TW201832454A - Dc-dc converting apparatus - Google Patents

Dc-dc converting apparatus Download PDF

Info

Publication number
TW201832454A
TW201832454A TW106105801A TW106105801A TW201832454A TW 201832454 A TW201832454 A TW 201832454A TW 106105801 A TW106105801 A TW 106105801A TW 106105801 A TW106105801 A TW 106105801A TW 201832454 A TW201832454 A TW 201832454A
Authority
TW
Taiwan
Prior art keywords
switch
coupled
inductor
phase controller
output
Prior art date
Application number
TW106105801A
Other languages
Chinese (zh)
Inventor
劉顯成
徐正青
Original Assignee
力智電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力智電子股份有限公司 filed Critical 力智電子股份有限公司
Priority to TW106105801A priority Critical patent/TW201832454A/en
Priority to CN201710372754.3A priority patent/CN108462394A/en
Publication of TW201832454A publication Critical patent/TW201832454A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

A DC-DC converting apparatus including a multi-phase controller and power channels is disclosed. Each power channel includes a first capacitor, a second capacitor, an output unit, a converting unit, a first inductor, a second inductor and a first switch ~ a fourth switch. The first capacitor and the second capacitor are coupled between an input voltage and ground. The first switch and the second switch are coupled between input voltage and ground. The converting unit has a first terminal coupled between the first switch and the second switch, a second terminal coupled between the first capacitor and the second capacitor, a third terminal coupled between third switch and the first inductor, and a fourth terminal coupled between the fourth switch and the second inductor. In a timing control, when the multi-phase controller conducts the first switch and the fourth switch, the second switch and the third switch are switched off.

Description

直流對直流轉換裝置    DC to DC conversion device   

本發明與電源之轉換有關,特別是關於一種直流對直流轉換裝置。 The present invention relates to power conversion, and more particularly to a DC-to-DC conversion device.

一般而言,在網路設備或汽車電子領域中,常會使用到直流對直流轉換裝置將高電壓轉換為低電壓。請參照圖1,傳統的直流對直流轉換裝置1通常採用電壓調節器PRM與變壓器VTM之兩級架構來將原本48伏特的輸入電壓轉換為1伏特的輸出電壓,以供應給處理器PSR。 Generally speaking, in the field of network equipment or automotive electronics, a DC-to-DC conversion device is often used to convert high voltage to low voltage. Please refer to FIG. 1, the conventional DC-to-DC conversion device 1 generally uses a two-stage architecture of a voltage regulator PRM and a transformer VTM to convert an input voltage of 48 volts into an output voltage of 1 volt for supply to the processor PSR.

然而,傳統的直流對直流轉換裝置1在實際應用時仍有下列兩項缺點亟待克服: However, the conventional DC-to-DC conversion device 1 still has the following two shortcomings to be overcome in practical application:

(1)缺乏電流平衡控制迴路(Current balance control loop),使得並聯時之電流效能難以有效提升。 (1) The lack of a current balance control loop makes it difficult to effectively improve the current efficiency when connected in parallel.

(2)由於變壓器VTM並無瞬變回應(Transient response)之能力,一旦瞬變發生時,僅能由控制單元MCU發出控制信號Scom控制電壓調節器PRM輸出電壓,以提供於瞬變時所需之功率變動。 (2) Since the transformer VTM has no transient response capability, once a transient occurs, the control unit MCU can only send a control signal Scom to control the voltage regulator PRM output voltage to provide the required voltage during the transient. Power changes.

有鑑於此,本發明提供一種直流對直流轉換裝置,以解決先前技術所述及的問題。 In view of this, the present invention provides a DC-to-DC conversion device to solve the problems mentioned in the prior art.

本發明之一較佳具體實施例為一種直流對直流轉換裝置。於此實施例中,直流對直流轉換裝置包括多相控制器及多個電源通道。多個電源通道分別耦接多相控制器。每個電源通道包括第一電容、第二電容、輸出單元、轉換單元、第一電感、第二電感、第一開關、第二開關、第三開關及第四開關。第一電容耦接輸入電壓。第二電容串接第一電容,且第二電容之一端耦接接地端。轉換單元具有第一端、第二端、第三端及第四端,第一端與第二端位於一次側,第三端與第四端位於二次側。第一電感耦接於第三端與輸出單元之間。第二電感耦接於第四端與輸出單元之間,且第二電感之一端耦接於第一電感與輸出單元之間。第一開關耦接輸入電壓與第一電容。第二開關串接第一開關,且耦接第二電容與接地端。第三開關耦接於第三端與第一電感之間,且第三開關之一端耦接輸出單元。第四開關串接第三開關,且第四開關之一端耦接於第四端與第二電感之間。第一端耦接於第一開關與第二開關之間,第二端耦接於第一電容與第二電容之間。多相控制器分別耦接第一開關、第二開關、第三開關及第四開關。在時序控制中,多相控制器控制第一開關與第四開關導通時,第二開關與第三開關為關閉。 A preferred embodiment of the present invention is a DC-to-DC conversion device. In this embodiment, the DC-to-DC conversion device includes a multi-phase controller and multiple power channels. Multiple power channels are respectively coupled to the multi-phase controller. Each power channel includes a first capacitor, a second capacitor, an output unit, a conversion unit, a first inductor, a second inductor, a first switch, a second switch, a third switch, and a fourth switch. The first capacitor is coupled to the input voltage. The second capacitor is connected in series to the first capacitor, and one terminal of the second capacitor is coupled to the ground terminal. The conversion unit has a first end, a second end, a third end, and a fourth end. The first end and the second end are on the primary side, and the third end and the fourth end are on the secondary side. The first inductor is coupled between the third terminal and the output unit. The second inductor is coupled between the fourth terminal and the output unit, and one terminal of the second inductor is coupled between the first inductor and the output unit. The first switch is coupled to the input voltage and the first capacitor. The second switch is connected to the first switch in series, and is coupled to the second capacitor and the ground terminal. The third switch is coupled between the third terminal and the first inductor, and one terminal of the third switch is coupled to the output unit. The fourth switch is connected to the third switch in series, and one terminal of the fourth switch is coupled between the fourth terminal and the second inductor. The first terminal is coupled between the first switch and the second switch, and the second terminal is coupled between the first capacitor and the second capacitor. The multi-phase controller is respectively coupled to the first switch, the second switch, the third switch and the fourth switch. In the sequence control, when the first switch and the fourth switch are turned on by the multi-phase controller, the second switch and the third switch are turned off.

在本發明之一實施例中,多相控制器提供第一脈寬調變信號控制第一開關與第三開關的操作。 In one embodiment of the present invention, the multi-phase controller provides a first pulse width modulation signal to control the operations of the first switch and the third switch.

在本發明之一實施例中,多相控制器提供一第二脈寬調變信號控制第二開關與第四開關的操作。 In one embodiment of the present invention, the multi-phase controller provides a second pulse width modulation signal to control the operation of the second switch and the fourth switch.

在本發明之一實施例中,多相控制器提供第一脈寬調變信號控制第一開關與第三開關的操作,多相控制器提供第二脈寬調變信號控制第二開關與第四開關的操作,第一脈寬調變信號與第二脈寬調變信號之間的相位差為180度。 In one embodiment of the present invention, the multi-phase controller provides a first pulse width modulation signal to control the operation of the first switch and the third switch, and the multi-phase controller provides a second pulse width modulation signal to control the second switch and the third switch With the operation of the four switches, the phase difference between the first PWM signal and the second PWM signal is 180 degrees.

在本發明之一實施例中,直流對直流轉換裝置更包括第一電流感測單元,分別耦接於第三開關與多相控制器之間以及第四開關與多相控制器之間。 In an embodiment of the present invention, the DC-to-DC conversion device further includes a first current sensing unit respectively coupled between the third switch and the multi-phase controller and between the fourth switch and the multi-phase controller.

在本發明之一實施例中,第一電流感測單元包括第一電阻及第二電阻,第一電阻耦接於第三開關與多相控制器之間且第二電阻耦接於第四開關與多相控制器之間。 In an embodiment of the present invention, the first current sensing unit includes a first resistor and a second resistor, the first resistor is coupled between the third switch and the multi-phase controller and the second resistor is coupled to the fourth switch And multi-phase controller.

在本發明之一實施例中,直流對直流轉換裝置更包括第二電流感測單元,分別耦接多相控制器、第一電感之兩端及第二電感之兩端。 In an embodiment of the present invention, the DC-to-DC conversion device further includes a second current sensing unit, which is respectively coupled to the multi-phase controller, two ends of the first inductor, and two ends of the second inductor.

在本發明之一實施例中,第二電流感測單元包括四個電阻,四個電阻分別耦接於第一電感之兩端與第二電感之兩端,並且四個電阻均耦接至多相控制器。 In an embodiment of the present invention, the second current sensing unit includes four resistors, the four resistors are respectively coupled to both ends of the first inductor and the two ends of the second inductor, and the four resistors are coupled to the multi-phase Controller.

在本發明之一實施例中,直流對直流轉換裝置之輸出電壓小於輸入電壓的4%。 In one embodiment of the present invention, the output voltage of the DC-to-DC conversion device is less than 4% of the input voltage.

在本發明之一實施例中,輸出單元包括輸出電容及輸出電阻,並且輸出電容及輸出電阻並聯於直流對直流轉換裝置之輸出電壓與接地端之間。 In an embodiment of the present invention, the output unit includes an output capacitor and an output resistor, and the output capacitor and the output resistor are connected in parallel between the output voltage and the ground terminal of the DC-to-DC conversion device.

