TW201829308A - 二維材料製造方法 - Google Patents
二維材料製造方法 Download PDFInfo
- Publication number
- TW201829308A TW201829308A TW106104250A TW106104250A TW201829308A TW 201829308 A TW201829308 A TW 201829308A TW 106104250 A TW106104250 A TW 106104250A TW 106104250 A TW106104250 A TW 106104250A TW 201829308 A TW201829308 A TW 201829308A
- Authority
- TW
- Taiwan
- Prior art keywords
- precursor
- substrate
- graphene
- layer
- reaction chamber
- Prior art date
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一種生產石墨烯或其它二維材料如石墨烯的方法,包括將保持在反應腔室內的基板加熱到一前驅物分解範圍內的溫度,且此溫度允許從分解的前驅物所釋放的物質形成二維結晶材料;建立一個從基板表面朝向前驅物的入口延伸的陡峭溫度梯度(優選>1000℃/米);及引導前驅物通過相對較冷的入口,並跨過該溫度梯度朝向基板表面。陡峭的溫度梯度確保前驅物基本上保持清涼,直到它靠近基板表面,從而使前驅物接近基板表面之前的分解或其他反應最小化,前驅物入口與基板之間的間隔小於100mm。
Description
本發明係與二維材料的製造方法有關,特別是指一種,但非局限於,石墨烯和矽烯的製造方法。本發明還涉及一種生產包含二維材料的異質結構的方法。
按,石墨烯是眾所周知的材料,由材料的理論特性所驅動的大量應用已被提出。這些特性和應用的良好例子詳見A.K.Geim和K.S.Novoselev於登於2007年3月《自然-材料》於自然材料,vol.6,183-191之“石墨烯的興起”。
然而,為了實現這些期望的材料性質和應用,眾所周知,石墨烯具有許多特徵是重要的,包括:1.非常好的晶體質量,即石墨烯結構晶格在所有軸上是非常均勻的,在整個單層中對稱性高度可重複,並且表現出最小的晶格畸變;2.大的材料晶粒尺寸,由此生長的石墨烯的晶粒結構呈現各別的晶粒尺寸10μm×10μm;3.最小的材料缺陷,其中缺陷包括晶格斷裂,中斷,其他元素對晶體的原子或分子污染,或石墨烯單層表面狀況差,例如氧化; 4.大片材尺寸,即大於3cm×3cm,優選為10s厘米;及5.自我支撐,使得上面第4項中給出的尺寸的完整片材可以從其被製造的基板上完整地移出。
迄今為止的傳統石墨烯生產方法已經無法製造具有上述所有性質的石墨烯。因此,石墨烯預料到的性能特性和元件應用尚未被實現。
幾種傳統石墨烯生產方法存在並廣泛被使用;實施例描述如下:●US 20130156678 A1-在金屬基板或薄膜上的石墨烯溶液電泳法,由此將一電位施加到浸入含碳溶液中的導電基板上。由於所施加的電場,結果是碳輸送到基板表面,在該點處碳被自身對準成石墨烯片;●US 8147791 B2-一種石墨烯氧化物還原機制,由此將氧化石墨烯引入水和溶劑溶液中並加熱至適中(<300℃)溫度,導致氧的解離並允許碳合併,生成石墨烯晶體結構配置;及●WO 2014110170 A1-一種催化驅動的化學氣相沉積(CVD)技術,其中加熱的銅基板用作標準CVD室中的催化表面,用於分解碳氫化合物,致使碳留在金屬表面上。
除了目前無法實現上述重要的材料性質之外,這些常規技術還存在一些限制。
需要特殊的犧牲金屬催化劑基板來促進石墨烯形成對製程參數產生限制。這些限制的實施例包括需要使用不影響金屬基板中的相變的溫度以及不會使金屬基板表面劣化的非還原性氣體和前驅物質的需要。生產變量中的這種不靈活性在某些過程中導致難以實現良好的石墨烯生長 和無法去除非預期的污染物或摻雜劑。
在當前的工藝中,形成的石墨烯晶粒不能充分地結合,以致一旦從襯底上移出就很難保持片狀。
因此,最常見的石墨烯是以薄片或粉末形式存在,或者包含將顆粒保持在一起的保護性固定劑的片材。保護性固定劑使得該石墨烯片材不適合建構電子元件。
傳統生產方法的另外兩個問題來自於:壹、從設備中移出所生產的石墨烯以製造電子元件,從而將石墨烯暴露於外部環境,導致表面污染,因而不利地影響生產電子元件需進一步處理;及貳、石墨烯與催化劑金屬基板分離,這需要化學或物理過程,此過程會污染石墨烯材料。
由於石墨烯的提案通常被稱為單層材料,額外的二維(2D)層已受到廣泛關注,現在正被廣泛研究中,現在超過了對石墨烯的新研究。
這些材料分別包括矽烯,磷烯,硼烯,鍺烯和石墨烯同素異型體的矽,磷,硼,鍺和碳。與石墨烯一樣,這些材料在理論上將顯示出非常適合下一代電子技術的特殊性能,如期刊《自然奈米科技》(Nature Nanotechnology)“基於二維材料的電子學”2014(9),768-779所述。
在所有案例中,這些材料的實現和有效的製造仍然是理論性的,儘管已經有幾種方法被確認,如“超越石墨烯的二維材料的進展,挑戰和機會”(ACS Nano,2013,7 4),2898-2926所述。這些發布,在很大程度上與上述石墨烯生產相似,但與石墨烯不同的其他二維材料在空氣中 本質不穩定,這就需要在惰性環境中生產。
到目前為止,除了在氮氣環境中從散裝材料中分離單體單分子層以外,還沒有技術可以生產出其他二維材料,而且沒有單分子層或結構能成功地生產出在受控惰性環境之外存活。
二維材料的主要目標應用在於這些單分子層與半導體或介電材料的組合用於電子和光子結構和元件中。已經有大量的潛在發明被理論化和觀注,並且在“石墨烯科學技術路線圖,相關二維晶體和混合系統”,2015年11月《Nanoscale》期刊中有詳細的說明。
通過手動組合非常小的樣品(小於1cm2)的單體石墨烯和半導體材料樣品,已經實現了幾種原型結構。然而,由於石墨烯質量差、手動組合技術因素和由於組裝過程而發生的固有污染,這些結構的性能遠遠低於預測性能。
本發明的目的在於克服或至少改善上述問題。
緣是,本發明提供了一種製備二維結晶材料的方法,所述方法可以包括:於一反應腔室內提供一基板,其表面具有複數成核位點。該方法還可以包括將前驅物引入反應腔室,而該前驅物乃處於氣相及/或懸浮在氣體中;及將基板加熱到前驅物的分解範圍內的溫度,且此溫度允許從分解前驅物質釋放的成分形成二維結晶物質。該方法優選地包括冷卻前驅物入口點。反應腔室可以是一個近耦合的反應腔室。可以在形成二維結晶材料的基板表面和前驅物進入足夠小的反應腔室的點之間提供一間距,以及基板表面與前驅物進入腔室的點之間的熱梯度,其足夠陡峭,且反應 腔室內在氣相中反應的前驅物的部份少到容許二維結晶材料的形成。該反應腔室可以是密閉的腔室。
本發明又提供了一種製備二維結晶材料的方法,所述方法包括:在近耦合的反應腔室內提供具有複數成核位點的基板;將一前驅物引入近耦合的反應腔室中,該前驅物乃處於氣相和/或懸浮在氣體中;及將基板加熱到前驅物的分解範圍內的溫度,其容許從分解的前驅物質所釋放的物種中形成二維結晶物質。該反應腔室可以是密閉的腔室。
一近耦合反應腔室提供在其上形成二維結晶材料的基板表面與前驅物進入近耦合的反應腔室的入口點之間的間距,該入口點足夠小,且反應腔室內在氣相中反應的前驅物的部份少到容許二維結晶材料的形成,該反應腔室可以是密閉的腔室。該間距的上限可以根據選擇的前驅物質種類,以及在近耦合的反應腔室內的基板溫度和壓力而變化。
與標準化學氣相沉積系統的腔室相比,使用提供前述間距距離的近耦合反應腔室容許高度控制前驅物質向基板的供應;其上形成二維結晶材料的基板表面和前驅物體進入近耦合的反應腔室的入口之間提供的小距離間距容許陡峭的熱梯度,從而提供對前驅物分解的高度控制。
在許多情況下,形成二維結晶材料的基板表面與直接與基板表面相對的室壁之間的間距將基本上等於基板表面與前驅物進入近耦合反應腔室之進入點之間的間距。然而,這可能不一定是這種情況,例如,其中近耦合反應腔室包括一入口,此一入口供前驅物位於或延伸於腔室內或者是在此一入口處使用一水平引入型槽室。
與由標準化學氣相沉積系統提供的相對大的間距相比,由 近耦合的反應腔室提供的基板表面和室壁之間的間距相對較小,其容許:前驅物的入口點和基板表面之間的陡峭的熱梯度;前驅物入口點和基板表面之間的短流路;及前驅物入口點和二維結晶物質形成點間的近距離。
這些優點增強了包括基板表面溫度,腔室壓力和前驅物質通量在內的沉積參數對前驅物質到基板表面的輸送速率和穿過基板表面的流動動力的控製程度的影響。
這些優點和由這些優點提供的更大的控制使得腔室內對二維結晶材料沉積是有害的氣相反應最小化,容許前驅物分解速率具有高度的靈活性,能夠有效地將物質傳送到基板表面;並且能控制在基板表面上的原子構型,這在標準化學氣相沉積(CVD)技術是不可能做到的。
通過使用近耦合的反應腔室可獲得的基板表面和周圍環境的精細控制使得能夠使用例如氣相磊晶法(VPE)來沉積二維結晶材料。這與由陡峭的熱梯度提供的益處共同得到沉積二維結晶材料的能力而不需要使用金屬催化基板。
由於不需使用金屬催化基板,增加了可用於生產二維結晶材料的工藝條件的靈活性。這又提供了限制無意摻雜和增加晶粒尺寸的可能性。它還允許選擇使用二維結晶材料結合較差的基板,便於通過更直接和更快速的方法分離二維結晶材料,而能最小化二維結晶材料污染或不污染二維結晶材料。
在一較佳實施例中,二維結晶層是石墨烯,前驅物是包含前驅物的碳,物種是碳。
使用本發明的方法,能製出已經比已知方法具有顯著提高的性能的石墨烯,例如具有大於20μm的晶粒尺寸,覆蓋於6英寸直徑的基板具有98%覆蓋率,基板層均勻性>95%,薄層電阻率小於450Ω/sq,電子遷移率大於2435cm2/Vs。對使用本發明方法生產的石墨烯層的最新測試已經證明了在標準溫度和壓力條件下測試的全層電子遷移率>8000cm2/Vs。該方法已經能夠在6英寸(15cm)的基板上產生出石墨烯層,依此產生出的石墨烯層通過標準拉曼(Raman)和原子力顯微镜(AFM)映像技術微米級測量,沒有不連續性被檢出。
在另一個實施例中,二維結晶層是矽烯,前驅物是包含前驅物的矽,物種是矽。
基板被加熱的優選溫度取決於所選擇的前驅物質。選擇的溫度需要足夠高以允許前驅物質的至少部分分解以釋放物質,但又不能太高,以免促進氣相中遠離基板表面的重組率增加,因而產生不需要的副產品。能讓100%的前驅物質完全分解的溫度,通常可從前驅物供應商獲得,或者可以在許多在線上資料庫中找到。一旦選擇了其它工藝條件,例如反應腔室壓力和前驅物流速,則理論上可以使用本技術領域中具有通常知識者所熟知的方法來計算重組速率。儘管如此,所選擇的溫度可能高於完全分解溫度,以促進改善的基板表面動力學,從而促進形成具有良好晶體質量的二維結晶材料。選擇以較高重組率為代價來提供良好晶體質量的溫度是可以有所權衡,此會降低二維晶體材料生長速率。通過簡單的經驗實驗,可以確定特定前驅物質的最佳溫度或優選的溫度範圍。
用於在近耦合的反應器中沉積二維結晶材料的溫度範圍取 決於所選擇的基板材料,所選擇包含前驅物的物種(及/或在適用的摻雜劑)和期望的最終石墨烯性質。當使用具有低分解溫度的高揮發性前驅物質時,氣相磊晶(VPE)二維結晶材料沉積溫度可以在200℃的範圍內,對於其它前驅物質化合物,其最高可達1500℃。
