TW201827899A - Image display apparatus - Google Patents

Image display apparatus Download PDF

Info

Publication number
TW201827899A
TW201827899A TW106143313A TW106143313A TW201827899A TW 201827899 A TW201827899 A TW 201827899A TW 106143313 A TW106143313 A TW 106143313A TW 106143313 A TW106143313 A TW 106143313A TW 201827899 A TW201827899 A TW 201827899A
Authority
TW
Taiwan
Prior art keywords
layer
light
refractive index
polarizing plate
image display
Prior art date
Application number
TW106143313A
Other languages
Chinese (zh)
Other versions
TWI782934B (en
Inventor
中村恒三
服部大輔
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW201827899A publication Critical patent/TW201827899A/en
Application granted granted Critical
Publication of TWI782934B publication Critical patent/TWI782934B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Provided is an image display apparatus that is provided with a light-emitting layer and that is highly efficient regarding light utilization but generates less external light reflection. An image display apparatus according to the present invention is provided with at least: a polarizing plate; a refractive index adjusting layer; and a light-emitting layer in this order, wherein the refractive index of the refractive index adjusting layer is 1.2 or less. According to one embodiment, the light-emitting layer is a layer that emits light by converting the wavelength of a portion of incident light. According to one embodiment, the light-emitting layer includes a quantum dot or a fluorescent body as a wavelength conversion material.

Description

圖像顯示裝置Image display device

本發明係關於一種圖像顯示裝置。The present invention relates to an image display device.

近年來,作為顏色再現性優異之圖像顯示裝置,具備由量子點等發光材料所構成之發光層之圖像顯示裝置受到關注。例如,對於使用量子點之量子點膜,若光入射,則量子點受到激發而發出螢光。例如,若使用藍色LED(Light Emitting Diode,發光二極體)之背光源,則藉由量子點膜而使藍色光之一部分轉換為紅色光及綠色光,且藍色光之一部分直接作為藍色光出射。其結果為,可實現白色光。進而,認為藉由使用此種量子點膜,可實現NTSC(National Television System Committee,美國全國電視系統委員會)比100%以上之顏色再現性。另一方面,近年來,對圖像顯示裝置要求低消耗電力化、外界光反射之減少等高度之改善,且對具備如上所述之發光層之圖像顯示裝置亦要求提高光之利用效率而實現低消耗電力化,進而要求外界光反射之減少。 [先前技術文獻] [專利文獻] 專利文獻1:日本專利特開2015-111518號公報In recent years, an image display device including an illuminating layer composed of a luminescent material such as a quantum dot has been attracting attention as an image display device having excellent color reproducibility. For example, for a quantum dot film using quantum dots, if light is incident, the quantum dots are excited to emit fluorescence. For example, if a backlight of a blue LED (Light Emitting Diode) is used, one part of the blue light is converted into red light and green light by the quantum dot film, and one part of the blue light directly functions as blue light. Exit. As a result, white light can be realized. Further, it is considered that by using such a quantum dot film, NTSC (National Television System Committee) can achieve color reproducibility of 100% or more. On the other hand, in recent years, the image display device has been required to have a high level of improvement in power consumption and reduction in external light reflection, and an image display device including the above-described light-emitting layer is also required to improve light use efficiency. Achieve low power consumption, which in turn requires a reduction in external light reflection. [Prior Art Document] [Patent Document] Patent Document 1: Japanese Patent Laid-Open No. 2015-111518

[發明所欲解決之問題] 本發明係為了解決上述先前之課題而成者,其主要目的在於提供一種圖像顯示裝置,其係具備發光層者,並且光之利用效率較高,且外界光反射較少。 [解決問題之技術手段] 本發明之圖像顯示裝置至少依序具備偏光板、折射率調整層、及發光層,且該折射率調整層之折射率為1.2以下。 於一實施形態中,上述發光層係對入射光之一部分波長進行轉換而發光之層。 於一實施形態中,上述發光層包含量子點或螢光體作為波長轉換材料。 於一實施形態中,上述發光層為彩色濾光片。 於一實施形態中,上述偏光板作為圓偏光板發揮功能。 於一實施形態中,上述圖像顯示裝置進而具備著色層。 於一實施形態中,上述著色層配置於上述折射率調整層與發光層之間。 根據本發明之另一態樣,提供一種光學積層體,其係具備偏光板及折射率調整層者,且積層於具備發光層之光學構件而使用。 [發明之效果] 根據本發明,可提供一種圖像顯示裝置,其藉由在偏光板與發光層之間配置折射率調整層,而光之利用效率較高,且外界光反射較少。[Problems to be Solved by the Invention] The present invention has been made in order to solve the above-mentioned problems, and a main object thereof is to provide an image display device which is provided with a light-emitting layer and which has high light utilization efficiency and external light. Less reflection. [Means for Solving the Problem] The image display device of the present invention includes at least a polarizing plate, a refractive index adjusting layer, and a light-emitting layer, and the refractive index adjusting layer has a refractive index of 1.2 or less. In one embodiment, the light-emitting layer is a layer that converts light at a portion of the incident light to emit light. In one embodiment, the luminescent layer comprises a quantum dot or a phosphor as a wavelength converting material. In one embodiment, the light emitting layer is a color filter. In one embodiment, the polarizing plate functions as a circular polarizing plate. In one embodiment, the image display device further includes a colored layer. In one embodiment, the colored layer is disposed between the refractive index adjusting layer and the light emitting layer. According to another aspect of the present invention, an optical laminate comprising a polarizing plate and a refractive index adjusting layer and laminated on an optical member having a light-emitting layer is used. [Effects of the Invention] According to the present invention, it is possible to provide an image display device in which a refractive index adjusting layer is disposed between a polarizing plate and a light-emitting layer, and light utilization efficiency is high, and external light reflection is small.

以下,對本發明之較佳之實施形態進行說明,但本發明並不限定於該等實施形態。 (用語及符號之定義) 本說明書中之用語及符號之定義如下所述。 (1)折射率(nx、ny、nz) 「nx」為面內之折射率成為最大之方向(即,遲相軸方向)之折射率,「ny」為於面內與遲相軸正交之方向(即,進相軸方向)之折射率,「nz」為厚度方向之折射率。 (2)面內相位差(Re) 「Re(λ)」係利用23℃下之波長λ nm之光測定之面內相位差。例如,「Re(550)」係利用23℃下之波長550 nm之光測定之面內相位差。關於Re(λ),於將層(膜)之厚度設為d(nm)時,利用式:Re=(nx-ny)×d而求出。 (3)厚度方向之相位差(Rth) 「Rth(λ)」係利用23℃下之波長λ nm之光測定之厚度方向之相位差。例如,「Rth(550)」係利用23℃下之波長550 nm之光測定之厚度方向之相位差。關於Rth(λ),於將層(膜)之厚度設為d(nm)時,利用式:Rth=(nx-nz)×d而求出。 (4)Nz係數 Nz係數係利用Nz=Rth/Re而求出。A. 圖像顯示裝置之整體構成 圖1係本發明之一實施形態之圖像顯示裝置之概略剖視圖。圖像顯示裝置100依序具備偏光板10、折射率調整層20、及發光層30。較佳為偏光板10、折射率調整層20、及發光層30係自視認側依序配置。於一實施形態中,上述發光層係可對入射光之一部分波長進行轉換而發光之層。於一實施形態中,發光層將入射之藍色~藍紫色之光之一部分轉換為綠色光及紅色光,且使一部分作為藍色光直接出射,藉此利用紅色光、綠色光及藍色光之組合發出白色光。於圖1中,作為代表例,對圖像顯示裝置為液晶顯示裝置之情形進行圖示。於一實施形態中,於圖像顯示裝置為液晶顯示裝置之情形時,該液晶顯示裝置100具備液晶面板110及背光源30,偏光板10、折射率調整層20及發光層30可為液晶面板110之構件。又,液晶面板110可由液晶單元40、配置於液晶單元40之兩側之視認側偏光板10、及背面側偏光板50所構成。於該情形時,發光層30可包含於液晶面板40中。更具體而言,發光層30可設為液晶面板40中所具備之彩色濾光片。又,偏光板10可作為液晶面板40之視認側偏光板發揮功能。 於本發明中,藉由在偏光板10與發光層30之間配置折射率調整層20,可使自發光層出射至折射率調整層20側之光(例如包含透過發光層之來自背光源30之光)於折射率調整層20之發光層30側面產生反射。此處所反射之光可再次利用發光層30進行波長轉換。其結果為,可提高光利用效率。又,於未配置折射率調整層之情形時,自發光層出射至偏光板側之光之大部分透過偏光板,於偏光板之與發光層相反之側之面(例如偏光板之空氣界面)產生反射。於該情形時,反射光被偏光板吸收,難以到達發光層,光之利用效率降低。於本發明中,藉由如上所述般配置折射率調整層,不會產生偏光板中之反射光之吸收,可提高光之利用效率。 較佳為圖像顯示裝置100構成為於偏光板10與折射率調整層20之間、及折射率調整層20與發光層30之間不存在空氣層。於一實施形態中,偏光板10與折射率調整層20直接積層。又,於一實施形態中,折射率調整層20與發光層30直接積層。若如上所述般排除空氣層,則可減少外界光反射。於本發明中,藉由適當地調整折射率調整層之折射率(詳細情況係於下文中加以說明),可提高自發光層出射之光之利用效率,且抑制外界光反射。再者,於本說明書中,所謂「直接積層」係包含經由任意適當之黏著劑或接著劑將2個構件積層之概念。 於一實施形態中,本發明之圖像顯示裝置可進而具備著色層。較佳為該著色層配置於折射率調整層與發光層之間。該著色層可吸收特定波長之光。該著色層於上述偏光板具有λ/4板而作為圓偏光板發揮功能時(詳細情況係於下文中加以說明),可適宜地使用。具有λ/4板之偏光板(圓偏光板)發揮抗反射功能,於此藉由配置著色層,該著色層吸收特定波長之光,可提高該圓偏光板之抗反射功能。又,藉由著色層選擇性地吸收特定波長範圍之光,可適當地調整反射色相,且可獲得經寬色域化之圖像顯示裝置。再者,著色層吸收何種波長之光可根據圖像顯示裝置所具備之反射體(例如液晶顯示面板、有機EL(Electroluminescence,電致發光)面板等圖像顯示面板)之反射特性而適當地調整。較佳為於折射率調整層與著色層之間、及著色層與發光層之間不存在空氣層。於一實施形態中,折射率調整層與著色層直接積層。又,於一實施形態中,著色層與發光層直接積層。B. 偏光板 作為上述偏光板,可使用任意適當之偏光板。代表性地,偏光板係由偏光元件、及配置於偏光元件之單側或兩側之保護膜所構成。 B-1.偏光元件、保護膜 作為上述偏光元件,可使用任意適當之偏光元件。例如可列舉:使碘或二色性染料等二色性物質吸附於聚乙烯醇系膜、部分縮甲醛化聚乙烯醇系膜、乙烯-乙酸乙烯酯共聚物系部分皂化膜等親水性高分子膜並進行單軸延伸而成者;聚乙烯醇之脫水處理物或聚氯乙烯之脫鹽酸處理物等多烯系配向膜等。該等之中,使碘等二色性物質吸附於聚乙烯醇系膜並進行單軸延伸而成之偏光元件之偏光二色比較高而尤佳。偏光元件之厚度較佳為0.5 μm~80 μm。 使碘吸附於聚乙烯醇系膜並進行單軸延伸而成之偏光元件代表性地係藉由如下方法而製作:藉由將聚乙烯醇浸漬於碘之水溶液中而進行染色,並延伸為原長之3~7倍。延伸可於染色後進行,可一面染色一面延伸,亦可於延伸後染色。除延伸、染色以外,例如亦實施膨潤、交聯、調整、水洗、乾燥等處理而製作。例如,藉由在染色前將聚乙烯醇系膜浸漬於水中而進行水洗,不僅可將聚乙烯醇系膜表面之污垢或抗黏連劑洗淨,亦可使聚乙烯醇系膜膨潤而防止染色不均等。再者,聚乙烯醇系膜可為單層之膜(通常之經膜成形之膜),亦可為塗佈於樹脂基材上而形成之聚乙烯醇系樹脂層。由單層之聚乙烯醇系膜製作偏光元件之技術於業界眾所周知。