TW201833283A - Photocurable composition, pressure-sensitive adhesive sheet, pressure-sensitive adhesive sheet laminate, cured product, laminate for forming image display device, and image display device - Google Patents

Photocurable composition, pressure-sensitive adhesive sheet, pressure-sensitive adhesive sheet laminate, cured product, laminate for forming image display device, and image display device Download PDF

Info

Publication number
TW201833283A
TW201833283A TW106141799A TW106141799A TW201833283A TW 201833283 A TW201833283 A TW 201833283A TW 106141799 A TW106141799 A TW 106141799A TW 106141799 A TW106141799 A TW 106141799A TW 201833283 A TW201833283 A TW 201833283A
Authority
TW
Taiwan
Prior art keywords
meth
acrylate
photocurable composition
adhesive sheet
image display
Prior art date
Application number
TW106141799A
Other languages
Chinese (zh)
Other versions
TWI752127B (en
Inventor
石井嘉穗ㄦ
稲永誠
增田絵理
中村淳一
品田弘子
Original Assignee
日商三菱化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱化學股份有限公司 filed Critical 日商三菱化學股份有限公司
Publication of TW201833283A publication Critical patent/TW201833283A/en
Application granted granted Critical
Publication of TWI752127B publication Critical patent/TWI752127B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The present invention provides a novel photocurable composition that, when heated to a hot-meltable temperature, is capable of conforming to, and filling every corner of uneven portions of a bonding surface, and after being photo-cured, capable of further firmly binding adherents. Proposed by the present invention is a photocurable composition that comprises (A) a (meth)acrylic copolymer containing a macromonomer as a copolymerizable component, (B) a cross-linking agent, and (C) a cross-linkage initiator, and that is characterized by having a half value width X1 (nm-1) of 0.05 < X1 < 0.30 in a one-dimensional scattering profile obtained from small-angle X-ray scattering measurement.

Description

光硬化性組合物、黏著片材、黏著片材積層體、硬化物、圖像顯示裝置構成用積層體及圖像顯示裝置Photocurable composition, adhesive sheet, adhesive sheet laminate, cured product, laminated body for image display device configuration, and image display device

本發明係關於一種使用含有巨單體作為結構單元之(甲基)丙烯酸系共聚物之光硬化性組合物、以及使用其之黏著片材、黏著片材積層體、硬化物、圖像顯示裝置構成用積層體及圖像顯示裝置。The present invention relates to a photocurable composition using a (meth)acrylic copolymer containing a macromonomer as a structural unit, and an adhesive sheet, an adhesive sheet laminate, a cured product, and an image display device using the same. A laminated body and an image display device.

巨單體係具有可進行鍵結之官能基之高分子量單體。藉由巨單體與其他單體進行加成或共聚合,可容易地合成接枝共聚物。而且,若使用巨單體合成接枝共聚物,則可將物性不同之樹脂分別分開而且簡便且純度較佳地引入至分枝成分及主幹成分,故而於黏接著劑領域中,亦提出各種使用此種巨單體之黏著劑組合物。 例如,於專利文獻1中,作為黏力、接著力、凝集力等黏著物性良好之黏著劑用樹脂組合物,揭示有如下黏著劑用樹脂組合物:其包含藉由使數量平均分子量為1000~100000且玻璃轉移溫度為-20℃以下之巨單體、具有羥基或羧基之自由基聚合性單體及其他單體進行自由基聚合而獲得之接枝共聚物,且主幹聚合物之玻璃轉移溫度高於分枝聚合物之玻璃轉移溫度。 於專利文獻2中,作為提昇高溫、高濕條件下之耐久性及再剝離性之方法,揭示有一種接著劑,其使用玻璃轉移溫度為40℃以上且數量平均分子量為2000~20000之含(甲基)丙烯醯基巨單體0.2~3質量份、(甲基)丙烯酸烷基酯57~98.8質量份、含官能基單體1~20質量份及至少可與該(甲基)丙烯酸烷基酯進行共聚合之其他單體0~20質量份的共聚物(重量平均分子量50萬~200萬)。 於專利文獻3中,作為可容易地與各種被黏著體接合,可於接合後使之硬化而發揮與接著劑相同程度之接著力,且不易產生切斷加工時之黏接著劑自切斷面之滲出或切斷面彼此之接著的黏接著劑組合物,揭示有一種硬化型黏接著劑組合物,其包含使(甲基)丙烯酸烷基酯單體與所有單體成分中占1~30質量%之數量平均分子量Mn為1000~200000,玻璃轉移點Tg為30~150℃之巨單體進行共聚合而成之丙烯酸系黏著性聚合物、光陽離子聚合性化合物及光陽離子光聚合起始劑。 於專利文獻4中,作為於在黏著帶之黏著層中以高含量含有填充劑之情形時,黏著性亦優異,於暴露於高溫之情形時,亦維持黏著性之感壓接著劑,提出一種感壓接著劑,其特徵在於含有以(甲基)丙烯酸系共聚物作為主幹聚合物,以(甲基)丙烯酸系巨單體作為分枝聚合物之(甲基)丙烯酸系接枝共聚物、交聯劑及填充劑。 於專利文獻5中,作為於通常狀態、即室溫狀態下,可具備可剝離之程度之接著性(稱為「黏性」),並且若加熱至能夠熱熔之溫度,則具有流動性,可追隨於貼合面之階梯部而填充至各處,最終可使被黏著物彼此牢固地接著之黏著劑樹脂組合物,揭示有一種黏著樹脂組合物,其特徵在於:其係含有丙烯酸系共聚物(A)100質量份、交聯劑(B)0.5~20質量份及交聯起始劑(C)0.1~5質量份之黏著劑樹脂組合物,並且丙烯酸系共聚物(A)係重量平均分子量為5.0×104 ~5.0×105 之接枝共聚物,含有源自(甲基)丙烯酸酯之重複單元作為該接枝共聚物之主幹成分,含有源自數量平均分子量5.0×102 以上且未達6.0×103 之巨單體之重複單元作為該接枝共聚物之分枝成分,且於丙烯酸系共聚物(A)中以0.1~3 mol%之比率含有該源自巨單體之重複單元。 又,於專利文獻6中揭示有一種黏著劑組合物、以及使用該黏著劑組合物之黏著片材,該黏著劑組合物包含使含有數量平均分子量為500以上且未達6000之巨單體(a)及乙烯基單體(b)之單體混合物進行聚合而獲得之重量平均分子量為5萬~100萬的(甲基)丙烯酸系共聚物(A)。 於專利文獻7中,揭示有一種新穎圖像顯示裝置構成用積層體之製造方法,其係於室溫狀態下,可保持片狀之形狀,可具備可剝離之程度之貼合性,藉由熱熔而具有流動性,最終可進行交聯而將圖像顯示裝置構成構件彼此牢固地接著。 於專利文獻8中揭示有一種光硬化性之黏著片材,其係即便具有印刷隱蔽部等光難以到達之部位亦可使之光硬化,即便為具有某一程度之厚度之黏著片材,亦可使片材整體硬化。 於專利文獻9中揭示有如下方法:經由透明黏著材料,自暫時貼合2個光學裝置構成用構件而成之光學裝置構成用積層體,分離2個光學裝置構成用構件,將光學裝置構成用構件進行再利用。 於專利文獻10中揭示有一種黏著片材積層體,其係於圖像顯示裝置構成構件之貼合中,可抑制黏著層與脫模層之界面之異物混入、或脫模劑向黏著層之轉移轉印,且貼合後之耐久性亦優異。 [先前技術文獻] [專利文獻] 專利文獻1:日本專利特開平1-203412號公報 專利文獻2:日本專利特開平8-209095號公報 專利文獻3:日本專利特開平11-158450號公報 專利文獻4:日本專利特開2011-219582號公報 專利文獻5:日本專利特開2015-105296號公報 專利文獻6:國際公開第2015/080244A1 專利文獻7:國際公開第2015/137178A1 專利文獻8:國際公開第2016/024618A1 專利文獻9:國際公開第2016/002763A1 專利文獻10:國際公開第2016/088697A1The macromono system has a high molecular weight monomer capable of bonding functional groups. The graft copolymer can be easily synthesized by addition or copolymerization of a macromonomer with other monomers. Moreover, if a macromonomer is used to synthesize a graft copolymer, the resins having different physical properties can be separately separated and introduced into the branched component and the main component in a simple and pure manner. Therefore, various uses are also proposed in the field of adhesives. Such a macromonomer adhesive composition. For example, Patent Document 1 discloses a resin composition for an adhesive which is excellent in adhesive properties such as adhesion, adhesion, and cohesive force, and discloses a resin composition for an adhesive comprising a number average molecular weight of 1,000 Å. a graft copolymer obtained by radical polymerization of a macromonomer having a glass transition temperature of -20 ° C or less, a radical polymerizable monomer having a hydroxyl group or a carboxyl group, and other monomers, and a glass transition temperature of the main polymer Higher than the glass transition temperature of the branched polymer. Patent Document 2 discloses a method for improving the durability and re-peelability under high-temperature and high-humidity conditions, and uses an adhesive having a glass transition temperature of 40° C. or higher and a number average molecular weight of 2,000 to 20,000 ( 0.2 to 3 parts by mass of a methyl acrylonitrile-based macromonomer, 57 to 98.8 parts by mass of an alkyl (meth)acrylate, 1 to 20 parts by mass of a functional group-containing monomer, and at least to the (meth)acrylic acid The copolymer of 0 to 20 parts by mass of the other monomer copolymerized with the base ester (weight average molecular weight: 500,000 to 2,000,000). In Patent Document 3, it is easy to bond with various adherends, and it can be cured after bonding to exhibit the same degree of adhesion as the adhesive, and it is less likely to cause a self-cutting surface when the cutting process is performed. The adhesive composition exuding or cutting the surface of each other, reveals a hardening type adhesive composition comprising 1 to 30 of the alkyl (meth) acrylate monomer and all the monomer components An acrylic adhesive polymer, a photocationic polymerizable compound, and a photocationic photopolymerization starting from a mass % of an average molecular weight Mn of from 1,000 to 200,000 and a macromonomer having a glass transition point Tg of from 30 to 150 ° C Agent. In Patent Document 4, when the filler is contained in a high content in the adhesive layer of the adhesive tape, the adhesiveness is also excellent, and when it is exposed to a high temperature, the pressure-sensitive adhesive is maintained. a pressure-sensitive adhesive comprising a (meth)acrylic copolymer as a main polymer and a (meth)acrylic macromonomer as a branched polymer (meth)acrylic graft copolymer, Crosslinking agent and filler. In Patent Document 5, in a normal state, that is, in a room temperature state, it is possible to provide a peelable degree of adhesion (referred to as "stickiness"), and if it is heated to a temperature at which it can be melted, it has fluidity. An adhesive resin composition which can be adhered to the step of the bonding surface and can be finally adhered to each other by the adherend, revealing an adhesive resin composition characterized in that it contains acrylic copolymer 100 parts by mass of the substance (A), 0.5 to 20 parts by mass of the crosslinking agent (B), and 0.1 to 5 parts by mass of the crosslinking initiator (C), and the weight of the acrylic copolymer (A) a graft copolymer having an average molecular weight of 5.0×10 4 to 5.0×10 5 , containing a repeating unit derived from (meth) acrylate as a main component of the graft copolymer, and containing a number average molecular weight of 5.0×10 2 The above repeating unit of the macromonomer of 6.0×10 3 is used as a branching component of the graft copolymer, and the source of the graft copolymer is contained in the acrylic copolymer (A) in a ratio of 0.1 to 3 mol%. Repeat unit of body. Further, Patent Document 6 discloses an adhesive composition and an adhesive sheet using the adhesive composition, which comprises a macromonomer having a number average molecular weight of 500 or more and less than 6,000 ( a) A (meth)acrylic copolymer (A) having a weight average molecular weight of 50,000 to 1,000,000 obtained by polymerization of a monomer mixture of the vinyl monomer (b). Patent Document 7 discloses a method for producing a laminate for a novel image display device, which is capable of maintaining a sheet shape at room temperature and having a peelable degree of adhesion. The film is melted and fluid, and finally, the image display device constituent members are firmly adhered to each other by crosslinking. Patent Document 8 discloses a photocurable adhesive sheet which can be photohardened even if it has a portion such as a printed concealing portion that is hard to reach, even if it is an adhesive sheet having a certain thickness. The sheet can be hardened as a whole. Patent Document 9 discloses a method for forming an optical device constituting body obtained by temporarily bonding two optical device constituting members via a transparent adhesive material, and separating two optical device constituting members, and configuring the optical device. The components are reused. Patent Document 10 discloses an adhesive sheet laminate which is attached to a member of an image display device and which can prevent foreign matter from entering at the interface between the adhesive layer and the release layer, or the release agent from being applied to the adhesive layer. Transfer transfer, and durability after bonding is also excellent. [PRIOR ART DOCUMENT] Patent Document 1: Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 5: International Publication No. 2015/080244A1 Patent Document 7: International Publication No. 2015/137178A1 Patent Document 8: International Publication 2016/024618A1 Patent Document 9: International Publication No. 2016/002763A1 Patent Document 10: International Publication No. 2016/088697A1

[發明所欲解決之問題] 本發明欲藉由進一步改良如上所述之先前揭示之光硬化性組合物、即具有含有巨單體作為結構單元之(甲基)丙烯酸系共聚物及交聯劑之光硬化性組合物,提供一種若加熱至能夠熱熔之溫度,則可追隨於貼合面之凹凸部而填充至各處,光硬化後可使被黏著物彼此更牢固地接著之新穎光硬化性組合物。 [解決問題之技術手段] 本發明提出一種光硬化性組合物,其特徵在於:其係包含含有巨單體作為結構單元之(甲基)丙烯酸系共聚物(A)、交聯劑(B)及交聯起始劑(C)者,並且小角度X射線散射測定中之一維散射分佈之半值寬(half-width) X1(nm-1 )為0.05<X1<0.30。 [發明之效果] 根據本發明提出之光硬化性組合物,可於室溫狀態下保持片狀,並且顯示出自黏性(稱為「黏性」),若於未交聯狀態下進行加熱,則軟化或流動,例如藉由加熱至巨單體之玻璃轉移溫度以上,可軟化或流動,追隨於貼合面之凹凸部而填充至各處。進而,藉由進行光硬化,可發揮優異之凝集力,故而可將被黏著物彼此牢固地貼合。[Problem to be Solved by the Invention] The present invention is intended to further improve the photocurable composition as disclosed above, that is, a (meth)acrylic copolymer having a macromonomer as a structural unit and a crosslinking agent. The photocurable composition provides a novel light which can be adhered to each other after being heated to a temperature at which heat can be melted, and can be adhered to the uneven portions of the bonding surface. A curable composition. [Technical means for solving the problem] The present invention provides a photocurable composition comprising a (meth)acrylic copolymer (A) containing a macromonomer as a structural unit, and a crosslinking agent (B). And the cross-linking initiator (C), and the half-width X1 (nm -1 ) of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement is 0.05 < X1 < 0.30. [Effect of the Invention] The photocurable composition according to the present invention can maintain a sheet shape at room temperature and exhibit self-adhesiveness (referred to as "viscosity"), and if it is heated in an uncrosslinked state, Then, it softens or flows. For example, it can be softened or flowed by heating to a glass transition temperature of the giant monomer, and is filled around the uneven portion of the bonding surface. Further, by performing photocuring, excellent cohesive force can be exhibited, so that the adherends can be firmly bonded to each other.

