introduce a beam tilt, i.e., relative to the optical axis of the substrate. Tilting the charged particle beam by providing an oblique beam path within the beam column provides for faster switching between several beam angles and reduces the introduction of vibration as compared to mechanical motion.

根據一些實施例,係提供一種檢查基板的設備,特別是檢查用於顯示器製造的基板的設備。此裝置包括如本文所述的一真空腔室。如本文所述,此設備更包括如本文所述的配置在真空腔室中的一基板支撐件。此設備更包括如本文所述的一第一成像帶電粒子束顯微鏡和選擇性的一第二成像帶電粒子束顯微鏡。第二成像帶電粒子束顯微鏡與第一成像帶電粒子束顯微鏡相隔一距離,此距離係為至少5公分至60公分,例如大約25公分至35公分。According to some embodiments, an apparatus for inspecting a substrate, particularly an apparatus for inspecting a substrate for display manufacturing, is provided. This device includes a vacuum chamber as described herein. As described herein, the apparatus further includes a substrate support disposed in the vacuum chamber as described herein. The apparatus further includes a first imaged charged particle beam microscope and a second imaged charged particle beam microscope as described herein. The second imaged charged particle beam microscope is spaced from the first imaged charged particle beam microscope by a distance of at least 5 centimeters to 60 centimeters, such as from about 25 centimeters to 35 centimeters.

如第3A圖所示的影像是低溫多晶矽的晶粒結構的偵測器139之四個分段的影像。在玻璃基板上製造TFT的技術包括非晶矽(a-Si)製程和低溫多晶矽(LTPS)製程。非晶矽製程和低溫多晶矽製程之間的主要差異在於裝置的電氣特性和製程的複雜度。低溫多晶矽(LTPS)TFT具有較高的遷移率(mobility),但製造低溫多晶矽TFT的製程比較複雜。雖然非晶矽TFT具有較低的遷移率,但製造非晶矽TFT的製程係簡單的。根據本文所述的一些實施例,可以改善並控制製程的低溫多晶矽TFT製程係為有益的。低溫多晶矽TFT製程是本文所述的實施例可以被有益的使用的一個例子。為了製造一個低溫多晶矽TFT,一沈積層因為雷射輻射而局部融化。例如,雷射輻射可具有大約60公分的一寬度。因此,帶電粒子束顯微鏡之間的大約30公分的距離在此區域中便足以提供製程的分析。The image shown in Fig. 3A is an image of four segments of the detector 139 of the grain structure of the low temperature polysilicon. Techniques for fabricating TFTs on glass substrates include amorphous germanium (a-Si) processes and low temperature polysilicon (LTPS) processes. The main difference between the amorphous tantalum process and the low temperature polysilicon process is the electrical characteristics of the device and the complexity of the process. Low temperature polycrystalline germanium (LTPS) TFTs have high mobility, but the process for fabricating low temperature polycrystalline germanium TFTs is complicated. Although the amorphous germanium TFT has a low mobility, the process for fabricating the amorphous germanium TFT is simple. According to some embodiments described herein, a low temperature polysilicon TFT process system that can improve and control the process is beneficial. The low temperature polysilicon TFT process is an example of an embodiment that can be advantageously used in the embodiments described herein. In order to fabricate a low temperature polycrystalline germanium TFT, a deposited layer is partially melted by laser radiation. For example, the laser radiation can have a width of approximately 60 cm. Therefore, a distance of approximately 30 cm between the charged particle beam microscopes is sufficient in this region to provide a process analysis.

本文提供一種檢查一基板的方法,此方法包括在真空腔室中產生主要帶電粒子束,並從信號粒子產生一個或多個影像,其中此一個或多個影像是地形影像。如第3A圖所示,可以藉由分段偵測器對具有一晶粒結構的一薄膜的一部份進行成像而提供地形影像,而分段偵測器例如是具有四個分段的四段偵測器(Quad detector)。如第3A圖所示的多個地形影像可以結合至如第3B圖所示的一結合的視角(combined-perspective)之二次電子影像。根據本文所述的一些實施例,本文所述的影像可以和具有兩個或更多個發光角度例如是四個發光角度的光源之光學影像相比,其中從成像晶粒結構的發光角度數值的陰影可以獲得光學影像。這和以傾斜束進行測量相比是不同的,以傾斜束進行測量是對應至一立體光學影像。Provided is a method of inspecting a substrate, the method comprising generating a primary charged particle beam in a vacuum chamber and generating one or more images from the signal particle, wherein the one or more images are topographic images. As shown in FIG. 3A, a topographic image can be provided by imaging a portion of a film having a grain structure by a segmented detector, for example, a segmented detector having four segments. Quad detector. A plurality of topographical images as shown in FIG. 3A may be combined to a combined-perspective secondary electronic image as shown in FIG. 3B. According to some embodiments described herein, the image described herein can be compared to an optical image of a light source having two or more illumination angles, such as four illumination angles, wherein the values from the illumination angle of the imaging grain structure are Shadows can be used to obtain optical images. This is different from measuring with an oblique beam, which corresponds to a stereoscopic optical image.