由塗佈於樹脂基材上而形成之聚乙烯醇系樹脂層製作偏光元件之技術例如係記載於日本專利特開2009-098653號公報中。 偏光元件較佳為於波長380 nm~780 nm中之任一波長下顯示出吸收二色性。偏光元件之單體透過率較佳為40%~45.5%,更佳為42%~45%。 偏光元件之偏光度為99.9%以上,較佳為99.95%以上。 作為上述保護膜,可使用任意適當之膜。作為成為此種膜之主成分之材料之具體例,可列舉:三乙醯纖維素(TAC)等纖維素系樹脂、或(甲基)丙烯酸系、聚酯系、聚乙烯醇系、聚碳酸酯系、聚醯胺系、聚醯亞胺系、聚醚碸系、聚碸系、聚苯乙烯系、聚降𦯉烯系、聚烯烴系、乙酸酯系等透明樹脂等。又,亦可列舉:丙烯酸系、胺基甲酸酯系、丙烯酸胺基甲酸酯系、環氧系、聚矽氧系等熱硬化型樹脂或紫外線硬化型樹脂等。除此以外,例如亦可列舉矽氧烷系聚合物等玻璃質系聚合物。又,亦可使用日本專利特開2001-343529號公報(WO01/37007)中所記載之聚合物膜。作為該膜之材料,例如可使用含有側鏈具有經取代或未經取代之醯亞胺基之熱塑性樹脂、及側鏈具有經取代或未經取代之苯基以及腈基之熱塑性樹脂之樹脂組合物,例如可列舉具有包含異丁烯與N-甲基順丁烯二醯亞胺之交替共聚物、及丙烯腈-苯乙烯共聚物之樹脂組合物。上述聚合物膜例如可為上述樹脂組合物之擠出成形物。於偏光元件與保護膜之積層中可使用任意適當之黏著劑層或接著劑層。黏著劑層代表性地係由丙烯酸系黏著劑所形成。接著劑層代表性地係由聚乙烯醇系接著劑所形成。 B-2.圓偏光板 於一實施形態中,上述偏光板進而具備相位差層。例如,藉由配置可作為λ/4板發揮功能之層作為相位差層,上述偏光板作為圓偏光板發揮功能。藉由使用圓偏光板,本發明之圖像顯示裝置之抗外界光反射之效果變得較顯著。 圖2係本發明之一實施形態之圓偏光板之概略剖視圖。圓偏光板10'具備偏光元件1及相位差層2a。相位差層2a可作為λ/4板發揮功能。圓偏光板10'可以偏光元件1成為視認側之方式配置。於一實施形態中,圓偏光板10'於偏光元件1之與相位差層2a相反之側之面具備保護膜3。保護膜3可根據用途、具備圓偏光板之圖像顯示裝置之構成等而省略。又,圓偏光板可於偏光元件與相位差層之間具備另一保護膜(亦稱為內側保護膜,未圖示)。於圖示例中,省略內側保護膜。於該情形時,相位差層2可作為內側保護膜發揮功能。若為此種構成,則可實現圓偏光板之進一步之薄型化。 於本實施形態中,偏光元件1之吸收軸與相位差層2a之遲相軸所成之角度為35°~55°,較佳為38°~52°,更佳為40°~50°,進而較佳為42°~48°,尤佳為44°~46°。若該角度為此種範圍,則可實現所需之圓偏光功能。再者,於本說明書中,於提及角度時,只要未特別說明,則該角度包含順時針及逆時針之兩個方向之角度。 圖3係本發明之另一實施形態之圓偏光板之概略剖視圖。該圓偏光板10''於偏光元件1與相位差層2a(λ/4板)之間,進而具備另一相位差層2b。另一相位差層2b作為λ/2板發揮功能。再者,於本說明書中,為了便於說明,有時將相位差層2a(λ/4板)稱為第1相位差層,將另一相位差層2b(λ/2板)稱為第2相位差層。圖示例之圓偏光板10''於偏光元件1之與另一相位差層2b相反之側具備保護膜3。又,圓偏光板可於偏光元件與相位差層之間具備另一保護膜(亦稱為內側保護膜,未圖示)。於圖示例中,省略內側保護膜。於該情形時,另一相位差層(第2相位差層)2b亦可作為內側保護膜發揮功能。 於本實施形態中,偏光元件1之吸收軸與第1相位差層2a之遲相軸所成之角度較佳為65°~85°,更佳為72°~78°,進而較佳為約75°。進而,偏光元件1之吸收軸與第2相位差層2b之遲相軸所成之角度較佳為10°~20°,更佳為13°~17°,進而較佳為約15°。藉由以如上所述之軸角度配置2個相位差層,可獲得於寬頻帶中具有非常優異之圓偏光特性(作為結果,為非常優異之抗反射特性)之圓偏光板。 B-2-1.第1相位差層(λ/4板) 第1相位差層如上所述可作為λ/4板發揮功能。此種第1相位差層之面內相位差Re(550)為100 nm~180 nm,較佳為110 nm~170 nm,進而較佳為120 nm~160 nm,尤佳為135 nm~155 nm。第1相位差層代表性地具有nx>ny=nz或nx>ny>nz之折射率橢圓體。再者,於本說明書中,例如「ny=nz」不僅包括嚴密地相等者,亦包括實質上相等者。於一實施形態中,第1相位差層之Nz係數例如為0.9~2,較佳為1~1.5,更佳為1~1.3。 上述第1相位差層之厚度可以可作為λ/4板最適當地發揮功能之方式進行設定。換言之,厚度可以可獲得所需之面內相位差之方式進行設定。具體而言,厚度較佳為10 μm~80 μm,進而較佳為10 μm~60 μm,最佳為30 μm~50 μm。 第1相位差層可顯示出相位差值根據測定光之波長增大之反色散波長特性,可顯示出相位差值根據測定光之波長減小之正波長色散特性,亦可顯示出相位差值根據測定光之波長亦幾乎不發生變化之平坦之波長色散特性。 於一實施形態中,上述第1相位差層顯示出平坦之波長色散特性。藉由採用顯示出平坦之波長色散特性之第1相位差層,可實現優異之抗反射特性及斜方向之反射色相。於本實施形態中,第1相位差層之Re(450)/Re(550)較佳為0.99~1.03,Re(650)/Re(550)較佳為0.98~1.02。 於另一實施形態中,上述第1相位差層顯示出反色散波長特性。藉由採用顯示出反色散波長特性之第1相位差層,可於正面方向提高反射色相。又,藉由採用顯示出反色散波長特性之第1相位差層,可維持實用之反射色相,且謀求其他特性(例如亮度)之提高。於本實施形態中,第1相位差層之Re(450)/Re(550)較佳為0.5以上且未達1.0,更佳為0.7~0.95。又,第1相位差層之Re(650)/Re(550)較佳為超過1且為1.2以下,更佳為1.01~1.15。於本實施形態中,第1相位差層之Nz係數較佳為0.3~0.7,更佳為0.4~0.6,進而較佳為0.45~0.55,尤佳為約0.5。若Nz係數為此種範圍,則可達成更優異之反射色相。 上述λ/4板較佳為高分子膜之延伸膜。具體而言,藉由適當地選擇聚合物之種類、延伸處理(例如延伸方法、延伸溫度、延伸倍率、延伸方向),可獲得λ/4板。 作為形成上述高分子膜之樹脂,可使用任意適當之樹脂。作為具體例,可列舉:聚降𦯉烯等環烯烴系樹脂、聚碳酸酯系樹脂、纖維素系樹脂、聚乙烯醇系樹脂、聚碸系樹脂等構成正雙折射膜之樹脂。其中,較佳為降𦯉烯系樹脂、聚碳酸酯系樹脂。再者,形成高分子膜之樹脂之詳細情況例如係記載於日本專利特開2014-010291中。該記載係作為參考而引用至本說明書中。 上述聚降𦯉烯係指起始原料(單體)之一部分或全部使用具有降𦯉烯環之降𦯉烯系單體所獲得之(共)聚合物。作為該降𦯉烯系單體,例如可列舉:降𦯉烯及其烷基及/或亞烷基取代物,例如5-甲基-2-降𦯉烯、5-二甲基-2-降𦯉烯、5-乙基-2-降𦯉烯、5-丁基-2-降𦯉烯、5-亞乙基-2-降𦯉烯等及該等之鹵素等極性基取代物;二環戊二烯、2,3-二氫二環戊二烯等;二亞甲基八氫萘、其烷基及/或亞烷基取代物、及鹵素等極性基取代物,例如6-甲基-1,4:5,8-二亞甲基-1,4,4a,5,6,7,8,8a-八氫萘、6-乙基-1,4:5,8-二亞甲基-1,4,4a,5,6,7,8,8a-八氫萘、6-亞乙基-1,4:5,8-二亞甲基-1,4,4a,5,6,7,8,8a-八氫萘、6-氯-1,4:5,8-二亞甲基-1,4,4a,5,6,7,8,8a-八氫萘、6-氰基-1,4:5,8-二亞甲基-1,4,4a,5,6,7,8,8a-八氫萘、6-吡啶基-1,4:5,8-二亞甲基-1,4,4a,5,6,7,8,8a-八氫萘、6-甲氧基羰基-1,4:5,8-二亞甲基-1,4,4a,5,6,7,8,8a-八氫萘等;環戊二烯之3~4聚物,例如4,9:5,8-二亞甲基-3a,4,4a,5,8,8a,9,9a-八氫-1H-芴、4,11:5,10:6,9-三亞甲基-3a,4,4a,5,5a,6,9,9a,10,10a,11,11a-十二氫-1H-環戊并蒽等。 作為上述聚降𦯉烯,市售有各種製品。作為具體例,可列舉:日本Zeon公司製造之商品名「Zeonex」、「Zeonor」、JSR公司製造之商品名「Arton」、TICONA公司製造之商品名「TOPAS」、三井化學公司製造之商品名「APEL」。 作為上述聚碳酸酯系樹脂,較佳為使用芳香族聚碳酸酯。芳香族聚碳酸酯代表性地可藉由碳酸酯前驅物質與芳香族二酚化合物之反應而獲得。作為碳酸酯前驅物質之具體例,可列舉:碳醯氯、二酚類之二氯甲酸酯、碳酸二苯酯、碳酸二對甲苯酯、碳酸苯基對甲苯酯、碳酸二對氯苯酯、碳酸二萘酯等。該等之中,較佳為碳醯氯、碳酸二苯酯。作為芳香族二酚化合物之具體例,可列舉:2,2-雙(4-羥基苯基)丙烷、2,2-雙(4-羥基-3,5-二甲基苯基)丙烷、雙(4-羥基苯基)甲烷、1,1-雙(4-羥基苯基)乙烷、2,2-雙(4-羥基苯基)丁烷、2,2-雙(4-羥基-3,5-二甲基苯基)丁烷、2,2-雙(4-羥基-3,5-二丙基苯基)丙烷、1,1-雙(4-羥基苯基)環己烷、1,1-雙(4-羥基苯基)-3,3,5-三甲基環己烷等。該等可單獨使用或組合2種以上而使用。較佳為使用2,2-雙(4-羥基苯基)丙烷、1,1-雙(4-羥基苯基)環己烷、1,1-雙(4-羥基苯基)-3,3,5-三甲基環己烷。尤佳為同時使用2,2-雙(4-羥基苯基)丙烷與1,1-雙(4-羥基苯基)-3,3,5-三甲基環己烷。 作為延伸方法,例如可列舉:橫向單軸延伸、固定端雙軸延伸、逐次雙軸延伸。作為固定端雙軸延伸之具體例,可列舉使高分子膜一面沿長邊方向移行一面沿短邊方向(橫向)延伸之方法。該方法表觀上可為橫向單軸延伸。又,亦可採用斜向延伸。藉由採用斜向延伸,可獲得相對於寬度方向具有特定角度之配向軸(遲相軸)之長條狀之延伸膜。 上述延伸膜之厚度代表性地為5 μm~80 μm,較佳為15 μm~60 μm,進而較佳為25 μm~45 μm。 B-2-2.第2相位差層(λ/2板) 第2相位差層如上所述可作為λ/2板發揮功能。此種第2相位差層之面內相位差Re(550)較佳為180~300 nm,進而較佳為210~280 nm,最佳為230~240 nm。第2相位差層代表性地較佳為具有nx>ny=nz之折射率橢圓體。第2相位差層之Nz係數例如為0.9~2,較佳為1~1.5,更佳為1~1.3。 上述第2相位差層之厚度可以可作為λ/2板最適當地發揮功能之方式進行設定。換言之,厚度可以可獲得所需之面內相位差之方式進行設定。具體而言,厚度較佳為0.5 μm~5 μm,進而較佳為1 μm~4 μm,最佳為1.5 μm~3 μm。 作為上述第2相位差層之材料,只要可獲得如上所述之特性,則可採用任意適當之材料。較佳為液晶材料,進而較佳為液晶相為向列相之液晶材料(向列型液晶)。藉由使用液晶材料,可使所獲得之第2相位差層之nx與ny之差與非液晶材料相比格外地增大。其結果為,可格外地減小用於獲得所需之面內相位差之第2相位差層之厚度。作為此種液晶材料,例如可使用液晶聚合物或液晶單體。液晶材料之液晶性之表現機制可為向液性亦可為向熱性。又,液晶之配向狀態較佳為水平配向。又,作為第2相位差層之材料,可使用形成上述高分子膜之樹脂。 第2相位差層可顯示出相位差值根據測定光之波長增大之反色散波長特性,可顯示出相位差值根據測定光之波長減小之正波長色散特性,亦可顯示出相位差值根據測定光之波長亦幾乎不發生變化之平坦之波長色散特性。較佳為顯示出平坦之波長色散特性。藉由採用具有平坦之波長色散特性之λ/2板,可實現優異之抗反射特性及斜方向之反射色相。相位差層之Re(450)/Re(550)較佳為0.99~1.03,Re(650)/Re(550)較佳為0.98~1.02。C. 著色層 上述著色層包含任意適當之1種以上之有色材料。代表性地,於著色層中,有色材料係存在於基質中。 於一實施形態中,著色層選擇性地吸收特定波長範圍之光(即,於特定範圍之波長頻帶中具有吸收極大波長)。於另一實施形態中,著色層係以吸收可見光區域全部波長之方式發揮功能。較佳為著色層選擇性地吸收特定波長範圍之光。若以選擇性地吸收特定波長範圍之光之方式構成著色層,則可抑制可見光透過率之降低(即,亮度之降低),且提高圓偏光板之抗反射功能。又,藉由調整所吸收之光之波長,可使反射色相成為中性,可防止不需要之著色。 於一實施形態中,上述著色層於440 nm~510 nm之範圍之波長頻帶中具有吸收極大波長。若形成此種著色層,則可適當地調整反射色相。 於另一實施形態中,上述著色層於560 nm~610 nm之範圍之波長頻帶中具有吸收極大波長。若形成此種著色層,則可適當地調整反射色相。 進而,於另一實施形態中,上述著色層於440 nm~510 nm及560 nm~610 nm之範圍之波長頻帶中具有吸收極大波長。若為此種構成,則可使圖像顯示裝置顯著地寬色域化。如上所述,具有2個以上之吸收極大波長之著色層可藉由使用複數種有色材料而獲得。 著色層於吸收極大波長下之透過率較佳為0%~80%,更佳為0%~70%。若為此種範圍,則本發明之上述效果變得更顯著。 上述著色層之可見光透過率較佳為30%~90%,更佳為30%~80%。若為此種範圍,則可抑制亮度降低,且提高圓偏光板之抗反射功能。 上述著色層之霧度值較佳為15%以下,更佳為10%以下。藉由將著色層之霧度值控制於此種範圍內,可防止透過上述相位差層之圓偏光之消偏光,其結果為,可有效地發揮出圓偏光板之抗反射功能。著色層之霧度值越小越佳,其下限例如為0.1%。 著色層之厚度較佳為1 μm~100 μm,更佳為2 μm~30 μm。 (有色材料) 作為上述有色材料之具體例,可列舉:蒽醌系、三苯甲烷系、萘醌系、硫靛藍系、紫環酮系、苝系、方酸鎓系、花青系、卟啉系、氮雜卟啉系、酞菁系、亞酞菁系、醌茜系、聚次甲基系、玫瑰紅系、氧喏系、醌系、偶氮系、𠮿系、次甲基偶氮系、喹吖啶酮系、二㗁𠯤系、吡咯并吡咯二酮系、蒽吡啶酮系、異吲哚啉酮系、陰丹士林系、靛藍系、硫靛藍系、喹酞酮系、喹啉系、三苯甲烷系等染料。 於一實施形態中,作為有色材料,可使用蒽醌系、肟系、萘醌系、醌茜系、氧喏系、偶氮系、𠮿系或酞菁系之染料。若使用該等染料,則可形成於440 nm~510 nm之範圍之波長頻帶中具有吸收極大波長之著色層。 於一實施形態中,作為有色材料,於上述範圍內具有吸收極大波長之著色層例如可使用靛藍系、玫瑰紅系、喹吖啶酮系或卟啉系之染料作為有色材料。若使用該等染料,則可形成於560 nm~610 nm之範圍之波長頻帶中具有吸收極大波長之著色層。 又,作為上述有色材料,亦可使用顏料。作為顏料之具體例,例如可列舉:黑色顏料(碳黑、骨黑、石墨、鐵黑、鈦黑等)、偶氮系顏料、酞菁系顏料、多環式顏料(喹吖啶酮系、苝系、紫環酮系、異吲哚啉酮系、異吲哚啉系、二㗁𠯤系、硫靛藍系、蒽醌系、喹酞酮系、金屬錯合物系、吡咯并吡咯二酮系等)、染料色澱系顏料、白色體質顏料(氧化鈦、氧化鋅、硫化鋅、黏土、滑石、硫酸鋇、碳酸鈣等)、彩色顏料(鉻黃、鎘系、鉬鎘紅、鎳鈦、鉻鈦、氧化鐵黃、鐵丹、鉻酸鋅、鉛丹、群青、鐵藍、鈷藍、鉻綠、氧化鉻、釩酸鉍等)、光澤材料顏料(珠光顏料、鋁顏料、青銅顏料等)、螢光顏料(硫化鋅、硫化鍶、鋁酸鍶等)等。 上述有色材料之含有比率根據有色材料之種類、所需之光吸收特性等,可設為任意適當之比率。上述有色材料之含有比率相對於基質材料100重量份,例如為0.01重量份~100重量份,更佳為0.01重量份~50重量份。 於使用顏料作為有色材料之情形時,基質中之該顏料之數量平均粒徑較佳為500 nm以下,更佳為1 nm~100 nm。若為此種範圍,則可形成霧度值較小之著色層。顏料之數量平均粒徑係藉由著色層之剖面觀察進行測定、算出。 (基質) 基質可為黏著劑,亦可為樹脂膜。較佳為黏著劑。 於基質為黏著劑之情形時,作為黏著劑,可使用任意適當之黏著劑。黏著劑較佳為具有透明性及光學各向同性。作為黏著劑之具體例,可列舉:橡膠系黏著劑、丙烯酸系黏著劑、聚矽氧系黏著劑、環氧系黏著劑、纖維素系黏著劑。較佳為橡膠系黏著劑或丙烯酸系黏著劑。 橡膠系黏著劑(黏著劑組合物)之橡膠系聚合物係於室溫附近之溫度區域中顯示出橡膠彈性之聚合物。作為較佳之橡膠系聚合物(A),可列舉:苯乙烯系熱塑性彈性體(A1)、異丁烯系聚合物(A2)、及其組合。 作為苯乙烯系熱塑性彈性體(A1),例如可列舉:苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)、苯乙烯-異戊二烯-苯乙烯嵌段共聚物(SIS)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-乙烯-丙烯-苯乙烯嵌段共聚物(SEPS、SIS之氫化物)、苯乙烯-乙烯-丙烯嵌段共聚物(SEP,苯乙烯-異戊二烯嵌段共聚物之氫化物)、苯乙烯-異丁烯-苯乙烯嵌段共聚物(SIBS)、苯乙烯-丁二烯橡膠(SBR)等苯乙烯系嵌段共聚物。該等之中,就於分子之兩末端具有聚苯乙烯嵌段,且具有作為聚合物之較高之凝聚力之方面而言,較佳為苯乙烯-乙烯-丙烯-苯乙烯嵌段共聚物(SEPS、SIS之氫化物)、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)、苯乙烯-異丁烯-苯乙烯嵌段共聚物(SIBS)。作為苯乙烯系熱塑性彈性體(A1),可使用市售品。作為市售品之具體例,可列舉:可樂麗公司製造之SEPTON、HYBRAR、旭化成化學公司製造之TUFTEC、KANEKA公司製造之SIBSTAR。 苯乙烯系熱塑性彈性體(A1)之重量平均分子量較佳為5萬~50萬左右,更佳為5萬~30萬左右,進而較佳為5萬~25萬左右。若苯乙烯系熱塑性彈性體(A1)之重量平均分子量為此種範圍,則可兼顧聚合物之凝聚力與黏彈性,故而較佳。 苯乙烯系熱塑性彈性體(A1)中之苯乙烯含量較佳為5重量%~70重量%左右,更佳為5重量%~40重量%左右,進而較佳為10重量%~20重量%左右。若苯乙烯系熱塑性彈性體(A1)中之苯乙烯含量為此種範圍,則可保持基於苯乙烯部位之凝聚力,且確保基於軟鏈段之黏彈性,故而較佳。 作為異丁烯系聚合物(A2),可列舉包含異丁烯作為構成單體,且重量平均分子量(Mw)較佳為50萬以上者。異丁烯系聚合物(A2)可為異丁烯之均聚物(聚異丁烯,PIB),亦可為將異丁烯作為主單體之共聚物(即,異丁烯以超過50莫耳%之比率進行共聚合而成之共聚物)。作為此種共聚物,例如可列舉:異丁烯與正丁烯之共聚物、異丁烯與異戊二烯之共聚物(例如普通丁基橡膠、氯化丁基橡膠、溴化丁基橡膠、部分交聯丁基橡膠等丁基橡膠類)、該等之硫化物或改性物(例如利用羥基、羧基、胺基、環氧基等官能基進行改性而成者)等。該等之中,就於主鏈中不含雙鍵且耐候性優異之方面而言,較佳為聚異丁烯(PIB)。可使用市售品作為異丁烯系聚合物(A2)。