TW201833330A - 測定個體中大腸直腸癌狀態之方法 - Google Patents

測定個體中大腸直腸癌狀態之方法 Download PDF

Info

Publication number
TW201833330A
TW201833330A TW106144290A TW106144290A TW201833330A TW 201833330 A TW201833330 A TW 201833330A TW 106144290 A TW106144290 A TW 106144290A TW 106144290 A TW106144290 A TW 106144290A TW 201833330 A TW201833330 A TW 201833330A
Authority
TW
Taiwan
Prior art keywords
crc
oral
bacteria
abundance
individual
Prior art date
Application number
TW106144290A
Other languages
English (en)
Inventor
保羅 奧圖
布克哈特 弗萊蒙
費格斯 沙納漢
伊恩 傑弗瑞
卡特琳娜 齊塞克
Original Assignee
愛爾蘭國立科克大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛爾蘭國立科克大學 filed Critical 愛爾蘭國立科克大學
Publication of TW201833330A publication Critical patent/TW201833330A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2570/00Omics, e.g. proteomics, glycomics or lipidomics; Methods of analysis focusing on the entire complement of classes of biological molecules or subsets thereof, i.e. focusing on proteomes, glycomes or lipidomes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Physics & Mathematics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本發明揭示一種測定個體中大腸直腸癌狀態之方法,其包含個體微生物菌相(microbiome)之豐度分佈。