在第3B圖中,已經提供了一種演算法來突顯出LTPS薄膜的晶粒的晶界。如第3A圖所示的地形影像或如第3B圖所示的結合影像可以用於檢測例如是在顯示器工業中的LTPS層,或者其他具有晶粒結構的薄膜層。根據本文所述的方法所觀察的電子束能夠對具有晶粒結構的薄膜進行成像,薄膜例如是具有多個視角的多個LTPS層。可以提供改進的地形信息。這可以更精確地評估晶粒結構。In Figure 3B, an algorithm has been provided to highlight the grain boundaries of the grains of the LTPS film. The topographic image as shown in Fig. 3A or the combined image as shown in Fig. 3B can be used to detect, for example, an LTPS layer in the display industry, or other thin film layers having a grain structure. The electron beam observed according to the method described herein is capable of imaging a film having a grain structure such as a plurality of LTPS layers having a plurality of viewing angles. Improved terrain information can be provided. This allows a more accurate evaluation of the grain structure.

為了進行比較,第4圖呈現現有技術的測量結果。第4圖呈現了破壞性測量的影像,其中LTPS層已被蝕刻並且用高能量電子束成像。影像表面可呈現線42的大部分,且可以識別與點44對應的峰。顯而易見的是,如第3A圖所示的一個或多個影像或如第3B圖所示的結合影像提供了改進的地形信息,並因此被用於對晶粒結構進行較佳的評估。此外,如第3A圖和第3B圖所示之獲得的影像是非破壞性的。因此,可以根據本文所述的實施例而進一步處理如第3A圖和第3B圖所示之成像的薄膜或一對應的基板。For comparison, Figure 4 presents the measurement results of the prior art. Figure 4 presents an image of a destructive measurement in which the LTPS layer has been etched and imaged with a high energy electron beam. The image surface can present a majority of the line 42 and can identify peaks corresponding to points 44. It will be apparent that one or more images as shown in Figure 3A or a combined image as shown in Figure 3B provides improved topographical information and is therefore used to better evaluate the grain structure. Furthermore, the images obtained as shown in Figures 3A and 3B are non-destructive. Thus, the imaged film or a corresponding substrate as shown in Figures 3A and 3B can be further processed in accordance with the embodiments described herein.

根據本文所述的一些實施例,一晶粒結構可以藉由晶粒的尺寸、晶粒的形狀、晶粒的分佈、晶粒的面積及其類似特徵來描述。此些參數可以經由對應於上述一個或多個參數的統計分析方法來評估。舉例而言,晶粒結構的晶粒的一特徵係可作為一算術平均值、一二次平均值、一加權的平均值、及/或一中位數值。According to some embodiments described herein, a grain structure can be described by the size of the grains, the shape of the grains, the distribution of the grains, the area of the grains, and the like. Such parameters may be evaluated via statistical analysis methods corresponding to one or more of the parameters described above. For example, a feature of the grain of the grain structure can be used as an arithmetic mean, a quadratic average, a weighted average, and/or a median value.

根據可以與其他實施例組合的本文的一些實施例,地形信息可以由軟體演算法所使用,例如在例如是LTPS晶粒結構中檢測和分析晶粒結構。晶粒結構特徵的計算亦可以包括分水嶺演算法。基於一個或多個影像的計算可以提供選自以下的晶粒結構的晶粒的至少一個特徵:晶粒結構的晶粒的一面積、晶粒結構的晶粒的一周長、晶粒結構的晶粒的一最小尺寸、晶粒結構的晶粒的一最大尺寸、晶粒結構的晶粒沿一預定方向的一尺寸、以及晶粒結構的晶粒的晶界的一波峰高度,而上述的一個或多個影像即是地形影像或地形影像的結合影像。例如,一個二通道或多通道偵測器用來從自頂向下之SEM影像中的兩個或更多個各別視角之準照明源(quasi illumination sources)進行LTPS地形的成像,其中二通道或多通道偵測器例如是四通道偵測器,而兩個或更多個視角例如是四個不同視角。此些兩個或更多個、例如是四個視角給出表面信息,此表面信息用以對用來描述具有晶粒結構的薄膜的參數之尺寸、均勻性、局部分佈和所有統計數據進行偵測和評估,而具有晶粒結構的薄膜也就是LTPS層。According to some embodiments herein, which may be combined with other embodiments, the terrain information may be used by a software algorithm, such as detecting and analyzing grain structures in, for example, an LTPS grain structure. The calculation of grain structure characteristics may also include a watershed algorithm. The calculation based on one or more images may provide at least one feature of a grain of a grain structure selected from the group consisting of: an area of a grain of a grain structure, a length of a grain of a grain structure, a crystal of a grain structure a minimum size of the grain, a maximum size of the grain of the grain structure, a size of the grain of the grain structure along a predetermined direction, and a peak height of the grain boundary of the grain of the grain structure, and the above one Or multiple images are a combination of terrain images or terrain images. For example, a two-channel or multi-channel detector is used to image LTPS terrain from two or more quasi illumination sources in a top-down SEM image, where two channels or The multi-channel detector is, for example, a four-channel detector, and two or more viewing angles are, for example, four different viewing angles. Such two or more, for example four, viewing angles give surface information for detecting the size, uniformity, local distribution and all statistical data of the parameters used to describe the film having the grain structure. Measured and evaluated, and the film with grain structure is the LTPS layer.

