TW201837558A - Reflective polarizing layer, wavelength conversion layer, and liquid crystal display device - Google Patents

Reflective polarizing layer, wavelength conversion layer, and liquid crystal display device Download PDF

Info

Publication number
TW201837558A
TW201837558A TW107104804A TW107104804A TW201837558A TW 201837558 A TW201837558 A TW 201837558A TW 107104804 A TW107104804 A TW 107104804A TW 107104804 A TW107104804 A TW 107104804A TW 201837558 A TW201837558 A TW 201837558A
Authority
TW
Taiwan
Prior art keywords
wavelength
layer
light
wavelength conversion
display device
Prior art date
Application number
TW107104804A
Other languages
Chinese (zh)
Inventor
秋山孝
Original Assignee
日商Jsr股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Jsr股份有限公司 filed Critical 日商Jsr股份有限公司
Publication of TW201837558A publication Critical patent/TW201837558A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

A reflective polarizing layer according to an embodiment of the present invention has a width less than the shortest wavelength of the incident light that passes therethrough and a plurality of stripes. The stripes are separated from each other and arrayed in a direction parallel to the extending direction of the stripes. A first dielectric is filled between the stripes with the upper surface and the lower surface of the stripes in contact with a second dielectric and a third dielectric respectively.

Description

反射偏光層、波長轉換層及液晶顯示裝置Reflective polarizing layer, wavelength conversion layer and liquid crystal display device

本發明係關於一種反射偏光層、波長轉換層及液晶顯示裝置。The present invention relates to a reflective polarizing layer, a wavelength converting layer, and a liquid crystal display device.

近年來,液晶顯示裝置之提高顏色再現性及高精細化之要求較高。高精細之液晶顯示裝置由於像素之尺寸變小,故而提高光之利用效率成為課題。關於提高顏色再現性及光之利用效率之方法之一,提出有使用偏光板及螢光材料之方法。 例如,專利文獻1揭示了如下之方法:藉由白色光源、彩色濾光片、使用量子點之波長轉換層,將白色轉換層發出之藍光利用使用量子點之波長轉換層轉換為紅色或綠色,使被轉換後之紅光、綠光、未被轉換之藍光透過各顏色之彩色濾光片,由此提高顏色再現性及光之利用效率。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2016-70949號公報In recent years, liquid crystal display devices have been highly demanded for improving color reproducibility and high definition. In the high-definition liquid crystal display device, since the size of the pixel is small, it is a problem to improve the light use efficiency. As one of methods for improving color reproducibility and light utilization efficiency, a method of using a polarizing plate and a fluorescent material has been proposed. For example, Patent Document 1 discloses a method of converting blue light emitted from a white conversion layer into red or green by a wavelength conversion layer using quantum dots by a white light source, a color filter, and a wavelength conversion layer using quantum dots. The converted red light, green light, and unconverted blue light are transmitted through the color filters of the respective colors, thereby improving color reproducibility and light utilization efficiency. [Prior Art Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2016-70949

[發明所欲解決之問題] 業界要求進一步提高顏色再現性及光之利用效率。 鑒於此種問題,本發明之一實施形態之其中一個目的在於提供一種能夠提高顏色再現性及光之利用效率之反射偏光層及波長轉換層。另一目的在於提供一種包含能夠提高顏色再現性及光之利用效率之反射偏光層及波長轉換層之液晶顯示裝置。 [解決問題之技術手段] 本發明之一實施形態之反射偏光層係具有所入射之透射光之最短波長以下之寬度且具有線狀部之反射偏光層;線狀部於與線狀部延伸之方向平行地分開排列有複數個,線狀部之間填充有第1介電體,線狀部之上表面與第2介電體相接,線狀部之下表面與第3介電體相接。 本發明之一實施形態之反射偏光層亦可為,藍色波長之p偏光之反射率相對高於紅色波長之反射率及綠色波長之反射率,藍色波長之p偏光之透過率相對低於紅色波長之透過率及綠色波長之透過率。 本發明之一實施形態之反射偏光層亦可為,與波長轉換層相接,上述波長轉換層包含吸收藍色波長之光且發出紅色波長之光之波長轉換材料、及吸收藍色波長之光且發出綠色波長之光之波長轉換材料。 本發明之一實施形態之與波長轉換層相接之反射偏光層亦可為,波長轉換層中所包含之發出紅色波長之光之波長轉換材料與發出綠色波長之光之波長轉換材料形成於同一平面上。 本發明之一實施形態之與波長轉換層相接之反射偏光層亦可為,波長轉換層與第3介電體或第2介電體相接。 本發明之一實施形態之與波長轉換層相接之反射偏光層亦可為,波長轉換層中所包含之發出紅色波長之光之波長轉換材料與發出綠色波長之光之波長轉換材料由遮光層隔開。 本發明之一實施形態之與波長轉換層相接之反射偏光層亦可為,發出紅色波長之光之波長轉換材料與紅色之彩色濾光片相接,發出綠色波長之光之波長轉換材料與綠色之彩色濾光片相接。 本發明之一實施形態之顯示裝置包含第1基板、TFT(Thin Film Transistor,薄膜電晶體)陣列、波長轉換層、反射偏光層、透光性導電膜、第1配向膜、液晶層、第2配向膜、第2基板及偏光板,TFT陣列、波長轉換層、反射偏光層、透光性導電膜、第1配向膜、液晶層、第2配向膜配置於第1基板與第2基板之間。 亦可為,本發明之一實施形態之顯示裝置中所包含之反射偏光層具有所入射之透射光之最短波長以下之寬度且包含具有導電性之線狀部、第1介電體、第2介電體及第3介電體,線狀部於與上述線狀部延伸之方向平行地分開排列有複數個,且線狀部之間填充有上述第1介電體,線狀部之上表面與上述第2介電體相接,上述線狀部之下表面與上述第3介電體相接。 亦可為,本發明之一實施形態之顯示裝置中所包含之波長轉換層包含吸收藍色波長之光且發出紅色波長之光之波長轉換材料、及吸收藍色波長之光且發出綠色波長之光之波長轉換材料,發出紅色波長之光之波長轉換材料與上述發出綠色波長之光之波長轉換材料形成於同一平面上。 亦可為,本發明之一實施形態之顯示裝置中所包含之反射轉換層與波長轉換層之間包含彩色濾光片層,彩色濾光片層包含紅色之彩色濾光片及綠色之彩色濾光片,紅色之彩色濾光片與發出紅色波長之光之波長轉換材料相接,綠色之彩色濾光片與發出綠色波長之光之波長轉換材料相接。 亦可為,本發明之一實施形態之顯示裝置中所包含之波長轉換層具有開口部,透光性導電膜與第3介電體相接,且配置於開口部。 本發明之一實施形態之另一顯示裝置包含保護膜、波長轉換層、反射偏光層、第1基板、TFT陣列、透光性導電膜、第1配向膜、液晶層、第2配向膜、第2基板及偏光板,TFT陣列、透光性導電膜、第1配向膜、液晶層及第2配向膜配置於第1基板與第2基板之間,波長轉換層及反射偏光層配置於保護膜與上述第1基板之間。 亦可為,本發明之一實施形態之另一顯示裝置中所包含之反射偏光層具有所入射之透射光之最短波長以下之寬度,且包含具有導電性之線狀部、第1介電體、第2介電體及第3介電體,線狀部於與線狀部延伸之方向平行地分開排列有複數個,線狀部之間填充有第1介電體,線狀部之上表面與第2介電體相接,線狀部之下表面與第3介電體相接。 亦可為,本發明之一實施形態之另一顯示裝置中所包含之波長轉換層包含吸收藍色波長之光且發出紅色波長之光之波長轉換材料、及吸收藍色波長之光且發出綠色波長之光之波長轉換材料,發出紅色波長之光之波長轉換材料與發出綠色波長之光之波長轉換材料形成於同一平面上。 亦可為,本發明之一實施形態之另一顯示裝置中所包含之反射轉換層與波長轉換層之間包含彩色濾光片層,彩色濾光片層包含紅色之彩色濾光片及綠色之彩色濾光片,紅色之彩色濾光片與發出紅色波長之光之波長轉換材料相接,綠色之彩色濾光片與發出綠色波長之光之波長轉換材料相接。 亦可為,本發明之一實施形態之顯示裝置中所包含之透光性導電膜為梳狀或板狀。 亦可為,本發明之一實施形態之顯示裝置中所包含之波長轉換層與保護膜相接。 亦可為,本發明之一實施形態之顯示裝置中所包含之反射偏光層與第1基板相接。[Problems to be Solved by the Invention] The industry is demanding to further improve color reproducibility and light utilization efficiency. In view of such a problem, it is an object of an embodiment of the present invention to provide a reflective polarizing layer and a wavelength conversion layer which can improve color reproducibility and light use efficiency. Another object of the invention is to provide a liquid crystal display device including a reflective polarizing layer and a wavelength conversion layer capable of improving color reproducibility and light utilization efficiency. [Means for Solving the Problem] A reflective polarizing layer according to an embodiment of the present invention has a reflective polarizing layer having a linear portion and a width of a shortest wavelength or less of incident transmitted light; and the linear portion extends in a line portion The plurality of directions are arranged in parallel in parallel, and the first dielectric body is filled between the linear portions, and the upper surface of the linear portion is in contact with the second dielectric body, and the lower surface of the linear portion is in phase with the third dielectric body. Pick up. In the reflective polarizing layer according to an embodiment of the present invention, the reflectance of the p-polarized light of the blue wavelength is relatively higher than the reflectance of the red wavelength and the reflectance of the green wavelength, and the transmittance of the p-polarized light of the blue wavelength is relatively lower. Transmittance of red wavelength and transmittance of green wavelength. The reflective polarizing layer according to an embodiment of the present invention may be connected to the wavelength conversion layer, and the wavelength conversion layer includes a wavelength conversion material that absorbs light of a blue wavelength and emits light of a red wavelength, and light that absorbs blue wavelength. And a wavelength conversion material that emits light of a green wavelength. In the reflective polarizing layer that is in contact with the wavelength conversion layer in one embodiment of the present invention, the wavelength conversion material that emits light of a red wavelength included in the wavelength conversion layer may be formed in the same wavelength as the wavelength conversion material that emits light of a green wavelength. on flat surface. In the reflective polarizing layer that is in contact with the wavelength conversion layer according to an embodiment of the present invention, the wavelength conversion layer may be in contact with the third dielectric or the second dielectric. The reflective polarizing layer that is in contact with the wavelength conversion layer in one embodiment of the present invention may be such that the wavelength conversion material that emits light of a red wavelength and the wavelength conversion material that emits light of a green wavelength included in the wavelength conversion layer is provided by a light shielding layer. Separated. The reflective polarizing layer connected to the wavelength conversion layer in one embodiment of the present invention may be a wavelength conversion material that emits red wavelength light and a red color filter, and emits a wavelength conversion material of green wavelength light. The green color filters are connected. A display device according to an embodiment of the present invention includes a first substrate, a TFT (Thin Film Transistor) array, a wavelength conversion layer, a reflective polarizing layer, a translucent conductive film, a first alignment film, a liquid crystal layer, and a second The alignment film, the second substrate, and the polarizing plate, and the TFT array, the wavelength conversion layer, the reflective polarizing layer, the translucent conductive film, the first alignment film, the liquid crystal layer, and the second alignment film are disposed between the first substrate and the second substrate . The reflective polarizing layer included in the display device according to the embodiment of the present invention may have a width equal to or shorter than the shortest wavelength of the incident transmitted light and include a conductive linear portion, a first dielectric body, and a second The dielectric body and the third dielectric body have a plurality of linear portions arranged in parallel with the direction in which the linear portions extend, and the first dielectric bodies are filled between the linear portions, and the linear portions are filled. The surface is in contact with the second dielectric body, and a lower surface of the linear portion is in contact with the third dielectric body. The wavelength conversion layer included in the display device according to the embodiment of the present invention may include a wavelength conversion material that absorbs light of a blue wavelength and emits light of a red wavelength, and absorbs light of a blue wavelength and emits a green wavelength. The wavelength conversion material of light forms a wavelength conversion material that emits light of a red wavelength on the same plane as the wavelength conversion material that emits light of a green wavelength. The color conversion layer may include a red color filter and a green color filter between the reflective conversion layer and the wavelength conversion layer included in the display device according to the embodiment of the present invention. The light sheet, the red color filter is connected to the wavelength conversion material that emits light of a red wavelength, and the green color filter is connected to the wavelength conversion material that emits light of a green wavelength. In the display device according to the embodiment of the present invention, the wavelength conversion layer may have an opening, and the translucent conductive film may be in contact with the third dielectric member and disposed in the opening. Another display device according to an embodiment of the present invention includes a protective film, a wavelength conversion layer, a reflective polarizing layer, a first substrate, a TFT array, a light-transmitting conductive film, a first alignment film, a liquid crystal layer, a second alignment film, and a first The substrate and the polarizing plate, the TFT array, the transparent conductive film, the first alignment film, the liquid crystal layer, and the second alignment film are disposed between the first substrate and the second substrate, and the wavelength conversion layer and the reflective polarizing layer are disposed on the protective film. Between the first substrate and the first substrate. The reflective polarizing layer included in another display device according to an embodiment of the present invention may have a width equal to or shorter than a shortest wavelength of incident transmitted light, and may include a conductive linear portion and a first dielectric. The second dielectric body and the third dielectric body have a plurality of linear portions arranged in parallel with the direction in which the linear portions extend, and the first dielectric bodies are filled between the linear portions, and the linear portions are filled. The surface is in contact with the second dielectric body, and the lower surface of the linear portion is in contact with the third dielectric body. The wavelength conversion layer included in another display device according to an embodiment of the present invention may include a wavelength conversion material that absorbs light of a blue wavelength and emits light of a red wavelength, and absorbs blue wavelength light and emits green light. The wavelength conversion material of the wavelength light, the wavelength conversion material that emits light of a red wavelength is formed on the same plane as the wavelength conversion material that emits light of a green wavelength. In another display device according to an embodiment of the present invention, a color filter layer may be included between the reflective conversion layer and the wavelength conversion layer, and the color filter layer includes a red color filter and a green color. The color filter, the red color filter is connected to the wavelength conversion material that emits light of a red wavelength, and the green color filter is connected to the wavelength conversion material that emits light of a green wavelength. The light-transmitting conductive film included in the display device according to the embodiment of the present invention may be in the form of a comb or a plate. The wavelength conversion layer included in the display device according to the embodiment of the present invention may be in contact with the protective film. The reflective polarizing layer included in the display device according to the embodiment of the present invention may be in contact with the first substrate.