Description

測定個體中大腸直腸癌狀態之方法
本發明係關於測定個體中大腸直腸癌狀態之方法。亦涵蓋治療大腸直腸癌之方法。
微生物已涉及於若干種人類癌症的發病機制中,最顯著的是幽門螺旋桿菌及胃癌以及一些胃淋巴瘤。1 , 33 幽門螺旋桿菌目前被認為是胃癌致癌物及臨床前危險因素。在大腸癌之情況下,目前的診斷方法幾乎專注於偵測早期疾病,但需要具有風險的生物標記物。吾人及其他人已報導了大腸直腸癌患者糞便或大腸黏膜微生物菌叢之變化2 - 7 ,且若干種動物模型已指示微生物菌叢在大腸直腸癌發病機制中的作用8 - 11 。吾人最近發現與良性大腸瘜肉相關的微生物菌叢構形處於對照組及癌症患者中間2 ,此表明微生物菌叢可提供預測癌症晚期發展風險的潛在生物標記物,且理論上可在疾病發展之前的幾年採用醫療介入。通常與口腔相關的微生物係位於大腸直腸癌患者的糞便及黏膜微生物菌叢中2 - 5 , 7 , 12 。此前,有幾個研究小組報導糞便微生物菌叢分佈作為偵測CRC之工具的適用性3 , 4 , 13 ,特定言之與糞便隱血測試相結合。此外,口腔中不同細菌分佈與口腔癌14 , 15 ,以及食道癌16 及胰臟癌17 , 18 有關。一項單一研究鑑別出與健康對照組相比,罹患CRC之個體的口腔沖洗樣品中的細菌有顯著差異19
本發明基於如下發現:罹患大腸直腸癌(CRC)或大腸瘜肉之個體中的口腔微生物菌相不同於健康對照患者中的口腔微生物菌相,且口腔微生物菌相因此可用作CRC或大腸瘜肉之診斷變量。本發明因此提供口腔微生物菌相之用途,其用於診斷CRC或大腸直腸瘜肉。本發明亦提供口腔微生物菌相之用途,其用作CRC或大腸瘜肉之診斷變量。類似地,本發明提供口腔微生物菌相,其用於診斷CRC或大腸直腸瘜肉。本發明亦提供口腔微生物菌相,其用作CRC或大腸直腸瘜肉之診斷變量。 特定言之,本申請人已鑑別出口腔微生物菌相中存在的許多細菌屬或操作分類單元(OTU),相較於健康對照組,其在罹患CRC之個體呈現出經調變豐度。此等OTU提供於下表中。因此,偵測此等OTU之經調變豐度可用於辨別CRC患者與健康對照組,或鑑別由於存在大腸直腸瘜肉而處於CRC風險中的個體。OTU可單獨地用於確定癌症之風險,或可提供OTU組之組合以提高診斷方法之辨別能力,且提供CRC或大腸直腸瘜肉的無創診斷方法。大腸直腸瘜肉的陽性診斷指示個體隨後發展CRC之風險。 因此,本發明提供在口腔微生物菌相中一或多種細菌屬或OTU的個體中發現經調變豐度的用途,與健康對照組的口腔微生物菌相中一種或多種細菌屬的豐度相比,鑑別患有CRC或大腸直腸瘜肉風險增加之個體。在一些實施例中,該方法用於鑑別患有CRC或大腸直腸瘜肉之患者。 在患有CRC或大腸直腸瘜肉之個體中展現經調變豐度的口腔OTU提供於下表1中。舉例而言,口腔OTU組(即表2)之經調變豐度可用於專門偵測CRC,其靈敏度為58% (95% CI [35.56%,84.44%])且特異性為96% (AUC:0.893;95% CI [0.8181,0.9682])。在另一實例中,口腔OTU組(即表3)之經調變豐度可用於專門偵測大腸直腸瘜肉,其靈敏度為55% (95% CI [31.82%,90.91%])且特異性為96% (AUC:0.888;95% CI [0.7944,0.9819])。 在患有CRC或大腸瘜肉之個體中展現經調變豐度的額外口腔OTU提供於下表11中。舉例而言,口腔OTU組(即表12)之經調變豐度可用於專門偵測CRC,其靈敏度為53% (95% CI [31.11%至93.33%])且特異性為96% (95% CI [0.83至0.9])。在另一實例中,口腔OTU組(即表13)之經調變豐度可用於專門偵測大腸瘜肉,其靈敏度為67% (95% CI [23.81%至90.48%])。 因此,提供一種偵測個體中之CRC的方法,其靈敏度高於40% (例如高於45%、50%或52%,例如53%或58%)且特異性高於90% (例如高於93%或95%,例如96%)。在一些實施例中,該方法偵測表2或表12中口腔OTU組的相對豐度。亦提供一種偵測個體中大腸瘜肉之方法,其靈敏度高於40% (例如高於45%、50%、52%、54%,例如55%或67%)且特異性高於90% (例如高於93%或95%,例如96%)。在一些實施例中,該方法偵測表3或表13中口腔OTU組的相對豐度。此類方法包含如本文所述之口腔微生物菌相的用途。 本申請人亦發現,將口腔微生物菌相豐度分佈與糞便微生物菌相豐度分佈組合增加了本發明之診斷方法的辨別能力,且尤其提高分析法之靈敏度。在CRC或大腸直腸瘜肉中經調變之口腔及糞便OTU組提供於下表中,尤其表7中,且用於預測CRC及大腸直腸瘜肉之OTU組分別提供於下表8及9中。舉例而言,口腔及糞便OTU組(即表8)之經調變豐度可用於專門偵測CRC,其靈敏度為76% (95% CI [44%,92%])且特異性為96% (AUC:0.893;95% CI [0.8181,0.9682])。在另一實例中,口腔及糞便OTU組(即表9)之經調變豐度可用於專門偵測大腸直腸瘜肉,其靈敏度為82% (95% CI [31.82%,90.91%])且靈敏度為96% (AUC:0.888;95% CI [0.7944,0.9819])。 在CRC或大腸瘜肉中會被調變的另一組口腔及糞便OTU提供於表17中,且用於預測CRC及大腸之OTU子組分別提供於表18及19中。舉例而言,口腔及糞便OTU組(即表18)之經調變豐度可用於專門偵測CRC,其靈敏度為76% (95% CI [59.9%至92%])且特異性為94%。在另一實例中,口腔及糞便OTU組(即表19)之經調變豐度可用於專門偵測大腸瘜肉,其靈敏度為88% (95% CI [68.7%至100%])。 因此,亦提供一種提高偵測個體中CRC或大腸瘜肉靈敏度之方法,與僅使用糞便微生物菌相的豐度分佈所獲得的靈敏度相比,其中該方法包含將口腔微生物菌相豐度分佈與糞便微生物菌相豐度分佈組合。亦提供偵測個體中之CRC的方法,其靈敏度高於60% (例如高於65%、70%或75%,例如76%)且特異性高於90% (例如高於92%或93%,例如96%)。亦提供一種偵測個體中大腸瘜肉之方法,其靈敏度高於60% (例如高於65%、70%、75%、80%、81%,例如82%或88%)且特異性高於90% (例如高於92%或93%,例如96%)。此類方法包含如本文所述使用口腔微生物菌相與糞便微生物菌相之組合。 由於早期發現大腸疾病的預後及治療重要性,因此尤其有希望的是使用本文所述之方法偵測諸如大腸直腸瘜肉之腺瘤的高靈敏度。相比之下,Baxter等人[3]報導靈敏度低於20%時,單獨使用糞便免疫測試(FIT)或糞便微生物菌叢組成偵測腺瘤的靈敏度低於40%(特異性>90%)。 根據本發明之另一態樣,提供一種判斷個體中大腸直腸癌狀態之方法,其包含以下步驟:分析獲自個體口腔生物樣品中複數種CRC相關之口腔細菌的豐度,其中該複數種CRC相關口腔細菌之經調變豐度指示陽性大腸直腸癌狀態。在較佳實施例中,量測樣品中細菌或OTU的豐度占樣品中總微生物菌叢的比例,以測定細菌或OTU的相對豐度。接著,在此類較佳實施例中,將樣品中的細菌或OTU的相對豐度與來自參考健康個體之相同樣品中的相對豐度(在本文中亦稱為「參考相對豐度」)進行比較。樣品中細菌或OTU之相對豐度與參考相對豐度相比之差異例如降低或升高為經調變相對豐度。如本文中所解釋,藉由將樣品豐度值與絕對參考值進行比較,亦可以絕對方式進行經調變豐度的偵測。因此,本發明提供一種判斷個體中大腸直腸癌狀態之方法,其包含以下步驟:分析獲自個體口腔生物樣品中複數種CRC相關之口腔細菌的相對豐度,其中複數種CRC相關口腔細菌之經調變相對豐度指示陽性大腸直腸癌狀態。類似地,本發明提供判斷個體是否有增加罹患大腸直腸癌或大腸直腸瘜肉之風險的方法,其包含分析獲自個體口腔生物樣品中複數種CRC相關之口腔細菌之相對豐度的步驟,其中複數種CRC相關口腔細菌的經調變相對豐度指示風險增加。 本發明亦提供一種診斷CRC或大腸瘜肉之方法,其包含判斷個體與健康患者的口腔微生物菌相相比口腔微生物菌相中是否存在差異,其中與健康對照組相比發現差異表明個體患有大腸直腸癌(CRC)或大腸瘜肉的風險分別增加。該差異較佳為一或多種細菌屬或OTU的相對豐度的差異,該一或多種細菌屬或OTU在CRC或大腸瘜肉的個體中與健康對照組相比展現經調變相對豐度。在一些實施例中,與健康對照組相比,發現在患有CRC或大腸瘜肉之個體中展現相對豐度降低的一或多種細菌屬或OTU的相對豐度降低表明個體患有大腸直腸癌(CRC)或大腸瘜肉之風險分別增加。在一些實施例中,與健康對照組相比,發現患有CRC或大腸瘜肉之個體中展現相對豐度增加的一或多種細菌屬或OTU的相對豐度增加表明個體患有大腸直腸癌(CRC)或大腸瘜肉之的風險分別增加。在一些實施例中,發現與健康對照組相比在患有CRC或大腸瘜肉之個體中展現相對豐度降低的一或多種細菌屬或OTU的相對豐度降低以及發現與健康對照組相比在患有CRC或大腸瘜肉之個體中展現相對豐度增加的一或多種細菌屬或OTU的相對豐度增加表明個體患有大腸直腸癌(CRC)或大腸瘜肉的風險分別增加。 如上所述,可以單獨採用OTU來判斷癌症的風險,或可提供OTU組之組合來提高診斷方法之辨別能力。因此,亦提供一種測定個體中大腸直腸癌狀態之方法,其包含分析獲自個體口腔生物樣品中個別CRC相關口腔細菌之相對豐度或複數種CRC相關口腔細菌之相對豐度的步驟,其中個別CRC相關口腔細菌或複數種CRC相關口腔細菌的經調變相對豐度指示陽性CRC狀態。類似地,本發明提供一種測定個體中大腸直腸癌狀態之方法,其包含分析獲自個體口腔生物樣品中個別CRC相關口腔細菌的相對豐度或複數種CRC相關口腔細菌之相對豐度的步驟,其中個別CRC相關口腔細菌或複數種CRC相關口腔細菌的相對豐度與參考相對豐度相比的差異指示陽性CRC狀態。 在一些實施例中,發現個別CRC相關口腔細菌的經調變相對豐度指示陽性大腸直腸癌狀態。在一些實施例中,至少2,例如至少3或至少5種CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。在一些實施例中,至少10、15、20、25、30、35或40種CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一些實施例中,CRC相關口腔細菌係選自鏈球菌、卟啉單胞菌屬、嗜血桿菌屬、普雷沃菌屬、放線菌綱及壁門菌屬中之至少一者(例如1種或至少2、3、4、5種或全部6種)。在一些實施例中,CRC相關口腔細菌係選自鏈球菌、卟啉單胞菌屬、嗜血桿菌屬及普雷沃菌屬中的至少一者(例如1種或至少2、3種或全部4種)。在一些實施例中,CRC相關口腔細菌係選自鏈球菌及普雷沃菌屬中的一種或兩種。在一些實施例中,鏈球菌的相對豐度增加指示陽性CRC狀態。在一些實施例中,卟啉單胞菌屬、嗜血桿菌屬及普雷沃菌屬中之至少一者(例如1種或至少2種或全部3種)的相對豐度降低指示陽性CRC狀態。在一些實施例中,鏈球菌屬相對豐度增加及卟啉單胞菌屬、嗜血桿菌屬及普雷沃菌屬中之至少一者(例如1種或至少2種或全部3種)相對豐度降低指示陽性CRC狀態。在一些實施例中,CRC相關口腔細菌為放線菌門及/或壁門菌屬之成員。在一些實施例中,口腔微生物菌叢中的放線菌綱及/或壁門菌屬之相對豐度提高指示陽性CRC狀態。在一些實施例中,發現一或多種此等細菌的經調變相對豐度表明個體患有CRC之風險增加(與CR瘜肉相反)。 在額外實施例中,CRC相關口腔細菌係選自鏈球菌屬、嗜血桿菌屬、普雷沃菌屬、微單胞菌屬(Parvimonas)、擬普雷沃菌屬(Alloprevotella)、毛絨厭氧桿菌屬(Lachnoanaerobaculum)、纖毛菌屬(Leptotricia)及奈瑟氏菌屬中之至少一者(例如1種或至少2、3、4、5、6種或全部7種)。在一些實施例中,嗜血桿菌屬、普雷沃菌屬、微單胞菌屬、擬普雷沃菌屬、毛絨厭氧桿菌屬、纖毛菌屬及奈瑟氏菌屬中之至少一者(例如1種或至少2、3、4、5種或全部6種)的相對豐度降低指示陽性CRC狀態。在一些實施例中,鏈球菌屬的相對豐度增加及嗜血桿菌屬、普雷沃菌屬、微單胞菌屬、擬普雷沃菌屬、毛絨厭氧桿菌屬、奈瑟氏菌屬及纖毛菌屬中之至少一者(例如1種或至少2、3、4、5種或全部6種)的相對豐度降低指示陽性CRC狀態。在一些實施例中,發現一或多種此等細菌的經調變相對豐度表明個體患有CRC之風險增加(與CR瘜肉相反)。 在額外實施例中,CRC相關口腔細菌係選自鏈球菌屬、卟啉單胞菌屬、嗜血桿菌屬、普雷沃菌屬、放線菌綱、壁門菌屬、嗜血桿菌屬、微單胞菌屬、擬普雷沃菌屬、毛絨厭氧桿菌屬及奈瑟氏菌屬中之至少一者(例如1種或至少2、3、4、5、6、7、8、9、10種或全部11種)。在一些實施例中,卟啉單胞菌屬、嗜血桿菌屬、普雷沃菌屬、微單胞菌屬、擬普雷沃菌屬、毛絨厭氧桿菌屬及奈瑟氏菌屬中之至少一者(例如1種或至少2、3、4、5、6種或全部7種)的相對豐度降低指示陽性CRC狀態。在一些實施例中,鏈球菌屬的相對豐度增加及卟啉單胞菌屬、嗜血桿菌屬、普雷沃菌屬、微單胞菌屬、擬普雷沃菌屬、毛絨厭氧桿菌屬及奈瑟氏菌屬中之至少一者(例如1種或至少2、3、4、5、6種或全部7種)的相對豐度降低指示陽性CRC狀態。在一些實施例中,發現一或多種此等細菌的經調變相對豐度表明個體患有CRC之風險增加(與CR瘜肉相反)。 在一個實施例中,CRC相關口腔細菌係選自下表,且特定言之表1、2、3、7、8、9、11、12、13、17、18及19中提供之群。在一些實施例中,表中的細菌在其16S rRNA基因擴增子的序列中(全長基因或其中之可變區)與附錄1中描述的其相應OTU序列共享97%或更高的殘基一致性,且較佳地其中細菌來自附錄1中描述的相應屬。然而,熟習此項技術者應理解,與健康對照組相比,在患有CRC或大腸瘜肉之個體中展現經調變相對豐度的其他CRC相關口腔細菌屬或OTU亦可用於本發明中。 在一些實施例中,CRC相關口腔細菌不為梭桿菌屬。在一些實施例中,CRC相關口腔細菌不為卟啉單胞菌屬。在一些實施例中,CRC相關口腔細菌不為彎曲桿菌屬。在一些實施例中,CRC相關口腔細菌不為纖毛菌屬。然而,在其他實施例中,設想使用此等CRC相關口腔細菌。 在一個實施例中,該方法為偵測個體患有CRC之風險的方法,在此情況下,CRC相關口腔細菌係選自表2或表12之OTU。在一個實施例中,該方法為偵測個體患有大腸直腸瘜肉之風險(且因此預後CRC風險)的方法,在此情況下,CRC相關口腔細菌係選自表3或表13之OTU。然而,如上所述,熟習此項技術者應理解與健康對照組相比在患有CRC或大腸瘜肉之個體中分別展現經調變相對豐度的其他CRC相關口腔細菌屬或OTU亦可用於本發明中。因此,在一些實施例中,該方法為測定個體是否有增加之CRC風險的方法,且其中CRC相關口腔細菌包含與健康對照組相比在患有CRC之個體中展現經調變相對豐度的CRC相關口腔細菌屬或OTU。全部此等中的一些可選自表2或表12,但另外或替代地,可使用其他適合CRC相關口腔細菌。類似地,在一些實施例中,該方法為判斷個體是否有大腸直腸瘜肉風險增加(且因此預後CRC風險)的方法,且CRC相關口腔細菌包含與健康對照組相比在患有大腸直腸瘜肉的個體中展現經調變相對豐度的CRC相關口腔細菌屬或OTU。全部此等中的一些可選自表3或表13,但另外或替代地,可使用其他適合CRC相關口腔細菌。 1 -口腔大腸直腸癌/瘜肉相關細菌(OTU) 在一個實施例中,至少五種CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,至少10、15、20、25、30、35或40種CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,表1的實質上全部CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。在一些實施例中,表1的全部CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一些實施例中,選自普雷沃菌屬、鏈球菌屬、坦納菌屬、纖毛菌屬、韋榮球菌屬、毛螺菌科、金氏菌屬、擬普雷沃菌屬、毛絨厭氧桿菌屬、彎曲桿菌屬、嗜血桿菌屬、丁酸弧菌屬、微單胞菌屬、奈瑟氏菌屬、分支單糖菌屬(Candidatus_Saccharibacteria)、凝集桿菌屬(Aggregatibacter)、月形單胞菌屬(Selenomonas)、施氏菌屬(Schwartzia)、羅斯拜瑞氏菌屬(Roseburia)、消化鏈球菌屬、心桿菌屬(Cardiobacterium)、放線菌屬及貧養菌屬的至少2、3、5、10、12、15、18、20、22種或全部CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一些實施例中,選自OTU0348 (較佳普雷沃菌屬)、OTU0016 (較佳鏈球菌屬)及OTU0283 (較佳坦納菌屬)的至少一種(例如1、2或3種) CRC相關口腔OTU的經調變豐度與陽性CRC狀態有關。在一些實施例中,展現經調變相對豐度的口腔OTU是OTU0348 (較佳普雷沃菌屬)。在一些實施例中,展現經調變相對豐度的口腔OTU是OTU0016 (較佳鏈球菌屬)。在一些實施例中,展現經調變相對豐度的口腔OTU是OTU0283 (較佳坦納菌屬)。 在一些實施例中,該方法用於判斷個體是否有患大腸直腸癌(CRC)增加的風險。在一些實施例中,該方法用於判斷個體是否患有大腸直腸癌(CRC)。在一些實施例中,該方法用於測定個體體內之腫瘤生長、癌症階段進展、癌症復發、癌症轉移或對治療無反應。 在一個實施例中,與大腸直腸癌風險有關的CRC相關口腔細菌(與CR瘜肉相反)為表2中提供之細菌子組(由OTU數定義)。 2 -鑑別有大腸直腸病灶(CRC)之個體的口腔CRC相關細菌操作分類單元(OTU)。OTU 在一個實施例中,表2的至少五種CRC相關口腔細菌的經調變豐度與大腸直腸癌(大腸直腸病灶)風險有關。 在一個實施例中,表2的至少10、15、20、25或30種CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。 在一個實施例中,表2的實質上全部CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,表2的全部CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。 在一些實施例中,選自普雷沃菌屬、鏈球菌屬、坦納菌屬、纖毛菌屬、韋榮球菌屬、毛螺菌科、金氏菌屬、擬普雷沃菌屬、毛絨厭氧桿菌屬、彎曲桿菌屬、嗜血桿菌屬、丁酸弧菌屬、微單胞菌屬、奈瑟氏菌屬、分支單糖菌屬、凝集桿菌屬、月形單胞菌屬、施氏菌屬、羅斯拜瑞氏菌屬、消化鏈球菌屬及心桿菌屬的至少2、3、5、10、12、15、18、20種或全部CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)風險有關。 在一些實施例中,OTU0348 (較佳普雷沃菌屬)、OTU0016 (較佳鏈球菌屬)、OTU0283 (較佳坦納菌屬)、OTU0777 (較佳纖毛菌屬)、OTU0050 (較佳韋榮球菌屬)、OTU0161 (較佳毛螺菌科)及OTU0174 (較佳金氏菌屬)中之至少一者(例如1種或至少2、3、4、5、6種或全部7種)的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,OTU0016 (較佳鏈球菌屬)、OTU0050 (較佳韋榮球菌屬)及OTU0174 (較佳金氏菌屬)的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,OTU0348 (較佳普雷沃菌屬)、OTU0016 (較佳鏈球菌屬)及OTU0283 (較佳坦納菌屬)的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,OTU0016 (較佳鏈球菌屬)、OTU0283 (較佳坦納菌屬)、OTU0050 (較佳韋榮球菌屬)及OTU0174 (較佳金氏菌屬)的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,OTU0348 (較佳普雷沃菌屬)、OTU0016 (較佳鏈球菌屬)、OTU0283 (較佳坦納菌屬)、OTU0050 (較佳韋榮球菌屬)及OTU0174 (較佳金氏菌屬)的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,OTU0016 (較佳鏈球菌屬)、OTU0283 (較佳坦納菌屬)、OTU0050 (較佳韋榮球菌屬)及/或OTU0174 (較佳金氏菌屬)中之至少一者的調變是與健康對照組相比相對豐度的增加。在一些實施例中,OTU0348 (較佳普雷沃菌屬)的調變是與健康對照組相比相對豐度的降低。 在一些實施例中,普雷沃菌屬、鏈球菌屬、坦納菌屬、纖毛菌屬、韋榮球菌屬、毛螺菌科及金氏菌屬中之至少一者(例如1種或至少2、3、4、5、6種或全部7種)的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,鏈球菌屬、韋榮球菌屬及金氏菌屬的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,普雷沃菌屬、鏈球菌屬及坦納菌屬的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,鏈球菌屬、坦納菌屬、韋榮球菌屬及金氏菌屬的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,鏈球菌屬、坦納菌屬、韋榮球菌屬及/或金氏菌屬的調變是與健康對照組相比相對豐度的增加。在一些實施例中,普雷沃菌屬的調變為與健康對照組相比相對豐度的降低。 在一些實施例中,該方法用於判斷個體是否有患大腸直腸瘜肉增加的風險。在一些實施例中,該方法用於判斷個體是否患有大腸直腸瘜肉。患有大腸直腸瘜肉可指示個體發展CRC的風險增加。 在一個實施例中,與大腸直腸瘜肉風險(且因此預後發展CRC風險)有關的CRC相關口腔細菌是表3中提供的細菌子組。在一個實施例中,本發明之方法包含測定表3之2、3、4、5、6、7、8或9種細菌的經調變豐度。在一個實施例中,本發明之方法包含測定表3之實質上全部細菌的經調變豐度。在一個實施例中,本發明之方法包含測定表3之全部細菌的經調變豐度。 3 -口腔大腸直腸瘜肉相關之細菌(OTU) 在一些實施例中,選自羅斯拜瑞氏菌屬、放線菌屬、彎曲桿菌屬、毛絨厭氧桿菌屬、普雷沃菌屬、貧養菌屬及鏈球菌屬的至少1、2、3、4、5、6種或全部CRC相關口腔細菌的經調變豐度與大腸直腸瘜肉風險有關。 在一些實施例中,OTU0008(較佳羅斯拜瑞氏菌屬)、OTU0595 (較佳放線菌屬)、OTU0176 (較佳彎曲桿菌屬)、OTU0626 (較佳毛絨厭氧桿菌屬)及OTU0431 (較佳普雷沃菌屬)中之至少一者(例如1種或至少2、3、4種或全部5種)的經調變豐度與大腸直腸瘜肉風險有關。在一些實施例中,OTU0008 (較佳羅斯拜瑞氏菌屬)及/或OTU0595 (較佳放線菌屬)的經調變豐度與大腸直腸瘜肉風險有關。在一些實施例中,OTU0008 (較佳羅斯拜瑞氏菌屬)、OTU0595 (較佳放線菌屬)、OTU0176 (較佳彎曲桿菌屬)、OTU0626 (較佳毛絨厭氧桿菌屬)及OTU0431 (較佳普雷沃菌屬)中之至少1種(例如1種或至少2、3、4種或全部5種)的經調變豐度與腺瘤風險有關。在一些實施例中,OTU0008 (較佳羅斯拜瑞氏菌屬)及/或OTU0595 (較佳放線菌屬)的經調變豐度與腺瘤風險有關。 在一些實施例中,選自羅斯拜瑞氏菌屬、放線菌屬、彎曲桿菌屬、毛絨厭氧桿菌屬及普雷沃菌屬中之至少一者(例如1種或至少2、3、4種或全部5種) CRC相關口腔細菌的經調變豐度與大腸直腸瘜肉風險有關。在一些實施例中,CRC相關口腔細菌羅斯拜瑞氏菌屬及放線菌屬的經調變豐度與大腸直腸瘜肉風險有關。 在一個實施例中,該方法包含分析獲自個體糞便樣品中複數種CRC相關糞便細菌之豐度的另一步驟,其中複數種CRC相關糞便細菌及複數種CRC相關口腔細菌的經調變豐度指示陽性CRC狀態。陽性CRC狀態係有診斷性的,例如指示個體患有大腸直腸癌(即大腸直腸病灶)的風險增加,或係預後的,例如指示個體患有大腸直腸瘜肉之風險,且因此會有發展大腸直腸癌之風險。 因此,本發明亦提供口腔微生物菌相與糞便微生物菌相之組合診斷CRC或大腸瘜肉的用途。類似地,提供口腔微生物菌相與糞便微生物菌相之組合用於診斷CRC或大腸瘜肉。類似地,本發明提供口腔微生物菌相豐度分佈與糞便微生物菌相豐度分佈之組合的用途,其用於診斷CRC或大腸瘜肉。亦提供一種診斷CRC或大腸瘜肉之方法,其包含判斷個體口腔微生物菌相與健康患者口腔微生物菌相相比是否存在差異,以及糞便微生物菌相與健康患者糞便微生物菌相相比是否存在差異,其中在口腔及糞便微生物菌相中皆發現差異表明個體患有大腸直腸癌(CRC)或大腸瘜肉的風險增加。該差異較佳為一或多種細菌屬或OTU的相對豐度的差異,與健康對照相相比,該一或多種細菌屬或OTU在患有CRC或大腸瘜肉的個體中分別在口腔及糞便微生物菌相中展現經調變之相對豐度。在一些實施例中,與健康對照組相比,發現在患有CRC或大腸瘜肉之個體中展現相對豐度降低的一或多種細菌屬或OTU的相對豐度降低表明個體患有大腸直腸癌(CRC)或大腸瘜肉之風險分別增加。在一些實施例中,與健康對照組相比,發現患有CRC或大腸瘜肉之個體中展現相對豐度增加的一或多種細菌屬或OTU的相對豐度增加表明個體患有大腸直腸癌(CRC)或大腸瘜肉之的風險分別增加。在一些實施例中,發現與健康對照組相比在患有CRC或大腸瘜肉之個體中展現相對豐度降低的一或多種細菌屬或OTU的相對豐度降低以及發現與健康對照組相比在患有CRC或大腸瘜肉之個體中展現相對豐度增加的一或多種細菌屬或OTU的相對豐度增加表明個體患有大腸直腸癌(CRC)或大腸瘜肉的風險分別增加。 CRC相關糞便細菌之列表(如細菌OTU所提供)提供於表4中。因此,在一些實施例中,CRC相關糞便細菌係選自表4。然而,熟習此項技術者應理解,與健康對照組相比,在患有CRC或大腸瘜肉之個體中展現經調變相對豐度的其他CRC相關糞便細菌屬或OTU亦可用於本發明中。 4 -糞便大腸直腸癌/瘜肉相關細菌(OTU) 在一個實施例中,至少五種CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,至少10、15、20、25、30、35、40、45、50、55、60、65、70、75或80種CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,表4的實質上全部CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。在一些實施例中,表4的全部CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。 在一些實施例中,選自毛螺菌科、消化鏈球菌屬、副擬桿菌屬、羅斯拜瑞氏菌屬、布勞特氏菌屬、梭菌_XlVa、梭菌目、黃桿菌屬、埃希氏桿菌屬/志賀桿菌屬、卟啉單胞菌屬、丁酸弧菌屬、糞桿菌屬、糞球菌屬、梭菌目、壁門菌屬、小桿菌屬、梭菌_IV、芽殖菌屬、柯林斯菌屬、擬桿菌屬、狹義梭菌屬、梭桿菌屬、瘤胃球菌屬、紫單胞菌科、別樣桿菌屬、薩特菌屬、多爾氏菌屬、擬桿菌屬、假黃桿菌屬、副薩特菌屬、嗜血桿菌屬、雙叉桿菌屬、考拉桿菌屬及鏈球菌屬的至少2種(例如至少3、5、10、15、20、25、30、32、33種)或全部CRC相關糞便細菌與陽性CRC狀態有關。 在一個實施例中,與個體中存在大腸直腸癌(即大腸直腸病灶)的風險有關的CRC相關糞便細菌為表5中提供之細菌子組。 5 -糞便大腸直腸癌相關細菌(OTU) 在一個實施例中,表5的至少五種CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌之風險有關。 在一個實施例中,表5的至少10、15、20、25、30、35、40、45或50種CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌之風險有關。 在一個實施例中,表5的實質上全部CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌的風險有關。在一個實施例中,表5的全部CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌之風險有關。 在一些實施例中,選自毛螺菌科、消化鏈球菌屬、副擬桿菌屬、羅斯拜瑞氏菌屬、布勞特氏菌屬、梭菌_XlVa、梭菌目、黃桿菌屬、埃希氏桿菌屬/志賀桿菌屬、卟啉單胞菌屬、丁酸弧菌屬、糞桿菌屬、糞球菌屬、梭菌目、壁門菌屬、小桿菌屬、梭菌_IV、芽殖菌屬、柯林斯菌屬、擬桿菌屬、狹義梭菌屬、梭桿菌屬、瘤胃球菌屬及紫單胞菌科中之至少2種(例如至少3、5、10、15、20、21、22種)或全部CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌的風險有關。 在一個實施例中,與大腸直腸瘜肉風險(且因此預後發展CRC風險)有關的CRC相關糞便細菌是表6中提供的細菌子組。 6 -糞便大腸直腸瘜肉相關細菌(OTU) 在一個實施例中,表6中至少五種CRC相關糞便細菌的經調變豐度與個體中大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。 在一個實施例中,表6中至少10、15、20、25、30、35、40、45或50種CRC相關糞便細菌的經調變豐度與大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。 