根據本發明之另一較佳具體實施例為一種直流對直 流轉換裝置。於此實施例中,直流對直流轉換裝置包括多相控制器及多個電源通道。每一通道包括一對輸入開關、一對輸入電容、一對輸出開關、輸出單元、第一電感、第二電感及變壓器。該對輸入開關包括串接的第一開關與第二開關。該對輸入電容包括串接的第一輸入電容與第二輸入電容。該對輸出開關包括串接的第三開關與第四開關。輸出單元之一端耦接於第三開關與第四開關之間。第一電感耦接第三開關與輸出單元之間。第二電感耦接第四開關與輸出單元之間,且第二電感之一端耦接於第一電感與輸出單元之間。變壓器的一次側分別耦接於第一開關與第二開關之間以及耦接於第一輸入電容與第二輸入電容之間,變壓器的二次側分別耦接於第三開關與第一電感之間以及耦接於第四開關與第二電感之間。多相控制器分別耦接該對輸入開關及該對輸出開關,且多相控制器分別提供兩個不同相位的脈衝調變時脈信號至每一電源通道。 Another preferred embodiment according to the present invention is a DC-to-DC converter. In this embodiment, the DC-to-DC conversion device includes a multi-phase controller and multiple power channels. Each channel includes a pair of input switches, a pair of input capacitors, a pair of output switches, an output unit, a first inductor, a second inductor, and a transformer. The pair of input switches includes a first switch and a second switch connected in series. The pair of input capacitors includes a first input capacitor and a second input capacitor connected in series. The pair of output switches includes a third switch and a fourth switch connected in series. One terminal of the output unit is coupled between the third switch and the fourth switch. The first inductor is coupled between the third switch and the output unit. The second inductor is coupled between the fourth switch and the output unit, and one end of the second inductor is coupled between the first inductor and the output unit. The primary side of the transformer is coupled between the first switch and the second switch and between the first input capacitor and the second input capacitor. The secondary side of the transformer is coupled between the third switch and the first inductor. And is coupled between the fourth switch and the second inductor. The multi-phase controller is respectively coupled to the pair of input switches and the pair of output switches, and the multi-phase controller provides two pulse-modulated clock signals with different phases to each power channel.

根據本發明之又一較佳具體實施例為一種直流對直流轉換裝置。於此實施例中,直流對直流轉換裝置包括多個電源通道及多相控制器。每一通道包括一對輸入開關、一對輸入電容、一對輸出開關、輸出單元、變壓器及第一電流感測單元。該對輸入開關包括串接的第一開關與第二開關。該對輸入電容包括串接的第一輸入電容與第二輸入電容。該對輸出開關包括串接的第三開關與第四開關。輸出單元之一端耦接於第三開關與第四開關之間。變壓器之一次側耦接於第一開關與第二開關之間,且其二次 側耦接第三開關。第一電流感測單元分別耦接第三開關與第四開關。多相控制器耦接該對輸入開關、該對輸出開關與第一電流感測單元。多相控制器包括電流平衡電路與時間信號產生單元。電流平衡電路耦接每一通道的第一電流感測單元,且電流平衡電路提供電流平衡信號至時間信號產生單元。 Another preferred embodiment of the present invention is a DC-to-DC conversion device. In this embodiment, the DC-to-DC conversion device includes multiple power channels and a multi-phase controller. Each channel includes a pair of input switches, a pair of input capacitors, a pair of output switches, an output unit, a transformer, and a first current sensing unit. The pair of input switches includes a first switch and a second switch connected in series. The pair of input capacitors includes a first input capacitor and a second input capacitor connected in series. The pair of output switches includes a third switch and a fourth switch connected in series. One terminal of the output unit is coupled between the third switch and the fourth switch. The primary side of the transformer is coupled between the first switch and the second switch, and the secondary side of the transformer is coupled to the third switch. The first current sensing unit is coupled to the third switch and the fourth switch, respectively. The multi-phase controller is coupled to the pair of input switches, the pair of output switches and the first current sensing unit. The multi-phase controller includes a current balancing circuit and a time signal generating unit. The current balancing circuit is coupled to the first current sensing unit of each channel, and the current balancing circuit provides a current balancing signal to the time signal generating unit.

相較於先前技術,本發明之直流對直流轉換裝置具有下列優點: Compared with the prior art, the DC-DC conversion device of the present invention has the following advantages:

(1)採用單級隔離式(Isolated)直流對直流轉換器(DC-DC converter)架構,可比先前技術所採用的兩級架構省去一級,故可節省成本並縮減佔用的晶片面積。 (1) A single-stage isolated DC-DC converter architecture is used, which can save one stage compared with the two-stage architecture used in the prior art, so it can save costs and reduce the occupied chip area.

(2)可直接針對負載行為進行多相位(Multi-phase)之脈寬調變(Pulse-width modulation),故能有效提升瞬變回應(Transient response)之能力與速度。 (2) Multi-phase pulse-width modulation can be directly performed according to the load behavior, so it can effectively improve the ability and speed of transient response.

(3)可根據變壓器之二次側兩端所感測到的電流感測信號來分別控制週期,藉以達到電流平衡之功能(Current balance function)。 (3) The cycle can be controlled separately according to the current sensing signals sensed at both ends of the secondary side of the transformer, so as to achieve the current balance function.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention can be further understood through the following detailed description of the invention and the accompanying drawings.

1‧‧‧直流對直流轉換裝置 1‧‧‧DC to DC conversion device

PRM‧‧‧電壓調節器 PRM‧‧‧Voltage Regulator

VTM‧‧‧變壓器 VTM‧‧‧Transformer

PSR‧‧‧處理器 PSR‧‧‧Processor

MCU‧‧‧控制器 MCU‧‧‧ Controller

IFB‧‧‧電流回授信號 I FB ‧‧‧Current feedback signal

VFB‧‧‧電壓回授信號 V FB ‧‧‧ Voltage feedback signal

Scom‧‧‧控制信號 Scom‧‧‧Control signal

SVID‧‧‧電源管理通訊協定 SVID‧‧‧Power Management Protocol

MPC‧‧‧多相控制器 MPC‧‧‧Multi-Phase Controller

CH1‧‧‧第一電源通道 CH1‧‧‧first power channel

CH2‧‧‧第二電源通道 CH2‧‧‧Second power channel

Q1~Q8‧‧‧第一開關~第八開關 Q1 ~ Q8‧‧‧First switch ~ Eighth switch

C1~C4‧‧‧第一電容~第四電容 C1 ~ C4‧‧‧First capacitor ~ Fourth capacitor

L1~L4‧‧‧第一電感~第四電感 L1 ~ L4‧‧‧First inductor ~ Fourth inductor

C‧‧‧電容 C‧‧‧Capacitor

R‧‧‧電阻 R‧‧‧ resistance

R1~R4‧‧‧第一電阻~第四電阻 R1 ~ R4‧‧‧First resistance ~ Fourth resistance

T1~T2‧‧‧轉換單元 T1 ~ T2‧‧‧ Conversion Unit

E1~E4‧‧‧第一端~第四端 E1 ~ E4‧‧‧First end ~ Fourth end

SEN1‧‧‧第一電流感測單元 SEN1‧‧‧first current sensing unit

SEN2‧‧‧第二電流感測單元 SEN2‧‧‧Second current sensing unit

OUT‧‧‧直流對直流轉換裝置的輸出端 OUT‧‧‧ DC-to-DC converter output

OU‧‧‧輸出單元 OU‧‧‧Output unit

Co‧‧‧輸出電容 Co‧‧‧ output capacitor

RL‧‧‧輸出電阻 RL‧‧‧Output resistance

Vin‧‧‧輸入電壓 Vin‧‧‧ input voltage

Vout‧‧‧輸出電壓 Vout‧‧‧Output voltage

Iout‧‧‧輸出電流 Iout‧‧‧Output current

NOT‧‧‧反閘 NOT‧‧‧Reverse

IL1~IL2‧‧‧第一電感電流~第二電感電流 IL1 ~ IL2‧‧‧First inductor current ~ Second inductor current

PWM1~PWM2‧‧‧第一脈寬調變信號~第二脈寬調變信號 PWM1 ~ PWM2‧‧‧First pulse width modulation signal ~ Second pulse width modulation signal

FB‧‧‧回授信號 FB‧‧‧ feedback signal

ISEN1‧‧‧第一電流感測信號 ISEN1‧‧‧First current sensing signal

ISEN3‧‧‧第二電流感測信號 ISEN3‧‧‧Second current sensing signal

CSP‧‧‧第三電流感測信號 CSP‧‧‧The third current sensing signal

CSN‧‧‧第四電流感測信號 CSN‧‧‧ Fourth current sensing signal

HD1~HD2‧‧‧第一高壓驅動器~第二高壓驅動器 HD1 ~ HD2‧‧‧First high voltage driver ~ Second high voltage driver

LD1~LD2‧‧‧第一低壓驅動器~第二低壓驅動器 LD1 ~ LD2‧‧‧First low voltage driver ~ Second low voltage driver

VFB‧‧‧回授電壓 VFB‧‧‧Feedback voltage

t0、t1~t5‧‧‧起始時間、第一時間~第五時間 t 0 、 t 1 ~ t 5 ‧‧‧start time, first time ~ fifth time

△T1~△T4‧‧‧第一時間區段~第四時間區段 △ T1 ~ △ T4‧‧‧First time zone ~ Fourth time zone

Ts‧‧‧週期 Ts‧‧‧ cycle

Vgs(Q1)‧‧‧第一開關的閘極-源極電壓 Vgs (Q1) ‧‧‧The gate-source voltage of the first switch

Vgs(Q2)‧‧‧第二開關的閘極-源極電壓 Vgs (Q2) ‧‧‧ Gate-source voltage of the second switch

VNP(T1)‧‧‧轉換單元的繞組電壓 V NP (T1) ‧‧‧ Winding voltage of the conversion unit

PGND、SGND‧‧‧接地端 PGND, SGND‧‧‧ ground terminal

TSG‧‧‧時間信號產生單元 TSG‧‧‧Time signal generating unit

CBC‧‧‧電流平衡電路 CBC‧‧‧Current balance circuit

EA‧‧‧誤差放大器 EA‧‧‧ Error Amplifier

CR1~CR2‧‧‧比較器 CR1 ~ CR2‧‧‧ Comparator

RAMP1~RAMP2‧‧‧斜波信號 RAMP1 ~ RAMP2‧‧‧ Ramp signal

SCB‧‧‧電流平衡信號 S CB ‧‧‧ Current balance signal

SEA‧‧‧誤差放大信號 S EA ‧‧‧ Error Amplified Signal

REF‧‧‧參考信號 REF‧‧‧Reference signal

+、-‧‧‧輸入端 +, -‧‧‧ Input

圖1繪示習知的直流對直流轉換裝置採用兩級架構之示意圖。 FIG. 1 shows a schematic diagram of a conventional DC-to-DC converter using a two-stage architecture.