根據可以與其他實施例組合的本文的一些實施例,晶粒結構的特徵和/或晶粒結構的參數的統計數據可以用來驗證沈積薄膜的一製造方法的製程參數。可以提供一反饋至具有晶粒結構的薄膜的製程。舉例而言,可以藉由根據本文所述的一些實施例之電子束觀察(electron beam review,EBR)來控制一個低溫多晶矽(LTPS)TFT製程。According to some embodiments herein, which may be combined with other embodiments, statistical data on the characteristics of the grain structure and/or the parameters of the grain structure may be used to verify process parameters of a method of fabricating the deposited film. A process of feeding back a film having a grain structure can be provided. For example, a low temperature polysilicon (LTPS) TFT process can be controlled by electron beam review (EBR) according to some embodiments described herein.

根據可以與其他實施例組合的本文的一些實施例,用於識別晶粒結構的特徵或者薄膜的晶粒結構的參數的統計數據的演算法可以應用於如第3B圖所示的結合影像。已經發現將這些演算法應用於第3A圖所示的各個地形影像上、並將由此些演算法產生的多個值結合至一結合的值以用來評估晶粒結構可能係有益的。According to some embodiments herein that may be combined with other embodiments, the algorithm for identifying statistical data of the features of the grain structure or the grain structure of the film may be applied to the combined image as shown in FIG. 3B. It has been found that applying these algorithms to the various topographical images shown in Figure 3A and combining the multiple values produced by such algorithms into a combined value for evaluating the grain structure may be beneficial.

根據本文所述的一些實施例,可以測量晶粒結構中的晶粒的面積、晶粒結構中的晶粒的周長、及晶粒結構中的晶粒的一個或多個尺寸。舉例而言,可以測量具有大約100奈米至500奈米之尺寸的晶粒。根據可以與其他實施例組合的本文的一些實施例,可以經由掃描基板上方的主要電子束而測量的視域(field of view)可具有高達10微米(µm)的尺寸。According to some embodiments described herein, the area of the grains in the grain structure, the perimeter of the grains in the grain structure, and one or more dimensions of the grains in the grain structure can be measured. For example, a grain having a size of about 100 nm to 500 nm can be measured. According to some embodiments herein, which may be combined with other embodiments, a field of view that may be measured via scanning a primary electron beam over a substrate may have a size of up to 10 micrometers (μm).

晶粒典型地被一晶界所環繞,晶界具有波峰,波峰可具有等於或小於50奈米的波峰高度。根據可以與其他實施例組合的本文的一些實施例,帶電粒子束顯微鏡的正常操作具有一非傾斜束,也就是束在基板上可以具有等於或小於3°的入射角。波峰的高度可以根據一個或多個地形影像的陰影的長度而決定。陰影的長度可以校準至測量的波峰高度。The grains are typically surrounded by a grain boundary having a peak at the grain boundary, and the peaks may have a peak height equal to or less than 50 nm. According to some embodiments herein, which may be combined with other embodiments, the normal operation of a charged particle beam microscope has a non-inclined beam, i.e., the beam may have an angle of incidence of 3 or less on the substrate. The height of the peak can be determined by the length of the shadow of one or more terrain images. The length of the shadow can be calibrated to the measured peak height.

為了校準,主要帶電粒子束可以被傾斜至一角度,此角度係等於或大於5°,例如是大約15°。經由一個傾斜束影像或者兩個或多個傾斜束影像,可以測量高度輪廓的一高度,而高度輪廓的高度也就是晶粒的晶界。在具有一晶粒結構的一薄膜上或者是在具有人造校準特徵的一基板上可以得到上述一個傾斜束影像或兩個或多個傾斜束影像,而具有晶粒結構的薄膜例如是低溫多晶矽(LTPS)層。可以從一傾斜束的測量而得到晶粒結構的晶界的高度或者人造校準特徵的絕對值。在移除傾斜並提供正常操作的入射角之後,則可以測量地形影像,且陰影的長度可以被校準至之前的測量高度,其中正常操作的入射角例如是小於3°的傾斜程度,比方是0°的傾斜程度。For calibration, the primary charged particle beam can be tilted to an angle that is equal to or greater than 5°, such as about 15°. A height of the height profile can be measured via an oblique beam image or two or more oblique beam images, and the height of the height profile is also the grain boundary of the grain. The above-mentioned one oblique beam image or two or more oblique beam images may be obtained on a film having a grain structure or on a substrate having an artificial alignment feature, and the film having a grain structure is, for example, a low temperature polysilicon ( LTPS) layer. The height of the grain boundaries of the grain structure or the absolute value of the artificial calibration features can be obtained from the measurement of an oblique beam. After the tilt is removed and the normal operating angle of incidence is provided, the topographic image can be measured and the length of the shadow can be calibrated to the previous measured height, where the normal operating angle of incidence is, for example, less than 3°, such as 0 The degree of tilt of °.