作為市售品之具體例,可列舉BASF公司製造之OPPANOL。 異丁烯系聚合物(A2)之重量平均分子量(Mw)較佳為50萬以上,更佳為60萬以上,進而較佳為70萬以上。又,重量平均分子量(Mw)之上限較佳為500萬以下,更佳為300萬以下,進而較佳為200萬以下。藉由將異丁烯系聚合物(A2)之重量平均分子量設為50萬以上,可製成高溫保管時之耐久性更優異之黏著劑組合物。 關於黏著劑(黏著劑組合物)中之橡膠系聚合物(A)之含量,於黏著劑組合物之總固形物成分中,較佳為30重量%以上,更佳為40重量%以上,進而較佳為50重量%以上,尤佳為60重量%以上。橡膠系聚合物之含量之上限較佳為95重量%以下,更佳為90重量%以下。 於橡膠系黏著劑中,可將上述橡膠系聚合物(A)與其他橡膠系聚合物組合而使用。作為其他橡膠系聚合物之具體例,可列舉:丁基橡膠(IIR)、丁二烯橡膠(BR)、丙烯腈-丁二烯橡膠(NBR)、EPR(二元系乙烯-丙烯橡膠)、EPT(三元系乙烯-丙烯橡膠)、丙烯酸系橡膠、胺基甲酸酯橡膠、聚胺基甲酸酯系熱塑性彈性體;聚酯系熱塑性彈性體;聚丙烯與EPT(三元系乙烯-丙烯橡膠)之聚合物摻合物等摻合物系熱塑性彈性體。其他橡膠系聚合物之調配量相對於上述橡膠系聚合物(A)100重量份,較佳為10重量份左右以下。 丙烯酸系黏著劑(黏著劑組合物)之丙烯酸系聚合物代表性地含有(甲基)丙烯酸烷基酯作為主成分,且作為與目的相對應之共聚合成分,可含有含芳香環之(甲基)丙烯酸酯、含醯胺基之單體、含羧基之單體及/或含羥基之單體。於本說明書中,所謂「(甲基)丙烯酸酯」係指丙烯酸酯及/或甲基丙烯酸酯。作為(甲基)丙烯酸烷基酯,可例示直鏈狀或支鏈狀之烷基之碳數1~18者。含芳香環之(甲基)丙烯酸酯係於其結構中包含芳香環結構,且包含(甲基)丙烯醯基之化合物。作為芳香環,可列舉:苯環、萘環、或聯苯環。含芳香環之(甲基)丙烯酸酯可滿足耐久性(尤其是對於透明導電層之耐久性),且改善由周邊部之脫色所引起之顯示不均。含醯胺基之單體係於其結構中包含醯胺基,且包含(甲基)丙烯醯基、乙烯基等聚合性不飽和雙鍵之化合物。含羧基之單體係於其結構中包含羧基,且包含(甲基)丙烯醯基、乙烯基等聚合性不飽和雙鍵之化合物。含羥基之單體係於其結構中包含羥基,且包含(甲基)丙烯醯基、乙烯基等聚合性不飽和雙鍵之化合物。丙烯酸系黏著劑之詳細情況例如係記載於日本專利特開2015-199942號公報中,該公報之記載係作為參考而引用至本說明書中。 於基質為樹脂膜之情形時,作為構成樹脂膜之樹脂,可使用任意適當之樹脂。具體而言,樹脂可為熱塑性樹脂,可為熱硬化性樹脂,亦可為活性能量線硬化性樹脂。作為活性能量線硬化性樹脂,可列舉:電子束硬化型樹脂、紫外線硬化型樹脂、可見光硬化型樹脂。作為樹脂之具體例,可列舉:環氧樹脂、(甲基)丙烯酸酯(例如甲基丙烯酸甲酯、丙烯酸丁酯)、降𦯉烯、聚乙烯、聚(乙烯丁醛)、聚(乙酸乙烯酯)、聚脲、聚胺基甲酸酯、胺基聚矽氧(AMS)、聚苯基甲基矽氧烷、聚苯基烷基矽氧烷、聚二苯基矽氧烷、聚二烷基矽氧烷、倍半矽氧烷、氟化聚矽氧、經乙烯基及氫化物取代之聚矽氧、苯乙烯系聚合物(例如聚苯乙烯、胺基聚苯乙烯(APS)、聚(丙烯腈乙烯苯乙烯)(AES))、與二官能性單體交聯而成之聚合物(例如二乙烯苯)、聚酯系聚合物(例如聚對苯二甲酸乙二酯)、纖維素系聚合物(例如三乙醯纖維素)、氯乙烯系聚合物、醯胺系聚合物、醯亞胺系聚合物、乙烯醇系聚合物、環氧系聚合物、聚矽氧系聚合物、丙烯酸胺基甲酸酯系聚合物。該等可單獨使用,亦可組合(例如摻合、共聚合)使用。該等樹脂可於形成膜後實施延伸、加熱、加壓等處理。較佳為熱硬化性樹脂或紫外線硬化型樹脂,更佳為熱硬化性樹脂。其原因在於,於藉由卷對卷製造本發明之光學構件之情形時,可適宜地應用。D. 折射率調整層 折射率調整層之折射率為1.2以下,較佳為1.15以下,更佳為1.01~1.1。若為此種範圍,則可提高自發光層出射之光之利用效率,且抑制外界光反射。 折射率調整層代表性地於內部具有空隙。折射率調整層之空隙率可取任意適當之值。上述空隙率例如為5%~99%,較佳為25%~95%。藉由空隙率為上述範圍內,可充分降低折射率調整層之折射率,且可獲得較高之機械強度。 作為上述於內部具有空隙之折射率調整層,例如可包含具有粒子狀、纖維狀、平板狀之至少一種形狀之結構。形成粒子狀之結構體(構成單元)可為實心粒子亦可為中空粒子,具體而言,可列舉聚矽氧粒子或具有微細孔之聚矽氧粒子、二氧化矽中空奈米粒子或二氧化矽中空奈米球等。纖維狀之構成單元例如為直徑為奈米尺寸之奈米纖維,具體而言,可列舉纖維素奈米纖維或氧化鋁奈米纖維等。平板狀之構成單元例如可列舉奈米黏土,具體而言,可列舉奈米尺寸之膨潤土(例如Kunipia F[商品名])等。又,於本發明之空隙結構體中,包含形成上述微細之空隙結構之單一構成單元或者包含一種或複數種之構成單元彼此藉由觸媒作用,例如直接或間接地以化學方式結合之部分。再者,於本發明中,所謂構成單元彼此「間接地結合」係指構成單元彼此經由構成單元量以下之少量之黏合劑成分而結合。所謂構成單元彼此「直接地結合」係指構成單元彼此不經由黏合劑成分等而直接結合。 作為構成折射率調整層之材料,可採用任意適當之材料。作為上述材料,例如可採用國際公開第2004/113966號小冊、日本專利特開2013-254183號公報、及日本專利特開2012-189802號公報中所記載之材料。具體而言,例如可列舉:二氧化矽系化合物;水解性矽烷類、以及其部分水解物及脫水縮合物;有機聚合物;含有矽烷醇基之矽化合物;藉由使矽酸鹽與酸或離子交換樹脂接觸而獲得之活性二氧化矽;聚合性單體(例如(甲基)丙烯酸系單體、及苯乙烯系單體);硬化性樹脂(例如(甲基)丙烯酸系樹脂、含氟之樹脂、及胺基甲酸酯樹脂);及該等之組合。 作為上述有機聚合物,例如可列舉:聚烯烴類(例如聚乙烯、及聚丙烯)、聚胺基甲酸酯類、含氟之聚合物(例如將含氟之單體單元與用以賦予交聯反應性之構成單元作為構成成分之含氟共聚物)、聚酯類(例如聚(甲基)丙烯酸衍生物(於本說明書中,所謂(甲基)丙烯酸係指丙烯酸及甲基丙烯酸,「(甲基)」均係基於此種含義使用))、聚醚類、聚醯胺類、聚醯亞胺類、聚脲類、及聚碳酸酯類。 上述材料較佳為包含二氧化矽系化合物;水解性矽烷類、以及其部分水解物及脫水縮合物。 作為上述二氧化矽系化合物,例如可列舉:SiO2 (矽酸酐);包含SiO2 與選自由Na2 O-B2 O3 (硼矽酸)、Al2 O3 (氧化鋁)、B2 O3 、TiO2 、ZrO2 、SnO2 、Ce2 O3 、P2 O5 、Sb2 O3 、MoO3 、ZnO2 、WO3 、TiO2 -Al2 O3 、TiO2 -ZrO2 、In2 O3 -SnO2 、及Sb2 O3 -SnO2 所組成之群中之至少1種化合物之化合物(上述「-」表示為複合氧化物)。 作為上述水解性矽烷類,例如可列舉含有可具有取代基(例如氟)之烷基之水解性矽烷類。上述水解性矽烷類、以及其部分水解物及脫水縮合物較佳為烷氧基矽烷、及倍半矽氧烷。 烷氧基矽烷可為單體亦可為低聚物。烷氧基矽烷單體較佳為具有3個以上之烷氧基。作為烷氧基矽烷單體,例如可列舉:甲基三甲氧基矽烷、甲基三乙氧基矽烷、苯基三乙氧基矽烷、四甲氧基矽烷、四乙氧基矽烷、四丁氧基矽烷、四丙氧基矽烷、二乙氧基二甲氧基矽烷、二甲基二甲氧基矽烷、及二甲基二乙氧基矽烷。作為烷氧基矽烷低聚物,較佳為藉由上述單體之水解及縮聚而獲得之縮聚物。藉由使用烷氧基矽烷作為上述材料,可獲得具有優異之均一性之折射率調整層。 倍半矽氧烷係由通式RSiO1.5 (其中,R表示有機官能基)所表示之網狀聚矽氧烷之總稱。作為R,例如可列舉:烷基(可為直鏈亦可為支鏈,碳數為1~6)、苯基、及烷氧基(例如甲氧基、及乙氧基)。作為倍半矽氧烷之結構,例如可列舉梯型、及籠型。藉由使用倍半矽氧烷作為上述材料,可獲得具有優異之均一性、耐候性、透明性、及硬度之折射率調整層。 作為上述粒子,可採用任意適當之粒子。上述粒子代表性地包含二氧化矽系化合物。 二氧化矽粒子之形狀例如可藉由利用穿透式電子顯微鏡進行觀察而加以確認。上述粒子之平均粒徑例如為5 nm~200 nm,較佳為10 nm~200 nm。藉由具有上述構成,可獲得折射率充分低之折射率調整層,且可維持折射率調整層之透明性。再者,於本說明書中,所謂平均粒徑係指由藉由氮吸附法(BET法)測得之比表面積(m2 /g),並利用平均粒徑=(2720/比表面積)之式得出之值(參照日本專利特開平1-317115號)。 作為獲得折射率調整層之方法,例如可列舉日本專利特開2010-189212號公報、日本專利特開2008-040171號公報、日本專利特開2006-011175號公報、國際公開第2004/113966號說明書、及其等之參考文獻中所記載之方法。具體而言,可列舉:使二氧化矽系化合物,水解性矽烷類、以及其部分水解物及脫水縮合物之至少任一者進行水解及縮聚之方法;使用多孔質粒子及/或中空微粒子之方法;以及利用彈回現象而產生氣凝膠層之方法;使用對由溶膠凝膠獲得之凝膠進行粉碎,且利用觸媒等使上述粉碎液中之微細孔粒子彼此進行化學結合而成之粉碎凝膠之方法等。但是,折射率調整層並不限定於該製造方法,可藉由任何製造方法而製造。 折射率調整層係經由任意適當之接著層(例如接著劑層、黏著劑層,未圖示)而貼合於發光層及偏光板。於折射率調整層包含黏著劑之情形時,可省略接著層。 折射率調整層之霧度例如為0.1%~30%,較佳為0.2%~10%。 折射率調整層之機械強度例如較理想為利用BEMCOT(註冊商標)之耐擦傷性為60%~100%。 折射率調整層與發光層之間之抓固力並無特別限制,例如為0.01 N/25 mm以上,較佳為0.1 N/25 mm以上,更佳為1 N/25 mm以上。再者,為了提高上述機械強度或抓固力,可於塗膜形成前後或與任意適當之接著層、或者其他構件之貼合前後之步驟中,實施底塗處理、加熱處理、加濕處理、UV處理、電暈處理、電漿處理等。 折射率調整層之厚度較佳為100 nm~5000 nm,更佳為200 nm~4000 nm,進而較佳為300 nm~3000 nm,尤佳為500 nm~2000 nm。若為此種範圍,則對可見光範圍之光於光學方面充分地表現出功能,並且可實現具有優異之耐久性之折射率調整層。E. 發光層 發光層代表性地包含波長轉換材料。更詳細而言,發光層可包含基質及分散於該基質中之波長轉換材料。 E-1.基質 作為構成基質之材料(以下,亦稱為基質材料),可使用任意適當之材料。作為此種材料,可列舉:樹脂、有機氧化物、無機氧化物。基質材料較佳為具有較低之氧透過性及透濕性,具有較高之光穩定性及化學穩定性,具有特定之折射率,具有優異之透明性,及/或對於波長轉換材料具有優異之分散性。基質實用性地可包含樹脂膜或黏著劑。 E-1-1.樹脂膜 於基質為樹脂膜之情形時,作為構成樹脂膜之樹脂,可使用任意適當之樹脂。具體而言,樹脂可為熱塑性樹脂,可為熱硬化性樹脂,亦可為活性能量線硬化性樹脂。作為活性能量線硬化性樹脂,可列舉:電子束硬化型樹脂、紫外線硬化型樹脂、可見光硬化型樹脂。作為樹脂之具體例,可列舉:環氧樹脂、(甲基)丙烯酸酯(例如甲基丙烯酸甲酯、丙烯酸丁酯)、降𦯉烯、聚乙烯、聚(乙烯丁醛)、聚(乙酸乙烯酯)、聚脲、聚胺基甲酸酯、胺基聚矽氧(AMS)、聚苯基甲基矽氧烷、聚苯基烷基矽氧烷、聚二苯基矽氧烷、聚二烷基矽氧烷、倍半矽氧烷、氟化聚矽氧、經乙烯基及氫化物取代之聚矽氧、苯乙烯系聚合物(例如聚苯乙烯、胺基聚苯乙烯(APS)、聚(丙烯腈乙烯苯乙烯)(AES))、與二官能性單體交聯而成之聚合物(例如二乙烯苯)、聚酯系聚合物(例如聚對苯二甲酸乙二酯)、纖維素系聚合物(例如三乙醯纖維素)、氯乙烯系聚合物、醯胺系聚合物、醯亞胺系聚合物、乙烯醇系聚合物、環氧系聚合物、聚矽氧系聚合物、丙烯酸胺基甲酸酯系聚合物。該等可單獨使用,亦可組合(例如摻合、共聚合)使用。該等樹脂可於形成膜後實施延伸、加熱、加壓等處理。較佳為熱硬化性樹脂或紫外線硬化型樹脂,更佳為熱硬化性樹脂。 E-1-2.黏著劑 於基質為黏著劑之情形時,作為黏著劑,可使用任意適當之黏著劑。黏著劑較佳為具有透明性及光學各向同性。作為黏著劑之具體例,可列舉:橡膠系黏著劑、丙烯酸系黏著劑、聚矽氧系黏著劑、環氧系黏著劑、纖維素系黏著劑。較佳為橡膠系黏著劑或丙烯酸系黏著劑。 E-2.波長轉換材料 波長轉換材料可控制發光層之波長轉換特性。波長轉換材料例如可為量子點亦可為螢光體。 關於發光層中之波長轉換材料之含量(於使用2種以上之情形時為合計之含量),相對於基質材料(代表性地為樹脂或黏著劑固形物成分)100重量份,較佳為0.01重量份~50重量份,更佳為0.01重量份~30重量份。若波長轉換材料之含量為此種範圍,則可實現RGB(Red Green Blue,紅綠藍)全部之色相平衡性優異之圖像顯示裝置。 E-2-1.量子點 量子點之發光中心波長可藉由量子點之材料及/或組成、粒子尺寸、形狀等而進行調整。 量子點可包含任意適當之材料。量子點較佳為可包含無機材料,更佳為可包含無機導體材料或無機半導體材料。作為半導體材料,例如可列舉:II-VI族、III-V族、IV-VI族、及IV族之半導體。作為具體例,可列舉:Si、Ge、Sn、Se、Te、B、C(包含金剛石)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、(Al、Ga、In)2 (S、Se、Te)3 、Al2 CO。該等可單獨使用,亦可組合2種以上而使用。量子點可含有p型摻雜劑或n型摻雜劑。又,量子點可具有核殼結構。於該核殼結構中,可於殼之周圍視目的形成任意適當之功能層(單層或複數層),亦可對殼表面進行表面處理及/或化學修飾。 作為量子點之形狀,視目的可採用任意適當之形狀。作為具體例,可列舉:真球狀、鱗片狀、板狀、橢圓球狀、不定形。 量子點之尺寸可根據所需之發光波長而採用任意適當之尺寸。量子點之尺寸較佳為1 nm~10 nm,更佳為2 nm~8 nm。若量子點之尺寸為此種範圍,則綠色及紅色分別顯示出鮮明之發光,可實現高演色性。例如,綠色光可於量子點之尺寸為7 nm左右之條件下發光,紅色光可於3 nm左右之條件下發光。再者,關於量子點之尺寸,於量子點例如為真球狀之情形時為平均粒徑,於為其以外之形狀之情形時為按照該形狀中之最小軸之尺寸。 量子點之詳細情況例如係記載於日本專利特開2012-169271號公報、日本專利特開2015-102857號公報、日本專利特開2015-65158號公報、日本專利特表2013-544018號公報、日本專利特表2010-533976號公報中,該等公報之記載係作為參考而引用至本說明書中。量子點可使用市售品。 E-2-2.螢光體 作為螢光體,視目的可使用可發出所需之顏色之光之任意適當之螢光體。作為具體例,可列舉紅色螢光體、綠色螢光體。 作為紅色螢光體,例如可列舉利用Mn4+ 活化而成之複合氟化物螢光體。所謂複合氟化物螢光體係指含有至少一個配位中心(例如下述M),被作為配位基發揮作用之氟化物離子所包圍,且視需要利用抗衡離子(例如下述A)補償電荷之配位化合物。作為其具體例,可列舉:A2 [MF5 ]:Mn4+ 、A3 [MF6 ]:Mn4+ 、Zn2 [MF7 ]:Mn4+ 、A[In2 F7 ]:Mn4+ 、A2 [M'F6 ]:Mn4+ 、E[M'F6 ]:Mn4+ 、A3 [ZrF7 ]:Mn4+ 、Ba0.65 Zr0.35 F2.70 :Mn4+ 。此處,A為Li、Na、K、Rb、Cs、NH4 或其組合。M為Al、Ga、In或其組合。M'為Ge、Si、Sn、Ti、Zr或其組合。E為Mg、Ca、Sr、Ba、Zn或其組合。較佳為配位中心之配位數為6之複合氟化物螢光體。此種紅色螢光體之詳細情況例如係記載於日本專利特開2015-84327號公報中。該公報之記載之整體係作為參考而引用至本說明書中。 作為綠色螢光體,例如可列舉包含具有β型Si3 N4 結晶結構之賽隆之固溶體作為主成分之化合物。較佳為進行如將此種賽隆結晶中所含之氧量設為特定量(例如0.8質量%)以下之處理。藉由進行此種處理,可獲得波峰寬度較窄之發出鮮明之光之綠色螢光體。此種綠色螢光體之詳細情況例如係記載於日本專利特開2013-28814號公報中。該公報之記載之整體係作為參考而引用至本說明書中。 發光層可為單層,亦可具有積層結構。於發光層具有積層結構之情形時,各層代表性地可包含具有不同之發光特性之波長轉換材料。 發光層之厚度(於具有積層結構之情形時為其總厚度)較佳為1 μm~500 μm,更佳為100 μm~400 μm。若發光層之厚度為此種範圍,則轉換效率及耐久性可較優異。於發光層具有積層結構之情形時之各層之厚度較佳為1 μm~300 μm,更佳為10 μm~250 μm。 發光層之可見光反射率較佳為20%以上,更佳為25%以上。於本發明中,藉由具備折射率調整層,即便使用反射率較高之發光層,亦可獲得外界光反射較少之圖像顯示裝置。該可見光反射率之上限例如為90%。F. 其他構件 F-1.背光源 作為上述背光源所具備之光源,例如可列舉:冷陰極管光源(CCFL)、LED光源等。於一實施形態中,上述背光源具備LED光源。若使用LED光源,則可獲得視角特性優異之圖像顯示裝置。於一實施形態中,可使用發出藍色之光之光源(較佳為LED光源)。 上述背光源可為正下方型方式,亦可為邊緣照明方式。 上述背光源除光源以外,視需要亦可進而具備導光板、擴散板、稜鏡片等其他構件。 F-2.液晶面板 上述液晶面板110代表性地如圖1所示般具備液晶單元40、配置於該液晶單元40之視認側之偏光板(視認側偏光板)10、及配置於該液晶單元之背面側之背面側偏光板50。於一實施形態中,偏光板(視認側偏光板)10及背面側偏光板50可以各自之吸收軸實質上成為正交或平行之方式配置。 液晶單元40具有一對基板41、41'、及夾持於該基板間之作為顯示介質之液晶層42。於通常之構成中,於一基板41設置有彩色濾光片(發光層30)及黑矩陣,於另一基板41'設置有控制液晶之電光特性之開關元件、對該開關元件提供閘信號之掃描線及提供源信號之信號線、像素電極及對向電極。上述基板之間隔(單元間隙)可利用間隔件等控制。於上述基板之與液晶層接觸之側例如可設置包含聚醯亞胺之配向膜等。 於一實施形態中,液晶層包含於不存在電場之狀態下以垂直排列配向之液晶分子。此種液晶層(結果為液晶單元)代表性地顯示nz>nx=ny之三維折射率。作為使用於不存在電場之狀態下以垂直排列配向之液晶分子之驅動模式,例如可列舉垂直配向(VA)模式。VA模式包含多域VA(MVA)模式。 於另一實施形態中,液晶層包含於不存在電場之狀態下以沿面排列配向之液晶分子。此種液晶層(結果為液晶單元)代表性地顯示nx>ny=nz之三維折射率。再者,於本說明書中,所謂ny=nz不僅包含ny與nz完全相同之情形,亦包含ny與nz實質上相同之情形。