以下,對本發明之實施形態之一例進行說明。但是,本發明並不限制於下述實施形態。 [本光硬化性組合物] 本發明之實施形態之一例之組合物(稱為「本光硬化性組合物」)係一種光硬化性組合物,其特徵在於:其係包含含有巨單體作為結構單元之(甲基)丙烯酸系共聚物(A)、交聯劑(B)及交聯起始劑(C)者,並且小角度X射線散射測定中之一維散射分佈之半值寬X1(nm-1 )為0.05<X1<0.30。 上述「含有巨單體作為結構單元」係除包含巨單體作為(甲基)丙烯酸系共聚物(A)之共聚物成分之情形以外,亦包含作為(甲基)丙烯酸系共聚物(A)之加成鍵結成分而包含之情形等作為該共聚物成分以外之結構單元而含有之情形的含義。 本光硬化性組合物較佳為具備至少交聯劑(B)及交聯起始劑(C)中之任一者與(甲基)丙烯酸系共聚物(A)鍵結而成之構成。 若至少交聯劑(B)及交聯起始劑(C)中之任一者與(甲基)丙烯酸系共聚物(A)鍵結,則可抑制鍵結之交聯劑(B)或交聯起始劑(C)之滲出。又,藉由至少交聯劑(B)及交聯起始劑(C)中之任一者與(甲基)丙烯酸系共聚物(A)鍵結,促進光交聯反應之反應效率,故而可獲得凝集力更高之光硬化物。 進而,若至少交聯劑(B)及交聯起始劑(C)中之任一者與(甲基)丙烯酸系共聚物(A)鍵結,則可刻意地設計(甲基)丙烯酸系共聚物(A)進行交聯之部位,故而容易控制本發明中規定之小角度X射線散射測定中之一維散射分佈之半值寬。 此處,上述「與(甲基)丙烯酸系共聚物(A)鍵結」係指交聯劑(B)或交聯起始劑(C)與(甲基)丙烯酸系共聚物(A)藉由包含共價鍵、離子鍵及金屬鍵之化學鍵進行鍵結之狀態。 如上所述,本光硬化性組合物之特徵在於小角度X射線散射測定中之一維散射分佈之半值寬X1(nm-1 )為0.05<X1<0.30。 小角度X射線散射測定係藉由觀察散射角為數度以下(具體而言,例如為10°以下)之散射X射線,獲得奈米尺度(1~100 nm)之結構資訊之方法。 因此,為於小角度X射線散射測定中可觀察到一維散射分佈之組合物意指並非為於小角度X射線散射測定中未觀察到一維散射分佈之狀態之組合物。再者,若於小角度X射線散射測定中可觀察到一維散射分佈,則不限定本光硬化性組合物之形狀或狀態。 本光硬化性組合物中之(甲基)丙烯酸系共聚物(A)係含有巨單體作為結構單元之共聚物。一般,以巨單體作為結構單元之共聚物形成接枝共聚物或嵌段共聚物。於巨單體之聚合性基為1個之情形時,通常,藉由與其他單體之加成、縮合或共聚合而成為接枝共聚物。又,於巨單體之聚合性基為2個之情形時,通常,藉由與其他單體之加成、縮合或共聚合而成為嵌段共聚物。已知一般接枝共聚物或嵌段共聚物形成(微)相分離結構。 關於本光硬化性組合物之小角度X射線散射測定中之一維散射分佈之半值寬的規定可視為包含如上所述之(甲基)丙烯酸系共聚物(A)之組合物所形成之(微)相分離結構之「相分離狀態」的標準。即,例如接枝共聚物中之主幹成分及分枝成分、或嵌段共聚物中之各嵌段成分形成微分離為不同之「相」之狀態。 此處,於小角度X射線散射測定中之一維散射分佈之半值寬較大(較廣)之情形時,意指波峰較寬,意指與半值寬較小之情形相比,相分離之各相之密度差較小之情形、或相分離結構不均一。 另一方面,半值寬越小(越窄),則意指波峰越陡峭,意指與半值寬較大之情形相比,相分離之各相之密度差更明確之情形、或相分離結構更均一。 因此,於本光硬化性組合物中,藉由將上述半值寬控制為特定之範圍內,微相分離之各相可分別擔負不同之黏著特性。 因此,可視為可兼具一般難以同時實現之特性者。 於以下之說明中,有使用「分枝成分」、「主幹成分」之用語,以接枝共聚物為例進行說明之情形,於嵌段共聚物中,只要將其改稱為「各嵌段成分」(例如「嵌段成分A」、「嵌段成分B」)即可。 就如上所述之觀點而言,於本光硬化性組合物中,小角度X射線散射測定中之一維散射分佈之半值寬X1可設為於包含巨單體作為結構單元之共聚物中,包含巨單體之分枝成分與主幹成分所形成之(微)相分離結構因指定之交聯劑或光起始劑而發生變化後之狀態的指標。 因此,於本光硬化性組合物中,藉由0.05<X1<0.30,與如上所述之先前揭示之光硬化性組合物、即具有包含巨單體作為結構單元之(甲基)丙烯酸系共聚物、及交聯劑之先前之光硬化性組合物相比,可以更高之水準同時實現作為相反物性之黏著性及形狀穩定性,可獲得處理性提昇之效果。 就此種觀點而言,於本光硬化性組合物中,較佳為小角度X射線散射測定中之一維散射分佈之半值寬X1為0.05<X1<0.30,進一步較佳為其中0.06<X1或X1<0.27、其中0.08<X1或X1<0.25、進而其中0.11<X1或X1≦0.23。 根據以上,上述半值寬X1較佳為0.05<X1<0.30、0.05<X1<0.27、0.05<X1<0.25或0.05<X1≦0.23中之任一者,更佳為其中0.06<X1<0.30、0.06<X1<0.27、0.06<X1<0.25或0.06<X1≦0.23中之任一者,進而較佳為其中0.08<X1<0.30、0.08<X1<0.27、0.08<X1<0.25或0.08<X1≦0.23中之任一者,最佳為進而其中0.11<X1<0.30、0.11<X1<0.27、0.11<X1<0.25或0.11<X1≦0.23中之任一者。 於本光硬化性組合物中,作為用以調整小角度X射線散射測定中之一維散射分佈之半值寬X1之主要之方法,可列舉對作為基礎聚合物之(甲基)丙烯酸系共聚物(A)之結構或組成、分子量等進行調整,並且對交聯劑(B)或交聯起始劑(C)之種類及量進行調整或選擇之方法。但是,並不限定於此種方法。再者,「基礎聚合物」係指光硬化性組合物中所包含之主成分,又,「主成分」係指超過光硬化性組合物之40質量%而包含之成分。 此處,作為(甲基)丙烯酸系共聚物(A)之結構之選擇,例如可列舉為接枝共聚物,或者為嵌段共聚物之選擇。 作為(甲基)丙烯酸系共聚物(A)之組成之調整,可列舉主幹成分及分枝成分(於為嵌段共聚物之情形時,為各嵌段成分)之組成之調整。 具體而言,調整(甲基)丙烯酸系共聚物(A)之基於分枝成分之相、及基於主幹成分之相之玻璃轉移溫度(Tg),或者使分枝成分及主幹成分之相溶性參數之平衡性最佳化,或者使分枝成分及主幹成分之親水性、疏水性之平衡性最佳化,藉此亦可控制上述半值寬。例如,可藉由分枝成分形成Tg較高之相,藉由主幹成分形成Tg較低之相,控制上述半值寬。 如上所述,使用接枝聚合物,使分枝成分與主幹成分之相溶性之平衡性最佳化,藉此可控制半值寬而形成最佳之相分離狀態,兼具黏性及熱熔性。 作為交聯劑(B)或交聯起始劑(C)之種類之調整,例如可列舉調整與構成(甲基)丙烯酸系共聚物(A)之親水性成分之相溶性。使交聯劑(B)或交聯起始劑(C)為對形成(甲基)丙烯酸系共聚物(A)之主幹成分及分枝成分(於為嵌段共聚物之情形時,為各嵌段成分)中之任一者或兩者之相之相溶性較高的成分,或者調整添加量,藉此可調整形成(甲基)丙烯酸系共聚物(A)之主幹成分與分枝成分(於為嵌段共聚物之情形時,為各嵌段成分)之相溶性,控制相分離狀態、即一維散射分佈之半值寬。 其中,作為本光硬化性組合物之上述半值寬X1之調整方法,有效的是如下所述,藉由構成主幹成分及分枝成分之單體所具有之官能基之種類或含有比率之最佳化、或分枝成分之分子量之最佳化等而使(甲基)丙烯酸系共聚物(A)最佳化,並且進行交聯劑(B)或交聯起始劑(C)之種類及量之調整。 進而,於本光硬化性組合物中,為了將上述半值寬X1調整為較佳之範圍,詳細而言,如下所述,例如,較佳為使用碳數為5以上、其中8以上、其中9以上、尤其是10以上之(甲基)丙烯酸系單體或乙烯基單體作為(1)(甲基)丙烯酸系共聚物(A)之主要之共聚合成分(主幹成分)。具體而言,較佳為自下述丙烯酸系共聚物(A1)之主幹成分所含有之單體之例示中選擇。 又,較佳為使用親水性成分作為(2a)上述(甲基)丙烯酸系單體或乙烯基單體以外之上述共聚合性成分(主幹成分)。具體而言,較佳為自下述丙烯酸系共聚物(A1)之主幹成分所含有之親水性單體之例示中選擇。進而較佳為除此以外,相對於上述共聚合成分(主幹成分)100,以0.1~20之質量比率含有(2b)該親水性成分而提高主幹成分之親水性。 進而,較佳為作為(3a)(甲基)丙烯酸系共聚物(A)之分枝成分,以相對於主幹成分100成為1~100之質量比率之方式調配碳數4以下之(甲基)丙烯酸系單體或乙烯基單體成分,調整主幹成分之相與分枝成分之相所形成之微相分離狀態。又,較佳為作為(3b)(甲基)丙烯酸系共聚物(A)之分枝成分,以相對於主幹成分100成為1~100之質量比率之方式調配具有環狀結構之(甲基)丙烯酸系單體或乙烯基單體成分,調整主幹成分之相與分枝成分之相所形成之微相分離狀態。 進而,較佳為使用與親水性成分之相溶性較高之含羥基化合物等作為(4a)交聯劑(B)。具體而言,較佳為自下述交聯劑(B)之例示中選擇。進而較佳為除此以外,相對於(甲基)丙烯酸系共聚物100質量份添加0.05~30質量份之(4b)上述交聯劑(B),適當調整包含主幹成分之相之極性。 如上所述,藉由分別獨立地適當選擇上述(1)~(4b),可調整主幹成分與分枝成分所形成之相分離結構。其中,於上述(1)~(4b)之方法中,較佳為組合(1)與(2a)及/或(2b),或者組合(1)與(3a)及/或(3b),更佳為組合(1)、(3a)及/或(3b)以及(4a)及/或(4b),最佳為採用(1)~(4b)之所有方法。但是,並不限定於該方法。 如上所述,只要使用接枝聚合物,使分枝成分與主幹成分之相溶性之平衡性最佳化,藉此形成最佳之相分離狀態即可,故而除上述以外,例如,亦可使用疏水性成分作為上述共聚物(A)之主要之共聚合性成分(主幹成分),且使用親水性成分作為上述共聚物(B)之分枝成分,藉此控制上述半值寬X1。 本光硬化性組合物進一步較佳為照射累計光照射量為4000 mJ/m2 之光時之小角度X射線散射測定中之一維散射分佈的半值寬X2(nm-1 )為0.05<X2<0.25。 於光硬化性組合物中,藉由照射累計光照射量為4000 mJ/m2 之光時之該一維散射分佈、即照射光後之本光硬化性組合物之該一維散射分佈之半值寬X2(nm-1 )為0.05<X2<0.25,除X1處於特定範圍之情形時之效果以外,亦可進而獲得於光硬化後之組合物中獲得較高之凝集力之效果。照射光之波長較佳為下述交聯起始劑(C)所感應之波長。 就此種觀點而言,於本光硬化性組合物中,較佳為照射累計光照射量為4000 mJ/m2 之光時之小角度X射線散射測定中之一維散射分佈的半值寬X2(nm-1 )為0.05<X2<0.25,進一步較佳為其中0.06<X2或X2<0.24、其中0.08<X2或X2<0.22、進而其中0.10<X2或X2<0.20。 根據以上,上述半值寬X2較佳為0.05<X2<0.25、0.05<X2<0.24、0.05<X2<0.22或0.05<X2<0.20中之任一者,更佳為其中0.06<X2<0.25、0.06<X2<0.24、0.06<X2<0.22或0.06<X2<0.20中之任一者,進而較佳為其中0.08<X2<0.25、0.08<X2<0.24、0.08<X2<0.22或0.08<X2<0.20中之任一者,最佳為進而其中0.10<X2<0.25、0.10<X2<0.24、0.10<X2<0.22或0.10<X2<0.20中之任一者。 於本光硬化性組合物中,用以調整照射累計光照射量為4000 mJ/m2 之光時之小角度X射線散射測定中之一維散射分佈之半值寬X2(nm-1 )的方法係與用以調整上述半值寬X1之方法相同。例如,可列舉對作為基礎聚合物之(甲基)丙烯酸系共聚物(A)之結構或組成、分子量等進行調整,並且對交聯劑(B)或交聯起始劑(C)之種類及量進行調整或選擇之方法。但是,並不限定於此種方法。 進而,於本光硬化性組合物中,為了將上述半值寬X2調整為較佳之範圍,詳細而言,如下所述,較佳為使用碳數為5以上、其中8以上、其中9以上、尤其是10以上之(甲基)丙烯酸系單體或乙烯基單體作為(1)(甲基)丙烯酸系共聚物(A)之主要之共聚合成分(主幹成分)。具體而言,較佳為自下述丙烯酸系共聚物(A1)之主幹成分所含有之單體之例示中選擇。 又,較佳為使用親水性成分作為(2a)上述(甲基)丙烯酸系單體或乙烯基單體以外之上述共聚合成分(主幹成分)。具體而言,較佳為自下述丙烯酸系共聚物(A1)之主幹成分所含有之親水性單體之例示中選擇。進而較佳為除此以外,相對於上述共聚合成分(主幹成分)100,以0.1~20之質量比率含有(2b)該親水性成分而提高主幹成分之親水性。 進而,較佳為作為(3a)(甲基)丙烯酸系共聚物(A)之分枝成分,以相對於主幹成分100成為1~100之質量比率之方式調配碳數4以下之(甲基)丙烯酸系單體或乙烯基單體成分,調整主幹成分之相與分枝成分之相所形成之微相分離狀態。又,較佳為作為(3b)(甲基)丙烯酸系共聚物(A)之分枝成分,以相對於主幹成分100成為1~100之質量比率之方式調配具有環狀結構之(甲基)丙烯酸系單體或乙烯基單體成分,調整主幹成分之相與分枝成分之相所形成之微相分離狀態。 進而,較佳為使用與親水性成分之相溶性較高之含羥基化合物等作為(4a)交聯劑(B)。具體而言,較佳為自下述交聯劑(B)之例示中選擇。進而較佳為除此以外,相對於(甲基)丙烯酸系共聚物100質量份添加0.05~30質量份之(4b)上述交聯劑(B),適當調整包含主幹成分之相之極性。 如上所述,藉由分別獨立地適當選擇上述(1)~(4b),可調整主幹成分與分枝成分所形成之相分離結構。其中,於上述(1)~(4b)之方法中,較佳為組合(1)與(2a)及/或(2b),或者組合(1)與(3a)及/或(3b),更佳為組合(1)、(3a)及/或(3b)以及(4a)及/或(4b),最佳為採用(1)~(4b)之所有方法。但是,並不限定於該方法。 如上所述,只要使用接枝聚合物,使分枝成分與主幹成分之相溶性之平衡性最佳化,藉此形成最佳之相分離狀態即可,故而除上述以外,例如,亦可使用疏水性成分作為上述共聚物(A)之主要之共聚合性成分(主幹成分),且使用親水性成分作為上述共聚物(B)之分枝成分,藉此控制上述半值寬X2。 再者,如上所述,並不限定本光硬化性組合物之形狀或狀態。於未對光硬化性組合物均一地照射上述4000 mJ/m2 之光之情形時,只要以將該光硬化性組合物成形為厚度150 μm之片狀者作為基準(測定對象)進行判斷即可。 本光硬化性組合物較佳為具有於20℃下顯示出黏著性,且於50~100℃下軟化或流動化之性質。 如上所述,於本光硬化性組合物中,藉由使用下述(甲基)丙烯酸系共聚物(A1)作為基礎樹脂,可具有此種性質。 <(甲基)丙烯酸系共聚物(A)> 作為包含巨單體作為結構單元之(甲基)丙烯酸系共聚物(A),可列舉包含具備巨單體作為分枝成分之接枝共聚物之(甲基)丙烯酸系共聚物(A1)作為一例。 本光硬化性組合物由於藉由交聯劑(B)及交聯起始劑(C)之作用而進行交聯,故而就其效率之方面而言,(甲基)丙烯酸系共聚物(A)較佳為接枝共聚物。 若以上述(甲基)丙烯酸系共聚物(A1)作為基礎樹脂而製作本光硬化性組合物,則容易控制本發明中規定之小角度X射線散射測定中之一維散射分佈之半值寬。即,係將該半值寬設為範圍內之達成方法之一態樣。因此,本光硬化性組合物可於室溫狀態下保持特定之形狀、例如片狀,並且顯示出自黏性(自黏著性),具有若於未交聯狀態下進行加熱則軟化或流動之熱熔性,進而,可使之光硬化,於光硬化後,可發揮優異之凝集力而使之接著。 因此,若使用(甲基)丙烯酸系共聚物(A1)作為本光硬化性組合物之基礎聚合物,則可具備即便為未交聯狀態,亦於室溫(20℃)下顯示出黏著性,且若加熱至50~90℃、更佳為60℃以上或80℃以下之溫度則軟化或流動化之性質。 (主幹成分) 構成上述(甲基)丙烯酸系共聚物(A1)之主幹成分之(共)聚合物之玻璃轉移溫度較佳為-70~0℃。 此時,構成主幹成分之(共)聚合物成分之玻璃轉移溫度係指僅使組成(甲基)丙烯酸系共聚物(A1)之主幹成分之單體成分進行聚合而獲得之聚合物的玻璃轉移溫度。具體而言,意指根據自該(共)聚合物各成分之均聚物獲得之聚合物之玻璃轉移溫度及構成比率,藉由Fox之計算式算出之值。再者,僅包含主幹成分之聚合物亦有為均聚物(homopolymer)、共聚物中之任一者之情形。 再者,Fox之計算式係以下之式,可使用聚合物手冊[PolymerHandBook, J. Brandrup, Interscience, 1989]中所記載之值求出。 1/(273+Tg)=Σ(Wi/(273+Tgi)) [式中,Wi表示單體i之重量分率,Tgi表示單體i之均聚物之Tg(℃)] 構成上述(甲基)丙烯酸系共聚物(A1)之主幹成分之(共)聚合物之玻璃轉移溫度會影響室溫狀態下之本光硬化性組合物之柔軟性、或本光硬化性組合物對被黏著體之潤濕性、即接著性,故而為了使本光硬化性組合物於室溫狀態下獲得適度之接著性(黏性),該玻璃轉移溫度較佳為-70℃~0℃,尤佳為其中-65℃以上或-5℃以下、其中-60℃以上或-10℃以下。 但是,即便該(共)聚合物之玻璃轉移溫度為相同之溫度,亦可藉由調整分子量而調整黏彈性。例如藉由使主幹成分之分子量較小,可進一步柔軟化。 作為上述(甲基)丙烯酸系共聚物(A1)之主幹成分所含有之單體,可列舉(甲基)丙烯酸酯單體,例如可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸新戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸庚酯、丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸異辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸第三丁基環己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸鯨蠟酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、(甲基)丙烯酸山萮酯、(甲基)丙烯酸異𦯉基酯、(甲基)丙烯酸2-苯氧基乙酯、3,5,5-三甲基環己烷丙烯酸酯、對異丙苯基苯酚環氧乙烷改性(甲基)丙烯酸酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊烯氧基乙酯、(甲基)丙烯酸苄酯等。 又,亦可使用於該等(甲基)丙烯酸酯單體鍵結親水基而成之(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸羥基丁酯、(甲基)丙烯酸甘油酯等含羥基(甲基)丙烯酸酯等。 又,亦可使用(甲基)丙烯酸、2-(甲基)丙烯醯氧基乙基六氫鄰苯二甲酸、2-(甲基)丙烯醯氧基丙基六氫鄰苯二甲酸、2-(甲基)丙烯醯氧基乙基鄰苯二甲酸、2-(甲基)丙烯醯氧基丙基鄰苯二甲酸、2-(甲基)丙烯醯氧基乙基順丁烯二酸、2-(甲基)丙烯醯氧基丙基順丁烯二酸、2-(甲基)丙烯醯氧基乙基丁二酸、2-(甲基)丙烯醯氧基丙基丁二酸、丁烯酸、反丁烯二酸、順丁烯二酸、伊康酸、順丁烯二酸單甲酯、伊康酸單甲酯等含羧基單體。 進而,亦可使用順丁烯二酸酐、伊康酸酐等含酸酐基單體;(甲基)丙烯酸縮水甘油酯、α-乙基丙烯酸縮水甘油酯、(甲基)丙烯酸3,4-環氧丁酯等含環氧基單體、(甲基)丙烯酸二甲基胺基乙酯、(甲基)丙烯酸二乙基胺基乙酯等含胺基(甲基)丙烯酸酯系單體;(甲基)丙烯醯胺、二甲基(甲基)丙烯醯胺、二乙基(甲基)丙烯醯胺、(甲基)丙烯醯基𠰌啉、羥基乙基(甲基)丙烯醯胺、異丙基(甲基)丙烯醯胺、二甲基胺基丙基(甲基)丙烯醯胺、二甲基胺基丙基(甲基)丙烯醯胺-氯甲烷鹽、(甲基)丙烯醯胺、N-第三丁基(甲基)丙烯醯胺、N-羥甲基(甲基)丙烯醯胺、N-甲氧基甲基(甲基)丙烯醯胺、N-丁氧基甲基(甲基)丙烯醯胺、雙丙酮(甲基)丙烯醯胺等丙烯醯胺系單體;順丁烯二醯胺、順丁烯二醯亞胺等含有醯胺基之單體;乙烯吡咯啶酮、乙烯吡啶、乙烯咔唑等雜環系鹼性單體;(甲基)丙烯酸2-異氰酸基乙酯、異氰酸2-(2-(甲基)丙烯醯氧基乙氧基)乙酯、(甲基)丙烯酸2-(0-[1'-甲基亞丙基胺基]羧基胺基)乙酯、(甲基)丙烯酸2-[(3,5-二甲基吡唑基)羰基胺基]乙酯等含有異氰酸基或封端異氰酸基之單體;2-[2-羥基-5-[2-((甲基)丙烯醯氧基)乙基]苯基]-2H-苯并三唑等含有紫外線吸收性基之單體等。 又,亦可適當使用可與上述丙烯酸系單體或甲基丙烯酸系單體進行共聚合之苯乙烯、第三丁基苯乙烯、α-甲基苯乙烯、乙烯基甲苯、丙烯腈、甲基丙烯腈、乙酸乙烯酯、丙酸乙烯酯、烷基乙烯醚、羥基烷基乙烯醚、烷基乙烯基單體等各種乙烯基單體。 又,(甲基)丙烯酸系共聚物(A1)之主幹成分較佳為含有疏水性之單體及親水性之單體作為結構單元。 若(甲基)丙烯酸系共聚物(A1)之主幹成分僅包含疏水性單體,則可見濕熱白化之傾向,故而較佳為亦將親水性單體導入至主幹成分而防止濕熱白化。 具體而言,作為上述(甲基)丙烯酸系共聚物(A1)之主幹成分,可列舉疏水性之(甲基)丙烯酸酯單體、親水性之(甲基)丙烯酸酯單體、及巨單體之末端之聚合性官能基進行無規共聚而成之共聚物成分。 此處,作為上述疏水性之(甲基)丙烯酸酯單體,例如可列舉:(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸新戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸庚酯、丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸異辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸第三丁基環己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸鯨蠟酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、(甲基)丙烯酸山萮酯、(甲基)丙烯酸異𦯉基酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸二環戊烯氧基乙酯、甲基丙烯酸甲酯。 又,作為疏水性之乙烯基單體,可列舉:乙酸乙烯酯等烷基乙烯酯、苯乙烯、第三丁基苯乙烯、α-甲基苯乙烯、乙烯基甲苯、烷基乙烯基單體等。 其中,就容易與下述分枝成分所形成之相形成適度之相分離結構之方面、及對本光硬化性組合物賦予適度之接著性(黏性)之觀點而言,較佳為碳數為5以上、其中8以上、其中9以上、尤其是10以上之(甲基)丙烯酸烷基酯。 例如於具有觸控感測器功能之構件使用本光硬化性組合物之情形時,有為了吸收觸控檢測感度之變化而抑制檢測信號之雜訊產生,謀求一種相對介電常數較低之光硬化性組合物之情形。此時,就將本光硬化性組合物、及/或使本光硬化性組合物光硬化而成之硬化物之相對介電常數調整為較低之觀點而言,較佳為使用碳數為5以上、其中8以上、其中9以上、尤其是10以上之(甲基)丙烯酸烷基酯作為疏水性單體。 此處,作為碳數8以上之(甲基)丙烯酸烷基酯,例如可列舉:丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸異辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸第三丁基環己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸鯨蠟酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、(甲基)丙烯酸山萮酯、(甲基)丙烯酸異𦯉基酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸二環戊烯氧基乙酯等。 作為上述親水性之單體,例如除丙烯酸甲酯、(甲基)丙烯酸四氫糠酯、或(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸羥基丁酯、(甲基)丙烯酸甘油酯等含羥基(甲基)丙烯酸酯;(甲基)丙烯酸、2-(甲基)丙烯醯氧基乙基六氫鄰苯二甲酸、2-(甲基)丙烯醯氧基丙基六氫鄰苯二甲酸、2-(甲基)丙烯醯氧基乙基鄰苯二甲酸、2-(甲基)丙烯醯氧基丙基鄰苯二甲酸、2-(甲基)丙烯醯氧基乙基順丁烯二酸、2-(甲基)丙烯醯氧基丙基順丁烯二酸、2-(甲基)丙烯醯氧基乙基丁二酸、2-(甲基)丙烯醯氧基丙基丁二酸、丁烯酸、反丁烯二酸、順丁烯二酸、伊康酸、順丁烯二酸單甲酯、伊康酸單甲酯等含羧基單體;順丁烯二酸酐、伊康酸酐等含酸酐基單體;(甲基)丙烯酸縮水甘油酯、α-乙基丙烯酸縮水甘油酯、(甲基)丙烯酸3,4-環氧丁酯等含環氧基單體;甲氧基聚乙二醇(甲基)丙烯酸酯等烷氧基聚伸烷基二醇(甲基)丙烯酸酯以外,亦可使用(甲基)丙烯醯胺、二甲基(甲基)丙烯醯胺、二乙基(甲基)丙烯醯胺、(甲基)丙烯醯基𠰌啉、羥基乙基(甲基)丙烯醯胺、異丙基(甲基)丙烯醯胺、二甲基胺基丙基(甲基)丙烯醯胺、苯基(甲基)丙烯醯胺、N-第三丁基(甲基)丙烯醯胺、N-羥甲基(甲基)丙烯醯胺、N-甲氧基甲基(甲基)丙烯醯胺、N-丁氧基甲基(甲基)丙烯醯胺、雙丙酮(甲基)丙烯醯胺等(甲基)丙烯醯胺系單體。 於上述中,就防止本光硬化性組合物之濕熱白化,並且提昇對被黏著體之密接性之觀點而言,較佳為使用含羥基單體、或含羧基單體、含酸酐基單體、(甲基)丙烯醯胺系單體作為上述親水性之單體。 另一方面,於本光硬化性組合物用於具有金屬或金屬氧化物等之腐蝕性之構件之情形時,為了防止因本光硬化性組合物、及/或使本光硬化性組合物光硬化而成之硬化物所引起之被黏著體之腐蝕劣化,較佳為使用不含有酸度較高之羧基或酸酐之親水性成分。就此種觀點而言,作為上述親水性之單體,例如較佳為使用(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸羥基丁酯、(甲基)丙烯酸甘油酯等含羥基(甲基)丙烯酸酯;或(甲基)丙烯醯胺、二甲基(甲基)丙烯醯胺、二乙基(甲基)丙烯醯胺、(甲基)丙烯醯基𠰌啉、羥基乙基(甲基)丙烯醯胺、異丙基(甲基)丙烯醯胺、二甲基胺基丙基(甲基)丙烯醯胺、苯基(甲基)丙烯醯胺、N-第三丁基(甲基)丙烯醯胺、N-羥甲基(甲基)丙烯醯胺、N-甲氧基甲基(甲基)丙烯醯胺、N-丁氧基甲基(甲基)丙烯醯胺、雙丙酮(甲基)丙烯醯胺等(甲基)丙烯醯胺系單體。 (分枝成分:巨單體) (甲基)丙烯酸系共聚物(A1)較佳為導入巨單體作為接枝共聚物之分枝成分,包含巨單體作為結構單元。 巨單體係具有末端之聚合性官能基及高分子量骨架成分之高分子單體。 巨單體之玻璃轉移溫度(Tg)較佳為高於構成上述(甲基)丙烯酸系共聚物(A1)之共聚物成分之玻璃轉移溫度。 具體而言,巨單體之玻璃轉移溫度(Tg)由於會影響本光硬化性組合物之加熱熔融溫度(熱熔溫度),故而較佳為30℃~120℃,進而較佳為其中40℃以上或110℃以下、其中50℃以上或100℃以下。 若巨單體為此種玻璃轉移溫度(Tg),則藉由調整分子量,可保持優異之加工性或保管穩定性,並且可以於50℃至80℃附近進行熱熔之方式進行調整。 巨單體之玻璃轉移溫度意指該巨單體本身之玻璃轉移溫度,可藉由示差掃描熱量計(DSC)進行測定。 又,為了可於室溫狀態下維持如分枝成分彼此互相牽引而以黏著劑組合物之形式進行物理交聯之狀態,而且,藉由加熱至適度之溫度,可解除上述物理交聯而獲得流動性,亦較佳為調整巨單體之分子量或含量。 就此種觀點而言,巨單體較佳為於(甲基)丙烯酸系共聚物(A1)中以5質量%~30質量%之比率含有,較佳為其中6質量%以上或25質量%以下、其中8質量%以上或20質量%以下。 又,巨單體之數量平均分子量較佳為500~10萬,較佳為其中未達8000,較佳為其中800以上或未達7500、其中1000以上或未達7000。 巨單體可適當使用一般製造者(例如東亞合成公司製造之巨單體等)。 巨單體之高分子量骨架成分較佳為包含丙烯酸系聚合物或乙烯基系聚合物。 作為上述巨單體之高分子量骨架成分,例如可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸新戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸庚酯、丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸異辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸第三丁基環己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸鯨蠟酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、(甲基)丙烯酸山萮酯、(甲基)丙烯酸異𦯉基酯、(甲基)丙烯酸2-苯氧基乙酯、3,5,5-三甲基環己烷丙烯酸酯、對異丙苯基苯酚環氧乙烷改性(甲基)丙烯酸酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊烯氧基乙酯、(甲基)丙烯酸苄酯、(甲基)丙烯酸羥基烷基酯、(甲基)丙烯酸、(甲基)丙烯酸縮水甘油酯、(甲基)丙烯酸烷氧基烷基酯、烷氧基聚伸烷基二醇(甲基)丙烯酸酯等(甲基)丙烯酸酯單體;或苯乙烯、第三丁基苯乙烯、α-甲基苯乙烯、乙烯基甲苯、烷基乙烯基單體、烷基乙烯酯、烷基乙烯醚、羥基烷基乙烯醚、(甲基)丙烯腈、(甲基)丙烯醯胺、N-取代(甲基)丙烯醯胺等各種乙烯基單體,該等可單獨使用或者組合2種以上而使用。 巨單體係具有自由基聚合性基、或羥基、異氰酸基、環氧基、羧基、胺基、醯胺基、硫醇基等聚合性官能基者。作為巨單體,較佳為具有能夠與其他單體進行共聚合之自由基聚合性基者。自由基聚合性基可含有一個或兩個以上,其中尤佳為一個。於巨單體具有官能基之情形時,官能基亦可含有一個或兩個以上,其中尤佳為一個。又,自由基聚合性基及官能基可含有其中任一者,亦可含有兩者。於含有自由基聚合性基及官能基兩者之情形時,與包含其他單體之聚合物單元進行加成之官能基、或與其他單體進行共聚合之自由基聚合性基中之任一者以外之官能基、或者自由基聚合性基可為兩個以上。 因此,作為上述巨單體之末端官能基,例如除甲基丙烯醯基、丙烯醯基、乙烯基等自由基性聚合基以外,亦可列舉:羥基、異氰酸基、環氧基、羧基、胺基、醯胺基、硫醇基等官能基。 其中,作為上述巨單體之末端官能基,較佳為具有能夠與其他單體進行共聚合之自由基聚合性基者。此時,該自由基聚合性基可含有一個或兩個以上,其中尤佳為一個。 於巨單體具有官能基之情形時,官能基亦可含有一個或兩個以上,其中尤佳為一個。 又,自由基聚合性基及官能基可含有其中任一者,亦可含有兩者。於含有自由基聚合性基及官能基兩者之情形時,與包含其他單體之聚合物單元進行加成之官能基、或與其他單體進行共聚合之自由基聚合性基中之任一者以外之官能基、或者自由基聚合性基可為兩個以上。 巨單體可藉由公知之方法而製造。作為巨單體之製造方法,例如可列舉:使用鈷鏈轉移劑而製造之方法;使用α-甲基苯乙烯二聚物等α取代不飽和化合物作為鏈轉移劑之方法;使聚合性基以化學方式進行鍵結之方法;及藉由熱分解所進行之方法。該等方法中,作為巨單體之製造方法,就製造步驟數較少、使用鏈轉移常數較高之觸媒之方面而言,較佳為使用鈷鏈轉移劑而製造之方法。 (製造方法) 丙烯酸系共聚物(A1)例如可對包含乙烯基單體(b)之聚合物加成特定之巨單體(a)而獲得,又,亦可使含有特定之巨單體(a)及乙烯基單體(b)之單體混合物進行聚合而獲得。 <交聯劑(B)> 本光硬化性組合物中之交聯劑(B)具有作為包含(甲基)丙烯酸系共聚物(A)之組合物所形成之(微)相分離結構之控制劑的作用,換言之,具有調整本光硬化性組合物之柔軟性及凝集力之控制劑的作用。 作為交聯劑(B),例如可列舉具有選自(甲基)丙烯醯基、環氧基、異氰酸基、羧基、羥基、碳二醯亞胺基、㗁唑啉基、氮丙啶基、乙烯基、胺基、亞胺基、醯胺基、N-取代(甲基)丙烯醯胺基、烷氧基矽烷基中之至少1種交聯性官能基之交聯劑,可使用1種或者組合2種以上而使用。 再者,上述交聯性官能基可利用能夠去保護之保護基加以保護。 其中,就容易控制交聯反應之觀點而言,較佳為多官能(甲基)丙烯酸酯。 作為此種多官能(甲基)丙烯酸酯,例如除1,4-丁二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、甘油縮水甘油醚二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、雙酚A聚乙氧基二(甲基)丙烯酸酯、雙酚A聚烷氧基二(甲基)丙烯酸酯、雙酚F聚烷氧基二(甲基)丙烯酸酯、聚伸烷基二醇二(甲基)丙烯酸酯、三羥甲基丙烷三氧基乙基(甲基)丙烯酸酯、ε-己內酯改性三(2-羥基乙基)異氰尿酸三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、丙氧基化季戊四醇三(甲基)丙烯酸酯、乙氧基化季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、丙氧基化季戊四醇四(甲基)丙烯酸酯、乙氧基化季戊四醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、異氰尿酸三(丙烯醯氧基乙基)酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、三季戊四醇六(甲基)丙烯酸酯、三季戊四醇五(甲基)丙烯酸酯、羥基特戊酸新戊二醇酯二(甲基)丙烯酸酯、羥基特戊酸新戊二醇酯之ε-己內酯加成物之二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、烷氧基化三羥甲基丙烷三(甲基)丙烯酸酯、二(三羥甲基丙烷)四(甲基)丙烯酸酯等紫外線硬化型多官能單體類以外,亦可列舉(甲基)丙烯酸聚酯、環氧(甲基)丙烯酸酯、(甲基)丙烯酸胺基甲酸酯、聚醚(甲基)丙烯酸酯等多官能丙烯酸酯低聚物類、以及多官能丙烯醯胺等。 上述所列舉者中,就提昇對被黏著體之密接性或濕熱白化抑制之效果之觀點而言,於上述多官能(甲基)丙烯酸酯單體中,較佳為含有羥基或羧基、胺基、醯胺基等極性官能基之多官能單體或低聚物。其中,較佳為使用具有羥基或醯胺基之多官能(甲基)丙烯酸酯。 就防止濕熱白化之觀點而言,較佳為含有疏水性之丙烯酸酯單體及親水性之丙烯酸酯單體作為上述(甲基)丙烯酸酯共聚物(A1)、即接枝共聚物之主幹成分,進而,較佳為使用具有羥基之多官能(甲基)丙烯酸酯作為交聯劑(B)。 又,為了調整密接性或耐濕熱性、耐熱性等效果,可進而加入與交聯劑(B)進行反應之單官能或多官能之(甲基)丙烯酸酯。 又,作為具有2種以上之交聯性官能基之交聯劑,例如除(甲基)丙烯酸縮水甘油酯、α-乙基丙烯酸縮水甘油酯、(甲基)丙烯酸3,4-環氧丁酯、(甲基)丙烯酸4-羥基丁酯縮水甘油醚等含環氧基單體;或(甲基)丙烯酸2-異氰酸基乙酯、異氰酸2-(2-(甲基)丙烯醯氧基乙氧基)乙酯、(甲基)丙烯酸2-(O-[1'-甲基亞丙基胺基]羧基胺基)乙酯、(甲基)丙烯酸2-[(3,5-二甲基吡唑基)羰基胺基]乙酯等含有異氰酸基或封端異氰酸基之單體以外,亦可列舉:乙烯基三甲氧基甲矽烷、乙烯基三乙氧基甲矽烷、3-縮水甘油氧基丙基三甲氧基甲矽烷、3-(甲基)丙烯醯氧基丙基甲基二乙氧基甲矽烷、3-(甲基)丙烯醯氧基丙基三乙氧基甲矽烷、N-2-(胺基乙基)-3-胺基丙基甲基二甲氧基甲矽烷、3-異氰酸基丙基三乙氧基甲矽烷等各種矽烷偶合劑。 具有2種以上之交聯性官能基之交聯劑可採用使一交聯性官能基與(甲基)丙烯酸系共聚物進行反應,使之與(甲基)丙烯酸系共聚物(A)鍵結而成之結構。 藉由使交聯劑(B)與(甲基)丙烯酸系共聚物(A)鍵結,可抑制交聯劑(B)之滲出或黏著劑組合物之未預期之塑化。又,藉由使交聯劑(B)與(甲基)丙烯酸系共聚物(A)鍵結,會促進光交聯反應之反應效率,故而可獲得凝集力更高之硬化物。 就將小角度X射線散射測定中之一維散射分佈之半值寬調整為適當範圍而維持適度之相分離結構,使本光硬化性組合物之柔軟性與凝集力平衡之觀點而言,交聯劑(B)之含量相對於上述(甲基)丙烯酸系共聚物(A)100質量份,較佳為0.05質量份或30質量份之比例,其中較佳為0.1質量份或20質量份之比例,其中尤佳為0.5質量份以上或15質量份以下、尤其是1質量份以上或13質量份以下之比例。 本光硬化性組合物可進而含有與交聯劑(B)之交聯性官能基進行反應之單官能單體。藉由含有單官能單體,除增大該光硬化性組合物之小角度X射線散射測定中之一維散射分佈之半值寬X1的值,或者提高熱熔時之流動性以外,亦可提昇對被黏著體之密接性,或者提昇濕熱白化抑制之效果。 作為此種單官能單體,例如除丙烯酸甲酯等(甲基)丙烯酸烷基酯以外,亦可列舉:(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸羥基丁酯、(甲基)丙烯酸甘油酯、聚伸烷基二醇(甲基)丙烯酸酯等含羥基(甲基)丙烯酸酯;(甲基)丙烯酸、2-(甲基)丙烯醯氧基乙基六氫鄰苯二甲酸、2-(甲基)丙烯醯氧基丙基六氫鄰苯二甲酸、2-(甲基)丙烯醯氧基乙基鄰苯二甲酸、2-(甲基)丙烯醯氧基丙基鄰苯二甲酸、2-(甲基)丙烯醯氧基乙基順丁烯二酸、2-(甲基)丙烯醯氧基丙基順丁烯二酸、2-(甲基)丙烯醯氧基乙基丁二酸、2-(甲基)丙烯醯氧基丙基丁二酸、丁烯酸、反丁烯二酸、順丁烯二酸、伊康酸、順丁烯二酸單甲酯、伊康酸單甲酯等含羧基單體;順丁烯二酸酐、伊康酸酐等含酸酐基單體;(甲基)丙烯酸四氫糠酯、甲氧基聚乙二醇(甲基)丙烯酸酯等含醚基(甲基)丙烯酸酯;(甲基)丙烯醯胺、二甲基(甲基)丙烯醯胺、二乙基(甲基)丙烯醯胺、(甲基)丙烯醯基𠰌啉、羥基乙基(甲基)丙烯醯胺、異丙基(甲基)丙烯醯胺、二甲基胺基丙基(甲基)丙烯醯胺、苯基(甲基)丙烯醯胺、N-第三丁基(甲基)丙烯醯胺、N-羥甲基(甲基)丙烯醯胺、N-甲氧基甲基(甲基)丙烯醯胺、N-丁氧基甲基(甲基)丙烯醯胺、雙丙酮(甲基)丙烯醯胺等(甲基)丙烯醯胺系單體等。 其中,就提昇對被黏著體之密接性或濕熱白化抑制之效果之觀點而言,較佳為使用含羥基(甲基)丙烯酸酯或(甲基)丙烯醯胺系單體。 <交聯起始劑(C)> 本光硬化性組合物中所使用之交聯起始劑(C)發揮作為交聯劑(B)之交聯反應中之反應起始助劑的功能。 交聯起始劑可適當使用目前公知者。其中,就容易控制交聯反應之觀點而言,較佳為感應波長380 nm以下之紫外線之光聚合起始劑。 另一方面,感應較波長380 nm長波長之光之光聚合起始劑就可獲得較高之光反應性之方面、及於將本光硬化性組合物賦形為片狀之情形時,感應之光容易到達至片材之深部之方面而言較佳。 光聚合起始劑根據自由基產生機構大致分為2種,大致分為可將光聚合起始劑本身之單鍵斷鍵分解而產生自由基之斷鍵型光聚合起始劑;及經光激發之起始劑與系中之氫供與體形成激發錯合物,可轉移氫供與體之氫之奪氫型光聚合起始劑。 該等中之斷鍵型光聚合起始劑係於藉由光照射而產生自由基時發生分解而成為另一化合物,一旦激發,則不具有作為交聯起始劑之功能。因此,不會於交聯反應結束後之黏著材料中作為活性種殘存,不存在給黏著材料帶來未預期之光劣化等之可能性,故而較佳。 另一方面,奪氫型光聚合起始劑係於藉由紫外線等活性能量線照射之自由基產生反應時,不會產生斷鍵型光聚合起始劑之類之分解物,故而於反應結束後不易成為揮發成分,可降低對被黏著體之損傷,就該方面而言較為有用。 作為上述斷鍵型光聚合起始劑,例如可列舉:2,2-二甲氧基-1,2-二苯基乙烷-1-酮、1-羥基環己基苯基酮、2-羥基-2-甲基-1-苯基-丙烷-1-酮、1-(4-(2-羥基乙氧基)苯基)-2-羥基-2-甲基-1-丙烷-1-酮、2-羥基-1-[4-{4-(2-羥基-2-甲基-丙醯基)苄基}苯基]-2-甲基-丙烷-1-酮、低聚(2-羥基-2-甲基-1-(4-(1-甲基乙烯基)苯基)丙酮)、苯基乙醛酸甲酯、2-苄基-2-二甲基胺基-1-(4-𠰌啉基苯基)丁烷-1-酮、2-(4-甲基苄基)-2-二甲基胺基-1-(4-𠰌]啉基苯基)丁烷-1-酮、2-甲基-1-[4-(甲硫基)苯基]-2-𠰌啉基丙烷-1-酮、2-(二甲基胺基)-2-[(4-甲基苯基)甲基]-1-[4-(4-𠰌啉基)苯基]-1-丁酮、1,2-辛二酮、1-(4-(苯硫基) -,2-(鄰苯甲醯肟))、1-[9-乙基-6-(2-甲基苯甲醯基)-9H-咔唑-3-基]-乙酮1-(O-乙醯肟)、雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦、2,4,6-三甲基苯甲醯基二苯基氧化膦、(2,4,6-三甲基苯甲醯基)乙氧基苯基氧化膦、雙(2,6-二甲氧基苯甲醯基)2,4,4-三甲基戊基氧化膦、或該等之衍生物等。 作為上述奪氫型光聚合起始劑,例如可列舉:二苯甲酮、4-甲基-二苯甲酮、2,4,6-三甲基二苯甲酮、4-苯基二苯甲酮、3,3'-二甲基-4-甲氧基二苯甲酮、4-(甲基)丙烯醯氧基二苯甲酮、4-[2-((甲基)丙烯醯氧基)乙氧基]二苯甲酮、4-(甲基)丙烯醯氧基-4'-甲氧基二苯甲酮、2-苯甲醯苯甲酸甲酯、苯甲醯甲酸甲酯、雙(2‐苯基‐2‐側氧乙酸)氧二乙烯、4-(1,3-丙烯醯基-1,4,7,10,13-五側氧十三烷基)二苯甲酮、9-氧硫 、2-氯9-氧硫 、3-甲基9-氧硫 、2,4-二甲基9-氧硫 、蒽醌、2-甲基蒽醌、2-乙基蒽醌、2-第三丁基蒽醌、2-胺基蒽醌、樟腦醌或其衍生物等。 但是,作為光聚合起始劑,並不限定於上述所列舉之物質。可使用上述所列舉之光聚合起始劑中之任一種或其衍生物,亦可組合兩種以上而使用。 其中,就對光之感應性較高,且於反應後成為分解物而脫色之方面而言,較佳為雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦、2,4,6-三甲基苯甲醯基二苯基氧化膦、(2,4,6-三甲基苯甲醯基)乙氧基苯基氧化膦、雙(2,6-二甲氧基苯甲醯基)2,4,4-三甲基戊基氧化膦等醯基氧化膦系光聚合起始劑。 又,就容易控制反應、及與包含具備巨單體作為分枝成分之接枝共聚物之丙烯酸系共聚物之配合性而言,較佳為作為交聯起始劑(C),使用二苯甲酮、4-甲基-二苯甲酮、2,4,6-三甲基二苯甲酮、4-苯基二苯甲酮、3,3'-二甲基-4-甲氧基二苯甲酮、4-(甲基)丙烯醯氧基二苯甲酮、4-[2-((甲基)丙烯醯氧基)乙氧基]二苯甲酮、4-(甲基)丙烯醯氧基-4'-甲氧基二苯甲酮、2-苯甲醯苯甲酸甲酯、苯甲醯甲酸甲酯等。 交聯起始劑(C)之含量並無特別限制。作為標準,較佳為相對於丙烯酸系共聚物(A)100質量份,以0.1~10質量份、其中0.5質量份以上或5質量份以下、其中1質量份以上或3質量份以下之比率含有。 藉由將交聯起始劑(C)之含量設為上述範圍,可獲得對活性能量線之適度之反應感度。 進而,除交聯起始劑(C)成分以外,亦可使用增感劑。 作為增感劑,並無特別限定,只要為光聚合起始劑中所使用之增感劑,則可無問題地使用。例如可列舉:芳香族胺或蒽衍生物、蒽醌衍生物、香豆素衍生物、9-氧硫 衍生物、酞菁衍生物等、或二苯甲酮、𠮿酮、9-氧硫 、米其勒酮、9,10-菲醌等芳香族酮及該等之衍生物等。 <其他成分> 本光硬化性組合物可含有通常之黏著組合物中所調配之公知之成分作為上述以外之成分。例如可適當含有黏著賦予樹脂、或抗氧化劑、光穩定劑、金屬減活劑、防銹劑、防老化劑、吸濕劑、防水解劑、防靜電劑、消泡劑、無機粒子等各種添加劑。 又,可視需要適當含有反應觸媒(三級胺系化合物、四級銨系化合物、月桂酸錫化合物等)。 <本黏著片材> 可自本光硬化性組合物製作黏著片材(稱為「本黏著片材」)。 本黏著片材可為包含單層之片材,亦可為積層2層以上而成之多層片材。 於使本黏著片材為3層以上之黏著片材之情形時,例如,於形成具備中間層及最外層之積層構成之黏著片材之情形時,較佳為自本光硬化性組合物形成該最外層。 於將本黏著片材形成為具備中間層及最外層之積層構成之黏著片材之情形時,較佳為各最外層之厚度與中間層之厚度之比率為1:1~1:20,其中,進而較佳為1:2~1:10。 若中間層之厚度為上述範圍,則積層體中之黏著材料層之厚度之幫助不會變得過大,不會過於柔軟而剪裁或處理之作業性較差,從而較佳。 又,若最外層為上述範圍,則不存在對凹凸或彎曲之面之追隨性較差之情況,可維持對被黏著體之接著力或潤濕性,從而較佳。 (本黏著片材之厚度) 關於本黏著片材之厚度,藉由使片材厚度較薄,可應對薄壁化要求,另一方面,若使片材厚度過薄,則例如於被著面有凹凸部之情形時,可能會無法充分地追隨於凹凸,或者無法發揮充分之接著力。 就此種觀點而言,本黏著片材之厚度較佳為20 μm~500 μm,尤佳為其中25 μm以上或350 μm以下、其中50 μm以上或250 μm以下。 (本黏著片材之黏著力) 本黏著片材較佳為貼合於玻璃,照射累計光照射量為4000 mJ/m2 之光時之對玻璃之180°剝離強度、即照射光後之本黏著片材之該180°剝離強度為3 N/cm以上。 若對玻璃之該180°剝離強度為3 N/cm以上,則可發揮優異之凝集力,故而可將被黏著物彼此牢固地貼合。因此,可將下述圖像顯示構成構件彼此更牢固地貼合。 就此種觀點而言,如上所述,本黏著片材較佳為進行光照射時之對玻璃之180°剝離強度為3 N/cm以上,進而較佳為其中5 N/cm以上、其中10 N/cm以上。 (本黏著片材之使用方法) 本黏著片材可直接單獨使用。又,亦可與其他構件積層而使用。 <本黏著片材積層體> 若本黏著片材積層體為於層構成中包含本黏著片材之積層體,則其構成為任意。例如,可於本黏著片材之一側或兩側積層離型膜而構成黏著片材積層體。 作為離型膜,可任意地使用目前公知者。 上述離型膜之厚度並無特別限制。其中,例如就加工性及處理性之觀點而言,較佳為25 μm~500 μm,進而較佳為其中38 μm以上或250 μm以下、其中50 μm以上或200 μm以下。 <本硬化物> 藉由照射光而使上述本光硬化性組合物硬化(稱為「光硬化」),可獲得特徵在於小角度X射線散射測定中之一維散射分佈之半值寬X3(nm-1 )為0.05<X3<0.25之硬化物(稱為「本硬化物」)。 此處,硬化物意指對本光硬化性組合物照射光使之硬化而成者,其形態為任意。因此,可為片狀,亦可不為片狀。 於本硬化物中,藉由小角度X射線散射測定中之一維散射分佈之半值寬X3(nm-1 )為0.05<X3<0.25,可獲得高凝集力且可靠性較高之硬化物。 就此種觀點而言,於本硬化物中,就與上述本光硬化性組合物相同之觀點而言,小角度X射線散射測定中之一維散射分佈之半值寬X3(nm-1 )較佳為0.05<X3<0.25,進一步較佳為其中0.06<X3或X3<0.24、其中0.08<X3或X3<0.22、進而其中0.10<X3或X3<0.20。 根據以上,上述半值寬X3較佳為0.05<X3<0.25、0.05<X3<0.24、0.05<X3<0.22或0.05<X3<0.20中之任一者,更佳為其中0.06<X3<0.25、0.06<X3<0.24、0.06<X3<0.22或0.06<X3<0.20中之任一者,進而較佳為其中0.08<X3<0.25、0.08<X3<0.24、0.08<X3<0.22或0.08<X3<0.20中之任一者,最佳為進而其中0.10<X3<0.25、0.10<X3<0.24、0.10<X3<0.22或0.10<X3<0.20中之任一者。 作為用以於本硬化物中調整上述半值寬X3之主要之方法,與用以調整上述半值寬X1(nm-1 )之方法相同。例如可列舉對作為基礎聚合物之(甲基)丙烯酸系共聚物(A)之結構或組成、分子量等進行調整,並且對交聯劑(B)或交聯起始劑(C)之種類及量進行調整或選擇之方法。但是,並不限定於該等方法。 進而,於本硬化物中,為了將上述半值寬X3調整為較佳之範圍,詳細而言,如上所述,較佳為使用碳數為5以上、其中8以上、其中9以上、尤其是10以上之(甲基)丙烯酸系單體或乙烯基單體作為(1)(甲基)丙烯酸系共聚物之主要之共聚合成分(主幹成分)。具體而言,較佳為自上述丙烯酸系共聚物(A1)之主幹成分所含有之單體之例示中選擇。 又,較佳為使用親水性成分作為(2a)上述(甲基)丙烯酸系單體或乙烯基單體以外之上述共聚合性成分(主幹成分)。具體而言,較佳為自下述丙烯酸系共聚物(A1)之主幹成分所含有之親水性單體之例示中選擇。進而較佳為除此以外,相對於上述共聚合成分(主幹成分)100,以0.1~20之質量比率含有(2b)該親水性成分而提高主幹成分之親水性。 進而,較佳為作為(3)(甲基)丙烯酸系共聚物(A)之分枝成分,以相對於主幹成分100成為1~100之質量比率之方式調配碳數4以下之(甲基)丙烯酸系單體或乙烯基單體成分,調整主幹成分之相與分枝成分之相所形成之微相分離狀態。又,較佳為作為(3b)(甲基)丙烯酸系共聚物(A)之分枝成分,以相對於主幹成分100成為1~100之質量比率之方式調配具有環狀結構之(甲基)丙烯酸系單體或乙烯基單體成分,調整主幹成分之相與分枝成分之相所形成之微相分離狀態。 進而,較佳為使用與親水性成分之相溶性較高之含羥基化合物等作為(4a)交聯劑(B)。具體而言,較佳為自上述交聯劑(B)之例示中選擇。進而較佳為除此以外,相對於(甲基)丙烯酸系共聚物100質量份含有0.05~30質量份之(4b)上述交聯劑(B)而適當調整主幹成分之極性。 如上所述,藉由分別獨立地適當選擇上述(1)~(4),可調整主幹成分與分枝成分所形成之相分離結構。其中,於上述(1)~(4b)之方法中,較佳為組合(1)與(2a)及/或(2b),或者組合(1)與(3a)及/或(3b),更佳為組合(1)、(3a)及/或(3b)以及(4a)及/或(4b),最佳為採用(1)~(4b)之所有方法。但是,並不限定於該方法。 如上所述,只要使用接枝聚合物,使分枝成分與主幹成分之相溶性之平衡性最佳化,藉此形成最佳之相分離狀態即可,故而除上述以外,例如,亦可使用疏水性成分作為上述共聚物(A)之主要之共聚合性成分(主幹成分),且使用親水性成分作為上述共聚物(B)之分枝成分,藉此控制上述半值寬X3。 <本圖像顯示裝置構成用積層體> 可將2個圖像顯示裝置用構成構件經由上述本光硬化性組合物或上述本黏著片材或上述本硬化物進行積層而構成圖像顯示裝置構成用積層體(稱為「本圖像顯示裝置構成用積層體」)。 此時,作為2個圖像顯示裝置用構成構件,例如可列舉由觸控感測器、圖像顯示面板、表面保護面板及偏光膜所組成之群中之任一者、或2種以上之組合。 作為本圖像顯示裝置構成用積層體之具體例,例如可列舉:脫模片材/本光硬化性組合物或上述本黏著片材或上述本硬化物/觸控面板、脫模片材/本光硬化性組合物或上述本黏著片材或上述本硬化物/保護面板、脫模片材/本光硬化性組合物或上述本黏著片材或上述本硬化物/圖像顯示面板、圖像顯示面板/本光硬化性組合物或上述本黏著片材或上述本硬化物/觸控面板、圖像顯示面板/本光硬化性組合物或上述本黏著片材或上述本硬化物/保護面板、圖像顯示面板/本光硬化性組合物或上述本黏著片材或上述本硬化物/觸控面板/本光硬化性組合物或上述本黏著片材或上述本硬化物/保護面板、偏光膜/本光硬化性組合物或上述本黏著片材或上述本硬化物/觸控面板、偏光膜/本光硬化性組合物或上述本黏著片材或上述本硬化物/觸控面板/本光硬化性組合物或上述本黏著片材或上述本硬化物/保護面板等構成。但是,並不限定於該等積層例。 上述觸控面板亦包含於保護面板內置有觸控面板功能之結構體、或於圖像顯示面板內置有觸控面板功能之結構體。 <本圖像顯示裝置> 可使用如上所述之本圖像顯示裝置構成用積層體,構成圖像顯示裝置(稱為「本圖像顯示裝置」)。 作為本圖像顯示裝置,例如可構成液晶顯示器、有機EL(Electroluminescence,電致發光)顯示器、無機EL顯示器、電子紙、電漿顯示器及微機電系統(MEMS)顯示器等圖像顯示裝置。 <語句之說明> 於本說明書中,於表現為「X~Y」(X、Y為任意之數字)之情形時,只要未特別說明,則包含「X以上且Y以下」之含義,並且亦包含「較佳為大於X」或「較佳為小於Y」之含義。 又,於表現為「X以上」或「X≦」(X為任意之數字)之情形時,亦包含「較佳為大於X」之宗旨之意圖。 又,於表現為「Y以下」或「Y≧」(Y為任意之數字)之情形時,亦包含「較佳為未達Y」之宗旨之意圖。 一般,片材與膜之邊界不明確,且於本發明中,語句上無須區分兩者,故而於本發明中,於稱為「膜」之情形時,亦包含「片材」,於稱為「片材」之情形時,亦包含「膜」。 [實施例] 以下,藉由實施例更具體地說明本發明。但是,本發明並不限定於實施例。 [實施例1] 對作為(甲基)丙烯酸系共聚物(A)之使數量平均分子量2500之聚甲基丙烯酸甲酯巨單體15質量份、丙烯酸丁酯81質量份及丙烯酸4質量份進行無規共聚而成之丙烯酸系共聚物(A-1,質量平均分子量:20萬)1 kg,添加作為交聯劑(B)之丙氧基化季戊四醇三丙烯酸酯(新中村化學公司製造,NK Ester ATM-4PL)(B-1)50 g、作為光起始劑(C)之Esacure TZT(IGM公司製造)(C-1)15 g,均一混合,獲得光硬化性組合物1。 其次,將上述光硬化性組合物1於表面經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)上,以成為厚度150 μm之方式成形為片狀後,被覆表面經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm),製作黏著片材積層體1。 [實施例2] 對作為(甲基)丙烯酸系共聚物(A)之使末端官能基為甲基丙烯醯基之聚甲基丙烯酸甲酯巨單體(數量平均分子量3000)15質量份、丙烯酸丁酯81質量份及丙烯酸4質量份進行無規共聚而成之丙烯酸系共聚物(A-2,質量平均分子量:15萬)1 kg,添加作為交聯劑(B)之丙氧基化季戊四醇三丙烯酸酯(新中村化學公司製造,NK Ester ATM-4PL)(B-1)110 g、作為光起始劑(C)之Esacure TZT(IGM公司製造)(C-1)15 g,均一混合,獲得光硬化性組合物2。 上述光硬化性組合物2係藉由與實施例1相同之方法製作黏著片材積層體2。 [實施例3] 對作為(甲基)丙烯酸系共聚物(A)之使末端官能基為甲基丙烯醯基之聚甲基丙烯酸甲酯巨單體(數量平均分子量6700)15質量份、丙烯酸丁酯81質量份及丙烯酸4質量份進行無規共聚而成之丙烯酸系共聚物(A-3,質量平均分子量:4.6萬)1 kg,添加作為交聯劑(B)之壬二醇二丙烯酸酯(大阪有機工業公司製造,Viscoat 260)(B-2)5 g、作為光起始劑(C)之Esacure TZT(IGM公司製造)(C-1)15 g,均一混合,獲得光硬化性組合物3。 上述光硬化性組合物3係藉由與實施例1相同之方法製作黏著片材積層體3。 [實施例4] 對作為(甲基)丙烯酸系共聚物(A)之使末端官能基為甲基丙烯醯基之聚甲基丙烯酸甲酯巨單體(數量平均分子量2500)30質量份、丙烯酸丁酯66質量份及丙烯酸4質量份進行無規共聚而成之丙烯酸系共聚物(A-4,質量平均分子量:11萬)1 kg,混合作為交聯劑(B)之甲基丙烯酸2-異氰酸基乙酯(昭和電工公司製造,Karenz MOI)(B-3)27 g。於80℃下加熱4小時而使(甲基)丙烯酸系共聚物(A-4)之羧基與交聯劑(B-3)之異氰酸基進行反應。其後,添加作為光起始劑(C)之Esacure TZT(IGM公司製造)(C-1)15 g及丙烯酸羥基丁酯100 g,均一混合,獲得光硬化性組合物4。 上述光硬化性組合物4係藉由與實施例1相同之方法製作黏著片材積層體4。 [實施例5] 對作為(甲基)丙烯酸系共聚物(A)之實施例2中所使用之丙烯酸系共聚物(A-2,質量平均分子量:15萬)1 kg,混合作為交聯劑(B)之甲基丙烯酸2-異氰酸基乙酯(昭和電工公司製造,Karenz MOI)(B-3)36 g。於80℃下加熱4小時而使(甲基)丙烯酸系共聚物(A-4)之羧基與交聯劑(B-3)之異氰酸基進行反應。其後,添加作為光起始劑(C)之Esacure KTO46(IGM公司製造)(C-2)15 g,均一混合,獲得光硬化性組合物5。 上述光硬化性組合物5係藉由與實施例1相同之方法製作黏著片材積層體5。 [實施例6] 對作為(甲基)丙烯酸系共聚物(A)之使數量平均分子量2500之末端官能基為甲基丙烯醯基之聚甲基丙烯酸甲酯巨單體(數量平均分子量2500)11質量份、丙烯酸2-乙基己酯86質量份及丙烯酸3質量份進行無規共聚而成之丙烯酸系共聚物(A-5,質量平均分子量:7.4萬)1 kg,添加作為交聯劑(B)之丙氧基化季戊四醇三丙烯酸酯(新中村化學公司製造,NK Ester ATM-4PL)(B-1)90 g、作為光起始劑(C)之Esacure TZT(IGM公司製造)(C-1)15 g,均一混合,獲得光硬化性組合物6。 上述光硬化性組合物6係藉由與實施例1相同之方法製作黏著片材積層體6。 [實施例7] 對作為(甲基)丙烯酸系共聚物(A)之使包含甲基丙烯酸異𦯉基酯:甲基丙烯酸甲酯=1:1之末端官能基為甲基丙烯醯基之巨單體(數量平均分子量3000)13.5質量份、丙烯酸月桂酯43.7質量份、丙烯酸2-乙基己酯40質量份及丙烯醯胺2.8質量份進行無規共聚而成之丙烯酸系接枝共聚物(A-6,質量平均分子量:16萬)1 kg,添加作為交聯劑(B)之丙氧基化季戊四醇三丙烯酸酯(新中村化學公司製造,NK Ester ATM-4PL)(B-1)50 g、作為光起始劑(C)之苯甲醯甲酸甲酯(Lambson公司製造,SpeedCure MBF)(C-3)15 g,均一混合,獲得光硬化性組合物7。 上述光硬化性組合物7係藉由與實施例1相同之方法製作黏著片材積層體7。 [實施例8] 對作為(甲基)丙烯酸系共聚物(A)之使包含甲基丙烯酸異𦯉基酯:甲基丙烯酸甲酯=1:1之末端官能基為甲基丙烯醯基之巨單體(數量平均分子量3000)30質量份、丙烯酸月桂酯33質量份、丙烯酸2-乙基己酯34質量份及丙烯醯胺3質量份進行無規共聚而成之丙烯酸系接枝共聚物(A-7,質量平均分子量:7.9萬)1 kg,添加作為交聯劑(B)之三環癸烷二甲醇二甲基丙烯酸酯(新中村化學公司製造,DCP)(B-4)200 g、作為光起始劑(C)之Esacure TZT(IGM公司製造)(C-1)15 g,均一混合,獲得光硬化性組合物8。 上述光硬化性組合物8係藉由與實施例1相同之方法製作黏著片材積層體8。 [實施例9] 對作為(甲基)丙烯酸系共聚物(A)之使包含甲基丙烯酸異𦯉基酯:甲基丙烯酸甲酯=1:1之末端官能基為甲基丙烯醯基之巨單體(數量平均分子量8800)13.5質量份、丙烯酸月桂酯43.7質量份、丙烯酸2-乙基己酯40質量份及丙烯醯胺2.8質量份進行無規共聚而成之丙烯酸系接枝共聚物(A-8,質量平均分子量:11萬)1 kg,添加作為交聯劑(B)之丙氧基化季戊四醇三丙烯酸酯(新中村化學公司製造,NK Ester ATM-4PL)(B-1)90 g、作為光起始劑(C)之Esacure TZT(IGM公司製造)(C-1)15 g,均一混合,獲得光硬化性組合物9。 上述光硬化性組合物9係藉由與實施例1相同之方法製作黏著片材積層體9。 [比較例1] 對作為(甲基)丙烯酸系共聚物(A)之包含丙烯酸丁酯及甲基丙烯酸甲酯之MMA-BA-MMA三嵌段型共聚物(可樂麗公司製造,Kurarity LA2140e)(A-9,質量平均分子量:7.4萬)1 kg,添加作為交聯劑(B)之丙氧基化季戊四醇三丙烯酸酯(新中村化學公司製造,NK Ester ATM-4PL)(B-1)110 g、作為光起始劑(C)之Esacure TZT(IGM公司製造)(C-1)15 g,均一混合,獲得光硬化性組合物10。 上述光硬化性組合物10係藉由與實施例1相同之方法製作黏著片材積層體10。 [比較例2] 對作為(甲基)丙烯酸系共聚物(A)之包含丙烯酸2-乙基己酯24質量份、丙烯酸丁酯74質量份及丙烯酸2質量份之丙烯酸系共聚物(A-10,質量平均分子量:50萬)1 kg,添加作為交聯劑(B)之壬二醇二丙烯酸酯(大阪有機工業公司製造,Viscoat 260)(B-2)5.5 g、作為光交聯起始劑(C)之Esacure TZT(C-1)(IGM公司製造)9.5 g,均一混合,獲得光硬化性組合物11。