根據一些實施態樣,用於檢查用於顯示器製造的大面積基板的設備可以是在線(in-line)設備,也就是可以將此設備與另一個先前的測試或處理過程一致地提供,且與更另一個隨後的測試或處理過程一致地提供,而此設備可能包括一裝載閘(load lock),裝載閘用以在真空腔室中加載和卸載以成像帶電粒子束顯微鏡成像的基板,成像帶電粒子束顯微鏡例如是掃描式電子顯微鏡(SEM)。由於基板上用於成像的帶電粒子束具有低能量,例如是等於或小於2 kV,因此設置在基板上的結構不會被破壞。因此,可以將基板提供至顯示器製造廠中進行進一步處理。如本文所理解的,待測試的基板的數量可以是顯示器製造廠中的基板的全部數量的10 %至100 %。因此,即使可以將用於檢查且包括成像帶電粒子束顯微鏡的設備提供作為在線工具,仍不必測試生產線中的100 %的基板。According to some embodiments, the apparatus for inspecting a large area substrate for display manufacturing may be an in-line device, that is, the device may be provided in accordance with another prior test or process, and Still another subsequent test or process is provided consistently, and the device may include a load lock for loading and unloading the substrate imaged by the charged particle beam microscope in the vacuum chamber, imaged charged The particle beam microscope is, for example, a scanning electron microscope (SEM). Since the charged particle beam for imaging on the substrate has a low energy, for example, equal to or less than 2 kV, the structure disposed on the substrate is not destroyed. Thus, the substrate can be provided to a display manufacturer for further processing. As understood herein, the number of substrates to be tested may be from 10% to 100% of the total number of substrates in the display manufacturer. Therefore, even if an apparatus for inspection and including an imaged charged particle beam microscope can be provided as an in-line tool, it is not necessary to test 100% of the substrates in the production line.

真空腔室可包括一個或多個閥,閥可以將真空腔室與另一腔室連接,特別是當此設備是在線設備時。當一基板被導向進入真空腔室之後,便可關閉此一個或多個閥。因此,真空腔室中的氣體氛圍可以經由一真空產生技術而控制,例如可以經由一個或多個真空幫浦來控制。在真空腔室中檢查基板的一個好處是,和例如是在大氣壓下進行相比,真空條件可以有助於使用低能量帶電粒子束來檢查基板。舉例而言,低能量帶電粒子束可具有等於或小於2 keV的著陸能量,具體為等於或小於1 keV,例如是100 eV至800 eV。和高能量束相比,低能量束不會穿透到基板裡面的深處,因此可以提供關於例如是基板上的塗佈層之優異的信息。The vacuum chamber may include one or more valves that connect the vacuum chamber to another chamber, particularly when the device is an in-line device. Once a substrate is directed into the vacuum chamber, the one or more valves can be closed. Thus, the gas atmosphere in the vacuum chamber can be controlled via a vacuum generation technique, for example, via one or more vacuum pumps. One benefit of inspecting the substrate in a vacuum chamber is that vacuum conditions can facilitate inspection of the substrate using a low energy charged particle beam as compared to, for example, at atmospheric pressure. For example, the low energy charged particle beam may have a landing energy equal to or less than 2 keV, specifically equal to or less than 1 keV, such as 100 eV to 800 eV. The low energy beam does not penetrate deep into the inside of the substrate compared to the high energy beam, and thus can provide excellent information about, for example, a coating layer on the substrate.

第5圖係為檢查基板的一些方法的流程圖,例如是用於顯示器製造。如區塊502所示,提供一大面積基板至真空腔室中,其中大面積基板具有一薄膜,此薄膜具有沈積在基板上的一晶粒結構。基板可以作為常規製程的一部分來進行測量,也就是不需要進行類似蝕刻的樣品製備。此外,以下所示的測量步驟是非破壞性的,且基板可以在進行電子束觀察之後進行進一步的處理。如區塊504所示,產生一主要帶電粒子束,並且主要帶電粒子束在真空條件下撞擊大面積基板上的薄膜。真空條件使得基板上可以具有低能量的著落能量,例如可以具有等於或小於2 keV的能量,比方是1 keV的能量。第5圖中的區塊506是指產生一個或多個地形影像。根據本文所述的一些實施例,地形影像是由非傾斜束產生。非傾斜束對於易於控制電子束顯微鏡是有益的,因而對產量是有利的。地形影像可以經由分段偵測器而產生,因而可以經由一次測量而達到非傾斜束的多個視角。地形影像可以用於決定晶粒結構的一個或多個特性或參數,例如是LTPS層中的晶粒結構。Figure 5 is a flow diagram of some methods of inspecting a substrate, such as for display manufacturing. As shown in block 502, a large area of substrate is provided into the vacuum chamber, wherein the large area substrate has a film having a grain structure deposited on the substrate. The substrate can be measured as part of a conventional process, i.e., sample preparation that does not require similar etching. Furthermore, the measurement steps shown below are non-destructive and the substrate can be further processed after electron beam observation. As shown by block 504, a predominantly charged particle beam is produced and the primary charged particle beam strikes the film on the large area substrate under vacuum conditions. The vacuum conditions may result in a low energy landing energy on the substrate, for example, may have an energy equal to or less than 2 keV, such as 1 keV. Block 506 in Figure 5 refers to generating one or more terrain images. According to some embodiments described herein, the topographic image is produced by a non-tilted beam. Non-inclined beams are beneficial for easy control of electron beam microscopy and are therefore advantageous for throughput. The terrain image can be generated via a segmentation detector so that multiple viewing angles of the non-tilted beam can be achieved via one measurement. Topographic images can be used to determine one or more characteristics or parameters of the grain structure, such as grain structures in the LTPS layer.

