TW201834278A - Fbar devices including highly crystalline metal nitride films - Google Patents

Fbar devices including highly crystalline metal nitride films Download PDF

Info

Publication number
TW201834278A
TW201834278A TW106127809A TW106127809A TW201834278A TW 201834278 A TW201834278 A TW 201834278A TW 106127809 A TW106127809 A TW 106127809A TW 106127809 A TW106127809 A TW 106127809A TW 201834278 A TW201834278 A TW 201834278A
Authority
TW
Taiwan
Prior art keywords
layer
piezoelectric layer
substrate
film bulk
conductive layer
Prior art date
Application number
TW106127809A
Other languages
Chinese (zh)
Other versions
TWI799386B (en
Inventor
布魯斯 布拉克
山薩塔克 達斯古塔
保羅 費雪
Original Assignee
美商英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商英特爾股份有限公司 filed Critical 美商英特爾股份有限公司
Publication of TW201834278A publication Critical patent/TW201834278A/en
Application granted granted Critical
Publication of TWI799386B publication Critical patent/TWI799386B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/025Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror

Abstract

Methods and devices are described that use highly crystalline III-Nitride materials to improve the performance of a film bulk acoustic resonator (FBAR). The III-Nitride materials can be epitaxially grown on a substrate having an appropriate lattice structure. These highly crystalline materials can be used with FBARs that use, for example, air gaps or Bragg reflectors for acoustic isolation. The resulting FBAR exhibits a high Q value that provides for improved bandwidth performance.

Description

包含高度結晶金屬氮化物膜的FBAR裝置  FBAR device containing highly crystalline metal nitride film  

本發明係關於一種薄膜體聲波共振器裝置。本發明更有關於一種包含高度結晶金屬氮化物膜的薄膜體聲波共振器裝置。 The present invention relates to a film bulk acoustic resonator device. More particularly, the present invention relates to a film bulk acoustic resonator device comprising a highly crystalline metal nitride film.

在電子通訊及電力管理的領域中,使用包含例如電晶體及電容器等固態裝置以實施各式各樣的組件。舉例而言,這些固態裝置可以形成於積體電路上以及用於射頻(RF)通訊應用,例如RF前端應用。薄膜體聲波共振器(FBAR)提供能取得窄頻寬鑑別並最小化插入損失的RF濾波器。採用第二代(2G)、第三代(3G)、第四代(4G)、及長程演進(LTE)無線標準的典型RF前端技術會使用多個RF濾波器,各濾波器設有一或更多組成的FBAR。 In the field of electronic communication and power management, solid state devices including, for example, transistors and capacitors are used to implement a wide variety of components. For example, these solid state devices can be formed on integrated circuits and used in radio frequency (RF) communication applications, such as RF front end applications. Thin film bulk acoustic resonators (FBARs) provide RF filters that enable narrow bandwidth discrimination and minimize insertion loss. A typical RF front-end technology using second-generation (2G), third-generation (3G), fourth-generation (4G), and long-range evolution (LTE) wireless standards uses multiple RF filters, each with one or more Multi-composed FBAR.

102‧‧‧基底 102‧‧‧Base

104‧‧‧氣隙 104‧‧‧ Air gap

106‧‧‧壓電III-N層 106‧‧‧Piezo III-N layer

108‧‧‧電極層 108‧‧‧electrode layer

110‧‧‧電極層 110‧‧‧electrode layer

112‧‧‧導電層 112‧‧‧ Conductive layer

152‧‧‧導電層 152‧‧‧ Conductive layer

154‧‧‧穴 154‧‧‧ points

200‧‧‧結構 200‧‧‧ structure

202‧‧‧施體基底 202‧‧‧body base

204‧‧‧聲波隔離區 204‧‧‧Sonic isolation zone

300‧‧‧裝置 300‧‧‧ device

1000‧‧‧計算系統 1000‧‧‧Computation System

圖1顯示FBAR裝置的一實施例。 Figure 1 shows an embodiment of an FBAR device.

圖2顯示生長於基底上的磊晶層的一實施例。 Figure 2 shows an embodiment of an epitaxial layer grown on a substrate.

圖3顯示形成於圖2的實施例上的導電層的實施例。 Figure 3 shows an embodiment of a conductive layer formed on the embodiment of Figure 2.

圖4顯示聲波隔離區的實施例。 Figure 4 shows an embodiment of an acoustic isolation region.

圖5顯示位於要接合至圖5的聲波隔離區之圖3的實施例。 Figure 5 shows the embodiment of Figure 3 located in the acoustic isolation region to be joined to Figure 5.

圖6顯示藉由接合圖4及5的裝置而形成的裝置之實施例。 Figure 6 shows an embodiment of a device formed by joining the devices of Figures 4 and 5.

圖7顯示移除基底層後圖6的裝置之實施例。 Figure 7 shows an embodiment of the apparatus of Figure 6 after removal of the substrate layer.

圖8顯示包含形成於圖7中所示的實施例的磊晶層的頂部上的導電層之實施例。 Figure 8 shows an embodiment comprising a conductive layer formed on top of the epitaxial layer of the embodiment shown in Figure 7.

圖9顯示包含聲波隔離區中的氣穴之FBAR裝置的實施例。 Figure 9 shows an embodiment of an FBAR device containing air pockets in an acoustic isolation zone.

圖10顯示包含聲波隔離區中的氣穴之FBAR裝置的另一實施例。 Figure 10 shows another embodiment of an FBAR device that includes air pockets in the acoustic isolation region.

圖11顯示製程實施例中,其中,聲波隔離區形成於FBAR裝置的矽基底中。 Figure 11 shows a process embodiment in which an acoustic isolation region is formed in the crucible substrate of the FBAR device.

圖12顯示製程實施例,其中,聲波隔離區形成於FBAR裝置的基底及導電層中。 Figure 12 shows a process embodiment in which an acoustic isolation region is formed in the substrate and conductive layer of the FBAR device.

圖13顯示構成FBAR裝置的製程實施例,其中,聲波隔離區形成於FBAR裝置的基底與壓電層之間的中間層中。 Figure 13 shows a process embodiment of a FBAR device in which an acoustic isolation region is formed in an intermediate layer between the substrate and the piezoelectric layer of the FBAR device.

圖14顯示構成FBAR裝置的製程實施例,其中,將可選擇性蝕刻的材料從基底中的穴移除以形成聲波隔離區。 Figure 14 shows a process embodiment of a FBAR device in which selectively etchable material is removed from a hole in the substrate to form an acoustic isolation region.

圖15顯示製程實施例,其中,聲波隔離區形成於黏著 至壓電層的層中。 Figure 15 shows a process embodiment in which an acoustic isolation region is formed in a layer adhered to the piezoelectric layer.

圖16顯示根據本揭示的實施例之計算系統,由使用此處揭示的技術形成的積體電路結構或裝置實施。 16 shows a computing system in accordance with an embodiment of the present disclosure implemented by an integrated circuit structure or device formed using the techniques disclosed herein.

配合此處說明的圖形,閱讀下述詳細說明,將更佳地瞭解本發明實施例的這些及其它特點。在圖式中,顯示於不同圖中的各相同或幾乎相同的組件可由類似代號表示。為了簡明起見,並非每一組件會在每一圖中被標示。此外,如同將瞭解般,圖形不一定依比例繪製或是要將說明的實施例限定於所示的特定配置。舉例而言,雖然某些圖大致地顯示直線、直角、及平滑表面,但是,揭示的技術之真實實施可以具有較不完美的直線及直角,以及某些特點可以具有表面拓蹼或者非平順的、給定的製程之真實世界限制。簡言之,圖形僅用於顯示舉例說明的結構。 These and other features of the embodiments of the present invention will be better understood from the description of the appended claims. In the drawings, identical or nearly identical components shown in different figures may be represented by like reference numerals. For the sake of brevity, not every component will be labeled in every figure. In addition, as the following will be understood, the drawings are not necessarily to scale. For example, while some of the figures generally show straight lines, right angles, and smooth surfaces, the actual implementation of the disclosed techniques may have less perfect straight and right angles, and certain features may have surface extensions or non-smoothness. The real world limit of a given process. In short, the graphics are only used to show the structure of the illustration.

【發明內容】及【實施方式】  SUMMARY OF THE INVENTION AND EMBODIMENT  

揭示包含一或更多薄膜體聲波共振器(FBAR)裝置的積體電路之製造技術。根據某些實施例,給定的FBAR裝置包含例如氮化鋁(AlN)、氮化鎵(GaN)、及這些及其它III-N半導體材料中的任一或結合等磊晶壓電材料之高度結晶的結構。根據某些實施例,經由磊晶沈積製程,形成磊晶層,可允許精準控制膜結晶度及厚度。舉例而言,相較於濺射的III-N半導體材料典型上為1至4度的XRD FWHM,磊晶層呈現小於0.5度的XRD FWHM。此處揭示的很多FBAR實施例可以提供能夠在各式各樣的通訊裝置 中達成優良性能的RF濾波器。這些裝置包含接收或傳送RF訊號的裝置,舉例而言,行動電話、電腦、車輛、飛行器及無線電。在一態樣中,揭示的共振器使用高度結晶的磊晶膜比使用例如使用濺射技術形成的多晶材料的FBAR,能夠提供更增進的性能。舉例而言,這些改良包含增加的頻寬、較低的插入損失及較高的Q值。慮及本揭示,將清楚眾多配置及變異。 A fabrication technique for an integrated circuit comprising one or more film bulk acoustic resonator (FBAR) devices is disclosed. According to some embodiments, a given FBAR device comprises a height of epitaxial piezoelectric material such as aluminum nitride (AlN), gallium nitride (GaN), and any or a combination of these and other III-N semiconductor materials. Crystal structure. According to certain embodiments, the formation of an epitaxial layer via an epitaxial deposition process allows for precise control of film crystallinity and thickness. For example, the epitaxial layer exhibits an XRD FWHM of less than 0.5 degrees compared to a sputtered III-N semiconductor material typically having an XRD FWHM of 1 to 4 degrees. Many of the FBAR embodiments disclosed herein can provide RF filters that achieve superior performance in a wide variety of communication devices. These devices include devices that receive or transmit RF signals, such as mobile phones, computers, vehicles, aircraft, and radio. In one aspect, the disclosed resonators provide a more enhanced performance using highly crystalline epitaxial films than FBARs using polycrystalline materials such as those formed using sputtering techniques. For example, these improvements include increased bandwidth, lower insertion loss, and higher Q values. Numerous configurations and variations will be apparent in light of this disclosure.