再者,上述(甲基)丙烯酸系共聚物(A-10)係不包含巨單體成分之共聚物。 上述光硬化性組合物11係藉由與實施例1相同之方法製作黏著片材積層體11。 [比較例3] 對作為(甲基)丙烯酸系共聚物(A)之使包含甲基丙烯酸異𦯉基酯:甲基丙烯酸甲酯=1:1之末端官能基為甲基丙烯醯基之巨單體(數量平均分子量3000)13.5質量份、丙烯酸月桂酯43.7質量份、丙烯酸2-乙基己酯40質量份及丙烯醯胺2.8質量份進行無規共聚而成之丙烯酸系接枝共聚物(A-11,質量平均分子量:4.9萬)1 kg,添加作為交聯劑(B)之丙氧基化季戊四醇三丙烯酸酯(新中村化學公司製造,NK Ester ATM-4PL)(B-1)90 g、作為光起始劑(C)之Esacure TZT(C-1)(IGM公司製造)15 g,均一混合,獲得光硬化性組合物12。 上述光硬化性組合物12係藉由與實施例1相同之方法製作黏著片材積層體12。 再者,上述(甲基)丙烯酸系聚合物(A-11)由於分子量較低且流動性較高,故而光硬化性組合物12於室溫下成為黏稠液體狀。 <評價> 其次,對針對上述實施例及比較例中所獲得之光硬化性組合物、黏著片材或黏著片材積層體之評價方法進行說明。 [小角度X射線散射] 小角度X射線散射測定係藉由作為大型放射光設施之SPring-8之BL03XU(前沿軟材料開發產學聯合光束線)進行。 針對實施例及比較例中所製作之黏著片材積層體、即光硬化之前之光硬化性組合物,剝離兩面之離型膜而將黏著片材設置於試樣用治具。 X射線之光束形狀係將縱向設為120 μm且將橫向調整為120 μm。X射線波長設為1 Å,檢測器使用CCD(Charge Coupled Device,電荷耦合元件)(Hamamatsu Photonics V7739P+ORCA R2)。相機長度設置為約4 m,使用標準試樣(膠原蛋白)進行修正。調整衰減器(衰減板)之種類或厚度、曝光時間,以檢測器不會因強力之X射線而發生損傷之方式進行設定後,對樣本照射X射線而獲得樣本之二維散射圖像。 根據以上述順序所獲得之樣本之二維散射圖像進行背景之修正。具體而言,取得於無樣本之狀態下進行與上述順序相同之操作之背景的二維散射圖像,使用圖像處理軟體(Image-J),自樣本之二維散射圖像減去背景之二維散射圖像,獲得分析用二維散射圖像。於分析用二維散射圖像中確認到環狀之散射。其次,自分析用二維散射圖像轉換為一維散射分佈。具體而言,使X射線資料處理軟體(Fit2d)讀入分析用二維散射圖像,遍及全方位角,且於q=0.04~0.4之範圍內進行積分,藉此獲得將橫軸設為q[nm-1 ],將縱軸設為散射強度之一維散射分佈。 根據所獲得之一維散射分佈,求出波峰之半值寬X及波峰位置Y。一維散射分佈有於q=0.1附近取極小值,朝原點而散射強度變高之情形;及於q=0.1附近經過反曲點後朝原點而散射強度變小之情形。於在q=0.1附近取極小值,朝原點而散射強度變高之情形時,將大於極小值之q之區域設為分析對象。又,於在q=0.1附近經過反曲點後朝原點而散射強度變小之情形時,將大於反曲點之q之區域設為分析對象。其次,以基準線修正之形式,求出分析對象區域之散射強度之最小值,遍及各處減去最小值而進行基準線修正。將所獲得之修正後之一維散射分佈藉由高斯函數及勞倫茲函數進行擬合,將所獲得之合成函數之半值寬設為X1,將波峰位置設為Y1。於擬合中使用波形分離軟體(Fityk)。 又,以Z1=2π/Y1之形式算出本光硬化性組合物所形成之相分離結構之區域間距離Z1。再者,關於未自所獲得之一維散射分佈檢測到波峰者,於表中記載為(ND)。 針對實施例及比較例中所製作之黏著片材積層體,自一離型膜側,使用高壓水銀燈,以波長365 nm之累計光量成為4000 mJ/cm2 之方式進行光照射,使光硬化性組合物硬化。針對光硬化後之光硬化性組合物、即硬化物,以與上述光硬化之前之光硬化性組合物相同之方式,求出小角度X射線散射測定中之一維散射分佈之波峰半值寬(X2)及波峰位置(Y2),根據波峰位置(Y2)算出區域間距離(Z2)。 [保持力] 將實施例及比較例中所製作之黏著片材積層體剪裁為40 mm×50 mm並剝離單面之離型膜,將襯底用聚對苯二甲酸乙二酯膜(三菱樹脂製造之DIAFOIL S-100,厚度38 μm)藉由手壓輥進行背貼後,將其剪裁為寬度25 mm×長度100 mm之短條狀而製成試片。 其次,剝離殘留之離型膜,對SUS板(120 mm×50 mm×厚度1.2 mm),以貼合面積成為25 mm×20 mm之方式藉由手壓輥進行貼合。 其後,使試片於40℃之環境下熟化15分鐘後,對試片於垂直方向上安裝500 gf(4.9 N)之鉛垂,懸掛並靜置後,測定鉛垂之掉落時間(分鐘)。針對30分鐘以內未掉落者,測定SUS與試片之貼合位置向下方偏移之長度(mm)、即偏移量。 再者,表中之「<0.2 mm」係偏移量未達0.2 mm而幾乎無偏移之狀態之含義。 [玻璃接著力] <硬化前接著力之測定> 針對實施例及比較例中所製作之黏著片材積層體,剝離一離型膜,將作為襯底膜之聚對苯二甲酸乙二酯膜(東洋紡織公司製造;商品名「Cosmoshine A4300」,厚度100 μm)藉由手壓輥進行輥壓接。將其剪裁為寬度10 mm×長度100 mm之短條狀,使用手壓輥將剝離殘留之離型膜而露出之黏著面輥壓貼合於鈉鈣玻璃。實施高壓釜處理(70℃,錶壓0.2 MPa,20分鐘)進行最終貼合,而製作光硬化之前之玻璃接著力測定樣本。一面將襯底膜於形成180°之角度以剝離速度60 mm/分鐘進行拉伸一面自玻璃剝離黏著片材,利用荷重元測定拉伸強度,測定光硬化之前之黏著片材對玻璃之180°剝離強度(N/cm)。 <硬化後接著力之測定> 針對實施例及比較例中所製作之黏著片材積層體,剝離一離型膜,將作為襯底膜之聚對苯二甲酸乙二酯膜(東洋紡織公司製造;商品名「Cosmoshine A4300」,厚度100 μm)藉由手壓輥進行輥壓接。將其剪裁為寬度10 mm×長度100 mm之短條狀,使用手壓輥將剝離殘留之離型膜而露出之黏著面輥壓貼合於鈉鈣玻璃。實施高壓釜處理(70℃,錶壓0.2 MPa,20分鐘)而進行最終貼合後,自襯底膜側,使用高壓水銀燈,以波長365 nm之累計光量成為4000 mJ/cm2 之方式對黏著片材進行光照射,而製作光硬化後之玻璃接著力測定樣本。一面將襯底膜於形成180°之角度以剝離速度60 mm/分鐘進行拉伸一面自玻璃剝離黏著片材,利用荷重元測定拉伸強度,測定光硬化後之黏著片材對玻璃之180°剝離強度(N/cm)。 再者,表中之「<0.5」表示剝離強度過小而無法測定之狀態。 [相對介電常數] 針對實施例及比較例中所製作之黏著片材積層體,自一離型膜側,使用高壓水銀燈,以波長365 nm之累計光量成為4000 mJ/cm2 之方式進行光照射,使光硬化性組合物硬化。其後,依序剝離離型膜,貼合於電極(Keycom公司製造,DPT-009)。藉由LCR計(安捷倫科技公司製造,E4980A),依據JIS K6911測定23℃50%RH、頻率100 kHz下之相對介電常數。 將頻率100 kHz下之相對介電常數為3.5以上之情形評價為「×(較差)」,將未達3.5之情形評價為「○(較佳)」。 [耐金屬腐蝕性] 於玻璃基板(60 mm×45 mm)上,以於線寬70 μm、線長46 mm、線間隔30 μm之條件下往返10.5次之方式,形成厚度100~150 Å之氧化銦(ITO)之往返線5根,並且於該往返線之兩末端形成包含ITO之2 mm見方之正方形而形成ITO圖案(長度約97 cm),從而製作耐金屬腐蝕性評價用ITO玻璃基板。 將實施例及比較例中所製作之黏著片材之一離型膜加以剝離,於其露出面藉由手壓輥而貼合PET膜(東洋紡織製造,Cosmoshine A4100,125 μm)。其次,將上述黏著片材切割為52 mm×45 mm後,剝離殘留之離型膜,以被覆ITO之5根往返線之方式,於耐金屬腐蝕性評價用ITO玻璃基板藉由手壓輥而貼合黏著片材。實施高壓釜處理(70℃,錶壓0.2 MPa,20分鐘)而進行最終貼合後,自PET膜側,使用高壓水銀燈,以波長365 nm之累計光量成為4000 mJ/cm2 之方式對黏著片材進行光照射,而製作耐金屬腐蝕性評價用樣本(附黏著片材之ITO配線)。 對該耐金屬腐蝕可靠性評價用樣本(附黏著片材之ITO配線)中之5根ITO配線,分別測定室溫下之電阻值,求出初始之配線電阻值之平均值(Ω0)。 將該耐腐蝕可靠性評價用樣本(附黏著片材之ITO配線)於65℃90%RH環境下保管800小時。保管後,以相同之方式測定耐金屬腐蝕性評價用樣本(附黏著片材之ITO配線)中之ITO配線之電阻值,求出環境試驗後之配線電阻值之平均值(Ω)。 然後,算出ITO電阻值、即線末端間電阻值之變化率(%)[((Ω/Ω0)-1)×100],於表中表示為「電阻值變化」。 將電阻值之變化未達5%者判定為「◎(極佳)」,將5%以上且未達10%判定為「○(較佳)」,將10%以上者判定為「×(較差)」。 [形狀穩定性] 針對實施例及比較例中所製作之黏著片材積層體,自一離型膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm)側,以不貫通另一離型膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)之方式,將黏著片材半切為30 mm×30 mm之正方形狀。 剝離經剪裁之一離型膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm),於露出之黏著面被覆經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRT,厚度50 μm)。將兩側之剝離膜剪裁為50 mm×50 mm,製作光硬化之前之形狀穩定性評價用樣本。 將上述形狀穩定性評價用樣本於溫度40℃、濕度90%之環境下熟化300小時,觀察熟化後之黏著片材之端面之黏著材料的滲出量。黏著材料之滲出之量係對經剪裁之熟化後之黏著片材,測定各邊之中央部之黏著材料之滲出距離,將4邊之平均距離設為黏著材料之滲出量(mm)。 將於熟化後黏著片材壓扁,黏著材料之滲出量為2 mm以上者判定為「×(較差)」,將可見黏著材料之滲出,但為1 mm以上且未達2 mm者判定為「○(較佳)」,將未達1 mm者判定為「◎(極佳)」。 再者,表中之「<0.1 mm」係黏著材料之滲出量未達0.1 mm,幾乎無黏著材料之滲出之狀態之含義,「>2.0 mm」係指黏著材料之滲出更明顯,滲出量大於2.0 mm之狀態。 [階梯吸收性] 於58 mm×110 mm×厚度0.8 mm之玻璃之周緣部(長邊側3 mm,短邊側15 mm),實施厚度40~50 μm之印刷,準備中央之凹部為52 mm×80 mm之附印刷階梯之玻璃板。 剝離實施例及比較例中所製作之黏著片材積層體之一離型膜,輥壓貼合於鈉鈣玻璃(54 mm×82 mm×厚度0.5 mm)之整面。剝離殘留之離型膜,於上述附印刷階梯之玻璃板之邊框狀之印刷階梯,以黏著片材覆蓋之方式使用真空加壓機進行加壓壓接(絕對壓力5 kPa,溫度70℃,加壓壓力0.04 MPa)而製作評價樣本。 關於上述評價樣本之階梯吸收性,於60℃、0.3 MPa之條件下實施30分鐘高壓釜處理後,確認貼合之評價樣本之外觀,將於印刷階梯附近可見氣泡者判定為「×(較差)」,將未見氣泡者判定為「○(較佳)」。 [耐發泡可靠性] 藉由手壓輥將附黏著層之偏光板(Sanritz公司製造,VLC2-1518AGD2SF4,尺寸54 mm×82 mm)貼合於54 mm×82 mm×厚度0.5 mm之鈉鈣玻璃,實施高壓釜處理(25℃,錶壓0.2 MPa,20分鐘),製作偏光板基材。 剝離實施例及比較例中所製作之黏著片材積層體之單面之離型膜,藉由手壓輥將54 mm×82 mm×厚度0.5 mm之鈉鈣玻璃貼合於其露出面。其次,剝離黏著片材積層體之殘留之離型膜,藉由手壓輥將上述偏光板基材之偏光板面貼合於其露出面。實施高壓釜處理(溫度60℃,氣壓0.4 MPa,30分鐘)而進行最終貼合後,自鈉鈣玻璃面,使用高壓水銀燈,以波長365 nm之累計光量成為4000 mJ/cm2 之方式對黏著片材進行光照射,製作耐發泡可靠性評價樣本。 將上述評價樣本於95℃環境下熟化100小時,將無發泡等且外觀未見變化者判定為「○(較佳)」,將可見發泡或剝離者判定為「×(較差)」。 [表1] 實施例中所製作之光硬化性組合物由於藉由小角度X射線散射測定所求出之光硬化性組合物之半值寬處於特定之範圍,故而同時實現適度之凝集力及黏著性,保管穩定性或貼合可靠性亦優異。 關於光硬化前後之光硬化性組合物之半值寬為0.08以上者,成為尤其是保持力較高之結果。 又,關於使用碳數5以上之疏水性單體作為(甲基)丙烯酸系共聚物(A)之主要之共聚合成分的光硬化性組合物6~9,頻率100 kHz下之相對介電常數較低為3.5以下,更佳地用於觸控感測器。 進而,關於光硬化性組合物7~9,作為(甲基)丙烯酸系共聚物(A)之共聚合成分,不使用酸度較高之含羧基單體或含酸酐基單體,使用丙烯醯胺作為親水性成分。因此,光硬化性組合物7~9係耐金屬腐蝕性尤其優異,亦較佳地用於具有金屬及金屬氧化物等之腐蝕性之被黏著體。 另一方面,比較例1中所製作之光硬化性組合物由於藉由小角度X射線散射測定所求出之光硬化性組合物之半值寬X1未達0.05,為本發明之規定外,故而凝集力過強而缺乏黏著性,階梯吸收性較差。 比較例2中所製作之光硬化性組合物未觀察到藉由小角度X射線散射測定獲得之一維散射分佈。因此,光硬化性組合物缺乏凝集力,光硬化之前之保管穩定性、或貼合後之耐發泡可靠性較差。 比較例3中所製作之光硬化性組合物使用包含巨單體作為結構單元之(甲基)丙烯酸系聚合物,但於室溫下成為黏稠液體狀,光硬化性組合物未觀察到小角度X射線散射測定中之一維散射分佈。因此,光硬化性組合物缺乏凝集力,光硬化之前之保管穩定性、或貼合後之耐發泡可靠性較差。Hereinafter, an example of an embodiment of the present invention will be described. However, the present invention is not limited to the following embodiments. [The present light curable composition] The composition (referred to as "the present photocurable composition") according to an embodiment of the present invention is a photocurable composition characterized in that it contains a macromonomer as a The (meth)acrylic copolymer (A), the crosslinking agent (B) and the crosslinking initiator (C) of the structural unit, and the half value width X1 of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement (nm -1 ) is 0.05 < X1 < 0.30. The above "containing a macromonomer as a structural unit" is also included as a (meth)acrylic copolymer (A) in addition to a macromonomer as a copolymer component of the (meth)acrylic copolymer (A). The case where the addition bonding component is contained and the like is contained as a structural unit other than the copolymer component. The photocurable composition preferably has a structure in which at least one of the crosslinking agent (B) and the crosslinking initiator (C) is bonded to the (meth)acrylic copolymer (A). If at least one of the crosslinking agent (B) and the crosslinking initiator (C) is bonded to the (meth)acrylic copolymer (A), the bonded crosslinking agent (B) or Exudation of the crosslinking initiator (C). Further, at least one of the crosslinking agent (B) and the crosslinking initiator (C) is bonded to the (meth)acrylic copolymer (A) to promote the reaction efficiency of the photocrosslinking reaction. A photocured material having a higher agglutination power can be obtained. Further, if at least one of the crosslinking agent (B) and the crosslinking initiator (C) is bonded to the (meth)acrylic copolymer (A), the (meth)acrylic acid can be deliberately designed. Since the copolymer (A) is crosslinked, it is easy to control the half value width of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement specified in the present invention. Here, the above "bonding with (meth)acrylic copolymer (A)" means a crosslinking agent (B) or a crosslinking initiator (C) and a (meth)acrylic copolymer (A). A state in which a bond is carried out by a chemical bond including a covalent bond, an ionic bond, and a metal bond. As described above, the present photohardenable composition is characterized by a half-value width X1 (nm) of one-dimensional scattering distribution in a small-angle X-ray scattering measurement. -1 ) is 0.05 < X1 < 0.30. The small-angle X-ray scattering measurement method is a method of obtaining structural information of a nanometer scale (1 to 100 nm) by observing scattered X-rays having a scattering angle of several degrees or less (specifically, for example, 10 or less). Therefore, a composition for observing a one-dimensional scattering distribution in a small-angle X-ray scattering measurement means a composition which is not a state in which a one-dimensional scattering distribution is not observed in a small-angle X-ray scattering measurement. Further, if a one-dimensional scattering distribution can be observed in the small-angle X-ray scattering measurement, the shape or state of the photocurable composition is not limited. The (meth)acrylic copolymer (A) in the photocurable composition contains a copolymer of a macromonomer as a structural unit. Generally, a copolymer of a macromonomer as a structural unit forms a graft copolymer or a block copolymer. When the polymerizable group of the macromonomer is one, it is usually a graft copolymer by addition, condensation or copolymerization with another monomer. Further, when the number of polymerizable groups of the macromonomer is two, it is usually a block copolymer by addition, condensation or copolymerization with another monomer. It is known that a general graft copolymer or block copolymer forms a (micro) phase separated structure. The half value width of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement of the present photocurable composition can be considered to be formed by the composition containing the (meth)acrylic copolymer (A) as described above. The standard of the "phase separation state" of the (micro) phase separation structure. That is, for example, the main component and the branch component in the graft copolymer or the block components in the block copolymer form a state in which the microseparation is different from the "phase". Here, in the case where the half-value width of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement is large (wider), it means that the peak is wider, meaning that the phase is smaller than the case where the half-value width is small. The difference in density difference between the separated phases or the phase separation structure is not uniform. On the other hand, the smaller the half-value width (the narrower), the steeper the peak, meaning that the difference in density of the phases separated by phase is more clear, or phase separation, compared to the case where the half-value width is large. The structure is more uniform. Therefore, in the present photocurable composition, by controlling the half value width to a specific range, the phases of the micro phase separation can each have different adhesion characteristics. Therefore, it can be regarded as a combination of features that are generally difficult to achieve at the same time. In the following description, the term "branched component" or "main component" is used, and a graft copolymer is used as an example. In the block copolymer, it is changed to "block". The component (for example, "block component A" or "block component B") may be used. From the viewpoint of the above, in the photocurable composition, the half value width X1 of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement can be set in the copolymer containing the macromonomer as a structural unit. And an indicator comprising a state in which the (micro)phase separation structure formed by the branching component of the macromonomer is changed by the designated crosslinking agent or photoinitiator. Therefore, in the photocurable composition, the photocurable composition as disclosed above, that is, the (meth)acrylic copolymer having a macromonomer as a structural unit, is copolymerized by 0.05 < X1 < 0.30. Compared with the previous photocurable composition of the material and the crosslinking agent, the adhesion and shape stability of the opposite physical properties can be simultaneously achieved at a higher level, and the effect of improving the handleability can be obtained. From this point of view, in the photocurable composition, it is preferred that the half value width X1 of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement is 0.05 < X1 < 0.30, and more preferably 0.06 < X1 therein. Or X1 < 0.27, wherein 0.08 < X1 or X1 < 0.25, and further wherein 0.11 < X1 or X1 ≦ 0.23. According to the above, the half value width X1 is preferably any one of 0.05 < X1 < 0.30, 0.05 < X1 < 0.27, 0.05 < X1 < 0.25 or 0.05 < X1 ≦ 0.23, more preferably 0.06 < X1 < 0.30, Any one of 0.06 < X1 < 0.27, 0.06 < X1 < 0.25 or 0.06 < X1 ≦ 0.23, and further preferably wherein 0.08 < X1 < 0.30, 0.08 < X1 < 0.27, 0.08 < X1 < 0.25 or 0.08 < X1 ≦ Any one of 0.23 is preferably any one of 0.11 < X1 < 0.30, 0.11 < X1 < 0.27, 0.11 < X1 < 0.25 or 0.11 < X1 ≦ 0.23. In the present photocurable composition, as a main method for adjusting the half value width X1 of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement, (meth)acrylic copolymerization as a base polymer is exemplified. The structure or composition of the substance (A), the molecular weight, and the like are adjusted, and the type and amount of the crosslinking agent (B) or the crosslinking initiator (C) are adjusted or selected. However, it is not limited to this method. In addition, the "base polymer" means the main component contained in the photocurable composition, and the "main component" means a component which is contained in excess of 40% by mass of the photocurable composition. Here, the selection of the structure of the (meth)acrylic copolymer (A) may, for example, be a graft copolymer or a block copolymer. The adjustment of the composition of the (meth)acrylic copolymer (A) can be adjusted by adjusting the composition of the main component and the branched component (in the case of a block copolymer, each block component). Specifically, the phase of the branch component based on the (meth)acrylic copolymer (A), the glass transition temperature (Tg) of the phase based on the trunk component, or the compatibility parameter of the branch component and the stem component are adjusted. The balance is optimized, or the balance between the hydrophilicity and the hydrophobicity of the branch component and the trunk component is optimized, whereby the above-mentioned half-value width can also be controlled. For example, the half-value width can be controlled by forming a phase having a higher Tg by the branching component and forming a phase having a lower Tg by the trunk component. As described above, the graft polymer is used to optimize the balance between the compatibility of the branch component and the main component, thereby controlling the half value width to form an optimum phase separation state, which is both viscous and hot melt. Sex. The adjustment of the type of the crosslinking agent (B) or the crosslinking initiator (C) is, for example, adjusted to the compatibility with the hydrophilic component constituting the (meth)acrylic copolymer (A). The crosslinking agent (B) or the crosslinking initiator (C) is a main component and a branching component for forming the (meth)acrylic copolymer (A) (in the case of a block copolymer, each is The component having a high compatibility with any one or both of the block components, or adjusting the addition amount, thereby adjusting the main component and the branch component of the (meth)acrylic copolymer (A) (The compatibility of each block component in the case of a block copolymer) controls the phase separation state, that is, the half value width of the one-dimensional scattering distribution. In the method of adjusting the half value width X1 of the photocurable composition, it is effective to use the type of the functional group or the content ratio of the monomer constituting the main component and the branch component as follows. Optimizing the molecular weight of the branched component or optimizing the molecular weight of the branched component to optimize the (meth)acrylic copolymer (A), and performing the crosslinking agent (B) or the crosslinking initiator (C) And the amount of adjustment. Further, in the present photocurable composition, in order to adjust the half value width X1 to a preferred range, as described below, for example, it is preferable to use a carbon number of 5 or more, 8 or more of them, and 9 of them. The above (especially 10 or more) (meth)acrylic monomer or vinyl monomer is the main copolymerization component (main component) of (1) (meth)acrylic copolymer (A). Specifically, it is preferably selected from the examples of the monomers contained in the main component of the acrylic copolymer (A1) described below. Further, it is preferred to use a hydrophilic component as the (2a) the above-mentioned (meth)acrylic monomer or the above-mentioned copolymerizable component (main component) other than the vinyl monomer. Specifically, it is preferably selected from the examples of the hydrophilic monomer contained in the main component of the following acrylic copolymer (A1). Furthermore, it is preferable to contain (2b) the hydrophilic component in a mass ratio of 0.1 to 20 with respect to the copolymerization component (main component) 100, and to improve the hydrophilicity of the trunk component. Furthermore, it is preferable to mix (4) of the carbon number of 4 or less as a branching component of the (3a) (meth)acrylic-type copolymer (A) with the mass ratio of 1 to 100 with respect to the trunk component 100. The acrylic monomer or the vinyl monomer component adjusts the microphase separation state formed by the phase of the stem component and the branch component. In addition, it is preferable that the branching component of the (3b) (meth)acrylic copolymer (A) is a (meth) group having a cyclic structure so as to have a mass ratio of from 1 to 100 with respect to the trunk component 100. The acrylic monomer or the vinyl monomer component adjusts the microphase separation state formed by the phase of the stem component and the branch component. Further, it is preferred to use a hydroxyl group-containing compound or the like having a high compatibility with a hydrophilic component as the (4a) crosslinking agent (B). Specifically, it is preferably selected from the following examples of the crosslinking agent (B). Furthermore, it is preferable to add 0.05 to 30 parts by mass of (4b) of the above-mentioned crosslinking agent (B) to 100 parts by mass of the (meth)acryl-based copolymer, and to appropriately adjust the polarity of the phase containing the main component. As described above, by appropriately selecting the above (1) to (4b) independently, the phase separation structure formed by the trunk component and the branch component can be adjusted. Wherein, in the methods (1) to (4b) above, it is preferred to combine (1) and (2a) and/or (2b), or combine (1) with (3a) and/or (3b), Preferably, all of the methods (1) to (4b) are employed in combination (1), (3a) and/or (3b) and (4a) and/or (4b). However, it is not limited to this method. As described above, it is only necessary to use a graft polymer to optimize the balance between the compatibility of the branch component and the trunk component, thereby forming an optimum phase separation state. The hydrophobic component is used as a main copolymerizable component (main component) of the copolymer (A), and a hydrophilic component is used as a branch component of the copolymer (B), whereby the half value width X1 is controlled. The photocurable composition is further preferably irradiated with an accumulated light irradiation amount of 4000 mJ/m. 2 Half-value width of one-dimensional scattering distribution in small-angle X-ray scattering measurement at the time of light X2 (nm -1 ) is 0.05 < X2 < 0.25. In the photocurable composition, the cumulative light irradiation amount by irradiation is 4000 mJ/m 2 The one-dimensional scattering distribution of the light, that is, the half-value width of the one-dimensional scattering distribution of the photohardenable composition after the irradiation of light is X2 (nm -1 When it is 0.05 < X2 < 0.25, in addition to the effect when X1 is in a specific range, the effect of obtaining a high cohesive force in the composition after photocuring can be further obtained. The wavelength of the irradiation light is preferably the wavelength induced by the crosslinking initiator (C) described below. From this point of view, in the present photocurable composition, it is preferred that the irradiation cumulative light irradiation amount is 4000 mJ/m. 2 Half-value width of one-dimensional scattering distribution in small-angle X-ray scattering measurement at the time of light X2 (nm -1 ) is 0.05 < X2 < 0.25, and further preferably 0.06 < X2 or X2 < 0.24, wherein 0.08 < X2 or X2 < 0.22, and further wherein 0.10 < X2 or X2 < 0.20. According to the above, the half value width X2 is preferably any one of 0.05<X2<0.25, 0.05<X2<0.24, 0.05<X2<0.22 or 0.05<X2<0.20, more preferably 0.06<X2<0.25, Any one of 0.06 < X2 < 0.24, 0.06 < X2 < 0.22 or 0.06 < X2 < 0.20, and further preferably wherein 0.08 < X2 < 0.25, 0.08 < X2 < 0.24, 0.08 < X2 < 0.22 or 0.08 < X2 < Any one of 0.20 is preferably any one of 0.10 < X2 < 0.25, 0.10 < X2 < 0.24, 0.10 < X2 < 0.22, or 0.10 < X2 < 0.20. In the present photocurable composition, the irradiation amount of the cumulative illumination is adjusted to 4000 mJ/m. 2 Half-value width of one-dimensional scattering distribution in small-angle X-ray scattering measurement at the time of light X2 (nm -1 The method is the same as the method for adjusting the above-mentioned half value width X1. For example, the structure, composition, molecular weight, and the like of the (meth)acrylic copolymer (A) as a base polymer may be adjusted, and the type of the crosslinking agent (B) or the crosslinking initiator (C) may be mentioned. And the method of adjusting or selecting the quantity. However, it is not limited to this method. Further, in the present photocurable composition, in order to adjust the half value width X2 to a preferred range, as described below, it is preferable to use a carbon number of 5 or more, 8 or more thereof, or 9 or more thereof. In particular, a (meth)acrylic monomer or a vinyl monomer of 10 or more is the main copolymerization component (main component) of the (1) (meth)acrylic copolymer (A). Specifically, it is preferably selected from the examples of the monomers contained in the main component of the acrylic copolymer (A1) described below. Further, it is preferred to use a hydrophilic component as the (2a) the above-mentioned (meth)acrylic monomer or the above-mentioned copolymerization component (main component) other than the vinyl monomer. Specifically, it is preferably selected from the examples of the hydrophilic monomer contained in the main component of the following acrylic copolymer (A1). Furthermore, it is preferable to contain (2b) the hydrophilic component in a mass ratio of 0.1 to 20 with respect to the copolymerization component (main component) 100, and to improve the hydrophilicity of the trunk component. Furthermore, it is preferable to mix (4) of the carbon number of 4 or less as a branching component of the (3a) (meth)acrylic-type copolymer (A) with the mass ratio of 1 to 100 with respect to the trunk component 100. The acrylic monomer or the vinyl monomer component adjusts the microphase separation state formed by the phase of the stem component and the branch component. In addition, it is preferable that the branching component of the (3b) (meth)acrylic copolymer (A) is a (meth) group having a cyclic structure so as to have a mass ratio of from 1 to 100 with respect to the trunk component 100. The acrylic monomer or the vinyl monomer component adjusts the microphase separation state formed by the phase of the stem component and the branch component. Further, it is preferred to use a hydroxyl group-containing compound or the like having a high compatibility with a hydrophilic component as the (4a) crosslinking agent (B). Specifically, it is preferably selected from the following examples of the crosslinking agent (B). Furthermore, it is preferable to add 0.05 to 30 parts by mass of (4b) of the above-mentioned crosslinking agent (B) to 100 parts by mass of the (meth)acryl-based copolymer, and to appropriately adjust the polarity of the phase containing the main component. As described above, by appropriately selecting the above (1) to (4b) independently, the phase separation structure formed by the trunk component and the branch component can be adjusted. Wherein, in the methods (1) to (4b) above, it is preferred to combine (1) and (2a) and/or (2b), or combine (1) with (3a) and/or (3b), Preferably, all of the methods (1) to (4b) are employed in combination (1), (3a) and/or (3b) and (4a) and/or (4b). However, it is not limited to this method. As described above, it is only necessary to use a graft polymer to optimize the balance between the compatibility of the branch component and the trunk component, thereby forming an optimum phase separation state. The hydrophobic component is used as a main copolymerizable component (main component) of the copolymer (A), and a hydrophilic component is used as a branch component of the copolymer (B), whereby the half value width X2 is controlled. Further, as described above, the shape or state of the photocurable composition is not limited. Uniformly irradiating the above-mentioned 4000 mJ/m to the photocurable composition 2 In the case of the light, the photocurable composition may be formed into a sheet having a thickness of 150 μm as a reference (measurement target). The photocurable composition preferably has a property of exhibiting adhesiveness at 20 ° C and softening or fluidizing at 50 to 100 ° C. As described above, the present photocurable composition can have such a property by using the following (meth)acrylic copolymer (A1) as a base resin. <(Meth)acrylic copolymer (A)> As the (meth)acrylic copolymer (A) containing a macromonomer as a structural unit, a graft copolymer containing a macromonomer as a branching component is exemplified. The (meth)acrylic copolymer (A1) is taken as an example. Since the photocurable composition is crosslinked by the action of the crosslinking agent (B) and the crosslinking initiator (C), the (meth)acrylic copolymer (A) is used in terms of efficiency. ) is preferably a graft copolymer. When the photocurable composition is prepared using the (meth)acrylic copolymer (A1) as a base resin, it is easy to control the half value width of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement defined in the present invention. . That is, the half value width is set to one of the ways of achieving the range. Therefore, the photocurable composition can maintain a specific shape, for example, a sheet shape at room temperature, and exhibits self-adhesiveness (self-adhesiveness), and has a heat which softens or flows if heated in an uncrosslinked state. The meltability, in addition, can be hardened by light, and after photohardening, it can exhibit excellent cohesive force and be followed. Therefore, when the (meth)acrylic copolymer (A1) is used as the base polymer of the photocurable composition, it is possible to exhibit adhesiveness at room temperature (20 ° C) even in an uncrosslinked state. And if it is heated to a temperature of 50 to 90 ° C, more preferably 60 ° C or more or 80 ° C or less, the property is softened or fluidized. (Main component) The glass transition temperature of the (co)polymer constituting the main component of the (meth)acryl-based copolymer (A1) is preferably -70 to 0 °C. In this case, the glass transition temperature of the (co)polymer component constituting the trunk component means a glass transition of a polymer obtained by polymerizing only the monomer component constituting the trunk component of the (meth)acrylic copolymer (A1). temperature. Specifically, it means the value calculated by the calculation formula of Fox based on the glass transition temperature and the composition ratio of the polymer obtained from the homopolymer of each component of the (co)polymer. Further, the polymer containing only the main component may be either a homopolymer or a copolymer. Further, the calculation formula of Fox is as follows, and can be obtained by using the values described in the Polymer Handbook [Polymer HandBook, J. Brandrup, Interscience, 1989]. 