第6圖係為檢查基板的另一方法的流程圖。為了對以非傾斜束角度測量的地形影像的陰影長度進行校準,主要帶電粒子束可以被傾斜至等於或大於5°的一入射角,例如是10°至20°。上述步驟如區塊602所示。在區塊604中,一區域的一個或多個影像經由一傾斜束而產生。如區塊606所示,從具有一傾斜束的一個或多個影像而測量一結構或特徵的高度。在區塊608中,用非傾斜束對相同面積和/或在特徵的相同結構進行測量,其中係產生一個或多個地形影像,例如是測試影像。從一個或多個地形影像得到如區塊606所示的以絕對值測量的高度,此高度被校準至在區塊608中所測量的影像的陰影的長度。在區塊608中,利用非傾斜束來測量測試影像,使得陰影的長度可以校準到絕對值的測量高度。此校準如區塊610所示。在區塊612中,經由校準結果並基於陰影長度來將校準用以測量晶粒結構的晶界的波峰的高度。根據本文所述的一些實施例,可以基於區塊602至區塊610產生的校準而重複進行多次區塊612所示的製程。因此,可以一次性或者以一預定的時間間隔規律地提供校準。可以用一非傾斜束在製造過程中之觀察基板的過程中進行測量。校準可用於根據之前完成的校準結果來確定晶粒結構的晶界的高度。這有利於提高測量速度,從而提高產量。舉例而言,校準需要一次進行,並且可以例如每週一次或者甚至一個月一次或者甚至更長時間尺度來進行檢查,而其中持續進行測量。Figure 6 is a flow chart of another method of inspecting a substrate. To calibrate the shadow length of the topographic image measured at a non-tilted beam angle, the primary charged particle beam can be tilted to an angle of incidence equal to or greater than 5°, such as 10° to 20°. The above steps are as shown in block 602. In block 604, one or more images of an area are generated via an oblique beam. As shown in block 606, the height of a structure or feature is measured from one or more images having an oblique beam. In block 608, the same area and/or the same structure of features are measured with a non-slanted beam, wherein one or more topographic images are generated, such as test images. The height measured as an absolute value as shown by block 606 is obtained from one or more topographic images that are calibrated to the length of the shadow of the image measured in block 608. In block 608, the test image is measured using a non-tilted beam such that the length of the shadow can be calibrated to the measured height of the absolute value. This calibration is shown as block 610. In block 612, the height of the peaks of the grain boundaries used to measure the grain structure is calibrated via calibration results and based on the shadow length. According to some embodiments described herein, the process illustrated by block 612 may be repeated a plurality of times based on the calibration generated by block 602 to block 610. Therefore, the calibration can be provided regularly or at a predetermined time interval. Measurements can be made during the observation of the substrate during the manufacturing process using a non-tilted beam. Calibration can be used to determine the height of the grain boundaries of the grain structure based on previously completed calibration results. This helps to increase the measurement speed and thus increase the yield. For example, the calibration needs to be performed once, and can be performed, for example, once a week or even once a month or even longer, where measurements are continued.

本揭露內容已揭露一些實施例如上,只要不脫離後附之申請專利範圍所界定之保護範圍,前述實施例可修改以提供其他更進一步之一些實施例,且保護範圍如後附之申請專利範圍所界定。The disclosure has disclosed some embodiments, such as the scope of protection defined by the scope of the appended claims, which may be modified to provide other further embodiments, and the scope of protection is as disclosed in the appended claims. Defined.

10‧‧‧基板10‧‧‧Substrate

42‧‧‧線42‧‧‧ line

44‧‧‧點44‧‧‧ points

100‧‧‧帶電粒子束顯微鏡100‧‧‧Charged particle beam microscope

110‧‧‧槍腔室110‧‧‧ gun chamber

112‧‧‧電子束源112‧‧‧Electronic beam source

120‧‧‧真空腔室120‧‧‧vacuum chamber

122、142、146‧‧‧磁極片122, 142, 146‧‧ ‧ pole pieces

123‧‧‧聚光器透鏡123‧‧‧ concentrator lens

124、144‧‧‧線圈124, 144‧‧‧ coil

126‧‧‧電子光學元件126‧‧‧electron optical components

130‧‧‧偵測真空區域130‧‧‧Detecting vacuum area

132‧‧‧另一個信號偵測元件132‧‧‧Another signal detection component

134‧‧‧光導134‧‧‧Light Guide

136‧‧‧閃爍器裝置136‧‧‧Scintillator device

139‧‧‧偵測器139‧‧‧Detector

140‧‧‧物鏡140‧‧‧ objective lens

150‧‧‧基板支撐件150‧‧‧Substrate support

152‧‧‧上電極152‧‧‧Upper electrode

154‧‧‧下電極154‧‧‧ lower electrode

170‧‧‧掃描致偏器組件170‧‧‧Scanning deflector assembly

201‧‧‧開孔201‧‧‧Opening

236‧‧‧閃爍器分段236‧‧‧Scintillator segmentation

502、504、506、602、604、606、608、610、612‧‧‧區塊Blocks 502, 504, 506, 602, 604, 606, 608, 610, 612‧‧