為了在基板表面和前驅物的引入點之間存在熱梯度,入口將需要具有比基板更低的溫度。對於一固定間距,較大的溫度差將提供更陡的溫度梯度。因此,優選地,至少供前驅物引入的腔室的室壁,或更優選地,腔室的所有壁面被冷卻。可以使用冷卻系統來實現冷卻,例如使用流體,優選液體,最優選水冷卻。反應器的壁面可以通過水冷保持在恆定溫度。冷卻流體可以在入口周圍流動,以確保入口延伸通過的反應器壁的內表面的溫度,因而當前驅物本身通過入口進入反應腔室時,其本身的溫度基本上低於基板溫度,優選為等於或低於200℃,更優選為170℃或更低。
在入口由明顯突出到腔室中的導管來界定的佈置中,可能需要通過將冷卻流體穿過和/或經過突出導管壁運行來提供流體冷卻,以便前驅物在突起內部保持冷卻直到其從入口流出。由於由此所帶來複雜性的結果,包括突出導管的佈置並非優選。
通過同時加熱基板並在入口處直接與基板表面相對的方向冷卻反應器的壁,可以形成陡峭的熱梯度,由此熱梯度中,在基板表面處的溫度最高,並且朝向入口快速下降。這確保了基板表面之上的反應器體積具有比基板表面本身明顯更低的溫度,因而在前驅物接近基板表面之前,在無有用的氣相中,大大降低了前驅物反應的概率。
雖然跨越間隔的溫度曲線實際上不是線性的,但是優選的 是,基板和前驅物入口之間的溫差相當於大於每米約1000℃的線性梯度(ts-ti)/s1000℃m-1,其中ts是基板表面的溫度,ti是入口處的溫度,s是以米為單位的間距。
這樣的梯度是可以獲得的,例如,在入口和基板之間的約30mm間隔處使溫度下降30℃。較優選地,溫度差等於或大於3000℃/米,例如採用基板溫度500℃入口溫度200℃(溫差300℃)而間隔為100mm。甚至更有利的是,差異超過10,000℃m-1,而這差異是能達成的,例如採用基板溫度為1100℃,入口溫度為200℃,間距為60mm等於~14,500℃m-1,或基板溫度為500℃入口溫度200℃(溫差300℃),間隔10mm(30,000℃m-1)。
在較佳實施例中,該方法包括將可能處於氣相的前驅物質通過被加熱的基板。在此有兩個變量要考慮:近耦合反應腔室內的壓力和進入腔室的氣體流量。
選擇的較佳壓力取決於所選擇的前驅物。一般而言,如果使用具有更大分子復雜性的前驅物質,則使用較低的壓力,例如,小於500毫巴,則可觀察到改善的二維結晶材料質量和生產速率。理論上,壓力越低越好,但是由非常低的壓力(例如小於200毫巴)提供的益處將被非常緩慢的二維結晶材料形成速率抵消。
相反地,對於較不復雜的分子前驅物質,較高的壓力是優選的。例如,以甲烷作為前驅物質供生產石墨烯時,600毫巴或更大的壓力可能是合適的。通常,由於其對基板表面動力學和施加在系統上的機械應力的不利影響,不期望使用大於大氣壓的壓力。可以通過簡單的經驗實驗為任何前驅物質選擇合適的壓力,其實驗可為,例如,五次測試運行,在 前兩個等距間隔使用壓力分別為50毫巴,950毫巴,而其他三個等距間隔使用其它壓力。然後可以採用在第一次運行中已識別出的最適合的間隔內壓力來做進一步運行,以便縮小最適合的壓力範圍。
前驅物流量可用於控制二維結晶材料的沉積速率。選擇的流量將取決於前驅物中物種的量和待生產層的面積。前驅物氣體流量需要足夠高以允許在基板表面上形成相干的二維結晶材料層。如果流量高於上閾值速率,則大量材料形成,例如,石墨,通常會導致或增加氣相反應,導致固體顆粒懸浮在氣相中,而不利於二維結晶材料的形成和/或可能污染二維結晶材料層。理論上可以使用本領域技術人員已知的技術來計算最小閾值流速,通過評估需要供給到基板的物質的量來確保在基板表面足夠的原子濃度,以利材料層的形成。在最低及上限的閾值之間,對給予的壓力與溫度,流速及二維結晶材料層生成速率是一線性關係。
目標基板上物質的初始成核是用於最終生產二維結晶材料層的預成型劑,可能需要與實現最終目標二維結晶材料所需條件不同的表面條件,這取決於基板和前驅物選擇。通常期望在目標基板上具有非常不同的表面動力學,以促進物質吸附到目標基板表面的初始形成。表面動力學,前驅物分解和表面反應速率可以容易地由基板溫度,反應器壓力,前驅物流速和稀釋氣體的存在來控制。
因此,較佳的方法包括:提供第一組反應器條件以促進初始物質吸附到基板,隨後,較佳為不將基板從反應腔室中移出,提供第二組反應器條件以促進形成和聚結二維結晶材料層。在最簡單的形式中,該實施例是兩階段過程,其中一組條件,例如,反應腔室內的第一壓力,基 板的第一溫度和第一前驅物流過基板,用於促進初始物質對基板的粘附,然後再使用第二組條件,例如,第二壓力,第二溫度和第二流速來促進二維結晶材料層從基板表面上的初始種類位置的形成和聚結。可能只需要改變一個屬性,例如,溫度,而在其他情況下,可能需要改變多種屬性。另外,通過使用包括在兩組或更多套反應器條件之間循環的優選變體方法已經生產了優化的二維結晶材料層。
在進一步的精練方法中,使用另外一組反應器條件包括另外的步驟可能是有益的。還可以包括另外的步驟來處理,例如,退火後形成二維結晶材料。
在一較佳實施例中,該方法包括在引入前驅物質以改善在二維結晶材料生產之前的基板的表面狀態的基板製備步驟。準確的製備要求取決於所選擇的基板材料和放置在反應腔室時基板的表面狀態。最常見的是,基板製備過程涉及基板的熱處理,以除去常見的表面污染物如天然氧化物和/或碳氫化合物,並將反應腔室內的壓力降低至低於大氣壓,和/或在反應腔室內提供還原環境反應腔室,例如在氫環境中的低壓處理。在其他情況下,可優選改變基板表面的終止狀況以提供用於沉積二維結晶材料的更合適的狀態。這可以通過將反應腔室中的基板暴露於在二維結晶材料沉積過程之前改變基板的表面狀態的氣體或前驅物來實現,例如使用氨氮於藍寶石基板。另外,可以對所提到的那些使用額外的處理。
在一較佳實施例中,該方法包括在加熱的基板上脈動前驅物流。低於明顯的二維晶體材料生長所需的最小流速或前驅物在基板上的零流速有助於表面動力學,並且促進原子表面擴散以使得在基板表面處的 物質成型較佳的單層佈置。
將前驅物流過基板的一個“開啟”時程及之後是“關閉”和/或“減少的流動”時程的組合,被定義為一週期。改善沉積過程所需的週期次數可以根據前驅物,基板和二維結晶材料層的期望的最終性質而變化。初步實驗顯示,使用任何2到22個週期顯示出良好改進結果。進一步的實驗已經將該已知範圍擴展到35個週期,儘管預期該週期數對於某些前驅物和/或反應腔室條件可以更大。在某些條件下,多達100個週期數可能仍然是有益的。
類似地,開啟和關閉時間的優選長度也將根據前驅物質和基板而變化。基於迄今為止使用有限數量的前驅物質生產石墨烯的實驗,推測優選的“開啟”時間為至少十秒,優選的“關閉”和/或“減少流動”時間為至少五秒。這些時間對於其他二維層的生產可能不同,例如使用硼烷作為前驅物的硼酚的生產可能需要顯著少於10秒。
例如通過改變基板表面溫度和/或反應腔室壓力和/或前驅物流速也可以採用不同的工藝條件進行“開”和“關”或“減少流動”時程。此外,從週期到週期,也可優選使用不同工藝條件,包括例如修改前驅物流量。
在一替代實施例中,可以在前驅物“關閉”期間將各沖洗氣體引入反應腔室中,從而從基板表面主動去除前驅物或前驅物副產物,否則可能於前驅物在“關”期間於基板上對碳表面擴散造成阻擋。合適的淨化氣體並無限制,包括氫和/或氮的使用。
另一替代實施例中,該方法包括在引入前驅物體之後密封 近耦合的反應腔室,以使前驅物質流入或離開近耦合反應腔室的流動最小化和/或防止,包括在引入該前驅物之後密封該反應腔室以最小化或防止該前驅物流入或流出該近耦合反應腔室。這限制了基板表面暴露於前驅物質,這樣可以藉由降低物質(species)接觸靠近基板表面的被分解前驅物而幫助二維結晶材料的形成。可以通過控制近耦合的反應腔室內的壓力和/或通過使用稀釋氣體內的壓力來控製表面上可用的物質(species)的量,其將決定二維結晶材料晶體的質量。基板可以在引入前驅物之前,之後或同時被加熱。
在其上形成二維結晶材料的板表面與基板表面正上方的反應器壁之間的間距對反應器熱梯度具有顯著影響。較佳的是,熱梯度盡可能陡峭,這與盡可能小的較佳間距相關。更小的間隔改變了基板表面處的邊界層條件,這又促進了二維結晶材料層形成的均勻性。較小的間距也是非常優選的,因為其允許精確控製過程變量的水平,例如通過較低的輸入通量及較低反應器及基板溫度來減少前驅物質消耗,從而減小基板中的應力和非均勻性導致在基板表面上產生更均勻的二維結晶材料,因此在大多數情況下顯著縮短了處理時間。
實驗表明,形成二維結晶材料的基板表面與前驅物入口點之間的間隔約為100mm(這可等同於基板表面和直接位於基板上方反應器壁之間的距離),此間隔在接近能夠提供石墨烯形成所需條件的上限。這可以稍微增加到約110mm,其中前驅物的入口突出超過壁並進入腔室,以便與基板表面間隔約100mm。然而,使用等於或小於約20mm的更小間隔產生更可靠和更好質量的二維結晶材料;等於或小於約10mm的間距促進了靠近 基板表面形成更強的熱流,從而提高了生產效率。
在使用具有相對低的分解溫度的前驅物,使得在前驅物入口的溫度下可能存在前驅物的分解程度可忽略的程度,最好為10mm以下的間隔,以便縮減前驅物到達基板的時間。
用於本方法的合適的反應腔室包括垂直引入系統,可以讓氣體直接從基板對面的入口朝向標的物注入,及一些水平引入系統,可以讓氣流在橫向遠離基底的點處被引入腔室。可用於執行該方法的合適設備的常見實例是氣相磊晶(VPE)系統和金屬有機化學氣相沉積(MOCVD)反應器。
不管使用的設備的形式如何,其較佳設備為具有能將室壁直接維持在用以形成二維結晶材料的基板表面對面的裝置,並且較佳為能將腔室的所有壁面保持在基板表面對面,且能將室壁維持在低於已加熱基板的溫度,以提供陡峭的熱梯度。這可以通過例如水冷來實現。
最好反應器是冷壁式反應器,因為耦合到基板的加熱器是主要的並且最好是腔室的唯一熱源。
對於垂直引入系統,儘管非為較佳選擇,前驅物的引入點延伸到腔室中,直接與基板相對的入口的端部與與基板直接相對的腔室的壁之間的間隔的差可以是不超過約10mm。
在水平反應器構造的情況下,與在基板和基板直接相對的室壁之間的間隔相比,前驅物引入點和基板表面之間的間隔可以大大增加,並且仍然能在基板表面產生二維結晶材料。已經實驗證明,基板表面與前驅物引入點之間的水平間距高達約400mm可以在基板表面上產生二維 結晶材料。
通常,反應器的頂部天花板將是直接與在其表面產生二維結晶材料的基板表面相對的壁;然而,可理解的是,基板可以安置在反應器中,所以並非是這樣的。
較佳的是,基板提供晶體表面,在其上產生二維晶體材料,因為有序晶格位置提供促進形成良好的二維晶體材料晶體過度生長的規則陣列的成核位點。最佳的基板提供高密度的成核位點。用於半導體沉積的基板的常規可重複晶格是理想的,原子階梯表面提供擴散阻擋層。
儘管如此,在改良的生長條件下,可以使用非結晶,多晶或無定形材料作為二維結晶材料生長的基板。雖然該方法可能效率較低,但是這樣的基板可能以其他方面是有益的,例如,成本、易於層的移出,等。
非晶基質可以通過表面不規則,表面形態或缺陷提供合適的成核位點。此外,通過表面改性,例如使用濕法或乾蝕刻技術來仿形或圖案化,可以使基板更適於材料沉積。或者或另外,某些基板,例如塑料和陶瓷可以預先形成具有提供成核位點的理想的表面光潔度。