作為使用顯示此種三維折射率之液晶層之驅動模式之代表例,可列舉橫向電場效應(IPS)模式、邊緣電場切換(FFS)模式等。再者,上述IPS模式包含採用V字型電極或Z字型電極等之超級橫向電場效應(S-IPS)模式、或高級超級橫向電場效應(AS-IPS)模式。又,上述FFS模式包含採用V字型電極或Z字型電極等之高級邊緣電場切換(A-FFS)模式、或超級邊緣電場切換(U-FFS)模式。 作為上述背面側偏光板,可使用任意適當之偏光板。G. 光學積層體 根據本發明之另一態樣,提供一種光學積層體。該光學積層體具備偏光板及折射率調整層。作為偏光板,可使用上述B項中所說明之偏光板。該偏光板如B項中所說明,可為可作為圓偏光板發揮功能之偏光板。作為折射率調整層,可使用上述D項中所說明之折射率調整層。本發明之光學積層體可積層並貼合於具備發光層之光學構件而使用。作為發光層,係可對入射光之一部分波長進行轉換而發光之層,具體而言,可使用上述E項中所說明之發光層。本發明之光學積層體可經由任意適當之黏著劑或接著劑,貼合於發光層而使用。 於一實施形態中,上述光學積層體可進而具備著色層。較佳為著色層配置於折射率調整層之與偏光板相反之側。著色層於上述偏光板具有λ/4板而作為圓偏光板發揮功能時(詳細情況係於下文中加以說明),可適宜地使用。 [實施例] 以下,藉由實施例具體地說明本發明,但本發明並不受該等實施例之限定。再者,各特性之測定方法如下所述。 [評價] (1)折射率調整層之折射率 於在丙烯酸系膜上形成折射率調整層後,切割為50 mm×50 mm之尺寸,並經由黏著層將其貼合於玻璃板(厚度:3 mm)之表面。利用黑色標記油墨塗滿上述玻璃板之背面中央部(直徑20 mm左右),而製成於該玻璃板之背面不反射之樣品。將上述樣品安裝於橢圓偏光計(J. A. Woollam Japan公司製造,VASE),於500 nm之波長、入射角50~80度之條件下測定折射率。 (2)反射率 使用Konica Minolta公司製造之分光測色計CM-2600d,對實施例及比較例中所獲得之積層體之全光線反射率(使光自偏光板側入射時之反射率)進行測定。 (3)正面亮度 以偏光板成為上側之方式將實施例及比較例中所獲得之積層體之各者置於藍色LED之均勻發光照明(Aitecsystem公司製造,型號:TMN150×180-22BD-4)上,自偏光板側利用亮度計(Konica Minolta公司製造,商品名「SR-UL1」)對亮度進行測定。再者,均勻發光照明之發光亮度係設為1300 cd/m2 。 [製造例1]偏光板之製作 將以聚乙烯醇作為主成分之高分子膜(可樂麗公司製造,商品名「9P75R」,厚度:75 μm,平均聚合度:2,400,皂化度99.9莫耳%)一面浸漬於水浴中1分鐘,一面沿搬送方向延伸為1.2倍,然後於碘濃度0.3重量%之水溶液中浸漬1分鐘,藉此一面染色,一面以完全未延伸之膜(原長)作為基準沿搬送方向延伸為3倍。繼而,將該延伸膜一面浸漬於硼酸濃度4重量%、碘化鉀濃度5重量%之水溶液中,一面以原長為基準沿搬送方向進而延伸至6倍,並於70℃下乾燥2分鐘,藉此獲得偏光元件。 另一方面,於三乙醯纖維素(TAC)膜(Konica Minolta公司製造,製品名「KC4UYW」,厚度:40 μm)之單面塗佈含氧化鋁膠體之接著劑,並將其以兩者之搬送方向成為平行之方式藉由卷對卷積層於上述中所獲得之偏光元件之單面。再者,含氧化鋁膠體之接著劑係相對於具有乙醯乙醯基之聚乙烯醇系樹脂(平均聚合度1200,皂化度98.5莫耳%,乙醯乙醯基化度5莫耳%)100重量份,使羥甲基三聚氰胺50重量份溶解於純水中,而製備固形物成分濃度3.7重量%之水溶液,並相對於該水溶液100重量份,添加以固形物成分濃度10重量%含有具有正電荷之氧化鋁膠體(平均粒徑15 nm)之水溶液18重量份而製備。繼而,於偏光元件之相反側塗佈同樣之含氧化鋁膠體之接著劑,並貼合經皂化處理之40 μm厚之丙烯酸系樹脂膜,而製作偏光板。 [製造例2]折射率調整層形成用塗敷液之製備 (1)矽化合物之凝膠化 使作為矽化合物之前驅物之MTMS(Methyltrimethoxysilane,甲基三甲氧基矽烷)0.95 g溶解於2.2 g之DMSO(Dimethylsulfoxide,二甲基亞碸)中,而製備混合液A。向該混合液A中添加0.01 mol/L之草酸水溶液0.5 g,於室溫下進行30分鐘攪拌,藉此使MTMS水解,而生成包含三(羥基)甲基矽烷之混合液B。 向5.5 g之DMSO中添加28重量%之氨水0.38 g、及純水0.2 g後,進而追加添加上述混合液B,並於室溫下攪拌15分鐘,藉此進行三(羥基)甲基矽烷之凝膠化,而獲得包含凝膠狀矽化合物之混合液C。 (2)熟成處理 將包含如上所述般製備之凝膠狀矽化合物之混合液C直接於40℃下培養20小時,進行熟成處理。 (3)粉碎處理 繼而,使用刮勺將如上所述般進行了熟成處理之凝膠狀矽化合物粉碎為數mm~數cm尺寸之顆粒狀。繼而,向混合液C中添加IPA(isopropyl alcohol,異丙醇)40 g,輕輕攪拌後,於室溫下靜置6小時,對凝膠中之溶劑及觸媒進行傾析。藉由進行3次同樣之傾析處理,進行溶劑置換,而獲得混合液D。繼而,對混合液D中之凝膠狀矽化合物進行粉碎處理(高壓無介質粉碎)。粉碎處理(高壓無介質粉碎)係使用均質機(SMT公司製造,商品名「UH-50」),稱量混合液D'中之凝膠狀化合物1.85 g及IPA1.15 g並置於5 cc之螺旋口瓶中後,於50 W、20 kHz之條件下以2分鐘之粉碎進行。 藉由該粉碎處理,將上述混合液D中之凝膠狀矽化合物粉碎,藉此該混合液D'成為粉碎物之溶膠液。利用動態光散射式Nanotrac粒度分析計(日機裝公司製造,UPA-EX150型)確認混合液D'中所含之粉碎物之顯示出粒度不均之體積平均粒徑,結果為0.50~0.70。進而,對該溶膠液(混合液C')0.75 g,以光鹼產生劑(和光純藥工業股份有限公司:商品名WPBG266)之1.5重量%濃度MEK(甲基乙基酮)溶液0.062 g、雙(三甲氧基矽烷基)乙烷之5%濃度MEK溶液0.036 g之比率進行添加,而獲得折射率調整層形成用塗敷液。 [實施例1] 於製造例1中所製作之偏光板之丙烯酸系樹脂膜之表面,塗佈製造例2中所製備之折射率調整層形成用塗敷液。此時,所形成之塗佈層之濕潤(Wet)厚度(乾燥前之厚度)為約27 μm。將該塗佈層於溫度100℃下處理1分鐘而進行乾燥,進而,對乾燥後之塗敷層,使用波長360 nm之光以300 mJ/cm2 之光照射量(能量)進行UV照射,而獲得於上述偏光板上形成有折射率調整層之積層體a。該折射率調整層之折射率為1.15。 對市售之TV(television,電視機)(Samsung公司製造,商品名「UN65JS9000FXZA」)進行分解,而獲得於背光源側所含之波長轉換材料、即量子點片材。使用該量子點片材作為發光層,並經由丙烯酸系黏著劑貼合於上述積層體a之低折射率層側。 以上述方法獲得具備偏光板、折射率調整層、及發光層之積層體A。將所獲得之積層體A供於上述評價(2)及(3)。將結果示於表1。 [實施例2] 將積層體a與量子點片材(發光層)經由著色層積層,除此以外,以與實施例1同樣之方式獲得積層體B(偏光板/折射率調整層/著色層/發光層)。將所獲得之積層體B供於上述評價(2)及(3)。將結果示於表1。再者,著色層係以如下方式形成。 (著色層之形成) 製作相對於使丙烯酸正丁酯、含羥基之單體共聚合而成之丙烯酸系聚合物100重量份,包含自由基產生劑(過氧化苯甲醯,日本油脂公司製造,商品名「Nyper BMT」)0.3重量份、異氰酸酯系交聯劑(Tosoh公司製造,商品名「Coronate L」)1重量份、色素(山本化成公司製造,商品名「PD-320」)0.25重量份、及酚系抗氧化劑(BASF Japan公司製造,商品名「IRGANOX1010」)0.2重量份而成之含色素之黏著劑。於實施了使黏著劑容易剝離之處理之PET(Polyethylene Terephthalate,聚對苯二甲酸乙二酯)基材(三菱樹脂公司製造,商品名「MRF38CK」)上,藉由敷料器以20 μm之厚度塗敷上述黏著劑,以155℃乾燥2分鐘後,取出黏著劑樣品,並將上述黏著材面貼合於積層體a之折射率調整層側,而形成著色層。 [比較例1] 除不形成折射率調整層以外,以與實施例1同樣之方式獲得包含偏光板與發光層之積層體C(偏光板/發光層)。將所獲得之積層體C供於上述評價(2)及(3)。將結果示於表1。 [比較例2] 不形成折射率調整層,且不貼合偏光板與發光層而積層,除此以外,以與實施例1同樣之方式獲得積層體D。再者,於積層體D中,於偏光板與發光層之間形成有空氣層。將所獲得之積層體D供於上述評價(2)及(3)。將結果示於表1。 [表1]由表1可明確,根據本發明,藉由在偏光板與發光層之間配置折射率調整層,可兼顧優異之正面亮度與外界光反射之抑制。另一方面,於比較例1中,由於無空氣層,故而外界光反射較少,但正面亮度降低。認為其原因在於,雖然來自背光源之光於偏光板與空氣之界面產生反射,但反射光被偏光板吸收。於本發明中,藉由配置折射率調整層,於偏光板之背面側(具體而言,折射率調整層與發光層之界面)產生反射,藉由反射光而使發光層之發光量增加,光之利用效率優異。又,於比較例2中,由於存在空氣層,故而光之利用效率較高,但外界光反射增強。Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to the embodiments. (Definition of terms and symbols) The definitions of terms and symbols in this manual are as follows. (1) Refractive index (nx, ny, nz) "nx" is the refractive index in which the refractive index in the plane becomes the largest (ie, the direction of the slow axis), and "ny" is the in-plane and the retarded axis. The refractive index in the direction (ie, the direction of the phase axis), and "nz" is the refractive index in the thickness direction. (2) In-plane phase difference (Re) "Re (λ)" is an in-plane phase difference measured by light having a wavelength of λ nm at 23 °C. For example, "Re(550)" is an in-plane phase difference measured by light having a wavelength of 550 nm at 23 °C. When Re (λ) is used to set the thickness of the layer (film) to d (nm), it is obtained by the formula: Re = (nx - ny) × d. (3) Phase difference in the thickness direction (Rth) "Rth (λ)" is a phase difference in the thickness direction measured by light having a wavelength of λ nm at 23 °C. For example, "Rth(550)" is a phase difference in the thickness direction measured by light having a wavelength of 550 nm at 23 °C. Rth(λ) is obtained by using the formula: Rth=(nx-nz)×d when the thickness of the layer (film) is d (nm). (4) Nz coefficient The Nz coefficient is obtained by using Nz = Rth / Re.A. Overall composition of the image display device Fig. 1 is a schematic cross-sectional view showing an image display device according to an embodiment of the present invention. The image display device 100 includes a polarizing plate 10, a refractive index adjusting layer 20, and a light-emitting layer 30 in this order. Preferably, the polarizing plate 10, the refractive index adjusting layer 20, and the light-emitting layer 30 are arranged in order from the viewing side. In one embodiment, the light-emitting layer is a layer that converts light of a portion of incident light to emit light. In one embodiment, the illuminating layer converts one of the incident blue to blue-violet light into green light and red light, and a part of the light is directly emitted as blue light, thereby utilizing a combination of red light, green light, and blue light. White light. In FIG. 1, as a representative example, a case where the image display device is a liquid crystal display device will be described. In one embodiment, when the image display device is a liquid crystal display device, the liquid crystal display device 100 includes a liquid crystal panel 110 and a backlight 30. The polarizing plate 10, the refractive index adjusting layer 20, and the light emitting layer 30 may be liquid crystal panels. 110 components. Further, the liquid crystal panel 110 may be composed of a liquid crystal cell 40, a viewing-side polarizing plate 10 disposed on both sides of the liquid crystal cell 40, and a back side polarizing plate 50. In this case, the light emitting layer 30 may be included in the liquid crystal panel 40. More specifically, the light-emitting layer 30 can be a color filter provided in the liquid crystal panel 40. Moreover, the polarizing plate 10 can function as a viewing-side polarizing plate of the liquid crystal panel 40. In the present invention, by arranging the refractive index adjusting layer 20 between the polarizing plate 10 and the light-emitting layer 30, the self-emitting layer can be emitted to the light of the refractive index adjusting layer 20 side (for example, including the light-transmitting layer from the backlight 30). The light is reflected on the side of the light-emitting layer 30 of the refractive index adjusting layer 20. The light reflected here can be wavelength converted again by the luminescent layer 30. As a result, the light use efficiency can be improved. Further, when the refractive index adjustment layer is not disposed, most of the light emitted from the light-emitting layer to the side of the polarizing plate passes through the polarizing plate on the side opposite to the light-emitting