在本說明書的其餘部分中,更具體地闡述了對本領域中具有通常知識者而言完整且可實現的揭露內容,其中包括對附圖的參照如下: 第1圖係為用於本文所述的一些實施例之一種成像帶電粒子束顯微鏡的側視圖。 第2圖係為用於本文所述的一些實施例之包括一分段閃爍器的一種偵測裝置。 第3A圖係為根據本揭露內容的一些實施例之地形影像。 第3B圖係為根據本揭露內容的一些實施例之多個地形影像所結合的一結合影像。 第4圖係為以現有技術的空氣掃描式電子顯微鏡(SEM)測量的一影像,其中測量了一個被蝕刻的樣品表面。 第5圖係為根據本文所述的一些實施例的方法的流程圖,特別是用於檢查一大面積基板的一方法。 第6圖係為根據本文所述的一些實施例的進一步方法的流程圖,特別是用於校準和檢查例如是用於顯示器製造之一大面積基板的方法。In the remainder of the specification, a complete and achievable disclosure of those skilled in the art is set forth in more detail, including reference to the drawings as follows: Figure 1 is for use in the description herein A side view of an imaged charged particle beam microscope of some embodiments. 2 is a detection device including a segmented scintillator for use with some embodiments described herein. Figure 3A is a topographical image in accordance with some embodiments of the present disclosure. 3B is a combined image of a plurality of topographical images combined in accordance with some embodiments of the present disclosure. Figure 4 is an image measured with a prior art air scanning electron microscope (SEM) in which an etched sample surface was measured. Figure 5 is a flow diagram of a method in accordance with some embodiments described herein, particularly a method for inspecting a large area substrate. Figure 6 is a flow diagram of a further method in accordance with some embodiments described herein, particularly for calibrating and inspecting, for example, a method for manufacturing a large area substrate.

Claims (20)