概述  Overview  

薄膜體聲波共振器(FBAR)已用於RF濾波器中且提供優於表面聲波(SAW)濾波器的優點。這些優點包含降低之來自附近的無線電頻帶的干擾以及降低的插入損失。當RF濾波器讓選取的頻帶通過並降低或消除相鄰的不必要頻率通過,則其是最有效的。這會造成高訊號強度及最小干擾,因而增進通訊及降低功率要求。目前使用的III族氮化物(III-N)FBAR裝置依靠會造成包含高濃度晶體缺陷的多晶層之濺射的III-N材料。濺射層也呈現不一致的厚度及較粗表面。於此揭示之方法使用較高晶度的III-N材料、甚至單晶材料,以提供低缺陷、高度結晶壓電層,造成允許更多有用的能量通過並最小化較低的能量損耗之RF濾波器。這造成較高的Q值,提供例如較長的電池壽命及更多的接收帶。在一組實施例中,這些高度結晶的III-N材料是藉由磊晶生長而形成於適當基底上,例如300mm矽晶圓。 Thin film bulk acoustic resonators (FBARs) have been used in RF filters and offer advantages over surface acoustic wave (SAW) filters. These advantages include reduced interference from nearby radio bands and reduced insertion loss. It is most effective when the RF filter passes the selected frequency band and reduces or eliminates the passage of adjacent unnecessary frequencies. This results in high signal strength and minimal interference, which increases communication and reduces power requirements. The Group III nitride (III-N) FBAR devices currently in use rely on III-N materials that cause sputtering of polycrystalline layers containing high concentrations of crystal defects. The sputtered layer also exhibited inconsistent thicknesses and thicker surfaces. The methods disclosed herein use higher crystallity III-N materials, even single crystal materials, to provide a low defect, highly crystalline piezoelectric layer, resulting in RF that allows more useful energy to pass through and minimizes lower energy losses. filter. This results in a higher Q value, providing for example longer battery life and more receiving strips. In one set of embodiments, these highly crystalline III-N materials are formed on a suitable substrate by epitaxial growth, such as a 300 mm germanium wafer.

壓電層可以用於各式各樣的FBAR架構中,包含具有 氣隙、堆疊的晶體濾波器及耦合共表器濾波器之架構。舉例而言,不同實施例的FBAR拓蹼包含梯形、橋式及混合型。在某些情形中,使用此處揭示的技術會造成III-N半導體結構,包含提供較高機電耦合及Q因數RF裝置的較高品質的壓電層。考慮上述將會瞭解這些改良接著會實現頻寬增加、訊號損失減少、及增加主RF濾波器拒斥頻帶外的訊號之能力。在某些情形中,經由揭示的技術製造的FBAR裝置可用於特別是採用第二代(2G)、第三代(3G)、第四代(4G)、第五代(5G)、或長程演進(LTE)無線標準中任一或結合之通訊技術中的RF濾波器及其它RF裝置。在某些情形中,使用這些裝置可以實現較低損耗及較高訊號完整性,主無線通訊平台可由此獲利。 The piezoelectric layer can be used in a wide variety of FBAR architectures, including those with air gaps, stacked crystal filters, and coupled co-filter filters. For example, the FBAR topologies of different embodiments include trapezoidal, bridge, and hybrid types. In some cases, the use of the techniques disclosed herein can result in a III-N semiconductor structure, including a higher quality piezoelectric layer that provides higher electromechanical coupling and Q factor RF devices. Considering the above, it will be appreciated that these improvements will then increase the bandwidth, reduce the signal loss, and increase the ability of the main RF filter to reject signals outside the band. In some cases, FBAR devices fabricated via the disclosed techniques can be used, inter alia, with second generation (2G), third generation (3G), fourth generation (4G), fifth generation (5G), or long range evolution. RF filters and other RF devices in any or a combination of (LTE) wireless standards. In some cases, the use of these devices can achieve lower loss and higher signal integrity, and the primary wireless communication platform can benefit from this.

根據某些實施例,此處多樣化說明所提供的結構可以配置成用於例如計算裝置、行動裝置等等中的RF前端模組、及各式各樣的通訊系統中,但是,審視本說明將可清楚知道各種其它應用。根據某些實施例,此處多樣化說明所提供的結構可以配置用於例如基地台、蜂巢式通訊塔、等等。根據某些實施例,舉例而言,具有如此處多樣地說明般配置的眾多共振器之給定的IC或其它半導體結構的x光繞射(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、化學成分分析、X射線能量散布分析儀(EDX)、電特徵、及二次離子質譜儀(SIMS)中之任一或結合可以偵測揭示的技術及裝置的使用。如此處使用般,高度結晶的III-N材料是呈現小於1.0度的XRD FWHM之III-N 材料。 In accordance with certain embodiments, the various configurations provided herein can be configured for use in, for example, RF front-end modules in computing devices, mobile devices, and the like, as well as in a wide variety of communication systems, but review the description. Various other applications will be apparent. According to certain embodiments, the various configurations provided herein may be configured for use in, for example, a base station, a cellular communication tower, and the like. X-ray diffraction (XRD), scanning electron microscopy (SEM), penetration of a given IC or other semiconductor structure having a plurality of resonators configured as diversely illustrated herein, in accordance with certain embodiments. Any combination or combination of electron microscopy (TEM), chemical composition analysis, X-ray energy dispersive analyzer (EDX), electrical characteristics, and secondary ion mass spectrometry (SIMS) can detect the use of the disclosed techniques and devices. As used herein, the highly crystalline III-N material is a III-N material that exhibits an XRD FWHM of less than 1.0 degrees.

架構及方法論  Architecture and methodology  

圖1提供使用此處揭示的一或更多方法製造的FBAR裝置的一實施例之剖面視圖。半導體基底102包含聲波隔離區204,如同所示,聲波隔離區204包含氣隙104,氣隙104是被蝕刻或以其它方式形成於基底中。基底102的上表面及氣隙104被電極層108遮蓋,電極層108是例如金屬等導電材料。第二電極層110可以具有與電極層108相同的材料。高度結晶的壓電III-N層106是在第二電極層110與電極層108之間,但是,另一導電層,層112是在高度結晶的壓電材料106與電極層108之間。如同下述說明中可清楚得知般,導電層112可以具有與電極108相同的或不同的材料。 1 provides a cross-sectional view of an embodiment of an FBAR device fabricated using one or more of the methods disclosed herein. The semiconductor substrate 102 includes an acoustic isolation region 204, as shown, the acoustic isolation region 204 includes an air gap 104 that is etched or otherwise formed in the substrate. The upper surface of the substrate 102 and the air gap 104 are covered by the electrode layer 108, which is a conductive material such as metal. The second electrode layer 110 may have the same material as the electrode layer 108. The highly crystalline piezoelectric III-N layer 106 is between the second electrode layer 110 and the electrode layer 108, but another conductive layer, the layer 112 is between the highly crystalline piezoelectric material 106 and the electrode layer 108. As can be clearly seen in the description below, the conductive layer 112 can have the same or a different material than the electrode 108.

如同所示,圖2-9顯示根據本揭示之形成FBAR的各式各樣實施例之製程流程。舉例而言,根據某些實施例,此製程流程可用以製造包含包括一或更多高度結晶的壓電III-N半導體材料之一或更多FBAR裝置的積體電路。舉例而言,這些III-N材料包含磊晶生長的氮化鎵(GaN)、氮化鋁(AlN)、氮化銦(InN)、銦鎵氮化物(InGaN)、鋁鎵氮化物(AlGaN)、鋁銦氮化物(AlInN)、及鋁銦鎵氮化物(AlInGaN)。在各式各樣的實施例中,舉例而言,磊晶生長的III-N材料呈現小於3度、小於2度、小於1度、小於0.5度、小於0.4度的XRD FWHM。 As shown, Figures 2-9 illustrate the process flow for various embodiments of forming FBARs in accordance with the present disclosure. For example, in accordance with certain embodiments, this process flow can be used to fabricate an integrated circuit comprising one or more FBAR devices including one or more highly crystalline piezoelectric III-N semiconductor materials. For example, these III-N materials include epitaxially grown gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), indium gallium nitride (InGaN), and aluminum gallium nitride (AlGaN). , aluminum indium nitride (AlInN), and aluminum indium gallium nitride (AlInGaN). In various embodiments, for example, the epitaxially grown III-N material exhibits an XRD FWHM of less than 3 degrees, less than 2 degrees, less than 1 degree, less than 0.5 degrees, less than 0.4 degrees.

製程始於圖2,圖2顯示生長於結晶施體基底202上的 AlN的磊晶層106的一實施例之剖面視圖。不同的實施例包含任何其它III-N材料及其組合。結晶基底202可為施體基底,其係因其晶格而被選取,以及,可為例如矽或碳化矽。不同的結晶面可以作為用於生長的表面,以及,包含例如[111]、[100]或[110]方向。在所示的實施例中,氮化鋁的高度結晶層磊晶生長於矽[111]基底上。在考慮本揭示時將清楚知道,藉由任何適當的標準、客製化、或專有的技術,可以形成III-N半導體層106。製程可為任何會造成高度結晶的(小於1.0度的FWHM)半導體層之方法。這些製程包含那些經由磊晶生長及沈積方法以生長高度結晶材料之製程,舉例而言,磊晶生長及沈積方法包含例如金屬有機CVD(MOCVD)等化學汽相沈積(CVD)、分子束磊晶(MBE)、原子層沈積(ALD)、或其組合。在很多實施例中,高度結晶的III-N層106是壓電材料及呈現纖鋅礦結晶結構。高度結晶層106的厚度(z)可以被控制於適用於最終裝置的任何厚度,舉例而言,在0.3與6.0μm之間、0.5與5.0μm之間、1.0與4.0μm之間。在相同的及其它實施例中,厚度可以小於5.0μm、小於4.0μm、小於3.0μm、或小於2.0μm。在相同的或其它實施例中,厚度可以大於0.1μm、大於0.3μm、大於0.5μm、或大於1.0μm。相較於濺射的III-N材料,高度結晶的材料具有較平滑的表面、較少組織且在IC製造前通常在不會要求拋光或平坦化。 The process begins in Figure 2, which shows a cross-sectional view of an embodiment of an epitaxial layer 106 of AlN grown on a crystalline donor substrate 202. Different embodiments include any other III-N materials and combinations thereof. The crystalline substrate 202 can be a donor substrate selected for its crystal lattice and can be, for example, tantalum or tantalum carbide. Different crystal faces can be used as the surface for growth, and include, for example, the [111], [100] or [110] direction. In the illustrated embodiment, a highly crystalline layer of aluminum nitride is epitaxially grown on a ruthenium [111] substrate. It will be apparent from consideration of this disclosure that the III-N semiconductor layer 106 can be formed by any suitable standard, customized, or proprietary technique. The process can be any method that results in a highly crystalline (less than 1.0 degree FWHM) semiconductor layer. These processes include processes for growing highly crystalline materials via epitaxial growth and deposition methods. For example, epitaxial growth and deposition methods include chemical vapor deposition (CVD) such as metal organic CVD (MOCVD), molecular beam epitaxy. (MBE), atomic layer deposition (ALD), or a combination thereof. In many embodiments, the highly crystalline III-N layer 106 is a piezoelectric material and exhibits a wurtzite crystalline structure. The thickness (z) of the highly crystalline layer 106 can be controlled to any thickness suitable for the final device, for example between 0.3 and 6.0 μm, between 0.5 and 5.0 μm, between 1.0 and 4.0 μm. In the same and other embodiments, the thickness may be less than 5.0 μm, less than 4.0 μm, less than 3.0 μm, or less than 2.0 μm. In the same or other embodiments, the thickness may be greater than 0.1 μm, greater than 0.3 μm, greater than 0.5 μm, or greater than 1.0 μm. Compared to sputtered III-N materials, highly crystalline materials have a smoother surface, less tissue and typically do not require polishing or planarization prior to IC fabrication.