雖然該方法可以與金屬基板一起使用,但這並非最佳。最好的是,基板提供了製造二維結晶材料的非金屬表面。這避免了與金屬基板相關的工藝條件限制,並且避免了與自種基板移出形成的二維結晶材料層有關的問題。
合適基板的非限制性實例包括:●半導體單晶晶片,例如矽(Si),碳化矽(SiC),砷化鎵(GaAs), 磷化銦(InP),氮化鎵(GaN),氧化鋅(ZnO)或銻酸銦(InSb);●絕緣材料,例如藍寶石(Al2O3),二氧化矽(SiO2);●化合物半導體同構和異質結構,例如磷化銦(InP)/碲化鎘(CdTe),氮化鎵(GaN)/氮化銦鎵(InGaN)/氮化鋁鎵(AlGaN),矽(Si)/氮化鋁(AlN)/氮化鎵(GaN),砷化鎵(GaAs)/磷化鋁銦鎵(AlInGaP),氮化鎵(GaN)/氮化硼(BN),絕緣體上矽(SOI);●陶瓷,例如二氧化鋯,矽鋁酸鹽,氮化矽(Si3N4),碳化硼(B4C);●玻璃,例如石英,熔融石英玻璃,硼氟化物;●塑料和聚合物,如聚醚酮(PEK),聚醚醚酮(PEEK),聚酰胺酰亞胺(PAI),聚苯硫醚(PPS)等高性能塑料;●複合材料,例如纖維補強聚合物,玻璃補強基體和碳複合材料;●奈米材料,例如奈米管和奈米顆粒;●機鹼,例如有機聚合物如聚對苯二甲酸乙二醇酯(PET)或聚碳酸酯(PC)。
通常,優選具有盡可能薄的基板,以確保在二維晶體材料製備期間跨基板的熱均勻性。然而,基板的最小厚度一部分由基板的機械性能和基板被加熱的最高溫度來確定。
基板的最大面積由近耦合的反應腔室的尺寸決定。
各種化合物可以用作前驅物質,其最小要求是其包含所需物質,可以在氣相中輸送到近耦合的反應腔室中及/或被氣體懸浮,並且其在低於或等於反應器可操作的最高溫度的溫度下將分解。儘管設想未來的反應器將提供使用更高溫度的能力,對於許多商業上可獲得的反應器,最 高溫度在1200℃至1500℃之間。
為了生產石墨烯,前驅物可以包括一種或多種以下基團中的一種或多種的化合物:烴,氫化物,鹵碳化合物(例如鹵代烴),包括鹵代烷烴和鹵代酰胺,茂金屬,金屬有機物,胺,包括烷基胺,有機溶劑和偶氮化合物,以及任選的疊氮化物,酰亞胺,硫化物和磷化物。這些基團提供含有非碳分解副產物的前驅物,可以從反應腔室中移除,不會合併到石墨烯或干擾沉積製程,該前驅物可以包含多碳化合物,從上述一個或多個基團。
前驅物較佳為由一種或多種以下組合的一種或多種化合物組成:鹵碳化合物(例如鹵代烴等),烴,偶氮和茂金屬以及任選的金屬有機物,因為它們相對容易處理並且可廣泛使用。
前驅物最好包括溴甲烷,甲烷,乙烷,環戊二烯基鎂,四溴化碳,偶氮甲烷,偶氮乙烷和/或乙炔中的一種或多種。
甲烷,乙烷和乙炔是特別合適的,因為它們可以以高純度形式商購,並且其具有包含所需碳的分子結構;另一個成分,氫(在偶氮化合物的情況下為氮)不影響石墨烯沉積過程。偶氮甲烷和偶氮乙烷還具有提供自由基碳基團的分子結構,易於釋放碳。
鹵碳化合物被認為是特別合適的前驅物,因為它們通常是揮發性的,易於在氣相中輸送到反應器中並且容易地解離以釋放碳和鹵素,其本身是揮發性的並且容易從室中排出。
溴甲烷特別受歡迎,因為它的高揮發性提供了兩個優點。在室內的壓力低於溴的蒸汽壓力的一組工藝條件下,溴可以容易地從反應 腔室中除去而不與石墨烯層相互作用。在其中反應腔室內的壓力大於溴的蒸汽壓力的第二組工藝條件中,可以將溴作為摻雜劑摻入到石墨烯中。
依據推測,鹵碳化合物基團中的其它化合物將表現出類似的性質,使其適用於純石墨烯源和摻雜石墨烯源。該組中推測的化合物的實例包括溴乙烷,甲基碘和甲基氯化物。還認為某些非鹵碳化合物化合物可以適合作為純石墨烯源和摻雜的石墨烯源,例如環戊二烯基鎂,四溴化碳,可任選的還有三乙基硼烷。
為了生產矽烯,前驅物可以包括來自硅烷、含有機金屬的矽或有機矽分子基團的一種或多種化合物。這些基團提供前驅物,這些前驅物包含所需的矽和不含矽的分解副產物,其可以容易地從反應腔室中除去而不影響矽烯生長過程。較佳的前驅物質化合物包括一種或多種,但不限於,矽烷,乙矽烷,甲基矽烷,四氯化矽和四甲基矽酸四乙酯。前驅物可能包括來自一個或多個上述基團的多個含矽化合物。
為了製備硼酚,前驅物可以包括一種或多種來自含有金屬有機分子基團的硼烷,有機硼或硼的化合物。這些基團提供前驅物,這些前驅物包含所需硼和和不含硼的分解副產物,其可以容易地從反應腔室中除去而不影響硼酚生長過程。較佳的前驅物質化合物包括一種或多種硼烷,乙硼烷,三甲基和三乙基硼。前驅物可能包括來自一個或多個上述基團的多個含硼化合物。
為了製備鍺烯,前驅物可以包括來自鍺烷或金屬有機分子基團的一種或多種化合物。這些基團提供前驅物,這些前驅物包含所需的鍺和和不含鍺的分解副產物,其可以容易地從反應腔室中除去而不影響鍺 烯生長過程。較佳的前驅物質化合物包括一種或多種的鍺烷、四乙基鍺(C2H5)4Ge和四丁基锗(n-C4H9)4Ge。前體可能包括來自一個或多個上述基團的多種含鍺化合物。
在某些較佳的實施例中,將前驅物與稀釋氣體的混合物在近耦合的反應腔室內通過加熱的基板。使用稀釋氣體可進一步改善碳供應速率的控制。
優選稀釋氣體包括氫,氮,氬和氦中的一種或多種。選擇這些氣體是因為它們在典型的反應器條件下不容易與大量可用的前驅物或石墨烯層反應。儘管如此,氫氣可能會與某些前驅物質發生反應。此外,在某些條件下,氮可以併入到石墨烯層中。在這種情況下,可以使用其它載送氣體。
儘管存在這些潛在的問題,但是特別優選氫和氮,因為它們是金屬有機化學氣相沉積(MOCVD)和氣相磊晶(VPE)系統中使用的標準氣體。
在一個優選的變型實施例中,該方法包括在密閉耦合的室內熱處理形成的二維結晶材料(在半導體生產領域內通常稱為“退火”)。通常預期退火溫度將等於或大於晶格形成溫度,但在某些情況下可能會低於地層溫度。例如,已經顯示出大於1100℃的溫度導致晶格重新排列以提供改進的石墨烯結構。對於矽烯,低至~150℃的熱處理溫度已經顯示出誘導該層的脫氫,導致改善的電性能。退火過程可以包括多個階段,在這些階段中,二維晶體材料保持在不同的溫度,例如在較低溫度下的第一階段,以便於除去雜質,而在較高溫度下的第二階段以改善晶格結構。
如上所述,由本發明提供的反應條件的靈活性允許生產可控摻雜的二維結晶材料結構。為此,本發明的有利的另外的實施例包括將摻雜元素引入近耦合反應腔室並選擇基板的溫度,反應腔室的壓力和氣體流速以產生摻雜的二維結晶材料。使用前述指導,可以使用簡單的經驗實驗來確定這些變量。該方法可採用於或不採用稀釋氣體。
在該方法的一個變型中,用於二維晶體材料生長的前驅物質分子包括摻雜元素。
在一替代方案中,包含該種類的前驅物質和包含摻雜元素的第二前驅物質在近耦合反應腔室內被引入基板;第二前驅物是氣體或懸浮在氣體中。在某些實施例中,第二前驅物質的流動被脈衝,以提供時間允許二維晶體材料層優先在基板表面上形成。在另一變型中,可以藉由例如包括第三前驅物質及/或藉由使用包括含一摻雜元素的第一前驅物質與第二前驅物質來引入多於一種的摻雜元素。
對可能引入的摻雜元素沒並有任何特別限制。通常用於生產石墨烯的摻雜元素包括矽,鎂,鋅,砷,氧,硼,溴和氮。對於矽烯,有利的摻雜元素包括氧,銅,銀,金,銥和鉑。在硼酚的情況下,有利的摻雜元素包括碳和氮。
可以使用多種化合物作為摻雜劑前驅物,最小要求是這些化合物可以以氣相將形式或懸浮在氣流中力式輸送到密閉近耦合腔室中,並且其將分解以釋放所需的摻雜劑用於和選用的前驅物質供生長二維結晶材料。
可能適合作為摻雜劑前驅物源的化合物包括以下組中的那 些:氫化物,金屬有機物,茂金屬和鹵碳化合物(例如鹵代烴等)。
本發明容許的反應過程的靈活性提供了在層形成期間內及/或兩層形成期間之間改變反應器條件的能力。這提供了沉積多層及/或具有不同性質層的可能性。因此,根據另一較佳實施例,該方法可另外包括改變反應器條件的步驟,例如基板的溫度及/或反應腔室的壓力或前驅物的流速,以在第一個二維結晶材料層或摻雜的二維結晶材料層上(例如頂部)形成另外一個二維結晶材料層或摻雜的二維結晶材料層,形成一個二維結晶材料異質結構。或者,其可以包括引入第二前驅物質或者在形成第一和第二堆疊的二維結晶材料層之間改變前驅物質,使得第二層與第一層具有不同的材料性質。
結合多個二維材料層可以產生具有非常結構特性的異質結構,只要連續分離二維層可累積產生多晶層異質結構,而不會造成交叉污染或層間分子或元素擴散。通過熟慮的生長參數控制,評估當前二維層生長的沉積性質並維持前述二維層穩定所需的條件,則二維材料異質結構可被產出。
本發明還提供了生產異質結構的可能性,並因此作為包括至少一個二維結晶材料層(摻雜或以其它方式)與至少一個非二維結晶材料層的推論的電子器件,例如,一層半導體材料和及/或介電材料,可在近耦合反應腔室內原本位置成形,即不需要在成形下一層之前從腔室中移除第一形成的層。這克服了先前技藝,為了提供不同的生產條件要求,以形成每一異質結構層,需要將該結構移轉在不同的沉積腔室,而遭受周圍環境帶來的產汙染問題。
可以使用上述技術的組合來形成任何所需構造的異質結構,例如簡單的兩個或三個堆疊的連接裝置到達複雜的超晶格結構。
深信上述方法允許製造具有新穎結構的石墨烯材料,因此根據本發明的第二型態,提供了一種平均晶粒尺寸等於或大於20微米的二維結晶片材(優選石墨烯)。
由於與現有石墨烯材料相比具有顯著更大的平均晶粒尺寸,所以石墨烯片的機械強度被充分地增加,使得它能夠自支撐的,因此可以從其形成的基板上移出,不會或幾乎不會崩解。
依據本發明的另一型態,提供一種製造異質結構的方法,該異質結構包括具有一界面的二維結晶材料及一第二層,所述方法包括:使用第一組反應器條件以便在近耦合反應腔室中的基板上產生二維結晶材料;以及在第二組反應器條件下引入第二前驅物以在所述基板上形成所述第二層。
可以形成二維結晶材料,並且其上沉積第二層,反之亦然。這允許首先形成哪個層保留在室內,並且因此在沉積下一層之前保持沒有污染。
第二層可以直接形成在第一層的頂部上,或者第一層可以直接形成在第二層的頂部上。
第二層可以是另一個二維結晶材料層或非二維結晶材料層。第二層可以例如是半導體。
在一個實施例中,第二層包括以下中的至少一個:氮化鎵(GaN),氮化硼(BN),氮化鋁(AlN),氮化鋁鎵(AlGaN),一氮化矽(SiN)。
為了促進單層的最佳形成,較佳為,在形成二維結晶材料層和非二維結晶層之間時改變基板和前驅物入口之間的間隔(此間隔可等同於基板與基板正上方的反應器室的頂部之間的間隔)。
依據本發明的另一型態,提供一種製造異質結構的方法,該異質結構包括具有一界面的二維結晶材料及一第二層,其中所述界面在所述材料上是連續的。優選地,該異質結構具有大於1cm平方的寬度。
1‧‧‧近耦合反應器
1A‧‧‧壁
1B‧‧‧內表面
10‧‧‧基板
12‧‧‧二維材料層
2‧‧‧腔室
20‧‧‧基板
21‧‧‧成核層
22‧‧‧層半導體或電介質材料
23‧‧‧二維材料表面層
3‧‧‧入口
30‧‧‧基板
31‧‧‧二維材料層
32‧‧‧半導體或電介質材料
4‧‧‧排氣口
40‧‧‧基板
41‧‧‧二維層
42‧‧‧半導體層或電介質層
5‧‧‧基座
5A‧‧‧凹部
6‧‧‧基板
6A‧‧‧基板表面
7‧‧‧加熱器
8‧‧‧充氣室
9‧‧‧泵
X‧‧‧基板和壁之距離
Y‧‧‧前驅物通過入口引入到腔室中