在一個實施例中,表6中實質上全部CRC相關糞便細菌的經調變豐度與大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。在一些實施例中,表6中全部CRC相關糞便細菌的經調變豐度與大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。 在一些實施例中,選自副擬桿菌屬、梭菌_XlVa、毛螺菌科、別樣桿菌屬、薩特菌屬、布勞特氏菌屬、副擬桿菌屬、擬桿菌屬、芽殖菌屬、多爾氏菌屬、擬桿菌屬、假黃桿菌屬、副薩特菌屬、狹義梭菌屬、嗜血桿菌屬、雙叉桿菌屬、考拉桿菌屬及鏈球菌屬之至少2種(例如至少3、5、10、15、16、17種)或全部CRC相關糞便細菌的經調變豐度與大腸直腸瘜肉之風險(且因此預後產生CRC風險)有關。 在本發明之一個較佳實施例中,個體的陽性CRC狀態藉由偵測表7之至少五種糞便(大便)細菌及至少五種口腔細菌的經調解之豐度來判斷。表7之至少五種口腔細菌及至少五種糞便細菌的經調變豐度的偵測指示陽性CRC狀態,例如個體中存在大腸直腸癌(即大腸直腸病灶)之風險增加,或個體中存在大腸直腸瘜肉之風險(即預後產生大腸直腸癌之風險)增加。 7 -口腔加糞便大腸直腸癌/瘜肉相關細菌(OTU) 在一個實施例中,表7之至少五種CRC相關糞便細菌及至少五種CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,表7之至少10、20、30、40種CRC相關糞便細菌及至少10、20、30或40種CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,表7的至少10、20、30、40、50、60、70、80、90、100或115種CRC相關細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,表7的實質上全部CRC相關細菌的經調變豐度與陽性CRC狀態有關。在一個實施例中,表7的全部CRC相關細菌的經調變豐度與陽性CRC狀態有關。 在一些實施例中,選自梭菌_XlVa、糞球菌屬、赫斯佩爾氏菌屬、多爾氏菌屬、狹義梭菌屬、毛螺菌科、擬桿菌屬、芽殖菌屬、韋榮球菌屬、乳桿菌屬、副擬桿菌屬、鏈球菌屬、布勞特氏菌屬、梭菌_IV、小桿菌屬、梭菌_XI、普雷沃菌屬、副薩特菌屬、副普雷沃菌屬、丁酸弧菌屬、布勞特氏菌屬、丁酸弧菌屬、嗜膽菌屬及雙叉桿菌屬之至少五種(例如至少5、10、15、20、22、23種或全部) CRC相關糞便細菌及選自普雷沃菌屬、鏈球菌屬、嗜血桿菌屬、消化鏈球菌屬、艾肯菌屬、孿生球菌屬、狹義梭菌屬、凝集桿菌屬、坦納菌屬、金氏菌屬、彎曲桿菌屬、心桿菌屬、毛絨厭氧桿菌屬、韋榮球菌屬、糞桿菌屬、小桿菌屬、二氧化碳嗜纖維菌屬、放線菌屬、貧養菌屬、奈瑟氏菌屬、放線菌屬、索拉桿菌屬、月形單胞菌屬、二氧化碳嗜纖維菌屬、螺旋體屬、羅斯拜瑞氏菌屬、糞桿菌屬、雙叉桿菌屬、纖毛菌屬及黃桿菌科的至少五種(例如至少5、10、15、20、25、27、29種或全部) CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一些實施例中,選自OTU0348 (較佳普雷沃菌屬)、OTU0016 (較佳鏈球菌屬)及OTU0283 (較佳坦納菌屬)的至少一種(例如1、2或3種) CRC相關口腔OTU與選自OTU1487 (較佳梭菌_XIVa)、OTU0075 (較佳梭菌_XlVa)及OTU0030 (較佳糞球菌屬)的至少一種(例如1、2或3種) CRC相關糞便OTU的經調變豐度與陽性CRC狀態有關。在一些實施例中,展現經調變相對豐度的口腔OTU是OTU0348。在一些實施例中,展現經調變相對豐度的口腔OTU是OTU0016。在一些實施例中,展現經調變相對豐度的口腔OTU是OTU0283。在一些實施例中,展現經調變相對豐度的糞便OTU是OTU1487。在一些實施例中,展現經調變相對豐度的糞便OTU是OTU0075。在一些實施例中,展現經調變相對豐度的糞便OTU是OTU0030。 在本發明之一個較佳實施例中,表8的至少五種糞便(大便)細菌及至少五種口腔細菌的經調變豐度的偵測指示個體患有大腸直腸癌(即大腸直腸病灶)的風險增加。 8 -口腔加糞便大腸直腸癌相關細菌(OTU) 在一個實施例中,表8之至少五種CRC相關糞便細菌及至少五種CRC相關口腔細菌的經調變豐度與大腸直腸癌的風險有關。 在一個實施例中,表8之至少10、20或30種CRC相關糞便細菌及至少10、20或30種CRC相關口腔細菌的經調變豐度與大腸直腸癌之風險有關。 在一個實施例中,表8之至少10、20、30、40、50、60或70種CRC相關細菌的經調變豐度與大腸直腸癌之風險有關。 在一個實施例中,表8的實質上全部CRC相關細菌的經調變豐度與大腸直腸癌之風險有關。在一些實施例中,表8的全部CRC相關細菌的經調變豐度與大腸直腸癌的風險有關。在一些實施例中,表8的53種CRC相關大便細菌及24種CRC相關口腔細菌的經調變豐度與大腸直腸癌風險有關。 在一些實施例中,選自梭菌_XIVa、糞球菌屬、赫斯佩爾氏菌屬、多爾氏菌屬、狹義梭菌屬、毛螺菌科、擬桿菌屬、芽殖菌屬、韋榮球菌屬、乳桿菌屬、副擬桿菌屬、鏈球菌屬、布勞特氏菌屬、梭菌_IV、小桿菌屬、梭菌_XI、普雷沃菌屬及副薩特菌屬的至少5、10、15、16、17種或全部CRC相關糞便細菌及選自普雷沃菌屬、鏈球菌屬、嗜血桿菌屬、消化鏈球菌屬、艾肯菌屬、孿生球菌屬、狹義梭菌屬、凝集桿菌屬、坦納菌屬、金氏菌屬、彎曲桿菌屬、心桿菌屬、毛絨厭氧桿菌屬、韋榮球菌屬、糞桿菌屬、小桿菌屬及二氧化碳嗜纖維菌屬的至少5、10、15、16種或全部CRC相關口腔細菌的經調變豐度與大腸直腸癌之風險有關。 在本發明之一個較佳實施例中,表9的至少五種糞便(大便)細菌及至少五種口腔細菌的經調變豐度的偵測指示個體患有大腸直腸瘜肉的風險(且因此預後產生大腸直腸癌之風險)增加。 表9-口腔加糞便大腸直腸瘜肉相關細菌(OTU) 在一個實施例中,表9的至少五種CRC相關糞便細菌及至少五種CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉的風險(且因此預後產生大腸直腸癌之風險)增加有關。 在一個實施例中,表9的至少10、20或30種CRC相關糞便細菌及至少10、20或30種CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉的風險(且因此預後產生大腸直腸癌之風險)增加有關。 在一個實施例中,表9的至少10、20、30、40、50、60或70種CRC相關細菌的經調變豐度與個體患有大腸直腸瘜肉(且因此預後產生大腸直腸癌之風險)增加有關。 在一個實施例中,表9的實質上全部CRC相關細菌的經調變豐度與個體患有大腸直腸瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。在一些實施例中,表9的全部CRC相關細菌的經調變豐度與個體患有大腸直腸瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。在一些實施例中,表9的至少5、10、12、15或18種CRC相關糞便細菌及至少5、10、12、15、18或20種CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉的風險(且因此預後產生大腸直腸癌之風險)增加有關。在一些實施例中,表9的19種CRC相關大便細菌及23種CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。 在一些實施例中,選自梭菌_IV、副普雷沃菌屬、丁酸弧菌屬、副薩特菌屬、擬桿菌屬、毛螺菌科、梭菌_XlVa、布勞特氏菌屬、丁酸弧菌屬、嗜膽菌屬及雙叉桿菌屬的至少5種(例如至少8、10種或全部) CRC相關糞便細菌及選自鏈球菌屬、韋榮球菌屬、放線菌屬、貧養菌屬、奈瑟氏菌屬、放線菌屬、彎曲桿菌屬、索拉桿菌屬、月形單胞菌屬、二氧化碳嗜纖維菌屬、毛絨厭氧桿菌屬、坦納菌屬、螺旋體屬、羅斯拜瑞氏菌屬、糞桿菌屬、雙叉桿菌屬、普雷沃菌屬、纖毛菌屬及黃桿菌科的至少5種(例如至少10、12、15、17、18種或全部)CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。 在一個實施例中,與大腸直腸癌風險有關的CRC相關口腔細菌(與CR瘜肉相反)為表11中提供之細菌子組(由OTU數定義)。 11 -口腔大腸直腸癌/瘜肉相關細菌(OTU) 在一些實施例中,選自普雷沃菌屬、丁酸弧菌屬、卟啉單胞菌屬、奈瑟氏菌屬、嗜血桿菌屬、梭桿菌屬、消化鏈球菌屬、鏈球菌屬、擬普雷沃菌屬、巨型球菌屬、纖毛菌屬、心桿菌屬、新月單胞菌屬、貧養菌屬、黃桿菌科、坦納菌屬、二氧化碳嗜纖維菌屬的至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25種或全部CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)或大腸直腸瘜肉的風險有關。 在一個實施例中,與大腸直腸癌風險有關的CRC相關口腔細菌(與CR瘜肉相反)為表12中提供之細菌子組(由OTU數定義)。 12 -口腔CRC相關細菌(OTU) 在一個實施例中,表12的至少五種CRC相關口腔細菌的經調變豐度與大腸直腸癌(大腸直腸病灶)風險有關。 在一個實施例中,表12之至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15種或全部CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。 在一個實施例中,表12的實質上全部CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,表12的全部CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。 在一些實施例中,選自普雷沃菌屬、丁酸弧菌屬、卟啉單胞菌屬、奈瑟氏菌屬、嗜血桿菌屬、梭桿菌屬、消化鏈球菌屬、鏈球菌屬、擬普雷沃菌屬、巨型球菌屬、奈瑟氏菌屬、纖毛菌屬及心桿菌屬的至少1、2、3、4、5、6、7、8、9、10、11、12種或全部CRC相關口腔細菌的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。 在一些實施例中,OTU50189 (較佳普雷沃菌屬)、OTU51549 (較佳普雷沃菌屬)、OTU50020 (較佳丁酸弧菌屬)、OTU50068 (較佳卟啉單胞菌屬)、OTU50043 (較佳奈瑟氏菌屬)、OTU50037 (較佳嗜血桿菌屬)及OTU50041 (較佳梭桿菌屬)中之至少一者(例如1種或至少2、3、4、5、6種或全部7種)的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。在一些實施例中,OTU51260 (較佳普雷沃菌屬)、OTU50097 (較佳消化鏈球菌屬)、OTU50010 (較佳鏈球菌屬)、OTU50076 (較佳擬普雷沃菌屬)、OTU58875 (較佳梭桿菌屬)、OTU50221 (較佳巨型球菌屬)、OTU51588 (較佳奈瑟氏菌屬)、OTU55262 (較佳纖毛菌屬)、OTU50299 (較佳心桿菌屬)中之一或多者的經調變豐度與大腸直腸癌(即大腸直腸病灶)的風險有關。 在一個實施例中,與大腸直腸瘜肉風險(且因此預後發展CRC風險)有關的CRC相關口腔細菌是表13中提供的細菌子組。在一個實施例中,本發明的方法包含測定表13中2、3、4、5、6、7、8、9、10、11種或全部12種細菌的經調變豐度。在一個實施例中,本發明之方法包含測定表13之實質上全部細菌的經調變豐度。在一個實施例中,本發明之方法包含測定表13之全部細菌的經調變豐度。 13 -口腔大腸直腸瘜肉相關之細菌(OTU) 在一些實施例中,選自月形單胞菌屬、奈瑟氏菌屬、貧養菌屬、嗜血桿菌屬、黃桿菌科、坦納菌屬、普雷沃菌屬、二氧化碳嗜纖維菌屬及卟啉單胞菌屬之至少1、2、3、4、5、6、7、8、9、10、11種或全部CRC相關細菌的經調變豐度與大腸直腸瘜肉之風險有關。 在一些實施例中,OTU50458 (較佳月形單胞菌屬)、OTU50043 (較佳奈瑟氏菌屬)、OTU50442 (較佳貧養菌屬)、OTU52070 (較佳嗜血桿菌屬)、OTU50171 (較佳黃桿菌科)、OTU50383 (較佳坦納菌屬)、OTU52345 (較佳奈瑟氏菌屬)、OTU51549 (較佳普雷沃菌屬)、OTU50759 (較佳普雷沃菌屬)、OTU50358 (較佳二氧化碳嗜纖維菌屬)、OTU50188 (較佳二氧化碳嗜纖維菌屬)、OTU50270 (較佳卟啉單胞菌屬)中之至少一者(例如1種或至少2、3、4、5、6、7、8、9、10、11種或全部12種)的經調變豐度與大腸直腸瘜肉之風險有關。 CRC相關糞便細菌之列表(如細菌OTU所提供)提供於表14中。因此,在一些實施例中,CRC相關糞便細菌係選自表14。然而,熟習此項技術者應理解,與健康對照組相比,在患有CRC或大腸瘜肉之個體中展現經調變相對豐度的其他CRC相關糞便細菌屬或OTU亦可用於本發明中。 14 -糞便大腸直腸癌/瘜肉相關細菌(OTU) 在一個實施例中,至少五種CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,至少10、15、20、25、30、35、40、45或50種CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,表14的實質上全部CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。在一些實施例中,表14的全部CRC相關糞便細菌的經調變豐度與陽性CRC狀態相關。 在一些實施例中,選自羅斯拜瑞氏菌屬、毛螺菌科、消化鏈球菌屬、瘤胃菌科、別樣桿菌屬、布勞特氏菌屬、擬桿菌屬、梭菌_XIVa、狹義梭菌屬、梭菌目、糞球菌屬、壁門菌屬、阿克曼氏菌屬、梭菌_XIVb、霍華德氏菌屬、嗜膽菌屬、小桿菌屬、厭氧醋菌屬、黃桿菌屬、副擬桿菌屬、胺基酸球菌屬、毛螺菌屬、梭菌_IV、薩特菌屬及糞桿菌屬的至少2種(例如至少3、5、10、15、20、23、24種)或全部CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,與個體中存在大腸直腸癌(即大腸直腸病灶)的風險有關的CRC相關糞便細菌為表15中提供之細菌子組。 15 -糞便大腸直腸癌相關細菌(OTU) 在一個實施例中,表15的至少五種CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌之風險有關。 在一個實施例中,表15的至少10、15、20、25、30或35種CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌之風險有關。 在一個實施例中,表15的實質上全部CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌的風險有關。在一個實施例中,表15的全部CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌之風險有關。 在一些實施例中,選自羅斯拜瑞氏菌屬、毛螺菌科、消化鏈球菌屬、瘤胃菌科、別樣桿菌屬、布勞特氏菌、擬桿菌屬、梭菌_XIVa、狹義梭菌屬、梭菌目、糞球菌屬、壁門菌屬、阿克曼氏菌屬、梭菌_XIVb、霍華德氏菌屬、嗜膽菌屬、小桿菌屬、厭氧醋菌屬及黃桿菌屬的至少2種(例如至少3、5、10、15、17、18種)或全部CRC相關糞便細菌的經調變豐度與個體中存在大腸直腸癌之風險有關。 在一個實施例中,與大腸直腸瘜肉風險(且因此預後發展CRC風險)有關的CRC相關糞便細菌是表16中提供的細菌子組。 16 -糞便大腸直腸瘜肉相關細菌(OTU) 在一個實施例中,表6中至少五種CRC相關糞便細菌的經調變豐度與個體中大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。 在一個實施例中,表16中至少10或15種CRC相關糞便細菌的經調變豐度與大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。 在一個實施例中,表16中實質上全部CRC相關糞便細菌的經調變豐度與大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。在一些實施例中,表16中全部CRC相關糞便細菌的經調變豐度與大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。 在一些實施例中,選自副擬桿菌屬、梭菌_XIVa、毛螺菌科、胺基酸球菌屬、毛螺菌屬、梭菌_IV、糞球菌屬、布勞特氏菌屬、擬桿菌屬、瘤胃菌科、薩特菌屬及糞桿菌屬的至少2種(例如至少3、5、10、15、16、17種)或全部CRC相關糞便細菌的經調變豐度與大腸直腸瘜肉之風險(且因此預後產生CRC之風險)有關。 在另一實施例中,個體之陽性狀態藉由偵測表17之至少五種糞便(大便)細菌及至少五種口腔細菌的經調變豐度判斷。表17之至少五種口腔細菌及至少五種糞便細菌的經調變豐度的偵測指示陽性CRC狀態,例如個體中存在大腸直腸癌(即大腸直腸病灶)之風險增加,或個體中存在大腸直腸瘜肉之風險(即預後產生大腸直腸癌之風險)增加。 17 -口腔加糞便大腸直腸癌/瘜肉相關細菌(OTU) 在一個實施例中,表17之至少五種CRC相關糞便細菌及至少五種CRC相關口腔細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,表17的至少10、20、30、40、50、60、70、80或90種CRC相關細菌的經調變豐度與陽性CRC狀態有關。 在一個實施例中,表17的實質上全部CRC相關細菌的經調變豐度與陽性CRC狀態有關。在一個實施例中,表17的全部CRC相關細菌的經調變豐度與陽性CRC狀態有關。 在一些實施例中,選自普雷沃菌屬、孿生球菌屬、嗜血桿菌屬、奈瑟氏菌屬、梭桿菌屬、羅氏菌屬、鏈球菌屬、韋榮球菌屬、巨型球菌屬、貧養菌屬、心桿菌屬、坦納菌屬、丁酸弧菌屬、消化鏈球菌屬、毛絨厭氧桿菌屬、優桿菌屬、小桿菌屬、螺旋體屬、擬普雷沃菌屬、棒狀桿菌屬、歐氏菌屬、放線菌目、彎曲桿菌屬、奇異菌屬、月形單胞菌屬及羅斯拜瑞氏菌屬的至少五種(例如至少5、10、15、20、25種或全部) CRC相關口腔細菌及選自梭菌_XIVa、副擬桿菌屬、擬桿菌屬、韋榮球菌科、厭氧桿菌屬、梭菌_IV、梭菌_XVIII、顫桿菌克屬、韋榮球菌屬、梭菌_XIVb、毛螺菌科、芽殖菌屬、布勞特氏菌屬、瘤胃球菌屬、別樣桿菌屬、梭菌目、擬桿菌屬、狹義梭菌屬、副擬桿菌屬、柯林斯菌屬、普雷沃氏菌科、瘤胃球菌科、副普雷沃菌屬、黃桿菌屬、丁酸弧菌屬、擬桿菌屬、真桿菌屬、糞桿菌屬的至少五種(例如至少5、10、15、20、25、29種或全部) CRC相關糞便細菌的經調變豐度與陽性CRC狀態有關。 在一些實施例中,選自OTU50189 (較佳普雷沃菌屬)、OTU50017 (較佳孿生球菌屬)、OTU51549 (較佳普雷沃菌屬)、OTU50037 (嗜血桿菌屬)、OTU51588 (較佳奈瑟菌屬)、OTU50041 (較佳梭桿菌屬)、OTU50944 (較佳羅氏菌屬)、OTU52070 (較佳嗜血桿菌屬)、OTU50001 (較佳鏈球菌屬)、OTU57157 (較佳韋榮球菌屬)、OTU59656 (較佳鏈球菌屬)、OTU50221 (較佳巨型球菌屬)、OTU50442 (較佳貧養菌屬)、OTU50299 (較佳心桿菌屬)、OTU50208 (較佳坦納菌屬)、OTU50020 (較佳丁酸弧菌屬)、OTU50097 (較佳消化鏈球菌屬)、OTU50552 (較佳毛絨厭氧桿菌屬)、OTU50444 (較佳優桿菌屬)、OTU50177 (較佳小桿菌屬)、OTU50043 (較佳奈瑟氏菌屬)、OTU01260 (較佳普雷沃菌屬)、OTU50492 (較佳螺旋體屬)、OTU50412 (較佳普雷沃菌屬)、OTU50593 (較佳擬普雷沃菌屬)、OTU56772 (較佳棒狀桿菌屬)、OTU50547 (較佳歐氏菌屬)、OTU52529 (較佳放線菌目)、OTU50032 (較佳擬桿菌屬)、OTU51549 (較佳普雷沃菌屬)、OTU50124 (較佳彎曲桿菌屬)、OTU50076 (較佳擬普雷沃菌屬)、OTU50138 (較佳奇異菌屬)、OTU50442 (較佳普雷沃菌屬)、OTU52070 (較佳嗜血桿菌屬)、OTU50065 (較佳鏈球菌屬)、OTU50016 (較佳羅斯拜瑞氏菌屬)及OTU50458 (較佳月形單胞菌屬)的至少一種(例如1、2、3、4、5、10、20、30、40種或全部)CRC相關口腔OTU與選自OTU50053 (較佳梭菌_XIVa)、OTU510131 (較佳副擬桿菌屬)、OTU50062 (較佳擬桿菌屬)、OTU50122 (較佳韋榮球菌科)、OTU52086 (較佳梭菌_XIVa)、OTU50092 (較佳梭菌_XIVa), OTU50501 (較佳厭氧桿菌屬)、OTU50112 (較佳梭菌_IV)、OTU50064 (較佳梭菌_XVIII)、OTU50095 (較佳顫桿菌克屬)、OTU50168 (較佳韋榮球菌屬)、OTU50080 (較佳梭菌_XIVb)、OTU50172 (較佳毛螺菌科)、OTU50500 (較佳芽殖菌屬)、OTU50479 (較佳布勞特氏菌屬)、OTU50012 (較佳瘤胃球菌屬)、OTU53501 (較佳毛螺菌科)、OTU50630 (較佳別樣桿菌屬)、OTU51340 (較佳梭菌目)、OTU53463 (較佳梭菌_XIVa)、OTU57750 (較佳擬桿菌屬)、OTU52704 (較佳芽殖菌屬)、OTU54670 (較佳瘤胃球菌屬)、OTU50046 (較佳狹義梭菌屬)、OTU55394 (較佳擬桿菌屬)、OTU50150 (較佳副擬桿菌屬)、OTU51727 (較佳瘤胃球菌屬)、OTU57512 (較佳毛螺菌科)、OTU50091 (較佳柯林斯菌屬)、OTU50880 (較佳梭菌目)、OTU56933 (較佳顫桿菌克屬)、OTU51883 (較佳普雷沃氏菌科)、OTU56581 (較佳毛螺菌科)、OTU50018 (較佳擬桿菌屬)、OTU50213 (較佳瘤胃菌科)、OTU56301 (較佳布勞特氏菌)、OTU57750 (較佳擬桿菌屬)、OTU50255 (較佳副普雷沃菌屬)、OTU50101 (較佳梭菌_XIVa)、OTU53421 (較佳擬桿菌屬)、OTU53773 (較佳黃桿菌屬)、OTU50020 (較佳丁酸弧菌屬)、OTU51014 (較佳毛螺菌科)、OTU55821 (較佳擬桿菌屬)、OTU54910 (較佳梭菌_XIVa)、OTU51411 (較佳真桿菌屬)、OTU51401 (較佳梭菌_IV)、OTU50726 (較佳黃桿菌屬)、OTU51343 (較佳糞桿菌屬)及OTU52086 (較佳梭菌_XIVa)之至少一種(例如1、2、3、4、5、10、20、30、40種或全部)CRC相關糞便OTU的組合的經調變豐度與陽性CRC狀態有關。 在本發明之一個較佳實施例中,表18的至少五種糞便(大便)細菌及至少五種口腔細菌的經調變豐度的偵測指示個體患有大腸直腸癌(即大腸直腸病灶)的風險增加。 18 -口腔加糞便大腸直腸癌相關細菌(OTU) 在一個實施例中,表18之至少五種CRC相關糞便細菌及至少五種CRC相關口腔細菌的經調變豐度與大腸直腸癌的風險有關。 在一個實施例中,表15之至少10、20或30種CRC相關糞便細菌及至少10、20或29種CRC相關口腔細菌的經調變豐度與大腸直腸癌之風險有關。 在一個實施例中,表18之至少10、20、30、40、50或60種CRC相關細菌的經調變豐度與大腸直腸癌之風險有關。 在一個實施例中,表18的實質上全部CRC相關細菌的經調變豐度與大腸直腸癌之風險有關。在一些實施例中,表18的全部CRC相關細菌的經調變豐度與大腸直腸癌的風險有關。在一些實施例中,表18的34種CRC相關大便細菌及29種CRC相關口腔細菌的經調變豐度與大腸直腸癌風險有關。 在一些實施例中,選自普雷沃菌屬、孿生球菌屬、嗜血桿菌屬、奈瑟氏菌屬、梭桿菌屬、羅氏菌屬、鏈球菌屬、韋榮球菌屬、巨型球菌屬、貧養菌屬、心桿菌屬、坦納菌屬、丁酸弧菌屬、消化鏈球菌屬、毛絨厭氧桿菌屬、優桿菌屬、小桿菌屬、螺旋體屬、擬普雷沃菌屬、棒狀桿菌屬、歐氏菌屬、放線菌目及擬桿菌屬的至少5、10、15、20、22種或全部CRC相關口腔細菌的經調變豐度與大腸直腸癌的風險有關。在一些實施例中,選自梭菌_XIVa、副擬桿菌屬、擬桿菌屬、韋榮球菌科、厭氧桿菌屬、梭菌_IV、梭菌_XVIII、顫桿菌克屬、韋榮球菌屬、梭菌_XIVb、毛螺菌科、芽殖菌屬、布勞特氏菌屬、瘤胃球菌屬、別樣桿菌屬、梭菌目、柯林斯菌屬及普雷沃氏菌科的至少5、10、15、17種或全部CRC相關之糞便細菌的經調變豐度與大腸直腸癌之風險有關。 在本發明之一個較佳實施例中,表19的至少五種糞便(大便)細菌(OTU)及至少五種口腔細菌(OTU)的經調變豐度的偵測指示個體患有大腸直腸瘜肉的風險(且因此預後產生大腸直腸癌之風險)增加。 19 -口腔加糞便大腸直腸瘜肉相關細菌(OTU) 在一個實施例中,表16的至少五種CRC相關糞便細菌及至少五種CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉的風險(且因此預後產生大腸直腸癌之風險)增加有關。 在一個實施例中,表19的至少5、10、14、15種或全部CRC相關糞便細菌及至少5、10、11種或全部CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉的風險(且因此預後產生大腸直腸癌之風險)增加有關。 在一個實施例中,表19的至少5、10、20、26、27種或全部CRC相關細菌的經調變豐度與個體患有大腸直腸瘜肉(且因此預後產生大腸直腸癌之風險)增加有關。 在一個實施例中,表19的實質上全部CRC相關細菌的經調變豐度與個體患有大腸直腸瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。在一些實施例中,表19的全部CRC相關細菌的經調變豐度與個體患有大腸直腸瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。在一些實施例中,表19的至少5、10、15或16種CRC相關糞便細菌及至少5、10、11或12種CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉的風險(且因此預後產生大腸直腸癌之風險)增加有關。在一些實施例中,表19的16種CRC相關大便細菌及12種CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。 在一些實施例中,選自普雷沃菌屬、彎曲桿菌屬、擬普雷沃菌屬、奇異菌屬、貧養菌屬、月形單胞菌屬、嗜血桿菌屬、鏈球菌屬及羅斯拜瑞氏菌屬的至少5種(例如至少5、6、7、8、9種或全部) CRC相關口腔細菌的經調變豐度與個體患有大腸直腸瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。在一些實施例中,選自瘤胃菌科、布勞特氏菌屬、擬桿菌屬、副普雷沃菌屬、梭菌_XIVa、黃桿菌屬、丁酸弧菌屬、毛螺菌科、巴斯德氏菌屬、真桿菌屬、梭菌_IV及糞桿菌屬的至少5種(例如至少5、10、11種或全部) CRC相關糞便細菌的經調變豐度與個體患有瘜肉之風險(且因此預後產生大腸直腸癌之風險)增加有關。 在另一態樣中,本發明提供一種測定個體中大腸直腸癌狀態之方法,其包含以下步驟:分析獲自個體口腔生物樣品中至少五種CRC相關口腔細菌的豐度,將至少三種CRC相關口腔細菌的豐度與CRC相關口腔細菌之參考豐度比較以偵測CRC相關口腔細菌的經調變豐度,分析獲自個體糞便樣品中至少三種CRC相關口腔細菌的豐度,且將至少五種CRC相關糞便細菌的豐度與CRC相關糞便細菌的參考豐度比較以偵測至少三種CRC相關糞便細菌的經調變豐度。在一些實施例中,至少三種CRC相關之口腔細菌及至少三種CRC相關之糞便細菌的經調變豐度的偵測指示個體展現陽性CRC狀態。 在一些實施例中,本文所述的方法用於測定個體患有大腸直腸瘜肉之風險增加的步驟可用於判斷個體是否有患腺瘤增加的風險。 在一個實施例中,個體有CRC或大腸直腸瘜肉的症狀。在一個實施例中,個體無CRC或大腸直腸瘜肉的症狀。在一個實施例中,個體有CRC家族史。在一個實施例中,個體無CRC家族史。 在一個實施例中,陽性CRC狀態的測定指示個體應進行大腸鏡檢。 在一個實施例中,本發明的方法為偵測患有CRC(或大腸直腸瘜肉)之患者對CRC療法之反應的方法。因此,口腔微生物菌相、糞便微生物菌相或兩者之組合的豐度分佈可用於偵測或預測個體對療法之反應。 在一個實施例中,本發明之方法為偵測或預測個體中CRC (或大腸直腸瘜肉)復發的方法。 在一個實施例中,本發明之方法為偵測個體中CRC (或大腸直腸瘜肉)轉移的方法。 在一個實施例中,本發明之方法為偵測個體中CRC的階段(即分期)之方法。 在一個實施例中,本發明係關於一種治療患有CRC或處於發展CRC風險中之個體的CRC之方法,該方法包含向個體投與治療有效量之CRC療法的步驟,其中該個體使用本發明之方法鑑別為處於患有或發展CRC之風險下。 