製程在圖3中繼續,圖3顯示形成於高度結晶的AlN層106上的導電電極層112。電極層112包括範圍寬廣的導電 材料中的任何材料。舉例而言,在某些情形中,電極層112包括導電耐火材料中任一或任何組合,導電耐火材料包含例如銦錫氧化物(ITO)及銦鋅氧化物(IZO)等氧化物、例如鎢(W)、鉬(Mo)及鈦(Ti)等金屬、以及例如氮化鉭(TaN)、氮化鈦(TiN)等氮化物、或是其任何合金,以上僅為列舉的一些材料。在某些情形中,電極層112包含摻雜劑。 The process continues in FIG. 3, which shows conductive electrode layer 112 formed on highly crystalline AlN layer 106. Electrode layer 112 includes any of a wide range of electrically conductive materials. For example, in some cases, electrode layer 112 includes any or any combination of electrically conductive refractory materials including oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO), such as tungsten. (W), metals such as molybdenum (Mo) and titanium (Ti), and nitrides such as tantalum nitride (TaN), titanium nitride (TiN), or any alloy thereof, and the above are only some of the materials listed. In some cases, electrode layer 112 comprises a dopant.

如同慮及本揭示時將清楚得知般,可以經由任何適當的標準的、客製的、或專有的技術,形成電極層112。根據某些實施例,可以藉由特別是物理汽相沈積(PVD)製程(例如濺射)、化學汽相沈積(CVD)製程、及原子層沈積(ALD)製程中任一或任何結合,形成電極層112。可以依據給定的目標應用或終端使用之需求,將電極層112的尺寸(例如z方向上的z厚度)客製化。在某些情形中,電極層112可以具有在約200nm或更少的範圍中(例如,約150nm或更少、約100nm或更少、約50nm或更少、或是在約200或更少的範圍中的任何其它子範圍中)之z厚度。在其它實施例中,電極層112可以具有例如50至300nm、100至250nm、或100至200nm的z厚度。用於電極層112之其它適當的材料、形成技術、及尺寸將取決於給定的應用且在考慮本揭示時將清楚得知。 As will be apparent upon consideration of this disclosure, electrode layer 112 can be formed via any suitable standard, custom, or proprietary technique. According to certain embodiments, any or any combination of physical vapor deposition (PVD) processes (eg, sputtering), chemical vapor deposition (CVD) processes, and atomic layer deposition (ALD) processes may be formed. Electrode layer 112. The size of the electrode layer 112 (e.g., the z-thickness in the z-direction) can be customized according to the needs of a given target application or terminal use. In some cases, electrode layer 112 can have a range of about 200 nm or less (eg, about 150 nm or less, about 100 nm or less, about 50 nm or less, or about 200 or less). The z thickness of any other subrange in the range). In other embodiments, electrode layer 112 can have a z-thickness of, for example, 50 to 300 nm, 100 to 250 nm, or 100 to 200 nm. Other suitable materials, forming techniques, and dimensions for electrode layer 112 will depend on the particular application and will be apparent upon consideration of the present disclosure.

如圖4中所見般,裝置300包含半導體基底102,半導體基底102具有範圍寬廣的配置中的任何配置。舉例而言,半導體基底102可以配置成塊體半導體基底、矽在絕 緣體上(SOI)結構或其它半導體在絕緣體上結構(XOI,其中,X代表半導體材料,例如矽、鍺、富含鍺的矽、等等)、半導體晶圓、及多層半導體結構中的任一或組合。在某些情形中,半導體基底102可以配置成矽在藍寶石上(SOS)的結構。 As seen in Figure 4, device 300 includes a semiconductor substrate 102 having any of a wide range of configurations. For example, the semiconductor substrate 102 can be configured as a bulk semiconductor substrate, a germanium-on-insulator (SOI) structure, or other semiconductor-on-insulator structure (XOI, where X represents a semiconductor material, such as germanium, germanium, germanium-rich germanium). , or the like, any one or combination of semiconductor wafers, and multilayer semiconductor structures. In some cases, the semiconductor substrate 102 can be configured as a structure on a sapphire (SOS).

半導體基底102包括範圍寬廣的半導體材料中的任何材料。舉例而言,在某些情形中,半導體基底102包括例如矽(Si)、鍺(Ge)、或矽鍺(SiGe)等IV族半導體材料中之任一或組合。在某些情形中,半導體基底102包括具有[111]、[110]、或[100]晶向的Si,選擇性地具有在約1-10°(例如約1-4°、約4-7°、約7-10°、或是約1-10°的範圍中的任何其它子範圍)範圍中朝向[110]的邊料。在某些其它情形中,半導體基底102包括III-V族化合物半導體材料中的任一或組合,特別是例如砷化鎵(GaAs)或磷化銦(InP)。仍然在某些其它情形中,半導體基底102包括碳化矽(SiC)或藍寶石(α-Al2O3)。如此處所述,在某些情形中,可以至少部份地根據適用於形成於其上的一或更多共振器裝置之目標電阻率範圍,選擇半導體基底102的特定材料成分。在某些情形中,半導體基底102具有約1,000Ω.cm或更大的電阻率(例如約1,200Ω.cm或更大、約1,500Ω.cm或更大、等等)。 Semiconductor substrate 102 includes any of a wide range of semiconductor materials. For example, in some cases, semiconductor substrate 102 includes any one or combination of Group IV semiconductor materials such as germanium (Si), germanium (Ge), or germanium (SiGe). In some cases, semiconductor substrate 102 includes Si having a [111], [110], or [100] crystal orientation, optionally having a 1-10° (eg, about 1-4°, about 4-7) The edge toward [110] in the range of °, about 7-10°, or any other subrange in the range of about 1-10°. In some other instances, semiconductor substrate 102 includes any one or combination of III-V compound semiconductor materials, particularly such as gallium arsenide (GaAs) or indium phosphide (InP). In still other cases, the semiconductor substrate 102 comprises tantalum carbide (SiC) or sapphire (a-Al 2 O 3 ). As described herein, in certain instances, the particular material composition of the semiconductor substrate 102 can be selected based, at least in part, on a target resistivity range suitable for one or more resonator devices formed thereon. In some cases, the semiconductor substrate 102 has a thickness of about 1,000 ohms. A resistivity of cm or greater (e.g., about 1,200 Ω.cm or more, about 1,500 Ω.cm or more, etc.).

應瞭解,半導體基底102並非僅侷限於作為給定的主架構的基底之配置及實施,根據某些其它實施例,半導體基底102可以配置成或實施成為配置在給定的主架構中的 中間層。其它適當的材料、配置及電阻率範圍。用於半導體基底102的其它適當材料、配置、及電阻率將取決於給定的應用且在慮及本揭示時將清楚知道。 It should be appreciated that the semiconductor substrate 102 is not limited to the configuration and implementation of a substrate as a given primary architecture. According to certain other embodiments, the semiconductor substrate 102 can be configured or implemented as an intermediate layer disposed in a given primary architecture. . Other suitable materials, configurations, and resistivity ranges. Other suitable materials, configurations, and resistivities for the semiconductor substrate 102 will depend on the given application and will be apparent upon consideration of the present disclosure.

裝置300包含一或更多聲波隔離區204,根據圖4中所示的一實施例,聲波隔離區204包含介電質布拉格反射器132、金屬布拉格反射器134、介電質布拉格反射器136、及金屬布拉格反射器138。可以使用任何適當的聲波隔離區,包含例如獨立穴、堆疊晶體、耦合共振器及包含布拉格反射器的反射器。如同所示,裝置300包含二對金屬/介電質布拉格反射器。在各式各樣的實施例中,可以使用一、二、三或更多對反射器。藉由產生導致建設性及破壞性干射的邊界條件,反射器提供FBAR與基底的聲波隔離。在很多情形中,金屬及介電質材料具有大比例的分別的聲波阻抗。舉例而言,比例可以大於5:1、10:1、或20:1。在某些實施例中,反射器可以承受高溫,呈現低界面粗糙度及呈現良好的黏著性。在一組實施例中,金屬/介電質布拉格反射器是鎢及氧化矽(W/SiO2),已發現其可以提供寬廣的有用反射頻帶。其它材料可以用於布拉格反射器,舉例而言,包含Al、Ti、Au、Mo、Nb、Ni、Pt、Ta、W、SiO2、AlN、HfO2、MgO、TiO2及Si3N4Apparatus 300 includes one or more acoustic isolation regions 204. According to an embodiment illustrated in FIG. 4, acoustic isolation region 204 includes a dielectric Bragg reflector 132, a metal Bragg reflector 134, a dielectric Bragg reflector 136, And a metal Bragg reflector 138. Any suitable acoustic isolation region can be used, including, for example, separate pockets, stacked crystals, coupled resonators, and reflectors including Bragg reflectors. As shown, device 300 includes two pairs of metal/dielectric Bragg reflectors. In various embodiments, one, two, three or more pairs of reflectors can be used. The reflector provides acoustic isolation of the FBAR from the substrate by creating boundary conditions that result in constructive and destructive dry shots. In many cases, metal and dielectric materials have a large proportion of separate acoustic impedance. For example, the ratio can be greater than 5:1, 10:1, or 20:1. In some embodiments, the reflector can withstand high temperatures, exhibit low interfacial roughness, and exhibit good adhesion. In one set of embodiments, the metal/dielectric Bragg reflector is tungsten and yttrium oxide (W/SiO 2 ) which has been found to provide a broad useful reflection band. Other materials may be used for the Bragg reflector, for example, including Al, Ti, Au, Mo, Nb, Ni, Pt, Ta, W, SiO 2 , AlN, HfO 2 , MgO, TiO 2 and Si 3 N 4 .

在某些實施例中,使用薄膜沈積技術,形成布拉格反器132、134、136及138。舉例而言,這些技術包含物理汽相沈積(PVD)(例如濺射)及化學汽相沈積(CVD)。在某些實施例中,布拉格反射器可以是四分之一波層,在其它實施 例中,可以以被選取成在選取的波長提供聲波隔離之預定的額定厚度,形成這些層。電極層108包括例如金屬或氧化物等導電材料,以及是與上述電極層112的材料相同或不同的材料。其不須但可以具有類似於電極層112的成分及尺寸。也可以使用同於上述用於電極層112的技術,製造它。 In some embodiments, Bragg reflectors 132, 134, 136, and 138 are formed using thin film deposition techniques. For example, these techniques include physical vapor deposition (PVD) (eg, sputtering) and chemical vapor deposition (CVD). In some embodiments, the Bragg reflector can be a quarter wave layer, and in other embodiments, the layers can be formed with a predetermined nominal thickness selected to provide acoustic isolation at the selected wavelength. The electrode layer 108 includes a conductive material such as a metal or an oxide, and is the same or different material as the material of the electrode layer 112 described above. It does not need to have a composition and size similar to that of the electrode layer 112. It can also be fabricated using the same technique as described above for the electrode layer 112.

在圖5中,施體基底202、AlN層106、及電極層112翻轉以準備與裝置300配對。在與裝置300配對之前,選擇性地移除施體基底202。可以經由研磨或蝕刻,移除基底,以及,選擇性地蝕刻留下的任何餘留部份。舉例而言,根據某些實施例,假使施體基底202是矽在藍寶石(SOS)基底的矽在絕緣體上(SOI)或Si基底,則在從磊晶的AlN 106中移除Si材料時,可以使用包括氫氧化鉀(KOH)或是四甲基氫氧化銨(TMAH)((CH3)4NOH)之蝕刻劑。舉例而言,使用化學機械平坦化(CMP)技術,移除缺陷,可以改良曝露的電極層112的表面。 In FIG. 5, donor substrate 202, AlN layer 106, and electrode layer 112 are flipped in preparation for mating with device 300. The donor substrate 202 is selectively removed prior to pairing with the device 300. The substrate can be removed via grinding or etching, and any remaining portions left behind can be selectively etched. For example, in accordance with certain embodiments, if the donor substrate 202 is a tantalum-on-insulator (SOI) or Si substrate on a sapphire (SOS) substrate, then when the Si material is removed from the epitaxial AlN 106, An etchant comprising potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) ((CH 3 ) 4 NOH) can be used. For example, the surface of the exposed electrode layer 112 can be modified using chemical mechanical planarization (CMP) techniques to remove defects.