為了詳細說明本發明之技術特點所在,茲舉以下之較佳實施例並配合圖式說明如後,其中:第1圖係本發明用於生產二維材料的垂直反應器的示意圖;第2圖係據實本發明第一較佳實施例的方法在第1圖的反應器內使用氣相磊晶術產生的石墨烯的拉曼光譜;及第3-6圖係本發明異質結構的剖面示意圖,顯示是在基板上形成的包括一個或多個二維材料層與一個或多個半導體或電介質材料層結合的組成。
如第1圖所示之反應器被構造用於通過氣相磊晶(VPE)的方法在基板上沉積一個或多個二維材料層,其中一前驅物質被引入基板附近及在基板上進行熱,化學和物理相互作用,以便形成單層或多層二維材料膜。
該裝置包括一具有一腔室2之近耦合反應器1,腔室2具有設在其一壁1A單一或多數入口3和至少一個排氣口4。一基座5佈置成位於腔室2內。基座5包括用於保持一個或多個基板6的一個或多個凹 部5A。該裝置還包括使基座5在腔室2內旋轉的裝置,及一加熱器7,例如,包括耦合到基座5以加熱基板6的電阻加熱元件或RF感應線圈。加熱器7可以包括為了實現基板6的良好的熱均勻性而需要的單個或多個元件。腔室2內的一個或多個傳感器(未示出)與控制器(未示出)結合使用以控制基板6的溫度。
反應器1壁面的溫度通過水冷保持在基本恆定的溫度。
反應器壁面界定一個或多個內部通道及/或充氣室8,充氣室8基本上延伸至相鄰(通常為幾毫米)反應器壁的內表面,包括壁1A的內表面1B。
在操作期間,泵9經由通道/充氣室8送水,以將壁1A的內表面1B維持在或低於200℃。部分原因在於入口3的直徑相對較窄,在前驅物的溫度通過入口3穿過壁1A進入腔室2時(該前驅物通常保存在遠低於內表面1B的溫度以下),大體上將與壁1A的內表面1B的溫度相同或更低。
該複數個入口3以一個或多個基板6的面積大致相等或更大的區域排列成陣列,以在一個或多個基板6的整個面對入口3的表面6A上提供基本均勻的體積流量。
腔室2內的壓力藉由控制通過入口3的前驅物氣流和排氣口4的排氣來控制。通過這種方法,可以控制腔室2內和橫跨基板表面6A的氣體的速度,並且進一步控制分子從入口3到基板表面6A的平均自由程。在使用稀釋氣體的情況下,也可以使用這種控制方法來控制通過入口3的壓力。
基座5的材料組成能耐受沉積,前驅物和稀釋氣體的溫度。基座5通常由均勻的導熱材料構成,確保基板6均勻加熱。合適的基座材料的實例包括石墨,碳化矽或兩者的組合。
該複數個基板6由腔室2內的基座5支撐,使得它們面對壁1A並相隔如第1圖中標記X所示之1mm至100mm之距離,儘管間距通常越小越好。如果入口3突出到腔室2內或以其他方式位於腔室2內,則測量基板6和入口3的出口處之間相關的間隔。
可以藉由移動基座5,基板6和加熱器7來改變基板6和入口3之間的間隔。
合適的近耦合反應器的一個例子是AIXTRON®CRIUS的有機金屬化學氣相沉積反應器或AIXTRON® R&D的近耦合噴淋頭系統。
懸浮在氣流中的氣體形式或分子形式的前驅物通過入口3引入(由箭頭Y表示)到腔室2中,使得它們將撞擊或流過基板表面6A。前驅物可以彼此反應,通過不同的入口3引入而保持分離直到進入腔室2前驅物或氣體通量/流量通過流量控制器,例如氣體質量流量控制器(未示出)被控制在腔室2的外部。
可以通過單一入口或多個入口3引入稀釋氣體以改變腔室2中的氣體動力學,分子濃度和流速。稀釋氣體通常依製程或基板6材料來選擇,使得它將不具有影響二維材料的生長過程。常見的稀釋氣體包括氮氣,氫氣,氬氣和較小程度的氦氣。
下面描述使用成功製造二維材料層和自一上述從一個或多個二維層和一個或多個其它半導體或電介質材料製造二維層異質結構的裝 置的實施例性方法。在所有實施例中,使用直徑為250mm的近耦合垂直反應器與六個2”(50mm)目標基板。對於替代尺寸及/或不同目標基板區域的反應器,前驅物質和氣體流速可以通過理論計算和/或經驗實驗來縮放,以獲得相同的結果。
實施例一:
石墨烯單層可以在選定的基板上通過氣相磊晶(VPE)在近耦合反應腔室的標準操作參數內生產。通過仔細選擇石墨烯前驅物和基板類型,並與適當的反應腔室參數匹配,可以在基板表面上沉積石墨烯。
例如,選擇茂金屬,二茂鎂(Cp2Mg)或二茂鐵(Cp2Fe)作為前驅物質的反應器被加熱到使得基板(這裡的矽或藍寶石)的表面大於前驅物質的所需或完全的分解溫度的溫度,這裡>500℃。
將反應器壓力降低至合適的真空度以確保疏散不需要的製程副產物,對於本實例中的茂金屬,<200毫巴的壓力證明是成功的。然後將茂金屬和氫的稀釋流通過入口引入反應器,因此基板表面以合適的流速,在該實施例中為700sccm的茂金屬和1300sccm的氫氣是理想的。前驅物流入反應器一段時間,允許在基板表面上形成一個完整的均勻的石墨烯單層,在這個例子中,545秒是矽基板的理想選擇,藍寶石基板是380秒。在完成該層之後,停止茂金屬流並且在繼續低壓下在2000sccm的持續氫氣流下冷卻反應器,以保持石墨烯表面,直到適當冷卻,理想地<100℃。
由該方法形成的所得石墨烯的拉曼光譜如第2圖所示。
實施例二:
使用溴甲烷(CH3Br)作為前驅物供石墨烯單層生產。將反 應器加熱至使基板(這裡為藍寶石)的溫度大於前驅物的完全分解溫度,這裡>350℃。將反應器壓力降低到合適的真空度以確保排出不需要的分解和反應副產物,並且還促進碳基產物在基板表面的足夠高的駐留時間以形成石墨烯。對於溴甲烷(CH3Br),600毫巴的壓力已被證明是理想的,因為主要不需要的副產物溴(Br)在選定的沉積溫度下的蒸氣壓高於此。然後將前驅物和氮氣的稀釋流引入反應器,因此通過腔室入口以合適的流速引至基板,在本實施例中對於溴甲烷(CH3Br)而言流速為1000sccm是理想的,對於氮氣而言流速為2000sccm是理想的。在此製程中使用氮氣以限制溴化氫(HBr)的可能形成。前驅物和稀釋氣體通過反應器一段時間,允許在基板表面上形成一個完整的均勻的石墨烯單層,在這個例子中為320秒是理想的。在完成層之後,前驅物流停止,反應腔室在連續的氮氣流下冷卻直至基板和石墨烯層處於合適的低溫,理想地<100℃。
實施例三:
使用甲烷(CH4)作為前驅物的石墨烯單層生產。將反應器加熱至使基板(在此為藍寶石)大於前驅物質的初始分解溫度(此處>1100℃)的溫度。反應器壓力設定在合適的真空度,以確保靠近基板表面的有利的氣體速度,對於甲烷(CH4),800-900毫巴的壓力是合適的,因為甲烷(CH4)分解的副產物不會對生長材料產生不利影響,這裡的優點在此是前驅物料的駐留時間增加,在較高的反應器壓力下,促進高沉積速率,顯著縮短了沉積石墨烯所需的時間。然後將前驅物和氫氣的稀釋氣體以合適的流速通過腔室入口引入反應器到基板表面處,在本實施例中合適的流速對於甲烷(CH4)1000sccm是理想的,而對於氫2000sccm是理想的。前驅物 流過基板表面一段時間,允許在基板表面上形成一個完整的,均勻的石墨烯單層,在這個例子中,30秒是理想的。在完成層之後,前驅物流停止並且氫稀釋流量增加到3000sccm,然後在連續的氫氣流下冷卻反應器腔室,直到基板和石墨烯層適當冷卻,理想地<100℃。
實施例四:
可以通過在石墨烯生長之前應用基板製備或調理技術來改進不同基板上的石墨烯生產,確保在引入前驅物質以引發石墨烯沉積之前,基板表面處於最好狀態。
例如,當在矽基板上生長石墨烯時,通過在引入前驅物質之前調節矽表面,顯著改善石墨烯單層的質量。通常,在這種情況下,在5000sccm的氫氣流下,在100毫巴的反應器壓力下將矽基板加熱到1050℃的表面溫度,除去基板表面(包括天然氧化物)上的不希望的表面污染物,顯示出純矽表面。
隨後在該製備的基板表面上容易地實現石墨烯的沉積,其工藝條件為反應器溫度900℃,反應器壓力200毫巴,前驅物二茂鎂(Cp2Mg)流量為700sccm,氫稀釋流速為1300sccm,導致石墨烯晶體結構在不應用基板調節程序的情況下在石墨烯上顯著改善。這裡再次要求具有氫氣流的反應器冷卻,直到基板和石墨烯達到適當的低溫,理想地<100℃。
在以下實例中,使用的基板是矽或藍寶石。在矽基板的情況下,在石墨烯沉積工藝之前應用實施例四中概述的調節工藝。
實施例五:
修改石墨烯沉積過程中的稀釋氣流可以優先於某些前驅物 或基板,允許額外控製石墨烯層形成,同時保持與基板表面相同的碳輸送速率。此外,這對於在某些情況下確保良好的材料形成是至關重要的。
例如使用四溴化碳(CBr4)的前驅物,在1025℃的溫度和400毫巴的反應器壓力下,矽或藍寶石基板的前驅物質流速為1000sccm將導致石墨烯單層沉積顯示出不期望的顯微組織具有小的晶粒尺寸和高缺陷水平,主要是由於間隙點缺陷形成。向前驅物流引入氫(H2)的稀釋液,例如2000sccm,即2:1的比例氫(H2):四溴化碳(CBr4)與其他工藝參數保持相同,顯著改善了石墨烯層材料。在沉積過程中氫的存在導致溴化氫(HBr)的形成是前驅物分解和稀釋氣體反應的非常高的蒸汽壓副產物,其易於抽真空以減少基板表面的寄生相互作用。對於這種前驅物四溴化碳(CBr4),將流量比提高到大約12:1進一步改善石墨烯層。高於12:1的比例時,反應器中的稀釋物質(氫)的濃度不利地影響碳到達基板表面的能力,從而抑制相干層沉積,導致不能產生石墨烯的情況。
實施例六:
具有不同或預定義性質的石墨烯是通過允許從包含在前驅物質中的其它原子物質摻雜到石墨烯層中而產生石墨烯層。
例如,使用前驅物二茂鎂(Cp2Mg)在870℃的基板溫度下,前驅物流速為800sccm,反應器壓力為300毫巴,前驅物通過入口引入,一旦基板達到所需溫度並流動一個500秒的時間。這允許鎂(Mg)穩定地結合在石墨烯晶格內,產生摻雜的石墨烯層。壓力及/或溫度的改變可以控制摻雜水平,儘管必須注意確保石墨烯質量不會受到利於摻雜的反應器沉積條件的影響,利於摻雜的反應器沉積條件會在良好的石墨烯形成範圍之外。 應用這種技術,但允許前驅物和基板特性,可以根據需要實現電氣和機械的石墨烯性能。
實施例七:
通過引入第二前驅物質來主動地摻雜石墨烯層,產生具有不同性質的石墨烯。
例如,使用基本溫度為1250℃的前驅物甲烷(CH4),反應器壓力為720毫巴,前驅物流速為1000sccm,以產生石墨烯,可以引入第二種優選的摻雜劑,前驅物可以補充材料結構。例如使用碲化鋅(TEZn),鋅摻雜石墨烯層,流速為25sccm將產生具有優先電阻性質的均勻,大晶粒尺寸的石墨烯。
實施例八:
通過反應器前驅物引入點到基板表面間距的控制(在本實施例中為減少),更有效地生產石墨烯。
例如使用的前驅物溴甲烷(CH3Br),流速為800sccm;基板溫度1000℃;一個腔室壓力為650毫巴,前驅物引入點至基板的間距為12mm,石墨烯可以容易地在360秒的生長時間內沉積。
將前驅物引入點至基板的間距減少到10mm的距離並允許施加相同的條件,生長時間能縮短到315秒,實現與360秒間距12mm時相同的石墨烯。
或者,這種減少的間距允許將基板溫度降低至970℃,同時保持溴甲烷(CH3Br)的流速為800sccm,腔室壓力為650毫巴,沉積時間為360s以實現相同的石墨烯。在這種情況下,降低的溫度導致較少的基板變 形,由於熱膨脹減小,導致在基板表面上更均勻的石墨烯層。類似地,將前驅物引入基板表面的間距為5mm可以使表面溫度進一步降低,在本例中為920℃,同時將其他過程變量保持在相同的值。