一種檢查一基板的方法,該方法包括: 提供該基板至一真空腔室中,該基板係為一大面積基板,其中該基板具有一薄膜,該薄膜具有沈積在該基板上的一晶粒結構; 利用一成像帶電粒子束顯微鏡產生一主要帶電粒子束,其中該主要帶電粒子束撞擊在該真空腔室中的該基板上;以及 從該基板在該主要帶電粒子束撞擊時所釋放的信號粒子產生一個或多個影像,其中該一個或多個影像係為地形影像。A method of inspecting a substrate, the method comprising: providing the substrate to a vacuum chamber, the substrate being a large area substrate, wherein the substrate has a film having a grain structure deposited on the substrate Generating a primary charged particle beam using an imaged charged particle beam microscope, wherein the primary charged particle beam impinges on the substrate in the vacuum chamber; and signal particles released from the substrate upon impact of the primary charged particle beam One or more images are generated, wherein the one or more images are topographic images. 如申請專利範圍第1項所述的方法,其中該主要帶電粒子束撞擊在該基板上時的一著陸能量為等於或小於2 keV。The method of claim 1, wherein a landing energy of the primary charged particle beam impinging on the substrate is equal to or less than 2 keV. 如申請專利範圍第1項所述的方法,其中該一個或多個影像係由一分段偵測器所產生,特別是具有四個分段的一四段偵測器。The method of claim 1, wherein the one or more images are generated by a segmentation detector, in particular a four segment detector having four segments. 如申請專利範圍第2項所述的方法,其中該一個或多個影像係由一分段偵測器所產生。The method of claim 2, wherein the one or more images are generated by a segmentation detector. 如申請專利範圍第3項所述的方法,其中該一個或多個影像係由一四段偵測器(Quad detector)所產生,該四段偵測器具有四個分段。The method of claim 3, wherein the one or more images are generated by a quad detector having four segments. 如申請專利範圍第3項所述的方法,其中該一個或多個影像係由具有一傾角的該主要帶電粒子束而產生,該傾角係為等於或小於3°。The method of claim 3, wherein the one or more images are produced by the primary charged particle beam having an angle of inclination that is equal to or less than 3°. 如申請專利範圍第1項所述的方法,其中該一個或多個影像係由具有一傾角的該主要帶電粒子束而產生,該傾角係為等於或小於3°。The method of claim 1, wherein the one or more images are produced by the primary charged particle beam having an angle of inclination that is equal to or less than 3°. 如申請專利範圍第1項至第7項之任一項所述的方法,更包括: 從該一個或多個影像計算出該晶粒結構的晶粒的至少一特徵,該晶粒結構的晶粒的該至少一特徵係選自:該晶粒結構的晶粒的一面積、該晶粒結構的晶粒的一周長、該晶粒結構的晶粒的一最小尺寸、該晶粒結構的晶粒的一最大尺寸、該晶粒結構的晶粒沿一預定方向的一尺寸、以及該晶粒結構的晶粒的晶界的一波峰高度。The method of any one of clauses 1 to 7, further comprising: calculating at least one characteristic of a grain of the grain structure from the one or more images, the crystal of the grain structure The at least one characteristic of the particles is selected from: an area of the grain of the grain structure, a circumference of the grain of the grain structure, a minimum size of the grain of the grain structure, and a crystal of the grain structure a maximum dimension of the grain, a dimension of the grain of the grain structure along a predetermined direction, and a peak height of a grain boundary of the grain of the grain structure. 如申請專利範圍第8項所述的方法,其中該晶粒結構的晶粒的該至少一特徵係作為一算術平均值、一二次平均值、一加權的平均值、最小值、最大值、以及一中位數值中的至少一者。The method of claim 8, wherein the at least one characteristic of the grain of the grain structure is an arithmetic mean value, a quadratic average value, a weighted average value, a minimum value, a maximum value, And at least one of a median value. 如申請專利範圍第8項所述的方法,其中係使用一分水嶺演算法(watershed algorithm)進行所述計算。The method of claim 8, wherein the calculating is performed using a watershed algorithm. 如申請專利範圍第8項所述的方法,其中該一個或多個影像中的兩個或多個影像係結合以形成一結合影像,並且利用該結合影像進行所述計算。The method of claim 8, wherein the two or more images of the one or more images are combined to form a combined image, and the calculation is performed using the combined image. 如申請專利範圍第8項所述的方法,其中係利用該一個或多個影像進行所述計算以形成一個或多個對應計算值,且其中該一個或多個對應計算值係結合的。The method of claim 8, wherein the calculating is performed using the one or more images to form one or more corresponding calculated values, and wherein the one or more corresponding calculated values are combined. 如申請專利範圍第8項所述的方法,更包括: 經由該晶粒結構的晶粒的該至少一特徵來驗證該薄膜的一製造方法的製程參數。The method of claim 8, further comprising: verifying a process parameter of a manufacturing method of the film via the at least one feature of the grain of the grain structure. 如申請專利範圍第1項至第7項之任一項所述的方法,更包括: 使該主要帶電粒子束傾斜一角度,該角度係為等於或大於5°; 測量一高度輪廓的一高度; 使該主要帶電粒子束傾斜回到一正常操作的角度; 從該基板在該主要帶電粒子束以該正常操作的角度撞擊時所釋放的信號粒子產生一個或多個測試影像,其中該一個或多個測試影像係為地形影像;以及 使用測量的該高度對係為地形影像之該一個或多個圖像的一陰影的一長度進行校準。The method of any one of clauses 1 to 7, further comprising: tilting the main charged particle beam by an angle which is equal to or greater than 5°; measuring a height of a height profile Rotating the primary charged particle beam back to a normal operating angle; generating one or more test images from the signal particles released by the substrate when the primary charged particle beam strikes at the normal operating angle, wherein the one or more test images The plurality of test images are terrain images; and the height of the measurements is used to calibrate a length of the shadow of the one or more images of the terrain image. 如申請專利範圍第8項所述的方法,更包括: 使該主要帶電粒子束傾斜一角度,該角度係為等於或大於5°; 測量一高度輪廓的一高度; 使該主要帶電粒子束傾斜回到一正常操作的角度; 從該基板在該主要帶電粒子束以該正常操作的角度撞擊時所釋放的信號粒子產生一個或多個測試影像,其中該一個或多個測試影像係為地形影像;以及 使用測量的該高度對係為地形影像之該一個或多個圖像的一陰影的一長度進行校準。The method of claim 8, further comprising: tilting the main charged particle beam by an angle equal to or greater than 5°; measuring a height of a height profile; tilting the main charged particle beam Returning to a normal operating angle; generating, by the substrate, one or more test images from signal particles released when the primary charged particle beam strikes at the normal operating angle, wherein the one or more test images are topographic images And using the measured height to calibrate a length of a shadow of the one or more images of the terrain image. 如申請專利範圍第1項至第7項之任一項所述的方法,其中該檢查的方法係為一顯示器的一製造方法的一中間製程。The method of any one of clauses 1 to 7, wherein the method of inspection is an intermediate process of a manufacturing method of a display. 如申請專利範圍第1項至第7項之任一項所述的方法,更包括: 利用一另外的成像帶電粒子束顯微鏡產生一另外的主要帶電粒子束,其中該另外的主要帶電粒子束撞擊在該真空腔室中的該基板上;以及 從該基板在該另外的主要帶電粒子束撞擊時所釋放的另外的信號粒子產生一個或多個另外的影像,其中該一個或多個另外的影像係為地形影像。The method of any one of clauses 1 to 7, further comprising: generating an additional primary charged particle beam by an additional imaged charged particle beam microscope, wherein the additional primary charged particle beam strikes On the substrate in the vacuum chamber; and additional signal particles released from the substrate upon impact of the additional primary charged particle beam to produce one or more additional images, wherein the one or more additional images It is a terrain image. 如申請專利範圍第17項所述的方法,其中該主要帶電粒子束和該另外的主要帶電粒子束在撞擊在該基板上之處具有一距離,該距離係為5公分至60公分。The method of claim 17, wherein the primary charged particle beam and the additional primary charged particle beam have a distance from the surface of the substrate that is impacted on the substrate, the distance being from 5 cm to 60 cm. 一種具有複數個指令儲存於其上的電腦可讀取媒體,當該些指令在被執行時,使一帶電粒子束顯微鏡執行一種檢查一基板的方法,該方法係為如申請專利範圍第1項至第7項之任一項所述的方法。A computer readable medium having a plurality of instructions stored thereon, wherein when the instructions are executed, a charged particle beam microscope performs a method of inspecting a substrate as claimed in claim 1 The method of any one of item 7. 如申請專利範圍第19項所述的電腦可讀取媒體,其中該方法更包括: 從該一個或多個影像計算出該晶粒結構的晶粒的至少一特徵,該晶粒結構的晶粒的該至少一特徵係選自:該晶粒結構的晶粒的一面積、該晶粒結構的晶粒的一周長、該晶粒結構的晶粒的一最小尺寸、該晶粒結構的晶粒的一最大尺寸、該晶粒結構的晶粒沿一預定方向的一尺寸、以及該晶粒結構的晶粒的晶界的一波峰高度。The computer readable medium of claim 19, wherein the method further comprises: calculating at least one feature of the grain of the grain structure from the one or more images, the grain of the grain structure The at least one characteristic is selected from: an area of the grain of the grain structure, a circumference of the grain of the grain structure, a minimum size of the grain of the grain structure, a grain of the grain structure a maximum dimension, a dimension of the grain of the grain structure along a predetermined direction, and a peak height of a grain boundary of the grain of the grain structure.
TW106143405A 2016-12-12 2017-12-11 Method for inspecting a substrate and computer readable medium having instructions stored thereon TWI734875B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/EP2016/080662 2016-12-12
??PCT/EP2016/080662 2016-12-12
PCT/EP2016/080662 WO2018108239A1 (en) 2016-12-12 2016-12-12 Ltps layer qualification on display substrates by inline sem using a multi perspective detector and method for inspecting a large area substrate