圖2繪示根據本發明之一具體實施例中之直流對直 流轉換裝置的第一電流感測單元包括第一電阻及第二電阻之示意圖。 FIG. 2 is a schematic diagram illustrating a first current sensing unit of a DC-to-DC conversion device according to an embodiment of the present invention including a first resistor and a second resistor.

圖3繪示根據本發明之另一具體實施例中之直流對直流轉換裝置的第二電流感測單元包括四個電阻之示意圖。 FIG. 3 is a schematic diagram illustrating that the second current sensing unit of the DC-to-DC conversion device according to another embodiment of the present invention includes four resistors.

圖4繪示直流對直流轉換裝置中之多相控制器分別耦接第一電源通道及第二電源通道的示意圖。 FIG. 4 is a schematic diagram of a multi-phase controller in a DC-to-DC conversion device coupled to a first power channel and a second power channel, respectively.

圖5分別繪示第一開關的閘極-源極電壓、第二開關的閘極-源極電壓、轉換單元的繞組電壓、第一電感電流、第二電感電流及輸出電流之時序圖。 FIG. 5 illustrates timing diagrams of the gate-source voltage of the first switch, the gate-source voltage of the second switch, the winding voltage of the conversion unit, the first inductor current, the second inductor current, and the output current, respectively.

圖6A~圖6D分別繪示直流對直流轉換裝置在一週期內之第一時間區段~第四時間區段之運作情形的示意圖。 FIGS. 6A to 6D are schematic diagrams illustrating the operation of the DC-to-DC conversion device in the first time zone to the fourth time zone in a cycle.

圖7繪示圖2中之多相控制器的一實施例。 FIG. 7 illustrates an embodiment of the multi-phase controller in FIG. 2.

圖8繪示圖3中之多相控制器的一實施例。 FIG. 8 illustrates an embodiment of the multi-phase controller in FIG. 3.

現在將詳細參考本發明的示範性實施例,並在附圖中說明所述示範性實施例的實例。在圖式及實施方式中所使用相同或類似標號的元件/構件是用來代表相同或類似部分。 Reference will now be made in detail to the exemplary embodiments of the present invention, and examples of the exemplary embodiments will be described in the accompanying drawings. The same or similar referenced elements / components are used in the drawings and embodiments to represent the same or similar parts.

根據本發明之一較佳具體實施例為一種直流對直流轉換裝置。於此實施例中,直流對直流轉換裝置可包括多相控制器與多個電源通道,並且多相控制器分別耦接該些電源通道並分別提供兩個不同相位的脈衝調變時脈信號至每一電源通道,藉以控制每一電源通道之運作。直流對直流轉換裝置用以將輸入電壓 (Vin)轉換為輸出電壓(Vout),例如在一實施例中,直流對直流轉換裝置可將48伏特的輸入電壓(Vin)轉換為0.6伏特~1.5伏特的輸出電壓(Vout)。在本發明的實施例中,直流對直流轉換裝置可使其輸出電壓(Vout)小於其接收到之輸入電壓(Vin)的4%,但不以此為限。在一實施例中,直流對直流轉換裝置亦可將48伏特的輸入電壓(Vin)轉換為3.3伏或5伏特的輸出電壓(Vout)。在又一實施例中,直流對直流轉換裝置亦可將48伏特的輸入電壓(Vin)轉換為12伏特的輸出電壓(Vout)。 A preferred embodiment of the present invention is a DC-to-DC conversion device. In this embodiment, the DC-to-DC conversion device may include a multi-phase controller and multiple power channels, and the multi-phase controller is respectively coupled to the power channels and provides two pulse-modulated clock signals of different phases to Each power channel controls the operation of each power channel. The DC-to-DC conversion device is used to convert an input voltage (Vin) into an output voltage (Vout). For example, in one embodiment, the DC-to-DC conversion device can convert a 48-volt input voltage (Vin) to 0.6 volts to 1.5 volts. Output voltage (Vout). In the embodiment of the present invention, the DC-to-DC conversion device can make its output voltage (Vout) less than 4% of the input voltage (Vin) it receives, but it is not limited thereto. In one embodiment, the DC-to-DC conversion device can also convert an input voltage (Vin) of 48 volts into an output voltage (Vout) of 3.3 volts or 5 volts. In another embodiment, the DC-to-DC conversion device can also convert an input voltage (Vin) of 48 volts into an output voltage (Vout) of 12 volts.

請參照圖2,圖2繪示此實施例中之直流對直流轉換裝置的示意圖。如圖2所示,多相控制器MPC耦接第一電源通道CH1。第一電源通道CH1包括第一電容C1、第二電容C2、輸出單元OU、轉換單元T1、第一電感L1、第二電感L2、第一開關Q1、第二開關Q2、第三開關Q3及第四開關Q4。在本發明之一實施例中,轉換單元T1為變壓器。位於轉換單元T1之高壓側(一次側)之串接的第一電容C1及第二電容C2為輸入電容,且串接的第一開關Q1及第二開關Q2為輸入開關;位於轉換單元T1之低壓側(二次側)之串接的第三開關Q3及第四開關Q4則為輸出開關。 Please refer to FIG. 2, which illustrates a schematic diagram of the DC-to-DC conversion device in this embodiment. As shown in FIG. 2, the multi-phase controller MPC is coupled to the first power channel CH1. The first power channel CH1 includes a first capacitor C1, a second capacitor C2, an output unit OU, a conversion unit T1, a first inductor L1, a second inductor L2, a first switch Q1, a second switch Q2, a third switch Q3, and a first Four switches Q4. In one embodiment of the present invention, the conversion unit T1 is a transformer. The first capacitor C1 and the second capacitor C2 connected in series on the high-voltage side (primary side) of the conversion unit T1 are input capacitors, and the first switch Q1 and the second switch Q2 connected in series are input switches; The third switch Q3 and the fourth switch Q4 connected in series on the low-voltage side (secondary side) are output switches.

多相控制器MPC分別耦接第一開關Q1、第二開關Q2、第三開關Q3及第四開關Q4。多相控制器MPC可提供兩個不同相位的脈衝調變時脈信號至第一電源通道CH1,舉例而言,多相控制器MPC提供第一脈寬調變信號PWM1至第一開關Q1與第三開關Q3之閘極,以控制第一開關Q1與第三開關Q3的操作。多相控制器 MPC提供第二脈寬調變信號PWM2至第二開關Q2與第四開關Q4之閘極,以控制第二開關Q2與第四開關Q4的操作。多相控制器MPC所提供的第一脈寬調變信號PWM1可透過反閘NOT產生互補信號至第三開關Q3之閘極;多相控制器MPC提供的第二脈寬調變信號PWM2可透過反閘NOT產生互補信號至第四開關Q4之閘極。 The multi-phase controller MPC is coupled to the first switch Q1, the second switch Q2, the third switch Q3, and the fourth switch Q4, respectively. The multi-phase controller MPC can provide two different-phase pulse modulation clock signals to the first power channel CH1. For example, the multi-phase controller MPC provides the first pulse width modulation signal PWM1 to the first switch Q1 and the first The gates of the three switches Q3 are used to control the operations of the first switch Q1 and the third switch Q3. The multi-phase controller MPC provides the second pulse width modulation signal PWM2 to the gates of the second switch Q2 and the fourth switch Q4 to control the operation of the second switch Q2 and the fourth switch Q4. The first pulse width modulation signal PWM1 provided by the multi-phase controller MPC can generate a complementary signal to the gate of the third switch Q3 through the back-gate NOT; the second pulse width modulation signal PWM2 provided by the multi-phase controller MPC can be transmitted The anti-NOT generates a complementary signal to the gate of the fourth switch Q4.

在此實施例之直流對直流轉換裝置的時序控制中,當多相控制器MPC控制第一開關Q1與第四開關Q4導通時,第二開關Q2與第三開關Q3為關閉;反之,當多相控制器MPC控制第二開關Q2與第三開關Q3導通時,第一開關Q1與第四開關Q4為關閉。 In the timing control of the DC-to-DC conversion device in this embodiment, when the multi-phase controller MPC controls the first switch Q1 and the fourth switch Q4 to be turned on, the second switch Q2 and the third switch Q3 are turned off; otherwise, when the When the phase controller MPC controls the second switch Q2 and the third switch Q3 to be turned on, the first switch Q1 and the fourth switch Q4 are turned off.

於實際應用中,第一脈寬調變信號PWM1與第二脈寬調變信號PWM2之間的相位差為180度。 In practical applications, the phase difference between the first PWM signal PWM1 and the second PWM signal PWM2 is 180 degrees.

轉換單元T1具有第一端E1、第二端E2、第三端E3及第四端E4。第一端E1與第二端E2為一次側(Primary side),第三端E3與第四端E4為二次側(Secondary side)。第一端E1耦接至第一開關Q1與第二開關Q2之間。第二端E2耦接至第一電容C1與第二電容C2之間。第三端E3耦接至第三開關Q3與第一電感L1之間。第四端E4耦接至第四開關Q4與第二電感L2之間。 The conversion unit T1 has a first terminal E1, a second terminal E2, a third terminal E3, and a fourth terminal E4. The first end E1 and the second end E2 are primary sides, and the third end E3 and the fourth end E4 are secondary sides. The first terminal E1 is coupled between the first switch Q1 and the second switch Q2. The second terminal E2 is coupled between the first capacitor C1 and the second capacitor C2. The third terminal E3 is coupled between the third switch Q3 and the first inductor L1. The fourth terminal E4 is coupled between the fourth switch Q4 and the second inductor L2.