應該注意的是,這種方法也可以應用於其他參數的變化,例如使用前驅物溴甲烷(CH3Br),流速為800sccm;基板溫度1000℃;腔室壓力為650毫巴,天花板與基板間距為12mm,石墨烯可以容易地以360秒的生長時間沉積。將基板表面至天花板天的間距減少到5mm可使前驅物流速降低至550sccm,同時在650毫巴的腔室壓力和360s的沉積時間內保持1000℃的基板溫度,以實現相同的石墨烯層結果。
實施例九:
石墨烯層材料性能可以通過簡單的流動“脈衝”來改變。
例如使用的前驅物二茂鎂(Cp2Mg),1000℃的基板溫度和200毫巴的反應器腔室壓力,將二茂鎂(Cp2Mg)以1000sccm的流速引入反應器20秒,然後將流程暫停20秒的時間段,之後再次啟動流程20秒,然後再次暫停20秒。在該實施例中重複該方法數次,持續10個循環已經顯示出可以顯著增加可以併入到石墨烯層中的鎂(Mg)的量,從而改變最終層的電性能。
實施例十:
石墨烯層結構可以通過前驅物流量“脈衝”來修改。採用實施例9的脈衝流動方法的修改,在這種情況下應用高流量,低流量程序,由此前驅物質進入基板表面一段高於最小流動閾值以上的時間段,然後再減少達到低於最小流量閾值的水平,其中生長速率在一段時間內接近或基 本為零並且重複多個週期。在這種方法中,與前驅物關閉期相反的低流量步驟與標準脈衝一樣有助於在此期間減少表面的碳解吸。
例如在850℃的基板溫度下使用生長前驅物溴甲烷(CH3Br),並且在550毫巴的腔室壓力下,將前驅物以1000sccm的流量引入反應腔室15秒,然後流量降低到200sccm引入20秒的時間,然後將流量再次增加回到初始的1000sccm引入15秒。該步驟流程被重複所需次數的循環,通常為5至10個週期以實現良好的層順序。已經顯示這一過程顯著提高了石墨烯晶粒尺寸,允許通過控制循環次數有效控製石墨烯材料結構。
實施例十一:
石墨烯層結構特性可以通過前驅物/稀釋氣體切換或“脈衝”來改變。對實施例九的脈衝沉積方法進行進一步的修改,包括在包括非侵入性或非反應性入口氣體的前驅物質和非碳氣淨化氣體之間進行切換,以在前驅物質不流動期間從基板表面或附近快速除去前驅物質,在本實施例中,前驅物流動一段時間,然後停止,淨化氣體開始一段時間,在淨化氣體吹停止之前,前驅物質的流動重新啟動,該過程重複多個循環。
例如,在1220℃的基板溫度和800毫巴的腔室壓力下使用前驅物甲烷,將前驅物以1000sccm的流量引入反應腔室10秒,之後停止前驅物流並且以流量1000sccm的淨化氣體氫氣(H2)引入10秒的時間段,然後將前驅物流重新引入10秒的時間等等,以選擇數量的循環。八個循環已經顯示了減少石墨烯層的缺陷密度
實施例十二:
在對實施例十一的改進中,脈衝沉積程序的進一步修改是 連續地流動稀釋氣體,並且僅開啟和關閉前驅物氣體,確保始終在基板表面上連續流動。
例如,在1220℃的基板溫度和800毫巴的腔室壓力下使用前驅物甲烷作為碳源,將前驅物以1000sccm的流量與稀釋氣體,在此同時引入反應腔室稀釋氣體氫氣(H2)在1000sccm下流動10秒鐘,然後停止前驅物流,使稀釋氣體繼續流動10秒。這構成一個循環。然後將前驅物流重新引入10秒鐘等等,以選擇次數循環。使用二十四個循環顯示出顯著降低石墨烯層的缺陷密度。
實施例十三:
石墨烯生產的效率可以通過應用“密封體積”程序得到改善。在這個程序中,足夠的前驅物質被允許進入反應器以使基板表面上形成石墨烯,同時極大地限制前驅物質的消耗量。該程序涉及用前驅物填充反應腔室,使得環境不會引起前驅物質的分解,然後經由增加基板表面溫度開始反應。
例如使用前驅物溴甲烷(CH3Br),將反應腔室降低至低壓,典型地為1-5毫巴,排氣密封。前驅物通過入口進入反應器,允許容積重新填充到900毫巴的壓力,形成前驅物豐富的靜態環境。反應器快速加熱,5℃/s就足夠了,使基板達到900℃的溫度並保持一段時間,在這個例子中為10分鐘。前驅物循環是通過熱對流引起的,前驅物的分解發生在基板附近,允許在基板表面上產生石墨烯。10分鐘後,關閉加熱元件,使反應器盡可能快地冷卻至室溫。一旦反應器腔室和基板的溫度降至低於前驅物質的分解溫度,則將反應器抽真空,然後使用淨化氣體在本實施例中進行氮氣清除。
此一方法藉由限制在整個沉積週期中對基板表面可用的前驅物質的最大量,為沈積在目標基板上的碳量提供極其可控的方法。前驅物的摩爾濃度可以藉由改變初始再填充壓力而容易地改變。應該注意的是,這個方法在標準反應腔室中可能難以完善和控制,因為環境室冷卻顯著影響此一方法,。
實施例十四:
實施例十三的密封體積法的微小變化,其中腔室被抽真空,然後用5000sccm的流量吹掃氣體例如氫氣淨化五分鐘,然後將反應器盡可能地快速冷卻至室溫。此一處理步驟已經證明這有助於在冷卻步驟期間限製石墨烯表面污染。
實施例十五:
對實施例十三的密封體積法的進一步變化,其中首先將基板加熱到超過腔室抽空之前的前驅物質分解溫度的溫度,然後引入前驅物質。此一處理步驟已經顯示出減少石墨烯單層的缺陷密度。
實施例十六:
藉由應用後沉積處理技術來改進石墨烯,以改進石墨烯結構,減少結構缺陷並沉澱排出的不想要的原子和分子物質組成的晶格污染物,這些污染物將使石墨烯單層變形並且不利地影響石墨烯材料性質。
使用前驅物二茂鐵(Cp2Fe)以以750sccm的流速沉積石墨烯,基板溫度為960℃,反應器壓力為175毫巴,已顯示在560秒內產生顯著摻雜的石墨烯。雖然這種形式的石墨烯適用於一些應用,但是可以藉由後沉積熱和氣體處理將其修改為具有不同的性質。沉積工藝完成後,將基板 溫度升高至1200℃並以10000sccm流量引入氫氣30分鐘,導致石墨烯層的顯著變化。
實施例十七:
優化的石墨烯層可以藉由兩個或更多個前述實施例的組合和另外有益的工藝步驟的添加來生產。
例如,藍寶石基板首先在10000sccm的氫氣及50毫巴的壓力下在反應腔室內加熱至1100℃基板表面溫度,加熱至少5分鐘,以便從基板表面除去冷凝和污染的材料或物種。然後將基板冷卻至975℃的溫度,於是將氨(NH 3 )以3000sccm的流量引入反應器腔室60秒,以氮化物或氮封端基板表面。停止氨(NH 3 )的流動,並以200sccm的流量引入前驅物(在這種情況下為甲烷(CH4)),伴隨著在7000sccm下的稀釋氣流氫氣(H2),持續60秒。基板被加熱到1220℃的溫度,反應器壓力增加到700毫巴,前驅物流量增加到800sccm的流量,同時稀釋氣體流量氫氣(H2)增加到10000sccm。達到1220℃的目標基板溫度後,前驅物甲烷(CH4)的引入,以10秒鐘開啟5秒關閉為一循環實施15個循環的脈衝。在每個隨後的循環中,前驅物流量減少5sccm。15個循環完成後,將反應器溫度升至1250℃並保持60秒鐘,此後反應器壓力降至30毫巴,並保持60秒。然後將反應器壓力恢復至700毫巴另外60秒,在這兩個壓力之間循環並保持60秒,完成10次。然後在持續的引入氫氣(H2)流之下盡可能快速冷卻反應器。
在相同工藝結構,壓力,溫度和流量方面修改可以應用於任何合適的前驅物和可行的基板,以生產高質量的石墨烯。
實施例十八:
藉由變化處理過程變數產生多層石墨烯,以使得進一步的多層石墨烯層能夠沉積在第一單層上。由於石墨烯在晶格結構中通常是自限制的,當通過氣相磊晶法(VPE)以高質量形式生產時,需要克服表面能態以形成先前層上的後續高質量石墨烯單層。這可藉由在形成另外的石墨烯層期間改變反應腔室條件來達成。
例如,在1120℃的基板溫度下使用合適的烴作為前驅物,在此為甲烷(CH4);800毫巴的反應器壓力和1000sccm的流量,可以容易地在藍寶石基板表面上形成石墨烯。繼續這些條件不會產生高質量的多層石墨烯,而是產生另一種碳多晶型如無定形碳。藉由將反應器壓力降低至600毫巴,及/或將反應器溫度升高至1310℃並將前驅物流降低至400sccm,就可以促進在初始石墨烯單層上形成更多的石墨烯層。深信這種技術克服了前層表面的位能障(勢壘),並且進一步抑制了與石墨烯相反的塊狀碳如石墨的形成。
實施例十九:
矽烯單層可以在選定的基板上通過氣相磊晶法(VPE)在近耦合反應腔室的標準操作參數內生產。仔細選擇矽烯前驅物和基板型態,並與適當的反應腔室參數匹配,可以在基板表面沉積矽烯。
例如,選擇在氫氣中濃度為100ppm的矽烷作為前驅物質,將反應器加熱到使基板(這裡的矽或藍寶石)的表面大於前驅物所需或完全分解的溫度,則能促進表面動力學形成矽烯晶體結構,此處~920℃。將反應器壓力降低到合適的真空度以確保排出不需要的副產物,對於本例中的副產物為矽烷,壓力<500毫巴已被證明能成功排出矽烷。然後將矽烷和 稀釋的氫氣以合適的流量通過入口引入反應器至基板表面,在本例中理想的流量為2000sccm的矽烷和10000sccm的氫氣是。前驅物流入反應器一段時間,允許在基板表面形成一個完整的均勻的矽烯單層,在這個例子中,800秒是矽基板的理想選擇,藍寶石基板是600秒。完成層後,停止矽烷流,並在持續低壓下以5000sccm的氮氣流冷卻反應器以保持矽烯表面,直到適當冷卻,理想地<100℃。
如果材料可以在惰性環境中從腔室轉移到容器中,矽烯單層將保持在基板表面上完整的狀態,該時間段保持在惰性環境中,該環境可以是反應器腔室或輔助容器,而容器環境是惰性的。
實施例二十:
為了能夠使用反應腔室外的矽烯,可以用在空氣環境中穩定的材料對矽烯層進行封蓋。通過使用矽基合金,可以在保護矽烯層免受暴露於外部環境的矽烯頂部上生長覆蓋層。
使用實施例十九中所述的方法可以在藍寶石或矽基板上製造矽烯。在矽烯層完成時,可以通過改變反應器參數並引入氮前驅物源(這裡為氨(NH3))來生產另外的氮化矽(SiN)層。完成矽烯層後,停止矽烷前驅物,並改變反應器溫度為允許形成高質量氮化矽(SiN)的溫度,在此為1050℃,同時反應器壓力降低以限制在氮化矽(SiN)層沉積期間的氣相反應,在這個例子中是200毫巴。一旦反應器條件已經穩定,矽烷就與氨(NH3)同時被重新引入反應腔室。設定氨(NH3)流量以達到使得能夠在矽烯表面上有效形成氮化矽(SiN)的矽烷與氨(NH3)的比例,在此氨(NH3)流量為3000sccm。前驅物被允許流動一段時間,其導致在矽烯的頂部成連 續的氮化矽(SiN)層,其厚度足夠,以便一旦從反應腔室移出,矽烯得以保護和保存,在這種情況下前驅物流動時間為600秒。然後停止前驅物,反應器在持續的氫氣流下冷卻,以將氮化矽(SiN)表面理想地保持在<100℃的溫度。
實施例二十一:
可以通過將摻雜劑元素引入二維矽晶體結構來改變矽烯的固有電、熱和機械性能。這可以通過在沉積過程中引入摻雜化學源同時產生矽烯而容易地達成。
例如,可以使用氧摻雜矽烯,如實施例十九,選擇在氫氣中濃度為100ppm的矽烷作為前驅物質,將反應器加熱到使基板(這裡的矽或藍寶石)的表面大於前驅物所需或完全分解的溫度,則能促進表面動力學形成矽烯晶體結構,此處~920℃。將反應器壓力降低至合適的真空度以確保排出不需要的副產物。與純矽烯生產不同,必須仔細考慮在該過程中添加摻雜源,這裡使用一氧化二氫(H2O)的水蒸汽作為氧源,其中壓力<250毫巴已被證明是成功的。然後將矽烷,摻雜源和稀釋氫氣流以合適的流速通過入口引入反應器到基板表面,在本例中流量為2000sccm的矽烷,150sccm的一氧化二氫(H2O)和10000sccm的氫氣是理想的。前驅物質,摻雜源和稀釋氣體流入反應器一段時間,允許在基板表面上形成一個完整的,均勻的,摻雜的矽烯單層,在這個例子中,使用矽基板則為920秒,若是藍寶石基板則為690秒。完成矽烯單層後,停止矽烷和摻雜流,並在持續低壓下在5000sccm的氮氣流下冷卻反應器,以保持矽烯表面,直到適當冷卻為止,理想為溫度<100℃。