layer of the polarizing plate (for example, the air interface of the polarizing plate) Produce reflections. In this case, the reflected light is absorbed by the polarizing plate, and it is difficult to reach the light-emitting layer, and the light utilization efficiency is lowered. In the present invention, by arranging the refractive index adjusting layer as described above, absorption of reflected light in the polarizing plate is not generated, and light use efficiency can be improved. Preferably, the image display device 100 is configured such that there is no air layer between the polarizing plate 10 and the refractive index adjusting layer 20 and between the refractive index adjusting layer 20 and the light emitting layer 30. In one embodiment, the polarizing plate 10 and the refractive index adjusting layer 20 are directly laminated. Further, in one embodiment, the refractive index adjusting layer 20 and the light-emitting layer 30 are directly laminated. If the air layer is excluded as described above, external light reflection can be reduced. In the present invention, by appropriately adjusting the refractive index of the refractive index adjusting layer (details are described below), the utilization efficiency of light emitted from the light-emitting layer can be improved, and external light reflection can be suppressed. Further, in the present specification, the term "direct lamination" includes the concept of laminating two members via any appropriate adhesive or adhesive. In one embodiment, the image display device of the present invention may further include a colored layer. Preferably, the colored layer is disposed between the refractive index adjusting layer and the light emitting layer. The colored layer can absorb light of a specific wavelength. When the polarizing plate has a λ/4 plate and functions as a circular polarizing plate (details are described below), the colored layer can be suitably used. A polarizing plate (circular polarizing plate) having a λ/4 plate exhibits an anti-reflection function, and by arranging a colored layer which absorbs light of a specific wavelength, the anti-reflection function of the circular polarizing plate can be improved. Further, by selectively absorbing light of a specific wavelength range by the colored layer, the reflected hue can be appropriately adjusted, and an image display device having a wide color gamut can be obtained. In addition, the light of which wavelength is absorbed by the colored layer can be appropriately selected according to the reflection characteristics of a reflector (for example, an image display panel such as a liquid crystal display panel or an organic EL (Electroluminescence) panel) provided in the image display device. Adjustment. Preferably, there is no air layer between the refractive index adjusting layer and the coloring layer and between the coloring layer and the light emitting layer. In one embodiment, the refractive index adjusting layer and the coloring layer are directly laminated. Further, in one embodiment, the colored layer and the light-emitting layer are directly laminated.B. Polarizer As the polarizing plate, any appropriate polarizing plate can be used. Typically, the polarizing plate is composed of a polarizing element and a protective film disposed on one side or both sides of the polarizing element. B-1. Polarizing element and protective film As the above polarizing element, any appropriate polarizing element can be used. For example, a hydrophilic polymer such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, or an ethylene-vinyl acetate copolymer-based partially saponified film is adsorbed to a dichroic substance such as iodine or a dichroic dye. The film is uniaxially stretched, and a polyene-based alignment film such as a dehydrated material of polyvinyl alcohol or a dehydrochlorinated product of polyvinyl chloride is used. Among these, a polarizing element in which a dichroic substance such as iodine is adsorbed to a polyvinyl alcohol-based film and uniaxially stretched is relatively high in color, and is particularly preferable. The thickness of the polarizing element is preferably from 0.5 μm to 80 μm. A polarizing element in which iodine is adsorbed on a polyvinyl alcohol-based film and uniaxially stretched is typically produced by immersing polyvinyl alcohol in an aqueous solution of iodine to carry out dyeing and extending to the original 3 to 7 times longer. The extension can be carried out after dyeing, and can be extended on one side of the dyeing layer or dyed after stretching. In addition to stretching and dyeing, for example, it is also produced by treatment such as swelling, crosslinking, conditioning, water washing, and drying. For example, by immersing the polyvinyl alcohol-based film in water and dyeing it before washing, not only the dirt or the anti-blocking agent on the surface of the polyvinyl alcohol-based film can be washed, but also the polyvinyl alcohol-based film can be swollen and prevented. Dyeing is uneven. Further, the polyvinyl alcohol-based film may be a film of a single layer (usually a film formed by a film), or may be a polyvinyl alcohol-based resin layer formed by coating on a resin substrate. A technique for producing a polarizing element from a single-layer polyvinyl alcohol-based film is well known in the art. A technique for producing a polarizing element from a polyvinyl alcohol-based resin layer formed by coating on a resin substrate is described, for example, in Japanese Laid-Open Patent Publication No. 2009-098653. The polarizing element preferably exhibits absorption dichroism at any of wavelengths from 380 nm to 780 nm. The single transmittance of the polarizing element is preferably from 40% to 45.5%, more preferably from 42% to 45%. The polarizing element has a degree of polarization of 99.9% or more, preferably 99.95% or more. As the protective film, any appropriate film can be used. Specific examples of the material which is a main component of the film include a cellulose resin such as triethyl cellulose (TAC), or a (meth)acrylic, polyester, polyvinyl alcohol or polycarbonate. Transparent resins such as esters, polyamines, polyimines, polyethers, polyfluorenes, polystyrenes, polypentenes, polyolefins, and acetates. Further, examples thereof include a thermosetting resin such as an acrylic resin, an urethane-based compound, an urethane urethane-based compound, an epoxy-based or a polyfluorene-based resin, and an ultraviolet curable resin. Other than this, for example, a glass-based polymer such as a siloxane-based polymer may be mentioned. Further, a polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. As the material of the film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted quinone group in a side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in a side chain can be used. Examples of the material include a resin composition comprising an alternating copolymer of isobutylene and N-methylbutyleneimine, and an acrylonitrile-styrene copolymer. The polymer film may be, for example, an extrusion molded product of the above resin composition. Any suitable adhesive layer or adhesive layer can be used in the laminate of the polarizing element and the protective film. The adhesive layer is typically formed of an acrylic adhesive. The subsequent agent layer is typically formed of a polyvinyl alcohol-based adhesive. B-2. Circular Polarizing Plate In one embodiment, the polarizing plate further includes a retardation layer. For example, the polarizing plate functions as a circular polarizing plate by arranging a layer functioning as a λ/4 plate as a phase difference layer. By using a circular polarizing plate, the effect of the image display device of the present invention against external light reflection becomes more remarkable. Fig. 2 is a schematic cross-sectional view showing a circularly polarizing plate according to an embodiment of the present invention. The circularly