第一電容C1耦接輸入電壓Vin。第二電容C2串接第一電容C1,且第二電容C2之一端耦接接地端。第一電感L1耦接於第三端E3與輸出單元OU之間。第二電感L2耦接於第四端E4與輸出單元OU之間,且第二電感L2之一端耦接於第一電感L1與輸出單元OU之間。第一電感電流IL1流經第一電感L1且第二電感電流IL2流經第 二電感L2。 The first capacitor C1 is coupled to the input voltage Vin. The second capacitor C2 is connected in series to the first capacitor C1, and one terminal of the second capacitor C2 is coupled to the ground terminal. The first inductor L1 is coupled between the third terminal E3 and the output unit OU. The second inductor L2 is coupled between the fourth terminal E4 and the output unit OU, and one terminal of the second inductor L2 is coupled between the first inductor L1 and the output unit OU. The first inductor current IL1 flows through the first inductor L1 and the second inductor current IL2 flows through the second inductor L2.

第一開關Q1耦接輸入電壓Vin與第一電容C1。第二開關Q2串接第一開關Q1,且第二開關Q2耦接第二電容C2與接地端。第三開關Q3耦接於第三端E3與第一電感L1之間,且第三開關Q3之一端耦接輸出單元OU。第四開關Q4串接第三開關Q3,且第四開關Q4之一端耦接於第四端E4與第二電感L2之間。 The first switch Q1 is coupled to the input voltage Vin and the first capacitor C1. The second switch Q2 is connected to the first switch Q1 in series, and the second switch Q2 is coupled to the second capacitor C2 and the ground terminal. The third switch Q3 is coupled between the third terminal E3 and the first inductor L1, and one terminal of the third switch Q3 is coupled to the output unit OU. The fourth switch Q4 is connected in series with the third switch Q3, and one terminal of the fourth switch Q4 is coupled between the fourth terminal E4 and the second inductor L2.

輸出電流Iout流經輸出單元OU以產生輸出電壓Vout。輸出單元OU可包括輸出電容Co及輸出電阻RL。輸出電容Co及輸出電阻RL並聯於輸出電壓Vout與接地端之間。輸出電容Co之一端耦接第一電感L1且另一端耦接至第三開關Q3與第四開關Q4之間。輸出電阻RL之一端耦接第一電感L1且另一端耦接至第三開關Q3與第四開關Q4之間。 The output current Iout flows through the output unit OU to generate an output voltage Vout. The output unit OU may include an output capacitor Co and an output resistor R L. The output capacitor Co and the output resistor R L are connected in parallel between the output voltage Vout and the ground terminal. One end of the output capacitor Co is coupled to the first inductor L1 and the other end is coupled between the third switch Q3 and the fourth switch Q4. One end of the output resistor R L is coupled to the first inductor L1 and the other end is coupled between the third switch Q3 and the fourth switch Q4.

此外,第三電阻R3與第四電阻R4串接於輸出電壓Vout與接地端之間,並且多相控制器MPC會耦接至第三電阻R3與第四電阻R4之間並從第三電阻R3與第四電阻R4之間接收回授信號FB。於本實施例中,回授信號FB為第三電阻R3與第四電阻R4對輸出電壓Vout進行分壓後之分壓信號。 In addition, the third resistor R3 and the fourth resistor R4 are connected in series between the output voltage Vout and the ground, and the multi-phase controller MPC is coupled between the third resistor R3 and the fourth resistor R4 and from the third resistor R3. A feedback signal FB is received with the fourth resistor R4. In this embodiment, the feedback signal FB is a divided voltage signal after the third resistor R3 and the fourth resistor R4 divide the output voltage Vout.

於圖2之實施例中,直流對直流轉換裝置更包括第一電流感測單元SEN1,其包括第一電阻R1及第二電阻R2。第一電阻R1耦接於第三開關Q3與多相控制器MPC之間且第二電阻R2耦接於第四開關Q4與多相控制器MPC之間。位於轉換單元T1之二次側的第三端E3耦接至第一電阻R1與第三開關Q3之間。位於轉換單元T1 之二次側的第四端E4耦接至第二電阻R2與四開關Q4之間。多相控制器MPC分別接收來自第一電阻R1及第二電阻R2的第一電流感測信號ISEN1及第二電流感測信號ISEN3,以分別得到位於轉換單元T1之二次側的第三端E3與第四端E4的電流大小,並根據第一電流感測信號ISEN1及第二電流感測信號ISEN3來分別控制週期,藉以達到電流平衡之功能。 In the embodiment of FIG. 2, the DC-to-DC conversion device further includes a first current sensing unit SEN1, which includes a first resistor R1 and a second resistor R2. The first resistor R1 is coupled between the third switch Q3 and the multi-phase controller MPC, and the second resistor R2 is coupled between the fourth switch Q4 and the multi-phase controller MPC. A third terminal E3 located on the secondary side of the conversion unit T1 is coupled between the first resistor R1 and the third switch Q3. A fourth terminal E4 located on the secondary side of the conversion unit T1 is coupled between the second resistor R2 and the four switches Q4. The multi-phase controller MPC receives the first current sensing signal ISEN1 and the second current sensing signal ISEN3 from the first resistor R1 and the second resistor R2, respectively, to obtain the third end E3 located on the secondary side of the conversion unit T1. And the current magnitude of the fourth terminal E4, and respectively controlling the periods according to the first current sensing signal ISEN1 and the second current sensing signal ISEN3, so as to achieve the function of current balance.

請參照圖3,於另一實施例中,直流對直流轉換裝置更包括第二電流感測單元SEN2,其可包括四個電阻R,並且四個電阻R之一端分別耦接至第一電感L1之兩端與第二電感L2之兩端,並且四個電阻R之另一端均耦接至多相控制器MPC。多相控制器MPC接收到來自四個電阻R的第三電流感測信號CSP及第四電流感測信號CSN,以分別得到流經第一電感L1與第二電感L2之第一電感電流IL1及第二電感電流IL2,並藉以判斷是否有過電流(Over-current)之現象發生,以適時提供過電流保護(Over-Current Protection,OCP)之功能。 Referring to FIG. 3, in another embodiment, the DC-to-DC conversion device further includes a second current sensing unit SEN2, which may include four resistors R, and one end of the four resistors R is respectively coupled to the first inductor L1. The two ends of the second inductor L2 and the two ends of the second inductor L2 are coupled to the multi-phase controller MPC. The multi-phase controller MPC receives the third current sensing signal CSP and the fourth current sensing signal CSN from the four resistors R to obtain the first inductor current IL1 and the first inductor current L1 and the second inductor L2 respectively. The second inductor current IL2 is used to determine whether an over-current phenomenon has occurred, so as to provide an over-current protection (OCP) function in a timely manner.

請參照圖4,於另一實施例中,多相控制器MPC分別耦接第一電源通道CH1及第二電源通道CH2。多相控制器MPC透過第一高壓驅動器HD1耦接至第一電源通道CH1中位於高壓側(一次側)的第一開關Q1與第二開關Q2之閘極;多相控制器MPC透過第一低壓驅動器LD1耦接至第一電源通道CH1中位於低壓側(二次側)的第三開關Q3與第四開關Q4之閘極。 Referring to FIG. 4, in another embodiment, the multi-phase controller MPC is coupled to the first power channel CH1 and the second power channel CH2 respectively. The multi-phase controller MPC is coupled to the gates of the first switch Q1 and the second switch Q2 on the high-voltage side (primary side) in the first power channel CH1 through the first high-voltage driver HD1; the multi-phase controller MPC passes the first low-voltage The driver LD1 is coupled to the gates of the third switch Q3 and the fourth switch Q4 on the low-voltage side (secondary side) in the first power channel CH1.

多相控制器MPC可提供第一脈寬調變信號PWM1及 第二脈寬調變信號PWM2至第一高壓驅動器HD1,並由第一高壓驅動器HD1分別傳送第一脈寬調變信號PWM1及第二脈寬調變信號PWM2至第一開關Q1與第二開關Q2之閘極,以分別控制第一開關Q1與第二開關Q2的操作。多相控制器MPC亦可提供第一脈寬調變信號PWM1及第二脈寬調變信號PWM2至第一低壓驅動器LD1,並由第一低壓驅動器LD1分別傳送第二脈寬調變信號PWM2及第一脈寬調變信號PWM1至第三開關Q3與第四開關Q4之閘極,以分別控制第二開關Q3與第四開關Q4的操作。 The multi-phase controller MPC can provide the first pulse width modulation signal PWM1 and the second pulse width modulation signal PWM2 to the first high-voltage driver HD1, and the first high-voltage driver HD1 transmits the first pulse width modulation signal PWM1 and the first The two-pulse-width modulation signal PWM2 goes to the gates of the first switch Q1 and the second switch Q2 to control the operations of the first switch Q1 and the second switch Q2, respectively. The multi-phase controller MPC can also provide the first pulse width modulation signal PWM1 and the second pulse width modulation signal PWM2 to the first low-voltage driver LD1, and the first low-voltage driver LD1 transmits the second pulse width modulation signals PWM2 and The first PWM signal PWM1 to the gates of the third switch Q3 and the fourth switch Q4 are used to control the operations of the second switch Q3 and the fourth switch Q4, respectively.