實施例二十二:
在單一生產程序中可以組合石墨烯和矽烯二維層以形成一個二維多層結構,例如,通過使用之前的詳述實施例製程之一(在此為實施例二),使用溴甲烷(CH3Br)作為前驅物在一基板表面,在此為藍寶石基板,沉積石墨烯層。完成石墨烯層後,通過將壓力降低至100毫巴並將氮氣流量提高到10000sccm為期600秒來清除反應器,在此期間反應器溫度降低以達到適合於矽烯前驅物分解的基板溫度,並在先前的石墨烯層的表面產生條件供矽烯形成,在此之基板溫度為1015℃。在完成清除之後,改變反應腔室壓力以達到在石墨烯表面上形成矽烯的優先條件,並限制可能破壞均勻矽沉積的氣相和表面反應的可能性,在本實施例中為575毫巴。然後用5000sccm的氫氣清洗流將氮氣流替換,為期600秒的時間。在氫氣中濃度為100ppm的矽烷和氫氣稀釋氣體分別以2500sccm和12000sccm的流量引入反應腔室。矽烷和稀釋氣體流動一段時間,允許在石墨烯表面上形成一矽烯層,在本實例中為540秒,在此期間反應器壓力降低至最終壓力為100毫巴。之後,停止矽烷流,並在低壓下及連續的氫氣流之下使反應腔室冷卻。
以單層和多層形式沉積二維材料的能力,使用第1圖的裝置,可將二維材料層與半導體及/或介電材料組合以產生簡單的異質結構。第3圖示出了一二維材料層12形成於一具有一半導體層或介電層11的基板10上之異質結構上。
實施例二十三:
一個氮化硼(BN)和石墨烯的簡單異質結構可以在一個單一且連續沉積工藝中生產。例如,選擇諸如三乙基硼(TEB)和氨氣(NH3) 等前驅物,將反應器加熱到使基板(在此為矽或藍寶石)的表面大於所需前驅物分解或完全分解的溫度,這此為>700℃。將反應器壓力降低到合適的真空度以確保排出不需要的工藝或氣相反應副產物。對於這些前驅物,壓力<100毫巴已經證明是成功的。然後通過入口將三乙基硼(TEB)、氨氣(NH3)和氫的稀釋流以合適的流量引入反應器至基板表面。在這個例子中,氨氣(NH3)流量為1500sccm,三乙基硼(TEB)流量為40sccm和氫流量為2500sccm是理想的。前驅物流入反應器一段時間,允許氮化硼形成至所需的厚度。在本實施例中,四小時適合於沉積50nm的氮化硼。
在氮化硼層完成之後,停止三乙基硼(TEB)和氨氣(NH3),同時保持氫氣流。選擇合適的烴前驅物質如甲烷(CH4)用於二維材料生長,在本實施例為石墨烯二維材料。改變反應腔室溫度使得氮化硼材料的表面大於二維材料前驅物的所需或完全的分解溫度,在此為>1100℃。反應器壓力也被改變到合適的水平,以確保從二維生長程序排出不需要的過程副產物。對於這種烴前驅物,壓力<200毫巴已經證明是成功的。前驅物流現在與氫稀釋流一起分別設定流量為1000sccm和2000sccm。前驅物質和稀釋氣體進入反應器一段時間,允許在氮化硼表面上形成完全均勻的單層石墨烯;在本實施子中,450秒是理想的。
在完成石墨烯層之後,停止甲烷前驅物流,並在繼續低壓下與2000sccm的持續氫氣流下冷卻反應器,以保持石墨烯表面,直到適當降溫,理想地<100℃。
實施例二十四:
在與實施例二十三類似的方法中,可以在相同方法中在所 選基板上的氮化鋁(AlN)上製備二維材料單層。
例如,選擇前驅物質,例如三甲基鋁(TMAl)和氨氣(NH3),反應器被加熱到使得基板(在此為矽或藍寶石或碳化矽)的表面大於所需前驅物分解或完全分解的溫度,這此為>700℃。將反應器壓力降低到合適的真空度以確保排出不需要的工藝或氣相反應副產物。對於這些前驅物,壓力<100毫巴已經證明是成功的。然後通過入口將三甲基鋁(TMAl)、氨氣(NH3)和氫的稀釋流以合適的流量引入反應器至基板表面。在這個例子中,氨氣(NH3)流量為50sccm,三甲基鋁(TMAl)流量為50sccm和氫流量為10000sccm是理想的。前驅物流入反應器一段時間,允許氮化鋁形成至所需的厚度。在本實施例中,一小時適合於沉積300nm的氮化鋁。
在氮化鋁層完成之後,停止三甲基鋁(TMAl)和氨氣(NH3),同時保持氫氣流。選擇合適的烴前驅物質如甲烷(CH4)用於二維材料生長,在本實施例為石墨烯二維材料。改變反應腔室溫度使得氮化鋁材料的表面大於二維材料前驅物的所需或完全的分解溫度,在此為>1100℃。反應器壓力也被改變到合適的水平,以確保從二維生長程序排出不需要的過程副產物。對於這種烴前驅物,在本異質結構製程,壓力<200毫巴已經證明是成功的。前驅物流在此時與氫稀釋流一起分別設定流量為1000sccm和2000sccm。前驅物質和氫氣體進入腔室一段時間,允許在氮化鋁表面上形成完全均勻的單層石墨烯;在本實施子中,450秒是理想的。
在完成石墨烯層之後,停止甲烷前驅物流,並在繼續低壓下與2000sccm的持續氫氣流下冷卻反應器,以保持石墨烯表面,直到適當降溫,理想地<100℃。
實施例二十五:
在與實施例二十三類似的方法中,可以在相同方法中在氮化鎵(GaN)上製備二維材料單層。
例如,選擇前驅物質,例如三甲基鎵(TMGa)和氨氣(NH3),反應器被加熱到使得基板(在此為藍寶石或獨立式氮化鎵)的表面大於所需前驅物分解或完全分解的溫度,這此為>500℃。將反應器壓力降低到合適的真空度以確保排出不需要的工藝或氣相反應副產物。對於這些前驅物,壓力<600毫巴已經證明是成功的。然後通過入口將三甲基鎵(TMGa)、氨氣(NH3)和氫的稀釋流以合適的流量引入反應器至基板表面。在這個例子中,氨氣(NH3)流量為5000sccm,三甲基鎵(TMGa)流量為100sccm和氫流量為15000sccm是理想的。前驅物流入反應器一段時間,允許氮化鎵形成至所需的厚度。在本實施例中,一小時適合於沉積1.5μm的氮化鎵。
在氮化鎵層完成之後,停止三甲基鎵(TMGa),同時保持氨氣(NH3)和氫氣流。選擇合適的烴前驅物質如甲烷(CH4)用於二維材料生長,在本實施例為石墨烯二維材料。改變反應腔室溫度使得氮化鎵材料的表面大於二維材料前驅物的所需或完全的分解溫度,在此為>1100℃。反應器壓力也被改變到合適的水平,以確保從二維生長程序排出不需要的過程副產物。對於這種烴前驅物,在本異質結構製程,壓力<200毫巴已經證明是成功的。前驅物流在此時與氫稀釋流一起分別設定流量為1000sccm和2000sccm。前驅物質引入腔室至氮化鎵表面一段時間,允許在氮化鎵表面上形成完全均勻的單層石墨烯;在本實施子中,320秒是理想的。
在完成石墨烯層之後,停止甲烷前驅物流,並在繼續低壓下與2000sccm的持續氫氣流與5000sccm的氨氣流下冷卻反應器,以保持石墨烯表面,直到適當降溫,理想地<100℃。
使用與實施例二十三~二十五類似的方法可以使用其他石墨烯前驅物在半導體材料表面上產生石墨烯。
實施例二十六:
在使用與實施例二十三類似的方法,可以在一基板上形成氮化硼上製備二維材料單層。然後可以使用鹵碳化合物前驅物質,例如溴化甲烷(CH3Br),在氮化硼上表面的頂部生產石墨烯。
在完成氮化硼層之後,如實施例二十三所示,氫稀釋氣體以上述的2000sccm流量繼續流入反應腔室。改變反應腔室溫度,使得氮化硼材料的表面大於前驅物的所需或完全的分解溫度,在此為>350℃。反應器壓力也被改變到合適的水平以確保排出不需要的過程副產物,並且反應器壓力還足夠高以促進氮化硼表面上碳產物的適當駐留時間以形成石墨烯。對於這種鹵碳化合物前驅物,600毫巴的壓力證明是成功的,因為主要不需要的副產物,溴,在所選擇的分解溫度下的蒸氣壓高於此值。將稀釋氣體從氫氣切換到氮氣,然後將前驅物質和稀釋氣體通過腔室入口以合適的流量引入反應器及基板,在本實施例中合適的流量對於溴化甲烷(CH3Br)為1000sccm,而對於氮為2000sccm。在此過程中使用氮氣以限制溴化氫(HBr)的可能形成。前驅物質和稀釋氣體通過反應器一段時間,允許在基板表面上形成完全均勻的石墨烯單層,在本實施例中為420秒是理想的。完成該層後,前驅物流停止,反應腔室在持續氮氣流下冷卻,直到基板和石 墨烯層處於合適的低溫,理想情況下<100℃。
實施例二十七:
依實施例二十六中所述的方法,可以使用合適的茂金屬前驅物作為碳源,例如二茂鎂(Cp2Mg)或二茂鐵(Cp2Fe),在氮化硼(BN)表面上形成石墨烯。在氮化硼(BN)層完成後,為了石墨烯沉積而改變反應器條件,由此將基板溫度設定為適合前驅物分解的水平,優選適用於石墨烯形成的表面動力學,在此為>500℃,則反應腔室內壓力達到石墨烯形成的層級,在此為<200毫巴。前驅物和稀釋流的流量分別設定為700sccm和1300sccm,然後通過氣體入口引入反應腔室氮化硼(BN)物質表面。前驅物和稀釋氣體流動一段時間允許完整的石墨烯層形成,在此380秒是理想的,之後停止前驅物流。反應腔室在持續的氫氣流下冷卻,直到基板和石墨烯層處於適當的低溫,理想為<100℃。
實施例二十八:
可以使用與實施例二十四相同的方法來形成氮化鋁。然後可以使用鹵碳化合物前驅物質例如溴化甲烷(CH3Br)在氮化鋁表面的頂部上產生石墨烯。
在完成氮化鋁層之後,如實施例二十四所示,氫稀釋氣體以上述的2000sccm流量繼續流入反應腔室。改變反應腔室溫度,使得氮化硼材料的表面大於前驅物的所需或完全的分解溫度,在此為>350℃。反應器壓力也被改變到合適的水平以確保排出不需要的過程副產物,並且反應器壓力還足夠高以促進氮化鋁表面上碳產物的適當駐留時間以形成石墨烯。對於這種鹵碳化合物前驅物,600毫巴的壓力證明是成功的。將稀釋氣 體從氫氣切換到氮氣,然後將前驅物質和稀釋氣體通過腔室入口以合適的流量引入反應器及基板,在本實施例中合適的流量對於溴化甲烷(CH3Br)為1000sccm,而對於氮為2000sccm。前驅物質和稀釋氣體通過反應器一段時間,允許在基板表面上形成完全均勻的石墨烯單層,在本實施例中為320秒是理想的。完成該層後,前驅物流停止,反應腔室在持續氮氣流下冷卻,直到基板和石墨烯層處於合適的低溫,理想情況下<100℃。
實施例二十九:
依實施例二十八中所述的方法,可以使用合適的茂金屬前驅物作為碳源,例如二茂鎂(Cp2Mg)或二茂鐵(Cp2Fe),在氮化鋁(AIN)表面上形成石墨烯。在氮化鋁(AIN)層完成後,為了石墨烯沉積而改變反應器條件,由此將基板溫度設定為適合前驅物分解的水平,優選適用於石墨烯形成的表面動力學,在此為>500℃,則反應腔室內壓力達到石墨烯形成的層級,在此為<200毫巴。前驅物和稀釋流的流量分別設定為700sccm和1300sccm,然後通過氣體入口引入反應腔室至氮化鋁(AIN)物質表面。前驅物和稀釋氣體流動一段時間允許完整的石墨烯層形成,在此380秒是理想的,之後停止前驅物流。反應腔室在持續的氫氣流下冷卻,直到基板和石墨烯層處於適當的低溫,理想為<100℃。
實施例三十:
可以使用與實施例二十五相同的方法來形成氮化鎵(GaN)。然後可以使用鹵碳化合物前驅物質例如溴化甲烷(CH3Br)在氮化鎵(GaN)表面的頂部上產生石墨烯。