在一個實施例中,治療的性質是預防性的,其中個體鑑別為處於發展CRC之風險中(即患者鑑別為處於大腸直腸瘜肉陽性風險中),或鑑別為處於CRC復發風險中,或鑑別為處於CRC轉移的風險中。 在一個實施例中,CRC療法係選自手術切除、藥物療法(即化學療法、免疫療法)及放射療法。 在一個態樣中,測定CRC狀態之方法包含對來自個體之口腔樣品進行分析及測定口腔微生物菌相的豐度分佈(個體口腔微生物菌相豐度分佈),比較個體口腔微生物菌相豐度分佈與參考口腔微生物菌相豐度分佈,且將個體口腔微生物菌相豐度分佈與參考口腔微生物菌相豐度分佈之間的差異與CRC狀態建立關聯性,其中口腔微生物菌相包含表1的CRC相關口腔細菌或表2或3之子組。 在一個態樣中,測定CRC狀態之方法包含對來自個體之口腔樣品進行分析及測定口腔微生物菌相之豐度分佈(個體口腔微生物菌相豐度分佈),比較個體口腔微生物菌相豐度分佈與參考口腔微生物菌相豐度分佈,且將個體口腔微生物菌相豐度分佈與參考口腔微生物菌相豐度分佈之間的差異與CRC狀態建立關聯性,其中口腔微生物菌相包含表11之CRC相關口腔細菌或表12或13的子組。 在一個態樣中,測定CRC狀態之方法包含對來自個體之口腔樣品及糞便樣品進行分析及測定口腔及糞便微生物菌相的豐度分佈(個體口腔及糞便微生物菌相豐度分佈),比較個體口腔及糞便微生物菌相豐度分佈與參考口腔及糞便微生物菌相豐度分佈,且將個體口腔及糞便微生物菌相豐度分佈與參考口腔及糞便微生物菌相豐度分佈之間的差異與CRC狀態建立關聯性,其中口腔及糞便微生物菌相包含表7的CRC相關口腔及糞便細菌,或表8或9之子組。 在一個態樣中,測定CRC狀態之方法包含對來自個體之口腔樣品及糞便樣品進行分析及測定口腔及糞便微生物菌相的豐度分佈(個體口腔及糞便微生物菌相豐度分佈),比較個體口腔及糞便微生物菌相豐度分佈與參考口腔及糞便微生物菌相豐度分佈,且將個體口腔及糞便微生物菌相豐度分佈與參考口腔及糞便微生物菌相豐度分佈之間的差異與CRC狀態建立關聯性,其中口腔及糞便微生物菌相包含表17的CRC相關口腔及糞便細菌,或表18或19的子組。 在本文所述的本發明之方法的一個實施例中,該方法涉及測定口腔及/或糞便微生物菌相中存在的全部細菌(或實質上全部細菌)的豐度。在一個實施例中,該方法涉及測定口腔及/或糞便微生物菌相中本文所述的全部細菌OTU (或實質上全部OTU)的豐度。 舉例而言,在一些實施例中,該方法涉及測定口腔及/或糞便微生物菌相中存在的全部細菌/細菌OTU (或實質上全部細菌/細菌OTU)的豐度,其中個體CRC相關口腔細菌或複數種CRC相關口腔細菌的經調變豐度(視情況與個別或複數種CRC相關糞便細菌的經調變豐度組合)指示陽性大腸直腸癌狀態。舉例而言,在一些實施例中,該方法涉及測定口腔及/或糞便微生物菌相中存在的全部細菌/細菌OTU (或實質上全部細菌/細菌OTU)的豐度,其中至少兩種,例如至少五種CRC相關口腔細菌的經調變豐度(視情況與至少兩種,例如至少五種CRC相關糞便細菌的經調變豐度組合)指示陽性大腸直腸癌狀態。 在一個實施例中,測定口腔或糞便微生物菌相中的細菌豐度之步驟包含基於核酸之定量方法,例如16s rRNA基因擴增子測序。使用16s rRNA基因擴增子測序定性及定量測定樣品中之細菌的方法在文獻中有所描述且將為熟習此項技術者已知。在一個實施例中,口腔或糞便微生物菌相中的細菌分類為OTU。 在一個實施例中,測定口腔或糞便細菌之經調變豐度包含將樣品中偵測到的細菌豐度與健康對照組有關的參考豐度比較。此比較步驟可使用電腦進行。 在一個實施例中,口腔及/或糞便樣品中的OTU豐度與CRC狀態之步驟係採用數學模型建立關聯性。在一個實施例中,數學模型為隨機森林分類模型。 在本發明之一個實施例中,測定個體中的CRC狀態之方法採用額外CRC篩選測試,其視情況選自高靈敏度糞便潛血測試(FOBT)、大便DNA測試(FIT-DNA)、乙狀大腸鏡檢查、標準(或光學)大腸鏡檢、仿真大腸鏡檢、雙對比鋇劑灌腸、偵測基因wif-1中的甲基化程度、KEGG模組標記物之豐度或表現及CAZy家族標記物的豐度或表現。 本文亦描述用於本文所述之任何方法的系統。在一些實施例中,該系統可包含儲存裝置、比較模組及顯示模組。 本文亦描述包含自個體口腔獲得生物樣品之方法。在一些態樣中,該方法可進一步包含測定生物樣品中至少一種CRC相關口腔細菌的豐度。測定至少一種CRC相關口腔細菌的豐度可包含自至少一種CRC相關口腔細菌擴增16S rRNA聚核苷酸序列形成經擴增之16S rRNA聚核苷酸序列。在一些態樣中,經擴增之16S rRNA序列與選自SEQ ID NO 1至SEQ ID NO 326的聚核苷酸序列具有至少97%同源性。在一些態樣中,該方法可進一步包含與獲自健康個體之口腔的對照生物樣品相比,量測至少一種CRC相關口腔細菌的經調變豐度。在一些態樣中,至少一種CRC相關口腔細菌的經調變豐度可指示陽性大腸直腸癌狀態。在一些態樣中,該方法可進一步包含測定個體之大腸直腸癌狀態。 本發明的其他態樣及較佳實施例在下文所述的其他申請專利範圍中定義及描述。
本文提及之所有公開案、專利、專利申請案及其他參考文獻均出於所有目的以引用的方式併入本文中,引用的程度就如同專門且個別地指示將各個別公開案、專利或專利申請案以引用之方式併入且其內容完全列舉。Flemer B, Lynch DB, Brown JM等人, Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017;66:633-43. doi:10.1136/gutjnl-2015-309595的支持信息可在:http://gut.bmj.com/content/early/2017/10/07/gutjnl-2017-314814#DC1發現,其亦以全文引用的方式併入本文中。定義及一般偏好 當本文使用且除非另外明確指出,否則以下術語打算具有以下含義,該等術語在此項技術中可能享有的任何更廣(或更窄)含義除外: 除非上下文另外要求,否則本文使用單數應理解為包括複數,且反之亦然。結合實體使用的術語「一」或「一個」應解讀為提及一或多個該實體。因此,術語「一(a/an)」、「一或多」及「至少一」在本文中可互換使用。 如本文所用,術語「包含(comprise)」或其變體(諸如「包含(comprises/comprising)」應理解為指示包括任何列舉的整體(例如特徵、要素、特性、性質、方法/製程步驟或限制)或整體組(例如特徵、要素、特性、性質、方法/製程步驟或限制),但並非排除任何其他整體或整體組。因此,如本文所用,術語「包含」是包括性的或開放式的,且不排除額外未列舉之整體或方法/製程步驟。 如本文所用,使用術語「疾病」定義損害生理學功能的任何異常病況且與特定症狀具有關聯性。該術語廣泛地用於涵蓋任何病症、病痛、異常、病變、疾患、病況或症候群,其中生理功能削弱,但與病因的性質無關(或實際上形成是否為疾病的病原學基礎)。因此,其涵蓋由感染、外傷、損傷、手術、放射消融、中毒或營養缺乏引起的病況。 如本文所用,術語「治療(treatment/treating)」係指治癒、改善或減輕疾病的症狀或移除其病因(例如在溶酶體酶的病理學程度積累程度減輕)(或降低影響)的干預(例如向個體投與藥劑)。在此情形下,該術語與術語「療法」同義使用。 另外,術語「治療(treatment/treating)」係指在治療的群體內預防或延遲疾病發作或進展或降低(或根除)其發病率的干預(例如向個體投與藥劑)。在此情形下,術語治療與術語「預防」同義使用。 如本文所用,藥劑之有效量或治療有效量定義可投與個體但無過度毒性、刺激性、過敏反應或其他問題或併發症,與合理收益/風險比相稱,但足以提供所期望的效果(例如藉由個體之病況永久或暫時性改善所體現的治療或預防)之量。視個體之年齡及一般狀況、投與模式及其他因素而定,量將隨個體而變化。因此,儘管不可能指定確切有效量,但熟習此項技術者將能夠使用常規實驗及背景常識確定任何個體病例的適當「有效」量。此情形中之治療結果包括根除或減輕症狀、減少疼痛或不適、延長存活期、提高活動能力及臨床改善之其他標記物。治療結果無需為完全治癒。 在如上文所定義之治療及有效量的情況中,術語個體(情況允許時其應理解為包括「個體」、「動物」、「患者」或「哺乳動物」)定義指示治療的任何個體,特定言之哺乳動物個體。 哺乳動物個體包括(但不限於)人類;家畜;農畜;動物園動物;體育動物;寵物動物,諸如犬、貓、豚鼠、家兔、大鼠、小鼠、馬、家牛、牛;靈長類動物,諸如猿、猴、猩猩及黑猩猩;犬科動物,諸如犬及狼;貓科動物,諸如貓、獅子及老虎;馬科動物,諸如馬、驢及斑馬;食用動物,諸如牛、豬及綿羊;有蹄動物,諸如鹿及長頸鹿;以及嚙齒動物,諸如小鼠、大鼠、倉鼠及豚鼠。在較佳實施例中,個體為人類。 如本文所用,術語「大腸直腸癌狀態」應理解為意謂個體患有或發展大腸直腸癌之風險。因此,本發明之方法可用於鑑別與一般群體之風險相比,患者患有CRC之風險增高。採用至少兩種OTU,且該方法之診斷或預後能力與採用之OTU數通常成比例。在一個實施例中,個體無症狀。在另一實施例中,個體展現一或多種CRC症狀,在此情況下,可採用本發明之方法鑑別與具有相同症狀之其他個體相比,有症狀患者患有或發展CRC之風險增加。可採用本發明之方法來偵測患者具有CRC之風險,或偵測患者產生CRC之風險(即患有大腸直腸瘜肉之患者處於產生CRC之風險中)。「大腸直腸瘜肉」應理解為意謂大腸或直腸中存在瘜肉。術語「大腸直腸癌狀態」亦應理解為意謂測定CRC或瘜肉對治療之反應、判斷癌症之階段、監測癌症復發、監測癌症轉移或篩選個體以判斷其是否應接受大腸鏡檢。 如本文所用,術語「獲自口腔生物樣品」係指自口腔獲得之樣品,例如來自臉頰、牙齦、上顎、牙齒、嘴唇、舌頭獲得之拭子,或唾液或漱口水樣品。在一個較佳實施例中,樣品為從個體臉頰所獲得之拭子。 如本文所用,應用於樣品中的細菌或OTU之術語「相對豐度」應理解為意謂樣品中的細菌或OTU之豐度占樣品中總微生物菌叢的比例。 如本文所用,應用於來自個體之樣品中的細菌或OTU之術語「經調變相對豐度」應理解為意謂樣品中細菌或OTU之相對豐度與來自參考健康個體之相同樣品中的相對豐度(下文「參考相對豐度」)相比之差異。在一個實施例中,細菌或OTU展現與參考相對豐度相比增加的相對豐度。在一個實施例中,細菌或OTU展現與參考相對豐度相比降低的相對豐度。藉由比較樣品豐度值與絕對參考值的絕對方式也可以進行調變豐度之偵測。在一個實施例中,參考豐度值係從年齡及/或性別相稱之個體獲得。在一個實施例中,參考豐度值係從與樣品同一群體的個體獲得(即凱爾特血統、北非血統、中東血統)。自口腔及糞便樣品分離細菌之方法如下文所述,如用於偵測細菌豐度之方法。可採用任何適合方法來分離特定細菌物種或細菌屬,該等方法將為熟習此項技術者顯而易知。可採用偵測細菌豐度之任何適合方法,包括瓊脂平板定量分析法、螢光樣品定量、qPCR、16S rRNA基因擴增子測序及基於染料之代謝物消耗或代謝物產生分析法。 如本文所用,術語「CRC相關口腔細菌」係指與健康個體之口腔中的細菌或OTU之參考相對豐度相比,在患有CRC或大腸直腸瘜肉之個體口腔中展現相對經調變豐度的細菌或OTU。在一個實施例中,CRC相關口腔細菌係選自表1中提供之OTU (或表2或3中提供之OTU子組)。在一個實施例中,CRC相關口腔細菌係選自表7中提供之口腔OTU。(或表8或9中提供之口腔OTU子組)。在一個實施例中,CRC相關口腔細菌係選自表11中提供之OTU (或表12或13中提供之OTU子組)。在一個實施例中,CRC相關口腔細菌係選自表17中提供的口腔OTU。(或表18或19中提供之口腔OTU子組)。然而,熟習此項技術者應理解可替代地或另外地使用與健康個體口腔中的細菌或OTU之參考相對豐度相比在患有CRC或大腸直腸瘜肉之個體的口腔中展現經調變相對豐度的其他細菌或OTU。 如本文所用,術語「CRC相關糞便細菌」係指與健康個體之糞便樣品中的細菌或OTU之參考相對豐度相比,在患有CRC或大腸直腸瘜肉之個體的糞便樣品中展現經調變豐度的細菌或OTU。在一個實施例中,CRC相關糞便細菌或OTU係選自表4中提供之組(或表5或6中提供之OTU子組)。在一個實施例中,CRC相關糞便細菌係選自表7中提供之糞便OTU (或表8或9中提供之糞便OTU子組)。在一個實施例中,CRC相關糞便細菌或OTU係選自表14中提供之組。(或表15或16中提供之OTU子組)。在一個實施例中,CRC相關糞便細菌或OTU係選自表17中提供之糞便OTU (或表18或19中提供之糞便OTU子組)。然而,熟習此項技術者應理解可替代地或另外地使用與健康個體之糞便樣品中的細菌或OTU之參考相對豐度相比在患有CRC或大腸直腸瘜肉之個體的糞便樣品中展現經調變相對豐度的其他細菌或OTU。 如本文所用,術語「陽性CRC狀態」應理解為意謂個體患有CRC之風險增加、個體患有大腸直腸瘜肉之風險增加(且因此個體產生CRC、腫瘤生長、癌症階段進展、癌症復發、癌症轉移或對治療無反應之風險增加。 如本文所用,當應用於個體之術語「有CRC症狀」應理解成意謂個體展現至少一種臨床上公認的CRC症狀。症狀之實例包括糞便中帶血、正常排便習慣持續改變(即無明顯病因之腹瀉或便秘、頻繁或持續絞痛及/或大便比平常細)。 如本文所用,術語「CRC療法」係指在經治療之群體中預防或延遲大腸直腸癌發作或進展或降低(或消除)其發病率的治療性干預。在本文所述之某些實施例中,本文所述之方法進一步包含向個體提供CRC療法。CRC療法可為預防性或治療性的。CRC療法可包括藥物療法、手術切除或放射療法,或其任何組合。藥物療法可為化學療法或免疫療法或任何其他(生物)藥物干預。藥物可為化學或生物藥劑。CRC治療或預防中採用的藥物之實例包括阿瓦斯汀、貝伐單抗、坎普托沙、卡培他濱、絲蘭紮、奧沙米星、愛必妥、%-氟尿嘧啶、伊立替康、亞葉酸鈣、隆瑟夫、帕尼單抗、拉莫魯單抗、瑞戈非尼、斯蒂瓦加、韋康瑞林及希羅達。 如本文所用,術語「OTU」應理解為意謂一種基於序列之細菌分裂,由此細菌被分組成其16S rRNA基因擴增子的序列中共享97%或更高殘基一致性,全長基因或其中之可變區。因此,在本文檔中之表格中所列的數值分配之OTU分組對應於可藉由全部分裂成員展現97%或更高序列一致性的例示性OTU序列鑑別的細菌之組/分裂。下文附錄1中提供之相應OTU序列允許明確鑑別屬於各別OTU分裂的生物體範圍。在一些實施例中,OTU包含在16S rRNA基因擴增子的序列中(全長基因或其中的可變區)與附錄1中所述之相應OTU序列共用97%或更高殘基一致性的細菌。在一些實施例中,OTU包含在16S rRNA基因擴增子的序列中(全長基因或其中的可變區)與附錄1中所述之相應OTU序列共用97%或更高殘基一致性的細菌,且其中細菌來自附錄1中所述之相應屬。舉例而言,在一些實施例中,OTU0348包含在16S rRNA基因擴增子的序列中(全長基因或其中的可變區)與SEQ ID NO:88共用97%或更高殘基一致性的細菌,其中細菌來自普雷沃菌屬。附錄2提供口腔CRC相關OTU之列表、CRC患者比健康個體中OTU的相對豐度比、大腸直腸瘜肉患者比健康個體中OTU的相對豐度比以及OTU屬。 如本文所用,應用於任何給定表格中之OTU的術語「實質上全部」係指表格中的OTU的至少50%、60%、70%、80%、90%或95%。 如本文所用,應用於細菌或細菌OTU之術語「基於核酸之定量」係指基於細菌核酸之擴增來測定細菌豐度之方法。EP2955232(第11頁)中描述例示性方法,包括PCR、rtPCR、qPCR、高通量測序、元轉錄組測序及16S rRNA分析。在本文所述之方法中,使用對16S rRNA基因之V3/V4可變區特異之引子(SEQUENCE ID NO 189及190)進行16s rRNA分析。 如本文所用,如本文用於基於細菌OTU之經調變豐度測定或計算CRC狀態之術語「有關」應理解為意謂建立關聯性或計算方法之任何人工方法。本文所述之方法採用稱為隨機森林分類之數學建模技術,但亦可採用其他建模技術。因此,在一個實施例中,本發明之方法採用隨機森林分類方法。因此,在一個實施例中,本發明之方法可採用電腦程式使複數種OTU的經調變豐度與CRC狀態建立關聯性。 本文亦描述包含自個體口腔獲得生物樣品之方法。在一些態樣中,該方法可進一步包含測定生物樣品中至少一種CRC相關口腔細菌的豐度。測定至少一種CRC相關口腔細菌的豐度可包含自至少一種CRC相關口腔細菌擴增16S rRNA聚核苷酸序列形成經擴增之16S rRNA聚核苷酸序列。在一些態樣中,經擴增之16S rRNA序列與選自SEQ ID NO1至SEQ ID NO 326的聚核苷酸序列具有至少97%同源性。在一些態樣中,該方法可進一步包含與獲自健康個體之口腔的對照生物樣品相比,量測至少一種CRC相關口腔細菌的經調變豐度。在一些態樣中,至少一種CRC相關口腔細菌的經調變豐度可指示陽性大腸直腸癌狀態。在一些態樣中,該方法可進一步包含測定個體之大腸直腸癌狀態。在一些實施例中,該方法可進一步包含自個體獲得糞便樣品。在一些實施例中,該方法可進一步包含量測與自正常個體獲得之糞便樣品相比,該糞便樣品中至少一種CRC相關糞便細菌的經調變豐度。 在一些實施例中,本文所揭示之方法可進一步包含向個體投與藥劑。在一些實施例中,藥劑可包含以下中之至少一者:阿瓦斯汀、貝伐單抗、坎普托沙、卡培他濱、絲蘭紮、奧沙米星、愛必妥、%-氟尿嘧啶、伊立替康、亞葉酸鈣、隆瑟夫、帕尼單抗、拉莫魯單抗、瑞戈非尼、斯蒂瓦加、韋康瑞林及希羅達。 亦提供如上所述可用於實施本發明方法之套組。套組可包括本文所述之組合物中之一或多者。套組可包含口腔拭子。口腔拭子可配置成自個體口腔獲取生物樣品。個體可能懷疑患有大腸直腸癌。個體可能懷疑處於罹患大腸直腸癌的增加之風險中。套組可包含配置成接收生物樣品之可密封容器。套組可包含聚核苷酸引子。聚核苷酸引子可配置成擴增來自至少一種CRC相關口腔細菌的16S rRNA聚核苷酸序列形成經擴增之16S rRNA聚核苷酸序列,其中經擴增之16S rRNA序列具有與選自SEQ ID NO 1至SEQ ID NO 326之聚核苷酸序列至少97%同源性。套組可包含用於偵測經擴增之16S rRNA序列的偵測試劑。套組可包含使用說明書。 在一些實施例中,隨機森林(RF)分類器使用至少5%個體中存在的OTU的對數比例轉換值作為AUCRF包的函數AUCRF的輸入[50]。ROC曲線之間的差異顯著性可使用pROC包的函數roc.test評定[51]。在一些實施例中,使用Baxter開發方法[3]。示意圖描繪於圖5中。較佳地,在Baxter開發方法中,整個資料集經預處理(即過濾以排除存在於少於5%個體中的特徵),且隨後100%數據用作用於其餘開發方法的訓練資料集。首先,特徵選擇較佳使用由AUCRF R統計包執行的RF算法在CV之外執行[54]。其次,訓練資料較佳以10倍CV及/或留一法(LOO)CV使用。不存在驗證最終RF模型的獨立測試套件。 在一些實施例中,隨機森林(RF)分類器為LASSO開發方法,其包含兩步驟程序-最小絕對收縮及選擇算子(LASSO)特徵選擇,隨後是RF建模。此為內部開發方法且在本文進一步描述。其涉及預處理整個資料集(即較佳對其進行過濾以排除存在於少於5%個體中的特徵)。接著較佳對資料進行十倍交叉驗證(CV)。在10倍CV的每次迭代中,對90%資料集使用LASSO算法執行特徵選擇,其用作訓練集以在每次迭代內生成預測模型。LASSO藉由高效選擇相關特徵來提高模型的精確度及可解譯性,是一種藉由參數λ調整之方法。可藉由過濾資料集以僅包括由LASSO算法選擇之特徵在10倍CV訓練資料內生成模型,接著將RF用於該子集的後續建模。LASSO特徵選擇及RF建模皆可在10倍CV內進行,此產生內部驗證之特徵列表及內部10倍預測,以便產生對整個模型之預測值的估算。此方案之示意圖提供於圖6中。在一些實施例中,臨限值經Youden最佳化55 以提高靈敏度及特異性。 本發明之實施例亦提供用於執行測定個體中之CRC狀態之方法的系統(以及用於導致電腦系統的電腦可讀媒體)。本發明之實施例可經功能模組描述,其由電腦可讀媒體上記錄之電腦可執行指令來定義,且使電腦在執行時執行方法步驟。為清楚起見,模組按功能分開。然而,應該理解,模組/系統無需對應於精密代碼塊,且所描述之功能可藉由執行存儲於多種媒體上且在多個時間執行的各代碼部分來執行。此外,應瞭解,模塊可執行其他功能,因此模塊不限於具有任何特定功能或功能組。 通常參考圖4,電腦可讀儲存媒體#30可為可由電腦訪問的任何可用之有形媒體。電腦可讀儲存媒體包括在任何方法或技術中實施之用於儲存資訊(諸如電腦可讀指令、資料結構、程式模組或其他資料)的依電性及非依電性、抽取式及非抽取式有形媒體。電腦可讀儲存媒體包括(但不限於) RAM(隨機存取記憶體)、ROM(唯讀記憶體)、EPROM(可抹除可程式化唯讀記憶體)、EEPROM(電可抹除可程式化唯讀記憶體)、快閃記憶體或其他記憶體技術、CD-ROM(光碟唯讀記憶體)、DVD(數位多功能光碟)或其他光學儲存媒體、匣式磁帶、磁帶、磁碟存儲器或其他磁力儲存媒體、其他類型的易失性及非易失性記憶體以及可用於存儲所需資訊且可由電腦訪問的任何其他有形媒體,電腦包括前述及前述之任何適當組合。 在一或多個電腦可讀儲存媒體上實施之電腦可讀資料可由於經電腦執行例如作為一或多個程式之一部分來定義指令,發指令給電腦執行本文所述之功能及/或其多個實施例、變化及組合中之一或多者。此類指令可寫成多種程式化語言中之任一者,例如Java、J#、Visual Basic、C、C#、C++、Fortran、Pascal、Eiffel、Basic、COBOL組合語言及其類似物,或其多種組合中之任一者。上面實施此類指令之電腦可讀儲存媒體可駐留在系統或本文所述之電腦可讀儲存媒體中之任一者的一或多個組件上,可在一或多個此類組件上分佈。 電腦可讀儲存媒體可為可傳輸的,使得上面儲存之指令可裝載至任何電腦資源上以執行本文所論述之本發明之態樣。另外,應瞭解,如上所述的儲存在電腦可讀媒體上的指令不限於被實施為在主電腦上操作之應用程式之一部分的指令。實際上,指令可以用於程式化電腦以執行本發明之態樣的任何類型之電腦代碼(例如軟體或微碼)實施。電腦可執行指令可寫成適合電腦語言或幾種語言之組合。基礎計算生物學方法為一般技術者所已知且描述於例如Setubal及Meidanis等人, Introduction to Computational Biology Methods (PWS Publishing Company, Boston, 1997);Salzberg, Searles, Kasif, (編), Computational Methods in Molecular Biology, (Elsevier, Amsterdam, 1998);Rashidi及Buehler, Bioinformatics Basics:Application in Biological Science and Medicine (CRC Press, London, 2000)以及Ouelette and Bzevanis Bioinformatics:A Practical Guide for Analysis of Gene and Proteins (Wiley & Sons, Inc., 第2版, 2001)。 本發明之某些實施例的功能模組至少包括測定系統#40、視情況存在之儲存裝置#30、比較模組#80及顯示模組#110。功能模組可在一台或多台電腦上執行,或藉由使用一個或多個電腦網路執行。測定系統具有電腦可執行指令以提供例如電腦可讀形式之序列資訊。 測定系統#40可包含用於偵測本文所述之OTU中之至少一者的任何系統。此類系統通常將測定生物樣品中OTU的相對豐度。可使用諸如16s rRNA基因分析之標準程序。 另外,可測定其他因素,諸如年齡、性別、體重、吸菸及家族史。此等因素可與OTU結合用於評定CRC或大腸直腸瘜肉風險。 測定系統中測定之資訊可藉由儲存裝置#30讀數。如本文所用,「儲存裝置」意欲包括配置或適於儲存資料或資訊之任何適合計算或處理設備或其他裝置。適用於本發明之電子設備的實例包括獨立計算設備、包括區域網路(LAN)、廣域網路(WAN)、網際網路、企業內部網路及企業間網路之資料電信網路,以及區域及分佈式電腦處理系統。儲存裝置亦包括(但不限於):磁性儲存媒體,諸如軟磁碟、硬磁碟儲存媒體、磁帶,諸如CD-ROM、DVD之光學儲存媒體、諸如RAM、ROM、EPROM、EEPROM及其類似物之電子儲存媒體、通用硬碟機及此等類別之混合,諸如磁性/光學儲存媒體。儲存裝置經調適或配置用於在上面記錄代謝物豐度資訊。此類資訊可以數位形式提供,其可例如經網際網路、在磁盤上、經USB(通用串列匯流排)或經任何其他適合通信模式以電子方式傳輸及讀取。如本文所用,「儲存」係指用於在儲存裝置上編碼資訊之過程。熟習此項技術者容易採用任何目前已知的用於在已知媒體上記錄資訊之方法來產生包含與此等代謝物及其他妊娠因素有關之資訊的製造物。 在一個實施例中,對打算經比較模組讀取的儲存於儲存裝置中之參考資料進行比較,例如樣品中特定OTU之相對豐度與正常健康或確認CRC之對照組比較。 「比較模組」#80可使用多種可用軟體程式及格式進行比較,該比較可操作以比較測定系統中測定之OTU豐度資訊資料與參考樣品及/或儲存參考資料。在一個實施例中,比較模組配置成使用圖形識別技術對來自一或多個輸入項的序列資訊與一或多種參考資料圖形進行比較。比較模組可使用現有市售或可自由獲得之圖形比較軟體進行配置,且可針對所執行之特定資料比較進行最佳化。比較模組提供與CRC相關OTU有關之電腦可讀資訊。 比較模組或本發明之任何其他模組可包括操作關係資料庫管理系統、全球資訊網應用及全球資訊網伺服器之操作系統(例如UNIX)。全球資訊網應用可包括產生資料庫語言語句(例如結構化查詢語言(SQL)語句)所需的可執行碼。通常,可執行碼將包括嵌入型SQL語句。另外,全球資訊網應用可包括組態檔案,其含有多種軟體實體(包含伺服器以及必須存取的各種外部及內部資料庫以服務於使用者請求)的指針及位址。若伺服器分佈於兩個或更多個獨立電腦,則組態檔案可根據需要亦將對伺服器資源的請求導向適當硬體。在一個實施例中,全球資訊網伺服器支持TCP/IP方案。諸如此之區域網路有時稱為「企業內部網路」。此類企業內部網路的一個優點在於其允許與位於全球資訊網上的公共領域資料庫(例如GenBank或Swiss Pro全球資訊網站點)進行方便地通信。因此,在本發明之一個尤其較佳實施例中,使用者使用由網路瀏覽器及網路伺服器提供的HTML介面可直接存取存在於網際網路資料庫上的資料(經例如Hypertext鏈路)。 比較模組提供電腦可讀比較結果,該電腦可讀比較結果可以電腦可讀形式藉由預定義標準或由使用者定義之標準來處理,以部分地基於比較結果來提供內容,其可儲存及根據使用者的請求使用顯示模組#110輸出。 基於比較結果之內容可來自健康個體。或者,基於比較結果之內容可來自患有CRC或大腸直腸瘜肉之個體。 在本發明之一個實施例中,基於比較結果之內容顯示於電腦監視器#120上。在本發明之一個實施例中,基於比較結果之內容經可印刷媒體#130、#140顯示。顯示模組可為配置成自電腦接收的任何適合裝置且向使用者顯示電腦可讀資訊。非限制性實例包括例如通用電腦,諸如基於Intel PENTIUM型處理器、Motorola PowerPC、Sun UltraSPARC、Hewlett-Packard PA-RISC處理器之彼等通用電腦,可自加利福尼亞州桑尼維爾(Sunnyvale, California)之Advanced Micro Devices (AMD)獲得之多種處理器中之任一者),或任何其他類型之處理器,諸如平板顯示器、陰極射線管及其類似物之可視顯示裝置以及各種類型之電腦列印機。 在一個實施例中,使用全球資訊網瀏覽器提供使用者介面來顯示基於比較結果之內容。應理解,本發明之其他模組可適用於具有網頁瀏覽器介面。藉由網頁瀏覽器,使用者可構建自比較模組中檢索資料的請求。 因此,用戶通常將指向且點擊用戶介面元件,諸如在圖形使用者介面中通常使用之按鈕、下拉菜單、滾動條及其類似物。因此,本文所述之方法提供執行用於測定個體中之CRC狀態之方法的系統(以及用於致使電腦系統的電腦可讀媒體)。 本文所述之系統及電腦可讀媒體僅為用於在個體中執行診斷或預後方法的本發明之說明性實施例,且不打算限制本發明之範疇。本文所述之系統及電腦可讀媒體之變體是可能的且打算屬於本發明之範疇內。 機器之模組或在電腦可讀媒體中使用的模組可採取許多構形。舉例而言,功能可提供於單個機器上或分佈於多個機器上。 本發明亦提供一種電腦程式,其在電腦上執行時使電腦執行用於測定個體中之CRC狀態的過程,所述過程包含:輸入多種CRC相關口腔或糞便OTU的相對豐度資料;比較OTU豐度與OTU參考豐度;以及基於比較步驟測定CRC狀態之相關步驟。 上文描述口腔及糞便OTU的組及組合。優選地,測定個體之CRC狀態的步驟包含使用多變量分析測定CRC或大腸直腸瘜肉之可能性,其通常包含使用OTU之相對豐度及自一組參考相對豐度值獲得的分佈參數。在一個實施例中,多變量分析採用隨機森林分類模型。在另一實施例中,隨機森林分類模型為LASSO開發方法。範例 現將參看特定實例來描述本發明。此等僅為例示性的且僅出於說明之目的:其不打算以任何方式限於專利主張之範疇或所描述之發明。此等實例構成目前用於實踐本發明之最佳模式。實例 1 取樣 CRC-患者:總共招募到89名安排在科克梅西大學醫院接受大腸切除術之個體進行研究。排除標準為CRC、發炎性腸病(IBD)或發炎性腸症候群(IBS)的個人史。個體在手術之前一個月未使用抗生素治療,但在切除術之後幾個小時內靜脈內投與抗生素。在開始腸道準備之前對糞便樣品自行取樣,在冰上運輸至實驗室且在-80℃下冷凍。總共分析來自69名個體之大便樣品。藉由用拭子擦拭兩頰的內部獲得口腔樣品。樣品儲存於-80° 。總共分析來自45名個體之口腔拭子樣品。 瘜肉:總共招募到29名安排在科克梅西大學醫院接受大腸鏡檢之個體進行研究。排除標準包括IBD及IBS以及在大腸鏡檢之前1個月使用抗生素。