1/(273+Tg)=Σ(Wi/(273+Tgi)) [wherein, Wi represents the weight fraction of monomer i, and Tgi represents the Tg (°C) of the homopolymer of monomer i] constitutes the above (meth)acrylic acid The glass transition temperature of the (co)polymer of the main component of the copolymer (A1) affects the softness of the photohardenable composition at room temperature or the wetting of the adherend by the photocurable composition. The glass transition temperature is preferably -70 ° C to 0 ° C, and particularly preferably -65, in order to obtain a moderate adhesion (viscosity) of the photocurable composition at room temperature. Above °C or below -5 °C, wherein -60 °C or above or -10 °C. However, even if the glass transition temperature of the (co)polymer is the same temperature, the viscoelasticity can be adjusted by adjusting the molecular weight. For example, by making the molecular weight of the trunk component small, it can be further softened. The monomer contained in the main component of the (meth)acrylic copolymer (A1) may, for example, be a (meth) acrylate monomer, and examples thereof include methyl (meth) acrylate and (meth) acrylate. Ethyl ester, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, dibutyl (meth) acrylate, (A) Base) butyl acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, neopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate , (heptyl)methacrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, (meth) acrylate Tributylcyclohexyl ester, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate Ester, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, isodecyl (meth) acrylate, 2-phenoxy (meth) acrylate Ethyl ester , 3,5,5-trimethylcyclohexane acrylate, p-cumylphenol oxirane modified (meth) acrylate, dicyclopentanyl (meth) acrylate, (meth) acrylate Dicyclopentenyl ester, dicyclopentenyloxyethyl (meth)acrylate, benzyl (meth)acrylate, and the like. Further, it is also possible to use hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate in which the (meth) acrylate monomer is bonded to a hydrophilic group. A hydroxyl group-containing (meth)acrylate such as (meth)acrylic acid acrylate. Further, (meth)acrylic acid, 2-(meth)acryloyloxyethylhexahydrophthalic acid, 2-(methyl)acryloxypropylhexahydrophthalic acid, 2 -(Meth)propylene methoxyethyl phthalate, 2-(methyl) propylene methoxy propyl phthalate, 2-(methyl) propylene methoxyethyl maleate , 2-(methyl)propenyloxypropyl maleic acid, 2-(meth)acryloxyethyl succinic acid, 2-(methyl) propylene methoxy succinic acid a carboxyl group-containing monomer such as crotonic acid, fumaric acid, maleic acid, itaconic acid, monomethyl maleate or monomethyl meconate. Further, an acid anhydride group-containing monomer such as maleic anhydride or itaconic acid anhydride; glycidyl (meth)acrylate, glycidyl α-ethyl acrylate, or 3,4-epoxy (meth)acrylate may be used. An amine group-containing (meth) acrylate monomer such as an epoxy group-containing monomer such as butyl ester or dimethylaminoethyl (meth) acrylate or diethylaminoethyl (meth) acrylate; Methyl) acrylamide, dimethyl (meth) acrylamide, diethyl (meth) acrylamide, (meth) propylene decyl porphyrin, hydroxyethyl (meth) acrylamide, Isopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide-chloromethane, (meth) propylene Indoleamine, N-tert-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxy a acrylamide-based monomer such as methyl (meth) acrylamide or diacetone (meth) acrylamide; a guanamine-containing monomer such as maleic acid or maleimide; a heterocyclic basic monomer such as vinylpyrrolidone, vinylpyridine or vinylcarbazole; (methyl) 2-isocyanatoethyl enoate, 2-(2-(methyl)propenyloxyethoxy)ethyl isocyanate, 2-(0-[1'-methyl)(meth)acrylate Isopropylamino]carboxyamino)ethyl ester, 2-[(3,5-dimethylpyrazolyl)carbonylamino](meth)acrylate, etc., containing isocyanate or blocked isocyanate Acid-based monomer; 2-[2-hydroxy-5-[2-((meth)propenyloxy)ethyl]phenyl]-2H-benzotriazole and other monomers containing ultraviolet absorbing groups Wait. Further, styrene, tert-butyl styrene, α-methyl styrene, vinyl toluene, acrylonitrile, methyl group copolymerizable with the above acrylic monomer or methacrylic monomer may be suitably used. Various vinyl monomers such as acrylonitrile, vinyl acetate, vinyl propionate, alkyl vinyl ether, hydroxyalkyl vinyl ether, and alkyl vinyl monomer. Further, the main component of the (meth)acrylic copolymer (A1) is preferably a monomer having a hydrophobicity and a hydrophilic monomer as a structural unit. When the main component of the (meth)acrylic copolymer (A1) contains only a hydrophobic monomer, wet heat whitening tends to occur. Therefore, it is preferred to introduce a hydrophilic monomer into the main component to prevent wet heat whitening. Specifically, examples of the main component of the (meth)acrylic copolymer (A1) include a hydrophobic (meth) acrylate monomer, a hydrophilic (meth) acrylate monomer, and a giant single. A copolymer component obtained by randomly copolymerizing a polymerizable functional group at the end of the body. Here, examples of the hydrophobic (meth) acrylate monomer include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (methyl). ) n-butyl acrylate, isobutyl (meth)acrylate, second butyl (meth)acrylate, tert-butyl (meth)acrylate, amyl (meth)acrylate, isoamyl (meth)acrylate Ester, neopentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, acrylic acid Isooctyl ester, decyl (meth) acrylate, isodecyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate , undecyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, (A) Base) behenyl acrylate, isodecyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, methyl methacrylate. Further, examples of the hydrophobic vinyl monomer include alkyl vinyl esters such as vinyl acetate, styrene, t-butyl styrene, α-methyl styrene, vinyl toluene, and alkyl vinyl monomers. Wait. Among them, from the viewpoint of easily forming a phase separation structure with a phase formed by the following branch components and imparting an appropriate adhesion (viscosity) to the photocurable composition, the carbon number is preferably 5 or more, 8 or more thereof, 9 or more thereof, particularly 10 or more alkyl (meth)acrylates. For example, when a photo-curable composition is used for a member having a touch sensor function, in order to absorb the change in touch sensitivity, the noise of the detection signal is suppressed, and a light having a relatively low dielectric constant is sought. The case of a hardenable composition. In this case, it is preferable to use the carbon number from the viewpoint of adjusting the relative dielectric constant of the photocurable composition and/or the cured product obtained by photocuring the photocurable composition to be low. 5 or more, 8 or more thereof, 9 or more thereof, particularly 10 or more alkyl (meth)acrylates are used as the hydrophobic monomer. Here, examples of the (meth)acrylic acid alkyl ester having 8 or more carbon atoms include 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, and decyl (meth)acrylate. Isodecyl acrylate, tert-butylcyclohexyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, (A) Lauryl acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, isophthalic acid (meth) acrylate A base ester, cyclohexyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, or the like. As the above hydrophilic monomer, for example, methyl acrylate, tetrahydrofurfuryl (meth) acrylate, or hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate a hydroxyl group-containing (meth) acrylate such as an ester or a glyceryl (meth) acrylate; (meth)acrylic acid, 2-(meth)acryloxyethyl hexahydrophthalic acid, 2-(methyl) Propylene methoxypropyl hexahydrophthalic acid, 2-(meth) propylene methoxyethyl phthalate, 2-(methyl) propylene methoxy propyl phthalate, 2-( Methyl)propenyloxyethyl maleic acid, 2-(methyl)acryloxypropyl maleic acid, 2-(methyl)acryloxyethyl succinic acid, 2 -(Methyl)acryloxypropyl succinic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid, monomethyl maleate, monomethyl meconate a carboxyl group-containing monomer; an acid anhydride group-containing monomer such as maleic anhydride or itaconic anhydride; glycidyl (meth)acrylate, glycidyl α-ethyl acrylate, 3,4-cyclo(meth)acrylate Butyloxy monomer such as oxybutyl ester; methoxy polyethylene glycol (A In addition to alkoxy polyalkylene glycol (meth) acrylates such as acrylates, (meth) acrylamide, dimethyl (meth) acrylamide, diethyl (methyl) may also be used. ) acrylamide, (meth) propylene decyl porphyrin, hydroxyethyl (meth) acrylamide, isopropyl (meth) acrylamide, dimethylaminopropyl (meth) propylene oxime Amine, phenyl (meth) acrylamide, N-tert-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (methyl) A (meth) acrylamide-based monomer such as acrylamide, N-butoxymethyl (meth) acrylamide or diacetone (meth) acrylamide. In the above, from the viewpoint of preventing the wet heat whitening of the photocurable composition and improving the adhesion to the adherend, it is preferred to use a hydroxyl group-containing monomer, a carboxyl group-containing monomer, or an acid anhydride group-containing monomer. A (meth)acrylamide monomer is used as the hydrophilic monomer. On the other hand, when the photocurable composition is used for a member having corrosive properties such as a metal or a metal oxide, in order to prevent the photocurable composition and/or the photocurable composition from being light-reducing It is preferable to use a hydrophilic component which does not contain a carboxyl group or an acid anhydride having a high acidity, because the cured hardened material is deteriorated by corrosion of the adherend. From such a viewpoint, as the hydrophilic monomer, for example, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, or (methyl) is preferably used. a hydroxyl group-containing (meth) acrylate such as glycerin acrylate; or (meth) acrylamide, dimethyl (meth) acrylamide, diethyl (meth) acrylamide, (meth) propylene oxime Basoxaline, hydroxyethyl (meth) acrylamide, isopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, phenyl (meth) acrylamide , N-tert-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl A (meth) acrylamide-based monomer such as (meth) acrylamide or diacetone (meth) acrylamide. (Branching Component: Giant Monomer) The (meth)acrylic copolymer (A1) is preferably a branched component in which a macromonomer is introduced as a graft copolymer, and a macromonomer is contained as a structural unit. The macromonomer system has a polymerizable functional group at the end and a high molecular weight skeleton component. The glass transition temperature (Tg) of the macromonomer is preferably higher than the glass transition temperature of the copolymer component constituting the above (meth)acrylic copolymer (A1). Specifically, the glass transition temperature (Tg) of the macromonomer is preferably from 30 ° C to 120 ° C, and more preferably 40 ° C, since it affects the heat melting temperature (hot melt temperature) of the photohardenable composition. Above or below 110 ° C, of which 50 ° C or more or 100 ° C or less. When the macromonomer is such a glass transition temperature (Tg), it is possible to maintain excellent workability or storage stability by adjusting the molecular weight, and it can be adjusted by hot melt at a temperature of from 50 ° C to 80 ° C. The glass transition temperature of the macromonomer means the glass transition temperature of the macromonomer itself, which can be determined by a differential scanning calorimeter (DSC). Further, in order to maintain the physical cross-linking in the form of an adhesive composition such that the branch components are pulled from each other at room temperature, and by heating to a moderate temperature, the physical cross-linking can be obtained. The fluidity is also preferably adjusted to adjust the molecular weight or content of the macromonomer. In this regard, the macromonomer is preferably contained in the (meth)acrylic copolymer (A1) at a ratio of 5 to 30% by mass, preferably 6% by mass or more or 25% by mass or less. Among them, it is 8 mass% or more or 20 mass% or less. Further, the number average molecular weight of the macromonomer is preferably from 500 to 100,000, preferably less than 8,000, preferably 800 or more, or less than 7,500, or more than 1,000 or less than 7,000. The macromonomer can be suitably used by a general manufacturer (for example, a giant monomer manufactured by Toagosei Co., Ltd.). The high molecular weight skeleton component of the macromonomer preferably contains an acrylic polymer or a vinyl polymer. Examples of the high molecular weight skeleton component of the macromonomer include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and isopropyl (meth)acrylate. Base) n-butyl acrylate, isobutyl (meth)acrylate, second butyl (meth)acrylate, tert-butyl (meth)acrylate, amyl (meth)acrylate, (meth)acrylic acid Amyl ester, neopentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, Isooctyl acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, decyl (meth) acrylate, isophthalic acid (meth) acrylate Ester, undecyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, ( Behenyl methacrylate, isodecyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 3,5,5-trimethylcyclohexane acrylate, p-cumene Phenol ring Ethane modified (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, (methyl) Benzyl acrylate, hydroxyalkyl (meth) acrylate, (meth)acrylic acid, glycidyl (meth) acrylate, alkoxyalkyl (meth) acrylate, alkoxy polyalkylene glycol (meth) acrylate monomer such as (meth) acrylate; or styrene, t-butyl styrene, α-methyl styrene, vinyl toluene, alkyl vinyl monomer, alkyl vinyl ester, Various vinyl monomers such as alkyl vinyl ether, hydroxyalkyl vinyl ether, (meth)acrylonitrile, (meth) acrylamide, N-substituted (meth) acrylamide, etc., which may be used alone or in combination Two or more types are used. The macromonomer system has a radical polymerizable group or a polymerizable functional group such as a hydroxyl group, an isocyanato group, an epoxy group, a carboxyl group, an amine group, a decylamino group or a thiol group. As the macromonomer, a radical polymerizable group capable of copolymerizing with other monomers is preferred. The radical polymerizable group may contain one or two or more, and particularly preferably one. In the case where the macromonomer has a functional group, the functional group may also contain one or two or more, and particularly preferably one. Further, the radical polymerizable group and the functional group may contain either or both of them. In the case of containing both a radical polymerizable group and a functional group, any one of a functional group added to a polymer unit containing another monomer or a radical polymerizable group copolymerized with another monomer The functional group other than the one or the radical polymerizable group may be two or more. Therefore, examples of the terminal functional group of the macromonomer include a hydroxyl group, an isocyanate group, an epoxy group, and a carboxyl group, in addition to a radical polymerizable group such as a methacryl group, an acryl group or a vinyl group. a functional group such as an amine group, a guanylamino group or a thiol group. Among them, the terminal functional group of the macromonomer preferably has a radical polymerizable group capable of copolymerizing with another monomer. At this time, the radical polymerizable group may contain one or two or more, and particularly preferably one. In the case where the macromonomer has a functional group, the functional group may also contain one or two or more, and particularly preferably one. Further, the radical polymerizable group and the functional group may contain either or both of them. In the case of containing both a radical polymerizable group and a functional group, any one of a functional group added to a polymer unit containing another monomer or a radical polymerizable group copolymerized with another monomer The functional group other than the one or the radical polymerizable group may be two or more. Giant monomers can be produced by known methods. Examples of the method for producing the macromonomer include a method of producing a cobalt chain transfer agent, a method of using an α-substituted unsaturated compound such as an α-methylstyrene dimer as a chain transfer agent, and a method of using a polymerizable group. a method of bonding by chemical means; and a method by thermal decomposition. Among these methods, as a method for producing a macromonomer, a method of producing a catalyst using a cobalt chain transfer agent is preferred in terms of a catalyst having a small number of production steps and a high chain transfer constant. (Manufacturing Method) The acrylic copolymer (A1) can be obtained, for example, by adding a specific macromonomer (a) to a polymer containing the vinyl monomer (b), or by containing a specific macromonomer ( A) is obtained by polymerizing a monomer mixture of the vinyl monomer (b). <Crosslinking agent (B)> The crosslinking agent (B) in the photocurable composition has control of a (micro) phase separation structure formed as a composition containing the (meth)acrylic copolymer (A) The action of the agent, in other words, has the function of adjusting the softness and cohesive force of the photocurable composition. The crosslinking agent (B) may, for example, be selected from the group consisting of (meth)acryl fluorenyl group, epoxy group, isocyanate group, carboxyl group, hydroxyl group, carbodiimide group, oxazoline group, aziridine. A crosslinking agent capable of using at least one crosslinkable functional group of a group, a vinyl group, an amine group, an imido group, a decylamino group, an N-substituted (meth) acrylamide group, or an alkoxyalkyl group One type or a combination of two or more types is used. Further, the above crosslinkable functional group can be protected by a protecting group which can be deprotected. Among them, a polyfunctional (meth) acrylate is preferred from the viewpoint of easily controlling the crosslinking reaction. As such a polyfunctional (meth) acrylate, for example, 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, glycerol di(meth)acrylate, Glycerol glycidyl ether di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, tricyclodecane dimethanol di Methyl) acrylate, bisphenol A polyethoxy di(meth) acrylate, bisphenol A polyalkoxy di(meth) acrylate, bisphenol F polyalkoxy di(meth) acrylate , polyalkylene glycol di(meth)acrylate, trimethylolpropane trioxyethyl (meth) acrylate, ε-caprolactone modified tris(2-hydroxyethyl)isocyanuric acid Tris(meth)acrylate, pentaerythritol tri(meth)acrylate, propoxylated pentaerythritol tri(meth)acrylate, ethoxylated pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylic acid Ester, propoxylated pentaerythritol tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, polyethylene glycol di(meth)acrylate, Tris(propylene methoxyethyl) cyanurate, pentaerythritol tetra(meth) acrylate, dipentaerythritol hexa(meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol hexa(meth) acrylate Ester, tripentaerythritol penta (meth) acrylate, hydroxypivalic acid neopentyl glycol di(meth) acrylate, hydroxypivalic acid neopentyl glycol ester ε-caprolactone adduct Methyl) acrylate, trimethylolpropane tri(meth) acrylate, alkoxylated trimethylolpropane tri(meth) acrylate, bis(trimethylolpropane) tetra(meth)acrylic acid Examples of the ultraviolet curable polyfunctional monomer such as an ester include (meth)acrylic polyester, epoxy (meth)acrylate, (meth)acrylic acid urethane, and polyether (meth)acrylic acid. A polyfunctional acrylate oligomer such as an ester, and a polyfunctional acrylamide or the like. In the above-mentioned polyfunctional (meth) acrylate monomer, it is preferable to contain a hydroxyl group, a carboxyl group, and an amine group from the viewpoint of the effect of the adhesion of the adherend or the suppression of the moist heat whitening. a polyfunctional monomer or oligomer of a polar functional group such as a guanamine group. Among them, a polyfunctional (meth) acrylate having a hydroxyl group or a guanamine group is preferably used. From the viewpoint of preventing wet heat whitening, a hydrophobic acrylate monomer and a hydrophilic acrylate monomer are preferably used as the main component of the (meth) acrylate copolymer (A1), that is, a graft copolymer. Further, it is preferred to use a polyfunctional (meth) acrylate having a hydroxyl group as the crosslinking agent (B). Further, in order to adjust the effects of adhesion, heat and humidity resistance, heat resistance, and the like, a monofunctional or polyfunctional (meth) acrylate which is reacted with the crosslinking agent (B) may be further added. Further, as a crosslinking agent having two or more kinds of crosslinkable functional groups, for example, glycidyl (meth)acrylate, glycidyl α-ethyl acrylate, and 3,4-epoxybutyl (meth)acrylate An epoxy group-containing monomer such as an ester or a 4-hydroxybutyl (meth)acrylate glycidyl ether; or 2-isocyanatoethyl (meth)acrylate or 2-(2-(methyl) isocyanate) Propylene methoxyethoxy)ethyl ester, 2-(O-[1'-methylpropyleneamino]carboxyamino)ethyl (meth)acrylate, 2-[(3) Other than a monomer containing an isocyanate group or a blocked isocyanate group, such as 5-dimethylpyrazolyl)carbonylamino]ethyl ester, vinyl trimethoxymethane, vinyl triethyl Oxymethane, 3-glycidoxypropyltrimethoxymethane, 3-(methyl)propenyloxypropylmethyldiethoxymethane, 3-(methyl)propenyloxy Propyltriethoxymethane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxymethane, 3-isocyanatopropyltriethoxymethane, etc. Various decane coupling agents. The crosslinking agent having two or more kinds of crosslinkable functional groups may be reacted with a (meth)acrylic copolymer to form a crosslinkable functional group with a (meth)acrylic copolymer (A) bond. The structure of the knot. By bonding the crosslinking agent (B) to the (meth)acrylic copolymer (A), the bleeding of the crosslinking agent (B) or the unexpected plasticization of the adhesive composition can be suppressed. Moreover, by bonding the crosslinking agent (B) and the (meth)acrylic copolymer (A), the reaction efficiency of the photocrosslinking reaction is promoted, so that a cured product having a higher cohesive force can be obtained. The half-value width of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement is adjusted to an appropriate range to maintain an appropriate phase-separated structure, and the softness and cohesive force of the photo-curable composition are balanced. The content of the crosslinking agent (B) is preferably 0.05 parts by mass or 30 parts by mass based on 100 parts by mass of the above (meth)acrylic copolymer (A), and preferably 0.1 part by mass or 20 parts by mass. The ratio is particularly preferably 0.5 parts by mass or more or 15 parts by mass or less, particularly 1 part by mass or more or 13 parts by mass or less. The photocurable composition may further contain a monofunctional monomer that reacts with a crosslinkable functional group of the crosslinking agent (B). By adding a monofunctional monomer, in addition to increasing the value of the half value width X1 of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement of the photocurable composition, or increasing the fluidity during hot melt, Improve the adhesion to the adherend, or enhance the effect of moist heat whitening inhibition. Examples of such a monofunctional monomer include, in addition to alkyl (meth)acrylate such as methyl acrylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and (methyl). Hydroxy-containing (meth) acrylate such as hydroxybutyl acrylate, glyceryl (meth) acrylate, or polyalkylene glycol (meth) acrylate; (meth)acrylic acid, 2-(methyl) propylene oxime Ethyl hexahydrophthalic acid, 2-(methyl) propylene methoxypropyl hexahydrophthalic acid, 2-(methyl) propylene methoxyethyl phthalate, 2-(A Base) propylene methoxy propyl phthalate, 2-(meth) propylene oxiranyl ethyl maleate, 2-(methyl) propylene methoxy propyl maleic acid, 2 -(Methyl)acryloxyethyl succinic acid, 2-(methyl) propylene methoxy succinic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid a carboxyl group-containing monomer such as monomethyl maleate or monomethyl meconate; an acid anhydride group-containing monomer such as maleic anhydride or itaconic acid anhydride; tetrahydrofurfuryl (meth)acrylate, methoxy Ether-containing (meth) propylene such as polyethylene glycol (meth) acrylate Ester; (meth) acrylamide, dimethyl (meth) acrylamide, diethyl (meth) acrylamide, (meth) propylene decyl porphyrin, hydroxyethyl (meth) propylene Indoleamine, isopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, phenyl (meth) acrylamide, N-tert-butyl (meth) propylene Indoleamine, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, diacetone (A (meth) acrylamide-based monomer such as acrylamide. Among them, from the viewpoint of improving the adhesion to the adherend or the effect of suppressing the wet heat whitening, it is preferred to use a hydroxyl group-containing (meth) acrylate or a (meth) acrylamide monomer. <Crosslinking initiator (C)> The crosslinking initiator (C) used in the photocurable composition functions as a reaction initiation aid in the crosslinking reaction of the crosslinking agent (B). The cross-linking initiator can be suitably used by those currently known. Among them, from the viewpoint of easily controlling the crosslinking reaction, a photopolymerization initiator which induces ultraviolet rays having a wavelength of 380 nm or less is preferable. On the other hand, the photopolymerization initiator which induces light having a longer wavelength than the wavelength of 380 nm can obtain a higher photoreactivity, and when the photocurable composition is formed into a sheet shape, the light is induced. It is preferable to easily reach the deep part of the sheet. The photopolymerization initiator is roughly classified into two types according to a radical generating mechanism, and is roughly classified into a split-bond type photopolymerization initiator which can decompose a single bond of a photopolymerization initiator itself to generate a radical; The excited initiator and the hydrogen donor in the system form an excitation complex, and a hydrogen-trapping photopolymerization initiator capable of transferring hydrogen to the hydrogen. Among these, the cleavage-type photopolymerization initiator is decomposed into a further compound when a radical is generated by light irradiation, and does not have a function as a crosslinking initiator when excited. Therefore, it is preferable that the adhesive material does not remain as an active species in the adhesive material after the completion of the crosslinking reaction, and there is no possibility of causing undesired photodegradation or the like to the adhesive material. On the other hand, when the hydrogen abstraction photopolymerization initiator is reacted by a radical which is irradiated with an active energy ray such as ultraviolet rays, a decomposition product such as a bond-type photopolymerization initiator is not generated, and thus the reaction is completed. It is not easy to be a volatile component afterwards, and it can reduce the damage to the adherend, which is useful in this respect. Examples of the above-mentioned fragmentation type photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-hydroxyl group. -2-methyl-1-phenyl-propan-1-one, 1-(4-(2-hydroxyethoxy)phenyl)-2-hydroxy-2-methyl-1-propan-1-one , 2-hydroxy-1-[4-{4-(2-hydroxy-2-methyl-propenyl)benzyl}phenyl]-2-methyl-propan-1-one, oligomeric (2- Hydroxy-2-methyl-1-(4-(1-methylvinyl)phenyl)propanone), methyl phenylglyoxylate, 2-benzyl-2-dimethylamino-1-( 4-Phenylphenylphenylbutane-1-one, 2-(4-methylbenzyl)-2-dimethylamino-1-(4-indolyl)phenyl)butane-1 -ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-indolyl propan-1-one, 2-(dimethylamino)-2-[(4-A) Phenyl)methyl]-1-[4-(4-carbolinyl)phenyl]-1-butanone, 1,2-octanedione, 1-(4-(phenylthio)-,2 -(o-benzamide), 1-[9-ethyl-6-(2-methylbenzhydryl)-9H-indazol-3-yl]-ethanone 1-(O-acetamidine)肟), bis(2,4,6-trimethylbenzylidene)-phenylphosphine oxide, 2,4,6-trimethylbenzhydryldiphenylphosphine oxide, (2,4,6 -trimethylbenzhydryl)ethoxyphenylphosphine oxide, double (2,6 -Dimethoxybenzylidene) 2,4,4-trimethylpentylphosphine oxide, or such derivatives. Examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, and 4-phenyldiphenyl. Methyl ketone, 3,3'-dimethyl-4-methoxybenzophenone, 4-(methyl) propylene decyl benzophenone, 4-[2-((meth) propylene oxime) Ethyl] benzophenone, 4-(methyl)propenyloxy-4'-methoxybenzophenone, methyl 2-benzimidazole, methyl benzhydrazide, Bis(2-phenyl-2-oxo-oxyacetic acid) oxydivinyl, 4-(1,3-propenyl fluorenyl-1,4,7,10,13-penta-oxytridecyl)benzophenone 9-oxosulfur 2-chloro 9-oxosulfur 3-methyl 9-oxosulfur 2,4-dimethyl 9-oxosulfur , hydrazine, 2-methyl hydrazine, 2-ethyl hydrazine, 2-tert-butyl hydrazine, 2-amino hydrazine, camphorquinone or a derivative thereof. However, the photopolymerization initiator is not limited to the above-exemplified substances. Any one of the above-mentioned photopolymerization initiators or a derivative thereof may be used, or two or more types may be used in combination. Among them, bis(2,4,6-trimethylbenzylidene)-phenylphosphine oxide is preferred because it is highly inductive to light and decolorizes as a decomposition product after the reaction. 2,4,6-trimethylbenzimidyldiphenylphosphine oxide, (2,4,6-trimethylbenzylidene)ethoxyphenylphosphine oxide, bis(2,6-dimethyl A fluorenylphosphine-based photopolymerization initiator such as oxybenzylidene) 2,4,4-trimethylpentylphosphine oxide. Further, it is easy to control the reaction and the compatibility with the acrylic copolymer containing a graft copolymer having a macromonomer as a branching component, and it is preferred to use diphenyl as a crosslinking initiator (C). Methyl ketone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3'-dimethyl-4-methoxy Benzophenone, 4-(methyl) propylene decyl benzophenone, 4-[2-((meth) propylene methoxy) ethoxy] benzophenone, 4-(methyl) Propylene 醯oxy-4'-methoxybenzophenone, methyl 2-benzimidazole, methyl benzoic acidcarboxylate, and the like. The content of the crosslinking initiator (C) is not particularly limited. The standard is preferably contained in an amount of 0.1 to 10 parts by mass, 0.5 part by mass or more, or 5 parts by mass or less, or 1 part by mass or more, or 3 parts by mass or less based on 100 parts by mass of the acrylic copolymer (A). . By setting the content of the crosslinking initiator (C) to the above range, a moderate reaction sensitivity to the active energy ray can be obtained. Further, a sensitizer may be used in addition to the crosslinking initiator (C) component. The sensitizer is not particularly limited, and any sensitizer used in the photopolymerization initiator can be used without any problem. For example, an aromatic amine or an anthracene derivative, an anthracene derivative, a coumarin derivative, and 9-oxysulfur Derivatives, phthalocyanine derivatives, etc., or benzophenone, anthrone, 9-oxosulfur , aromatic ketones such as mazinone, 9,10-phenanthrenequinone, and the like. <Other Components> The photocurable composition may contain a known component formulated in a usual adhesive composition as a component other than the above. For example, various additives such as an adhesion-imparting resin, an antioxidant, a light stabilizer, a metal deactivator, a rust preventive, an anti-aging agent, a moisture absorbent, a water repellent, an antistatic agent, an antifoaming agent, and an inorganic particle may be appropriately contained. . Further, a reaction catalyst (a tertiary amine compound, a quaternary ammonium compound, a lauric acid compound, etc.) may be appropriately contained as needed. <This Adhesive Sheet> An adhesive sheet (referred to as "this adhesive sheet") can be produced from the present photocurable composition. The adhesive sheet may be a sheet containing a single layer or a multilayer sheet formed by laminating two or more layers. In the case where the adhesive sheet is a three-layer or more adhesive sheet, for example, in the case of forming an adhesive sheet having a laminate of an intermediate layer and an outermost layer, it is preferably formed from the photocurable composition. The outermost layer. In the case where the adhesive sheet is formed into an adhesive sheet comprising a laminate of an intermediate layer and an outermost layer, it is preferable that a ratio of a thickness of each outermost layer to a thickness of the intermediate layer is 1:1 to 1:20, wherein Further preferably, it is 1:2 to 1:10. If the thickness of the intermediate layer is in the above range, the thickness of the adhesive material layer in the laminated body does not become excessively large, and it is not too soft, and the workability of cutting or handling is poor, which is preferable. Further, when the outermost layer is in the above range, there is no possibility of poor followability to the uneven surface or the curved surface, and it is preferable to maintain the adhesion or wettability to the adherend. (Thickness of the present adhesive sheet) The thickness of the adhesive sheet can be made thinner by making the thickness of the sheet thin, and on the other hand, if the thickness of the sheet is too thin, for example, it is faced. When there is a concave-convex part, it may not be able to fully follow the unevenness, or it may not be able to exert sufficient adhesion. From this point of view, the thickness of the adhesive sheet is preferably from 20 μm to 500 μm, particularly preferably from 25 μm or more to 350 μm or less, of which 50 μm or more or 250 μm or less. (Adhesive force of the adhesive sheet) The adhesive sheet is preferably bonded to the glass, and the total irradiation dose of the irradiation is 4000 mJ/m. 2 The 180° peel strength to the glass at the time of light, that is, the 180° peel strength of the present adhesive sheet after irradiation with light is 3 N/cm or more. When the 180° peel strength of the glass is 3 N/cm or more, excellent cohesive force can be exhibited, so that the adherends can be firmly bonded to each other. Therefore, the following image display constituent members can be attached to each other more firmly. From this point of view, as described above, the adhesive sheet preferably has a 180° peel strength to the glass of 3 N/cm or more when light is irradiated, and more preferably 5 N/cm or more thereof, of which 10 N /cm or more. (How to use this adhesive sheet) This adhesive sheet can be used directly. Moreover, it can also be laminated with other members and used. <This Adhesive Sheet Laminate> If the present adhesive sheet laminate is a laminate including the present adhesive sheet in the layer configuration, the composition is arbitrary. For example, an adhesive sheet laminate can be formed by laminating a release film on one side or both sides of the adhesive sheet. As the release film, those currently known can be used arbitrarily. The thickness of the above release film is not particularly limited. Among them, for example, from the viewpoint of workability and handleability, it is preferably 25 μm to 500 μm, more preferably 38 μm or more or 250 μm or less, or 50 μm or more or 200 μm or less. <This cured product> The above-mentioned photocurable composition is cured by irradiation with light (referred to as "photocuring"), and a half-value width X3 of one-dimensional scattering distribution characterized by small-angle X-ray scattering measurement can be obtained ( Nm -1 ) is a cured product of 0.05 < X3 < 0.25 (referred to as "the present hardened material"). Here, the cured product means that the light-curable composition is irradiated with light to harden it, and the form thereof is arbitrary. Therefore, it may be in the form of a sheet or a sheet. In the hardened material, the half-value width of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement is X3 (nm -1 When it is 0.05 < X3 < 0.25, a cured product having high cohesive force and high reliability can be obtained. From this point of view, in the present cured product, the half value width of one-dimensional scattering distribution in the small-angle X-ray scattering measurement is X3 (nm) from the same viewpoint as the above-mentioned photocurable composition. -1 It is preferably 0.05 < X3 < 0.25, further preferably 0.06 < X3 or X3 < 0.24, wherein 0.08 < X3 or X3 < 0.22, and further wherein 0.10 < X3 or X3 < 0.20. According to the above, the half value width X3 is preferably any one of 0.05<X3<0.25, 0.05<X3<0.24, 0.05<X3<0.22 or 0.05<X3<0.20, more preferably 0.06<X3<0.25, Any one of 0.06 < X3 < 0.24, 0.06 < X3 < 0.22 or 0.06 < X3 < 0.20, further preferably wherein 0.08 < X3 < 0.25, 0.08 < X3 < 0.24, 0.08 < X3 < 0.22 or 0.08 < X3 < Any one of 0.20 is preferably any one of 0.10 < X3 < 0.25, 0.10 < X3 < 0.24, 0.10 < X3 < 0.22, or 0.10 < X3 < 0.20. As a main method for adjusting the above-mentioned half-value width X3 in the hardened material, and adjusting the above-mentioned half-value width X1 (nm) -1 The method is the same. For example, the structure, composition, molecular weight, and the like of the (meth)acrylic copolymer (A) as a base polymer are adjusted, and the type of the crosslinking agent (B) or the crosslinking initiator (C) and The method of adjusting or selecting the quantity. However, it is not limited to these methods. Further, in the present cured product, in order to adjust the half value width X3 to a preferred range, as described above, it is preferable to use a carbon number of 5 or more, 8 or more, 9 or more thereof, and especially 10 in detail. The above (meth)acrylic monomer or vinyl monomer is the main copolymerization component (main component) of the (1) (meth)acrylic copolymer. Specifically, it is preferably selected from the examples of the monomers contained in the main component of the acrylic copolymer (A1). Further, it is preferred to use a hydrophilic component as the (2a) the above-mentioned (meth)acrylic monomer or the above-mentioned copolymerizable component (main component) other than the vinyl monomer. Specifically, it is preferably selected from the examples of the hydrophilic monomer contained in the main component of the following acrylic copolymer (A1). Furthermore, it is preferable to contain (2b) the hydrophilic component in a mass ratio of 0.1 to 20 with respect to the copolymerization component (main component) 100, and to improve the hydrophilicity of the trunk component. Furthermore, it is preferable to blend the (meth) number of 4 or less (meth) as a branching component of the (3) (meth)acrylic-type copolymer (A) with the mass ratio of 1 to 100 with respect to the trunk component 100. The acrylic monomer or the vinyl monomer component adjusts the microphase separation state formed by the phase of the stem component and the branch component. In addition, it is preferable that the branching component of the (3b) (meth)acrylic copolymer (A) is a (meth) group having a cyclic structure so as to have a mass ratio of from 1 to 100 with respect to the trunk component 100. The acrylic monomer or the vinyl monomer component adjusts the microphase separation state formed by the phase of the stem component and the branch component. Further, it is preferred to use a hydroxyl group-containing compound or the like having a high compatibility with a hydrophilic component as the (4a) crosslinking agent (B). Specifically, it is preferably selected from the above examples of the crosslinking agent (B). In addition, it is preferable to adjust the polarity of the trunk component as appropriate in an amount of 0.05 to 30 parts by mass of the (4b) crosslinking agent (B) per 100 parts by mass of the (meth)acrylic copolymer. As described above, by appropriately selecting the above (1) to (4) independently, the phase separation structure formed by the trunk component and the branch component can be adjusted. Wherein, in the methods (1) to (4b) above, it is preferred to combine (1) and (2a) and/or (2b), or combine (1) with (3a) and/or (3b), Preferably, all of the methods (1) to (4b) are employed in combination (1), (3a) and/or (3b) and (4a) and/or (4b). However, it is not limited to this method. As described above, it is only necessary to use a graft polymer to optimize the balance between the compatibility of the branch component and the trunk component, thereby forming an optimum phase separation state. The hydrophobic component is used as a main copolymerizable component (main component) of the copolymer (A), and a hydrophilic component is used as a branch component of the copolymer (B), whereby the half value width X3 is controlled. <Layered body for image display device configuration> The image forming device can be configured by laminating two constituent members for an image display device via the above-described light-curable composition, the above-mentioned adhesive sheet or the above-mentioned cured product. A laminate (referred to as "a laminate for the present image display device"). In this case, the constituent members of the two image display devices include, for example, any one of a group consisting of a touch sensor, an image display panel, a surface protective panel, and a polarizing film, or two or more of them. combination. Specific examples of the laminated body for constituting the image display device include a release sheet, a photocurable composition, the above-mentioned adhesive sheet, the above-mentioned cured product/touch panel, and a release sheet/ The photocurable composition or the above-mentioned adhesive sheet or the above-mentioned cured product/protective panel, release sheet/light curable composition or the above-mentioned adhesive sheet or the above-mentioned cured product/image display panel, Such as a display panel/light-curing composition or the above-mentioned adhesive sheet or the above-mentioned cured/touch panel, image display panel/light-curing composition or the above-mentioned adhesive sheet or the above-mentioned cured product/protection a panel, an image display panel/present photocurable composition or the above-mentioned adhesive sheet or the above-mentioned cured/touch panel/light-curing composition or the above-mentioned adhesive sheet or the above-mentioned cured/protective panel, Polarizing film/present photocurable composition or the above-mentioned adhesive sheet or the above-mentioned cured product/touch panel, polarizing film/light curable composition or the above-mentioned adhesive sheet or the above-mentioned cured product/touch panel/ The photocurable composition or the above-mentioned stick The sheet or the above-mentioned cured product/protective panel or the like is formed. However, it is not limited to these laminated examples. The touch panel is also included in the structure in which the touch panel function is built in the protection panel or the structure in which the touch panel function is built in the image display panel. <The present image display device> The image display device (referred to as "the present image display device") can be configured by using the laminated body for the image display device configuration as described above. The image display device can be, for example, an image display device such as a liquid crystal display, an organic EL (Electroluminescence) display, an inorganic EL display, an electronic paper, a plasma display, or a microelectromechanical system (MEMS) display. <Description of Statements> In the case of the expression "X to Y" (where X and Y are arbitrary numbers), the meaning of "X or more and Y or less" is included unless otherwise specified. Contains the meaning of "preferably greater than X" or "preferably less than Y". In the case of "X or above" or "X" (where X is an arbitrary number), the intention of "preferably greater than X" is also included. In the case of "Y" or "Y" (Y is an arbitrary number), the intention of "preferably not Y" is also included. In general, the boundary between the sheet and the film is not clear, and in the present invention, there is no need to distinguish between the two in the sentence. Therefore, in the present invention, in the case of the "film", the "sheet" is also included. In the case of "sheet", "film" is also included. [Examples] Hereinafter, the present invention will be more specifically described by way of examples. However, the invention is not limited to the embodiments. [Example 1] 15 parts by mass of a polymethyl methacrylate macromonomer having a number average molecular weight of 2,500 as a (meth)acrylic copolymer (A), 81 parts by mass of butyl acrylate, and 4 parts by mass of acrylic acid were subjected. Randomly copolymerized acrylic copolymer (A-1, mass average molecular weight: 200,000) 1 kg, added propoxylated pentaerythritol triacrylate as crosslinking agent (B) (manufactured by Shin-Nakamura Chemical Co., Ltd., NK Ester ATM-4PL) (B-1) 50 g, 15 g of Esacure TZT (manufactured by IGM) (C-1) as a photoinitiator (C), uniformly mixed, and a photocurable composition 1 was obtained. Then, the photocurable composition 1 was formed into a sheet so as to have a thickness of 150 μm on a polyethylene terephthalate film (manufactured by Mitsubishi Plastics Co., Ltd., DIAFOIL MRV, thickness: 100 μm) which was subjected to a release treatment. After the coating, the polyethylene terephthalate film (manufactured by Mitsubishi Plastics Co., Ltd., DIAFOIL MRQ, thickness: 75 μm) was subjected to a release treatment to prepare an adhesive sheet laminate 1. [Example 2] 15 parts by mass of a polymethyl methacrylate macromonomer (number average molecular weight: 3000) having a terminal functional group of a (meth)acrylic copolymer (A) as a methacryl oxime group, acrylic acid 81 parts by mass of butyl ester and 4 parts by mass of acrylic acid were randomly copolymerized to obtain an acrylic copolymer (A-2, mass average molecular weight: 150,000) 1 kg, and propoxylated pentaerythritol was added as a crosslinking agent (B). Triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK Ester ATM-4PL) (B-1) 110 g, Esacure TZT (manufactured by IGM) (C-1) 15 g as a photoinitiator (C), uniform mixing The photocurable composition 2 was obtained. In the photocurable composition 2, an adhesive sheet laminate 2 was produced in the same manner as in Example 1. [Example 3] 15 parts by mass of a polymethyl methacrylate macromonomer (number average molecular weight: 6,700) having a terminal functional group of a (meth)acrylic copolymer (A) and a methacryl oxime group, and acrylic acid 81 parts by mass of butyl ester and 4 parts by mass of acrylic acid were randomly copolymerized to obtain an acrylic copolymer (A-3, mass average molecular weight: 46,000) 1 kg, and decanediol diacrylic acid as a crosslinking agent (B) was added. Ester (manufactured by Osaka Organic Industries, Inc., Viscoat 260) (B-2) 5 g, Esacure TZT (manufactured by IGM) (C-1) 15 g as a photoinitiator (C), uniformly mixed to obtain photocurability Composition 3. In the photocurable composition 3, an adhesive sheet laminate 3 was produced in the same manner as in Example 1. [Example 4] 30 parts by mass of a polymethyl methacrylate macromonomer (number average molecular weight 2,500) having a terminal functional group of a (meth)acrylic copolymer (A) and a methacryl oxime group, and acrylic acid 66 parts by mass of butyl ester and 4 parts by mass of acrylic acid were randomly copolymerized to obtain an acrylic copolymer (A-4, mass average molecular weight: 110,000) 1 kg, and methacrylic acid 2 as a crosslinking agent (B) was mixed. Isocyanatoethyl ester (manufactured by Showa Denko, Karenz MOI) (B-3) 27 g. The carboxyl group