以下,一面參照圖式等一面對本發明之實施形態進行說明。但是,本發明能夠於不脫離發明之主旨之範圍內以多種不同之態樣加以實施。即,並不限定於以下所例示之實施形態之揭示內容而進行解釋。又,圖式為使說明更加明確,與實際態樣相比,有時會模式性地表示各部分之寬度、厚度、形狀等。然而,模式性圖式僅為一例,並不限定本發明之解釋。 於本說明書及各圖中,存在對於與已有圖中已說明之內容相同之元件,標註相同之元件符號(或者數字後面標註有a、b等之符號),適當省略說明之情況。再者,各元件上所附註之「第1」、「第2」之文字係為便於區別各元件而使用之標記,若無特別說明則不具備更多意義。 於本說明書中,所謂「上」,不僅包括以直接與某物體或區域之上相接之方式配置之情形,亦包括中間隔著其他物體或區域而配置之情形。關於「下」之用語亦相同。又,「上」、「下」等用語係表示物體或區域間之相對之上下關係者,並不表示絕對之上下關係。具體而言,以基板之主面(供元件等形成之面)為基準,將自基板之主面側開始定義為「上」,將基板之主面之相反側定義為「下」。 於加工某一個膜而形成複數個圖案之情形時,存在該等複數個圖案各自具有不同之功能及/或作用之情況。然而,該等複數個圖案於同一步驟中源自作為同一層而形成之膜。即,該等複數個圖案具有相同之層構造,且包含相同之材料。因此,於本說明書中,定義為該等複數個圖案存在於同一層。 對本發明之反射偏光層及波長轉換層進行說明。說明如下:反射偏光層包含線柵(以下之說明中記為WG(Wire Grid,線柵))及樹脂,使藍色之p偏光被透過、或反射或被吸收。波長轉換層包含吸收藍色(所使用之最短波長)之光且發出紅色(所使用之最長之波長)之光之波長轉換材料、及吸收藍色(所使用之最短波長)之光且發出綠色之光之波長轉換材料。藉由使用含有WG及樹脂之反射偏光層、以及包含將藍光轉換為紅光之波長轉換材料及將藍光轉換為綠光之波長轉換材料之波長轉換層,能夠高效率地將所反射之藍光轉換為紅光及綠光,而能夠提高利用效率。 (第1實施形態) 於本實施形態中,對本發明之一實施形態之反射偏光層及波長轉換層之構成及製造方法進行說明。 <構成> 圖1係表示第1實施形態中之WG反射偏光層60之構成之模式性剖視圖。 圖1所示之光學系統200表示WG反射偏光層60、導光板10、光擴散板11、光源12、反射板13。WG反射偏光層60包含WG61、第2介電體62及第3介電體63。 光源12可使用例如發出藍光之光源。具體而言,可使用藍色發光二極體(Light Emitting Diode(LED))。導光板10具有將來自光源12之光向上方引導之作用。擴散板11具有擴散來自導光板之光之作用。反射板13具有反射來自光源之光、或來自WG反射偏光層60之反射光65之作用。於圖1中,顯示了使用利用導光板及光源之被稱為所謂邊緣照明方式之背光裝置之例,但並不限定於該例。例如,亦可使用利用擴散板及光源之被稱為所謂直射光方式之背光裝置。 圖2係表示第1實施形態中之WG反射偏光層60及波長轉換層之構成之模式性剖視圖。 圖2所示之光學系統210除圖1之構成以外,包含遮光層40、紅色轉換層41、綠色轉換層42、藍色彩色濾光片或第4介電體43。於圖2中,光源12可使用例如發出白光之光源,亦可使用發出藍光之光源。具體而言,可使用白色發光二極體(Light Emitting Diode(LED))、或藍色發光二極體(Light Emitting Diode(LED))。又,於圖2中,顯示了使用利用導光板及光源之被稱為所謂邊緣照明方式之背光裝置之例,但並不限定於該例。例如,亦可使用利用擴散板及光源之被稱為所謂直射光方式之背光裝置。 遮光層40具有遮斷可見光之功能,將相鄰之紅色轉換層41、綠色轉換層42及藍色彩色濾光片或第4介電體43隔開,能夠抑制透過各波長轉換層及藍色彩色濾光片等之光或於各波長轉換層及藍色彩色濾光片等反射之光混合。紅色轉換層41具有將藍色入射光64轉換為紅色之作用。綠色轉換層42具有將藍色入射光64轉換為綠色之作用。入射光64穿過各轉換層及WG反射偏光層60,透射紅色透射光(P波)67、綠色透射光(P波)68、藍色透射光(P波)69。由WG反射偏光層所反射之S波(包括藍色、綠色、紅色)被反射板13反射,進入(返回)至41、42、43,藉由重複上述動作而進行循環(提高光之利用效率)。 例如,藍色入射光64由紅色轉換層41波長轉換為紅色,與未被41完全吸收之藍色一起入射至WG60。於WG60中,P波作為透射光67被射出,S波反射而返回至光源側。較佳為於WG60處之透過率及反射率可存在波長相依性,藍色相對於綠色及紅色,透過率較低且反射率較高。於WG60反射之藍色由紅色轉換層41轉換為紅色。於WG60反射且通過紅色轉換層41之光經由擴散板11、導光板10、反射板13、導光板10、擴散板11而返回至波長轉換層及反射偏光層60,藉由重複以上動作而進行循環(提高光之利用效率)。 例如,藍色入射光64由綠色轉換層42波長轉換為綠色,與未被42完全吸收之藍色一起入射至WG60。於WG60,P波作為透射光68被射出,S波反射而返回至光源側。較佳為於WG60處之透過率及反射率可存在波長相依性,藍色相對於綠色及紅色,透過率較低且反射率較高。於WG60反射之藍色由綠色轉換層42轉換為綠色。於WG60反射且通過綠色轉換層42之光經由擴散板11、導光板10、反射板13、導光板10、擴散板11而返回至波長轉換層及反射偏光層60,藉由重複以上動作而進行循環(提高光之利用效率)。 例如,藍色入射光64經由藍色彩色濾光片43而入射至WG60。於WG60中,P波作為透射光69被射出,S波反射而返回至光源側。較佳為於WG60處之透過率及反射率可存在波長相依性,藍色相對於綠色及紅色,透過率較低且反射率較高。於WG60反射之藍色經由藍色彩色濾光片43、擴散板11、導光板10、反射板13、導光板10、擴散板11而返回至波長轉換層及反射偏光層60,藉由重複以上動作而進行循環(提高光之利用效率)。 藉由使用本發明之反射偏光層及波長轉換層,能夠提高光之利用效率。再者,此處雖然示出了使用彩色濾光片之例,但並不限定於此例,亦可不使用彩色濾光片。於不使用彩色濾光片之情形時,由於可使彩色濾光片吸收光之部分不存在,故而光之利用效率進一步提高。又,例如,於使用包含量子點等螢光體之波長轉換層之情形時,由於波長轉換層上之光之吸收效率提高,故而亦可使用光之吸收率較低之彩色濾光片。 WG61係具有所使用之透射光之最短波長以下之線寬之細線。WG61與其延伸之方向平行地分開排列有複數個,且係使用導電性材料而形成於透明基板之上。較佳為WG61之排列間隔有週期性。再者,WG61之排列間隔亦可為非週期性。例如,於遮光層與複數個WG61形成於同一平面上之情形時,由於細線及遮光層之線寬有可能不同,故而成為非週期性。 眾所周知,WG之性能由WG之間隔、入射光之波長、入射光之角度(入射角)、基板之折射率之關係表示。若WG61之排列間隔為所使用之透射光之最短波長以下,則WG反射偏光層60能夠使p偏光透過,且反射s偏光。具體而言,於所使用之透射光之範圍為可見光之波長400 nm~700 nm之情形時,由於所使用之透射光之最短波長為400 nm,例如,使間隔為360 nm以下、線寬為180 nm以下即可。再者,較佳為線寬為間隔之1/2以下。於線寬為間隔之約1/2以下之情形時,WG反射偏光層60針對入射光,使與WG61平行振動之電場之成分大致反射,使垂直振動之電場之成分大致透過。因而,能夠提供藉由調整WG反射偏光層中所包含之WG61之線寬及間隔而選擇性地提取特定波長之光之WG反射偏光層。又,能夠提供提取s偏光及p偏光之任一個之WG反射偏光層。再者,p偏光為電場於入射面內垂直振動之光之成分,s偏光為電場與入射面平行振動之光之成分。 又,WG之性能亦與WG之膜厚有關。例如,WG之膜厚以光之透過率為1%以下之方式設定即可。例如,較佳為WG之膜厚為30 nm以上。具體而言,於WG61所使用之透射光之範圍為可見光之波長400 nm~700 nm之情形時,由於所使用之透射光之最短波長為400 nm,故而,例如使WG之間隔為360 nm、WG之膜厚亦為360 nm即可。若WG之膜厚過薄,則不可忽視透射光,無法選擇性地提取特定波長之光。另一方面,若WG之膜厚過厚,則光之利用效率有可能降低,而不可忽視透射光,故而較佳為與線寬同樣地,膜厚亦為間隔之1/2以下。又,WG之性能亦與WG之柵極間之折射率有關。藉由於柵極間填充樹脂等透明介電體,能夠賦予透過率及反射率之波長相依性(例如,藍色相對於綠色及紅色而透過率較低且反射率較高之特性)。較佳為透明介電體為透明樹脂,上述線狀部之間及上述線狀部之上表面由透明樹脂填充。第1介電體及第2介電體可由相同之透明樹脂形成,亦可由不同之透明樹脂形成。 形成WG61之材料較佳為導電性金屬。又,形成WG61之材料之特性較佳為對所使用之透射光之反射率較高,且與第2介電體62及第3介電體63之密接性較高。例如,可列舉鋁、銀、鉑等、或者其等之合金等導電性金屬材料,但並不限定於其等。 於圖1及圖2中,WG61之剖面形狀為長方形,但並不限定於長方形。WG61之剖面形狀可為正方形,亦可為梯形,還可為三角形,於不脫離本發明之主旨之範圍內,可採用各種形狀。 形成第3介電體63之材料較佳為能夠成為基材之材料。基材較佳為玻璃或樹脂等於可見光區域中透明性較高之材料、耐熱性較高之材料、與WG61之密接性較高、與第2介電體62之密接性較高,但並不限定於該等。可列舉例如聚碳酸酯、聚苯乙烯(PS)、環烯烴聚合物(COP)、聚氯乙烯等非晶質熱塑性樹脂,聚對苯二甲酸乙二酯(PET)、聚乙烯、聚丙烯等結晶性熱塑性樹脂,丙烯酸系、環氧系、胺基甲酸酯系、聚醯亞胺系等紫外線硬化性樹脂或熱固性樹脂。又,亦可設為將紫外線硬化性樹脂或熱固性樹脂與玻璃等無機基板、上述熱塑性樹脂等組合而成之構成。再者,第3介電體63亦可使用後述之形成第2介電體之材料。 形成第2介電體62之材料較佳為樹脂等。又,形成第2介電體62之材料之特性較佳為於可見光區域中透明性較高之材料、耐熱性較高之材料、與WG61之密接性較高、與第3介電體63之密接性較高,但並不限定於該等。可列舉例如聚碳酸酯、聚苯乙烯(PS)、環烯烴聚合物(COP)、聚氯乙烯等非晶質熱塑性樹脂,聚對苯二甲酸乙二酯(PET)、聚乙烯、聚丙烯等結晶性熱塑性樹脂,丙烯酸系、環氧系、胺基甲酸酯系、聚醯亞胺系等紫外線硬化性樹脂或熱固性樹脂。又,亦可設為將紫外線硬化性樹脂或熱固性樹脂與上述熱塑性樹脂等組合而成之構成。又,第2介電體亦可設為雙層構造。例如,可設為填充複數個WG61之間之介電體和與複數個WG61之上表面及填充複數個WG61之間的介電體之上表面相接之介電體的雙層構造。雙層構造之各樹脂之材料使用與上述第2介電體62相同之材料即可。再者,於設為雙層構造之情形時,填充複數個WG61之間之介電體亦可為使用固體介電體材料之層。例如,可由氧化矽或氮化氧化矽、氧化氮化矽、氮化矽等無機化合物、或者其等之積層構造而形成,但並不限定於其等。 第1介電體及第2介電體可由相同之透明樹脂形成,亦可由不同之透明樹脂形成,作為該形成介電體之透明樹脂材料,能夠使用日本專利特開2013-062489號公報、日本專利特開2012-224845號公報、日本專利特開2013-089761號公報、WO2014/196381號公報等。 波長轉換層使用無機系螢光體、螢光性有機色素、量子點等。例如,紅色轉換層41可使用Y2 O3 :Eu3+ 、Y2 O2 S:Eu3+ 等,綠色轉換層42可使用Ca2 SiO4 :Eu2+ 、ZnSiO3 :Mn等,藍色轉換層可使用ZnS:Ag或ZnS等。但是,並不限定於其等。 遮光層使光之透過率為5%以下即可。又,較佳為導電性金屬。進而較佳為對所使用之透射光之反射率較高、與第3介電體63及波長轉換層之密接性較高。可使用例如鋁、鉻、鈦、或其等之合金等導電性金屬材料,或者炭黑等碳之粒子等。但是,並不限定於其等。 <製作步驟> 對WG反射偏光層60及波長轉換層之製作步驟進行簡單說明。再者,製作方法並不限定於該方法,能夠採用本發明之技術領域中通常使用之方法。 例如,對使用電子束繪圖裝置或光微影法來製作WG反射偏光層60及波長轉換層之方法進行說明。再者,對第2介電體為雙層之情形進行說明。 於玻璃基板上塗佈成為第2介電體62之聚醯亞胺系或丙烯酸系之樹脂。或者,成膜氧化矽或氮化氧化矽、氧化氮化矽、氮化矽等無機化合物。塗佈方法使用旋轉塗佈法或浸漬法等即可。又,成膜可使用CVD(Chemical Vapor Deposition,化學氣相沈積)裝置等而化學形成,亦可使用真空蒸鍍法、濺鍍法、離子鍍覆法、網版印刷法等而物理形成。 其次,成膜用於形成WG61之導電性金屬。例如,使用濺鍍裝置成膜鋁。進而,塗佈光阻劑,藉由ArF曝光裝置、KrF曝光裝置、電子束繪圖裝置等,描繪WG61之圖案以外之部分並進行顯影。由於光阻劑殘留於WG61之圖案上,故而藉由將光阻劑作為遮罩進行蝕刻以去除光阻劑,而能夠形成WG61。 繼而,塗佈成為第2介電體62之第2層之聚醯亞胺系或丙烯酸系之樹脂。或者,成膜氧化矽或氮化氧化矽、氧化氮化矽、氮化矽等無機化合物。塗佈方法使用噴墨法、旋轉塗佈法或浸漬法等即可。又,成膜可使用CVD裝置等而化學形成,亦可使用真空蒸鍍法、濺鍍法、離子鍍覆法等而物理形成。以此方式,能夠以樹脂或無機化合物填充複數個WG61之間。 進而,使用化學機械研磨裝置(Chemical Mechanical Polisher,CMP),使樹脂或無機化合物平坦化。此時,亦可研磨至WG61露出於表面之程度。 繼而,塗佈成為第3介電體63之聚醯亞胺系或丙烯酸系之樹脂。或者,成膜氧化矽或氮化氧化矽、氧化氮化矽、氮化矽等無機化合物。塗佈方法使用旋轉塗佈法或浸漬法等即可。又,成膜可使用CVD裝置等而化學形成,亦可使用真空蒸鍍法、濺鍍法、離子鍍覆法等而物理形成。 進而,形成遮光層40。例如,使用濺鍍裝置成膜導電性金屬、鉻。進而,塗佈光阻劑,利用使用光罩之光微影技術,形成遮光層40之圖案並進行顯影。由於光阻劑殘留於遮光層40之圖案上,故而藉由將光阻劑作為遮罩進行蝕刻以去除光阻劑,而能夠形成遮光層40。 其次,形成波長轉換層。形成波長轉換層之順序進行適當選擇即可。例如,塗佈紅色之螢光性有機色素,形成紅色轉換層41,塗佈綠色之螢光性有機色素,形成綠色轉換層42即可。該等波長轉換層形成於同一平面上。藉由形成於同一平面上,與分別形成於不同層上相比,能夠減少製造步驟。所使用之材料可為無機系螢光體或者量子點。藍色可塗佈藍色彩色濾光片層43,亦可塗佈第2介電體、第3介電體中所使用之材料。以此方式,能夠形成波長轉換層。再者,於圖2中雖未圖示,但可於形成波長轉換層之後形成保護膜。保護膜可使用第2介電體、第3介電體中所使用之材料,亦可使用接著劑接著塑料膜等膜層。 如此,能夠製造WG反射偏光層60及波長轉換層。再者,於玻璃基板上製作之WG反射偏光層60及波長轉換層可直接使用。又,亦可自玻璃基板機械剝離,以柔性狀態進行使用。 以如上方式構成而製作出之WG反射偏光層60及波長轉換層能夠提高光之利用效率。又,由於WG反射偏光層60及波長轉換層可無須使用特殊之製造步驟或製造裝置,而使用本發明之技術領域中通常使用之裝置或方法進行製作,故而能夠提供抑制了製造成本之WG反射偏光層60及波長轉換層。 (第2實施形態) 於本實施形態中,對使用本發明之一實施形態之反射偏光層及波長轉換層之液晶顯示裝置進行說明。再者,存在關於與第1實施形態相同之構成而省略說明之情況。 圖3係表示本發明之一實施形態之液晶顯示裝置160之構成的模式性俯視圖。 液晶顯示裝置160包含第1玻璃基板20、像素區域104、閘極側驅動電路108及109、源極側驅動電路112、連接器114及積體電路(IC)116。 於第1玻璃基板20上形成有像素區域104、閘極側驅動電路108及109、源極側驅動電路112。連接器114連接於玻璃基板114。積體電路(IC)116設置於連接器114上。 像素區域104包含複數個像素106。複數個像素106沿著一方向及與一方向交叉之方向配置。複數個像素106之排列數為任意。例如,排列有X方向上為m個、Y方向上為n個之像素106。m及n分別獨立地為大於1之自然數。像素區域104為顯示區域。像素106之各者具有顯示元件,顯示元件包含液晶元件。 例如,能夠將對應紅色(R)、綠色(G)及藍色(B)之三原色之顯示元件設置於三個像素之各者。藉由向各像素供給256級之電壓或電流,能夠提供全彩之液晶顯示裝置。又,複數個像素106之排列無限制。例如,可採用條狀排列或三角形排列等。再者,本發明之一實施形態之液晶顯示裝置160係對條狀排列之例進行說明。 連接器114具有將影像信號、控制電路之動作之時序信號、電源等供給至閘極側驅動電路108及109、源極側驅動電路112之作用。連接器114可使用軟性印刷電路(FPC)。影像信號、控制電路之動作之時序信號、電源等自外部電路經由連接器114而被供給至閘極側驅動電路108及109、源極側驅動電路112。 閘極側驅動電路108及109、源極側驅動電路112具有使用所供給之影像信號、控制電路之動作之時序信號、電源等驅動各像素106而於像素區域104顯示影像之作用。 閘極側驅動電路108及109、源極側驅動電路112可不全部形成於第1玻璃基板20上。例如,包含閘極側驅動電路、源極側驅動電路之一部分或者所有功能之積體電路(IC)可配置於第1玻璃基板20上、或者連接器114上。再者,圖3之積體電路(IC)116具有閘極側驅動電路、源極側驅動電路之一部分之功能。 圖4係表示使用包含本發明之一實施形態之線柵反射偏光層60及波長轉換層之液晶顯示裝置310或320之光學系統300之構成的模式性剖視圖。光學系統300除圖2之構成以外,亦包含第1玻璃基板20、TFT陣列30、第1透光性導電層70、第1配向膜80、液晶層90、第2配向膜100、第2透光性導電層110、第2玻璃基板120、偏光板130。 TFT陣列30係利用複數個薄膜電晶體、電容元件、電阻元件、各種配線等形成有像素區域104、閘極側驅動電路108及109、源極側驅動電路112之層。TFT陣列30具有驅動液晶顯示裝置310或320之作用。第1透光性導電層70及第2透光性導電層110之各者被施加電壓,從而具有控制液晶層90中所包含之液晶元件之作用。第1配向膜80及第2配向膜100具有於對第1透光性導電層70及第2透光性導電層110之各者施加電壓時,使液晶層90中所包含之液晶元件配向之作用。液晶顯示裝置310或320可藉由將其等之構成元件夾持於第1玻璃基板20、第2玻璃基板120而實現。再者,偏光板130具有將無規之偏光對齊為特定方向之偏光並使其透過之作用。再者,亦可不使用第2透光性導電層110,而使用後述之共用電位線197。又,於圖4中,顯示了使用紅色彩色濾光片層50、綠色彩色濾光片層51、藍色彩色濾光片層或第4介電體43之例,但無彩色濾光片亦可。 圖5係表示本發明之一實施形態之液晶顯示裝置160所包含之像素106之模式性俯視圖。圖5中所示之像素可應用於在與第1玻璃基板20垂直之方向施加電壓而控制液晶元件之VA(Vertical Alignment,垂直配向)方式或TN(Twisted Nematic,扭轉向列)方式。 圖5所示之像素106包含薄膜電晶體190、電容元件196、源極配線191、閘極配線192、電容電位線193、第1透光性導電層70。薄膜電晶體190包含半導體層32、閘極電極34、源極/汲極電極36及38、第1開口部39a及39b。源極/汲極電極36及38經由第1開口部39a及39b與半導體層32電性連接。第1透光性導電層70經由第2開口部194、第3開口部195與源極/汲極電極38電性連接。藉由源極/汲極電極38、後述之閘極絕緣膜33及電容電位線193形成電容元件196。源極/汲極電極36與源極線191電性連接。閘極電極34與閘極配線192電性連接。藉由對第1透光性導電層70及後述之第2透光性導電層110之各者施加電壓,而於與第1玻璃基板20垂直之方向產生電場,液晶層90中所包含之液晶元件得以控制,液晶顯示裝置能夠顯示影像。 圖6係表示本發明之一實施形態之液晶顯示裝置160所包含之像素106之另一例之模式性俯視圖。圖6中所示之像素可應用於在與第1玻璃基板20平行之方向上施加電壓而控制液晶元件之IPS(In Plane Switching,橫向電場效應)方式。 圖6所示之像素106包含薄膜電晶體190、電容元件196、源極配線191、閘極配線192、電容電位線193、第1透光性導電層70、共用電位線197。薄膜電晶體190包含半導體層32、閘極電極34、源極/汲極電極36及38、第1開口部39a及39b。源極/汲極電極36及38經由第1開口部39a及39b與半導體層32電性連接。第1透光性導電層70經由第2開口部194、第3開口部195與源極/汲極電極38電性連接。藉由源極/汲極電極38、後述之閘極絕緣膜33及電容電位線193而形成電容元件196。源極/汲極電極36與源極線191電性連接。閘極電極34與閘極配線192電性連接。共用電位線197具有向像素區域104中所包含之所有像素106供給共用電位之作用。共用電位線197可為像素區域104中所包含之所有像素106所共有,亦可X方向之各像素所供給,還可為Y方向之各像素所共有。藉由對第1透光性導電層70及共用電位線197之各者施加電壓,於與第1玻璃基板20平行之方向產生電場,液晶層90中所包含之液晶元件得以控制,液晶顯示裝置能夠顯示影像。 圖7係表示本發明之一實施形態之液晶顯示裝置160所包含之像素106之WG反射偏光層60之WG61的模式性俯視圖。圖5及圖6之面向紙面之上表面疊加有圖7。為了易於觀看圖式,將圖5及圖6與圖7分開。關於WG61之線寬及WG61之間隔,為易於理解而將大小設定成於圖式上能夠辨識之大小,但並不限定於該大小。 藉由設為如上構成,WG反射偏光層及波長轉換層能夠提高光之利用效率。使用WG反射偏光層及波長轉換層之液晶顯示裝置能夠提高光之利用效率,顏色再現性良好,能夠實現明亮且清晰之顯示。 (第3實施形態) 於本實施形態中,對本發明之一實施形態之液晶顯示裝置之製作方法進行說明。再者,存在關於與第1實施形態及第2實施形態相同之構成省略說明之情況。 使用圖8或圖9、及圖10至圖13,對液晶顯示裝置310之製造方法進行說明。再者,本發明之液晶顯示裝置之製造方法只要無特別說明,則以利用液晶顯示裝置之製造中通常使用之光微影技術為例進行說明。只要為液晶顯示裝置之製造方法,則不限於光微影技術,只要為本發明之技術領域中通常使用之方法均能夠採用。 圖8係表示應用圖5之像素構成之情形時之包含線柵反射偏光層及波長轉換層之液晶顯示裝置310之製造方法的模式性剖視圖。並且係將液晶顯示裝置中所包含之3個像素放大之模式性剖視圖。 圖9係表示應用圖6之像素構成之情形時之包含線柵反射偏光層及波長轉換層之液晶顯示裝置320之製造方法的模式性剖視圖。並且係將液晶顯示裝置中所包含之3個像素放大之模式性剖視圖。 首先,如圖10(A)所示,TFT陣列30形成於第1玻璃基板20之上。TFT陣列30包含基底膜31、半導體層32、閘極絕緣膜33、閘極電極34、層間膜35、源極/汲極電極36及38、第1開口部39a及39b、電容電位線193及第1介電體37。TFT陣列30上形成有薄膜電晶體190、電容元件196。 第1介電體37具有緩和形成較第1介電體37更靠下層之膜、配線、電晶體等時之凹凸之作用。因此,於第1介電體之後所形成之膜或圖案能夠形成於平坦面之上。形成第1介電體37之材料之特性較佳為於可見光區域中透明性較高之材料、耐熱性較高之材料、與波長轉換層之密接性較高。 TFT陣列30之形成方法、薄膜電晶體190及電容元件196之構造、各膜、層及各部分之材料可採用公知者。即,可採用本發明之技術領域中通常使用之方法、構造或材料。 其次,如圖10(B)所示,形成波長轉換層。首先,形成波長轉換層中所包含之遮光層40。例如,於基板上整面印刷含有炭黑等黑色粒子之介電體,進而,塗佈光阻劑,藉由使用光罩之光微影技術,形成遮光層40之圖案並進行顯影。藉由使光阻劑殘留於遮光層40之圖案上,而將光阻劑作為遮罩進行蝕刻而去除光阻劑,由此能夠形成遮光層40。藉由於波長轉換層形成遮光層40,能夠明確劃分各色之波長轉換層,故而能夠抑制透射光之混色。 繼而,形成波長轉換層,即紅色轉換層41、綠色轉換層42。再者,形成紅色轉換層41、綠色轉換層42之順序進行適當選擇即可。例如,可形成藍色彩色濾光片43,塗佈含有紅色螢光性無機顏料或螢光性有機色素之波長轉換膜形成用組合物,形成紅色轉換層41,然後塗佈含有綠色螢光性無機顏料或螢光性有機色素之波長轉換用組合物,形成綠色轉換層42。 作為上述含有紅色螢光性無機顏料或螢光性有機色素之波長轉換膜形成用組合物、含有綠色螢光性無機顏料或螢光性有機色素之波長轉換用組合物中之螢光性無機顏料,可列舉氮氧化物螢光體、氮化物螢光體、YAG(Yttrium Aluminium Garnet,釔-鋁-石榴石)螢光體等。作為螢光性有機色素,可列舉:蒽系、蒽醌系、芳基次甲基系、偶氮系、甲亞胺系、白曼系、香豆素系、1,5-二氮雜雙環[3.3.0]辛二烯系、吡咯二酮系、萘酚亞胺系、萘二甲醯亞胺系、苝系、酚酞系、吡咯次甲基系、吡喃系、芘系、卟吩系、卟啉系、喹吖啶酮系、玫瑰紅系、紅螢烯系、茋系之螢光色素,作為包含該等螢光性無機顏料、螢光性有機色素之波長轉換用組合物之具體例子,可列舉日本專利特開2016-90998號公報、WO2016・063930號公報、WO2013/118334號公報、日本專利特開2016-39228號公報等。 又,亦能夠使用包含半導體量子點之波長轉換膜形成用組合物作為螢光性無機材料之一種,作為半導體量子點之具體例,較佳為由包含In作為構成元素之化合物構成之半導體量子點,更佳為作為核殼構造型半導體量子點之InP/ZnS、InP/ZnSe、CuInS2/ZnS及(ZnS/AgInS2)固溶體/ZnS、以及作為均質構造型半導體量子點之AgInS2及摻Zn之AgInS2,進而較佳為InP/ZnS。作為包含半導體量子點之波長轉換膜形成用組合物,可使用日本專利特開2017-32918號公報、日本專利特開2017-48355號公報、日本專利特開2015-46328號公報等所揭示之組合物。 此處,雖然示出藍色係塗佈藍色彩色濾光片43之例,但亦可塗佈第4介電體。藉由於形成藍色彩色濾光片43之區域中形成第4介電體,能夠抑制由藍色彩色濾光片43所導致之光之吸收或反射,故而能夠使藍光高效率地透過。 第4介電體之材料可使用例如聚醯亞胺系或丙烯酸系之樹脂。亦可採用該等材料以外之材料。第4介電體較佳為與遮光層40及第1介電體37之密接性較高、透明度高、耐熱。 其次,如圖10(C)所示,形成彩色濾光片層。彩色濾光片層之形成之順序進行適當選擇即可。例如,可形成紅色彩色濾光片層50,形成綠色彩色濾光片層51,形成藍色彩色濾光片層43。彩色濾光片層可藉由塗佈而於整面塗佈後,使用光罩,利用光微影技術而形成。再者,形成方法不限定於該方法。 繼而,如圖11(A)所示,形成第3介電體63。第3介電體63具有緩和形成較第3介電體更靠下之膜、或者配線圖案等時之凹凸之作用。又,亦具有保護波長轉換層、彩色濾光片層之作用。進而,亦具有此後形成之WG61之基材之作用。 第3介電體具有緩和形成較第3介電體更靠下之膜、或者配線圖案等時之凹凸之作用。又,亦具有保護波長轉換層、彩色濾光片層之作用。進而,亦具有形成於第3介電體之上之WG61之基材之作用。 形成第3介電體63之材料可採用與第4介電體相同之材料。例如,可使用聚醯亞胺系或丙烯酸系之樹脂、環氧系、胺基甲酸酯系之樹脂等。 其次,如圖11(B)所示,形成WG61。WG61能夠藉由奈米壓印法而形成。奈米壓印法係公知技術,省略詳細之說明。例如,有製作於石英玻璃等上形成凹凸之模具,使用該模具而形成圖案之方法。例如,於玻璃基板等透明基材上,使用濺鍍裝置成膜鋁。進而,塗佈抗蝕劑,將上述模具壓抵於抗蝕劑,照射UV(Ultra Violet,紫外線)光。藉由將抗蝕劑作為遮罩進行蝕刻去除抗蝕劑,而能夠形成WG61。 於圖11(B)中,WG61之線寬於遮光之部分、及所謂WG之部分變化。即,亦可利用WG形成遮光層。藉由利用WG形成遮光層,能夠遮斷可見光。再者,亦可不利用WG形成遮光層,而以固定週期之線寬及間隔設計模型,形成WG61。 其次,如圖12(A)所示,形成用以將第1透光性導電層70與源極/汲極電極38電性連接之第2開口部194。第2開口部194係將第1介電體37、紅色轉換層41、綠色轉換層42、藍色彩色濾光片43或第4介電體、紅色彩色濾光片層50及綠色彩色濾光片層51開口。 繼而,如圖12(B)所示,塗佈第2介電體62。第2介電體具有緩和WG61之凹凸之作用。又,具有覆蓋第2開口部194之側壁而保護紅色轉換層41、綠色轉換層42、藍色彩色濾光片43或第4介電體、紅色彩色濾光片層50及綠色彩色濾光片層51之作用。藉由緩和形成顯示裝置之層之凹凸,使膜表面平坦化,能夠使入射至顯示裝置之光、或反射之光、以及所要吸收之光穩定化。 其次,如圖13(A)所示,於第2介電體62上形成到達至源極/汲極電極之第3開口部195。第3開口部195係用以將第1透光性導電層70與源極/汲極電極38電性連接而形成。 繼而,如圖13(B)所示,形成第1透光性導電層70。第1透光性導電層70與像素之源極/汲極電極38連接,被施加相當於影像信號之電壓,而具有驅動液晶層90所具有之液晶元件之作用。形成第1透光性導電層70之材料例如能夠使用ITO(Indium Tin Oxide,氧化銦錫)、IZO(Indium Zinc Oxide,氧化銦鋅)等使光透過之材料。於第1透光性導電層70之上形成第1配向膜80。第1配向膜80具有絕緣作,即,使第1透光性導電層70與形成於液晶層90之對向側之第2透光性導電層110不導通。形成第1配向膜80之材料使用例如聚醯亞胺系等樹脂。於圖13中,示出了於第1透光性導電層70之上形成第1配向膜80之例,但亦可於第1透光性導電層70與第1配向膜80之間存在形成有遮光膜之層,還可存在無機化合物層。遮光膜層具有遮斷可見光之作用,無機化合物層具有與對向面之導電層絕緣之作用。 最後,使用圖8說明對向側之基板。對向側基板包含第2玻璃基板120、第2透光性導電層110、第2配向膜100。於第2玻璃基板120上,成膜第2透光性導電層100後,塗佈第2配向膜100。第2透光性導電層100具有對配置於第2透光性導電層100與第1透光性導電層70之間之液晶層90中所包含之液晶元件垂直地施加電壓而控制液晶元件之作用。形成第2透光性導電層100之材料能夠使用例如ITO、IZO等使光透過之材料。第2配向膜100具有絕緣作用,即,使第2透光性導電層110與形成於液晶層90之對向側之第1透光性導電層70不導通。形成第2配向膜100之材料使用例如聚醯亞胺系等之樹脂。於圖8中,示出了於第2透光性導電層110之下形成第2配向膜100之例,但亦可於第2透光性導電層110與第2配向膜100之間存在形成有遮光膜之層,還可存在無機化合物層。遮光膜層具有遮斷可見光之作用,無機化合物層具有與對向面之導電層絕緣之作用。例如,使用密封材等,以中間隔著液晶層90之方式將如此形成之對向側基板與到圖13(B)為止所形成之部分貼合。進而,藉由將偏光板130貼合於第2玻璃基板120上,能夠製造液晶顯示裝置310或320。 再者,於圖9中所示之液晶顯示裝置320中,於形成第1透光性導電層70之步驟中,共用電位線197與第1透光性導電層70形成於同一層。又,亦可不形成第2透光性導電層110。 使用如上之製造方法製造出之使用了WG反射偏光層及波長轉換層之液晶顯示裝置能夠提高光之利用效率,顏色再現性良好,能夠實現明亮且清晰之顯示。進而,無需特殊之製造裝置,能夠利用已有之製造設備,故而能夠抑制製造成本。 (第4實施形態) 於本實施形態中,對本發明之一實施形態之液晶顯示裝置之另一構成及製作方法進行說明。再者,存在關於與第1實施形態至第3實施形態相同之構成省略說明之情況。又,本發明之液晶顯示裝置之製造方法與第2實施形態及第3實施形態同樣地,只要無特別說明,則以利用光微影技術為例進行說明,當然,只要為本發明之技術領域中通常使用之方法則能夠採用。 圖14係表示使用包含本發明之一實施形態之線柵反射偏光層60及波長轉換層之液晶顯示裝置410或420之光學系統400之構成的模式性剖視圖。光學系統400包含與圖4相同之構成,於液晶顯示裝置410或420中,積層順序與圖8或圖9不同。 積層順序為:於第1玻璃基板20之上有TFT陣列30、第1透光性導電層70、第1配向膜80、液晶層90、第2配向膜100、第2透光性導電層110、第2玻璃基板120、WG反射偏光層60、由遮光層50、紅色轉換層41、綠色轉換層42及藍色彩色濾光片或第4介電體43構成之波長轉換層、由紅色彩色濾光片50、綠色彩色濾光片51及藍色彩色濾光片或第4介電體43構成之彩色濾光片層、以及第2玻璃基板120。再者,於第1玻璃基板20之下設置有偏光板130。 圖15係表示應用圖5之像素構成之情形時之包含WG反射偏光層60及波長轉換層之液晶顯示裝置410之製造方法的模式性剖視圖。並且係將液晶顯示裝置中所包含之3個像素放大之模式性剖視圖。再者,亦可不形成圖5中所示之第3開口部195。 圖16係表示應用圖6之像素構成之情形時之包含WG反射偏光層60及波長轉換層之液晶顯示裝置420之製造方法的模式性剖視圖。並且係將液晶顯示裝置中所包含之3個像素放大之模式性剖視圖。再者,亦可不形成圖6中所示之第3開口部195。 使用圖15及圖16對液晶顯示裝置410及420之製造方法進行說明。於第1玻璃基板20之上形成TFT陣列30之步驟與圖3相同,故省略。 於形成TFT陣列30之第1介電體37之後,形成第2開口部194,形成第1透光性導電層70。於圖16所示之液晶顯示裝置420之製造中,共用電位線197與第1透光性導電層70形成於同一層。於第1透光性導電層70之上,形成第1配向膜80。再者,於第1透光性導電層70與第1配向膜80之間,可存在形成有遮光膜之層,亦可存在無機化合物層。遮光膜層具有遮斷可見光之作用,無機化合物層具有與對向面之導電層絕緣之作用。此處,將於第1玻璃基板上形成至第1配向膜80為止之基板記作TFT側基板。 繼而,對隔著液晶層90與TFT側基板對向之側之基板之形成進行說明。此處,將與TFT側基板對向之側之基板記作對向側基板。 於第2玻璃基板120上,形成由紅色彩色濾光片50、綠色彩色濾光片51及藍色彩色濾光片或第4介電體43構成之彩色濾光片層。進而,形成由遮光層50、紅色轉換層41、綠色轉換層42及藍色彩色濾光片或第4介電體43構成之波長轉換層。繼而,形成包含第3介電體63、WG61、第2介電體之WG反射偏光層60。然後,於成膜第2透光性導電層110之後,塗佈第2配向膜100。再者,於第2透光性導電層110與第2配向膜100之間,可存在形成有遮光膜之層,亦可存在無機化合物層。遮光膜層具有遮斷可見光之作用,無機化合物層具有與對向面之導電層絕緣之作用。例如,使用密封材等,以其間隔著液晶層90之方式將如此形成之對向側基板與TFT側基板貼合。進而,藉由將偏光板130貼合於第1玻璃基板20上,能夠製造液晶顯示裝置410或420。 使用如上之製造方法製造出之使用了WG反射偏光層及波長轉換層之液晶顯示裝置能夠提高光之利用效率,顏色再現性良好,能夠實現明亮且清晰之顯示。又,由於無須形成第3開口部195,進而能夠抑制製造成本。 (第5實施形態) 於本實施形態中,對本發明之一實施形態之液晶顯示裝置之另一構成及製作方法進行說明。再者,存在關於與第1實施形態至第4實施形態相同之構成省略說明之情況。又,本發明之液晶顯示裝置之製造方法與第2實施形態至第4實施形態同樣地,只要無特別說明,則以利用光微影技術為例進行說明。但是,當然亦能夠使用本發明之技術領域中通常使用之方法進行製造。 圖17係表示使用包含本發明之一實施形態之線柵反射偏光層60及波長轉換層之液晶顯示裝置510或520之光學系統500之構成的模式性剖視圖。光學系統500包含與圖4或圖14圖相同之構成,於液晶顯示裝置510或520中,積層順序與圖15或圖16不同。 積層順序為:保護膜140、由遮光層50、紅色轉換層41、綠色轉換層42及藍色彩色濾光片或第4介電體43構成之波長轉換層、由紅色彩色濾光片50、綠色彩色濾光片51及藍色彩色濾光片或第4介電體43構成之彩色濾光片層、WG反射偏光層60、第1玻璃基板20、TFT陣列30、第1透光性導電層70、第1配向膜80、液晶層90、第2配向膜100、第2透光性導電層110、第2玻璃基板120。再者,於第2玻璃基板120之上設置有偏光板130。 此處將於第1玻璃基板20上形成至第1配向膜80為止之基板稱為TFT側基板。TFT側基板之製造步驟與第4實施形態相同,故省略。此處將形成第2配向膜100、第2透光性導電層110直至第2玻璃基板120之基板稱為對向側基板。對向側基板之製造步驟與第3實施形態相同,故省略。 此處,對形成保護膜140、由遮光層50、紅色轉換層41、綠色轉換層42及藍色彩色濾光片或第4介電體43構成之波長轉換層、由紅色彩色濾光片50、綠色彩色濾光片51及藍色彩色濾光片或第4介電體43構成之彩色濾光片層、WG反射偏光層60之方法進行說明。再者,將此處形成之部分稱作WG基板。 首先,雖未圖示,但於第3玻璃基板121上,塗佈或者成膜保護膜140。例如,於保護膜140之材料使用聚醯亞胺系或丙烯酸系等樹脂之情形時進行塗佈,於保護膜140之材料使用氧化矽或氮化氧化矽、氧化氮化矽、氮化矽等無機化合物之情形時進行成膜。