在某些實施例中,如圖6A及6B所示,高度結晶的磊晶層106可以接合至裝置300。如上所述,可以在將電極層112接合至電極層108之前或之後,移除施體基底202。在接合之前,使用例如溶劑或CMP,清潔及/或平坦化層112及108中之一或二者。回想層112及108包括相同的或不同的導電材料且可為例如金屬或氧化物。在各式各樣的實施例中,電極層可以具有x-y平面中相同的或不同的形狀。將圖6A中的各層112和108的曝露表面合在一起並經由例如 凡得瓦力而黏合。在某些實施例,例如圖6B所示,可以採取步驟以進一步將這些層固定在一起。舉例而言,這些步驟包含CVD氧化物處理,特別是當層108是氧化物且不是金屬時。圖6B的實施例包含增加的層,氧化物層116。可以在沈積氧化物電極108a之後施加層116,層116有助於接合電極層108a至電極層112。在其它實施例中,在接合結構200及300之前,氧化物層116施加至結構200上的電極層112。在另外的實施例中,層108可以是氧化物層本身,有助於黏著電極112至基底102或者布拉格反射器300的堆疊。在某些實施例中,將材料退火以促進相鄰的層的接合。舉例而言,在一實施例中,在氧化物層116形成之後,退火可以推動SiO2形成於表面上,伴隨有晶圓游離。在某些實施例中,層112、層108、或二者可以連接至導電軌跡。假使如圖6所示,施體基底202尚未被移除,則在某些實施例中,使用例如研磨、拋光及/或蝕刻,將其移離磊晶層106。圖7顯示移除施體基底202後的裝置實施例。 In some embodiments, a highly crystalline epitaxial layer 106 can be bonded to device 300 as shown in FIGS. 6A and 6B. As described above, the donor substrate 202 can be removed before or after bonding the electrode layer 112 to the electrode layer 108. One or both of layers 112 and 108 are cleaned and/or planarized prior to bonding using, for example, solvent or CMP. Recall that layers 112 and 108 comprise the same or different electrically conductive materials and can be, for example, metals or oxides. In various embodiments, the electrode layers can have the same or different shapes in the xy plane. The exposed surfaces of layers 112 and 108 in Figure 6A are brought together and bonded via, for example, van der Waals. In some embodiments, such as shown in Figure 6B, steps can be taken to further secure the layers together. For example, these steps include CVD oxide processing, particularly when layer 108 is an oxide and is not a metal. The embodiment of Figure 6B includes an added layer, oxide layer 116. Layer 116 may be applied after deposition of oxide electrode 108a, which facilitates bonding electrode layer 108a to electrode layer 112. In other embodiments, oxide layer 116 is applied to electrode layer 112 on structure 200 prior to bonding structures 200 and 300. In other embodiments, layer 108 may be the oxide layer itself, which facilitates adhesion of electrode 112 to substrate 102 or a stack of Bragg reflectors 300. In certain embodiments, the material is annealed to promote bonding of adjacent layers. For example, in one embodiment, after the oxide layer 116 is formed, annealing can push SiO 2 on the surface with wafer free. In some embodiments, layer 112, layer 108, or both can be connected to a conductive trace. In spite of the fact that the donor substrate 202 has not been removed as shown in FIG. 6, in some embodiments, it is removed from the epitaxial layer 106 using, for example, grinding, polishing, and/or etching. Figure 7 shows an embodiment of the device after removal of the donor substrate 202.

如圖8所示,實施例包含增加電極層114。電極層114包括例如金屬等導電材料以及包括與電極層112和108相同或不同的材料。可以使用此處說明的方法,形成電極層114,包含沈積製程、例如化學及物理沈積技術。這些包含例如物理汽相沈積(PVD)及化學汽相沈積(CVD)製程。電極層114具有同於、類似於、或不同於電極層108和112的材料。可以使用後置沈積製程來精煉電極層114。舉例而言,研磨、蝕刻及平坦化技術可以用以降低層的厚度以 及移除表面缺陷。使用例如導電軌跡,電極層114可以與其它組件導電地接合。 As shown in FIG. 8, the embodiment includes an additive electrode layer 114. The electrode layer 114 includes a conductive material such as a metal and a material including the same or different from the electrode layers 112 and 108. Electrode layer 114 can be formed using the methods described herein, including deposition processes, such as chemical and physical deposition techniques. These include, for example, physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The electrode layer 114 has the same material as, similar to, or different from the electrode layers 108 and 112. The electrode layer 114 can be refined using a post deposition process. For example, grinding, etching, and planarization techniques can be used to reduce the thickness of the layer and remove surface defects. The electrode layer 114 can be electrically conductively bonded to other components using, for example, conductive traces.

圖9顯示包含獨立穴且未包含圖8的實施例之布拉格反射器之FBAR的替代實施例。不似圖1的FBAR,獨立穴未形成於基底中,但是,在包括一或更多金屬的導電層152中。導電層152的成分可以與電極層114、112及108中任一相同但不須相同。舉例而言,在某些實施例中,其可為例如鎢或鉬等金屬。在一組實施例中,在沈積電極層108之前,形成穴154。在一特定實施例中,使用物理或化學沈積法,將導電層152沈積於基底202上。從導電層152,選擇性地蝕刻出穴154。蝕刻包含乾或濕蝕刻技術或二者,以及,蝕刻可以被選取以移除部份導電層152而不會攻擊基底202。如同所示,穴154延伸遍及層152的z厚度,但是在某些實施例中,穴部份地延伸經過導電層152。在其它實施例中,藉由在穴154的區域中選擇性地遮罩或沈積犠牲材料,形成穴154。在某些實施例中,電極層108形成於導電層152上,之後,移除犠牲材料以形成穴154。然後,舉例而言,使用參考圖6及7之上述說明的技術,將層112及106添加至堆疊。在另外的實施例中,如同參考圖8的上述所述般,形成電極層114。 Figure 9 shows an alternate embodiment of an FBAR comprising an independent cavity and not including the Bragg reflector of the embodiment of Figure 8. Unlike the FBAR of Figure 1, the individual holes are not formed in the substrate, but in the conductive layer 152 comprising one or more metals. The composition of the conductive layer 152 may be the same as, but not necessarily the same as, any of the electrode layers 114, 112, and 108. For example, in certain embodiments, it can be a metal such as tungsten or molybdenum. In one set of embodiments, a hole 154 is formed prior to deposition of the electrode layer 108. In a particular embodiment, conductive layer 152 is deposited on substrate 202 using physical or chemical deposition methods. From the conductive layer 152, the holes 154 are selectively etched. The etch includes either dry or wet etch techniques or both, and the etch can be selected to remove portions of conductive layer 152 without attacking substrate 202. As shown, the pockets 154 extend throughout the z-thickness of the layer 152, but in some embodiments, the pockets extend partially through the conductive layer 152. In other embodiments, the pockets 154 are formed by selectively masking or depositing the sacrificial material in the region of the pockets 154. In some embodiments, the electrode layer 108 is formed on the conductive layer 152, after which the sacrificial material is removed to form the pockets 154. Then, for example, layers 112 and 106 are added to the stack using the techniques described above with reference to Figures 6 and 7. In a further embodiment, electrode layer 114 is formed as described above with reference to FIG.

在另一組實施例中,使用類似於圖9的方法,形成圖10的FBAR,但未包含電極層108。舉例而言,在形成穴154之後,電極層112及高度結晶層106(以及選加的施體基底202)可以直接接合至導電層152。舉例而言,藉由平坦 化,處理導電層152及電極層112的相面對的表面,以使它們更易於接合。然後,經由凡得瓦力或是其它黏著技術,將這些表面接合在一起及黏著。在某些實施例中,將裝置退火以進一步確保層112及152的黏著。在另外的實施例中,電極層114沈積於高度結晶的壓電層106以形成頂部電極。結果是具有形成於金屬或其它導電層中的間隙之氣隙式FBAR,這與如圖1所示之形成於基底中相反。 In another set of embodiments, the FBAR of FIG. 10 is formed using a method similar to that of FIG. 9, but without the electrode layer 108. For example, after forming the pockets 154, the electrode layer 112 and the highly crystalline layer 106 (and the optional donor substrate 202) can be bonded directly to the conductive layer 152. For example, the facing surfaces of the conductive layer 152 and the electrode layer 112 are treated by planarization to make them easier to bond. These surfaces are then joined together and adhered via van der Waals or other bonding techniques. In some embodiments, the device is annealed to further ensure adhesion of layers 112 and 152. In a further embodiment, electrode layer 114 is deposited on highly crystalline piezoelectric layer 106 to form a top electrode. The result is an air gap FBAR having a gap formed in a metal or other conductive layer, as opposed to being formed in the substrate as shown in FIG.

圖11顯示製程實施例中,其中,藉由直接在基底102中形成聲波隔離區204而構成氣隙式FBAR。製程11a包含使用例如乾或濕蝕刻等方法而在基底102中形成穴154。在某些情形中,允許氧化物層160自然地形成於基底102的上表面上。在其它情形中,使用例如CVD等方法,將氧化物層160沈積於表面上。製程11b包含將基底102黏著至類似於圖3的結構200之結構,以及,包含高度結晶層106、施體基底202及電極108。在電極108包括導電氧化物的情形中,氧化物層160有助於將結構200黏著至基底102。選加的退火製程可以驅動SiO2形成以將基底102進一步黏著至電極108。製程11c包含移除施體層202及沈積電極層114以產生包含聲波隔離區204的FBAR 1100。注意,在其它情形中,在將高度結晶層106附著至基底102之前,移除施體層202。類似地,在將高度結晶層106附著至基底102之前,沈積電極層114。在各式各樣的實施例中,聲波隔離區204是例如布拉格反射器等反射器堆疊或是氣隙。 Figure 11 shows a process embodiment in which an air gap FBAR is formed by forming an acoustic isolation region 204 directly in the substrate 102. Process 11a includes forming a pocket 154 in substrate 102 using methods such as dry or wet etching. In some cases, the oxide layer 160 is allowed to be naturally formed on the upper surface of the substrate 102. In other cases, oxide layer 160 is deposited on the surface using methods such as CVD. Process 11b includes a structure that adheres substrate 102 to structure 200 similar to that of FIG. 3, and includes a highly crystalline layer 106, a donor substrate 202, and electrodes 108. In the case where the electrode 108 includes a conductive oxide, the oxide layer 160 helps to adhere the structure 200 to the substrate 102. An optional annealing process can drive the formation of SiO 2 to further adhere the substrate 102 to the electrode 108. The process 11c includes removing the donor layer 202 and the deposited electrode layer 114 to produce an FBAR 1100 that includes an acoustic isolation region 204. Note that in other cases, the donor layer 202 is removed prior to attaching the highly crystalline layer 106 to the substrate 102. Similarly, electrode layer 114 is deposited prior to attaching highly crystalline layer 106 to substrate 102. In various embodiments, the acoustic isolation region 204 is a reflector stack such as a Bragg reflector or an air gap.