同理,多相控制器MPC透過第二高壓驅動器HD2耦接至第二電源通道CH2中位於高壓側(一次側)的第五開關Q5與第六開關Q6之閘極;多相控制器MPC透過第二低壓驅動器LD2耦接至第二電源通道CH2中位於低壓側(二次側)的第七開關Q7與第八開關Q8之閘極。 Similarly, the multi-phase controller MPC is coupled to the gates of the fifth switch Q5 and the sixth switch Q6 on the high-voltage side (primary side) in the second power channel CH2 through the second high-voltage driver HD2; the multi-phase controller MPC passes The second low-voltage driver LD2 is coupled to the gates of the seventh switch Q7 and the eighth switch Q8 on the low-voltage side (secondary side) in the second power channel CH2.

於實際應用中,多相控制器MPC還可進一步耦接第三電源通道~第四電源通道(圖未示),甚至更多個電源通道,並可依照上述類推,故於此不另行贅述。此外,多相控制器MPC對於每一個電源通道分別提供兩個脈寬調變信號。若多相控制器MPC耦接四個電源通道,則多相控制器MPC提供八個脈寬調變信號至前述四個電源通道。每一個脈寬調變信號之間的相位差為45度(45度=360度/PWM信號個數)。在四個電源通道的例子中,多相控制器MPC提供第一脈寬調變信號與第五寬調變信號至第一電源通道,其中第一脈寬調變信號與第五寬調變信號的相位差為180度。 In practical applications, the multi-phase controller MPC can be further coupled to the third power source channel to the fourth power source channel (not shown), or even more power source channels, and can be analogized according to the above, so it will not be repeated here. In addition, the multi-phase controller MPC provides two pulse width modulation signals for each power channel. If the multi-phase controller MPC is coupled to four power channels, the multi-phase controller MPC provides eight pulse width modulation signals to the aforementioned four power channels. The phase difference between each PWM signal is 45 degrees (45 degrees = 360 degrees / number of PWM signals). In the example of four power channels, the multi-phase controller MPC provides a first pulse width modulation signal and a fifth width modulation signal to the first power channel, wherein the first pulse width modulation signal and the fifth width modulation signal The phase difference is 180 degrees.

接下來,請同時參照圖5及圖6A~圖6D。圖5分別繪示第一開關的閘極-源極電壓、第二開關的閘極-源極電壓、轉換單元的繞組電壓、第一電感電流、第二電感電流及輸出電流之時序圖;圖6A~圖6D分別繪示直流對直流轉換裝置在一週期內之第一時間區段~第四時間區段之運作情形的示意圖。 Next, please refer to FIGS. 5 and 6A to 6D at the same time. FIG. 5 illustrates timing diagrams of the gate-source voltage of the first switch, the gate-source voltage of the second switch, the winding voltage of the conversion unit, the first inductor current, the second inductor current, and the output current, respectively; FIG. 6A to 6D are schematic diagrams showing the operation of the DC-to-DC conversion device in the first time zone to the fourth time zone in a cycle, respectively.

於第一時間區段△T1內,亦即從起始時間t0至第一時間t1,多相控制器MPC控制第一開關Q1及第四開關Q4導通並控制第二開關Q2及第三開關Q3為關閉。由圖6A可知:位於轉換單元T1之高壓側(一次側)的電流依序流經第一開關Q1、轉換單元T1之第一端E1、第二端E2、第二電容C2至接地端PGND,而位於轉換單元T1之低壓側(二次側)的電流則依序流經轉換單元T1之第四端E4、第三端E3、第一電感L1、輸出電阻RL、第四開關Q4、第二電感L2及輸出電容Co。由圖5可知:流經第一電感L1之第一電感電流IL1呈線性增加且流經第二電感L2之第二電感電流IL2則呈線性減少,由於第一電感電流IL1線性增加之斜率絕對值大於第二電感電流IL2線性減少之斜率絕對值,因此,兩者相加所得到的輸出電流Iout會呈線性增加。 In the first time section ΔT1, that is, from the start time t 0 to the first time t 1 , the multi-phase controller MPC controls the first switch Q1 and the fourth switch Q4 to be turned on and controls the second switch Q2 and the third Switch Q3 is closed. It can be seen from FIG. 6A that the current on the high-voltage side (primary side) of the conversion unit T1 flows in sequence through the first switch Q1, the first terminal E1, the second terminal E2, the second capacitor C2 to the ground terminal PGND of the conversion unit T1, The current on the low-voltage side (secondary side) of the conversion unit T1 flows in sequence through the fourth terminal E4, the third terminal E3, the first inductor L1, the output resistor R L , the fourth switch Q4, the first Two inductors L2 and output capacitor Co. It can be seen from FIG. 5 that the first inductor current IL1 flowing through the first inductor L1 increases linearly and the second inductor current IL2 flowing through the second inductor L2 decreases linearly, because the absolute value of the slope of the first inductor current IL1 linearly increases Greater than the absolute value of the slope of the second inductor current IL2 linearly decreasing, the output current Iout obtained by adding the two will increase linearly.

於第二時間區段△T2內,亦即從第一時間t1至第二時間t2,多相控制器MPC控制第一開關Q1及第四開關Q4為關閉並控制第二開關Q2及第三開關Q3為關閉。由圖6B可知:位於轉換單元T1之高壓側(一次側)無電流,而位於轉換單元T1之低壓側(二次側)的電流則依序流經第三開關Q3、第一電感L1、輸出電阻RL、第四開 關Q4、第二電感L2及輸出電容Co。由圖5可知:流經第一電感L1之第一電感電流IL1與流經第二電感L2之第二電感電流IL2均呈線性減少,致使兩者相加所得到的輸出電流Iout亦呈線性減少。 In the second time section ΔT2, that is, from the first time t 1 to the second time t 2 , the multi-phase controller MPC controls the first switch Q1 and the fourth switch Q4 to be closed and controls the second switch Q2 and the first switch Three switches Q3 are closed. It can be seen from FIG. 6B that there is no current on the high-voltage side (primary side) of the conversion unit T1, and the current on the low-voltage side (secondary side) of the conversion unit T1 flows in sequence through the third switch Q3, the first inductor L1, and the output The resistor R L , the fourth switch Q4, the second inductor L2 and the output capacitor Co. It can be seen from FIG. 5 that the first inductor current IL1 flowing through the first inductor L1 and the second inductor current IL2 flowing through the second inductor L2 both decrease linearly, so that the output current Iout obtained by adding the two also decreases linearly. .

於第三時間區段△T3內,亦即從第二時間t2至第三時間t3,多相控制器MPC控制第二開關Q2及第三開關Q3導通並控制第一開關Q1及第四開關Q4為關閉。由圖6C可知:位於轉換單元T1之高壓側(一次側)的輸入電流依序流經第一電容C1、轉換單元T1之第二端E2、第一端E1、第二開關Q2至接地端PGND,而位於轉換單元T1之低壓側(二次側)的電流則依序流經第一電感L1、輸出電阻RL、第三開關Q3、轉換單元T1之第三端E3、第四端E4、第二電感L2及輸出電容Co。由圖5可知:流經第一電感L1之第一電感電流IL1呈線性減少且流經第二電感L2之第二電感電流IL2則呈線性增加,由於第二電感電流IL2線性增加之斜率絕對值大於第一電感電流IL1線性減少之斜率絕對值,因此,兩者相加所得到的輸出電流Iout會呈線性增加。 In the third time zone ΔT3, that is, from the second time t 2 to the third time t 3 , the multi-phase controller MPC controls the second switch Q2 and the third switch Q3 to be turned on and controls the first switch Q1 and the fourth Switch Q4 is closed. It can be seen from FIG. 6C that the input current located on the high-voltage side (primary side) of the conversion unit T1 flows in sequence through the first capacitor C1, the second terminal E2 of the conversion unit T1, the first terminal E1, the second switch Q2, and the ground terminal PGND. The current on the low-voltage side (secondary side) of the conversion unit T1 flows through the first inductor L1, the output resistance R L , the third switch Q3, the third terminal E3, the fourth terminal E4, and The second inductor L2 and the output capacitor Co. It can be seen from FIG. 5 that the first inductor current IL1 flowing through the first inductor L1 decreases linearly and the second inductor current IL2 flowing through the second inductor L2 increases linearly, because the absolute value of the slope of the second inductor current IL2 increases linearly It is larger than the absolute value of the slope of the linear decrease of the first inductor current IL1. Therefore, the output current Iout obtained by adding the two will increase linearly.

於實際應用中,由於第三時間區段△T3內的第二電感電流IL2線性增加之斜率絕對值可等於第一時間區段△T1內的第一電感電流IL1線性增加之斜率絕對值,並且第三時間區段△T3內的第一電感電流IL1線性減少之斜率絕對值可等於第一時間區段△T1內的第二電感電流IL2線性減少之斜率絕對值,故能使得第一時間區段△T1內之輸出電流Iout線性增加之斜率等於第三時間區段△T3內之輸出電流Iout線性增加之斜率,藉以有效增進輸出電 流Iout之穩定度。 In practical applications, since the absolute value of the slope of the linear increase of the second inductor current IL2 in the third time section ΔT3 may be equal to the absolute value of the slope of the linear increase of the first inductor current IL1 in the first time section ΔT1, and The absolute value of the slope of the linear decrease of the first inductor current IL1 in the third time section ΔT3 may be equal to the absolute value of the slope of the linear decrease of the second inductor current IL2 in the first time section ΔT1, so that the first time zone The slope of the linear increase of the output current Iout in the section ΔT1 is equal to the slope of the linear increase of the output current Iout in the third time section △ T3, thereby effectively improving the stability of the output current Iout.