或者,亦可設為樹脂與無機化合物之積層膜。保護膜140具有抑制形成於保護膜140上方之層、膜、圖案受到來自顯示裝置外部之衝擊等而損傷、劣化之作用。於設為積層膜之情形時,進而,能夠起到防止水分等滲入液晶顯示裝置內而導致顯示裝置劣化之作用。再者,塗佈方法能夠利用旋轉塗佈法或浸漬法等。又,成膜可使用CVD裝置等而化學進行,亦可使用濺鍍法等物理進行。 其次,形成由遮光層50、紅色轉換層41、綠色轉換層42及藍色彩色濾光片或第4介電體43構成之波長轉換層。進而,形成由紅色彩色濾光片50、綠色彩色濾光片51及藍色彩色濾光片或第4介電體43構成之彩色濾光片層。繼而,形成包含第3介電體63、WG61、第2介電體之WG反射偏光層60。由於波長轉換層、彩色濾光片層及WG反射偏光層60之製作方法能夠利用第2實施形態至第4實施形態中所說明之方法,故而此處省略。如此,能夠製作WG基板。 最後,對將TFT側基板、對向側基板及WG基板貼合之步驟進行說明。例如,使用密封材等,以其間隔著液晶層90之方式將TFT側基板與對向側基板貼合。進而,於TFT基板側之第1玻璃基板20之與貼合有對向基板之面相反之面,貼合WG基板之WG轉換層60之面。進而,藉由將偏光板130貼合於第2玻璃基板130,能夠製造液晶顯示裝置510或520。 使用如上之製造方法製造出之使用了WG反射偏光層及波長轉換層之液晶顯示裝置能夠提高光之利用效率,顏色再現性良好,能夠實現明亮且清晰之顯示。又,由於無須形成第3開口部195,且能夠直接利用將TFT基板與對向基板貼合而成之通常之液晶顯示,故而能夠進一步抑制製造成本。 上述本發明之各實施形態可於相互不矛盾之範圍內進行適當組合。又,業者基於各實施形態進行構成元件之追加、刪除、或設計變更而得者,或者進行步驟之追加、省略、或條件變更而得者只要具備本發明之主旨,則包含於本發明之範圍中。 又,即便為與藉由上述本發明之各實施形態之態樣而獲得之作用效果不同之作用效果,只要為根據本說明書之記載而明確者或業者能夠容易預測者,便可解釋為藉由本發明而獲得者。Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. However, the invention can be embodied in many different forms without departing from the spirit and scope of the invention. That is, it is not limited to the disclosure of the embodiments exemplified below. Further, the drawings are intended to clarify the description, and the width, thickness, shape, and the like of each portion may be schematically indicated in comparison with the actual embodiment. However, the mode is only an example and does not limit the explanation of the present invention. In the present specification and the drawings, the same components as those already described in the prior art are denoted by the same reference numerals (or the numerals are denoted by a, b, etc.), and the description will be omitted as appropriate. In addition, the characters "1st" and "2nd" which are attached to each component are used to distinguish each component, and are not more meaningful unless otherwise specified. In the present specification, the term "upper" includes not only a case where it is directly connected to an object or a region, but also a case where another object or region is interposed. The term "below" is also the same. Also, the terms "upper" and "lower" mean that the relative relationship between objects or regions does not mean absolute superiority. Specifically, the main surface of the substrate (the surface on which the element or the like is formed) is defined as "upper" from the main surface side of the substrate, and the opposite side of the main surface of the substrate is defined as "lower". In the case where a plurality of patterns are formed by processing a certain film, there are cases where the plurality of patterns each have different functions and/or functions. However, the plurality of patterns are derived from the film formed as the same layer in the same step. That is, the plurality of patterns have the same layer configuration and contain the same material. Therefore, in the present specification, it is defined that the plurality of patterns exist in the same layer. The reflective polarizing layer and the wavelength conversion layer of the present invention will be described. The description will be as follows: The reflective polarizing layer includes a wire grid (hereinafter referred to as WG (Wire Grid)) and a resin, so that the blue p-polarized light is transmitted, reflected, or absorbed. The wavelength conversion layer includes a wavelength conversion material that absorbs light of blue (the shortest wavelength used) and emits red (the longest wavelength used), and absorbs blue (the shortest wavelength used) light and emits green The wavelength conversion material of light. The reflected blue light can be efficiently converted by using a reflective polarizing layer containing WG and resin, and a wavelength converting layer including a wavelength converting material that converts blue light into red light and a wavelength converting material that converts blue light into green light. It is red and green, and can improve utilization efficiency. (First Embodiment) In the present embodiment, a configuration and a manufacturing method of a reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention will be described. <Structure> Fig. 1 is a schematic cross-sectional view showing the configuration of the WG reflective polarizing layer 60 in the first embodiment. The optical system 200 shown in FIG. 1 represents a WG reflective polarizing layer 60, a light guide plate 10, a light diffusing plate 11, a light source 12, and a reflecting plate 13. The WG reflective polarizing layer 60 includes WG 61, a second dielectric body 62, and a third dielectric body 63. The light source 12 can use, for example, a light source that emits blue light. Specifically, a Light Emitting Diode (LED) can be used. The light guide plate 10 has a function of guiding light from the light source 12 upward. The diffusion plate 11 has a function of diffusing light from the light guide plate. The reflecting plate 13 has a function of reflecting light from a light source or reflected light 65 from the WG reflective polarizing layer 60. FIG. 1 shows an example of a backlight device called a so-called edge illumination method using a light guide plate and a light source, but is not limited to this example. For example, a backlight device called a so-called direct light method using a diffusion plate and a light source can also be used. Fig. 2 is a schematic cross-sectional view showing the configuration of the WG reflective polarizing layer 60 and the wavelength conversion layer in the first embodiment. The optical system 210 shown in FIG. 2 includes a light shielding layer 40, a red conversion layer 41, a green conversion layer 42, a blue color filter, or a fourth dielectric body 43 in addition to the configuration of FIG. In FIG. 2, the light source 12 may use, for example, a light source that emits white light, or a light source that emits blue light. Specifically, a Light Emitting Diode (LED) or a Light Emitting Diode (LED) can be used. Further, in FIG. 2, an example of a backlight device called a so-called edge illumination method using a light guide plate and a light source is used, but the present invention is not limited to this example. For example, a backlight device called a so-called direct light method using a diffusion plate and a light source can also be used. The light shielding layer 40 has a function of blocking visible light, and separates the adjacent red conversion layer 41, green conversion layer 42 and blue color filter or fourth dielectric body 43 to suppress transmission of each wavelength conversion layer and blue color Light such as a color filter is mixed with light reflected by each of the wavelength conversion layer and the blue color filter. The red conversion layer 41 has a function of converting blue incident light 64 into red. The green conversion layer 42 has the effect of converting the blue incident light 64 into green. The incident light 64 passes through each of the conversion layers and the WG reflective polarizing layer 60, and transmits red transmitted light (P wave) 67, green transmitted light (P wave) 68, and blue transmitted light (P wave) 69. The S wave (including blue, green, and red) reflected by the WG reflective polarizing layer is reflected by the reflecting plate 13, enters (returns) to 41, 42, and 43, and repeats the above operation to circulate (enhance the utilization efficiency of light). ). For example, the blue incident light 64 is wavelength converted to red by the red conversion layer 41, and incident on the WG 60 together with the blue which is not completely absorbed by 41. In the WG 60, the P wave is emitted as the transmitted light 67, and the S wave is reflected and returned to the light source side. Preferably, the transmittance and reflectance at WG 60 may be wavelength dependent, and blue may be lower in transmittance and higher in reflectance than green and red. The blue reflected from the WG 60 is converted to red by the red conversion layer 41. The light reflected by the WG 60 and passing through the red conversion layer 41 is returned to the wavelength conversion layer and the reflective polarizing layer 60 via the diffusion plate 11 , the light guide plate 10 , the reflection plate 13 , the light guide plate 10 , and the diffusion plate 11 , and the above operation is repeated. Cycle (increasing the efficiency of light utilization). For example, the blue incident light 64 is wavelength converted to green by the green conversion layer 42 and incident on the WG 60 together with the blue that is not completely absorbed by 42. In WG60, the P wave is emitted as transmitted light 68, and the S wave is reflected and returned to the light source side. Preferably, the transmittance and reflectance at WG 60 may be wavelength dependent, and blue may be lower in transmittance and higher in reflectance than green and red. The blue reflected from WG 60 is converted to green by the green conversion layer 42. The light reflected by the WG 60 and passing through the green conversion layer 42 is returned to the wavelength conversion layer and the reflective polarization layer 60 via the diffusion plate 11 , the light guide plate 10 , the reflection plate 13 , the light guide plate 10 , and the diffusion plate 11 , and the above operation is repeated. Cycle (increasing the efficiency of light utilization). For example, the blue incident light 64 is incident on the WG 60 via the blue color filter 43. In the WG 60, the P wave is emitted as the transmitted light 69, and the S wave is reflected and returned to the light source side. Preferably, the transmittance and reflectance at WG 60 may be wavelength dependent, and blue may be lower in transmittance and higher in reflectance than green and red. The blue reflected by the WG 60 is returned to the wavelength conversion layer and the reflective polarizing layer 60 via the blue color filter 43, the diffusion plate 11, the light guide plate 10, the reflection plate 13, the light guide plate 10, and the diffusion plate 11, by repeating the above Looping by action (increasing the efficiency of light utilization). By using the reflective polarizing layer and the wavelength conversion layer of the present invention, the light use efficiency can be improved. Here, although an example in which a color filter is used is shown here, it is not limited to this example, and a color filter may not be used. When the color filter is not used, since the portion where the color filter absorbs light is not present, the light utilization efficiency is further improved. Further, for example, when a wavelength conversion layer containing a phosphor such as a quantum dot is used, since the absorption efficiency of light on the wavelength conversion layer is improved, a color filter having a low light absorption rate can be used. WG61 is a thin line having a line width of the shortest wavelength or less of the transmitted light used. The WG 61 is arranged in plurality in parallel with the direction in which it extends, and is formed on the transparent substrate using a conductive material. Preferably, the arrangement interval of the WG 61 is periodic. Furthermore, the arrangement interval of the WG 61 may also be aperiodic. For example, when the light shielding layer is formed on the same plane as the plurality of WGs 61, the line width of the thin line and the light shielding layer may be different, so that it is non-periodic. As is well known, the performance of WG is represented by the relationship between the WG spacing, the wavelength of incident light, the angle of incident light (incident angle), and the refractive index of the substrate. When the arrangement interval of the WG 61 is equal to or less than the shortest wavelength of the transmitted light to be used, the WG reflective polarizing layer 60 can transmit the p-polarized light and reflect the s polarized light. Specifically, when the range of transmitted light used is 400 nm to 700 nm of visible light, since the shortest wavelength of the transmitted light used is 400 nm, for example, the interval is 360 nm or less and the line width is Below 180 nm. Further, it is preferable that the line width is 1/2 or less of the interval. When the line width is about 1/2 or less of the interval, the WG reflective polarizing layer 60 substantially reflects the component of the electric field vibrating in parallel with the WG 61 with respect to the incident light, and substantially transmits the component of the electric field of the vertical vibration. Therefore, it is possible to provide a WG reflective polarizing layer that selectively extracts light of a specific wavelength by adjusting the line width and interval of the WG 61 included in the WG reflective polarizing layer. Further, it is possible to provide a WG reflective polarizing layer that extracts either one of s-polarized light and p-polarized light. Further, the p-polarized light is a component of the light whose electric field vibrates vertically in the incident surface, and the s-polarized light is a component of the light whose electric field vibrates in parallel with the incident surface. Moreover, the performance of the WG is also related to the film thickness of the WG. For example, the film thickness of WG may be set so that the light transmittance is 1% or less. For example, it is preferred that the film thickness of WG is 30 nm or more. Specifically, when the range of transmitted light used in WG61 is 400 nm to 700 nm of visible light, since the shortest wavelength of the transmitted light used is 400 nm, for example, the interval between the WGs is 360 nm. The film thickness of WG is also 360 nm. If the film thickness of the WG is too thin, the transmitted light cannot be ignored, and the light of a specific wavelength cannot be selectively extracted. On the other hand, when the film thickness of WG is too thick, the light use efficiency may be lowered, and the transmitted light may not be neglected. Therefore, it is preferable that the film thickness is not less than 1/2 of the interval as in the line width. Moreover, the performance of the WG is also related to the refractive index between the gates of the WG. By a transparent dielectric such as a resin filled between the gates, it is possible to impart wavelength dependence of transmittance and reflectance (for example, a characteristic in which blue has a low transmittance with respect to green and red and a high reflectance). Preferably, the transparent dielectric material is a transparent resin, and the upper surface of the linear portions and the upper surface of the linear portion are filled with a transparent resin. The first dielectric body and the second dielectric body may be formed of the same transparent resin or may be formed of different transparent resins. The material forming the WG 61 is preferably a conductive metal. Further, it is preferable that the material forming the WG 61 has a high reflectance for transmitted light to be used, and has high adhesion to the second dielectric member 62 and the third dielectric member 63. For example, a conductive metal material such as aluminum, silver, platinum, or the like, or the like may be mentioned, but it is not limited thereto. In FIGS. 1 and 2, the cross-sectional shape of the WG 61 is a rectangle, but is not limited to a rectangle. The cross-sectional shape of the WG 61 may be a square shape, a trapezoidal shape, or a triangular shape, and various shapes may be employed without departing from the gist of the present invention. The material forming the third dielectric body 63 is preferably a material that can serve as a substrate. Preferably, the substrate is made of glass or resin having a higher transparency in a visible light region, a material having higher heat resistance, a higher adhesion to WG61, and a higher adhesion to the second dielectric 62, but