圖12顯示製程實施例,其中,藉由在基底102及導電 層170中都形成穴154,以製造氣隙式FBAR。製程從結構1200a開始,結構1200a包含已沈積於平面基底102上的導電層170。舉例而言,導電層170是金屬、氧化物、或是氧化物層上的金屬層,以及,藉由使用例如CVD或PVD等方法而沈積。製程12a包含在基底102及導電層170中形成穴以產生結構1200b。導電層170及基底102可被濕或乾蝕刻以產生穴154。在製程中,移除部份導電層材料及部份基底材料。在某些實施例中,以相同或不同的蝕刻劑及程序,移除這些材料中的各別材料。在製程12b中,如同上述圖3的實例般,設置包含高度結晶材料106、導電層108及施體基底202的結構。此結構與結構1200b相結合以產生結構1200c。在各式各樣的實施例中,使用金屬接合或氧化物接合,黏著導電層108及170。在製程12c中,舉例而言,藉由在高度結晶材料106(在此情形中為磊晶的AlN)的曝露表面上蝕刻及沈積導電層而移除施體基底202,以製造FBAR 1200d。 Figure 12 shows a process embodiment in which an air gap FBAR is fabricated by forming a pocket 154 in both the substrate 102 and the conductive layer 170. The process begins with structure 1200a, which includes a conductive layer 170 that has been deposited on planar substrate 102. For example, conductive layer 170 is a metal, oxide, or metal layer on an oxide layer, and is deposited by using methods such as CVD or PVD. Process 12a includes forming a pocket in substrate 102 and conductive layer 170 to create structure 1200b. Conductive layer 170 and substrate 102 may be wet or dry etched to create pockets 154. In the process, part of the conductive layer material and part of the base material are removed. In some embodiments, the individual materials in these materials are removed with the same or different etchants and procedures. In the process 12b, a structure including the highly crystalline material 106, the conductive layer 108, and the donor substrate 202 is provided as in the example of FIG. 3 described above. This structure is combined with structure 1200b to create structure 1200c. In various embodiments, conductive layers 108 and 170 are adhered using metal bonding or oxide bonding. In process 12c, for example, donor substrate 202 is removed by etching and depositing a conductive layer on the exposed surface of highly crystalline material 106 (in this case, epitaxial AlN) to fabricate FBAR 1200d.

圖13顯示製程實施例,其中,聲波隔離區未形成於基底102(Si)中而是形成於導電層172中,導電層172為例如金屬、氧化物或氧化物上的金屬。使用例如此處所述的CVD或PVD等方法,將導電層172沈積於或是附著至基底102,以形成結構1300a。製程13a包含在導電層172中形成穴154以產生結構1300b。穴154可以唯一地在導電層172中以及延伸經過所有或一部份導電層172的厚度。在所示的實施例中,穴154未擴充至基底102中。舉例而言,可以使用濕 或乾蝕刻製程,形成穴154。在本實施例中,製程13b包含將磊晶AlN層106黏著至結構1300b以產生結構1300c。使用例如金屬對金屬接合或氧化物接合以將導電層108及172接合在一起,以形成結構1300c。雖然並非所有實施例中的情形,但是,如同所示,穴154可完全由層172或層108等導電材料完全圍繞。製程13c包含移除施體基底202及添加電極層114以產生FBAR 1300d。注意,在其它實施例中,聲波隔離區204包括其它隔離結構,例如布拉格反射器。 Figure 13 shows a process embodiment in which the acoustic isolation regions are not formed in the substrate 102 (Si) but are formed in the conductive layer 172, which is a metal such as a metal, oxide or oxide. Conductive layer 172 is deposited or attached to substrate 102 using methods such as CVD or PVD as described herein to form structure 1300a. Process 13a includes forming a pocket 154 in conductive layer 172 to create structure 1300b. The holes 154 may be uniquely in the conductive layer 172 and extend through the thickness of all or a portion of the conductive layer 172. In the illustrated embodiment, the pockets 154 are not expanded into the substrate 102. For example, a wet or dry etch process can be used to form the pockets 154. In the present embodiment, process 13b includes adhering epitaxial AlN layer 106 to structure 1300b to create structure 1300c. Conductive layers 108 and 172 are joined together using, for example, metal-to-metal bonding or oxide bonding to form structure 1300c. Although not the case in all embodiments, as shown, the pockets 154 may be completely surrounded by conductive material such as layer 172 or layer 108. Process 13c includes removing donor substrate 202 and adding electrode layer 114 to produce FBAR 1300d. Note that in other embodiments, acoustic isolation region 204 includes other isolation structures, such as Bragg reflectors.

圖14顯示製程實施例,其中,以可選擇性蝕刻的材料144填充穴154。舉例而言,可選擇性蝕刻的材料144是SiO2。此製程可與此處說明的任何其它製程相結合,以提供製造期間穴被保護之替代製程。從基底102移除例如Si之材料,以產生穴154。製程14a包含以例如SiO2等可選擇性蝕刻的材料來填充穴。舉例而言,使用電漿強化化學汽相沈積(PECVD)、物理汽相沈積(PVD)、或離子束沈積(IBD),沈積SiO2或其它可選擇性蝕刻的材料。舉例而言,其它可選擇性蝕刻的材料包含包括SiN、SiCN等氮化物、或例如非晶矽、有機聚合物、及可熱分解的聚合物等非晶材料。 Figure 14 shows a process embodiment in which a pocket 154 is filled with a selectively etchable material 144. For example, the selectively etchable material 144 is SiO 2 . This process can be combined with any of the other processes described herein to provide an alternative process for protecting the cavity during manufacture. Material such as Si is removed from the substrate 102 to create a pocket 154. 14a comprises a process, for example a material such as SiO 2 is selectively etched to fill the hole. For example, SiO 2 or other selectively etchable materials are deposited using plasma enhanced chemical vapor deposition (PECVD), physical vapor deposition (PVD), or ion beam deposition (IBD). For example, other selectively etchable materials include nitrides including SiN, SiCN, or the like, or amorphous materials such as amorphous germanium, organic polymers, and thermally decomposable polymers.

在可蝕刻材料144沈積於穴154中之後,舉例而言,藉由CMP以製備基底102的上表面及可蝕刻材料144。接著,在製程14c中,在可蝕刻材料144及基底102上都沈積導電電極層108。或者,使用例如氧化物接合等此處說明的方法,將例如磊晶的AlN層106等高度結晶層與導電電極層 108一起黏著至基底。提供結構1400d的剖面及平面(底部)視圖。請觀看平面視圖1400d,高度結晶的磊晶材料106在導電電極108的頂部上,導電電極108接著設於基底102(在此情形中為Si)上。虛線154代表現在被遮蓋的由可選擇性蝕刻材料144(在此情形中為SiO2)填充之穴154的位置。釋放洞156a及156b形成於導電電極層108中並提供與可蝕刻材料144的溝通。在某些實施例中,提供濕或乾蝕刻劑及經由釋放孔156a和156b接近可蝕刻材料以從穴154移除可蝕刻的材料144。取決於特定的可蝕刻材料,其它的移除技術包含例如汽化或燃燒。此移除製程會使穴154空乏或大部份空乏,以及,提供用於FBAR的氣隙。可在移除可蝕刻材料144之前或之後,在高度結晶的材料106上沈積增加的導電電極層。 After the etchable material 144 is deposited in the pockets 154, for example, the upper surface of the substrate 102 and the etchable material 144 are prepared by CMP. Next, in process 14c, a conductive electrode layer 108 is deposited over both the etchable material 144 and the substrate 102. Alternatively, a highly crystalline layer such as an epitaxial AlN layer 106 is adhered to the substrate together with the conductive electrode layer 108 using, for example, an oxide bonding or the like. A cross-section and a plan (bottom) view of the structure 1400d are provided. Looking at the plan view 1400d, the highly crystalline epitaxial material 106 is on top of the conductive electrode 108, and the conductive electrode 108 is then placed on the substrate 102 (Si in this case). Dashed line 154 represents the position of the hole 154 that is now covered by the selectively etchable material 144 (in this case, SiO 2 ). Release holes 156a and 156b are formed in conductive electrode layer 108 and provide communication with etchable material 144. In some embodiments, a wet or dry etchant is provided and the etchable material is accessed via release apertures 156a and 156b to remove etchable material 144 from pockets 154. Other removal techniques include, for example, vaporization or combustion, depending on the particular etchable material. This removal process can cause the pockets 154 to be depleted or mostly depleted, as well as provide an air gap for the FBAR. An increased conductive electrode layer can be deposited on the highly crystalline material 106 before or after the etchable material 144 is removed.

圖15顯示製程實施例,其中,藉由在高度結晶的壓電層上形成聲波隔離區而建構FBAR,這與在例如矽晶圓等基底上形成聲波隔離區的其它實施例成對比。圖15中的結構1500a包含磊晶生長於施體基底202上的壓電層106。導電層108作為電極及使用包含PVD及CVD等此處說明的方法而沈積於壓電層106上。聲波隔離層303沈積於導電層108上且包括例如金屬或絕緣體。在某些實施例中,層303及108是相同的材料且可沈積成單層。藉由蝕刻層303以產生穴154而製造類似或相同於結構1500b的實施例。然後,將結構1500b旋轉180°以致於穴154面向下,以及結構1500b接合至結構1500c或類似結構,以產生氣隙154陷於 層108與112之間的結構1500d。使用例如金屬對金屬接合或氧化物接合技術,將結構1500b及1500c彼此黏合。結構1500e顯示施體基底202被移除且由導電電極層114取代後的FBAR裝置。在替代實施例中,此移除/取代會發生於將結構1500b及1500c接合在一起之前。 Figure 15 shows a process embodiment in which the FBAR is constructed by forming an acoustic isolation region on a highly crystalline piezoelectric layer in contrast to other embodiments for forming acoustic isolation regions on substrates such as germanium wafers. Structure 1500a in FIG. 15 includes piezoelectric layer 106 epitaxially grown on donor substrate 202. Conductive layer 108 is deposited as an electrode on piezoelectric layer 106 using methods such as those described herein, including PVD and CVD. The acoustic isolation layer 303 is deposited on the conductive layer 108 and includes, for example, a metal or an insulator. In certain embodiments, layers 303 and 108 are the same material and can be deposited as a single layer. An embodiment similar or identical to structure 1500b is fabricated by etching layer 303 to create pockets 154. Structure 1500b is then rotated 180[deg.] so that cavity 154 faces downward, and structure 1500b is bonded to structure 1500c or the like to create structure 1500d with air gap 154 trapped between layers 108 and 112. The structures 1500b and 1500c are bonded to each other using, for example, metal-to-metal bonding or oxide bonding techniques. Structure 1500e shows the FBAR device with donor substrate 202 removed and replaced by conductive electrode layer 114. In an alternate embodiment, this removal/substitution can occur prior to joining the structures 1500b and 1500c together.