of the (meth)acrylic copolymer (A-4) and the isocyanate group of the crosslinking agent (B-3) were reacted by heating at 80 ° C for 4 hours. Thereafter, 15 g of Esacure TZT (manufactured by IGM) (C-1) and 100 g of hydroxybutyl acrylate as a photoinitiator (C) were added and uniformly mixed to obtain a photocurable composition 4. In the photocurable composition 4, the adhesive sheet laminate 4 was produced in the same manner as in Example 1. [Example 5] 1 kg of the acrylic copolymer (A-2, mass average molecular weight: 150,000) used in Example 2 as the (meth)acrylic copolymer (A), mixed as a crosslinking agent (B) 2-isocyanatoethyl methacrylate (manufactured by Showa Denko, Karenz MOI) (B-3) 36 g. The carboxyl group of the (meth)acrylic copolymer (A-4) and the isocyanate group of the crosslinking agent (B-3) were reacted by heating at 80 ° C for 4 hours. Then, 15 g of Esacure KTO46 (manufactured by IGM) (C-2) as a photoinitiator (C) was added and uniformly mixed to obtain a photocurable composition 5. In the photocurable composition 5, an adhesive sheet laminate 5 was produced in the same manner as in Example 1. [Example 6] A polymethyl methacrylate macromonomer having a number average molecular weight of 2,500 as the (meth)acrylic copolymer (A) and having a terminal functional group of methacryloyl group (number average molecular weight: 2,500) 11 parts by mass, 86 parts by mass of 2-ethylhexyl acrylate and 3 parts by mass of acrylic acid were randomly copolymerized to obtain an acrylic copolymer (A-5, mass average molecular weight: 74,000) 1 kg, which was added as a crosslinking agent. (B) propoxylated pentaerythritol triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK Ester ATM-4PL) (B-1) 90 g, Esacure TZT (manufactured by IGM) as a photoinitiator (C) C-1) 15 g, uniformly mixed, to obtain a photocurable composition 6. In the photocurable composition 6, the adhesive sheet laminate 6 was produced in the same manner as in Example 1. [Example 7] As the (meth)acrylic copolymer (A), the terminal functional group containing isodecyl methacrylate: methyl methacrylate = 1:1 is a methacryl oxime group Acrylic graft copolymer obtained by random copolymerization of a monomer (number average molecular weight: 3000) of 13.5 parts by mass, 43.7 parts by mass of lauryl acrylate, 40 parts by mass of 2-ethylhexyl acrylate, and 2.8 parts by mass of acrylamide ( A-6, mass average molecular weight: 160,000) 1 kg, propoxylated pentaerythritol triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK Ester ATM-4PL) (B-1) 50 as a crosslinking agent (B) g. 15 g of methyl benzoic acid methyl ester (Lambson, SpeedCure MBF) (C-3) as a photoinitiator (C) was uniformly mixed to obtain a photocurable composition 7. In the photocurable composition 7, the adhesive sheet laminate 7 was produced in the same manner as in Example 1. [Example 8] As the (meth)acrylic copolymer (A), the terminal functional group containing isodecyl methacrylate: methyl methacrylate = 1:1 is a methacryl oxime group An acrylic graft copolymer obtained by randomly copolymerizing 30 parts by mass of a monomer (number average molecular weight: 3000), 33 parts by mass of lauryl acrylate, 34 parts by mass of 2-ethylhexyl acrylate, and 3 parts by mass of acrylamide ( A-7, mass average molecular weight: 79,000) 1 kg, added as a crosslinking agent (B) tricyclodecane dimethanol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., DCP) (B-4) 200 g 15 g of Esacure TZT (manufactured by IGM) (C-1) as a photoinitiator (C) was uniformly mixed to obtain a photocurable composition 8. In the photocurable composition 8, the adhesive sheet laminate 8 was produced in the same manner as in Example 1. [Example 9] The terminal functional group containing isodecyl methacrylate: methyl methacrylate = 1:1 as the (meth)acrylic copolymer (A) is a macromolecule of methyl methacrylate Acrylic graft copolymer obtained by random copolymerization of a monomer (number average molecular weight: 8800), 13.5 parts by mass, 43.7 parts by mass of lauryl acrylate, 40 parts by mass of 2-ethylhexyl acrylate, and 2.8 parts by mass of acrylamide ( A-8, mass average molecular weight: 110,000) 1 kg, propoxylated pentaerythritol triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK Ester ATM-4PL) (B-1) 90 as a crosslinking agent (B) g, 15 g of Esacure TZT (manufactured by IGM) (C-1) as a photoinitiator (C), and uniformly mixed to obtain a photocurable composition 9. In the photocurable composition 9, an adhesive sheet laminate 9 was produced in the same manner as in Example 1. [Comparative Example 1] MMA-BA-MMA triblock copolymer containing butyl acrylate and methyl methacrylate as the (meth)acrylic copolymer (A) (Kurarity LA2140e, manufactured by Kuraray Co., Ltd.) (A-9, mass average molecular weight: 74,000) 1 kg, propoxylated pentaerythritol triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK Ester ATM-4PL) (B-1) added as a crosslinking agent (B) 110 g of 15 g of Esacure TZT (manufactured by IGM) (C-1) as a photoinitiator (C) was uniformly mixed to obtain a photocurable composition 10. In the photocurable composition 10 described above, the adhesive sheet laminate 10 was produced in the same manner as in the first embodiment. [Comparative Example 2] An acrylic copolymer containing 24 parts by mass of 2-ethylhexyl acrylate, 74 parts by mass of butyl acrylate, and 2 parts by mass of acrylic acid as the (meth)acrylic copolymer (A) (A- 10, mass average molecular weight: 500,000) 1 kg, as a crosslinking agent (B), decanediol diacrylate (Osaka Organic Industries, Inc., Viscoat 260) (B-2) 5.5 g, as photocrosslinking 9.5 g of Esacure TZT (C-1) (manufactured by IGM) of the starting agent (C) was uniformly mixed to obtain a photocurable composition 11. Further, the (meth)acrylic copolymer (A-10) is a copolymer which does not contain a macromonomer component. In the photocurable composition 11, the adhesive sheet laminate 11 was produced in the same manner as in Example 1. [Comparative Example 3] The terminal functional group containing isodecyl methacrylate: methyl methacrylate = 1:1 as the (meth)acrylic copolymer (A) is a macromolecule of methyl methacrylate Acrylic graft copolymer obtained by random copolymerization of a monomer (number average molecular weight: 3000) of 13.5 parts by mass, 43.7 parts by mass of lauryl acrylate, 40 parts by mass of 2-ethylhexyl acrylate, and 2.8 parts by mass of acrylamide ( A-11, mass average molecular weight: 49,000) 1 kg, propoxylated pentaerythritol triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK Ester ATM-4PL) (B-1) 90 as a crosslinking agent (B) g, 15 g of Esacure TZT (C-1) (manufactured by IGM) as a photoinitiator (C), and uniformly mixed to obtain a photocurable composition 12. In the photocurable composition 12, the adhesive sheet laminate 12 was produced in the same manner as in the first embodiment. Further, since the (meth)acrylic polymer (A-11) has a low molecular weight and high fluidity, the photocurable composition 12 becomes a viscous liquid at room temperature. <Evaluation> Next, the evaluation methods of the photocurable composition, the adhesive sheet, or the adhesive sheet laminate obtained in the above Examples and Comparative Examples will be described. [Small-angle X-ray scattering] The small-angle X-ray scattering measurement was performed by the BL03XU (front edge soft material development industry-universal beam line) of the SPring-8 as a large-scale radiation facility. With respect to the adhesive sheet laminate produced in the examples and the comparative examples, that is, the photocurable composition before photocuring, the release film on both sides was peeled off, and the adhesive sheet was placed on the sample jig. The X-ray beam shape is set to 120 μm in the longitudinal direction and 120 μm in the lateral direction. The X-ray wavelength was set to 1 Å, and the detector used a CCD (Charge Coupled Device) (Hamamatsu Photonics V7739P+ORCA R2). The camera length was set to approximately 4 m and corrected using a standard sample (collagen). The type, thickness, and exposure time of the attenuator (attenuator) are adjusted so that the detector is not damaged by strong X-rays, and the sample is irradiated with X-rays to obtain a two-dimensional scattering image of the sample. The correction of the background is performed based on the two-dimensional scatter image of the sample obtained in the above order. Specifically, the two-dimensional scatter image obtained by performing the same operation as the above-described sequence in the state without the sample is obtained by subtracting the background from the two-dimensional scatter image of the sample using the image processing software (Image-J). A two-dimensional scatter image is obtained, and a two-dimensional scatter image for analysis is obtained. The circular scattering was confirmed in the two-dimensional scattering image for analysis. Second, self-analysis uses a two-dimensional scatter image to convert to a one-dimensional scatter distribution. Specifically, the X-ray data processing software (Fit2d) is read into the two-dimensional scattering image for analysis, and is integrated over the omnidirectional angle and integrated in the range of q=0.04 to 0.4, thereby obtaining the horizontal axis as q. [nm -1 ], the vertical axis is set as the one-dimensional scattering distribution of the scattering intensity. The half value width X and the peak position Y of the peak are obtained from the one-dimensional scattering distribution obtained. The one-dimensional scattering distribution has a small value near q=0.1, and the scattering intensity becomes higher toward the origin; and the scattering intensity becomes smaller toward the origin after the inflection point near q=0.1. When a minimum value is taken near q=0.1 and the scattering intensity is increased toward the origin, a region larger than the minimum value q is used as an analysis target. Further, when the scattering intensity is reduced toward the origin after passing the inflection point in the vicinity of q=0.1, the region larger than the q of the inflection point is used as the analysis target. Next, the minimum value of the scattering intensity of the analysis target region is obtained in the form of the reference line correction, and the reference line correction is performed by subtracting the minimum value from everywhere. The obtained one-dimensional scattering distribution is fitted by a Gaussian function and a Lorentz function, and the half value width of the obtained synthesis function is set to X1, and the peak position is set to Y1. The waveform separation software (Fityk) is used in the fitting. Further, the inter-region distance Z1 of the phase-separated structure formed by the photocurable composition was calculated as Z1 = 2π / Y1. Further, regarding the fact that the peak is not detected from the one-dimensional scattering distribution obtained, it is described as (ND) in the table. For the adhesive sheet laminate produced in the examples and the comparative examples, a high-pressure mercury lamp was used from the side of the release film, and the cumulative light amount at a wavelength of 365 nm became 4000 mJ/cm. 2 In this manner, light irradiation is performed to cure the photocurable composition. The peak half-value width of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement is determined in the same manner as the photocurable composition before photohardening for the photocurable composition after photohardening, that is, the cured product. (X2) and the peak position (Y2), and the inter-region distance (Z2) is calculated from the peak position (Y2). [Retention] The adhesive sheet laminate produced in the examples and the comparative examples was cut into 40 mm × 50 mm and the release film of one side was peeled off, and the substrate was made of polyethylene terephthalate film (Mitsubishi). The resin-made DIAFOIL S-100 (thickness 38 μm) was back-bonded by a hand roller, and then cut into strips having a width of 25 mm × a length of 100 mm to prepare a test piece. Next, the residual release film was peeled off, and the SUS plate (120 mm × 50 mm × thickness 1.2 mm) was bonded by a hand roller so that the bonding area became 25 mm × 20 mm. Thereafter, the test piece was aged in an environment of 40 ° C for 15 minutes, and then 500 gf (4.9 N) of the test piece was mounted in the vertical direction, suspended, and allowed to stand, and then the drop time of the vertical was measured (minutes). ). For those who have not fallen within 30 minutes, the length (mm), that is, the amount of shift, in which the bonding position of SUS and the test piece is shifted downward is measured. Furthermore, the "<0.2 mm" in the table has an offset of less than 0.2 mm and has almost no offset state. [Glass adhesion force] <Measurement of adhesion force before hardening> With respect to the adhesive sheet laminate produced in the examples and the comparative examples, a release film was peeled off, and a polyethylene terephthalate film as a substrate film was peeled off. (manufactured by Toyobo Co., Ltd.; trade name "Cosmoshine A4300", thickness 100 μm), which is roll-bonded by a hand roller. It was cut into a strip shape having a width of 10 mm × a length of 100 mm, and the adhesive surface roll which was peeled off by peeling off the remaining release film was attached to the soda lime glass by a hand roller. The autoclave treatment (70 ° C, gauge pressure 0.2 MPa, 20 minutes) was carried out for final bonding, and a glass adhesion force measurement sample before photohardening was prepared. The adhesive film was peeled off from the glass while stretching at a peeling speed of 60 mm/min at an angle of 180°, and the tensile strength was measured by a load cell, and the adhesive sheet was 180° to the glass before photohardening. Peel strength (N/cm). <Measurement of the adhesion force after the hardening> The adhesive sheet laminate produced in the examples and the comparative examples was peeled off, and the release film was peeled off to form a polyethylene terephthalate film as a base film (manufactured by Toyobo Co., Ltd.). The product name "Cosmoshine A4300", thickness 100 μm) is roll bonded by a hand roller. It was cut into a strip shape having a width of 10 mm × a length of 100 mm, and the adhesive surface roll which was peeled off by peeling off the remaining release film was attached to the soda lime glass by a hand roller. After autoclaving (70 ° C, gauge pressure 0.2 MPa, 20 minutes) and final bonding, a high-pressure mercury lamp was used from the substrate film side, and the cumulative light amount at a wavelength of 365 nm became 4000 mJ/cm. 2 In this manner, the adhesive sheet is irradiated with light, and the glass after the photohardening is produced to measure the sample. The adhesive film was peeled off from the glass while stretching at a peeling speed of 60 mm/min at an angle of 180°, and the tensile strength was measured by a load cell, and the adhesive sheet after photohardening was measured to be 180° to the glass. Peel strength (N/cm). In addition, "<0.5" in the table indicates a state in which the peel strength is too small to be measured. [Relative dielectric constant] For the adhesive sheet laminate produced in the examples and the comparative examples, a high-pressure mercury lamp was used from the side of the release film, and the cumulative light amount at a wavelength of 365 nm became 4000 mJ/cm. 2 In this manner, light irradiation is performed to cure the photocurable composition. Thereafter, the release film was peeled off in order, and bonded to an electrode (DPT-009, manufactured by Keycom Corporation). The relative dielectric constant at 23 ° C, 50% RH, and frequency of 100 kHz was measured by an LCR meter (manufactured by Agilent Technologies, Inc., E4980A) in accordance with JIS K6911. The case where the relative dielectric constant at a frequency of 100 kHz was 3.5 or more was evaluated as "× (poor)", and the case where the relative dielectric constant was not 3.5 was evaluated as "○ (better)". [Corrosion resistance to metal] On a glass substrate (60 mm × 45 mm), a thickness of 100 to 150 Å is formed by reciprocating 10.5 times under the conditions of a line width of 70 μm, a line length of 46 mm, and a line spacing of 30 μm. Indium oxide (ITO) has five round-trip lines, and a square of 2 mm square containing ITO is formed at both ends of the round-trip line to form an ITO pattern (about 97 cm in length), thereby producing an ITO glass substrate for metal corrosion resistance evaluation. . One of the release sheets of the adhesive sheets produced in the examples and the comparative examples was peeled off, and a PET film (Cosmoshine A4100, 125 μm manufactured by Toyobo Co., Ltd.) was bonded to the exposed surface by a hand press roll. Next, after the adhesive sheet was cut into 52 mm × 45 mm, the residual release film was peeled off, and the ITO glass substrate for metal corrosion resistance evaluation was applied by means of a hand-pressing roller so as to cover five round lines of ITO. Fit the adhesive sheet. After autoclaving (70 ° C, gauge pressure 0.2 MPa, 20 minutes) and final bonding, a high-pressure mercury lamp was used from the PET film side, and the cumulative light amount at a wavelength of 365 nm became 4000 mJ/cm. 2 In the manner of irradiating the adhesive sheet with light, a sample for evaluation of metal corrosion resistance (ITO wiring with an adhesive sheet) was prepared. The resistance values at room temperature were measured for the five ITO wires in the sample for metal corrosion resistance evaluation (ITO wiring with adhesive sheets), and the average value (Ω0) of the initial wiring resistance values was obtained. The sample for corrosion resistance reliability evaluation (ITO wiring with an adhesive sheet) was stored in an environment of 65 ° C and 90% RH for 800 hours. After the storage, the resistance value of the ITO wiring in the sample for metal corrosion resistance evaluation (ITO wiring with an adhesive sheet) was measured in the same manner, and the average value (Ω) of the wiring resistance values after the environmental test was determined. Then, the ITO resistance value, that is, the rate of change (%) of the resistance value between the end of the line [((Ω/Ω0)-1) × 100]), is shown in the table as "change in resistance value". When the change in resistance value is less than 5%, it is judged as "(excellent)", and when it is 5% or more and less than 10%, it is judged as "○ (better)", and 10% or more is judged as "x (poor) )". [Shape stability] The adhesive sheet laminate produced in the examples and the comparative examples was not penetrated by another release film from the side of a release film (manufactured by Mitsubishi Plastics, DIAFOIL MRQ, thickness: 75 μm). Made by Mitsubishi Plastics Co., Ltd., DIAFOIL MRV, thickness 100 μm), the adhesive sheet was half-cut into a square shape of 30 mm × 30 mm. One of the release film (made by Mitsubishi Plastics Co., Ltd., DIAFOIL MRQ, thickness 75 μm) was peeled off, and the peeled polyethylene terephthalate film was coated on the exposed adhesive surface (manufactured by Mitsubishi Plastics Co., Ltd., DIAFOIL MRT, Thickness 50 μm). The release film on both sides was cut into 50 mm × 50 mm, and a sample for shape stability evaluation before photohardening was prepared. The sample for shape stability evaluation was aged for 300 hours in an environment of a temperature of 40 ° C and a humidity of 90%, and the amount of bleeding of the adhesive material on the end surface of the adhesive sheet after the aging was observed. The amount of exudation of the adhesive material is determined by measuring the oozing distance of the adhesive material in the central portion of each side of the adhesive sheet after trimming, and the average distance between the four sides is defined as the amount of exudation (mm) of the adhesive material. After the aging, the adhesive sheet is flattened, and the amount of the adhesive material exuded by 2 mm or more is judged as "× (poor)", and the adhesive material is oozing out, but it is judged as "1 mm or more and less than 2 mm". ○ (better), and those who have not reached 1 mm are judged as "◎ (excellent)". Furthermore, the "<0.1 mm" in the table is that the amount of exudation of the adhesive material is less than 0.1 mm, and there is almost no meaning of the state of exudation of the adhesive material. ">2.0 mm" means that the exudation of the adhesive material is more obvious, and the exudation amount is larger than 2.0 mm status. [Step absorption] The peripheral portion of the glass of 58 mm × 110 mm × thickness 0.8 mm (3 mm on the long side and 15 mm on the short side) is printed with a thickness of 40 to 50 μm, and the central concave portion is prepared to be 52 mm. ×80 mm glass plate with print steps. One of the release sheets of the adhesive sheet laminate produced in the examples and the comparative examples was peeled off and laminated to the entire surface of soda lime glass (54 mm × 82 mm × thickness 0.5 mm). The residual release film is peeled off, and the pressure-pressing pressure is applied to the printing step of the glass plate of the printing step with a vacuum presser (absolute pressure 5 kPa, temperature 70 ° C, plus An evaluation sample was prepared at a pressure of 0.04 MPa). With respect to the step absorbability of the above-mentioned evaluation sample, the autoclave treatment was carried out for 30 minutes under the conditions of 60 ° C and 0.3 MPa, and the appearance of the evaluation sample to be bonded was confirmed, and the bubble was observed in the vicinity of the printing step, and it was judged as "× (poor). The person who has not seen the bubble is judged as "○ (better)". [Flame Resistant Reliability] The adhesive layer-attached polarizing plate (manufactured by Sanritz, VLC2-1518AGD2SF4, size 54 mm × 82 mm) was attached to a sodium salt of 54 mm × 82 mm × 0.5 mm thick by a hand roller. The glass was subjected to autoclave treatment (25 ° C, gauge pressure 0.2 MPa, 20 minutes) to prepare a polarizing plate substrate. The release film of one side of the adhesive sheet laminate produced in the examples and the comparative examples was peeled off, and a soda lime glass of 54 mm × 82 mm × 0.5 mm thickness was bonded to the exposed surface by a hand roller. Next, the release film remaining on the adhesive sheet laminate is peeled off, and the polarizing plate surface of the polarizing plate substrate is bonded to the exposed surface by a hand roller. After autoclaving (temperature 60 ° C, pressure 0.4 MPa, 30 minutes) and final bonding, a high-pressure mercury lamp was used from the soda lime glass surface, and the cumulative light amount at a wavelength of 365 nm became 4000 mJ/cm. 2 In this manner, the adhesive sheet was irradiated with light to prepare a foam resistance reliability evaluation sample. The evaluation sample was aged in an environment of 95 ° C for 100 hours, and it was judged as "○ (better)" without foaming or the like, and the appearance of the foaming or peeling was judged as "x (poor)". [Table 1] In the photocurable composition produced in the examples, since the half value width of the photocurable composition obtained by the small-angle X-ray scattering measurement is within a specific range, moderate cohesive force and adhesion are simultaneously achieved, and storage is performed. Excellent stability or fit reliability. When the half value width of the photocurable composition before and after photohardening is 0.08 or more, the retention is particularly high. Further, the photocurable composition 6 to 9 using a hydrophobic monomer having 5 or more carbon atoms as a main copolymer component of the (meth)acrylic copolymer (A) has a relative dielectric constant at a frequency of 100 kHz. Lower than 3.5, better for touch sensors. Further, in the photocurable compositions 7 to 9, as the copolymer component of the (meth)acrylic copolymer (A), acrylamide is not used, and a carboxyl group-containing monomer or an acid anhydride group-containing monomer having a higher acidity is not used. As a hydrophilic component. Therefore, the photocurable compositions 7 to 9 are particularly excellent in metal corrosion resistance, and are also preferably used for a corrosive adherend having a metal or a metal oxide. On the other hand, in the photocurable composition produced in Comparative Example 1, the half value width X1 of the photocurable composition determined by the small-angle X-ray scattering measurement was less than 0.05, which is a specification of the present invention. Therefore, the agglutination force is too strong and lacks adhesion, and the step absorption is poor. The one-dimensional scattering distribution obtained by the small-angle X-ray scattering measurement was not observed in the photocurable composition produced in Comparative Example 2. Therefore, the photocurable composition lacks cohesive force, and the storage stability before photohardening or the foaming reliability after lamination is inferior. The photocurable composition produced in Comparative Example 3 used a (meth)acrylic polymer containing a macromonomer as a structural unit, but became a viscous liquid at room temperature, and no small angle was observed in the photocurable composition. One-dimensional scattering distribution in X-ray scattering measurements. Therefore, the photocurable composition lacks cohesive force, and the storage stability before photohardening or the foaming reliability after lamination is inferior.