not Limited to these. Examples thereof include amorphous thermoplastic resins such as polycarbonate, polystyrene (PS), cycloolefin polymer (COP), and polyvinyl chloride, and polyethylene terephthalate (PET), polyethylene, polypropylene, and the like. The crystalline thermoplastic resin is an ultraviolet curable resin such as an acrylic resin, an epoxy resin, a urethane type or a polyimine, or a thermosetting resin. Moreover, it is also possible to combine an ultraviolet curable resin, a thermosetting resin, an inorganic substrate such as glass, the above thermoplastic resin, or the like. Further, as the third dielectric member 63, a material for forming the second dielectric body which will be described later may be used. The material forming the second dielectric body 62 is preferably a resin or the like. Further, the material forming the second dielectric member 62 preferably has a high transparency in a visible light region, a material having high heat resistance, and a high adhesion to WG61, and a third dielectric member 63. The adhesion is high, but it is not limited to these. Examples thereof include amorphous thermoplastic resins such as polycarbonate, polystyrene (PS), cycloolefin polymer (COP), and polyvinyl chloride, and polyethylene terephthalate (PET), polyethylene, polypropylene, and the like. The crystalline thermoplastic resin is an ultraviolet curable resin such as an acrylic resin, an epoxy resin, a urethane type or a polyimine, or a thermosetting resin. Further, a configuration in which an ultraviolet curable resin or a thermosetting resin is combined with the above thermoplastic resin or the like may be employed. Further, the second dielectric body may have a two-layer structure. For example, it may be a two-layer structure in which a dielectric body between a plurality of WGs 61 and a dielectric body that is in contact with the upper surface of the plurality of WG61 and the upper surface of the dielectric body between the plurality of WGs 61 are filled. The material of each resin of the two-layer structure may be the same as the material of the second dielectric body 62 described above. Further, in the case of a double layer structure, the dielectric filled between the plurality of WGs 61 may be a layer using a solid dielectric material. For example, it may be formed of an inorganic compound such as cerium oxide, cerium nitride oxide, cerium oxide lanthanum or cerium nitride, or a laminated structure thereof, but is not limited thereto. The first dielectric material and the second dielectric material may be formed of the same transparent resin or may be formed of a different transparent resin. As the transparent resin material for forming the dielectric material, Japanese Patent Laid-Open Publication No. 2013-062489, Japan JP-A-2012-224845, JP-A-2013-089761, WO2014/196381, and the like. As the wavelength conversion layer, an inorganic phosphor, a fluorescent organic dye, a quantum dot or the like is used. For example, the red conversion layer 41 can use Y 2 O 3 :Eu 3+ , Y 2 O 2 S:Eu 3+ Etc., the green conversion layer 42 can use Ca 2 SiO 4 :Eu 2+ ZnSiO 3 : Mn or the like, and the blue conversion layer may be ZnS: Ag, ZnS or the like. However, it is not limited to this. The light shielding layer may have a light transmittance of 5% or less. Further, a conductive metal is preferred. Further, it is preferable that the reflectance of the transmitted light used is high and the adhesion to the third dielectric body 63 and the wavelength conversion layer is high. A conductive metal material such as aluminum, chromium, titanium, or the like, or a carbon particle such as carbon black or the like can be used. However, it is not limited to this. <Production Step> The steps of producing the WG reflective polarizing layer 60 and the wavelength conversion layer will be briefly described. Furthermore, the production method is not limited to this method, and a method generally used in the technical field of the present invention can be employed. For example, a method of producing the WG reflective polarizing layer 60 and the wavelength conversion layer using an electron beam drawing device or a photolithography method will be described. Furthermore, the case where the second dielectric body is a double layer will be described. A polyimide-based or acrylic resin to be the second dielectric body 62 is applied onto the glass substrate. Alternatively, an inorganic compound such as cerium oxide or cerium nitride oxide, cerium oxynitride or cerium nitride is formed. The coating method may be a spin coating method, a dipping method, or the like. Further, the film formation can be chemically formed using a CVD (Chemical Vapor Deposition) device or the like, or can be physically formed by a vacuum deposition method, a sputtering method, an ion plating method, a screen printing method, or the like. Next, a film is formed to form a conductive metal of WG61. For example, a sputtering device is used to form aluminum. Further, a photoresist is applied, and a portion other than the pattern of the WG 61 is drawn by an ArF exposure apparatus, a KrF exposure apparatus, an electron beam drawing apparatus, or the like, and developed. Since the photoresist remains on the pattern of the WG 61, the WG 61 can be formed by etching the photoresist as a mask to remove the photoresist. Then, a polyimide-based or acrylic resin which is the second layer of the second dielectric body 62 is applied. Alternatively, an inorganic compound such as cerium oxide or cerium nitride oxide, cerium oxynitride or cerium nitride is formed. The coating method may be an inkjet method, a spin coating method, a dipping method, or the like. Further, the film formation can be chemically formed using a CVD apparatus or the like, or can be physically formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like. In this way, a plurality of WG61 can be filled with a resin or an inorganic compound. Further, a resin or an inorganic compound is planarized using a chemical mechanical polishing machine (CMP). At this time, it is also possible to polish to the extent that WG61 is exposed on the surface. Then, a polyimide-based or acrylic resin which is the third dielectric body 63 is applied. Alternatively, an inorganic compound such as cerium oxide or cerium nitride oxide, cerium oxynitride or cerium nitride is formed. The coating method may be a spin coating method, a dipping method, or the like. Further, the film formation can be chemically formed using a CVD apparatus or the like, or can be physically formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like. Further, the light shielding layer 40 is formed. For example, a conductive metal or chromium is formed using a sputtering device. Further, a photoresist is applied, and a pattern of the light shielding layer 40 is formed by photolithography using a photomask and developed. Since the photoresist remains on the pattern of the light shielding layer 40, the light shielding layer 40 can be formed by etching the photoresist as a mask to remove the photoresist. Next, a wavelength conversion layer is formed. The order in which the wavelength conversion layer is formed may be appropriately selected. For example, a red fluorescent organic dye is applied to form a red conversion layer 41, and a green fluorescent organic dye is applied to form a green conversion layer 42. The wavelength conversion layers are formed on the same plane. By being formed on the same plane, the manufacturing steps can be reduced as compared with being formed on different layers, respectively. The material used may be an inorganic phosphor or a quantum dot. The blue color filter layer 43 may be coated in blue, and the materials used in the second dielectric or the third dielectric may be applied. In this way, a wavelength conversion layer can be formed. Further, although not shown in FIG. 2, a protective film may be formed after the formation of the wavelength conversion layer. As the protective film, a material used for the second dielectric or the third dielectric can be used, and a film such as a plastic film can be used as the adhesive. In this way, the WG reflective polarizing layer 60 and the wavelength conversion layer can be manufactured. Further, the WG reflective polarizing layer 60 and the wavelength conversion layer formed on the glass substrate can be used as they are. Further, it can be mechanically peeled off from the glass substrate and used in a flexible state. The WG reflective polarizing layer 60 and the wavelength conversion layer which are formed as described above can improve the light use efficiency. Further, since the WG reflective polarizing layer 60 and the wavelength conversion layer can be fabricated by using a device or a method generally used in the technical field of the present invention without using a special manufacturing step or manufacturing apparatus, it is possible to provide a WG reflection which suppresses the manufacturing cost. The polarizing layer 60 and the wavelength conversion layer. (Second Embodiment) In the present embodiment, a liquid crystal display device using a reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention will be described. In addition, the same configuration as that of the first embodiment will be omitted, and the description will be omitted. Fig. 3 is a schematic plan view showing the configuration of a liquid crystal display device 160 according to an embodiment of the present invention. The liquid crystal display device 160 includes a first glass substrate 20, a pixel region 104, gate side drive circuits 108 and 109, a source side drive circuit 112, a connector 114, and an integrated circuit (IC) 116. A pixel region 104, gate side drive circuits 108 and 109, and a source side drive circuit 112 are formed on the first glass substrate 20. The connector 114 is connected to the glass substrate 114. An integrated circuit (IC) 116 is provided on the connector 114. Pixel region 104 includes a plurality of pixels 106. The plurality of pixels 106 are arranged along one direction and in a direction crossing one direction. The number of arrays of the plurality of pixels 106 is arbitrary. For example, pixels 106 in the X direction and n pixels in the Y direction are arranged. m and n are each independently a natural number greater than one. The pixel area 104 is a display area. Each of the pixels 106 has a display element, and the display element includes a liquid crystal element. For example, a display element corresponding to three primary colors of red (R), green (G), and blue (B) can be provided for each of three pixels. A full-color liquid crystal display device can be provided by supplying 256 levels of voltage or current to each pixel. Also, the arrangement of the plurality of pixels 106 is not limited. For example, a strip arrangement or a triangle arrangement or the like can be employed. Further, a liquid crystal display device 160 according to an embodiment of the present invention will be described with respect to a stripe array. The connector 114 has a function of supplying a video signal, a timing signal for operating the control circuit, a power supply, and the like to the gate side drive circuits 108 and 109 and the source side drive circuit 112. The connector 114 can use a flexible printed circuit (FPC). The video signal, the timing signal of the operation of the control circuit, the power supply, and the like are supplied from the external circuit to the gate side drive circuits 108 and 109 and the source side drive circuit 112 via the connector 114. The gate side drive circuits 108 and 109 and the source side drive circuit 112 have a function of driving each pixel 106 to display an image in the pixel region 104 using a supplied video signal, a timing signal of an operation of the control circuit, and a power supply. The gate side drive circuits 108 and 109 and the source side drive circuit 112 may not all be formed on the first glass substrate 20. For example, an integrated circuit (IC) including a part or all of the functions of the gate side drive circuit and the source side drive circuit may be disposed on the first glass substrate 20 or on the connector 114. Furthermore, the integrated circuit (IC) 116 of FIG. 3 has a function as a part of the gate side drive circuit and the source side drive circuit. 4 is a schematic cross-sectional view showing the configuration of an optical system 300 using a liquid crystal display device 310 or 320 including a wire grid reflective polarizing layer 60 and a wavelength conversion layer according to an embodiment of the present invention. In addition to the configuration of FIG. 2, the optical system 300 includes the first glass substrate 20, the TFT array 30, the first light-transmitting conductive layer 70, the first alignment film 80, the liquid crystal layer 90, the second alignment film 100, and the second through-layer. The optical conductive layer 110, the second glass substrate 120, and the polarizing plate 130. The TFT array 30 is formed by a plurality of thin film transistors, capacitor elements, resistor elements, various wirings, and the like, in which a pixel region 104, gate side drive circuits 108 and 109, and a source side drive circuit 112 are formed. The TFT array 30 has a function of driving the liquid crystal display device 310 or 320. Each of the first light-transmitting conductive layer 70 and the second light-transmitting conductive layer 110 is applied with a voltage, and has a function of controlling the liquid crystal element included in the liquid crystal layer 90. When the voltage is applied to each of the first light-transmitting conductive layer 70 and the second light-transmitting conductive layer 110, the first alignment film 80 and the second alignment film 100 are aligned with the liquid crystal element included in the liquid crystal layer 90. effect. The liquid crystal display device 310 or 320 can be realized by sandwiching the constituent elements such as the first glass substrate 20 and the second glass substrate 120. Further, the polarizing plate 130 has a function of aligning the random polarized light into a specific direction and transmitting it. Further, the common potential line 197 to be described later may be used without using the second light-transmitting conductive layer 110. Further, in FIG. 4, an example in which the red color filter layer 50, the green color filter layer 51, the blue color filter layer, or the fourth dielectric body 43 are used is shown, but the colorless filter is also used. can. Fig. 5 is a schematic plan view showing a pixel 106 included in a liquid crystal display device 160 according to an embodiment of the present invention. The pixel shown in FIG. 5 can be applied to a VA (Vertical Alignment) method or a TN (Twisted Nematic) method in which a voltage is applied in a direction perpendicular to the first glass substrate 20 to control the liquid crystal element. The pixel 106 shown in FIG. 5 includes a thin film transistor 190, a capacitor element 196, a source wiring 191, a gate wiring 192, a capacitance potential line 193, and a first light-transmitting conductive layer 70. The thin film transistor 190 includes a semiconductor layer 32, a gate electrode 34, source/drain electrodes 36 and 38, and first openings 39a and 39b. The source/drain electrodes 36 and 38 are electrically connected to the semiconductor layer 32 via the first openings 39a and 39b. The first light-transmitting conductive layer 70 is electrically connected to the source/drain electrode 38 via the second opening 194 and the third opening 195 . The capacitor element 196 is formed by the source/drain electrode 38, a gate insulating film 33 to be described later, and a capacitance potential line 193. The source/drain electrode 36 is electrically connected to the source line 191. The