如同此處所述般,依給定的目標應用或終端用途之需求,IC 100之各式各樣的組成層可以具有範圍寬度的厚度中的任何厚度(例如z方向上的z厚度、x方向上的x厚度、或其它指定厚度)。在某些情形中,給定層可設置成在下方地形上的單層。舉例而言,在某些情形中,對於如此處所述般配置的給定FBAR裝置,其給定的組成層可以在下方地形上具有實質均勻的厚度。在某些情形中,給定的組成層可以設置成下方地形上的實質保形層。在其它情形中,給定的組成層可以具有在下方地形上不均勻的或是變化的厚度。舉例而言,在某些情形中,給定層的第一部份具有第一範圍內的厚度,而其第二部份具有第二不同範圍內的厚度。在某些情形中,給定層可以具有第一及第二部份,第一及第二部份具有的平均厚度彼此相異約20%或更少、約15%或更少、約10%或更少、或約5%或更少。慮及本揭示將清楚知道眾多配置及變異。 As described herein, a wide variety of constituent layers of IC 100 can have any thickness in a range of widths (eg, z-thickness in the z-direction, x-direction, depending on the desired target application or end-use requirements). The thickness of x, or other specified thickness). In some cases, a given layer can be placed as a single layer on the underlying terrain. For example, in some cases, for a given FBAR device configured as described herein, a given constituent layer may have a substantially uniform thickness on the underlying terrain. In some cases, a given constituent layer can be placed as a substantially conformal layer on the underlying topography. In other cases, a given constituent layer may have a non-uniform or varying thickness on the underlying topography. For example, in some cases, a first portion of a given layer has a thickness in a first range and a second portion has a thickness in a second, different range. In some cases, a given layer can have first and second portions, the first and second portions having an average thickness that differs from each other by about 20% or less, about 15% or less, and about 10%. Or less, or about 5% or less. Numerous configurations and variations will be apparent in light of this disclosure.

此外,如此處所述,FBAR裝置的各種組成層可以沈積於一或更多其它組成層上。在某些情形中,第一組成層可以直接配置於第二組成層上而無其它層介於其間。在某些其它情形中,一或更多插入層可以配置在第一組成層與 下方第二組成層之間。更一般而言,根據某些實施例,給定的組成層可以配置成蓋在另一給定的組成層上,選擇性地設有一或更多插入層。 Furthermore, as described herein, various constituent layers of the FBAR device can be deposited on one or more other constituent layers. In some cases, the first constituent layer may be directly disposed on the second constituent layer without other layers interposed therebetween. In some other cases, one or more interposer layers may be disposed between the first constituent layer and the lower second constituent layer. More generally, in accordance with certain embodiments, a given constituent layer can be configured to be capped on another given constituent layer, optionally with one or more intervening layers.

舉例說明的系統  Illustrated system  

圖16顯示根據舉例說明實施例之以使用此處揭示的技術所形成的積體電路結構或裝置實施的計算系統1000。如同所見,計算系統1000容納主機板1002。主機板1002包含多個組件,多個組件包括但不限於處理器1004及至少一通訊晶片1006,各組件實體地及電地耦合至主機板1002、或整合於其中。如同將瞭解般,舉例而言,無論是主板、主板上的子板、或是系統1000的唯一板、等等,主機板1002可以為任何印刷電路板。取決於其應用,計算系統1000包含實體地及電地耦合或未耦合至主機板1002的一或更多其它組件。這些其它組件包含但不限於依電性記憶體(例如,DRAM)、非依電性記憶體(例如,ROM)、圖形處理器、數位訊號處理器、密碼處理器、晶片組、天線、顯示器、觸控幕顯示器、觸控幕控制器、電池、音頻編解碼器、視頻編解碼器、功率放大器、全球定位系統(GPS)裝置、羅盤、加速計、陀螺儀、揚音器、相機、及大量儲存裝置(例如硬碟機、光碟(CD)、數位多樣式光碟(DVD)、等等)。包含於計算系統1000中的任何組件可以包含使用根據舉例說明的實施例之揭示技術而形成的一或更多積體電路結構或裝置。在某些實施例中,眾多功能可以集成於一 或更多晶片中(例如,通訊晶片1006可以是處理器1004的部份或整合於其中)。 16 shows a computing system 1000 implemented in accordance with an exemplary embodiment of an integrated circuit structure or device formed using the techniques disclosed herein. As can be seen, computing system 1000 houses motherboard 1002. The motherboard 1002 includes a plurality of components including, but not limited to, a processor 1004 and at least one communication chip 1006, each of which is physically and electrically coupled to the motherboard 1002, or integrated therein. As will be appreciated, for example, whether it is a motherboard, a daughter board on a motherboard, or a unique board of system 1000, etc., motherboard 1002 can be any printed circuit board. Depending on its application, computing system 1000 includes one or more other components that are physically and electrically coupled or uncoupled to motherboard 1002. These other components include, but are not limited to, electrical memory (eg, DRAM), non-electrical memory (eg, ROM), graphics processors, digital signal processors, cryptographic processors, chipsets, antennas, displays, Touch screen display, touch screen controller, battery, audio codec, video codec, power amplifier, global positioning system (GPS) device, compass, accelerometer, gyroscope, speaker, camera, and a large number Storage devices (such as hard drives, compact discs (CDs), digital multi-format discs (DVDs), etc.). Any of the components included in computing system 1000 can include one or more integrated circuit structures or devices formed using the disclosed techniques in accordance with the illustrated embodiments. In some embodiments, numerous functions may be integrated into one or more of the wafers (e.g., communication chip 1006 may be part of or integrated into processor 1004).

通訊晶片1006能夠無線通訊以用於與計算系統1000傳輸資料。「無線」一詞及其衍生詞用以說明經由使用通過非固體介質之調變的電磁輻射來傳輸資料的電路、裝置、系統、方法、技術、通訊通道、等等。此詞並非意指相關裝置未含有任何接線,但是,在某些實施例中,它們可能未含任何接線。通訊晶片1006可以實施任何無線標準或是通信協定,包含但不限於Wi-Fi(IEEE 802.11系列)、WiMAX(IEEE 802.16系列)、IEEE 802.20、長程演化(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、藍芽、其衍生、以及以3G、4G、5G、及更新的世代來標示的任何其它無線通信協定。計算系統1000包含眾多通訊晶片1006。舉例而言,第一通訊晶片1006可以專用於較短範圍的無線通訊,例如Wi-Fi及藍芽,而第二通訊晶片1006可以專用於較長範圍的無線通訊,例如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO、等等。 Communication chip 1006 is capable of wireless communication for communicating data with computing system 1000. The term "wireless" and its derivatives are used to describe circuits, devices, systems, methods, techniques, communication channels, and the like that transmit data via the use of modulated electromagnetic radiation through a non-solid medium. The term does not mean that the associated devices do not contain any wiring, however, in some embodiments they may not contain any wiring. The communication chip 1006 can implement any wireless standard or communication protocol, including but not limited to Wi-Fi (IEEE 802.11 series), WiMAX (IEEE 802.16 series), IEEE 802.20, Long Range Evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, its derivatives, and any other wireless communication protocols marked with 3G, 4G, 5G, and newer generations. Computing system 1000 includes a plurality of communication chips 1006. For example, the first communication chip 1006 can be dedicated to a shorter range of wireless communication, such as Wi-Fi and Bluetooth, and the second communication chip 1006 can be dedicated to a longer range of wireless communication, such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and so on.

計算系統1000的處理器1004包含封裝在處理器1004之內的積體電路晶粒。在某些實施例中,處理器的積體電路晶粒包含由使用此處多樣地說明的揭示技術所形成的一或更多積體電路結構或裝置實施之板上電路。「處理器」一詞意指處理例如來自暫存器及/或記憶體的電子資料以將電子資料轉換成儲存在暫存器及/或記憶體中的其它電子 資料之任何裝置或裝置的一部份。 Processor 1004 of computing system 1000 includes integrated circuit dies that are packaged within processor 1004. In some embodiments, the integrated circuit die of the processor includes on-board circuitry implemented by one or more integrated circuit structures or devices formed using the various techniques disclosed herein. The term "processor" means any device or device that processes, for example, electronic data from a register and/or memory to convert electronic data into other electronic data stored in a register and/or memory. Part.

通訊晶片1006也包含封裝於通訊晶片1006之內的積體電路晶粒。根據某些此類舉例說明的實施例,通訊晶片的積體電路晶粒包含由使用此處說明的揭示技術所形成的一或更多積體電路結構或裝置。慮及本揭示將瞭解,多標準無線能力可以直接整合於處理器1004中(例如,任何晶片1006的功能整合於處理器1004中,而不是具有分開的晶片)。此外,處理器1004可以是具有此無線能力的晶片組。簡而言之,可以使用任何數目的處理器1004及/或通訊晶片1006。類似地,任一晶片或晶片組可以具有多種功能整合於其中。 The communication chip 1006 also includes integrated circuit dies that are packaged within the communication chip 1006. In accordance with certain such illustrated embodiments, the integrated circuit die of the communication chip includes one or more integrated circuit structures or devices formed using the techniques disclosed herein. With the disclosure in mind, it will be appreciated that multi-standard wireless capabilities can be directly integrated into processor 1004 (eg, the functionality of any of the wafers 1006 is integrated into processor 1004, rather than having separate wafers). Additionally, processor 1004 can be a chipset having this wireless capability. In short, any number of processors 1004 and/or communication chips 1006 can be used. Similarly, any wafer or wafer set can have multiple functions integrated therein.

在各式各樣的實施中,計算系統1000可以是使用此處多樣地說明的揭示技術所形成的一或更多積體電路結構或裝置來處理資料之膝上型電腦、輕省筆電、筆記型電腦、智慧型手機、平板電腦、個人數位助理(PDA)、超薄行動PC、行動電話、收發機、桌上型電腦、伺服器、印表機、掃描器、監視器、機上盒、娛樂控制單元、數位相機、可攜式音樂播放器、數位攝影機、或是任何其它電子裝置。 In various implementations, computing system 1000 can be a laptop computer that processes data using one or more integrated circuit structures or devices formed by the various disclosed techniques disclosed herein, and saves power, Notebook, smart phone, tablet, personal digital assistant (PDA), ultra-thin mobile PC, mobile phone, transceiver, desktop computer, server, printer, scanner, monitor, set-top box , entertainment control unit, digital camera, portable music player, digital camera, or any other electronic device.

另外舉例說明的實施例  Further illustrated embodiment  

下述實例關於另外的實施例,自其中將清楚眾多變化及配置。 The following examples are directed to additional embodiments from which numerous variations and configurations will be apparent.

實例1是薄膜體聲波共振器(FBAR)裝置,包含第一電氣導電層、第二電氣導電層、在該第一電氣與第二電氣導 電層之間具有小於1.0度藉由x光繞射的FWHM的結晶度之高度結晶的壓電層、以及藉由至少第一電氣導電層而與該壓電層分開的聲波隔離區。 Example 1 is a film bulk acoustic resonator (FBAR) device comprising a first electrically conductive layer, a second electrically conductive layer, having less than 1.0 degrees of diffraction between the first electrical and second electrically conductive layers by x-rays A highly crystalline piezoelectric layer of crystallinity of FWHM, and an acoustic isolation region separated from the piezoelectric layer by at least a first electrically conductive layer.

實例2包含實例1的標的,其中,高度結晶的壓電層包含III-氮化物材料。 Example 2 contains the subject matter of Example 1, wherein the highly crystalline piezoelectric layer comprises a III-nitride material.

實例3包含實例1或2的標的,其中,高度結晶的壓電層包含選自AlN、GaN及InN的至少一材料。 Example 3 includes the subject matter of Example 1 or 2, wherein the highly crystalline piezoelectric layer comprises at least one material selected from the group consisting of AlN, GaN, and InN.

實例4包含前述實例中任一實例的標的,其中,高度結晶的壓電層包含AlN。 Example 4 comprises the subject matter of any of the preceding examples, wherein the highly crystalline piezoelectric layer comprises AlN.