糞便樣品在開始腸道準備之前或在手術之後至少4週自行取樣,在冰上運輸至實驗室且在-80℃下冷凍。總共分析來自24名個體之大便樣品。藉由用拭子擦拭兩頰的內部獲得口腔樣品。樣品儲存於-80℃。總共分析來自22名個體之口腔拭子樣品。 健康對照組:總共招募到31名安排在科克梅西大學醫院接受大腸鏡檢之個體進行研究。排除標準包括IBD、IBS及CRC。糞便樣品在開始腸道準備之前或在手術之後至少4週自行取樣,在冰上運輸至實驗室且在-80℃下冷凍。自先前收集的健康老年人組選出額外38份大便樣品12 。總共分析來自62名健康個體之大便樣品。藉由用拭子擦拭兩頰的內部獲得口腔樣品。樣品儲存於-80℃。總共分析來自26名健康個體之口腔拭子樣品。 20 :所分析之樣品的概述 該研究由UCC倫理委員會根據研究編號APC033批准。 根據Flemer等人2 之方法進行DNA/RNA提取、16S rRNA擴增子測序及16S擴增子測序資料之分析。統計分析 統計分析以R進行23 。各組之間的OTU的差異豐度使用DESeq2評定32 。本文別處描述測定適用作大腸病灶之生物標記物的OTU之隨機森林分類模型。3 結果 口腔微生物菌叢 藉由測序進行微生物菌叢分佈根據基於序列之分裂或操作分類單元(OTU)鑑別細菌類群。幾種口腔微生物菌叢OTU(分組為97%序列相似性)在患有CRC之個體及健康對照組之間豐度有差異(p<0.1),其中一個OTU分類為鏈球菌屬(較高CRC豐度)且三個OTU分類為卟啉單胞菌屬、嗜血桿菌屬及普雷沃氏菌屬(較低CRC豐度)為豐度差異最大的分類群。幾乎全部豐度有差異之OTU(12/15)在患有CRC之個體中之豐度均比健康個體中少。總體而言,與健康個體相比,患有CRC之個體的口腔微生物菌叢中放線菌門及壁門菌屬之成員顯著更豐富。口腔及糞便微生物菌叢 - 模型 先前建立之隨機森林分類模型用作鑑別患有瘜肉及CRC之個體的篩選工具3 。該模型鑑別31種口腔微生物菌叢OTU,其將患有CRC之個體與健康對照組區分開來。偵測靈敏度為58%(95% CI [35.56%,84.44%]),特異性為96%(AUC:0.893;95% CI [0.8181,0.9682];表2及圖2)。該模型亦可用於基於10種口腔OTU之豐度偵測患有大腸直腸瘜肉之個體(55%;95% CI [31.82%,90.91%];AUC:0.888;95% CI [0.7944,0.9819];表3)。結果亦與先前報導相一致3 , 4 ,因為所選OTU之糞便微生物菌叢豐度能夠區分患有CRC或瘜肉之個體與健康個人(圖1)。 口腔及大便微生物菌叢資料之組合將針對CRC之模型靈敏度提高至76%(95% CI [44%,92%],AUC:0.916;95% CI [0.8379,0.9936])以偵測CRC,且針對瘜肉之模型靈敏度提高至82% (95% CI [58.82%,100%],AUC:0.913;95% CI [0.7932,1])以偵測瘜肉(兩者:特異性95%)(表7)。分析42種細菌OTU之豐度對於患有瘜肉之個體與健康對照組之間的差異是最佳的(23種OTU使用口腔豐度,19種OTU使用糞便豐度)(表9);用於偵測CRC之模型使用77種OTU(24種口腔OTU,53種大便OTU)(表8)。實例 2 取樣、 DNA 提取及 16S rRNA 基因擴增子測序 實例2中分析之樣品與如實例1中所述之樣品相同。取樣之詳細描述如下:CRC患者:招募安排在科克的梅西大學醫院接受大腸切除術之個體進行研究。此等個體表現出改變的排便習慣、直腸出血或其他因素,且在手術之前對癌症進行過合理診斷。排除標準為CRC、IBD或IBS個人史。個體在手術之前一個月未使用抗生素治療,但在切除術之後幾個小時內靜脈內投與抗生素。手術之後,在RNAlater(Qiagen, Hilden, Germany)收集來自至多5個不同部位的兩種樣品:OFFD(離開遠端;朝向大腸之遠端2-5 cm)、OFFP(離開近端;朝向大腸之近端2-5 cm)、UDD (未患病遠端;儘可能遠離癌症;遠端;通常10-30 cm)及UDP(未患病近端;儘可能遠離癌症;近端,通常10-30 cm)。將樣品置於3 mL RNAlater中,儲存在4℃下12小時,接著儲存在-20℃下。在開始腸道準備之前對糞便樣品自行取樣,在冰上運輸至實驗室且在-80℃下冷凍。 瘜肉:自常規大腸鏡檢之患者收集瘜肉切片[34]。在如上文所述之RNAlater中獲得來自患有瘜肉之個體的切片樣品。主要地,自患有瘜肉之個體收集未患病組織,因為保留小瘜肉樣品供病理學家檢驗。內窺鏡檢查時每名個體獲得至多兩個切片,一個來自降大腸之未患病組織且一個來自升大腸之未患病組合。排除標準包括IBD及IBS以及在手術之前1個月使用抗生素。未自患有瘜肉之個體取樣大便樣品。 健康對照組:此等個體表現出改變的排便習慣、直腸出血或其他因素。在如上文所述之RNAlater中獲得來自健康對照組之切片樣品。排除標準包括IBD、IBS及CRC以及在取樣之前1個月使用抗生素。在內窺鏡檢查時自每位個體獲得至多三個切片,其中一個來自降大腸、一個來自橫大腸且一個來自升大腸。如上文所述收集大便樣品。自先前收集的健康老年人組選出額外樣品[35]。 藉由用拭子擦拭兩頰的內部獲得口腔樣品。將口腔拭子儲存於-80℃下。對刷牙或漱口水沒有限制。圖13提供所分析之樣品的概述。 該研究由大學倫理委員會根據研究編號APC033批准。 DNA/RNA提取及16S rRNA基因擴增子測序 自全部樣品類型同時提取DNA及RNA之方案在別處描述[34]。簡言之,使用來自Qiagen (Hilden, Germany)之AllPrep DNA/RNA套組提取基因組DNA及總RNA。使用具有250 μl 0.1 mm滅菌玻璃珠及數個3-4 mm滅菌玻璃珠的珠粒管在MagnaLyzer (Roche, Penzberg, Germany)中使樣品均質化。根據AllPrep DNA/RNA提取套組(Qiagen, Hilden, Germany)進行剩餘DNA提取。 使用由Illumina (Illumina, San Diego, USA)開發之16S宏基因組測序文庫製備方案進行16S rRNA基因擴增子測序。簡言之,200 ng黏膜DNA (50 ng糞便樣品,25 ng口腔拭子樣品)採用靶向16S rRNA基因之V3/V4可變區之引子擴增:16S擴增子PCR正向引子(V3區域) 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG (SEQUENCE ID NO:189);16S擴增子PCR反向引子(V4區域) 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC 13 (SEQUENCE ID NO:190)。將產物純化且連接正向和反向條碼(Nextera XT v2 Index Kit set A and D, Illumina, San Diego, USA)。使用2 × 250 bp化學試劑在MiSeq測序儀(Illumina, San Diego, USA)上在GATC (Konstanz, Germany)對擴增子庫進行測序。16S 擴增子測序資料之分析 來自愛爾蘭群組之16S擴增子序列如先前所述處理[34]。吾人亦使用與Gevers等人[41]有關的擴增子測序資料進行綜合分析,且對與本研究有關的資料進行類似處理。為了比較愛爾蘭CRC群組(測序區域:V3-V4)中獲得之細菌操作分類單位(OTU)與克羅恩氏病群組(V4)中獲得之OTU,吾人使用cutadapt將CRC群組之序列縮短至CD群組之測序區域[36],接著一起處理兩個研究之序列。 簡言之,使用cutadapt移除適配器[36]且使用FLASH合併雙端讀取[37]。使用QIIMEs [38] split_libraries_fastq.py指令碼分離庫。使用usearch [39](開放參考方法)獲得OTU(操作分類單位)表。使用母[40]及RDP參考版本對代表性OTU序列進行分類14。吾人自進一步分析中移除三個OTU,其在經測序之陰性對照中偵測到(OTU分類為鹽單胞菌屬(2 OTU)及希瓦氏菌屬)。因為吾人此前[34]發現在來自OFF癌症(OFFD、OFFP、UDD及UDP)的四個樣品之間沒有差異,所以吾人將此等序列根據個體合併,且在此實例中將此合併之樣品稱為OFF。類似地,吾人在來自健康對照組之左側及右側切片之間未偵測到差異[34],且因此彙集每個個體之序列。對關於Gevers等人[41]之擴增子測序資料進行類似地分析。為了比較愛爾蘭CRC群組(測序區域:V3-V4)中獲得之細菌OTU與克羅恩氏病(CD)群組(V4)中獲得之OTU,吾人使用cutadapt將CRC群組之序列縮短至CD群組之測序區域,接著如上文所述一起處理兩個研究之序列。統計分析 統計分析以R進行[42]。使用基礎R或ggplot2進行標準可視化[43]。未加權之UniFrac距離在QIIME中使用提交至每個樣品最低測序深度(5652個序列)之資料計算[38],且使用函數s.class進行可視化[44]。使用距離矩陣及素食包之函數adonis,使用置換方差分析(PERMANOVA)建立統計顯著性[45]。使用微生物菌相組成分析(ANCOM)[47]以及FDR <.1且原始讀數來評估各組之間OTU的差異豐度。其他P值使用函數p.adjust(基本R的統計包)及本傑明及霍赫貝格法(the method of Benjamini and Hochberg)進行調整[48]。若未另外說明,則假設經調整之P值等於或低於0.05的顯著性。CRC 分類器 本文別處描述測定適用作大腸病灶之生物標記物的OTU之隨機森林(RF)分類器[49]。簡言之,吾人使用至少5%個體中存在的OTU的對數比轉換值作為AUCRF包之函數AUCRF的輸入[50]。ROC曲線之間的差異顯著性可使用pROC包的函數roc.test評定[51]。示意圖描繪於圖5中。吾人亦採用內部開發方法進行分類,其由兩步驟程序組成-最小絕對收縮及選擇算子(LASSO)特徵選擇,隨後RF建模。對整個數據集進行預處理(即過濾以排除少於5%個體中存在之特徵)。對資料進行十倍交叉驗證(CV)。在10倍CV的每次迭代中,對90%資料集使用LASSO算法來執行特徵選擇,其用作訓練集以在每次迭代內生成預測模型。LASSO藉由高效選擇相關特徵來提高模型的精確度及可解譯性,是一種藉由參數λ調整之方法。藉由過濾資料集以僅包括由LASSO算法選擇之特徵在10倍CV訓練資料內生成模型,且將RF用於此子集的後續建模。LASSO特徵選擇及RF建模皆在10倍CV內進行,此產生內部驗證之特徵列表及內部10倍預測,以便產生對整個模型之預測值的估算。吾人報導由模型選擇之預設臨限值的結果及最佳化臨限值以提高靈敏度及特異性之Youden最佳化結果。此方案之示意圖呈現於圖6中。結果 CRC中之口腔微生物菌叢顯著不同 吾人使用16S rRNA基因擴增子測序分析來自患有CRC、大腸直腸瘜肉之個體及健康對照組的多個身體部位之微生物菌叢(圖13)。 藉由測序進行微生物菌叢分佈根據基於序列之分裂或OTU鑑別細菌分類群。細菌OTU之整體口腔分佈(以97%序列相似性分組)在具有CRC之個體與健康對照組之間顯著不同(未加權UniFrac距離的置換分析方差,圖7)。此外,在患有CRC之個體與健康對照組之間,八個口腔微生物菌叢OTU豐度有差異(ANCOM,FDR <0.05)(圖8)。豐度有差異之OTU分類為嗜血桿菌屬、微單胞菌屬、普雷沃菌屬、擬普雷沃菌屬、毛絨厭氧桿菌屬、奈瑟氏菌屬、纖毛菌屬及鏈球菌屬(圖8)。幾乎全部豐度有差異之OTU(7/8)在患有CRC之個體中之豐度均比健康個體中少。儘管在患有瘜肉之個體與健康對照組之間整體微生物菌叢相似,但兩個組之間有四個個別細菌OTU豐度有差異(圖8),其中三個在CRC中亦差異很大。瘜肉的四種豐度有差異的OTU分類為微單胞菌屬、鏈球菌屬、纖毛菌屬及普雷沃菌屬(圖8)。作為 CRC 之生物標記物的口腔及大便微生物菌叢 CRC目前的無創篩選工具可基於大腸病灶釋放之糞便中的血液痕跡可靠地偵測晚期癌瘤,但此等方法在偵測早期病灶時的靈敏度低[22]。受上述發現的啟發,吾人藉由採用先前建立之RF分類方法評定口腔微生物菌叢作為用於鑑別患有瘜肉及CRC之個體的篩選工具的適用性[49](圖5)。該模型鑑別16種口腔微生物菌叢OTU,其將患有CRC之個體與健康對照組區分開來(表12)。偵測靈敏度為53%(95% CI(31.11%至93.33%),特異性為96%(曲線下面積(AUC):0.9;95% CI(0.83至0.9);圖9及圖10)。該模型亦可基於12種口腔OTU之豐度(表13)用於偵測患有大腸直腸瘜肉之個體(靈敏度67%;95% CI(23.81%至90.48%);AUC:0.89;95% CI(0.8至0.89);圖9及圖11)。吾人之發現亦與先前報導相一致[3,4],因為所選OTU之糞便微生物菌叢豐度能夠區分患有CRC或瘜肉之個體與健康個人(圖9)。然而,吾人之模型使用糞便微生物菌叢偵測患有CRC之個體的靈敏度比先前報導顯著較低(靈敏度為22%;95% CI(4.35%至52.17%);特異性為95%,AUC 0.81;95% CI (0.73至0.81))。口腔及大便微生物菌叢資料之組合提高模型靈敏度至76% (95% CI (59.9%至92%),AUC:0.94;95% CI (0.87至0.94)用於偵測CRC且88%用於偵測瘜肉(95% CI (68.75%至100%),AUC:0.98;95% CI (0.95至0.98)用於偵測瘜肉(兩者:靈敏度94%或更高) (圖9)。分析28種細菌OTU之豐度對於患有瘜肉之個體與健康對照組之間的差異是最佳的(表15;對於25種OTU,使用口腔豐度,而對於16種OTU,使用糞便豐度);用於偵測CRC之模型使用63種OTU(表16;29種口腔OTU及34種大便OTU)。 吾人能夠確認用於CRC篩選的口腔微生物菌叢之預測值,其係藉由採用使用LASSO特徵選擇步驟之內部開發方法及10倍CV範圍內的RF分類器 (參看圖6)。當使用預設可能性臨限值且當應用於口腔拭子微生物菌叢資料集(表12及表13)時,此方法預測腺瘤分別獲得74%靈敏度及90%特異性(AUC 0.91),而預測CRC則分別為98%靈敏度及70%特異性(AUC 0.96)。圖12顯示完整的值列表。毛螺菌科低大腸豐度有利於與 CRC 有關之口腔病原體在腸道黏膜定殖 由於口腔細菌與CRC切片上所發現的經改變微生物菌叢具有關聯,且吾人目前發現表徵口腔微生物菌叢分佈可能用於CRC偵測,因此吾人假設口腔微生物菌叢通常可反映在腸道微生物菌叢組成中。然而,與健康對照組相比,通常富集在大腸直腸腫瘤上及存在於口腔及大腸兩者中之細菌在罹患CRC個體口腔黏膜中的豐度較低,該等細菌諸如卟啉單胞菌屬、微單胞菌屬及梭桿菌屬(圖8;對於一種微單胞菌屬OTU在統計學上有顯著差異)。 尤其隨著負擔得起高通量DNA測序技術之發展,可使用微生物菌相結構作為健康及疾病的生物標記物。現在有可能以低於10美元的測序成本獲得關於樣品之微生物菌叢的深刻瞭解。此外,用於對測序資料進行電子雜交分析之改良開發方法使研究人員及臨床醫生能夠將16S rRNA擴增子測序資料快速轉換為臨床資訊資料,而無需專門的大型計算設施。近期報導顯示,係使用16S rRNA擴增子測序[3, 4, 13, 52]宏基因組測序[4]及qPCR [13]篩選大腸病灶的糞便微生物菌叢分佈的潛在適用性。此外,可藉由組合微生物菌叢信息及FIT來改良診斷試驗[3,4]。吾人使用口腔及糞便微生物菌叢OTU之組合進行CRC及腺瘤偵測所獲得之AUC值(分別為0.94及0.98)以及特異性(兩者皆為95%)及靈敏度(分別為76%及88%)與上文報導者-即研究(範圍為0.64至0.93)相當或比其高,表明納入口腔微生物菌叢資訊有可能提高當前診斷測試的性能。由於早期發現大腸疾病的預後及治療重要性,因此特別有前景的是偵測腺瘤(88%)的高靈敏度。相比之下,Baxter等人[3]報導單獨使用FIT或糞便微生物菌叢組合物偵測腺瘤之靈敏度低於20%,且使用組合時靈敏度低於40%(特異性> 90%)。吾人之分析顯著改良這一點,且吾人能夠藉由採用LASSO及RF特徵選擇的獨立分類策略來確認口腔微生物菌叢之值以預測大腸病灶。 吾人發現CRC及健康個體中口腔病原體的存在及豐度與毛螺菌科(諸如丁酸弧菌屬、布勞特氏菌屬及羅斯拜瑞氏菌屬)的豐度呈負相關,表明此等細菌亦起重要保護作用。腸道微生物菌叢防止包括病原體之環境細菌在腸內定殖的概念已充分確立[53],且根據吾人之資料,在CRC及CD之情況下亦相關。等效物 前述描述細節代表本發明之較佳實施例。考慮到此等描述,熟習此項技術者可想到實踐中的許多修改及變化。彼等修改及變化旨在涵蓋於其隨附申請專利範圍內。參考文獻 1. Polk, D. B. & Peek, R. M. Helicobacter pylori:gastric cancer and beyond. Nat. Rev. Cancer 10, 403-414 (2010). 2. Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut gutjnl-2015-309595 (2016). doi:10.1136/gutjnl-2015-309595 3. Baxter, N. T., Ruffin, M. T., Rogers, M. A. M. & Schloss, P. D. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 8, 1-10 (2016). 4. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 10, (2014). 5. Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1, 16 (2013). 6. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292-298 (2012). 7. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299-306 (2012). 8. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15, (2009). 9. Arthur, J. C. et al. Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science 338, 120-123 (2012). 10. Kostic, A. D. et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe 14, 207-215 (2013). 11. Rubinstein, M. R. et al. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe 14, 195-206 (2013). 12. Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6, 8727 (2015). 13. Liang, J. Q. et al. Fecal Bacteria Act as Novel Biomarkers for Non-Invasive Diagnosis of Colorectal Cancer. Clin. Cancer Res. clincanres.1599.2016 (2016). doi:10.1158/1078- 0432.CCR-16-1599 14. Pushalkar, S. et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 12, 144 (2012). 15. Schmidt, B. L. et al. Changes in Abundance of Oral Microbiota Associated with Oral Cancer. PLOS ONE 9, e98741 (2014). 16. Chen, X. et al. Oral Microbiota and Risk for Esophageal Squamous Cell Carcinoma in a High-Risk Area of China. PLOS ONE 10, e0143603 (2015). 17. Farrell, J. J. et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61, 582-588 (2012). 18. Torres, P. J. et al. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ 3, e1373 (2015). 19. Kato, I. et al. Oral microbiome and history of smoking and colorectal cancer. J. Epidemiol. Res. 2, (2016). 20. Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13, R42 (2012). 21. Bassis, C. M. et al. Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. mBio 6, e00037-15 (2015). 22. Hundt, S., Haug, U. & Brenner, H. Comparative Evaluation of Immunochemical Fecal Occult Blood Tests for Colorectal Adenoma Detection. Ann. Intern. Med. 150, 162-169 (2009). 23. Flanagan, L. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1381-1390 (2014). 24. Ito, M. et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int. J. Cancer 137, 1258-1268 (2015). 25. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174- 180 (2011). 26. Heller, D. et al. Microbial Diversity in the Early In Vivo-Formed Dental Biofilm. Appl. Environ. Microbiol. 82, 1881-1888 (2016). 27. Palmer Jr, R. J. Composition and development of oral bacterial communities. Periodontol. 2000 64, 20-39 (2014). 28. Arora, N., Mishra, A. & Chugh, S. Microbial role in periodontitis:Have we reached the top? Some unsung bacteria other than red complex. J. Indian Soc. Periodontol. 18, 9-13 (2014). 29. Jover-Dı́az, F., Cuadrado, J. M., Laveda, R., Andreu, L. & Merino, J. Porphyromonas asaccharolytica liver abscess. Anaerobe 9, 87-89 (2003). 30. Socransky, S. s., Haffajee, A. d., Cugini, M. a., Smith, C. & Kent, R. L. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134-144 (1998). 31. Gevers, D. et al. The Treatment-Naive Microbiome in New-Onset Crohn's Disease. Cell Host Microbe 15, 382-392 (2014). 32. Love MI, Huber W and Anders S (2014). 「Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.」 Genome Biology, 15, pp. 550. doi:10.1186/s13059-014-0550-8. 33. Helicobacter pylori, gastric MALT lymphoma, and adenocarcinoma of the stomach. Go MF, Smoot DT. Semin Gastrointest Dis. 2000 Jul;11(3):134-41. 34. Flemer B, Lynch DB, Brown JM et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017;66 :633-43. doi:10.1136/gutjnl-2015-309595. 35. Claesson MJ, Jeffery IB, Conde S et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488 :178-84. doi:10.1038/nature11319. 36. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 2011;17 . doi:10.14806/ej.17.1.200 pp. 10-12. 37. Magoc T, Salzberg SL. FLASH:Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011;27 :2957-63. doi:10.1093/bioinformatics/btr507. 38. Caporaso JG, Kuczynski J, Stombaugh J et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7 :335-6. doi:10.1038/nmeth.f.303. 39. Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010;26 :2460-1. doi:10.1093/bioinformatics/btq461. 40. Schloss PD, Westcott SL, Ryabin T et al. Introducing mothur:Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75 :7537-41. doi:10.1128/AEM.01541-09. 41. Gevers D, Kugathasan S, Denson LA et al. The treatment-naive microbiome in new-onset crohn's disease. Cell Host Microbe 2014;15 :382-92. doi:10.1016/j.chom.2014.02.005. 42. R Core Team. R:A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing 2016. https://www.R-project.org/. 43. Wickham H. Ggplot2:Elegant graphics for data analysis. Springer-Verlag New York 2009. http://ggplot2.org. 44. Dray S, Dufour A-B. The ade4 package:Implementing the duality diagram for ecologists. Journal of Statistical Software 2007;22 :1-20. doi:10.18637/jss.v022.i04. 45. Oksanen J, Blanchet FG, Friendly M et al. Vegan:Community ecology package. 2017. https://CRAN.R-project.org/package=vegan. 46. Friedman EJ Jonathan AND Alm. Inferring correlation networks from genomic survey data. PLOS Computational Biology 2012;8 :1-11. doi:10.1371/journal.pcbi.1002687. 47. Mandal S, Van Treuren W, White RA et al. Analysis of composition of microbiomes:A novel method for studying microbial composition. Microb Ecol Health Dis 2015;26 :27663. doi:10.3402/mehd.v26.27663. 