gate electrode 34 is electrically connected to the gate wiring 192. By applying a voltage to each of the first light-transmitting conductive layer 70 and the second light-transmitting conductive layer 110 to be described later, an electric field is generated in a direction perpendicular to the first glass substrate 20, and liquid crystals included in the liquid crystal layer 90 are provided. The components are controlled and the liquid crystal display device is capable of displaying images. Fig. 6 is a schematic plan view showing another example of the pixel 106 included in the liquid crystal display device 160 according to the embodiment of the present invention. The pixel shown in FIG. 6 can be applied to an IPS (In Plane Switching) method of controlling a liquid crystal element by applying a voltage in a direction parallel to the first glass substrate 20. The pixel 106 shown in FIG. 6 includes a thin film transistor 190, a capacitor element 196, a source wiring 191, a gate wiring 192, a capacitance potential line 193, a first light-transmitting conductive layer 70, and a common potential line 197. The thin film transistor 190 includes a semiconductor layer 32, a gate electrode 34, source/drain electrodes 36 and 38, and first openings 39a and 39b. The source/drain electrodes 36 and 38 are electrically connected to the semiconductor layer 32 via the first openings 39a and 39b. The first light-transmitting conductive layer 70 is electrically connected to the source/drain electrode 38 via the second opening 194 and the third opening 195 . The capacitor element 196 is formed by the source/drain electrode 38, a gate insulating film 33 to be described later, and a capacitance potential line 193. The source/drain electrode 36 is electrically connected to the source line 191. The gate electrode 34 is electrically connected to the gate wiring 192. The common potential line 197 has a function of supplying a common potential to all of the pixels 106 included in the pixel region 104. The common potential line 197 may be shared by all of the pixels 106 included in the pixel region 104, may be supplied by each pixel in the X direction, or may be shared by each pixel in the Y direction. By applying a voltage to each of the first light-transmitting conductive layer 70 and the common potential line 197, an electric field is generated in a direction parallel to the first glass substrate 20, and the liquid crystal element included in the liquid crystal layer 90 is controlled, and the liquid crystal display device is controlled. Ability to display images. Fig. 7 is a schematic plan view showing a WG 61 of a WG reflective polarizing layer 60 of a pixel 106 included in a liquid crystal display device 160 according to an embodiment of the present invention. Fig. 7 is superimposed on the upper surface of the paper surface of Figs. 5 and 6. In order to facilitate viewing of the drawings, FIG. 5 and FIG. 6 are separated from FIG. The line width of WG61 and the interval of WG61 are set to be identifiable in the drawing for easy understanding, but are not limited to this size. With the above configuration, the WG reflective polarizing layer and the wavelength conversion layer can improve the light use efficiency. A liquid crystal display device using a WG reflective polarizing layer and a wavelength conversion layer can improve light use efficiency, has good color reproducibility, and can realize bright and clear display. (Third Embodiment) In the present embodiment, a method of manufacturing a liquid crystal display device according to an embodiment of the present invention will be described. In addition, the description of the same configuration as that of the first embodiment and the second embodiment will be omitted. A method of manufacturing the liquid crystal display device 310 will be described with reference to FIGS. 8 or 9 and FIGS. 10 to 13. In addition, the manufacturing method of the liquid crystal display device of the present invention will be described by way of an example of a photolithography technique which is generally used in the manufacture of a liquid crystal display device unless otherwise specified. The method of manufacturing the liquid crystal display device is not limited to the photolithography technique, and any method generally used in the technical field of the present invention can be employed. 8 is a schematic cross-sectional view showing a method of manufacturing the liquid crystal display device 310 including the wire grid reflective polarizing layer and the wavelength conversion layer in the case where the pixel configuration of FIG. 5 is applied. Further, it is a schematic cross-sectional view in which three pixels included in the liquid crystal display device are enlarged. Fig. 9 is a schematic cross-sectional view showing a method of manufacturing the liquid crystal display device 320 including the wire grid reflective polarizing layer and the wavelength conversion layer in the case where the pixel configuration of Fig. 6 is applied. Further, it is a schematic cross-sectional view in which three pixels included in the liquid crystal display device are enlarged. First, as shown in FIG. 10(A), the TFT array 30 is formed on the first glass substrate 20. The TFT array 30 includes a base film 31, a semiconductor layer 32, a gate insulating film 33, a gate electrode 34, an interlayer film 35, source/drain electrodes 36 and 38, first openings 39a and 39b, a capacitance potential line 193, and The first dielectric body 37. A thin film transistor 190 and a capacitor element 196 are formed on the TFT array 30. The first dielectric body 37 has a function of relaxing the unevenness of the film, the wiring, the transistor, and the like which are formed lower than the first dielectric body 37. Therefore, the film or pattern formed after the first dielectric can be formed on the flat surface. The material forming the first dielectric body 37 preferably has a high transparency in a visible light region, a material having high heat resistance, and a high adhesion to the wavelength conversion layer. The method of forming the TFT array 30, the structure of the thin film transistor 190 and the capacitor element 196, and the materials of the respective films, layers, and portions can be known. That is, a method, construction or material commonly used in the technical field of the present invention can be employed. Next, as shown in Fig. 10(B), a wavelength conversion layer is formed. First, the light shielding layer 40 included in the wavelength conversion layer is formed. For example, a dielectric material containing black particles such as carbon black is printed on the entire surface of the substrate, and further, a photoresist is applied, and a pattern of the light shielding layer 40 is formed by photolithography using a photomask. The photoresist layer 40 can be formed by leaving the photoresist on the pattern of the light shielding layer 40 and etching the photoresist as a mask to remove the photoresist. Since the light-shielding layer 40 is formed by the wavelength conversion layer, the wavelength conversion layer of each color can be clearly divided, and thus the color mixture of the transmitted light can be suppressed. Then, a wavelength conversion layer, that is, a red conversion layer 41 and a green conversion layer 42 are formed. Further, the order in which the red conversion layer 41 and the green conversion layer 42 are formed may be appropriately selected. For example, a blue color filter 43 can be formed, and a composition for forming a wavelength conversion film containing a red fluorescent inorganic pigment or a fluorescent organic pigment can be applied to form a red conversion layer 41, and then coated with green fluorescent property. The composition for wavelength conversion of an inorganic pigment or a fluorescent organic dye forms the green conversion layer 42. The composition for forming a wavelength conversion film containing the red fluorescent inorganic pigment or the fluorescent organic dye, and the fluorescent inorganic pigment in the wavelength conversion composition containing the green fluorescent inorganic pigment or the fluorescent organic dye Examples thereof include an oxynitride phosphor, a nitride phosphor, and a YAG (Yttrium Aluminium Garnet) phosphor. Examples of the fluorescent organic dye include an anthraquinone, an anthraquinone, an aryl methine group, an azo system, a azomethine system, a white man system, a coumarin system, and a 1,5-diazabicyclo ring. [3. 3. 0] octadiene, pyrrolidinone, naphtholimine, naphthyl imine, lanthanum, phenolphthalein, pyrrolidinium, pyran, lanthanum, porphyrin, oxime a specific example of a wavelength conversion composition containing the above-mentioned fluorescent inorganic pigment or fluorescent organic pigment, and a fluorinated dye, a fluorinated pigment, a fluorescein-based, a fluorescein-based, or a fluorene-based fluorescent dye. Japanese Patent Publication No. 2016-90998, WO2016/063930, WO2013/118334, and JP-A-2016-39228. Further, a composition for forming a wavelength conversion film containing a semiconductor quantum dot can be used as one of the fluorescent inorganic materials, and as a specific example of the semiconductor quantum dot, a semiconductor quantum dot composed of a compound containing In as a constituent element is preferable. More preferably, it is InP/ZnS, InP/ZnSe, CuInS2/ZnS and (ZnS/AgInS2) solid solution/ZnS as core-shell structured semiconductor quantum dots, and AgInS2 and Zn-doped as homogeneous structure type semiconductor quantum dots. AgInS2, further preferably InP/ZnS. As a composition for forming a wavelength conversion film containing a semiconductor quantum dot, a combination disclosed in JP-A-H99-32918, JP-A-H07-48355, JP-A-2015-46328, and the like can be used. Things. Here, although an example in which the blue color-coated blue color filter 43 is applied is shown, the fourth dielectric body may be applied. By forming the fourth dielectric body in the region where the blue color filter 43 is formed, absorption or reflection of light by the blue color filter 43 can be suppressed, so that blue light can be efficiently transmitted. As the material of the fourth dielectric body, for example, a polyimide resin or an acrylic resin can be used. Materials other than those materials may also be used. The fourth dielectric material preferably has high adhesion to the light shielding layer 40 and the first dielectric body 37, high transparency, and heat resistance. Next, as shown in Fig. 10(C), a color filter layer is formed. The order in which the color filter layers are formed may be appropriately selected. For example, a red color filter layer 50 may be formed to form a green color filter layer 51 to form a blue color filter layer 43. The color filter layer can be formed by coating on the entire surface, using a photomask, and using photolithography. Furthermore, the formation method is not limited to this method. Then, as shown in FIG. 11(A), the third dielectric body 63 is formed. The third dielectric body 63 has a function of relaxing the unevenness of the film formed under the third dielectric body or the wiring pattern. Moreover, it also functions to protect the wavelength conversion layer and the color filter layer. Further, it also functions as a substrate of the WG 61 formed thereafter. The third dielectric body has a function of relaxing the unevenness of the film formed under the third dielectric body or the wiring pattern. Moreover, it also functions to protect the wavelength conversion layer and the color filter layer. Further, it also functions as a substrate of the WG 61 formed on the third dielectric body. The material forming the third dielectric body 63 may be the same material as the fourth dielectric body. For example, a polyimide-based or acrylic resin, an epoxy-based or urethane-based resin can be used. Next, as shown in Fig. 11(B), WG61 is formed. WG61 can be formed by nanoimprinting. The nanoimprint method is a well-known technique, and a detailed description is omitted. For example, there is a method of forming a mold on which irregularities are formed on quartz glass or the like, and forming a pattern using the mold. For example, aluminum is formed on a transparent substrate such as a glass substrate by using a sputtering apparatus. Further, a resist is applied, and the mold is pressed against the resist to irradiate UV (Ultra Violet) light. The WG 61 can be formed by etching the resist as a mask to remove the resist. In Fig. 11(B), the line of WG61 is wider than the portion where the light is shielded, and the portion of the so-called WG changes. That is, the light shielding layer can also be formed using WG. By forming the light shielding layer with WG, visible light can be blocked. Further, the WG 61 may be formed by designing a mold at a line width and an interval of a fixed period without using a WG to form a light shielding layer. Next, as shown in FIG. 12(A), a second opening portion 194 for electrically connecting the first light-transmitting conductive layer 70 and the source/drain electrode 38 is formed. The second opening 194 is a first dielectric body 37, a red color conversion layer 41, a green color conversion layer 42, a blue color filter 43 or a fourth dielectric body, a red color filter layer 50, and a green color filter. The sheet layer 51 is open. Then, as shown in FIG. 12(B), the second dielectric body 62 is applied. The second dielectric body has a function of relaxing the unevenness of the WG 61. Further, the sidewall of the second opening 194 is covered to protect the red conversion layer 41, the green conversion layer 42, the blue color filter 43 or the fourth dielectric, the red color filter layer 50, and the green color filter. The role of layer 51. By flattening the unevenness of the layer forming the display device and flattening the surface of the film, it is possible to stabilize the light incident on the display device, the reflected light, and the light to be absorbed. Next, as shown in FIG. 13(A), a third opening portion 195 reaching the source/drain electrode is formed on the second dielectric body 62. The third opening 195 is formed by electrically connecting the first light-transmitting conductive layer 70 and the source/drain electrode 38. Then, as shown in FIG. 13(B), the first light-transmitting conductive layer 70 is formed. The first light-transmitting conductive layer 70 is connected to the source/drain electrode 38 of the pixel, and is applied with a voltage corresponding to the image signal to drive the liquid crystal element of the liquid crystal layer 90. The material for forming the first light-transmitting conductive layer 70 can be, for example, a material that transmits light such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). The first alignment film 80 is formed on the first light-transmitting conductive layer 70. The first alignment film 80 has an insulating property, that is, the first light-transmitting conductive layer 70 is not electrically connected to the second light-transmitting conductive layer 110 formed on the opposite side of the liquid crystal layer 90. A material such as a polyimide film is used as the material for forming the first alignment film 80. FIG. 13 shows an example in which the first alignment film 80 is formed on the first light-transmitting conductive layer 70, but may be formed between the first light-transmitting conductive layer 70 and the first alignment film 80. There may be a layer of a light-shielding film, and an inorganic compound layer may also be present. The light shielding film layer has a function of blocking visible light, and the inorganic compound layer has an effect of insulating the conductive layer on the opposite surface. Finally, the substrate on the opposite side will be described