於第四時間區段△T4內,亦即從第三時間t3至第四時間t4,多相控制器MPC控制第一開關Q1及第四開關Q4為關閉並控制第二開關Q2及第三開關Q3為關閉。由圖6D可知:位於轉換單元T1之高壓側(一次側)無電流,而位於轉換單元T1之低壓側(二次側)的電流則依序流經第三開關Q3、第一電感L1、輸出電阻RL、第四開關Q4、第二電感L2及輸出電容Co。由圖5可知:流經第一電感L1之第一電感電流IL1與流經第二電感L2之第二電感電流IL2均呈線性減少,致使兩者相加所得到的輸出電流Iout亦呈線性減少。 In a fourth time period △ T4, i.e., from the third time t 3 to a fourth time t 4, a first multi-phase controller MPC control switch Q1 and the fourth switch Q4 are turned off and the second switch Q2 and the second Three switches Q3 are closed. It can be known from FIG. 6D that there is no current on the high-voltage side (primary side) of the conversion unit T1, and the current on the low-voltage side (secondary side) of the conversion unit T1 flows in sequence through the third switch Q3, the first inductor L1, and the output The resistor R L , the fourth switch Q4, the second inductor L2 and the output capacitor Co. It can be seen from FIG. 5 that the first inductor current IL1 flowing through the first inductor L1 and the second inductor current IL2 flowing through the second inductor L2 both decrease linearly, so that the output current Iout obtained by adding the two also decreases linearly. .

於實際應用中,由於第四時間區段△T4內的第一電感電流IL1與第二電感電流IL2線性減少之斜率絕對值可等於第二時間區段△T2內的第一電感電流IL1與第二電感電流IL2線性減少之斜率絕對值,故能使得第二時間區段△T2內之輸出電流Iout線性減少之斜率等於第四時間區段△T4內之輸出電流Iout線性減少之斜率,藉以有效增進輸出電流Iout之穩定度。 In practical applications, since the first inductor current IL1 and the second inductor current IL2 in the fourth time section ΔT4 linearly decrease in slope, the absolute value of the slope can be equal to the first inductor current IL1 and the first inductor current IL2 in the second time section ΔT2. The absolute value of the slope of the linear decrease of the inductor current IL2 can make the slope of the linear decrease of the output current Iout in the second time section △ T2 equal to the slope of the linear decrease of the output current Iout in the fourth time section △ T4, thereby effectively Improve the stability of the output current Iout.

根據本發明之另一較佳具體實施例亦為一種直流對直流轉換裝置。於此實施例中,直流對直流轉換裝置包括多個電源通道及多相控制器,並且多相控制器分別耦接該些電源通道並控制該些電源通道之運作。 Another preferred embodiment according to the present invention is also a DC-to-DC conversion device. In this embodiment, the DC-to-DC conversion device includes a plurality of power channels and a multi-phase controller, and the multi-phase controller is respectively coupled to the power channels and controls the operations of the power channels.

請同時參照圖2及圖7,圖7繪示圖2中之多相控制器MPC之一實施例的詳細結構示意圖。由圖2及圖7可知:第一電源通道CH1包括一對輸入開關Q1~Q2、一對輸入電容C1~C2、一對輸 出開關Q3~Q4、輸出單元OU、變壓器T1、第一電感L1及第二電感L2。多相控制器MPC分別耦接該對輸入開關Q1~Q2及該對輸出開關Q3~Q4。多相控制器MPC包括誤差放大器EA、多個比較器CR1~CR2、電流平衡電路CBC與時間信號產生單元TSG。誤差放大器EA之輸出端分別耦接該些比較器CR1~CR2之輸入端+。該些比較器CR1~CR2之輸出端均耦接時間信號產生單元TSG。電流平衡電路CBC耦接時間信號產生單元TSG。 Please refer to FIG. 2 and FIG. 7 at the same time. FIG. 7 is a detailed structural diagram of an embodiment of the multi-phase controller MPC in FIG. 2. It can be known from FIG. 2 and FIG. 7 that the first power channel CH1 includes a pair of input switches Q1 to Q2, a pair of input capacitors C1 to C2, a pair of output switches Q3 to Q4, an output unit OU, a transformer T1, a first inductor L1, and Second inductor L2. The multi-phase controller MPC is coupled to the pair of input switches Q1 to Q2 and the pair of output switches Q3 to Q4, respectively. The multi-phase controller MPC includes an error amplifier EA, a plurality of comparators CR1 to CR2, a current balance circuit CBC, and a time signal generating unit TSG. The output terminals of the error amplifier EA are respectively coupled to the input terminals + of the comparators CR1 to CR2. The output terminals of the comparators CR1 to CR2 are all coupled to the time signal generating unit TSG. The current balancing circuit CBC is coupled to the time signal generating unit TSG.

於此實施例中,直流對直流轉換裝置可包括第一電流感測單元SEN1,其可包括第一電阻R1及第二電阻R2。第一電阻R1耦接於第三開關Q3與多相控制器MPC之間且第二電阻R2耦接於第四開關Q4與多相控制器MPC之間。此外,直流對直流轉換裝置還包括回授單元,其可包括第三電阻R3與第四電阻R4,第三電阻R3與第四電阻R4串接於直流對直流轉換裝置的輸出端OUT與接地端之間,且多相控制器MPC耦接至第三電阻R3與第四電阻R4之間。 In this embodiment, the DC-to-DC conversion device may include a first current sensing unit SEN1, which may include a first resistor R1 and a second resistor R2. The first resistor R1 is coupled between the third switch Q3 and the multi-phase controller MPC, and the second resistor R2 is coupled between the fourth switch Q4 and the multi-phase controller MPC. In addition, the DC-to-DC conversion device further includes a feedback unit, which may include a third resistor R3 and a fourth resistor R4, and the third resistor R3 and the fourth resistor R4 are connected in series to the output terminal OUT and the ground terminal of the DC-to-DC conversion device. And the multi-phase controller MPC is coupled between the third resistor R3 and the fourth resistor R4.

誤差放大器EA之輸入端-耦接至回授單元中之第三電阻R3與第四電阻R4之間並從第三電阻R3與第四電阻R4之間接收回授信號FB。誤差放大器EA之輸入端+接收參考信號REF。電流平衡電路CBC分別耦接第一通道CH1的第一電流感測單元SEN1中之第一電阻R1及第二電阻R2並分別接收第一電流感測信號ISEN1及第二電流感測信號ISEN2,且電流平衡電路CBC提供電流平衡信號SCB至時間信號產生單元TSG。該些比較器CR1~CR2之輸入端+分別接收誤差放大信號SEA且該些比較器CR1~CR2之輸入端-分別接 收斜波信號RAMP1及RAMP2。該些比較器CR1~CR2之輸出端分別輸出比較結果至時間信號產生單元TSG,並由時間信號產生單元TSG根據該些比較器CR1~CR2所輸出的比較結果及電流平衡信號SCB輸出第一脈寬調變信號PWM1至第一開關Q1與第三開關Q3之閘極以控制第一開關Q1與第三開關Q3的操作,以及提供第二脈寬調變信號PWM2至第二開關Q2與第四開關Q4之閘極以控制第二開關Q2與第四開關Q4的操作。 The input terminal of the error amplifier EA is coupled between the third resistor R3 and the fourth resistor R4 in the feedback unit and receives the feedback signal FB from between the third resistor R3 and the fourth resistor R4. The input terminal of the error amplifier EA + receives the reference signal REF. The current balancing circuit CBC is respectively coupled to the first resistor R1 and the second resistor R2 in the first current sensing unit SEN1 of the first channel CH1 and receives the first current sensing signal ISEN1 and the second current sensing signal ISEN2, and The current balancing circuit CBC provides a current balancing signal S CB to the time signal generating unit TSG. The input terminals + of the comparators CR1 to CR2 respectively receive error amplification signals S EA and the input terminals of the comparators CR1 to CR2-respectively receive ramp signals RAMP1 and RAMP2. The output ends of the comparators CR1 to CR2 respectively output the comparison results to the time signal generating unit TSG, and the time signal generating unit TSG outputs the first according to the comparison results output by the comparators CR1 to CR2 and the current balance signal S CB . The pulse width modulation signals PWM1 to the gates of the first switch Q1 and the third switch Q3 are used to control the operation of the first switch Q1 and the third switch Q3, and the second pulse width modulation signals PWM2 to the second switch Q2 and the third switch are provided. The gates of the four switches Q4 control the operations of the second switch Q2 and the fourth switch Q4.

請同時參照圖3及圖8,圖8繪示圖3中之多相控制器MPC之一實施例的詳細結構示意圖。由圖3及圖8可知:第一電源通道CH1包括一對輸入開關Q1~Q2、一對輸入電容C1~C2、一對輸出開關Q3~Q4、輸出單元OU、變壓器T1、第一電感L1及第二電感L2。多相控制器MPC分別耦接該對輸入開關Q1~Q2及該對輸出開關Q3~Q4。多相控制器MPC包括誤差放大器EA、多個比較器CR1~CR2、電流平衡電路CBC與時間信號產生單元TSG。誤差放大器EA之輸出端分別耦接該些比較器CR1~CR2之輸入端+。該些比較器CR1~CR2之輸出端均耦接時間信號產生單元TSG。電流平衡電路CBC耦接時間信號產生單元TSG。 Please refer to FIG. 3 and FIG. 8 at the same time. FIG. 8 is a detailed structural diagram of an embodiment of the multi-phase controller MPC in FIG. 3. It can be known from FIG. 3 and FIG. 8 that the first power channel CH1 includes a pair of input switches Q1 to Q2, a pair of input capacitors C1 to C2, a pair of output switches Q3 to Q4, an output unit OU, a transformer T1, a first inductor L1, and Second inductor L2. The multi-phase controller MPC is coupled to the pair of input switches Q1 to Q2 and the pair of output switches Q3 to Q4, respectively. The multi-phase controller MPC includes an error amplifier EA, a plurality of comparators CR1 to CR2, a current balance circuit CBC, and a time signal generating unit TSG. The output terminals of the error amplifier EA are respectively coupled to the input terminals + of the comparators CR1 to CR2. The output terminals of the comparators CR1 to CR2 are all coupled to the time signal generating unit TSG. The current balancing circuit CBC is coupled to the time signal generating unit TSG.