48. Benjamini Y, Hochberg Y. Controlling the false discovery rate:A practical and powerful approach to multiple testing. 49. Baxter NT, Ruffin MT th, Rogers MA et al. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med 2016;8 :37. doi:10.1186/s13073-016-0290-3. 50. Urrea V, Calle M. AUCRF:Variable selection with random forest and the area under the curve. 2012. https://CRAN.R-project.org/package=AUCRF. 51. Robin X, Turck N, Hainard A et al. PROC:An open-source package for r and s+ to analyze and compare roc curves. BMC Bioinformatics 2011;12 :77. 52. Shah MS, DeSantis TZ, Weinmaier T, et al, Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut 2017 doi:10.1136/gutjnl-2016-313189. 53. Zhang C, Derrien M, Levenez F, et al,. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. Isme J 2016;10:2235-45.doi:10.1038/ismej.2016.13. 54. Calle, M. et al. AUC-RF:A new strategy for genomic profiling with random forest, Human Heredity, 72(2):121-132. 55. Youden, W.J. (1950). "Index for rating diagnostic tests". Cancer. 3:32-35. doi:10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3.附錄 1 >OTU0001 [SEQUENCE ID 1] 埃希氏桿菌屬/志賀桿菌屬>OTU0002 [SEQUENCE ID 2] 布勞特氏菌屬>OTU0003 [SEQUENCE ID 3] 糞桿菌屬>OTU0006 [SEQUENCE ID 4] 瘤胃球菌屬2>OTU0007 [SEQUENCE ID 5] 鏈球菌屬>OTU0008 [SEQUENCE ID 6] 羅斯拜瑞氏菌屬>OTU0012 [SEQUENCE ID 7] 丁酸弧菌屬>OTU0013 [SEQUENCE ID 8] 羅斯拜瑞氏菌屬>OTU0015 [SEQUENCE ID 9] 嗜血桿菌屬>OTU0016 [SEQUENCE ID 10] 鏈球菌屬>OTU0018 [SEQUENCE ID 11] 芽殖菌屬 >OTU0019 [SEQUENCE ID 12] 狹義梭菌屬>OTU0020 [SEQUENCE ID 13] 擬桿菌屬>OTU0022 [SEQUENCE ID 14] 副擬桿菌屬>OTU0026 [SEQUENCE ID 15] 多爾氏菌屬>OTU0029 [SEQUENCE ID 16] 雙叉桿菌屬>OTU0030 [SEQUENCE ID 17] 糞球菌屬>OTU0031 [SEQUENCE ID 18] 狹義梭菌屬>OTU0038 [SEQUENCE ID 19] 別樣桿菌屬>OTU0040 [SEQUENCE ID 20] 擬桿菌屬>OTU0041 [SEQUENCE ID 21] 奈瑟氏菌屬>OTU0042 [SEQUENCE ID 22] 梭菌_XI >OTU0045 [SEQUENCE ID 23] 未分類.毛螺菌科>OTU0049 [SEQUENCE ID 24] 未分類.毛螺菌科>OTU0050 [SEQUENCE ID 25] 韋榮球菌屬>OTU0054 [SEQUENCE ID 26] 擬桿菌屬>OTU0059 [SEQUENCE ID 27] 薩特菌屬>OTU0061 [SEQUENCE ID 28] 雙叉桿菌屬>OTU0063 [SEQUENCE ID 29] 梭桿菌屬>OTU0065 [SEQUENCE ID 30] 柯林斯菌屬>OTU0067 [SEQUENCE ID 31] 梭菌_XlVa>OTU0072 [SEQUENCE ID 32] 鏈球菌屬>OTU0073 [SEQUENCE ID 33] 未分類.壁門菌屬 >OTU0075 [SEQUENCE ID 34] 梭菌_XlVa>OTU0080 [SEQUENCE ID 35] 普雷沃菌屬>OTU0081 [SEQUENCE ID 36] 奈瑟氏菌屬>OTU0083 [SEQUENCE ID 37] 孿生球菌屬>OTU0085 [SEQUENCE ID 38] 嗜膽菌屬>OTU0086 [SEQUENCE ID 39]>OTU0087 [SEQUENCE ID 40] 微單胞菌屬>OTU0089 [SEQUENCE ID 41] 擬桿菌屬>OTU0092 [SEQUENCE ID 42] 嗜血桿菌屬>OTU0093 [SEQUENCE ID 43] 梭菌_IV>OTU0095 [SEQUENCE ID 44] 普雷沃菌屬 >OTU0097 [SEQUENCE ID 45] 消化鏈球菌屬>OTU0105 [SEQUENCE ID 46] 梭菌_IV>OTU0109 [SEQUENCE ID 47] 卟啉單胞菌屬>OTU0112 [SEQUENCE ID 48] 梭菌_XlVa>OTU0114 [SEQUENCE ID 49] 副薩特菌屬>OTU0115 [SEQUENCE ID 50] 梭菌_XlVa>OTU0120 [SEQUENCE ID 51] 雙叉桿菌屬>OTU0130 [SEQUENCE ID 52] 索拉桿菌屬>OTU0134 [SEQUENCE ID 53] 考拉桿菌屬>OTU0135 [SEQUENCE ID 54] 赫斯佩爾氏菌屬>OTU0141 [SEQUENCE ID 55] 凝集桿菌屬 >OTU0142 [SEQUENCE ID 56] 小桿菌屬>OTU0148 [SEQUENCE ID 57] 黃桿菌屬>OTU0149 [SEQUENCE ID 58] 布勞特氏菌屬>OTU0155 [SEQUENCE ID 59] 乳桿菌屬>OTU0157 [SEQUENCE ID 60] 纖毛菌屬 >OTU0158 [SEQUENCE ID 61] 未知>OTU0161 [SEQUENCE ID 62] 未分類.毛螺菌科>OTU0167 [SEQUENCE ID 63] 鏈球菌屬>OTU0171 [SEQUENCE ID 64] 未知>OTU0173 [SEQUENCE ID 65] 未知>OTU0174 [SEQUENCE ID 66] 金氏菌屬>OTU0175 [SEQUENCE ID 67] 凝集桿菌屬>OTU0176 [SEQUENCE ID 68] 彎曲桿菌屬>OTU0187 [SEQUENCE ID 69] 副普雷沃菌屬>OTU0194 [SEQUENCE ID 70] 擬桿菌屬>OTU0206 [SEQUENCE ID 71] 梭菌_IV >OTU0210 [SEQUENCE ID 72] 未知>OTU0217 [SEQUENCE ID 73] 擬普雷沃菌>OTU0228 [SEQUENCE ID 74] 未知>OTU0233 [SEQUENCE ID 75] 二氧化碳嗜纖維菌屬>OTU0244 [SEQUENCE ID 76] 二氧化碳嗜纖維菌屬>OTU0251 [SEQUENCE ID 77] 假黃桿菌屬>OTU0261 [SEQUENCE ID 78] 未知>OTU0277 [SEQUENCE ID 79] 艾肯菌屬>OTU0283 [SEQUENCE ID 80] 坦納菌屬>OTU0290 [SEQUENCE ID 81] 奈瑟氏菌屬>OTU0299 [SEQUENCE ID 82] 普雷沃菌屬 >OTU0303 [SEQUENCE ID 83] 未分類.黃桿菌科>OTU0306 [SEQUENCE ID 84] 未知>OTU0317 [SEQUENCE ID 85] 毛絨厭氧桿菌屬>OTU0324 [SEQUENCE ID 86] 月形單胞菌屬>OTU0337 [SEQUENCE ID 87] 心桿菌屬>OTU0348 [SEQUENCE ID 88] 普雷沃菌屬>OTU0350 [SEQUENCE ID 89] 放線菌屬>OTU0351 [SEQUENCE ID 90] 未知>OTU0358[SEQUENCE ID 91] 未知>OTU0359 [SEQUENCE ID 92] 未知>OTU0361 [SEQUENCE ID 93] 丁酸弧菌屬 >OTU0362[SEQUENCE ID 94] 未知>OTU0364 [SEQUENCE ID 95] 未分類.梭菌目>OTU0366[SEQUENCE ID 96] 未知>OTU0369 [SEQUENCE ID 97] 未知>OTU0371 [SEQUENCE ID 98] 未知>OTU0380 [SEQUENCE ID 99] 未知>OTU0389 [SEQUENCE ID 100] 普雷沃菌屬>OTU0395[SEQUENCE ID 101] 未知>OTU0397[SEQUENCE ID 102] 芽殖菌屬>OTU0406 [SEQUENCE ID 103] 普雷沃菌屬>OTU0412 [SEQUENCE ID 104] 月形單胞菌屬 >OTU0424 [SEQUENCE ID 105] 韋榮球菌屬>OTU0427 [SEQUENCE ID 106] 多爾氏菌屬>OTU0431 [SEQUENCE ID 107] 普雷沃菌屬>OTU0433 [SEQUENCE ID 108] 月形單胞菌屬>OTU0436 [SEQUENCE ID 109] 未知 >OTU0458 [SEQUENCE ID 110] 毛絨厭氧桿菌屬>OTU0472 [SEQUENCE ID 111] 未知>OTU0473 [SEQUENCE ID 112] 坦納菌屬>OTU0476 [SEQUENCE ID 113] 未知>OTU0511 [SEQUENCE ID 114] 未分類.紫單胞菌科>OTU0512 [SEQUENCE ID 115] 未知 >OTU0543 [SEQUENCE ID 116] 未知>OTU0544 [SEQUENCE ID 117] 貧養菌屬>OTU0571 [SEQUENCE ID 118] 螺旋體屬>OTU0588 [SEQUENCE ID 119] 未知>OTU0595 [SEQUENCE ID 120] 放線菌屬 >OTU0599 [SEQUENCE ID 121] 未分類.毛螺菌科>OTU0618 [SEQUENCE ID 122] 未知>OTU0626 [SEQUENCE ID 123] 毛絨厭氧桿菌屬>OTU0657 [SEQUENCE ID 124] 未分類.分支單糖菌屬>OTU0663 [SEQUENCE ID 125] 施氏菌屬>OTU0664 [SEQUENCE ID 126] 未知>OTU0666 [SEQUENCE ID 127] 纖毛菌屬>OTU0675[SEQUENCE ID 128] 未知>OTU0707 [SEQUENCE ID 129] 未知>OTU0726 [SEQUENCE ID 130] 未知>OTU0731 [SEQUENCE ID 131] 梭菌_XlVa >OTU0773 [SEQUENCE ID 132] 未知>OTU0777 [SEQUENCE ID 133] 纖毛菌屬>OTU0831 [SEQUENCE ID 134] 未分類.毛螺菌科>OTU0850 [SEQUENCE ID 135] 普雷沃菌屬>OTU0865 [SEQUENCE ID 136] 布勞特氏菌屬>OTU0876 [SEQUENCE ID 137] 瘤胃球菌屬2 >OTU0892 [SEQUENCE ID 138] 未知>OTU0903 [SEQUENCE ID 139] 普雷沃菌屬>OTU0943 [SEQUENCE ID 140] 未知>OTU0951 [SEQUENCE ID 141] 未知>OTU0963 [SEQUENCE ID 142] 未知>OTU0976 [SEQUENCE ID 143] 梭菌_XlVa>OTU0978 [SEQUENCE ID 144] 未知>OTU0989 [SEQUENCE ID 145] 未分類.毛螺菌科>OTU1011 [SEQUENCE ID 146] 未知>OTU1080 [SEQUENCE ID 147] 未知>OTU1128 [SEQUENCE ID 148] 未知 >OTU1175 [SEQUENCE ID 149] 未分類.毛螺菌科>OTU1197 [SEQUENCE ID 150] 埃希氏桿菌屬/志賀桿菌屬>OTU1239 [SEQUENCE ID 151] 未知>OTU1250 [SEQUENCE ID 152] 纖毛菌屬>OTU1254 [SEQUENCE ID 153] 布勞特氏菌屬>OTU1280 [SEQUENCE ID 154] 未分類.毛螺菌科>OTU1292 [SEQUENCE ID 155] 未知>OTU1339 [SEQUENCE ID 156] 羅斯拜瑞氏菌屬>OTU1376 [SEQUENCE ID 157] 糞桿菌屬>OTU1395 [SEQUENCE ID 158] 未知>OTU1423 [SEQUENCE ID 159] 奈瑟氏菌屬 >OTU1487 [SEQUENCE ID 160] 梭菌_XlVa>OTU1494 [SEQUENCE ID 161] 未知>OTU1550 [SEQUENCE ID 162] 糞球菌屬>OTU1571 [SEQUENCE ID 163] 未知>OTU1582 [SEQUENCE ID 164] 布勞特氏菌屬>OTU1584 [SEQUENCE ID 165] 副擬桿菌屬 >OTU1610 [SEQUENCE ID 166] 布勞特氏菌屬>OTU1640 [SEQUENCE ID 167] 未知>OTU1645 [SEQUENCE ID 168] 未分類.毛螺菌科>OTU1682 [SEQUENCE ID 169] 未知>OTU1699 [SEQUENCE ID 170] 毛絨厭氧桿菌屬>OTU1963 [SEQUENCE ID 171] 鏈球菌屬>OTU1999 [SEQUENCE ID 172] 未知>OTU2036 [SEQUENCE ID 173] 未分類.毛螺菌科>OTU2137 [SEQUENCE ID 174] 未知>OTU2176 [SEQUENCE ID 175] 擬桿菌屬>OTU2203 [SEQUENCE ID 176] 未知 >OTU2229 [SEQUENCE ID 177] 未分類.梭菌目>OTU2397 [SEQUENCE ID 178] 未知>OTU2689 [SEQUENCE ID 179] 未知>OTU2703 [SEQUENCE ID 180] 坦納菌屬>OTU2738 [SEQUENCE ID 181] 未知>OTU2762 [SEQUENCE ID 182] 未知 >OTU2771 [SEQUENCE ID 183] 未知>OTU3092 [SEQUENCE ID 184] 未知>OTU3180 [SEQUENCE ID 185] 未知>OTU3273 [SEQUENCE ID 186] 未知>OTU3755 [SEQUENCE ID 187] 未知>OTU3831 [SEQUENCE ID 188] 未知> 16S擴增子PCR正向引子5' (V3區) [SEQUENCE ID 189]> 16S擴增子PCR反向引子5' (V4區) [SEQUENCE ID 190]>OTU50001 [SEQUENCE ID 191] 鏈球菌屬>OTU50010 [SEQUENCE ID 192] 鏈球菌屬>OTU50012 [SEQUENCE ID 193] 瘤胃球菌屬>OTU50016 [SEQUENCE ID 194] 羅斯拜瑞氏菌屬 >OTU50017 [SEQUENCE ID 195] 孿生球菌屬>OTU50018 [SEQUENCE ID 196] 擬桿菌屬>OTU50020 [SEQUENCE ID 197] 丁酸弧菌屬>OTU50023 [SEQUENCE ID 198] 普雷沃菌屬>OTU50032 [SEQUENCE ID 199] 擬桿菌屬>OTU50037 [SEQUENCE ID 200] 嗜血桿菌屬>OTU50038 [SEQUENCE ID 201] 未分類.毛螺菌科>OTU50041 [SEQUENCE ID 202] 梭桿菌屬>OTU50043 [SEQUENCE ID 203] 奈瑟氏菌屬>OTU50046 [SEQUENCE ID 204] 狹義梭菌屬>OTU50048 [SEQUENCE ID 205] 糞球菌屬 >OTU50053 [SEQUENCE ID 206] 梭菌_XIVa>OTU50059 [SEQUENCE ID 207] 普雷沃菌屬>OTU50062 [SEQUENCE ID 208] 擬桿菌屬>OTU50064 [SEQUENCE ID 209] 梭菌_XVIII>OTU50065 [SEQUENCE ID 210] 鏈球菌屬>OTU50066 [SEQUENCE ID 211] 未分類.毛螺菌科>OTU50068 [SEQUENCE ID 212] 卟啉單胞菌屬>OTU50076 [SEQUENCE ID 213] 擬普雷沃菌>OTU50080 [SEQUENCE ID 214] 梭菌_XIVb>OTU50086 [SEQUENCE ID 215] 薩特菌屬>OTU50087 [SEQUENCE ID 216] 梭菌_XIVa >OTU50091 [SEQUENCE ID 217] 柯林斯菌屬>OTU50092 [SEQUENCE ID 218] 梭菌_XIVa>OTU50095 [SEQUENCE ID 219] 顫桿菌克屬>OTU50097 [SEQUENCE ID 220] 消化鏈球菌屬>OTU50100 [SEQUENCE ID 221] 未分類.壁門菌屬>OTU50101 [SEQUENCE ID 222] 梭菌_XIVa >OTU50108 [SEQUENCE ID 223] 嗜膽菌屬>OTU50112 [SEQUENCE ID 224] 梭菌_IV>OTU50122 [SEQUENCE ID 225] 未分類.韋榮球菌科>OTU50124 [SEQUENCE ID 226] 彎曲桿菌屬>OTU50128 [SEQUENCE ID 227] 普雷沃菌屬 >OTU50138 [SEQUENCE ID 228] 奇異菌屬>OTU50143 [SEQUENCE ID 229] 厭氧醋菌屬>OTU50150 [SEQUENCE ID 230] 副擬桿菌屬>OTU50168 [SEQUENCE ID 231] 韋榮球菌屬>OTU50171 [SEQUENCE ID 232] 未分類.黃桿菌科>OTU50172 [SEQUENCE ID 233] 未分類.毛螺菌科 >OTU50177 [SEQUENCE ID 234] 小桿菌屬>OTU50188 [SEQUENCE ID 235] 二氧化碳嗜纖維菌屬>OTU50189 [SEQUENCE ID 236] 普雷沃菌屬>OTU50208 [SEQUENCE ID 237] 坦納菌屬>OTU50211 [SEQUENCE ID 238] 未知>OTU50213 [SEQUENCE ID 239] 未知>OTU50214 [SEQUENCE ID 240] 未知>OTU50220 [SEQUENCE ID 241] 未分類.毛螺菌科>OTU50221 [SEQUENCE ID 242] 巨型球菌屬>OTU50223 [SEQUENCE ID 243] 別樣桿菌屬>OTU50233 [SEQUENCE ID 244] 未知 >OTU50255 [SEQUENCE ID 245] 未知>OTU50270 [SEQUENCE ID 246] 卟啉單胞菌屬>OTU50299 [SEQUENCE ID 247] 心桿菌屬>OTU50358 [SEQUENCE ID 248] 二氧化碳嗜纖維菌屬>OTU50365 [SEQUENCE ID 249] 未分類.瘤胃菌科>OTU50367 [SEQUENCE ID 250] 未知>OTU50383 [SEQUENCE ID 251] 坦納菌屬>OTU50412 [SEQUENCE ID 252] 普雷沃菌屬>OTU50413 [SEQUENCE ID 253] 擬桿菌屬>OTU50442 [SEQUENCE ID 254] 貧養菌屬>OTU50444 [SEQUENCE ID 255] 優桿菌屬 >OTU50458 [SEQUENCE ID 256] 月形單胞菌屬>OTU50466 [SEQUENCE ID 257] 未分類.瘤胃菌科>OTU50479 [SEQUENCE ID 258] 布勞特氏菌屬>OTU50492 [SEQUENCE ID 259] 螺旋體屬>OTU50500 [SEQUENCE ID 260] 芽殖菌屬>OTU50501 [SEQUENCE ID 261] 未知>OTU50523 [SEQUENCE ID 262] 未知>OTU50529 [SEQUENCE ID 263] 未知>OTU50547 [SEQUENCE ID 264] 歐氏菌屬>OTU50552 [SEQUENCE ID 265] 毛絨厭氧桿菌屬>OTU50593 [SEQUENCE ID 266] 擬普雷沃菌 >OTU50630 [SEQUENCE ID 267] 未知>OTU50726 [SEQUENCE ID 268] 未知>OTU50735 [SEQUENCE ID 269] 未知>OTU50743 [SEQUENCE ID 270] 擬桿菌屬>OTU50759 [SEQUENCE ID 271] 普雷沃菌屬>OTU50833 [SEQUENCE ID 272] 未知>OTU50880 [SEQUENCE ID 273] 未知>OTU50944 [SEQUENCE ID 274] 羅氏菌屬>OTU51014 [SEQUENCE ID 275] 未分類.毛螺菌科>OTU51026 [SEQUENCE ID 276] 未分類.毛螺菌科>OTU51130 [SEQUENCE ID 277] 梭菌_XIVa>OTU51260 [SEQUENCE ID 278] 普雷沃菌屬>OTU51288 [SEQUENCE ID 279] 未知>OTU51340 [SEQUENCE ID 280] 未知>OTU51343 [SEQUENCE ID 281] 未知>OTU51401 [SEQUENCE ID 282] 未知>OTU51411 [SEQUENCE ID 283] 未知 >OTU51546 [SEQUENCE ID 284] 未知>OTU51549 [SEQUENCE ID 285] 普雷沃菌屬>OTU51588 [SEQUENCE ID 286] 奈瑟氏菌屬>OTU51727 [SEQUENCE ID 287] 瘤胃球菌屬>OTU51883 [SEQUENCE ID 288] 未知>OTU51970 [SEQUENCE ID 289] 未知>OTU52070 [SEQUENCE ID 290] 嗜血桿菌屬>OTU52086 [SEQUENCE ID 291] 梭菌_XIVa>OTU52183 [SEQUENCE ID 292] 月形單胞菌屬>OTU52345 [SEQUENCE ID 293] 奈瑟氏菌屬>OTU52529 [SEQUENCE ID 294] 未分類.放線菌目 >OTU52704 [SEQUENCE ID 295] 未知>OTU53156 [SEQUENCE ID 296] 未分類.毛螺菌科>OTU53349 [SEQUENCE ID 297] 未知>OTU53421 [SEQUENCE ID 298] 未知>OTU53463 [SEQUENCE ID 299] 梭菌_XIVa>OTU53501 [SEQUENCE ID 300] 未知>OTU53631 [SEQUENCE ID 301] 未知>OTU53773 [SEQUENCE ID 302] 未知>OTU54003 [SEQUENCE ID 303] 未分類.毛螺菌科>OTU54023 [SEQUENCE ID 304] 未知>OTU54670 [SEQUENCE ID 305] 未知 >OTU54910 [SEQUENCE ID 306] 未知>OTU54957 [SEQUENCE ID 307] 未知>OTU54992 [SEQUENCE ID 308] 未知>OTU55262 [SEQUENCE ID 309] 纖毛菌屬>OTU55394 [SEQUENCE ID 310] 未知>OTU55821 [SEQUENCE ID 311] 未知 >OTU56073 [SEQUENCE ID 312] 未知>OTU56301 [SEQUENCE ID 313] 未知>OTU56581 [SEQUENCE ID 314] 未知>OTU56772 [SEQUENCE ID 315] 棒狀桿菌屬>OTU56780 [SEQUENCE ID 316] 糞桿菌屬 >OTU56933 [SEQUENCE ID 317] 未知>OTU57157 [SEQUENCE ID 318] 韋榮球菌屬>OTU57512 [SEQUENCE ID 319] 未分類.毛螺菌科>OTU57750 [SEQUENCE ID 320] 未知>OTU58020 [SEQUENCE ID 321] 布勞特氏菌屬>OTU58875 [SEQUENCE ID 322] 梭桿菌屬 >OTU59239 [SEQUENCE ID 323] 未知>OTU59581 [SEQUENCE ID 324] 未知>OTU59656 [SEQUENCE ID 325] 鏈球菌屬>OTU510131 [SEQUENCE ID 326] 副擬桿菌屬附錄2:口腔拭子樣品中OTU的相對豐度 附錄3:大便樣品中OTU之相對豐度
1 :作為CRC之預測因子的口腔及大便微生物菌叢。微生物菌叢分佈預測CRC (A)及瘜肉(B)的接收者操作特徵(ROC)曲線使用來自口腔拭子、大便或兩者之組合。(C)分類模型之結果的帶狀圖。短劃線指示各模型中的各別臨限值。 2 詳細描述使用口腔拭子微生物菌叢區分患有CRC之個體與健康個人的隨機森林分類器。模型中所用之最佳OTU數為24 (A)。全部OTU占模型之比重(B)。占模型最大比重的七種OTU之相對豐度的帶狀圖(C)。 3 詳細描述使用口腔拭子微生物菌叢區分患有瘜肉之個體與健康個人的隨機森林分類器。模型中使用的最佳OTU數為七(A)。全部OTU占模型的比重(B)。占模型最大比重的五種OTU之相對豐度的帶狀圖(C)。 4 :執行測定個體中大腸直腸癌狀態之方法的根據本發明之系統的圖示。 5 :展示在發生CV之前開始的兩個特徵區段步驟的Baxter開發方法示意圖。 6 :展示全部特徵選擇的內部LASSO開發方法示意圖(LASSO係係10倍CV內)。 7 :患有CRC之個體的口腔微生物菌叢與健康個體的統計學上顯著不同。所示為未加權UniFrac距離之PCoA (使用材料及方法中所述之PERMANOVA評定的重要性)。CRC、大腸直腸癌;PERMANOVA、置換方差分析(permutational analysis of variance)。 8 :口腔微生物菌叢中微生物菌相的組成分析(ANCOM)。 9 :作為偵測CRC之工具的口腔及大便微生物菌叢分佈。(A及B)使用來自口腔拭子、大便或兩者之組合的微生物菌叢分佈預測CRC (A)及瘜肉(B)的接收者操作特徵曲線(ROC)及曲線下面積(AUC)值。組合測試的AUC值最高。DeLong後測定之重要性(材料及方法)。樣品編號:拭子:n=25 (健康對照組),n=45 (CRC),n=21 (瘜肉);大便:n=62 (健康對照組),n=69 (CRC),n=23 (瘜肉);以及組合:n=19 (健康對照組),n=25 (CRC),n=16 (瘜肉)。CRC、大腸直腸癌;FPR,假陽性率;TPR,真陽性率。 10 :使用口腔拭子微生物菌叢區分患有CRC之個體與健康個人的Baxter開發方法隨機森林分類器之細節(A)。區分患有CRC之個體與健康對照組之16個口腔微生物菌叢OTU。全部16個OTU占模型的比重(B)。占模型最大比重的七種OTU之相對豐度的帶狀圖(C)。 11 :使用口腔拭子微生物菌叢區分患有大腸直腸瘜肉之個體與健康個人的Baxter開發方法隨機森林分類器之細節(A)。全部OTU占模型的比重(B)。占模型最大比重的五種OTU之相對豐度的帶狀圖(C)。 12 :使用LASSO-RF結果確認CRC篩選之口腔微生物菌叢的預測值。 13 :實驗2中分析之樣品的概述。