實例5包含前述實例中任一實例的標的,其中,高度結晶的壓電層具有小於0.5度的XRD FWHM峰值。 Example 5 comprises the subject matter of any of the preceding examples, wherein the highly crystalline piezoelectric layer has an XRD FWHM peak of less than 0.5 degrees.

實例6包含前述實例中任一實例的標的,其中,高度結晶的壓電層具有小於0.4度的XRD FWHM峰值。 Example 6 comprises the subject matter of any of the preceding examples, wherein the highly crystalline piezoelectric layer has an XRD FWHM peak of less than 0.4 degrees.

實例7包含前述實例中任一實例的標的,其中,高度結晶的壓電層包含單晶。 Example 7 comprises the subject matter of any of the preceding examples, wherein the highly crystalline piezoelectric layer comprises a single crystal.

實例8包含前述實例中任一實例的標的,其中,高度結晶的壓電層由磊晶生長形成。 Example 8 comprises the subject matter of any of the preceding examples, wherein the highly crystalline piezoelectric layer is formed by epitaxial growth.

實例9包含前述實例中任一實例的標的,其中,第一及第二導電層中至少之一者包含金屬。 Example 9 includes the subject matter of any of the preceding examples, wherein at least one of the first and second electrically conductive layers comprises a metal.

實例10包含前述實例中任一實例的標的,又包含塊體矽基底。 Example 10 comprises the subject matter of any of the preceding examples, further comprising a bulk germanium substrate.

實例11包含前述實例中任一實例的標的,其中,聲波隔離區包含氣隙或布拉格反射器。 Example 11 includes the subject matter of any of the preceding examples, wherein the acoustic isolation region comprises an air gap or a Bragg reflector.

實例12包含前述實例中任一實例的標的,其中,聲波 隔離區包含複數個布拉格反射器。 Example 12 includes the subject matter of any of the preceding examples, wherein the acoustic isolation region comprises a plurality of Bragg reflectors.

實例13包含前述實例中任一實例的標的,其中,聲波隔離區由導電層界定。 Example 13 includes the subject matter of any of the preceding examples, wherein the acoustic isolation region is defined by a conductive layer.

實例14包含前述實例中任一實例的標的,其中,高度結晶的壓電層呈現纖鋅礦結構。 Example 14 comprises the subject matter of any of the preceding examples, wherein the highly crystalline piezoelectric layer exhibits a wurtzite structure.

實例15包含前述實例中任一實例的標的,其中,聲波隔離區由非導電層界定。 Example 15 includes the subject matter of any of the preceding examples, wherein the acoustic isolation region is defined by a non-conductive layer.

實例16包含前述實例中任一實例的標的,其中,聲波隔離區由包含電極層及基底層之至少二層界定。 Example 16 includes the subject matter of any of the preceding examples, wherein the acoustic isolation region is defined by at least two layers comprising an electrode layer and a substrate layer.

實例17包含前述實例中任一實例的標的,包含第三電氣導電層,該第三電氣導電層與矽基底接觸,其中,該第三電氣導電層界定氣隙。 Example 17 includes the subject matter of any of the preceding examples, comprising a third electrically conductive layer in contact with the crucible substrate, wherein the third electrically conductive layer defines an air gap.

實例18是射頻(RF)濾波器裝置,包含前述實例中任一實例之薄膜體聲波共振器裝置。 Example 18 is a radio frequency (RF) filter device comprising the film bulk acoustic resonator device of any of the foregoing examples.

實例19是計算系統,包含前述實例中任一實例之薄膜體聲波共振器裝置。 Example 19 is a computing system comprising a film bulk acoustic resonator device of any of the preceding examples.

實例20是行動電話,包含前述實例中任一實例之薄膜體聲波共振器裝置。 Example 20 is a mobile telephone comprising a film bulk acoustic resonator device of any of the foregoing examples.

實例21是薄膜體聲波共振器(FBAR)的製造方法,方法包含:在第一基底上磊晶生長III-氮化物壓電層、形成第一導電層、將III-氮化物壓電層的第一表面經由第一導電層而接合至第二基底以形成聲波隔離區,第一導電層位於III-氮化物壓電層與第二基底之間,以及,在III-氮化物壓電層的第二表面上形成第二導電層。 Example 21 is a method for fabricating a film bulk acoustic resonator (FBAR), the method comprising: epitaxially growing a III-nitride piezoelectric layer on a first substrate, forming a first conductive layer, and forming a III-nitride piezoelectric layer A surface is bonded to the second substrate via the first conductive layer to form an acoustic isolation region, the first conductive layer being between the III-nitride piezoelectric layer and the second substrate, and, in the III-nitride piezoelectric layer A second conductive layer is formed on the two surfaces.

實例22包含實例21的標的,其中,聲波隔離區包含布拉格反射器的堆疊。 Example 22 contains the subject matter of Example 21, wherein the acoustic isolation region comprises a stack of Bragg reflectors.

實例23包含實例21的標的,又包含藉由在第二基底中、在絕緣層中、或是在第一導電層中形成氣隙或布拉格反射器,以形成聲波隔離區。 Example 23 includes the subject matter of Example 21, further comprising forming an acoustic isolation region by forming an air gap or Bragg reflector in the second substrate, in the insulating layer, or in the first conductive layer.

實例24包含實例21-23中任一實例的標的,其中,第一導電層形成於III-氮化物壓電層及第二基底之一上。 Example 24 includes the subject matter of any of Examples 21-23, wherein the first conductive layer is formed on one of the III-nitride piezoelectric layer and the second substrate.

實例25包含實例21-24中任一實例的標的,其中,藉由自第二基底中的穴蝕刻可選擇性蝕刻的材料,以形成聲波隔離區。 Example 25 includes the subject matter of any of Examples 21-24, wherein the selectively etchable material is etched from a hole in the second substrate to form an acoustic isolation region.

實例26包含實例21-25中任一實例的標的,其中,III-氮化物壓電層包含AlN或GaN。 Example 26 includes the subject matter of any of Examples 21-25, wherein the III-nitride piezoelectric layer comprises AlN or GaN.

實例27包含實例21-26中任一實例的標的,其中,第一導電層於生長時形成於III-氮化物壓電層的表面上,而不用首先拋光或平坦化III-氮化物壓電層的表面。 Example 27 includes the subject matter of any of Examples 21-26, wherein the first conductive layer is formed on the surface of the III-nitride piezoelectric layer upon growth without first polishing or planarizing the III-nitride piezoelectric layer s surface.

實例28包含實例21-27中任一實例的標的,其中,該第一及該第二導電層均包含金屬或氧化物。 Example 28 includes the subject matter of any of Examples 21-27, wherein the first and second conductive layers each comprise a metal or an oxide.

實例29包含實例21-28中任一實例的標的,其中,III-氮化物壓電層呈現小於1.0度、小於0.5度或小於0.4度的x光繞射FWHM。 Example 29 includes the subject matter of any of Examples 21-28, wherein the III-nitride piezoelectric layer exhibits an x-ray diffraction FWHM of less than 1.0 degrees, less than 0.5 degrees, or less than 0.4 degrees.

實例30包含實例21-29中任一實例的標的,其中,第一及第二基底中至少之一包含矽或碳化矽。 Example 30 includes the subject matter of any of Examples 21-29, wherein at least one of the first and second substrates comprises tantalum or tantalum carbide.

實例31包含實例21-30中任一實例的標的,又包含:在將第一基底移離壓電層之前,將III-氮化物壓電層的第 一表面接合至第二基底。 Example 31, comprising the subject matter of any of Examples 21-30, further comprising: bonding the first surface of the III-nitride piezoelectric layer to the second substrate prior to moving the first substrate away from the piezoelectric layer.

實例32包含實例21-30中任一實例的標的,又包含:在將第一基底移離壓電層之後,將III-氮化物壓電層的第一表面接合至第二基底。 Example 32, comprising the subject matter of any of Examples 21-30, further comprising: bonding the first surface of the III-nitride piezoelectric layer to the second substrate after moving the first substrate away from the piezoelectric layer.

實例33包含實例21-30中任一實例的標的,其中,第一及第二基底中至少之一具有[111]、[100]、或是[110]晶向。在某些此類情形中,第一基底具有[111]、[100]、或是[110]晶向。 Example 33 includes the subject matter of any of Examples 21-30, wherein at least one of the first and second substrates has a [111], [100], or [110] crystal orientation. In some such cases, the first substrate has a [111], [100], or [110] crystal orientation.

實例34包含實例21-33中任一實例的標的,其中,第一導電層形成於III-氮化物壓電層的表面上。 Example 34 includes the subject matter of any of Examples 21-33, wherein the first conductive layer is formed on a surface of the III-nitride piezoelectric layer.

實例35包含實例21-33中任一實例的標的,其中,第一導電層形成於第二基底上。 Example 35 includes the subject matter of any of Examples 21-33, wherein the first conductive layer is formed on the second substrate.

實例36包含實例21-35中任一實例的標的,其中,第一導電層接合至第二導電層。 Example 36 includes the subject matter of any of Examples 21-35, wherein the first conductive layer is bonded to the second conductive layer.

實例37包含實例21-36中任一實例的標的,又包含蝕刻第二基底中的穴。 Example 37, comprising the subject matter of any of Examples 21-36, further comprising etching a pocket in the second substrate.

實例38包含實例21-37中任一實例的標的,其中,聲波隔離區包含穴、堆疊的晶體、耦合的共振器或布拉格反射器。 Example 38 includes the subject matter of any of Examples 21-37, wherein the acoustic isolation region comprises a pocket, a stacked crystal, a coupled resonator, or a Bragg reflector.

實例39包含實例21-38中任一實例的標的,又包含沈積交錯的金屬及介電材料層以形成布拉格反射器系列。 Example 39, comprising the subject matter of any of Examples 21-38, further comprising depositing a layer of interleaved metal and dielectric material to form a Bragg reflector series.

實例40包含實例39的標的,其中,金屬層包含鎢及介電層包含氧化矽。 Example 40 includes the subject matter of Example 39, wherein the metal layer comprises tungsten and the dielectric layer comprises yttrium oxide.

實例41包含實例21-39中任一實例的標的,其中,將 III-氮化物壓電層的第一表面經由第一導電層接合至第二基底包含使用金屬/金屬接合或是氧化物接合。 Example 41 includes the subject matter of any of Examples 21-39, wherein bonding the first surface of the III-nitride piezoelectric layer to the second substrate via the first conductive layer comprises using a metal/metal bond or an oxide bond.

呈現前述說明的舉例說明的實例是為了顯示及說明。其並非是竭盡性或是要將本揭示侷限於揭示的精準形式。考慮本揭示,則很多修改及變異是可能。本揭示的範圍不受限於此詳細說明,而是由後附的申請專利範圍限定。未來主張本案的優先權之申請案可以以不同的方式主張揭示的標的,而且大致上包含如此處多樣地揭示或是其它方式展示之一或更多限定的任何集合。 The illustrated examples of the foregoing description are presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of this disclosure. The scope of the present disclosure is not limited by the detailed description, but is defined by the scope of the appended claims. In the future, the application of the priority of the present invention may be claimed in a different manner, and generally encompasses any collection of one or more of the limitations as disclosed herein.