polarizing plate 10' includes a polarizing element 1 and a retardation layer 2a. The phase difference layer 2a functions as a λ/4 plate. The circularly polarizing plate 10' can be disposed such that the polarizing element 1 is on the viewing side. In one embodiment, the circular polarizing plate 10' is provided with a protective film 3 on the surface of the polarizing element 1 opposite to the retardation layer 2a. The protective film 3 can be omitted depending on the application, the configuration of an image display device having a circular polarizing plate, and the like. Further, the circular polarizing plate may have another protective film (also referred to as an inner protective film, not shown) between the polarizing element and the retardation layer. In the example of the figure, the inner protective film is omitted. In this case, the phase difference layer 2 functions as an inner protective film. According to this configuration, the thickness of the circular polarizing plate can be further reduced. In the present embodiment, the angle between the absorption axis of the polarizing element 1 and the slow phase axis of the phase difference layer 2a is 35° to 55°, preferably 38° to 52°, more preferably 40° to 50°. Further preferably, it is 42° to 48°, and particularly preferably 44° to 46°. If the angle is such a range, the desired circular polarization function can be achieved. Furthermore, in the present specification, when referring to an angle, the angle includes an angle of two directions of clockwise and counterclockwise unless otherwise specified. Fig. 3 is a schematic cross-sectional view showing a circularly polarizing plate according to another embodiment of the present invention. The circular polarizing plate 10'' is disposed between the polarizing element 1 and the retardation layer 2a (λ/4 plate), and further includes another retardation layer 2b. The other retardation layer 2b functions as a λ/2 plate. In the present specification, the phase difference layer 2a (λ/4 plate) may be referred to as a first retardation layer, and the other retardation layer 2b (λ/2 plate) may be referred to as a second. Phase difference layer. The circular polarizing plate 10'' of the illustrated example is provided with a protective film 3 on the side of the polarizing element 1 opposite to the other retardation layer 2b. Further, the circular polarizing plate may have another protective film (also referred to as an inner protective film, not shown) between the polarizing element and the retardation layer. In the example of the figure, the inner protective film is omitted. In this case, the other retardation layer (second retardation layer) 2b can also function as an inner protective film. In the present embodiment, the angle formed by the absorption axis of the polarizing element 1 and the slow axis of the first retardation layer 2a is preferably 65 to 85, more preferably 72 to 78, and still more preferably 75°. Further, the angle formed by the absorption axis of the polarizing element 1 and the retardation axis of the second retardation layer 2b is preferably 10 to 20, more preferably 13 to 17, still more preferably about 15. By arranging two retardation layers at the axial angle as described above, it is possible to obtain a circularly polarizing plate having extremely excellent circularly polarized light characteristics (and, as a result, very excellent antireflection characteristics) in a wide frequency band. B-2-1. First retardation layer (λ/4 plate) The first retardation layer functions as a λ/4 plate as described above. The in-plane retardation Re(550) of the first retardation layer is 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, and particularly preferably 135 nm to 155 nm. . The first retardation layer typically has a refractive index ellipsoid of nx>ny=nz or nx>ny>nz. Furthermore, in the present specification, for example, "ny=nz" includes not only those that are strictly equal but also substantially equal. In one embodiment, the Nz coefficient of the first retardation layer is, for example, 0.9 to 2, preferably 1 to 1.5, more preferably 1 to 1.3. The thickness of the first retardation layer can be set so that the λ/4 plate functions most appropriately. In other words, the thickness can be set in such a manner that the required in-plane phase difference can be obtained. Specifically, the thickness is preferably from 10 μm to 80 μm, more preferably from 10 μm to 60 μm, and most preferably from 30 μm to 50 μm. The first retardation layer can exhibit an inverse dispersion wavelength characteristic in which the phase difference value is increased according to the wavelength of the measurement light, and can display a positive wavelength dispersion characteristic in which the phase difference value is reduced according to the wavelength of the measurement light, and can also display a phase difference value. A flat wavelength dispersion characteristic that hardly changes depending on the wavelength of the measurement light. In one embodiment, the first retardation layer exhibits a flat wavelength dispersion characteristic. By using the first retardation layer exhibiting flat wavelength dispersion characteristics, excellent anti-reflection characteristics and reflected hue in an oblique direction can be realized. In the present embodiment, Re (450) / Re (550) of the first retardation layer is preferably 0.99 to 1.03, and Re (650) / Re (550) is preferably 0.98 to 1.02. In another embodiment, the first retardation layer exhibits an inverse dispersion wavelength characteristic. By using the first retardation layer exhibiting the inverse dispersion wavelength characteristic, the reflected hue can be increased in the front direction. Further, by using the first retardation layer exhibiting the inverse dispersion wavelength characteristic, it is possible to maintain a practical reflected hue and to improve other characteristics (for example, luminance). In the present embodiment, Re (450) / Re (550) of the first retardation layer is preferably 0.5 or more and less than 1.0, more preferably 0.7 to 0.95. Further, Re (650) / Re (550) of the first retardation layer is preferably more than 1 and 1.2 or less, more preferably 1.01 to 1.15. In the present embodiment, the Nz coefficient of the first retardation layer is preferably from 0.3 to 0.7, more preferably from 0.4 to 0.6, still more preferably from 0.45 to 0.55, still more preferably about 0.5. If the Nz coefficient is in this range, a more excellent reflected hue can be achieved. The λ/4 plate is preferably a stretch film of a polymer film. Specifically, the λ/4 plate can be obtained by appropriately selecting the kind of the polymer, the stretching treatment (for example, the stretching method, the stretching temperature, the stretching ratio, and the stretching direction). As the resin forming the above polymer film, any appropriate resin can be used. Specific examples thereof include a cyclic olefin resin such as polynorthene, a polycarbonate resin, a cellulose resin, a polyvinyl alcohol resin, and a polyfluorene resin. Among them, a decene-based resin or a polycarbonate-based resin is preferable. In addition, the details of the resin which forms a polymer film are described, for example, in Japanese Patent Laid-Open No. 2014-010291. This description is incorporated herein by reference. The poly(pinerene) refers to a (co)polymer obtained by partially or completely using one of the starting materials (monomers) using a norbornene-based monomer having a norbornene ring. Examples of the norbornene-based monomer include norbornene and an alkyl group and/or an alkylene substituent thereof, for example, 5-methyl-2-northene, 5-dimethyl-2-nor Terpene, 5-ethyl-2-northene, 5-butyl-2-northene, 5-ethylidene-2-norbornene, and the like, and polar substituents such as halogen; Pentadiene, 2,3-dihydrodicyclopentadiene, etc.; dimethylene octahydronaphthalene, alkyl and/or alkylene substituents thereof, and