Claims (59)

  1. 一種測定個體中大腸直腸癌狀態之方法,其包含分析獲自個體口腔生物樣品中個別CRC相關口腔細菌的豐度或複數種CRC相關口腔細菌的豐度之步驟,其中該個別CRC相關口腔細菌或複數種CRC相關口腔細菌的經調變豐度指示陽性大腸直腸癌狀態。
  2. 如請求項1之方法,其中該豐度係樣品中該細菌或OTU的豐度占該樣品中總微生物菌叢的比例。
  3. 如請求項2之方法,其中該經調變豐度係該樣品中該細菌或OTU之相對豐度相較於來自參考健康個體之相同樣品中之相對豐度的差值。
  4. 如請求項1或請求項2之方法,其中該經調變豐度為該樣品豐度值相較於絕對參考值的差值。
  5. 如前述請求項中任一項之方法,其中至少2種CRC相關口腔細菌之經調變豐度與陽性CRC狀態有相關性。
  6. 如請求項5之方法,其中至少10種CRC相關口腔細菌之經調變豐度與陽性CRC狀態有相關性。
  7. 如前述請求項中任一項之方法,其用於判斷個體是否增加罹患大腸直腸癌之風險,或用於偵測CRC患者對CRC療法的反應。
  8. 如請求項7之方法,其中該CRC相關口腔細菌係選自表2。
  9. 如請求項7或請求項8之方法,其中該CRC相關口腔細菌係選自OTU0348 (較佳地普雷沃菌屬(Prevotella))、OTU0016 (較佳地鏈球菌屬(Streptococcus))、OTU0283 (較佳地坦納菌屬(Tannerella))、OTU0777 (較佳地纖毛菌屬(Leptotrichia))、OTU0050 (較佳地韋榮球菌屬(Veillonella))、OTU0161 (較佳地毛螺菌科(Lachnospiraceae))及OTU0174 (較佳地金氏菌屬(Kingella))。
  10. 如請求項7之方法,其中口腔微生物菌叢中放線菌綱(Actinobacteria)及/或壁門菌屬(Firmicutes)之相對豐度的增加指示該個體患有CRC之風險提高。
  11. 如請求項1至6中任一項之方法,其用於判斷個體是否增加罹患大腸瘜肉的風險,或用於偵測大腸瘜肉患者對CRC療法的反應。
  12. 如請求項11之方法,其中該CRC相關口腔細菌係選自表3。
  13. 如請求項11或請求項12之方法,其中該CRC相關口腔細菌係選自OTU0008 (較佳地羅斯拜瑞氏菌屬(Roseburia))、OTU0595 (較佳地放線菌屬(Actinomyces))、OTU0176 (較佳地彎曲桿菌屬(Campylobacter))、OTU0626 (較佳地毛絨厭氧桿菌屬(Lachnoanaerobaculum))及OTU0431 (較佳地普雷沃菌屬(Prevotella))。
  14. 如前述請求項中任一項之方法,其包含分析獲自該個體糞便樣品中複數種CRC相關糞便細菌豐度的另一步驟,其中該複數種CRC相關糞便細菌及該複數種CRC相關口腔細菌之經調變豐度指示陽性CRC狀態。
  15. 如請求項14之方法,其中至少五種CRC相關糞便細菌之經調變豐度指示陽性CRC狀態。
  16. 如請求項14或請求項15之方法,其中該陽性CRC狀態為個體罹患大腸直腸癌的風險增加,且該CRC相關糞便細菌係選自表5。
  17. 如請求項14至16中任一項之方法,其中表8的至少五種糞便細菌及至少五種口腔細菌的經調變豐度的偵測指示該個體罹患大腸直腸癌的風險增加。
  18. 如請求項14或請求項15之方法,其中該陽性CRC狀態為個體罹患大腸瘜肉的風險增加,且該CRC相關糞便細菌係選自表6。
  19. 如請求項14、15或18中任一項之方法,其中偵測到表9之至少五種糞便細菌及至少五種口腔細菌的經調變豐度指示個體罹患大腸瘜肉之風險增加。
  20. 如前述請求項中任一項之方法,其中係使用隨機森林分類模型使該口腔樣品中的OTU豐度(視情況併與糞便樣品中的OTU豐度組合)與CRC狀態建立關聯性。
  21. 一種相較於僅使用糞便微生物菌相之豐度分佈所獲得的靈敏度能夠提高偵測個體中CRC或大腸瘜肉的靈敏度之方法,其中該方法包含組合口腔微生物菌相豐度分佈與糞便微生物菌相豐度分佈。
  22. 如請求項7之方法,其中該CRC相關細菌係選自表12。
  23. 如請求項7或請求項22之方法,其中該CRC相關口腔細菌係選自OTU50189 (較佳地普雷沃菌屬)、OTU51549 (較佳地普雷沃菌屬)、OTU50020 (較佳地丁酸弧菌屬(Anaerostipes))、OTU50068 (較佳地卟啉單胞菌屬(Porphyromonas))、OTU50043 (較佳地奈瑟氏菌屬(Neisseria))、OTU50037 (較佳地嗜血桿菌屬(Haemophilus))及OTU50041 (較佳地梭桿菌屬(Fusobacterium))。
  24. 如請求項11之方法,其中該CRC相關口腔細菌係選自表13。
  25. 如請求項12或請求項24之方法,其中該CRC相關口腔細菌係選自OTU50458 (較佳地月形單胞菌屬(Selenomonas))、OTU50043 (較佳地奈瑟氏菌屬(Neisseria))、OTU50442 (較佳地貧養菌屬(Abiotrophia))、OTU52070 (較佳地嗜血桿菌屬(Haemophilus))、OTU50171 (較佳地黃桿菌科(Flavobacteriaceae))、OTU50383 (較佳地坦納菌屬(Tannerella))、OTU52345 (較佳地奈瑟氏菌屬)、OTU51549 (較佳地普雷沃菌屬)、OTU50759 (較佳地普雷沃菌屬)、OTU50358 (較佳地二氧化碳嗜纖維菌屬(Capnocytophaga))、OTU50188 (較佳地二氧化碳嗜纖維菌屬)、OTU50270 (較佳地卟啉單胞菌屬)。
  26. 如請求項14或請求項15之方法,其中該陽性CRC狀態為個體罹患大腸直腸癌的風險增加,且該CRC相關糞便細菌係選自表15。
  27. 如請求項14或請求項15之方法,其中該陽性CRC狀態為個體罹患大腸瘜肉的風險增加,且該CRC相關糞便細菌係選自表16。
  28. 如請求項14或請求項15之方法,其中偵測到表18的至少五種糞便細菌及至少五種口腔細菌的經調變豐度指示該個體罹患大腸直腸癌的風險增加。
  29. 如請求項14或請求項15之方法,其中偵測到表19之至少五種糞便細菌及至少五種口腔細菌的經調變豐度指示個體罹患大腸瘜肉之風險增加。
  30. 一種測定個體中大腸直腸癌狀態之方法,其包含以下步驟: 分析獲自該個體口腔生物樣品中針對表1之CRC相關口腔OTU的選項之相對豐度; 比較該CRC相關口腔OTU的相對豐度與該CRC相關口腔OTU的參考相對豐度,以提供呈現經調變豐度的口腔OTU的分佈; 分析獲自該個體糞便樣品中針對表4之CRC相關糞便OTU的選項之相對豐度; 比較該CRC相關糞便OTU的該相對豐度與該CRC相關糞便OTU的參考相對豐度,以提供呈現經調變豐度的糞便OTU的分佈;以及 將呈現經調變相對豐度的口腔及糞便OTU的分佈與CRC狀態建立關聯性,其中偵測到至少三種CRC相關口腔OTU及至少三種CRC相關糞便OTU的經調變相對豐度指示個體呈現陽性CRC狀態。
  31. 如請求項30之方法,其中偵測到至少二十種CRC相關口腔OTU及至少二十種CRC相關糞便OTU的經調變相對豐度指示個體呈現陽性CRC狀態。
  32. 如請求項30之方法,其中該CRC相關口腔OTU及CRC相關糞便OTU係選自表7之OTU,且其中偵測到表7的實質上全部CRC相關口腔OTU及CRC相關糞便OTU的經調變相對豐度指示個體罹患大腸直腸癌或大腸瘜肉。
  33. 如請求項30之方法,其中該CRC相關口腔OTU及CRC相關糞便OTU係選自表8之OTU,且其中偵測到表8之實質上全部該CRC相關口腔OTU及CRC相關糞便OTU的經調變相對豐度指示個體罹患大腸直腸癌。
  34. 如請求項30之方法,其中該CRC相關口腔OTU及CRC相關糞便OTU係選自表9之OTU,且其中偵測到表9的實質上全部CRC相關口腔OTU及CRC相關糞便OTU的經調變相對豐度指示個體罹患大腸瘜肉或正處於發展大腸直腸癌的風險中。
  35. 如前述請求項中任一項之方法,其中至少該建立關聯性步驟係採用隨機森林分類模型。
  36. 如前述請求項中任一項之方法,其中分析該樣品中OTU相對豐度之步驟包含16s rRNA測序。
  37. 如前述請求項中任一項之方法,其中呈現經調變相對豐度的該CRC相關口腔OTU中的至少一者是OTU0348。
  38. 如前述請求項中任一項之方法,其中呈現經調變相對豐度的該CRC相關口腔OTU中的至少一者是OTU0016。
  39. 如前述請求項中任一項之方法,其中呈現經調變相對豐度的該CRC相關口腔OTU中的至少一者是OTU0283。
  40. 如前述請求項中任一項之方法,其中呈現經調變相對豐度的該CRC相關糞便OTU中的至少一者是OTU1487。
  41. 如前述請求項中任一項之方法,其中呈現經調變相對豐度的該CRC相關糞便OTU中的至少一者是OTU0075。
  42. 如前述請求項中任一項之方法,其中呈現經調變相對豐度的該CRC相關糞便OTU中的至少一者是OTU0030。
  43. 如請求項30至42中任一項之方法,其中該方法為如請求項1至21中任一項之方法。
  44. 一種篩選適合大腸鏡檢查之個體的方法,其包含藉由如請求項1至43中任一項之方法測定該個體之CRC狀態,其中陽性CRC狀態指示該個體適於大腸鏡檢查。
  45. 一種大腸直腸癌藥物,其用於治療或預防個體之大腸直腸癌的方法中,其中該個體業經以如請求項1至44中任一項之方法鑑別為需要治療。
  46. 一種口腔微生物菌相之用途,其用於診斷CRC或大腸瘜肉。
  47. 如請求項46之用途,其中該口腔微生物菌相係與該糞便微生物菌相組合使用。
  48. 一種用於如上述請求項中任一項所述之方法中的系統,該系統包含儲存裝置、比較模組及顯示模組。
  49. 一種方法,其包含: 自個體口腔獲得生物樣品; 測定該生物樣品中至少一種CRC相關口腔細菌的豐度,其中測定至少一種CRC相關口腔細菌之豐度包含擴增來自該至少一種CRC相關口腔細菌之16S rRNA聚核苷酸序列以形成經擴增之16S rRNA聚核苷酸序列,其中該經擴增之16S rRNA序列具有與選自SEQ ID NO 1至SEQ ID NO 224的聚核苷酸序列至少97%同源性; 與獲自健康個體口腔的對照生物樣品相比,量測該至少一種CRC相關口腔細菌之經調變豐度,其中該至少一種CRC相關口腔細菌的經調變豐度指示陽性大腸直腸癌狀態;以及 判斷該個體之大腸直腸癌狀態。
  50. 如請求項49之方法,其中該至少一種CRC相關口腔細菌係選自表1、表2、表3、表7、表8或表9。
  51. 如請求項49之方法,其中該至少一種CRC相關口腔細菌係選自表11、表12、表13、表17、表18或表19。
  52. 如請求項49之方法,其中該判斷該個體的陽性大腸直腸狀態具有大於86%的靈敏度及至少79%的特異性。
  53. 如請求項49之方法,其進一步包含 自該個體獲得糞便樣品; 與自正常個體獲得之糞便樣品相比,量測該糞便樣品中至少一種CRC相關糞便細菌的經調變豐度。
  54. 如請求項53之方法,其中該至少一種CRC相關糞便細菌係選自表4、表5、表6、表7、表8或表9。
  55. 如請求項53之方法,其中該至少一種CRC相關糞便細菌係選自表14、表15、表16、表17、表18或表19。
  56. 如請求項49之方法,其進一步包含向該個體提供CRC療法。
  57. 如請求項56之方法,其中該CRC療法包含向該個體投與藥劑。
  58. 如請求項57之方法,其中該藥劑包含以下中之至少一者:阿瓦斯汀(Avastin)、貝伐單抗(Bevacizumab)、坎普托沙(Camptosar)、卡培他濱(Capacitibine)、絲蘭紮(Cyramza)、奧沙米星(Oxamiplatin)、愛必妥(Erbitux)、%-氟尿嘧啶、伊立替康(Irinotecan)、亞葉酸鈣、隆瑟夫(Lonsurf)、帕尼單抗(Panitumumab)、拉莫魯單抗(Ramucirumab)、瑞戈非尼(Regorafenib)、斯蒂瓦加(Stivarga)、韋康瑞林(Wellcovorin)及希羅達(Xeloda)。
  59. 一種套組,其包含口腔拭子,該拭子係配置成自懷疑處於大腸直腸癌風險下之個體的口腔獲取生物樣品; 可密封容器,其配置成接收該生物樣品; 聚核苷酸引子,其用於擴增來自至少一種CRC相關口腔細菌的16S rRNA聚核苷酸序列以形成經擴增之16S rRNA聚核苷酸序列,其中該經擴增之16S rRNA序列具有與選自SEQ ID NO 1至SEQ ID NO 326的聚核苷酸序列至少97%同源性; 偵測試劑,其用以偵測經擴增之16S rRNA序列;以及 使用說明書。
TW106144290A 2016-12-15 2017-12-15 測定個體中大腸直腸癌狀態之方法 TW201833330A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16204532 2016-12-15
??16204532.2 2016-12-15