Claims (15)

一種光硬化性組合物,其特徵在於:其係包含含有巨單體作為結構單元之(甲基)丙烯酸系共聚物(A)、交聯劑(B)及交聯起始劑(C)者,並且 小角度X射線散射測定中之一維散射分佈之半值寬X1(nm-1 )為0.05<X1<0.30。A photocurable composition comprising a (meth)acrylic copolymer (A), a crosslinking agent (B), and a crosslinking initiator (C) containing a macromonomer as a structural unit. And the half-value width X1 (nm -1 ) of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement is 0.05 < X1 < 0.30. 如請求項1之光硬化性組合物,其中照射累計光照射量為4000 mJ/m2 之光時之小角度X射線散射測定中之一維散射分佈的半值寬X2(nm-1 )為0.05<X2<0.25。The photocurable composition of claim 1, wherein the half value width X2 (nm -1 ) of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement when the total light irradiation amount is 4000 mJ/m 2 is 0.05 < X2 < 0.25. 如請求項1或2之光硬化性組合物,其中(甲基)丙烯酸系共聚物(A)係使含有巨單體(a)及乙烯基單體(b)之單體進行聚合而獲得者。The photocurable composition according to claim 1 or 2, wherein the (meth)acrylic copolymer (A) is obtained by polymerizing a monomer containing a macromonomer (a) and a vinyl monomer (b) . 如請求項3之光硬化性組合物,其中巨單體(a)之數量平均分子量為500~10萬。The photocurable composition of claim 3, wherein the macromonomer (a) has a number average molecular weight of from 500 to 100,000. 如請求項1至4中任一項之光硬化性組合物,其中至少交聯劑(B)及交聯起始劑(C)中之任一者與(甲基)丙烯酸系共聚物(A)鍵結。The photocurable composition according to any one of claims 1 to 4, wherein at least one of the crosslinking agent (B) and the crosslinking initiator (C) and the (meth)acrylic copolymer (A) ) Bonding. 如請求項1至5中任一項之光硬化性組合物,其具有於20℃下顯示出黏著性且於50~100℃下軟化或流動化之性質。The photocurable composition according to any one of claims 1 to 5, which has a property of exhibiting adhesiveness at 20 ° C and softening or fluidizing at 50 to 100 ° C. 一種黏著片材,其包含如請求項1至6中任一項之光硬化性組合物。An adhesive sheet comprising the photocurable composition according to any one of claims 1 to 6. 如請求項7之黏著片材,其中將黏著片材貼合於玻璃,並照射累計光照射量為4000 mJ/m2 之光時之對玻璃之180°剝離強度為3 N/cm以上。The adhesive sheet according to claim 7, wherein the adhesive sheet is bonded to the glass and the 180° peel strength to the glass is 3 N/cm or more when the light having an integrated light irradiation amount of 4000 mJ/m 2 is irradiated. 一種黏著片材積層體,其具備將如請求項7或8之黏著片材與離型膜積層而成之構成。An adhesive sheet laminate comprising a laminate of the adhesive sheet of claim 7 or 8 and a release film. 一種圖像顯示裝置用積層體,其具備使如請求項1至6中任一項之光硬化性組合物介存於2個圖像顯示裝置用構成構件之間而成之構成。A laminated body for an image display device comprising a photocurable composition according to any one of claims 1 to 6 interposed between two constituent members for an image display device. 一種硬化物,其特徵在於:其係使包含含有巨單體作為結構單元之(甲基)丙烯酸系共聚物(A)、交聯劑(B)及交聯起始劑(C)之光硬化性組合物光硬化而成者,並且 小角度X射線散射測定中之一維散射分佈之半值寬X3(nm-1 )為0.05<X3<0.25。A cured product characterized in that it is photohardened comprising a (meth)acrylic copolymer (A) containing a macromonomer as a structural unit, a crosslinking agent (B), and a crosslinking initiator (C). The composition is photohardened, and the half-value width X3 (nm -1 ) of the one-dimensional scattering distribution in the small-angle X-ray scattering measurement is 0.05 < X3 < 0.25. 如請求項11之硬化物,其中(甲基)丙烯酸系共聚物(A)係使含有巨單體(a)及乙烯基單體(b)之單體進行聚合而獲得者。The cured product of claim 11, wherein the (meth)acrylic copolymer (A) is obtained by polymerizing a monomer containing a macromonomer (a) and a vinyl monomer (b). 一種圖像顯示裝置用積層體,其具備使如請求項11或12之硬化物介存於2個圖像顯示裝置用構成構件之間而成之構成。A laminated body for an image display device comprising a structure in which a cured product as claimed in claim 11 or 12 is interposed between two constituent members for an image display device. 如請求項10或13之圖像顯示裝置用積層體,其中上述圖像顯示裝置構成構件係包含由觸控感測器、圖像顯示面板、表面保護面板及偏光膜、相位差膜所組成之群中之任意2種以上之組合的積層體。The image display device of claim 10 or 13, wherein the image display device comprises a touch sensor, an image display panel, a surface protection panel, a polarizing film, and a retardation film. A laminate of any two or more of the groups. 一種圖像顯示裝置,其具備如請求項10、13或14之圖像顯示裝置構成用積層體。An image display device comprising a laminate for forming an image display device according to claim 10, 13 or 14.
TW106141799A 2016-12-02 2017-11-30 Photocurable composition, adhesive sheet, adhesive sheet laminate, cured product, laminate for image display device configuration, and image display device TWI752127B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-234672 2016-12-02
JP2016234672 2016-12-02