Claims (25)

一種薄膜體聲波共振器(FBAR)裝置,包括:第一電氣導電層;第二電氣導電層;高度結晶的壓電層,在該第一與該第二電氣導電層之間,該壓電層具有小於1.0度藉由x光繞射的FWHM之結晶度;以及,聲波隔離區,藉由至少該第一電氣導電層而與該壓電層分開。  A film bulk acoustic resonator (FBAR) device comprising: a first electrically conductive layer; a second electrically conductive layer; a highly crystalline piezoelectric layer between the first and the second electrically conductive layer, the piezoelectric layer a crystallinity having a FWHM of less than 1.0 degrees by x-ray diffraction; and an acoustic isolation region separated from the piezoelectric layer by at least the first electrically conductive layer.   如申請專利範圍第1項之薄膜體聲波共振器裝置,其中,該高度結晶的壓電層包含III-氮化物材料。  The film bulk acoustic resonator device of claim 1, wherein the highly crystalline piezoelectric layer comprises a III-nitride material.   如申請專利範圍第1項之薄膜體聲波共振器裝置,其中,該高度結晶的壓電層包含選自AlN、GaN及InN的至少一材料。  The film bulk acoustic resonator device of claim 1, wherein the highly crystalline piezoelectric layer comprises at least one material selected from the group consisting of AlN, GaN, and InN.   如申請專利範圍第1項之薄膜體聲波共振器裝置,其中,該高度結晶的壓電層包含AlN。  The film bulk acoustic resonator device of claim 1, wherein the highly crystalline piezoelectric layer comprises AlN.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,其中,該高度結晶的壓電層具有小於0.5度的XRD FWHM峰值。  The film bulk acoustic resonator device of any one of claims 1-4, wherein the highly crystalline piezoelectric layer has an XRD FWHM peak of less than 0.5 degrees.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,其中,該高度結晶的壓電層具有小於0.4度的XRD FWHM峰值。  The film bulk acoustic resonator device of any one of claims 1-4, wherein the highly crystalline piezoelectric layer has an XRD FWHM peak of less than 0.4 degrees.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,其中,該高度結晶的壓電層包含單晶。  The film bulk acoustic resonator device of any one of claims 1-4, wherein the highly crystalline piezoelectric layer comprises a single crystal.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,其中,該高度結晶的壓電層由磊晶生長形成。  The film bulk acoustic resonator device of any one of claims 1-4, wherein the highly crystalline piezoelectric layer is formed by epitaxial growth.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,其中,該第一及該第二電氣導電層中至少之一者包含金屬。  The film bulk acoustic resonator device of any one of claims 1-4, wherein at least one of the first and second electrically conductive layers comprises a metal.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,又包含塊體矽基底。  The film bulk acoustic resonator device of any one of claims 1-4, further comprising a bulk crucible substrate.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,其中,該聲波隔離區包含氣隙或布拉格反射器。  The film bulk acoustic resonator device of any one of claims 1-4, wherein the acoustic isolation region comprises an air gap or a Bragg reflector.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,其中,該聲波隔離區包含複數個布拉格反射器。  The film bulk acoustic resonator device of any one of claims 1-4, wherein the acoustic isolation region comprises a plurality of Bragg reflectors.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,其中,該聲波隔離區由導電層界定。  The film bulk acoustic resonator device of any one of claims 1-4, wherein the acoustic isolation region is defined by a conductive layer.   如申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置,包括第三電氣導電層,該第三電氣導電層與矽基底接觸,其中,該第三電氣導電層界定氣隙。  The film bulk acoustic resonator device of any one of claims 1-4, comprising a third electrically conductive layer in contact with the crucible substrate, wherein the third electrically conductive layer defines an air gap .   一種射頻(RF)濾波器裝置,包括申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置。  A radio frequency (RF) filter device comprising the film bulk acoustic resonator device of any one of claims 1-4.   一種計算系統,包括申請專利範圍第1-4項中任一項之薄膜體聲波共振器裝置。  A computing system comprising the film bulk acoustic resonator device of any one of claims 1-4.   一種薄膜體聲波共振器(FBAR)的製造方法,該方法包括:在第一基底上磊晶生長III-氮化物壓電層;形成第一導電層;將該III-氮化物壓電層的第一表面經由該第一導電層而接合至第二基底以形成聲波隔離區,該第一導電層位於該III-氮化物壓電層與該第二基底之間;以及,在該III-氮化物壓電層的第二表面上形成第二導電層。  A method for fabricating a film bulk acoustic resonator (FBAR), the method comprising: epitaxially growing a III-nitride piezoelectric layer on a first substrate; forming a first conductive layer; and forming the III-nitride piezoelectric layer a surface is bonded to the second substrate via the first conductive layer to form an acoustic isolation region, the first conductive layer being between the III-nitride piezoelectric layer and the second substrate; and, in the III-nitride A second conductive layer is formed on the second surface of the piezoelectric layer.   如申請專利範圍第17項之方法,其中,該聲波隔離區 包含布拉格反射器的堆疊。  The method of claim 17, wherein the acoustic isolation region comprises a stack of Bragg reflectors.   如申請專利範圍第17項之方法,包括:藉由在該第二基底中、在絕緣層中、或是在該第一導電層中形成氣隙或布拉格反射器,以形成該聲波隔離區。  The method of claim 17, comprising: forming the acoustic isolation region by forming an air gap or a Bragg reflector in the second substrate, in the insulating layer, or in the first conductive layer.   如申請專利範圍第17-19項中任一項之方法,其中,該第一導電層形成於該III-氮化物壓電層及該第二基底之一上。  The method of any one of claims 17 to 19, wherein the first conductive layer is formed on one of the III-nitride piezoelectric layer and the second substrate.   如申請專利範圍第17-19項中任一項之方法,其中,藉由自該第二基底中的穴蝕刻可選擇性蝕刻的材料,以形成該聲波隔離區。  The method of any one of claims 17 to 19, wherein the selectively etchable material is etched from a hole in the second substrate to form the acoustic isolation region.   如申請專利範圍第17-19項中任一項之方法,其中,該III-氮化物壓電層包括AlN或GaN。  The method of any one of claims 17 to 19, wherein the III-nitride piezoelectric layer comprises AlN or GaN.   如申請專利範圍第17-19項中任一項之方法,其中,該第一導電層於生長時形成於該III-氮化物壓電層的表面上,而不用首先拋光或平坦化該III-氮化物壓電層的表面。  The method of any one of claims 17 to 19, wherein the first conductive layer is formed on the surface of the III-nitride piezoelectric layer upon growth without first polishing or planarizing the III- The surface of the nitride piezoelectric layer.   如申請專利範圍第17-19項中任一項之方法,其中,該第一及該第二導電層均包括金屬或氧化物。  The method of any one of claims 17 to 19, wherein the first and second conductive layers each comprise a metal or an oxide.   如申請專利範圍第17-19項中任一項之方法,其中,該III-氮化物壓電層呈現小於1.0度、小於0.5度或小於0.4度的x光繞射FWHM。  The method of any one of claims 17-19, wherein the III-nitride piezoelectric layer exhibits an x-ray diffraction FWHM of less than 1.0 degrees, less than 0.5 degrees, or less than 0.4 degrees.  
TW106127809A 2016-09-30 2017-08-16 Fbar devices including highly crystalline metal nitride films and method of making the same TWI799386B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??PCT/US16/54872 2016-09-30
PCT/US2016/054872 WO2018063358A1 (en) 2016-09-30 2016-09-30 Fbar devices including highly crystalline metal nitride films
WOPCT/US16/54872 2016-09-30

Publications (2)

Publication Number Publication Date
TW201834278A true TW201834278A (en) 2018-09-16
TWI799386B TWI799386B (en) 2023-04-21

Family

ID=61763451

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127809A TWI799386B (en) 2016-09-30 2017-08-16 Fbar devices including highly crystalline metal nitride films and method of making the same

Country Status (2)

Country Link
TW (1) TWI799386B (en)
WO (1) WO2018063358A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723606B (en) * 2018-12-14 2021-04-01 南韓商三星電機股份有限公司 Acoustic resonator and method of manufacturing thereof
US11431318B2 (en) 2018-12-14 2022-08-30 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method of manufacturing thereof
TWI808355B (en) * 2020-07-28 2023-07-11 南韓商三星電機股份有限公司 Bulk-acoustic wave resonator and method for fabricating a bulk-acoustic wave resonator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022081085A1 (en) * 2020-10-14 2022-04-21 Agency For Science, Technology And Research Piezoelectric device and method of forming the same
CN112803910A (en) * 2020-12-29 2021-05-14 杭州电子科技大学 Preparation method of single crystal film bulk acoustic resonator
WO2023003840A1 (en) * 2021-07-19 2023-01-26 Massachusetts Institute Of Technology Single crystalline film bulk acoustic resonator and related systems and methods
FR3130102B1 (en) * 2021-12-06 2024-01-12 Commissariat Energie Atomique Volume acoustic wave device and method for producing such a device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236337A (en) * 2001-05-11 2005-09-02 Ube Ind Ltd Thin-film acoustic resonator and method of producing the same
US6767749B2 (en) * 2002-04-22 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
KR100489828B1 (en) * 2003-04-07 2005-05-16 삼성전기주식회사 Film bulk acoustic resonator and method of producing the same
TWI283739B (en) * 2004-12-28 2007-07-11 Delta Electronics Inc FBAR-based sensing apparatus
CN101228691B (en) * 2005-08-30 2011-01-05 松下电器产业株式会社 Method of manufacturing piezoelectric resonator
TW200828636A (en) * 2006-12-28 2008-07-01 Univ Chung Yuan Christian Ultraviolet light sensing device of surface acoustic wave by using III group nitride
US9912314B2 (en) * 2014-07-25 2018-03-06 Akoustics, Inc. Single crystal acoustic resonator and bulk acoustic wave filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723606B (en) * 2018-12-14 2021-04-01 南韓商三星電機股份有限公司 Acoustic resonator and method of manufacturing thereof
US11431318B2 (en) 2018-12-14 2022-08-30 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method of manufacturing thereof
TWI808355B (en) * 2020-07-28 2023-07-11 南韓商三星電機股份有限公司 Bulk-acoustic wave resonator and method for fabricating a bulk-acoustic wave resonator

Also Published As

Publication number Publication date
WO2018063358A1 (en) 2018-04-05
TWI799386B (en) 2023-04-21

Similar Documents

Publication Publication Date Title
TWI733881B (en) Single-flipped resonator devices with 2deg bottom electrode
TW201834278A (en) Fbar devices including highly crystalline metal nitride films
US11323092B2 (en) Film bulk acoustic resonator (FBAR) devices for high frequency RF filters
US11245376B2 (en) Single crystal acoustic resonator and bulk acoustic wave filter
US20220293455A1 (en) Wafer scale packaging
US20230023845A1 (en) Method of manufacture for single crystal capacitor dielectric for a resonance circuit
TW201814899A (en) FBAR devices having multiple epitaxial layers stacked on a same substrate
US10673405B2 (en) Film bulk acoustic resonator (FBAR) devices with 2DEG bottom electrode
TW201822353A (en) Film bulk acoustic resonator (FBAR) devices for high frequency RF filters
US11671075B2 (en) Film bulk acoustic resonator (FBAR) devices for high frequency RF filters
CN106575957B (en) Integrated circuit provided with a crystal acoustic resonator device
US11056532B2 (en) Techniques for monolithic co-integration of polycrystalline thin-film bulk acoustic resonator devices and monocrystalline III-N semiconductor transistor devices
TW201826702A (en) Film bulk acoustic resonator (fbar) rf filter having epitaxial layers
WO2018004668A2 (en) Techniques for forming thin-film bulk acoustic resonator devices