Publications (2)

Publication Number Publication Date
TW201837865A true TW201837865A (en) 2018-10-16
TWI734875B TWI734875B (en) 2021-08-01

Family

ID=57588995

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143405A TWI734875B (en) 2016-12-12 2017-12-11 Method for inspecting a substrate and computer readable medium having instructions stored thereon

Country Status (4)

Country Link
KR (1) KR102260984B1 (en)
CN (1) CN109863573B (en)
TW (1) TWI734875B (en)
WO (1) WO2018108239A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210021369A (en) * 2018-07-13 2021-02-25 에이에스엠엘 네델란즈 비.브이. SEM image enhancement methods and systems
WO2023155078A1 (en) * 2022-02-16 2023-08-24 Applied Materials, Inc. Method of in-line inspection of a substrate, scanning electron microscope, and computer-readable medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039876A1 (en) * 1996-04-19 1997-10-30 Toray Industries, Inc. Aromatic polyamide film, method of manufacturing the same and magnetic recording medium using the same film
WO2007067296A2 (en) * 2005-12-02 2007-06-14 Alis Corporation Ion sources, systems and methods
US7981150B2 (en) * 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US20080294236A1 (en) * 2007-05-23 2008-11-27 Boston Scientific Scimed, Inc. Endoprosthesis with Select Ceramic and Polymer Coatings
CN101622525A (en) * 2007-02-28 2010-01-06 株式会社尼康 Observation device, inspection device and inspection method
JP4936985B2 (en) * 2007-05-14 2012-05-23 株式会社日立ハイテクノロジーズ Scanning electron microscope and three-dimensional shape measuring apparatus using the same
JP5444053B2 (en) * 2010-03-15 2014-03-19 株式会社日立ハイテクノロジーズ Polycrystalline silicon thin film inspection method and apparatus
DE102012217761B4 (en) * 2012-09-28 2020-02-06 Carl Zeiss Microscopy Gmbh Process for avoiding artifacts in serial block face imaging
JP6084888B2 (en) * 2013-04-17 2017-02-22 株式会社アドバンテスト Defect inspection apparatus and defect inspection method
KR20160024542A (en) * 2014-08-26 2016-03-07 현대제철 주식회사 Method for analyzing carbide in steel
KR20170101265A (en) * 2014-12-22 2017-09-05 어플라이드 머티어리얼스, 인코포레이티드 Apparatus for inspecting a substrate, method for inspecting a substrate, apparatus for inspecting a large area substrate, and method of operating the same

Also Published As

Publication number Publication date
KR102260984B1 (en) 2021-06-03
CN109863573B (en) 2021-10-15
WO2018108239A1 (en) 2018-06-21
TWI734875B (en) 2021-08-01
CN109863573A (en) 2019-06-07
KR20190052121A (en) 2019-05-15

Similar Documents

Publication Publication Date Title
US10522327B2 (en) Method of operating a charged particle beam specimen inspection system
US9966227B2 (en) Specimen observation method and device using secondary emission electron and mirror electron detection
TWI691717B (en) Method and apparatus for inspecting a sample
JP2021119565A (en) Automatic limit dimension measurement method on display manufacturing substrate, display manufacturing large area substrate inspection method, display manufacturing large area substrate inspection device, and operation method thereof
TWI734875B (en) Method for inspecting a substrate and computer readable medium having instructions stored thereon
US20040256556A1 (en) Multiple electron beam device
US7800062B2 (en) Method and system for the examination of specimen
JP2009170150A (en) Inspection and measurement device and inspection and measurement method
WO2023155078A1 (en) Method of in-line inspection of a substrate, scanning electron microscope, and computer-readable medium
JP5548244B2 (en) Inspection measurement device and inspection measurement method
US9245709B1 (en) Charged particle beam specimen inspection system and method for operation thereof
TWI762849B (en) Apparatus for obtaining optical measurements in a charged particle apparatus