using FIG. The opposite side substrate includes the second glass substrate 120, the second light-transmitting conductive layer 110, and the second alignment film 100. After the second light-transmitting conductive layer 100 is formed on the second glass substrate 120, the second alignment film 100 is applied. The second light-transmitting conductive layer 100 has a voltage applied perpendicularly to the liquid crystal element included in the liquid crystal layer 90 disposed between the second light-transmitting conductive layer 100 and the first light-transmitting conductive layer 70 to control the liquid crystal element. effect. As the material for forming the second light-transmitting conductive layer 100, for example, a material that transmits light such as ITO or IZO can be used. The second alignment film 100 has an insulating effect, that is, the second light-transmitting conductive layer 110 is not electrically connected to the first light-transmitting conductive layer 70 formed on the opposite side of the liquid crystal layer 90. The material for forming the second alignment film 100 is, for example, a resin such as a polyimide. FIG. 8 shows an example in which the second alignment film 100 is formed under the second light-transmitting conductive layer 110, but may be formed between the second light-transmitting conductive layer 110 and the second alignment film 100. There may be a layer of a light-shielding film, and an inorganic compound layer may also be present. The light shielding film layer has a function of blocking visible light, and the inorganic compound layer has an effect of insulating the conductive layer on the opposite surface. For example, the opposite side substrate thus formed is bonded to the portion formed as shown in FIG. 13(B) so that the liquid crystal layer 90 is interposed therebetween by using a sealing material or the like. Further, the liquid crystal display device 310 or 320 can be manufactured by bonding the polarizing plate 130 to the second glass substrate 120. Further, in the liquid crystal display device 320 shown in FIG. 9, in the step of forming the first light-transmitting conductive layer 70, the common potential line 197 and the first light-transmitting conductive layer 70 are formed in the same layer. Further, the second light-transmitting conductive layer 110 may not be formed. The liquid crystal display device using the WG reflective polarizing layer and the wavelength conversion layer manufactured by the above-described manufacturing method can improve the light use efficiency, and has good color reproducibility, and can realize bright and clear display. Further, since a special manufacturing apparatus is not required, and the existing manufacturing equipment can be utilized, the manufacturing cost can be suppressed. (Fourth Embodiment) In the present embodiment, another configuration and a manufacturing method of a liquid crystal display device according to an embodiment of the present invention will be described. In addition, the description of the same configuration as that of the first embodiment to the third embodiment will be omitted. In the same manner as in the second embodiment and the third embodiment, the method of manufacturing the liquid crystal display device of the present invention will be described by taking the photolithography technique as an example, and of course, it is a technical field of the present invention. The method usually used can be adopted. Fig. 14 is a schematic cross-sectional view showing the configuration of an optical system 400 using a liquid crystal display device 410 or 420 including a wire grid reflective polarizing layer 60 and a wavelength conversion layer according to an embodiment of the present invention. The optical system 400 has the same configuration as that of FIG. 4. In the liquid crystal display device 410 or 420, the stacking order is different from that of FIG. 8 or FIG. In the stacking order, the TFT array 30, the first light-transmitting conductive layer 70, the first alignment film 80, the liquid crystal layer 90, the second alignment film 100, and the second light-transmitting conductive layer 110 are provided on the first glass substrate 20. a second glass substrate 120, a WG reflective polarizing layer 60, a wavelength conversion layer composed of a light shielding layer 50, a red conversion layer 41, a green conversion layer 42, a blue color filter, or a fourth dielectric 43, and a red color The color filter layer composed of the filter 50, the green color filter 51, the blue color filter or the fourth dielectric member 43, and the second glass substrate 120. Further, a polarizing plate 130 is provided under the first glass substrate 20. Fig. 15 is a schematic cross-sectional view showing a method of manufacturing the liquid crystal display device 410 including the WG reflective polarizing layer 60 and the wavelength conversion layer when the pixel configuration of Fig. 5 is applied. Further, it is a schematic cross-sectional view in which three pixels included in the liquid crystal display device are enlarged. Further, the third opening portion 195 shown in Fig. 5 may not be formed. Fig. 16 is a schematic cross-sectional view showing a method of manufacturing the liquid crystal display device 420 including the WG reflective polarizing layer 60 and the wavelength conversion layer when the pixel configuration of Fig. 6 is applied. Further, it is a schematic cross-sectional view in which three pixels included in the liquid crystal display device are enlarged. Further, the third opening portion 195 shown in Fig. 6 may not be formed. A method of manufacturing the liquid crystal display devices 410 and 420 will be described with reference to FIGS. 15 and 16 . The step of forming the TFT array 30 on the first glass substrate 20 is the same as that of FIG. 3, and therefore will not be described. After the first dielectric body 37 of the TFT array 30 is formed, the second opening portion 194 is formed to form the first light-transmitting conductive layer 70. In the manufacture of the liquid crystal display device 420 shown in FIG. 16, the common potential line 197 and the first light-transmitting conductive layer 70 are formed in the same layer. The first alignment film 80 is formed on the first light-transmitting conductive layer 70. Further, between the first light-transmitting conductive layer 70 and the first alignment film 80, a layer in which a light-shielding film is formed may be present, and an inorganic compound layer may be present. The light shielding film layer has a function of blocking visible light, and the inorganic compound layer has an effect of insulating the conductive layer on the opposite surface. Here, the substrate formed on the first glass substrate to the first alignment film 80 is referred to as a TFT side substrate. Next, the formation of the substrate on the side opposite to the TFT side substrate via the liquid crystal layer 90 will be described. Here, the substrate on the side opposite to the TFT side substrate is referred to as a counter substrate. A color filter layer composed of a red color filter 50, a green color filter 51, a blue color filter, or a fourth dielectric member 43 is formed on the second glass substrate 120. Further, a wavelength conversion layer composed of the light shielding layer 50, the red conversion layer 41, the green conversion layer 42, and the blue color filter or the fourth dielectric body 43 is formed. Then, a WG reflective polarizing layer 60 including the third dielectric body 63, the WG 61, and the second dielectric body is formed. Then, after the second light-transmitting conductive layer 110 is formed, the second alignment film 100 is applied. Further, between the second light-transmitting conductive layer 110 and the second alignment film 100, a layer in which a light-shielding film is formed may be present, and an inorganic compound layer may be present. The light shielding film layer has a function of blocking visible light, and the inorganic compound layer has an effect of insulating the conductive layer on the opposite surface. For example, the opposite side substrate and the TFT side substrate thus formed are bonded to each other with a sealing material or the like so as to be spaced apart from each other by the liquid crystal layer 90. Further, the liquid crystal display device 410 or 420 can be manufactured by bonding the polarizing plate 130 to the first glass substrate 20. The liquid crystal display device using the WG reflective polarizing layer and the wavelength conversion layer manufactured by the above-described manufacturing method can improve the light use efficiency, and has good color reproducibility, and can realize bright and clear display. Moreover, since it is not necessary to form the third opening portion 195, the manufacturing cost can be suppressed. (Fifth Embodiment) In the present embodiment, another configuration and a manufacturing method of a liquid crystal display device according to an embodiment of the present invention will be described. In addition, the description of the same configuration as that of the first embodiment to the fourth embodiment will be omitted. In the same manner as in the second embodiment to the fourth embodiment, the method of manufacturing the liquid crystal display device of the present invention will be described by taking an optical lithography technique as an example. However, it is of course also possible to manufacture using the method generally used in the technical field of the present invention. Fig. 17 is a schematic cross-sectional view showing the configuration of an optical system 500 using a liquid crystal display device 510 or 520 including a wire grid reflective polarizing layer 60 and a wavelength conversion layer according to an embodiment of the present invention. The optical system 500 has the same configuration as that of FIG. 4 or FIG. 14. In the liquid crystal display device 510 or 520, the stacking order is different from that of FIG. 15 or FIG. The stacking order is: a protective film 140, a wavelength conversion layer composed of the light shielding layer 50, the red conversion layer 41, the green conversion layer 42 and the blue color filter or the fourth dielectric body 43, and the red color filter 50, The color filter layer, the WG reflective polarizing layer 60, the first glass substrate 20, the TFT array 30, and the first transparent conductive layer formed by the green color filter 51 and the blue color filter or the fourth dielectric body 43 The layer 70, the first alignment film 80, the liquid crystal layer 90, the second alignment film 100, the second light-transmitting conductive layer 110, and the second glass substrate 120. Further, a polarizing plate 130 is provided on the second glass substrate 120. Here, the substrate formed on the first glass substrate 20 to the first alignment film 80 is referred to as a TFT side substrate. Since the manufacturing steps of the TFT side substrate are the same as those of the fourth embodiment, they are omitted. Here, the substrate on which the second alignment film 100 and the second light-transmitting conductive layer 110 are formed up to the second glass substrate 120 is referred to as a counter-side substrate. The manufacturing process of the opposite substrate is the same as that of the third embodiment, and therefore will not be described. Here, the wavelength conversion layer formed of the protective film 140, the light shielding layer 50, the red conversion layer 41, the green conversion layer 42, and the blue color filter or the fourth dielectric body 43 is formed by the red color filter 50. A method of the color filter layer composed of the green color filter 51 and the blue color filter or the fourth dielectric member 43 and the WG reflective polarizing layer 60 will be described. Further, the portion formed here is referred to as a WG substrate. First, although not shown, the protective film 140 is applied or formed on the third glass substrate 121. For example, when a material such as a polyimide or an acrylic resin is used as the material of the protective film 140, a material such as ruthenium oxide or tantalum oxide, tantalum oxynitride, tantalum nitride or the like is used as the material of the protective film 140. In the case of an inorganic compound, film formation is carried out. Alternatively, it may be a laminate film of a resin and an inorganic compound. The protective film 140 has a function of suppressing damage or deterioration of a layer formed on the protective film 140, a film, and a pattern by an impact or the like from the outside of the display device. In the case of the laminated film, it is possible to prevent the moisture or the like from penetrating into the liquid crystal display device and causing deterioration of the display device. Further, the coating method can be carried out by a spin coating method, a dipping method, or the like. Further, the film formation can be carried out chemically using a CVD apparatus or the like, or can be performed physically using a sputtering method or the like. Next, a wavelength conversion layer composed of the light shielding layer 50, the red conversion layer 41, the green conversion layer 42, and the blue color filter or the fourth dielectric body 43 is formed. Further, a color filter layer composed of the red color filter 50, the green color filter 51, the blue color filter, or the fourth dielectric member 43 is formed. Then, a WG reflective polarizing layer 60 including the third dielectric body 63, the WG 61, and the second dielectric body is formed. Since the wavelength conversion layer, the color filter layer, and the WG reflective polarizing layer 60 can be manufactured by the methods described in the second embodiment to the fourth embodiment, they are omitted here. In this way, a WG substrate can be produced. Finally, a procedure of bonding the TFT side substrate, the opposite side substrate, and the WG substrate will be described. For example, a TFT side substrate and a counter-side substrate are bonded together by using a sealing material or the like so as to be spaced apart from each other by the liquid crystal layer 90. Further, the surface of the WG conversion layer 60 of the WG substrate is bonded to the surface of the first glass substrate 20 on the TFT substrate side opposite to the surface to which the opposite substrate is bonded. Further, the liquid crystal display device 510 or 520 can be manufactured by bonding the polarizing plate 130 to the second glass substrate 130. The liquid crystal display device using the WG reflective polarizing layer and the wavelength conversion layer manufactured by the above-described manufacturing method can improve the light use efficiency, and has good color reproducibility, and can realize bright and clear display. In addition, since it is not necessary to form the third opening 195, and the normal liquid crystal display in which the TFT substrate and the counter substrate are bonded together can be directly used, the manufacturing cost can be further suppressed. The respective embodiments of the present invention described above can be appropriately combined within a range that does not contradict each other. In addition, the operator adds or deletes or changes the design of the constituent elements based on the respective embodiments, or adds or omits the steps, or changes the conditions, and the subject matter of the present invention is included in the scope of the present invention. in. Further, even if it is an effect that is different from the effects obtained by the above-described embodiments of the present invention, it can be interpreted as being by the person who can be easily predicted based on the description of the present specification. The winner of the invention.