polar substituents such as halogen, such as 6-methyl -1,4:5,8-Dimethylene-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-ethyl-1,4:5,8-dimethylene Base-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-ethylene-1,4:5,8-dimethylene-1,4,4a,5,6 , 7,8,8a-octahydronaphthalene, 6-chloro-1,4:5,8-dimethylene-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6- Cyano-1,4:5,8-dimethylene-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-pyridyl-1,4:5,8-di Methylene-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-methoxycarbonyl-1,4:5,8-dimethylene-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, etc.; 3~4 polymer of cyclopentadiene, such as 4,9:5,8-dimethylene-3a, 4,4a, 5,8, 8a,9,9a-octahydro-1H-indole, 4,11:5,10:6,9-trimethylene-3a,4,4a,5,5a,6,9,9a,10,10a , 11, 11a-dodecyl-1H-cyclopentazone and the like. As the polypyrene, various products are commercially available. Specific examples include the product name "Zeonex" manufactured by Japan Zeon Co., Ltd., "Zeonor", the product name "Arton" manufactured by JSR Corporation, the product name "TOPAS" manufactured by TICONA, and the product name manufactured by Mitsui Chemicals Co., Ltd." APEL". As the polycarbonate resin, an aromatic polycarbonate is preferably used. The aromatic polycarbonate is typically obtained by the reaction of a carbonate precursor with an aromatic diphenol compound. Specific examples of the carbonate precursor include carbonium chloride, diphenolic dichloroformate, diphenyl carbonate, di-p-tolyl carbonate, phenyl p-tolyl carbonate, and di-p-chlorophenyl carbonate. , dinaphthyl carbonate and the like. Among these, carbonium chloride and diphenyl carbonate are preferred. Specific examples of the aromatic diphenol compound include 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, and a double (4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxy-3) , 5-dimethylphenyl)butane, 2,2-bis(4-hydroxy-3,5-dipropylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane or the like. These may be used alone or in combination of two or more. Preferably, 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3 are used. , 5-trimethylcyclohexane. It is especially preferred to use 2,2-bis(4-hydroxyphenyl)propane and 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane simultaneously. Examples of the stretching method include lateral uniaxial stretching, fixed end biaxial stretching, and sequential biaxial stretching. Specific examples of the biaxial stretching of the fixed end include a method of extending the polymer film in the longitudinal direction while extending in the longitudinal direction. The method can be apparently laterally uniaxially stretched. Also, it can be extended obliquely. By extending obliquely, a long stretched film of the alignment axis (latial phase axis) having a specific angle with respect to the width direction can be obtained. The thickness of the above-mentioned stretched film is typically 5 μm to 80 μm, preferably 15 μm to 60 μm, and more preferably 25 μm to 45 μm. B-2-2. Second retardation layer (λ/2 plate) The second retardation layer functions as a λ/2 plate as described above. The in-plane retardation Re (550) of the second retardation layer is preferably 180 to 300 nm, more preferably 210 to 280 nm, and most preferably 230 to 240 nm. The second retardation layer is typically preferably a refractive index ellipsoid having nx > ny = nz. The Nz coefficient of the second retardation layer is, for example, 0.9 to 2, preferably 1 to 1.5, more preferably 1 to 1.3. The thickness of the second retardation layer can be set so that the λ/2 plate functions most appropriately. In other words, the thickness can be set in such a manner that the required in-plane phase difference can be obtained. Specifically, the thickness is preferably 0.5 μm to 5 μm, more preferably 1 μm to 4 μm, and most preferably 1.5 μm to 3 μm. As the material of the second retardation layer, any suitable material can be employed as long as the above characteristics are obtained. It is preferably a liquid crystal material, and more preferably a liquid crystal material (nematic liquid crystal) in which the liquid crystal phase is a nematic phase. By using a liquid crystal material, the difference between nx and ny of the obtained second retardation layer can be particularly increased as compared with the non-liquid crystal material. As a result, the thickness of the second retardation layer for obtaining the desired in-plane retardation can be exceptionally reduced. As such a liquid crystal material, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal property of the liquid crystal material may be either liquid or thermal. Further, the alignment state of the liquid crystal is preferably horizontal alignment. Further, as the material of the second retardation layer, a resin which forms the above polymer film can be used. The second retardation layer can exhibit an inverse dispersion wavelength characteristic in which the phase difference value is increased according to the wavelength of the measurement light, and can display a positive wavelength dispersion characteristic in which the phase difference value is decreased according to the wavelength of the measurement light, and can also display a phase difference value. A flat wavelength dispersion characteristic that hardly changes depending on the wavelength of the measurement light. It is preferred to exhibit flat wavelength dispersion characteristics. By using a λ/2 plate having a flat wavelength dispersion characteristic, excellent anti-reflection characteristics and a reflected hue in an oblique direction can be achieved. The Re(450)/Re(550) of the retardation layer is preferably 0.99 to 1.03, and Re(650)/Re(550) is preferably 0.98 to 1.02.C. Colored layer The colored layer contains any suitable one or more kinds of colored materials. Typically, in the colored layer, a colored material is present in the matrix. In one embodiment, the colored layer selectively absorbs light of a particular wavelength range (ie, has an absorption maximum wavelength in a particular range of wavelength bands). In another embodiment, the colored layer functions to absorb all wavelengths in the visible light region. Preferably, the colored layer selectively absorbs light of a particular wavelength range. When the coloring layer is formed by selectively absorbing light of a specific wavelength range, the decrease in visible light transmittance (that is, the decrease in luminance) can be suppressed, and the antireflection function of the circularly polarizing plate can be improved. Further, by adjusting the wavelength of the absorbed light, the reflected hue can be made neutral, and unnecessary coloring can be prevented. In one embodiment, the colored layer has an absorption maximum wavelength in a wavelength band of 440 nm to 510 nm. When such a coloring layer is formed, the reflected hue can be appropriately adjusted. In another embodiment, the colored layer has an absorption maximum wavelength in a wavelength band ranging from 560 nm to 610 nm. When such a coloring layer is formed, the reflected hue can be appropriately adjusted. Further, in another embodiment, the colored layer has an absorption maximum wavelength in a wavelength band of 440 nm to 510 nm and 560 nm to 610 nm. According to this configuration, the image display device can be significantly broadly colored. As described above, the coloring layer having two or more absorption maximum wavelengths can be obtained by using a plurality of colored materials. The transmittance of the colored layer at the absorption maximum wavelength is preferably from 0% to 80%, more preferably from 0% to 70%. If it is such a range, the above effects of the present invention become more remarkable. The visible light transmittance of the colored layer is preferably from 30% to 90%, more preferably from 30% to 80%. If it is such a range, the fall of brightness can be suppressed, and the