於此實施例中,直流對直流轉換裝置可包括第二電流感測單元SEN2,且第二電流感測單元SEN2可包括四個電阻R。四個電阻R分別耦接第一電感L1之兩端及第二電感L2之兩端,且四個電阻R均耦接至多相控制器MPC。多相控制器MPC之電流平衡電路CBC分別接收來自四個電阻R的第三電流感測信號CSP及第四電流 感測信號CSN,以分別得到流經第一電感L1與第二電感L2之第一電感電流IL1及第二電感電流IL2,並藉以判斷是否有過電流(Over-Current)之現象發生。電流平衡電路CBC提供電流平衡信號SCB至時間信號產生單元TSG。時間信號產生單元TSG根據該些比較器CR1~CR2所輸出的比較結果及電流平衡信號SCB輸出第一脈寬調變信號PWM1至第一開關Q1與第三開關Q3之閘極以控制第一開關Q1與第三開關Q3的操作,以及提供第二脈寬調變信號PWM2至第二開關Q2與第四開關Q4之閘極以控制第二開關Q2與第四開關Q4的操作,以適時提供過電流保護之功能。 In this embodiment, the DC-to-DC conversion device may include a second current sensing unit SEN2, and the second current sensing unit SEN2 may include four resistors R. The four resistors R are respectively coupled to both ends of the first inductor L1 and the second inductor L2, and the four resistors R are all coupled to the multi-phase controller MPC. The current balancing circuit CBC of the multi-phase controller MPC receives the third current sensing signal CSP and the fourth current sensing signal CSN from the four resistors R to obtain the first current flowing through the first inductor L1 and the second inductor L2, respectively. An inductor current IL1 and a second inductor current IL2 are used to determine whether an over-current phenomenon occurs. The current balancing circuit CBC provides a current balancing signal S CB to the time signal generating unit TSG. The time signal generating unit TSG outputs the first pulse width modulation signal PWM1 to the gates of the first switch Q1 and the third switch Q3 according to the comparison results output by the comparators CR1 to CR2 and the current balance signal S CB to control the first The operation of the switches Q1 and the third switch Q3, and the provision of the second pulse width modulation signal PWM2 to the gates of the second switch Q2 and the fourth switch Q4 to control the operations of the second switch Q2 and the fourth switch Q4, so as to provide timely Over current protection function.

上述兩實施例雖僅說明多相控制器MPC耦接並控制第一電源通道CH1之運作情形,但多相控制器MPC除了耦接並控制第一電源通道CH1之外,實際上還可同時耦接並控制第二電源通道CH2,甚至多相控制器MPC可同時耦接並控制八個電源通道。至於其實際運作情形均可依上述實施例類推,故於此不另行贅述。 Although the above two embodiments only describe the operation of the multi-phase controller MPC coupling and controlling the first power channel CH1, in addition to coupling and controlling the first power channel CH1, the multi-phase controller MPC can actually be coupled at the same time. Connect and control the second power channel CH2, and even the multi-phase controller MPC can be coupled to and control eight power channels at the same time. As for the actual operation situation, it can be deduced by analogy with the above embodiment, so it will not be repeated here.

此外,於實際應用中,上述多相控制器MPC中之比較器的數量以及電流平衡電路CBC對外部接線的數量均需對應於時間信號產生單元TSG所輸出的脈寬調變信號的數量。舉例而言,若時間信號產生單元TSG輸出四個脈寬調變信號,則多相控制器MPC需包括四個比較器且電流平衡電路CBC對外部需有四條接線,其餘可依此類推,於此不另行贅述。 In addition, in practical applications, the number of comparators in the above-mentioned multi-phase controller MPC and the number of external wiring of the current balancing circuit CBC need to correspond to the number of pulse width modulation signals output by the time signal generating unit TSG. For example, if the time signal generating unit TSG outputs four PWM signals, the multi-phase controller MPC needs to include four comparators and the current balancing circuit CBC needs four wires to the outside. The rest can be deduced by analogy. This will not be repeated here.

相較於先前技術,本發明之直流對直流轉換裝置具有下列優點: Compared with the prior art, the DC-DC conversion device of the present invention has the following advantages:

(1)採用單級隔離式直流對直流轉換器架構,可比先前技術所採用的兩級架構省去一級,故可節省成本並縮減佔用的晶片面積。 (1) The single-stage isolated DC-to-DC converter architecture is used, which can save one stage compared with the two-stage architecture used in the prior art, so it can save costs and reduce the occupied chip area.

(2)可直接針對負載行為進行多相位之脈寬調變,故能有效提升瞬變回應之能力與速度。 (2) Multi-phase pulse width modulation can be directly performed according to the load behavior, so it can effectively improve the ability and speed of transient response.

(3)可根據變壓器之二次側兩端所感測到的電流感測信號來分別控制週期,藉以達到電流平衡之功能。 (3) Cycles can be controlled separately according to the current sensing signals sensed at both ends of the secondary side of the transformer to achieve the function of current balance.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。 With the above detailed description of the preferred embodiments, it is hoped that the features and spirit of the present invention can be more clearly described, and the scope of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the intention is to cover various changes and equivalent arrangements within the scope of the patents to be applied for in the present invention.

Claims (15)