10‧‧‧導光板10‧‧‧Light guide plate

11‧‧‧光擴散板11‧‧‧Light diffuser

12‧‧‧光源12‧‧‧Light source

13‧‧‧反射板13‧‧‧reflector

20‧‧‧第1玻璃基板20‧‧‧1st glass substrate

30‧‧‧TFT陣列30‧‧‧TFT array

31‧‧‧基底膜31‧‧‧ basement membrane

32‧‧‧半導體層32‧‧‧Semiconductor layer

33‧‧‧閘極絕緣膜33‧‧‧gate insulating film

34‧‧‧閘極電極34‧‧‧gate electrode

35‧‧‧層間膜35‧‧‧ interlayer film

36‧‧‧源極/汲極電極36‧‧‧Source/drain electrodes

37‧‧‧第1介電體37‧‧‧1st dielectric

38‧‧‧源極/汲極電極38‧‧‧Source/drain electrodes

39a‧‧‧第1開口部39a‧‧‧1st opening

39b‧‧‧第1開口部39b‧‧‧1st opening

40‧‧‧遮光膜40‧‧‧Shade film

41‧‧‧紅色轉換層41‧‧‧Red Conversion Layer

42‧‧‧綠色轉換層42‧‧‧Green conversion layer

43‧‧‧藍色彩色濾光片層或第4介電體43‧‧‧Blue color filter layer or 4th dielectric

50‧‧‧紅色彩色濾光片層50‧‧‧Red color filter layer

51‧‧‧綠色彩色濾光片層51‧‧‧Green color filter layer

60‧‧‧反射偏光板60‧‧‧Reflective polarizer

61‧‧‧線柵61‧‧‧ wire grid

62‧‧‧第1介電體、第2介電體62‧‧‧1st dielectric, 2nd dielectric

63‧‧‧第3介電體63‧‧‧3rd dielectric

64‧‧‧藍色入射光64‧‧‧Blue incident light

65‧‧‧藍色反射光65‧‧‧Blue reflected light

66‧‧‧藍色p偏光之反射66‧‧‧Blue p-polarized reflection

67‧‧‧紅色螢光體之透射67‧‧‧Transmission of red phosphor

68‧‧‧綠色螢光體之透射68‧‧‧Transmission of green phosphor

69‧‧‧藍色p偏光之透射69‧‧‧Transmission of blue p-polarized light

70‧‧‧第1透光性導電層70‧‧‧1st transparent conductive layer

80‧‧‧第1配向膜80‧‧‧1st alignment film

90‧‧‧液晶層90‧‧‧Liquid layer

100‧‧‧第2配向膜100‧‧‧2nd alignment film

104‧‧‧像素區域104‧‧‧Pixel area

106‧‧‧像素106‧‧‧ pixels

108‧‧‧閘極側驅動電路108‧‧‧gate side drive circuit

109‧‧‧閘極側驅動電路109‧‧‧ gate side drive circuit

110‧‧‧第2透光性導電層110‧‧‧2nd transparent conductive layer

112‧‧‧源極側驅動電路112‧‧‧Source side drive circuit

114‧‧‧連接器114‧‧‧Connector

116‧‧‧IC116‧‧‧IC

120‧‧‧第2玻璃基板120‧‧‧2nd glass substrate

121‧‧‧第3玻璃基板121‧‧‧3rd glass substrate

130‧‧‧偏光板130‧‧‧Polar plate

140‧‧‧保護膜140‧‧‧Protective film

150‧‧‧對向基板150‧‧‧ opposite substrate

151‧‧‧對向基板151‧‧‧ opposite substrate

160‧‧‧液晶顯示裝置160‧‧‧Liquid crystal display device

190‧‧‧薄膜電晶體190‧‧‧film transistor

191‧‧‧源極信號線191‧‧‧ source signal line

192‧‧‧閘極信號線192‧‧‧gate signal line

193‧‧‧電容電位線193‧‧‧Capacitor potential line

194‧‧‧第2開口部194‧‧‧2nd opening

195‧‧‧第3開口部195‧‧‧3rd opening

196‧‧‧電容元件196‧‧‧Capacitive components

197‧‧‧共用電位線197‧‧‧Shared potential lines

200‧‧‧線柵反射偏光板及光學系統200‧‧‧Wire grid reflective polarizer and optical system

210‧‧‧線柵反射偏光板及波長轉換螢光體及光學系統210‧‧‧Wire grid reflective polarizer and wavelength conversion phosphor and optical system

300‧‧‧液晶顯示裝置及光學系統300‧‧‧Liquid crystal display device and optical system

310‧‧‧液晶顯示裝置310‧‧‧Liquid crystal display device

320‧‧‧液晶顯示裝置320‧‧‧Liquid crystal display device

400‧‧‧液晶顯示裝置及光學系統400‧‧‧Liquid crystal display device and optical system

410‧‧‧液晶顯示裝置410‧‧‧Liquid crystal display device

420‧‧‧液晶顯示裝置420‧‧‧Liquid crystal display device

500‧‧‧液晶顯示裝置及光學系統500‧‧‧Liquid crystal display device and optical system

510‧‧‧液晶顯示裝置510‧‧‧Liquid crystal display device

520‧‧‧液晶顯示裝置520‧‧‧Liquid crystal display device

圖1係表示本發明之一實施形態之線柵反射偏光層之構成之模式性剖視圖。 圖2係表示本發明之一實施形態之線柵反射偏光層及波長轉換層之構成之模式性剖視圖。 圖3係表示本發明之一實施形態之液晶顯示裝置之構成之模式性俯視圖。 圖4係表示包含本發明之一實施形態之線柵反射偏光層與波長轉換層之液晶顯示裝置之構成之模式性剖視圖。 圖5係表示本發明之一實施形態之液晶顯示裝置所包含之像素之模式性俯視圖。 圖6係表示本發明之一實施形態之液晶顯示裝置所包含之像素之模式性俯視圖。 圖7係表示本發明之一實施形態之液晶顯示裝置所包含之像素之線柵反射偏光層的模式性俯視圖。 圖8係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖9係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖10(A)、(B)、(C)係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖11(A)、(B)係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖12(A)、(B)係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖13(A)、(B)係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖14係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之構成的模式性剖視圖。 圖15係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖16係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖17係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之構成的模式性剖視圖。 圖18係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。 圖19係表示包含本發明之一實施形態之線柵反射偏光層及波長轉換層之液晶顯示裝置之製造方法的模式性剖視圖。Fig. 1 is a schematic cross-sectional view showing the configuration of a wire grid reflective polarizing layer according to an embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing the configuration of a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 3 is a schematic plan view showing the configuration of a liquid crystal display device according to an embodiment of the present invention. Fig. 4 is a schematic cross-sectional view showing the configuration of a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 5 is a schematic plan view showing a pixel included in a liquid crystal display device according to an embodiment of the present invention. Fig. 6 is a schematic plan view showing a pixel included in a liquid crystal display device according to an embodiment of the present invention. Fig. 7 is a schematic plan view showing a wire grid reflective polarizing layer of a pixel included in a liquid crystal display device according to an embodiment of the present invention. Fig. 8 is a schematic cross-sectional view showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 9 is a schematic cross-sectional view showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. 10(A), (B) and (C) are schematic cross-sectional views showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. 11(A) and 11(B) are schematic cross-sectional views showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. 12(A) and 12(B) are schematic cross-sectional views showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. 13(A) and 13(B) are schematic cross-sectional views showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 14 is a schematic cross-sectional view showing the configuration of a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 15 is a schematic cross-sectional view showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 16 is a schematic cross-sectional view showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 17 is a schematic cross-sectional view showing the configuration of a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 18 is a schematic cross-sectional view showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention. Fig. 19 is a schematic cross-sectional view showing a method of manufacturing a liquid crystal display device including a wire grid reflective polarizing layer and a wavelength conversion layer according to an embodiment of the present invention.