在完成氮化鎵層(GaN)之後,如實施例二十五,氫稀釋 氣體和氨氣(NH3)分別以上述15000sccm和5000sccm流量繼續流入反應腔室。反應腔室室溫度改變使得氮化鎵材料的表面為大於前驅物的所需或完全的分解溫度,這裡>350℃。反應器壓力也被改變到合適的水平以確保排出不需要的過程副產物,並且反應器壓力還足夠高以促進氮化鎵表面上碳產物的適當駐留時間以形成石墨烯。對於這種鹵碳化合物前驅物,600毫巴的壓力證明是成功的。將稀釋氣體流量減少到2000sccm,然後將前驅物質和稀釋氣體以適當流量通過腔室入口引入反應器至基板處,在此流量為1000sccm對於溴化甲烷(CH3Br)是理想的。前驅物質和稀釋氣體通過反應器一段時間,允許在基板表面上形成完全均勻的石墨烯單層,在本實施例中為320秒是理想的。完成該層後,前驅物流停止,反應腔室在持續稀釋氣流下冷卻,直到基板和石墨烯層處於合適的低溫,理想情況下<100℃。
實施例三十一:
類似地,依實施例三十相同的方法可以使用合適的茂金屬前驅物作為碳源,例如二茂鎂(Cp2Mg)或二茂鐵(Cp2Fe),在在氮化鎵(GaN)表面上形成石墨烯。在氮化鎵(GaN)層完成後,為了石墨烯沉積而改變反應器條件,由此反應腔室溫度設定為適合前驅物分解的水平,優選適用於石墨烯形成的表面動力學,在此為>500℃,則反應腔室內壓力達到石墨烯形成的層級,在此為<200毫巴。前驅物和稀釋流的流量分別設定為700sccm和1300sccm,然後通過氣體入口引入反應腔室氮化鎵(GaN)物質表面。前驅物和稀釋氣體流動一段時間允許完整的石墨烯層形成,在此380秒是理想的,之後停止前驅物流。反應腔室在持續的氫和氨(NH3)氣流下冷卻,直到基板和石墨烯層處於適當的低溫,理想為<100℃。
與上述實施例二十三~三十一類似的方式中,可以在多層異質結構製造出之後,在多層半導體異質結構的頂部直接生成二維材料層,以形成半導體元件的表面層,如第4圖所示,其中顯示出了基板20,其上形成包括具有二維材料表面層23的n層半導體或電介質材料22的異質結構。可選地,成核層21可以設置在基板20和第一半導體或電介質層22之間。每個單獨的半導體或介電材料層可以具有與其直接相鄰層相同或不同的特性。
二維材料的沉積需要考慮前面的半導體結構,確保用於沉積二維層的工藝條件不會不利地影響下面的半導體材料或它們的界面。
實施例三十二:
固態發光元件的表面接觸層可以通過在生成該半導體結構後並且在相同的工藝中直接在半導體結構的頂部上生長二維層來製造。
例如,在半導體元件結構完成之後,石墨烯接觸層可以直接沉積在氮化鎵發光二極體(LED)結構上。氮化鎵發光二極體(LED)結構在藍寶石和矽基板上的沉積是眾所周知的,且為廣泛可用的方法在此不再贅述,因為它是一個漫長的過程。
在完成氮化鎵(GaN)結構的沉積之後,其基本上是要保留材料的表面,因此在這種情況下維持在反應腔室內的氨氣(NH3)流量在4000sccm,以確保表面穩定性。這種連續的氨氣(NH3)流量下,依所選擇的石墨烯前驅物,反應腔室條件改變為適合於石墨烯的沉積。使用石墨烯前驅物溴化甲烷(CH3Br),將反應腔室壓力設定為550毫巴,並提供溫度以提供850℃的結構頂部表面溫度。如實施例十那樣,使用上述脈衝生長技術 將石墨烯沉積在發光二極體(LED)結構的表面上,由此將溴化甲烷(CH3Br)和稀釋氣體(在本實施例中為氮)分別以流量1000sccm和5000sccm引入反應器15秒鐘。然後將溴化甲烷(CH3Br)流量暫停20秒,同時仍然保持氮通量。脈衝重複多個循環以允許形成均勻的連續石墨烯層,然而循環次數高度依賴於氮化鎵(GaN)元件頂層的初始條件,此循環次數是高度可變的。通常5-8個週期是好的,但這仍可以大大增加。對沉積進行現場表面監測,例如光譜反射率測量,結合即時過程修改,以重複實現所需的結果。在完成石墨烯層之後,將反應器在混合的氮氣氨氣(NH3)流下以先前所述的水平冷卻,直到反應器溫度達到<450℃,此時氨氣(NH3)流量停止,並且反應器僅在氮氣流下冷卻至環境溫度。
實施例三十三:
二維層可用作半導體元件的散熱層,在與半導體元件相同的製造過程中,通過將二維材料沉積在最終元件結構的頂部上。當沉積二維層時,必須考慮到確保該工藝不會對半導體元件,結構或單個層產生不利影響。
例如,多層石墨烯可以應用於基於氮化鎵(GaN)的固態高功率電子元件頂表面以用作散熱器。由氣相磊晶(VPE)在藍寶石和矽基板上沉積氮化鎵(GaN)的固態電子元件是眾所周知的,因此廣泛使用的方法在此不再贅述,因為它是一個漫長的過程。在完成半導體元件之後,繼續氨氣(NH3)流,在本實施例中為流量4000sccm為之,以保持氮化鎵(GaN)表面,並且壓力和溫度改變為適於在元件頂表面上沉積石墨烯的條件,在本實施例中對於前驅物甲烷(CH4)的適壓力為600毫巴和溫度為1150℃。 如實施例十一中那樣使用將甲烷(CH4)脈衝至反應器的過程,其中1000sccm的流量被引入15秒的時間,然後停止20秒,然而在甲烷(CH4)“關閉”時,引入淨化氣體,在此為氫,流量為5000sccm。重複12個循環,然後反應器壓力降至300毫巴,甲烷(CH4)流量增加至1500sccm。然後將脈衝循環再次重複12次,允許沉積幾個石墨烯層,在本實施例中為三層。然後將反應器在組合的氨氣(NH3)和氫氣混合物下冷卻至450℃,此時停止氨氣(NH3)並將反應器冷卻至環境溫度。
此一過程需要考慮初始半導體元件頂表面狀態,元件結構本身,例如,維持元件結構所需的溫度和對於結構最佳的石墨烯層的數量的限制。
第5圖顯示出了可以使用本發明的方法在基板30上產生的異質結構的變體型。該異質結構包括二維材料層31,在其上形成半導體或電介質材料32。
二維材料上的半導體生長由於需要促進橫向過度生長而變得複雜,然而應用於半導體沉積的高級技術的現有技術的變化在高度不匹配的基板上可以在二維層上產生高質量的半導體和電介質材料。
實施例三十四:
介電氮化硼可以通過使用克服氮化硼(BN)和石墨烯的晶格失配的初始表面沉積工藝沉積在石墨烯表面上。
例如,可以使用前述實施例之一在藍寶石表面上生產石墨烯,在本實施例使用實施例十二中概述的方法。在完成石墨烯層之後,反應腔室溫度和壓力被改變以產生適合沉積成核過程的條件,在本實施例中 基礎板表面溫度和壓力分別為1150℃和500毫巴。使用前驅物氨氣(NH3)和三乙基硼(TEB),氮化硼可以通過前驅物的V:III比(或氨氣(NH3):三乙基硼(TEB)比)控制的3階段成核,聚結和積層生長,而能成功沉積。最初將氨氣(NH3)和三乙基硼(TEB)以10:1比例分別以1000sccm和100sccm的流量引入的反應腔室持續350秒。之後,將V:III比增加至750持續另一350秒,同時將生長溫度升至1220℃。隨後,V:III比進一步增加到1500,持續3600秒,導致氮化硼(BN)的厚度大約~25nm。前驅物流停止,反應器在氫氣淨化流下冷卻,以保持材料表面,直到達到環境溫度。
實施例三十五:
以與實施例三十四類似的方法,半導體氮化鋁鎵(AlGaN)可沉積在石墨烯層上。
例如,使用實施例十二中概述的方法製備石墨烯,在完成石墨烯之後,將反應腔室條件改變為合適在石墨烯表面上生產半導體成核層,在本實施例中為溫度1120℃和壓力250毫巴。通過首先在石墨烯上沉積氮化鋁(AlN)成核或介層,可以成功生長氮化鋁鎵(AlGaN)。將三甲基鋁(TMAl)和氨氣(NH3)與稀釋氫氣分別以50sccm,50sccm和10000sccm的流量引入反應腔室,持續330秒,允許沉積合適的成核層厚度,在此為~10nm。在完成成核層之後,將三甲基鎵(TMGa)以適於以所需摩爾分數的鋁生產氮化鋁鎵(AlGaN)的流速額外引入反應腔室,在此適合三甲基鎵(TMGa)流量為75sccm。前驅物流入反應腔室一段時間容許沉積所需的氮化鋁鎵(AlGaN)厚度,在本實施例子中為7200秒,得到~1μm的材料。然後關掉前驅物,並在氫氣淨化流下冷卻反應器。
實施例三十六:
以與實施例三十四和三十五類似的方法,半導體氮化鎵可沉積在石墨烯層上。
例如,使用實施例十二中概述的方法製備石墨烯,在石墨烯完成之後,可以通過應用多階段方法在石墨烯上產生氮化鎵。首先,將反應腔室條件改變為優選用於沉積潤濕層,在本實施例中壓力為400毫巴而溫度為1050℃。然後將三甲基鋁(TMAl)以20sccm的流量引入200秒,之後引入50sccm的氨氣(NH3)流量,並將溫度升至1150℃持續300秒。然後將反應器冷卻至1000℃,加入100sccm的三甲基鎵(TMGa)流。將反應器在1000℃保持600秒,然後將溫度升至1050°,同時將壓力降至100毫巴,停止三甲基鋁(TMAl)流動並將氨氣(NH3)流量增加至9000sccm。三甲基鎵(TMGa)和氨氣(NH3)流入反應腔室一段時間以達到所需的氮化鎵(GaN)膜厚度,在此例中為3600秒供沉積膜厚~2μm。然後停止三甲基鎵(TMGa),反應器冷卻至<450°,此時氨氣(NH3)停止,並在氫氣環境下完成冷卻。
第6圖顯示出了包括基板40的異質結構,其上形成有具有半導體或電介質層42的二維層41。這種佈置重複n次;該異質結構包括另外的頂部二維層41以形成電子元件,諸如高電子遷移率電晶體(HEMT)、發光二極體(LED)或場效電晶體(FET)。
多個半導體層或電介質層42和二維層41中的每一個本身可以包含具有不同層間特性的n倍層。
實施例三十七:
石墨烯可以用於氮化鎵(GaN)發光二極體(LED)元件結構,以便為最終元件產生高性能接觸層,由此石墨烯作為結構沉積中的第一層和最後層。
例如,使用實施例十二中概述的方法製備石墨烯,在完成石墨烯之後,可以通過施加如實施例三十六中所述的多級方法在石墨烯上產生氮化鎵(GaN)。然而,在本實施例中,氮化鎵(GaN)沉積時間為600秒以產生薄的穩定的氮化鎵(GaN)膜,在其上可以製備以下結構。在此層完成之後,可以使用實施例三十二中概述的方法容易地製造與石墨烯頂層結合的發光二極體(LED)結構。
石墨烯下層的存在使得從基板中移出沉積的結構相對簡單,完成在所需電介面處具有透明接觸層的發光二極體(LED)元件。
遵循第6圖結構的一變型結構中,二維層和半導體/電介質層的順序相反。
實施例三十八:
當以高質量形式生產成為電晶體結構一部份時,石墨烯可以作為元件的主動通道一部分。
例如,可以使用實施例二十九中概述的方法在氮化鋁(AlN)表面上生產石墨烯。然後可以使用實施例三十四中概述的技術在石墨烯表面上產生氮化硼,產生理想的基於石墨烯通道的晶體元件結構。
此方法產生了一種簡單的電晶體,具有電阻率為453Ω/sq的通道特性,而且霍爾遷移率大於8000cm2/Vs,載流子濃度為1012/cm2。
以上為本案所舉之實施例,僅為便於說明而設,當不能以 此限制本案之意義,即大凡依所列申請專利範圍所為之各種變換設計,均應包含在本案之專利範圍中,因此,應理解雖以藉較佳具體實施態樣來詳細描述本發明,但熟習此技術者可就本發明所揭示之概念對所選擇性特色、修飾及變化加以發揮,且該等修飾及變化視為所附申請專利範圍所定義之本發明範圍。
Claims (45)
- 一種二維結晶材料製造方法,該方法包括:提供在一反應腔室內具有複數成核位點的基板;在一前驅物入口點將一處於氣相及/或懸浮在氣體中的一前驅物引入該反應腔室;將該基板加熱到該前驅物的分解範圍內的溫度,並允許從該前驅物分解釋放的物質形成二維結晶材料;其特徵在於:冷卻該前驅物入口點。