Publications (1)

Publication Number Publication Date
TW201833330A true TW201833330A (zh) 2018-09-16

Family

ID=57714386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106144290A TW201833330A (zh) 2016-12-15 2017-12-15 測定個體中大腸直腸癌狀態之方法

Country Status (12)

Country Link
US (1) US11061029B2 (zh)
EP (1) EP3555307A1 (zh)
JP (1) JP2020516231A (zh)
KR (1) KR20190117486A (zh)
CN (1) CN110291211A (zh)
AR (1) AR110378A1 (zh)
AU (1) AU2017375040A1 (zh)
CA (1) CA3047060A1 (zh)
IL (1) IL267315A (zh)
MA (1) MA51592A (zh)
TW (1) TW201833330A (zh)
WO (1) WO2018109219A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930407A (zh) * 2018-11-02 2021-06-08 加利福尼亚大学董事会 使用非人类核酸诊断和治疗癌症的方法
TWI723312B (zh) * 2018-12-28 2021-04-01 中國醫藥大學附設醫院 電腦輔助直腸癌治療反應預測系統、方法及電腦程式產品
CN112080565A (zh) * 2019-06-14 2020-12-15 韩书文 结直肠癌的相关预测系统、电子设备和存储介质
CN110512015A (zh) * 2019-09-11 2019-11-29 苏州普瑞森基因科技有限公司 一种肠癌生物标志物组合物及其应用
CN117305487A (zh) * 2020-05-27 2023-12-29 微度(苏州)生物科技有限公司 一种用于结直肠癌早期诊断的生物标志物组合物及应用
KR102623834B1 (ko) * 2020-07-13 2024-01-12 서울대학교병원 에스트로겐을 포함하는 장내 미생물총 변화를 통한 남성의 대장암 예방 또는 치료용 조성물
WO2022154096A1 (ja) * 2021-01-15 2022-07-21 旭化成株式会社 飲食品検体、環境検体、又は生体検体中の腸内細菌科細菌の有無及び/又は存在量を検出するための方法及びキット
CN116356026B (zh) * 2023-03-06 2024-10-01 臻傲生物科技检测(深圳)有限公司 预测结直肠癌或结直肠腺瘤风险的新型微生物标志物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241710A1 (en) * 2002-11-04 2004-12-02 Gish Kurt C. Methods of detecting colorectal cancer
US11060148B2 (en) * 2012-10-16 2021-07-13 Dana-Farber Cancer Institute, Inc. Diagnosing and treating colorectal cancer
WO2015018308A1 (en) * 2013-08-06 2015-02-12 BGI Shenzhen Co.,Limited Biomarkers for colorectal cancer
CN105473738B (zh) * 2013-08-06 2018-09-21 深圳华大基因科技有限公司 结直肠癌生物标志物
EP2955232B1 (en) 2014-06-12 2017-08-23 Peer Bork Method for diagnosing adenomas and/or colorectal cancer (CRC) based on analyzing the gut microbiome

Also Published As

Publication number Publication date
WO2018109219A1 (en) 2018-06-21
CN110291211A (zh) 2019-09-27
US20200041510A1 (en) 2020-02-06
JP2020516231A (ja) 2020-06-11
MA51592A (fr) 2021-03-17
EP3555307A1 (en) 2019-10-23
AR110378A1 (es) 2019-03-20
KR20190117486A (ko) 2019-10-16
CA3047060A1 (en) 2018-06-21
IL267315A (en) 2019-08-29
AU2017375040A1 (en) 2019-06-27
US11061029B2 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
US11061029B2 (en) Methods of determining colorectal cancer status in an individual
Seishima et al. Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host
Lu et al. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls
Chen et al. Mucosa-associated microbiota in gastric cancer tissues compared with non-cancer tissues
Osman et al. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer
Baxter et al. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions
Del Castillo et al. The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic cancer and noncancer subjects
Russo et al. Preliminary comparison of oral and intestinal human microbiota in patients with colorectal cancer: a pilot study
Burns et al. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment
Altomare et al. Gut mucosal-associated microbiota better discloses inflammatory bowel disease differential patterns than faecal microbiota
Fine et al. A consortium of Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, and Filifactor alocis is present in sites prior to bone loss in a longitudinal study of localized aggressive periodontitis
Yu et al. Association between upper digestive tract microbiota and cancer-predisposing states in the esophagus and stomach
Sze et al. Normalization of the microbiota in patients after treatment for colonic lesions
Takahashi et al. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing
Wu et al. A comparison of tumor-associated and non-tumor-associated gastric microbiota in gastric cancer patients
Fox et al. Juvenile polyps: recurrence in patients with multiple and solitary polyps
Wang et al. Alterations in the oral and gut microbiome of colorectal cancer patients and association with host clinical factors
Naftali et al. Distinct microbiotas are associated with ileum-restricted and colon-involving Crohn's disease
Wu et al. Helicobacter pylori infection is associated with the co‐occurrence of bacteria in the oral cavity and the gastric mucosa
Jin et al. Gut microbiota in patients after surgical treatment for colorectal cancer
US20210324473A1 (en) Indices of Microbial Diversity Relating To Health
Somineni et al. Site-and taxa-specific disease-associated oral microbial structures distinguish inflammatory bowel diseases
Fan et al. Mild changes in the mucosal microbiome during terminal ileum inflammation
Villar-Ortega et al. The association between Fusobacterium nucleatum and cancer colorectal: A systematic review and meta-analysis
Chen et al. Taxonomic and functional dysregulation in salivary microbiomes during oral carcinogenesis