一種直流對直流轉換裝置,包括:一多相控制器;以及多個電源通道,分別耦接該多相控制器,每個電源通道包括:一第一電容,耦接一輸入電壓;一第二電容,串接該第一電容,且該第二電容之一端耦接一接地端;一輸出單元;一轉換單元,具有一第一端、一第二端、一第三端及一第四端,其中該第一端與該第二端位於一次側,該第三端與該第四端位於二次側;一第一電感,耦接於該第三端與該輸出單元之間;一第二電感,耦接於該第四端與該輸出單元之間,且該第二電感之一端耦接於該第一電感與該輸出單元之間;一第一開關,耦接該輸入電壓與該第一電容;一第二開關,串接該第一開關,且耦接該第二電容與該接地端;一第三開關,耦接於該第三端與該第一電感之間,且該第三開關之一端耦接該輸出單元;以及一第四開關,串接該第三開關,且該第四開關之一端耦接於該第四端與該第二電感之間;其中,該第一端耦接於該第一開關與該第二開關之間,該第二端耦接於該第一電容與該第二電容之間;其中,該多相控制器分別耦接該第一開關、該第二開關、該第三開關及該第四開關;其中,在一時序控制中,該多相控制器控制該第一開關與該第四開關導通時,該第二開關與該第三開關為關閉。     A DC-to-DC conversion device includes: a multi-phase controller; and a plurality of power channels respectively coupled to the multi-phase controller. Each power channel includes: a first capacitor coupled to an input voltage; a second A capacitor connected in series to the first capacitor, and one terminal of the second capacitor is coupled to a ground terminal; an output unit; a conversion unit having a first terminal, a second terminal, a third terminal, and a fourth terminal Wherein the first end and the second end are located on the primary side, and the third end and the fourth end are located on the secondary side; a first inductor is coupled between the third end and the output unit; a first Two inductors are coupled between the fourth terminal and the output unit, and one terminal of the second inductor is coupled between the first inductor and the output unit; a first switch is coupled between the input voltage and the output unit. A first capacitor; a second switch connected in series with the first switch and coupled to the second capacitor and the ground terminal; a third switch coupled between the third terminal and the first inductor; and One terminal of the third switch is coupled to the output unit; and a fourth switch is connected to the third switch in series. And one terminal of the fourth switch is coupled between the fourth terminal and the second inductor; wherein the first terminal is coupled between the first switch and the second switch, and the second terminal is coupled between Between the first capacitor and the second capacitor; wherein the multi-phase controller is respectively coupled to the first switch, the second switch, the third switch and the fourth switch; and in a timing control, When the multi-phase controller controls the first switch and the fourth switch to be turned on, the second switch and the third switch are turned off.     如申請專利範圍第1項所述之直流對直流轉換裝置,其中該多相控制器提供一第一脈寬調變信號控制該第一開關與該第三開關的操作。     The DC-to-DC conversion device according to item 1 of the patent application scope, wherein the multi-phase controller provides a first pulse width modulation signal to control the operation of the first switch and the third switch.     如申請專利範圍第1項所述之直流對直流轉換裝置,其中該多相控制器提供一第二脈寬調變信號控制該第二開關與該第四開關的操作。     The DC-to-DC conversion device described in item 1 of the patent application scope, wherein the multi-phase controller provides a second pulse width modulation signal to control the operation of the second switch and the fourth switch.     如申請專利範圍第1項所述之直流對直流轉換裝置,其中該多相控制器提供一第一脈寬調變信號控制該第一開關與該第三開關的操作,該多相控制器提供一第二脈寬調變信號控制該第二開關與該第四開關的操作,該第一脈寬調變信號與該第二脈寬調變信號之間的相位差為180度。     The DC-to-DC conversion device according to item 1 of the patent application scope, wherein the multi-phase controller provides a first pulse width modulation signal to control the operation of the first switch and the third switch, and the multi-phase controller provides A second pulse width modulation signal controls the operation of the second switch and the fourth switch. The phase difference between the first pulse width modulation signal and the second pulse width modulation signal is 180 degrees.     如申請專利範圍第1項所述之直流對直流轉換裝置,更包括:一第一電流感測單元,分別耦接於該第三開關與該多相控制器之間以及該第四開關與該多相控制器之間。     The DC-to-DC conversion device described in item 1 of the scope of the patent application, further includes: a first current sensing unit respectively coupled between the third switch and the multi-phase controller and the fourth switch and the Between multiphase controllers.     如申請專利範圍第5項所述之直流對直流轉換裝置,其中該第一電流感測單元包括一第一電阻及一第二電阻,該第一電阻耦接於該第三開關與該多相控制器之間且該第二電阻耦接於該第四開關與該多相控制器之間。     The DC-to-DC conversion device according to item 5 of the scope of patent application, wherein the first current sensing unit includes a first resistor and a second resistor, and the first resistor is coupled to the third switch and the multi-phase The controller and the second resistor are coupled between the fourth switch and the multi-phase controller.     如申請專利範圍第1項所述之直流對直流轉換裝置,更包括:一第二電流感測單元,分別耦接該多相控制器、該第一電感之兩端及該第二電感之兩端。     The DC-to-DC conversion device described in item 1 of the patent application scope further includes: a second current sensing unit coupled to the multi-phase controller, two ends of the first inductor, and two of the second inductor, respectively. end.     如申請專利範圍第7項所述之直流對直流轉換裝置,其中該第二電流感測單元包括四個電阻,該四個電阻分別耦接於該第一電感之兩端與該第二電感之兩端,並且該四個電阻均耦接至該多相控制器。     The DC-to-DC conversion device according to item 7 of the scope of patent application, wherein the second current sensing unit includes four resistors, and the four resistors are respectively coupled to both ends of the first inductor and the second inductor. Both ends, and the four resistors are coupled to the multi-phase controller.     如申請專利範圍第1項所述之直流對直流轉換裝置,其中該直流對直流轉換裝置之一輸出電壓小於該輸入電壓的4%。     The DC-to-DC conversion device described in item 1 of the scope of patent application, wherein an output voltage of one of the DC-to-DC conversion devices is less than 4% of the input voltage.     如申請專利範圍第1項所述之直流對直流轉換裝置,其中該輸出單元包括一輸出電容及一輸出電阻,並且該輸出電容及該輸出電阻並聯於該直流對直流轉換裝置之一輸出電壓與該接地端之間。     The DC-to-DC conversion device according to item 1 of the patent application scope, wherein the output unit includes an output capacitor and an output resistance, and the output capacitor and the output resistance are connected in parallel with one of the output voltages of the DC-DC conversion device and Between the ground terminals.     一種直流對直流轉換裝置,包括:一多相控制器;以及多個電源通道,每一電源通道包括:一對輸入開關,包括串接的一第一開關與一第二開關;一對輸入電容,包括串接的一第一輸入電容與一第二輸入電容;一對輸出開關,包括串接的一第三開關與一第四開關;一輸出單元,其一端耦接於該第三開關與該第四開關之間;一第一電感,耦接於該第三開關與該輸出單元之間;一第二電感,耦接於該第四開關與該輸出單元之間,且該第二電感之一端耦接於該第一電感與該輸出單元之間;以及一變壓器,其一次側分別耦接於該第一開關與該第二開關之間以及耦接於該第一輸入電容與該第二輸入電容之間,該變壓器的二次側分別耦接於該第三開關與第一電感之間以及耦接於該第四開關與該第二電感之間;其中,該多相控制器分別耦接該對輸入開關及該對輸出開關,且該多相控制器分別提供兩個不同相位的脈衝調變時脈信號至每一電源通道。     A DC-to-DC conversion device includes: a multi-phase controller; and a plurality of power channels, each power channel includes: a pair of input switches, including a first switch and a second switch connected in series; a pair of input capacitors Including a first input capacitor and a second input capacitor connected in series; a pair of output switches including a third switch and a fourth switch connected in series; an output unit having one end coupled to the third switch and Between the fourth switch; a first inductor coupled between the third switch and the output unit; a second inductor coupled between the fourth switch and the output unit; and the second inductor One terminal is coupled between the first inductor and the output unit; and a transformer whose primary side is respectively coupled between the first switch and the second switch and is coupled between the first input capacitor and the first switch. Between two input capacitors, the secondary side of the transformer is respectively coupled between the third switch and the first inductor and between the fourth switch and the second inductor; wherein the multi-phase controller is respectively Coupled to the pair of input switches and the pair of inputs Switch, and the multi-phase controller are provided two different phases of the pulse modulated clock signal to each of the power supply passage.     一種直流對直流轉換裝置,包括:多個電源通道,每一電源通道包括: 一對輸入開關,包括串接的一第一開關與一第二開關;一對輸入電容,包括串接的一第一輸入電容與一第二輸入電容;一對輸出開關,包括串接的一第三開關與一第四開關;一輸出單元,其一端耦接於該第三開關與該第四開關之間;一變壓器,其一次側耦接於該第一開關與該第二開關之間,且其二次側耦接該第三開關;以及一第一電流感測單元,分別耦接該第三開關與該第四開關;以及一多相控制器,耦接該對輸入開關、該對輸出開關與該第一電流感測單元,其中該多相控制器包括一電流平衡電路與一時間信號產生單元,該電流平衡電路耦接每一通道的第一電流感測單元,且該電流平衡電路提供一電流平衡信號至該時間信號產生單元。     A DC-to-DC conversion device includes a plurality of power channels, each of which includes: a pair of input switches including a first switch and a second switch connected in series; a pair of input capacitors including a first connected in series An input capacitor and a second input capacitor; a pair of output switches including a third switch and a fourth switch connected in series; an output unit having one end coupled between the third switch and the fourth switch; A transformer having a primary side coupled between the first switch and the second switch, and a secondary side coupled to the third switch; and a first current sensing unit respectively coupled to the third switch and The fourth switch; and a multi-phase controller coupled to the pair of input switches, the pair of output switches, and the first current sensing unit, wherein the multi-phase controller includes a current balancing circuit and a time signal generating unit, The current balancing circuit is coupled to the first current sensing unit of each channel, and the current balancing circuit provides a current balancing signal to the time signal generating unit.     如申請專利範圍第12項所述之直流對直流轉換裝置,更包括:一第一電感,耦接該第三開關與該輸出單元之間;一第二電感,耦接該第四開關與該輸出單元之間,且該第二電感之一端耦接於該第一電感與該輸出單元之間。     The DC-to-DC conversion device according to item 12 of the scope of patent application, further comprising: a first inductor coupled between the third switch and the output unit; a second inductor coupled between the fourth switch and the output unit; Between output units, and one end of the second inductor is coupled between the first inductor and the output unit.     如申請專利範圍第13項所述之直流對直流轉換裝置,更包括:一第二電流感測單元,分別耦接該多相控制器、該第一電感之兩端及該第二電感之兩端。     The DC-to-DC conversion device according to item 13 of the scope of the patent application, further comprising: a second current sensing unit coupled to the multi-phase controller, two ends of the first inductor, and two of the second inductor, respectively. end.     如申請專利範圍第12項所述之直流對直流轉換裝置,其中該多相控制器還包括一誤差放大器與多個比較器,該誤差放大器耦接該直流對直流轉換裝置之一輸出端,且該誤差放大器耦接該些比較器,該些比較器耦接該時間信號產生單元。     The DC-to-DC conversion device according to item 12 of the application, wherein the multi-phase controller further includes an error amplifier and a plurality of comparators, the error amplifier is coupled to an output terminal of the DC-to-DC conversion device, and The error amplifier is coupled to the comparators, and the comparators are coupled to the time signal generating unit.    
TW106105801A 2017-02-21 2017-02-21 Dc-dc converting apparatus TW201832454A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106105801A TW201832454A (en) 2017-02-21 2017-02-21 Dc-dc converting apparatus
CN201710372754.3A CN108462394A (en) 2017-02-21 2017-05-24 DC-DC conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106105801A TW201832454A (en) 2017-02-21 2017-02-21 Dc-dc converting apparatus

Publications (1)

Publication Number Publication Date
TW201832454A true TW201832454A (en) 2018-09-01

Family

ID=63221021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106105801A TW201832454A (en) 2017-02-21 2017-02-21 Dc-dc converting apparatus

Country Status (2)

Country Link
CN (1) CN108462394A (en)
TW (1) TW201832454A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11594956B2 (en) 2021-01-19 2023-02-28 Analog Devices, Inc. Dual-phase hybrid converter
US11601049B2 (en) 2021-01-19 2023-03-07 Analog Devices, Inc. Multi-phase hybrid converter
US11581796B2 (en) 2021-01-19 2023-02-14 Analog Devices, Inc. Pulse width modulation controllers for hybrid converters
EP4030609A1 (en) * 2021-01-19 2022-07-20 Analog Devices, Inc. Multi-phase hybrid converter

Also Published As

Publication number Publication date
CN108462394A (en) 2018-08-28

Similar Documents

Publication Publication Date Title
US11088616B2 (en) Isolated converter with switched capacitors
US9154031B2 (en) Current mode DC-DC conversion device with fast transient response
US9071140B2 (en) Current mode buck-boost DC-DC controller
US11183928B2 (en) Switching regulator and control method thereof
US9780657B2 (en) Circuits and methods for controlling a boost switching regulator based on inductor current
WO2011093155A1 (en) Step-up/down dc-dc converter and switching control circuit
WO2017015670A1 (en) Hysteretic control for transformer based power converters
US11362587B2 (en) Hysteretic pulse modulation for charge balance of multi-level power converters
US10355609B2 (en) Voltage step-down technique for deriving gate-charge using multi-level core architecture
US9570992B2 (en) Regulated multiple output isolated DC to DC converter
TW201832454A (en) Dc-dc converting apparatus
WO2008021521A3 (en) Power converter with hysteretic control
TW201444242A (en) DC-DC converter controller
TWI625923B (en) Dc-dc converting circuit and multi-phase power controller thereof
US9837901B1 (en) Single-input multiple-output inverting and non-inverting buck/boost switching regulator control method and apparatus
US9337738B2 (en) Transformer-coupled gate-drive power regulator system
Nagesha et al. Simulation and hardware implementation of 24 watt multiple output Flyback converter
Ray et al. A multi-port DC-DC converter topology with simultaneous buck and boost outputs
TWM591640U (en) Power conversion circuit with single-stage double-switch wide input range
Hwu et al. A novel voltage-bucking/boosting converter: KY buck-boost converter
Mao et al. Inductor current sharing of current doubler rectifier in isolated DC-DC converters
JP6794240B2 (en) Buck-boost DC / DC converter
TW202032906A (en) Multi-phase dc-dc power converter and driving method of the same
JP2011239525A (en) Power supply control circuit and electronic apparatus
Kim et al. On-chip current sensing circuit for current-limited minimum off-time PFM boost converter