Publications (2)

Publication Number Publication Date
TW201833283A true TW201833283A (en) 2018-09-16
TWI752127B TWI752127B (en) 2022-01-11

Family

ID=62242188

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141799A TWI752127B (en) 2016-12-02 2017-11-30 Photocurable composition, adhesive sheet, adhesive sheet laminate, cured product, laminate for image display device configuration, and image display device

Country Status (5)

Country Link
JP (2) JP7024726B2 (en)
KR (1) KR102407621B1 (en)
CN (2) CN114410231A (en)
TW (1) TWI752127B (en)
WO (1) WO2018101252A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876091B (en) * 2017-08-08 2023-04-14 三菱化学株式会社 Photocurable adhesive sheet with release film
JP2020012098A (en) * 2018-07-10 2020-01-23 三菱ケミカル株式会社 Adhesive composition, and adhesive including the same, adhesive for polarizing plate, and image display device
WO2020031991A1 (en) * 2018-08-06 2020-02-13 三菱ケミカル株式会社 Photocurable adhesive sheet, adhesive sheet laminate, laminate for image display device, and image display device
JP6590269B1 (en) * 2018-09-27 2019-10-16 パナソニックIpマネジメント株式会社 UV curable resin composition for sealing organic EL element, method for producing organic EL light emitting device, organic EL light emitting device, and touch panel
US20200213139A1 (en) * 2018-12-28 2020-07-02 Microchip Technology Incorporated Classifying comparators based on comparator offsets
KR20220024977A (en) * 2019-06-28 2022-03-03 닛토덴코 가부시키가이샤 Adhesive sheet and its use
WO2021065923A1 (en) * 2019-10-01 2021-04-08 三菱ケミカル株式会社 Polarizing film with adhesive layer, adhesive sheet, multilayer member and image display device
KR102473023B1 (en) * 2019-11-01 2022-12-01 코제노벨머티얼리스코리아 주식회사 Pressure-sensitive adhesive film
CN115109524A (en) * 2021-03-18 2022-09-27 安佐化学有限公司 Photocuring adhesive for invisible car cover and preparation method and application thereof
KR102530142B1 (en) * 2021-04-02 2023-05-10 솔루스첨단소재 주식회사 Compound for encapsulating organic light emitting diode and organic light emitting display device comprising the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283645A (en) * 1985-06-10 1986-12-13 Canon Inc Actinic energetic ray-curable resin composition
JPH0686505B2 (en) * 1986-03-10 1994-11-02 キヤノン株式会社 Active energy ray curable resin composition
JPH01203412A (en) 1988-02-08 1989-08-16 Toagosei Chem Ind Co Ltd Resin composition for tacky agent
JPH0527432A (en) * 1991-07-08 1993-02-05 Canon Inc Photopolymerizable composition
CA2134868C (en) * 1992-05-01 2002-10-08 Michael J. Darmon Preparing crosslinkable polymers employing macromonomer chain transfer agents
TW287192B (en) * 1994-01-21 1996-10-01 Ei Du Pont De Nemours Amd Co
JP3557429B2 (en) 1995-02-06 2004-08-25 綜研化学株式会社 Pressure sensitive adhesive for liquid crystal element and liquid crystal element
JPH10204326A (en) * 1997-01-21 1998-08-04 Kansai Paint Co Ltd Active energy ray-curable resin composition, and method for forming film therefrom
JPH11158450A (en) 1997-11-27 1999-06-15 Sekisui Chem Co Ltd Hardenable pressure-sensitive adhesive composition and hardenable pressure-sensitive adhesive sheet
JP2003002934A (en) * 2001-06-25 2003-01-08 Toagosei Co Ltd Aqueous resin dispersion, method for producing the same and use of the same
JP5513225B2 (en) 2010-04-07 2014-06-04 株式会社日本触媒 Pressure sensitive adhesive
KR20160072163A (en) 2013-11-29 2016-06-22 미쯔비시 레이온 가부시끼가이샤 (meth)acrylic copolymer, adhesive composition containing same, and adhesive sheet
JP6361121B2 (en) * 2013-11-29 2018-07-25 三菱ケミカル株式会社 Adhesive resin composition
JP6388023B2 (en) * 2014-03-10 2018-09-12 三菱ケミカル株式会社 Manufacturing method of laminate for constituting image display device
KR20160134681A (en) * 2014-03-18 2016-11-23 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 Adhesive composition for polarizing plate, adhesive sheet and polarizing plate with adhesive layer
JP6351385B2 (en) 2014-06-03 2018-07-04 株式会社メニコン Contact lens manufacturing method
KR101859093B1 (en) * 2014-07-01 2018-05-17 미쯔비시 케미컬 주식회사 Method for recycling optical device constituent members and method for evaluating reworkability of optical device constituent laminate
TWI666286B (en) 2014-08-12 2019-07-21 日商三菱化學股份有限公司 Transparent adhesive sheet
JP6772837B2 (en) 2014-12-03 2020-10-21 三菱ケミカル株式会社 Adhesive sheet laminate and image display device component laminate
TWI738656B (en) 2015-06-02 2021-09-11 日商三菱化學股份有限公司 Adhesive composition and adhesive sheet, and coating material and coating using the same
JP6737585B2 (en) 2015-11-27 2020-08-12 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Adhesive composition, adhesive sheet and image display device
CN110023443A (en) 2016-12-02 2019-07-16 三菱化学株式会社 Sticker resin combination and adhesive sheet

Also Published As

Publication number Publication date
KR102407621B1 (en) 2022-06-10
JPWO2018101252A1 (en) 2019-10-24
JP7259916B2 (en) 2023-04-18
TWI752127B (en) 2022-01-11
WO2018101252A1 (en) 2018-06-07
CN110023357A (en) 2019-07-16
JP7024726B2 (en) 2022-02-24
JP2022033767A (en) 2022-03-02
KR20190089049A (en) 2019-07-29
CN114410231A (en) 2022-04-29

Similar Documents

Publication Publication Date Title
TW201833283A (en) Photocurable composition, pressure-sensitive adhesive sheet, pressure-sensitive adhesive sheet laminate, cured product, laminate for forming image display device, and image display device
JP7156453B2 (en) Transparent double-sided adhesive sheet and adhesive sheet laminate
TWI728711B (en) Light hardening type adhesive sheet, adhesive sheet and image display device
JP6977761B2 (en) Adhesive sheet and image display device using it
TWI785086B (en) Photocurable adhesive sheet laminate, manufacturing method of photocurable adhesive sheet laminate, and manufacturing method of image display panel laminate
JP6866956B2 (en) Method for manufacturing photo-curable adhesive sheet laminate, photo-curable adhesive sheet laminate, and method for manufacturing image display panel laminate
JP2019210445A (en) Photocurable pressure-sensitive adhesive sheet
TWI842162B (en) Light-curing adhesive sheet