- 一種二維結晶材料製造方法,該方法包括:提供在一近耦合反應腔室內具有複數成核位點的基板;將一處於氣相及/或懸浮在氣體中的一前驅物引入該近耦合反應腔室;將該基板加熱到該前驅物的分解範圍內的溫度,並允許從該前驅物分解釋放的物質形成二維結晶材料。
- 依請求專利第1項或第2項所述之方法,包括:在引入該前驅物之後密封該反應腔室以最小化或防止該前驅物流入或流出該近耦合反應腔室。
- 依請求專利第1項或第2項所述之方法,包括:在該反應腔室內讓該前驅物流過已被加熱之該基板。
- 依請求專利第4項所述之方法,其中該前驅物的流動從基本上垂直於該基板表面的方向撞擊該基板的邊界層。
- 依請求專利第1項至第5項所述之方法,包括:在該基板的整個表面上提供均勻的該前驅物體積流量。
- 依請求專利第4項、第5項或第6項所述之方法,包括:在已加熱的該基板上脈動該前驅物流。
- 依請求專利第1項至第7項所述之方法,包括:提供第一組反應器條件以促進組分初始吸附到該基板,隨後提供第二組反應器條件以促進二維結晶材料層的形成和聚結。
- 依請求專利第8項所述之方法,其中提供第二組反應器條件包括改變該基板的溫度及/或改變該反應腔室內的壓力及/或改變在該基板上的該前驅物流量。
- 依請求專利第1項至第9項所述之方法,其中製造二維結晶材料的該基板表面與該前驅物進入該腔室的點之間的距離基本上小於100mm,最佳為小於或等於60mm。
- 依請求專利第1項至第10項所述之方法,其中產生二維結晶材料的該基板表面和與該基板直接相對的該近耦合反應腔室的頂部之間的距離基本上小於100mm,最佳為小於或等於60mm。
- 依請求專利第10項或第11項所述之方法,其中該距離是小於或基本上等於20mm。
- 依請求專利第12項所述之方法,其中該距離是小於10mm。
- 依先前所述任一請求專利項所述之方法,其中該基板提供了在其上產生該二維結晶材料的一結晶表面。
- 依先前所述任一請求專利項所述之方法,其中該基板提供了在 其上產生該二維結晶材料的一非金屬表面。
- 依請求專利第6項至第15項所述之方法,其中將該前驅物與一稀釋氣體的混合物通過已加熱的該基板。
- 依請求專利第16項所述之方法,其中該稀釋氣體包括氫、氮、氬和氦中的一種或多種。
- 依請求專利第17項所述之方法,其中該稀釋氣體包括氫及/或氮。
- 依先前所述任一請求專利項之方法,包括將一摻雜元素引入該近耦合反應腔室中並選擇一基板溫度、一近耦合反應腔室壓力和一氣體流量以產生摻雜的二維結晶材料。
- 依請求專利第19項所述之方法,其中該前驅物包括該摻雜元素。
- 依請求專利第19項所述之方法,其中一處於氣相及/或懸浮在氣體中並且包括摻雜元件的第二前驅物在該近耦合反應腔室內通過已加熱的該基板。
- 依請求專利第21項所述之方法,其中在加熱的該基板上的該第二前驅物的流動被脈衝。
- 依請求專利第21或第22項所述之方法,其中該第二前驅物包括一種或多種以下基團中的一種或多種化合物:金屬有機物,茂金屬,鹵碳化合物,氫化物和鹵素。
- 一種多層堆疊二維晶體材料層的製違方法,包括:使用請求專利第1項至第23項中任一項所述的方法製造,以製造第一層二 維結晶材料或摻雜的二維結晶材料;隨後改變該基板的溫度及/或改變該反應腔室的壓力及/或改變該前驅物的流量,以形成另一個二維結晶材料層或摻雜的二維結晶材料層於該一層二維結晶材料層或摻雜的二維結晶材料。
- 依請求專利第24項所述之方法,包括改變該前驅物及/或引入處於氣相中及/或懸浮在氣體中的第二前驅物,以形成另一個二維結晶材料層。
- 依先前所述任一請求專利項之方法,其中該二維結晶材料是石墨烯,而物質(species)是碳。
- 依請求專利第26項所述之方法,其中該前驅物包括一種或多種以下基團中的一種或多種化合物:烴、氫化物、鹵碳化合物,包括鹵代烷烴和鹵代酰胺、茂金屬、金屬有機物、胺,包括烷基胺、有機溶劑和偶氮化合物,以及任選的叠氮化物、酰亞胺、硫化物和磷化物。
- 依請求專利第27項所述之方法,其中該前驅物包括一種或多種下列任何一種或多種化合物:鹵碳化合物、烴、偶氮、茂金屬和任選的金屬有機物。
- 依請求專利第28項所述之方法,其中該前驅物包括溴甲烷、甲烷、乙烷、環戊二烯基鎂、四溴化碳、偶氮甲烷、偶氮乙烷及/或乙炔。
- 依請求專利第1項至第25項中任一項所述之方法,其中該二維晶體材料是矽烯,該物質(species)是矽。
- 一種用以製造具有與第二層的界面的二維結晶材料的異質結構製造方法,所述方法包括:使用請求專利第1項至第30項中任一項所述的方法,以第一組反應器條件在一近耦合反應腔室內的一基板上產生一個二維結晶材料;及在一第二組反應器條件下引入一第二前驅物以在該基板上形成一第二層。
- 依請求專利第31項所述之方法,其中該第二層包括一薄膜。
- 依請求專利第32項所述之方法,其中該薄膜是一半導體。
- 依請求專利第33項所述之方法,其中該第二層包括下至少一種:氮化鎵(GaN)、氮化硼(BN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)、氮化矽(SiN)。
- 依請求專利第31至第34項中任一項所述之方法,其中該第二層是一二維晶體材料。
- 依請求專利第31至第35項中任一項所述之方法,其中在形成該二維結晶材料層和該第二層之間改變該基板與該基板正上方的近耦合反應腔室的頂部之間的間距。
- 一種平均粒徑等於或大於20微米的二維材料片(優選石墨烯)。
- 一種由一個或多個足夠尺寸的顆粒組成的石墨烯片,當從形成石墨烯片的基板上取出時,該石墨烯片基本上保持完整性而沒有保護性固定劑。
- 一種異質結構材料,其包括具有一與第二層界面的二維結晶材料,其中所述界面在所述材料上是連續的。
- 依請求專利第1項至第30項中任一項所述的方法,其中,所述 基板與前驅物入口之間的溫度降等於或大於1000℃/米。
- 一種使用請求專利第1項至第30項及/或第40項中任一項所述的方法而製造的二維材料。
- 一種生產石墨烯的方法,包括:一近耦合反應腔室內具有複數成核位點的基板;於氣相及/或懸浮在氣體中包含碳的前驅物引入該近耦合反應腔室;及板加熱到該前驅物的分解範圍內的溫度,以從前驅物釋放碳。
- 一種生產二維結晶材料的方法,包括:提供在一反應腔室內具有複數成核位點的基板;將該基板加熱到該前驅物的分解範圍內的溫度,並容許從分解該前驅物釋放的物質形成一個二維結晶材料;保持相當冷的該反應腔室的一個體積,以建立一個從該基板表面朝向該體積延伸的溫度梯度;將處於氣相及/或懸浮在氣體中的一前驅物通過一入口引入該反應腔室;及使該前驅物從該體積通過該溫度梯度朝向該基板表面。
- 依請求專利第43項所述之方法,其中該溫度梯度等於1000℃/米或更高。
- 依請求專利第43或第44項所述之方法,其中該入口和該基板表面之間的間隔為100mm以下。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106104250A TWI739799B (zh) | 2017-02-09 | 2017-02-09 | 二維材料製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106104250A TWI739799B (zh) | 2017-02-09 | 2017-02-09 | 二維材料製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201829308A true TW201829308A (zh) | 2018-08-16 |
TWI739799B TWI739799B (zh) | 2021-09-21 |
Family
ID=63960307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106104250A TWI739799B (zh) | 2017-02-09 | 2017-02-09 | 二維材料製造方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI739799B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI701717B (zh) * | 2019-08-12 | 2020-08-11 | 環球晶圓股份有限公司 | 磊晶結構 |
CN117568780A (zh) * | 2023-11-16 | 2024-02-20 | 无锡松煜科技有限公司 | 一种利用ald法制备氧化铝钝化膜的方法及装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8388924B2 (en) * | 2011-04-21 | 2013-03-05 | The Aerospace Corporation | Method for growth of high quality graphene films |
-
2017
- 2017-02-09 TW TW106104250A patent/TWI739799B/zh active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI701717B (zh) * | 2019-08-12 | 2020-08-11 | 環球晶圓股份有限公司 | 磊晶結構 |
US11335780B2 (en) | 2019-08-12 | 2022-05-17 | Globalwafers Co., Ltd. | Epitaxial structure |
CN117568780A (zh) * | 2023-11-16 | 2024-02-20 | 无锡松煜科技有限公司 | 一种利用ald法制备氧化铝钝化膜的方法及装置 |
CN117568780B (zh) * | 2023-11-16 | 2024-09-03 | 无锡松煜科技有限公司 | 一种利用ald法制备氧化铝钝化膜的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI739799B (zh) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7383669B2 (ja) | 二次元材料を製造する方法 | |
KR102385703B1 (ko) | 그래핀 층 구조체를 제조하는 방법 | |
CN106414816A (zh) | 在iv衬底上在低温下沉积晶层、尤其是光致发光iv‑iv层的方法,以及包含这种层的光电元器件 | |
TWI740090B (zh) | 用於電子元件的基於石墨烯之接觸層 | |
GB2570127A (en) | A method of making graphene structures and devices | |
TWI739799B (zh) | 二維材料製造方法 | |
JP7120598B2 (ja) | 窒化アルミニウム単結晶膜及び半導体素子の製造方法 | |
US11837635B2 (en) | Method of forming graphene on a silicon substrate | |
CN117120662A (zh) | 用于cvd生长均匀石墨烯的晶片及其制造方法 |