Claims (21)

一種反射偏光層,其特徵在於: 具有所入射之透射光之最短波長以下之寬度,且具有線狀部; 上述線狀部於與上述線狀部延伸之方向平行地分開排列有複數個; 上述線狀部之間填充有第1介電體; 上述線狀部之上表面與第2介電體相接; 上述線狀部之下表面與第3介電體相接。A reflective polarizing layer having a width equal to or shorter than a shortest wavelength of incident transmitted light and having a linear portion; wherein the linear portion is arranged in plurality in parallel with a direction in which the linear portion extends; A first dielectric body is filled between the linear portions; an upper surface of the linear portion is in contact with the second dielectric; and a lower surface of the linear portion is in contact with the third dielectric. 如請求項1之反射偏光層,其中 藍色波長之p偏光之反射率相對高於紅色波長之反射率及綠色波長之反射率; 藍色波長之p偏光之透過率相對低於紅色波長之透過率及綠色波長之透過率。The reflective polarizing layer of claim 1, wherein the reflectance of the p-polarized light of the blue wavelength is relatively higher than the reflectance of the red wavelength and the reflectance of the green wavelength; the transmittance of the p-polarized light of the blue wavelength is relatively lower than the transmittance of the red wavelength. Rate and transmittance of green wavelength. 如請求項1之反射偏光層,其與波長轉換層相接,該波長轉換層包含 吸收上述藍色波長之光且發出紅色波長之光之波長轉換材料、及 吸收上述藍色波長之光且發出綠色波長之光之波長轉換材料。The reflective polarizing layer of claim 1, which is in contact with a wavelength conversion layer, the wavelength conversion layer comprising a wavelength conversion material that absorbs light of the blue wavelength and emits light of a red wavelength, and emits light of the blue wavelength and emits A wavelength conversion material for green wavelength light. 如請求項3之反射偏光層,其中 上述波長轉換層中所包含之 上述發出紅色波長之光之波長轉換材料、及 上述發出綠色波長之光之波長轉換材料形成於同一平面上。The reflective polarizing layer of claim 3, wherein the wavelength converting material for emitting light of a red wavelength included in the wavelength converting layer and the wavelength converting material for emitting light of a green wavelength are formed on the same plane. 如請求項3或4之反射偏光層,其中 上述波長轉換層與上述第3介電體或上述第2介電體相接。The reflective polarizing layer of claim 3 or 4, wherein the wavelength conversion layer is in contact with the third dielectric or the second dielectric. 如請求項3或4之反射偏光層,其中 上述波長轉換層中所包含之 上述發出紅色波長之光之波長轉換材料、及 上述發出綠色波長之光之波長轉換材料由遮光層隔開。The reflective polarizing layer of claim 3 or 4, wherein the wavelength converting material for emitting light of a red wavelength included in the wavelength converting layer and the wavelength converting material for emitting light of a green wavelength are separated by a light shielding layer. 如請求項3或4之反射偏光層,其中 上述發出紅色波長之光之波長轉換材料與紅色之彩色濾光片相接; 上述發出綠色波長之光之波長轉換材料與綠色之彩色濾光片相接。The reflective polarizing layer of claim 3 or 4, wherein the wavelength converting material emitting the red wavelength light is in contact with the red color filter; and the wavelength converting material emitting the green wavelength light and the green color filter are Pick up. 一種顯示裝置,其特徵在於: 包含第1基板、TFT陣列、波長轉換層、反射偏光層、透光性導電膜、第1配向膜、液晶層、第2配向膜、第2基板及偏光板; 上述TFT陣列、上述波長轉換層、上述反射偏光層、上述透光性導電膜、上述第1配向膜、上述液晶層及上述第2配向膜配置於上述第1基板與上述第2基板之間。A display device comprising: a first substrate, a TFT array, a wavelength conversion layer, a reflective polarizing layer, a translucent conductive film, a first alignment film, a liquid crystal layer, a second alignment film, a second substrate, and a polarizing plate; The TFT array, the wavelength conversion layer, the reflective polarizing layer, the translucent conductive film, the first alignment film, the liquid crystal layer, and the second alignment film are disposed between the first substrate and the second substrate. 如請求項8之顯示裝置,其中 上述反射偏光層 具有所入射之透射光之最短波長以下之寬度,且包含線狀部、第1介電體、第2介電體及第3介電體; 上述線狀部於與上述線狀部延伸之方向平行地分開排列有複數個; 上述線狀部之間填充有上述第1介電體; 上述線狀部之上表面與上述第2介電體相接; 上述線狀部之下表面與上述第3介電體相接。The display device of claim 8, wherein the reflective polarizing layer has a width equal to or shorter than a shortest wavelength of incident transmitted light, and includes a linear portion, a first dielectric body, a second dielectric body, and a third dielectric body; The linear portion is arranged in parallel with the direction in which the linear portion extends in parallel; the first dielectric member is filled between the linear portions; the upper surface of the linear portion and the second dielectric body The lower surface of the linear portion is in contact with the third dielectric body. 如請求項9之顯示裝置,其中 上述波長轉換層包含 吸收藍色波長之光且發出紅色波長之光之波長轉換材料、及 吸收藍色波長之光且發出綠色波長之光之波長轉換材料; 上述發出紅色波長之光之波長轉換材料、及上述發出綠色波長之光之波長轉換材料形成於同一平面上。The display device of claim 9, wherein the wavelength conversion layer comprises a wavelength conversion material that absorbs light of a blue wavelength and emits light of a red wavelength, and a wavelength conversion material that absorbs light of a blue wavelength and emits light of a green wavelength; A wavelength converting material that emits light of a red wavelength and a wavelength converting material that emits light of a green wavelength are formed on the same plane. 如請求項9之顯示裝置,其中 於上述反射轉換層與上述波長轉換層之間包含彩色濾光片層; 上述彩色濾光片層包含紅色之彩色濾光片及綠色之彩色濾光片; 上述紅色之彩色濾光片與上述發出紅色波長之光之波長轉換材料相接; 上述綠色之彩色濾光片與上述發出綠色波長之光之波長轉換材料相接。The display device of claim 9, wherein a color filter layer is included between the reflection conversion layer and the wavelength conversion layer; the color filter layer comprises a red color filter and a green color filter; The red color filter is in contact with the wavelength conversion material that emits light of a red wavelength; and the green color filter is in contact with the wavelength conversion material that emits light of a green wavelength. 如請求項8至11中任一項之顯示裝置,其中 上述波長轉換層具有開口部, 上述透光性導電膜與上述第3介電體相接,且配置於上述開口部。The display device according to any one of claims 8 to 11, wherein the wavelength conversion layer has an opening, and the translucent conductive film is in contact with the third dielectric member and is disposed in the opening. 如請求項8至11中任一項之顯示裝置,其中上述透光性導電膜為梳狀或板狀。The display device according to any one of claims 8 to 11, wherein the light-transmitting conductive film is in the form of a comb or a plate. 一種顯示裝置,其特徵在於: 包含保護膜、波長轉換層、反射偏光層、第1基板、TFT陣列、透光性導電膜、第1配向膜、液晶層、第2配向膜、第2基板及偏光板; 上述TFT陣列、上述透光性導電膜、上述第1配向膜、上述液晶層及上述第2配向膜配置於上述第1基板與上述第2基板之間; 上述波長轉換層及上述反射偏光層配置於上述保護膜與上述第1基板之間。A display device comprising: a protective film, a wavelength conversion layer, a reflective polarizing layer, a first substrate, a TFT array, a translucent conductive film, a first alignment film, a liquid crystal layer, a second alignment film, and a second substrate; a polarizing plate; the TFT array, the translucent conductive film, the first alignment film, the liquid crystal layer, and the second alignment film are disposed between the first substrate and the second substrate; the wavelength conversion layer and the reflection The polarizing layer is disposed between the protective film and the first substrate. 如請求項14之顯示裝置,其中 上述反射偏光層 具有所入射之透射光之最短波長以下之寬度,且包含線狀部、第1介電體、第2介電體及第3介電體; 上述線狀部於與上述線狀部延伸之方向平行地分開排列有複數個; 上述線狀部之間填充有上述第1介電體; 上述線狀部之上表面與上述第2介電體相接; 上述線狀部之下表面與上述第3介電體相接。The display device of claim 14, wherein the reflective polarizing layer has a width equal to or shorter than a shortest wavelength of the incident transmitted light, and includes a linear portion, a first dielectric body, a second dielectric body, and a third dielectric body; The linear portion is arranged in parallel with the direction in which the linear portion extends in parallel; the first dielectric member is filled between the linear portions; the upper surface of the linear portion and the second dielectric body The lower surface of the linear portion is in contact with the third dielectric body. 如請求項14之顯示裝置,其中 上述波長轉換層包含 吸收藍色波長之光且發出紅色波長之光之波長轉換材料、及 吸收藍色波長之光且發出綠色波長之光之波長轉換材料, 上述發出紅色波長之光之波長轉換材料與上述發出綠色波長之光之波長轉換材料形成於同一平面上。The display device of claim 14, wherein the wavelength conversion layer comprises a wavelength conversion material that absorbs light of a blue wavelength and emits light of a red wavelength, and a wavelength conversion material that absorbs light of a blue wavelength and emits light of a green wavelength, The wavelength converting material that emits light of a red wavelength is formed on the same plane as the wavelength converting material that emits light of a green wavelength. 如請求項14至16中任一項之顯示裝置,其中 於上述反射轉換層與上述波長轉換層之間包含彩色濾光片層; 上述彩色濾光片層包含紅色之彩色濾光片及綠色之彩色濾光片; 上述紅色之彩色濾光片與上述發出紅色波長之光之波長轉換材料相接; 上述綠色之彩色濾光片與上述發出綠色波長之光之波長轉換材料相接。The display device of any one of claims 14 to 16, wherein a color filter layer is included between the reflection conversion layer and the wavelength conversion layer; the color filter layer comprises a red color filter and a green color a color filter; the red color filter is in contact with the wavelength conversion material that emits light of a red wavelength; and the green color filter is in contact with the wavelength conversion material that emits light of a green wavelength. 如請求項14至16中任一項之顯示裝置,其中上述透光性導電膜為梳狀或板狀。The display device according to any one of claims 14 to 16, wherein the light-transmitting conductive film is in the form of a comb or a plate. 如請求項14至16中任一項之顯示裝置,其中 上述波長轉換層與上述保護膜相接。The display device according to any one of claims 14 to 16, wherein the wavelength conversion layer is in contact with the protective film. 如請求項14至16中任一項之顯示裝置,其中 上述反射偏光層與上述第1基板相接。The display device according to any one of claims 14 to 16, wherein the reflective polarizing layer is in contact with the first substrate. 一種組合物,其構成波長轉換層,該波長轉換層包含 吸收藍色波長之光且發出紅色波長之光之波長轉換材料、及 吸收藍色波長之光且發出綠色波長之光之波長轉換材料;且 上述發出紅色波長之光之波長轉換材料與上述發出綠色波長之光之波長轉換材料設置於同一平面上。A composition comprising a wavelength conversion layer comprising a wavelength conversion material that absorbs light of a blue wavelength and emits light of a red wavelength, and a wavelength conversion material that absorbs light of a blue wavelength and emits light of a green wavelength; Further, the wavelength conversion material that emits light of a red wavelength is disposed on the same plane as the wavelength conversion material that emits light of a green wavelength.
TW107104804A 2017-02-09 2018-02-09 Reflective polarizing layer, wavelength conversion layer, and liquid crystal display device TW201837558A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-021864 2017-02-09
JP2017021864 2017-02-09

Publications (1)

Publication Number Publication Date
TW201837558A true TW201837558A (en) 2018-10-16

Family

ID=63108257

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107104804A TW201837558A (en) 2017-02-09 2018-02-09 Reflective polarizing layer, wavelength conversion layer, and liquid crystal display device

Country Status (2)

Country Link
TW (1) TW201837558A (en)
WO (1) WO2018147279A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI687743B (en) * 2018-12-11 2020-03-11 友達光電股份有限公司 Display device and manufacturing method of polarizer structure
TWI823205B (en) * 2020-12-08 2023-11-21 南韓商樂金顯示科技股份有限公司 Display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022853B2 (en) * 2018-08-24 2021-06-01 Sharp Kabushiki Kaisha Display panel
CN109375411B (en) * 2018-10-30 2023-10-31 武汉华星光电技术有限公司 Liquid crystal panel and manufacturing method thereof
CN111487806B (en) * 2020-04-24 2023-05-23 京东方科技集团股份有限公司 Color film substrate, mirror surface display panel and mirror surface display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182061B2 (en) * 2008-12-17 2013-04-10 セイコーエプソン株式会社 Polarizing element and manufacturing method of polarizing element, liquid crystal device, electronic device, and projection display device
WO2011058780A1 (en) * 2009-11-11 2011-05-19 シャープ株式会社 Liquid crystal display device and method for manufacturing liquid crystal display device
CN105378517B (en) * 2013-06-06 2019-04-05 富士胶片株式会社 Optics chip part and the image display device for using the optics chip part
US9348076B2 (en) * 2013-10-24 2016-05-24 Moxtek, Inc. Polarizer with variable inter-wire distance
JP2015191230A (en) * 2014-03-31 2015-11-02 住友化学株式会社 resonant element
JP2016070949A (en) * 2014-09-26 2016-05-09 株式会社ジャパンディスプレイ Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI687743B (en) * 2018-12-11 2020-03-11 友達光電股份有限公司 Display device and manufacturing method of polarizer structure
CN114236899A (en) * 2018-12-11 2022-03-25 友达光电股份有限公司 Display device and method for manufacturing polarizing structure
CN114236899B (en) * 2018-12-11 2023-07-25 友达光电股份有限公司 Display device and method for manufacturing polarizing structure
TWI823205B (en) * 2020-12-08 2023-11-21 南韓商樂金顯示科技股份有限公司 Display device

Also Published As

Publication number Publication date
WO2018147279A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
KR102527428B1 (en) Display device
US10620478B2 (en) Photoluminescent display device and method for manufacturing the same
US10802341B2 (en) Color conversion panel and display device including the same
TW201837558A (en) Reflective polarizing layer, wavelength conversion layer, and liquid crystal display device
CN108931863B (en) Display device and method of manufacturing the same
US10768471B2 (en) Liquid-crystal display device and method of manufacturing the same
KR101971045B1 (en) Quantum rod luminescent display device and method of fabricating the same
KR101969462B1 (en) Photoluminescent display device and method for manufacturing the same
KR20190128101A (en) Display device
KR102120806B1 (en) Polarizing sheet with quantum rod and method of fabricating the same, and liquid crystal display device including the same
CN112912948B (en) Black matrix substrate and display device provided with same
KR20180066936A (en) Photo-Luminescent Display Device
CN108628035B (en) Photoluminescent device
US10761363B2 (en) Display device and method of fabricating the display device
KR101927115B1 (en) Quantum rod luminescent display device
TWI823910B (en) Display apparatus and manufacturing method thereof
TWI778203B (en) Display device with optical reflecting layer for reduction of screen door effect
KR102477574B1 (en) Wiring substrate, display device including the same, and method of manufacturing the wiring substrate
US10228598B2 (en) Display device having improved display quality
CN110473892B (en) Display device
KR102544328B1 (en) Display device and manufacturing method thereof
US9964688B2 (en) Liquid crystal display device
KR101927116B1 (en) Quantum rod luminescent display device
KR20180092850A (en) Polarizing plate, method for manufacturing polarizing plate, and display apparatus
US20230315376A1 (en) Display device, method of manufacturing the same and tiled display device including the same