anti-reflection function of a circular polarizer can be improved. The haze value of the colored layer is preferably 15% or less, more preferably 10% or less. By controlling the haze value of the colored layer within such a range, it is possible to prevent the depolarized light that has passed through the phase difference layer from being polarized, and as a result, the antireflection function of the circularly polarizing plate can be effectively exhibited. The smaller the haze value of the colored layer, the better, and the lower limit is, for example, 0.1%. The thickness of the colored layer is preferably from 1 μm to 100 μm, more preferably from 2 μm to 30 μm. (Colorful material) Specific examples of the above-mentioned colored material include an anthraquinone type, a triphenylmethane type, a naphthoquinone type, a thioindigo type, a purple ring ketone type, an anthraquinone type, a squaraine type, a cyanine system, and an anthraquinone. Aromatic, azaporphyrin, phthalocyanine, phthalocyanine, anthraquinone, polymethine, rosin, oxonium, lanthanide, azo, anthraquinone, methine azo, quinacridone, diterpene, pyrrolopyrroledione, anthrapyridone, isoindolinone, indanthrene, indigo, thioindigo A dye such as a quinacridone, a quinoline or a triphenylmethane. In one embodiment, as the colored material, a lanthanoid, an anthraquinone, a naphthoquinone, an anthraquinone, an oxonium, an azo, or an anthracene can be used.A dye of the system or phthalocyanine. When these dyes are used, a coloring layer having an absorption maximum wavelength in a wavelength band of 440 nm to 510 nm can be formed. In one embodiment, as the colored material, a coloring layer having an absorption maximum wavelength in the above range can be, for example, an indigo-based, rosin-based, quinacridone-based or porphyrin-based dye as a colored material. When these dyes are used, a coloring layer having an absorption maximum wavelength in a wavelength band of 560 nm to 610 nm can be formed. Further, as the colored material, a pigment can also be used. Specific examples of the pigment include black pigment (carbon black, bone black, graphite, iron black, titanium black, etc.), azo pigment, phthalocyanine pigment, and polycyclic pigment (quinacridone). Lanthanide, purple ketone, isoindolinone, isoporphyrin, diterpene, thioindigo, lanthanide, quinophthalone, metal complex, pyrrolopyrroledione , etc.), dye lake pigments, white extender pigments (titanium oxide, zinc oxide, zinc sulfide, clay, talc, barium sulfate, calcium carbonate, etc.), color pigments (chrome yellow, cadmium, molybdenum cadmium, nickel titanium , chrome-titanium, iron oxide yellow, iron oxide, zinc chromate, lead dan, ultramarine blue, iron blue, cobalt blue, chrome green, chromium oxide, bismuth vanadate, etc.), luster pigments (pearl pigments, aluminum pigments, bronze pigments) Etc.), fluorescent pigments (zinc sulfide, barium sulfide, barium aluminate, etc.). The content ratio of the above colored material can be set to any appropriate ratio depending on the type of the colored material, the desired light absorption characteristics, and the like. The content ratio of the above colored material is, for example, 0.01 parts by weight to 100 parts by weight, more preferably 0.01 parts by weight to 50 parts by weight, per 100 parts by weight of the base material. In the case where a pigment is used as the colored material, the number average particle diameter of the pigment in the matrix is preferably 500 nm or less, more preferably 1 nm to 100 nm. If it is such a range, the coloring layer with a small haze value can be formed. The number average particle diameter of the pigment was measured and measured by the cross-sectional observation of the colored layer. (Matrix) The substrate may be an adhesive or a resin film. It is preferably an adhesive. When the substrate is an adhesive, any suitable adhesive can be used as the adhesive. The adhesive preferably has transparency and optical isotropy. Specific examples of the adhesive include a rubber-based adhesive, an acrylic adhesive, a polyoxygen-based adhesive, an epoxy-based adhesive, and a cellulose-based adhesive. A rubber-based adhesive or an acrylic adhesive is preferred. The rubber-based polymer of the rubber-based adhesive (adhesive composition) is a polymer exhibiting rubber elasticity in a temperature region near room temperature. Preferred examples of the rubber-based polymer (A) include a styrene-based thermoplastic elastomer (A1), an isobutylene-based polymer (A2), and a combination thereof. Examples of the styrene-based thermoplastic elastomer (A1) include styrene-ethylene-butylene-styrene block copolymer (SEBS) and styrene-isoprene-styrene block copolymer (SIS). , styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-propylene-styrene block copolymer (SEPS, SIS hydride), styrene-ethylene-propylene block copolymer (SEP, hydride of styrene-isoprene block copolymer), styrene block such as styrene-isobutylene-styrene block copolymer (SIBS), styrene-butadiene rubber (SBR) Copolymer. Among these, a styrene-ethylene-propylene-styrene block copolymer is preferred in that it has a polystyrene block at both ends of the molecule and has a higher cohesive force as a polymer. SEPS, hydride of SIS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isobutylene-styrene block copolymer (SIBS). A commercially available product can be used as the styrene thermoplastic elastomer (A1). Specific examples of the commercial product include SEPTON manufactured by Kuraray Co., Ltd., HYBRAR, TUFTEC manufactured by Asahi Kasei Chemical Co., Ltd., and SIBSTAR manufactured by KANEKA Co., Ltd. The weight average molecular weight of the styrene-based thermoplastic elastomer (A1) is preferably from 50,000 to 500,000, more preferably from 50,000 to 300,000, and still more preferably from 50,000 to 250,000. When the weight average molecular weight of the styrene-based thermoplastic elastomer (A1) is in this range, the cohesive force and viscoelasticity of the polymer can be achieved, which is preferable. The styrene content in the styrene-based thermoplastic elastomer (A1) is preferably from about 5% by weight to about 70% by weight, more preferably from about 5% by weight to about 40% by weight, still more preferably from about 10% by weight to about 20% by weight. . When the styrene content in the styrene-based thermoplastic elastomer (A1) is in this range, it is preferable to maintain the cohesive force based on the styrene portion and to secure the viscoelasticity based on the soft segment. The isobutylene polymer (A2) includes isobutylene as a constituent monomer, and the weight average molecular weight (Mw) is preferably 500,000 or more. The isobutylene polymer (A2) may be a homopolymer of isobutylene (polyisobutylene, PIB) or a copolymer of isobutylene as a main monomer (ie, isobutylene may be copolymerized at a ratio of more than 50 mol%). Copolymer). Examples of such a copolymer include a copolymer of isobutylene and n-butene, and a copolymer of isobutylene and isoprene (for example, ordinary butyl rubber, chlorobutyl rubber, bromobutyl rubber, and partially crosslinked). A butyl rubber such as butyl rubber), a sulfide or a modified product thereof (for example, modified by a functional group such as a hydroxyl group, a carboxyl group, an amine group or an epoxy group). Among these, polyisobutylene (PIB) is preferred in that the main chain does not contain a double bond and is excellent in weather resistance. A commercially available product can be used as the isobutylene polymer (A2). Specific examples of the commercially available product include OPPANOL manufactured by BASF Corporation. The weight average molecular weight (Mw) of the isobutylene polymer (A2) is preferably 500,000 or more, more preferably 600,000 or more, still more preferably 700,000 or more. Further, the upper limit of the weight average molecular weight (Mw) is preferably 5,000,000 or less, more preferably 3,000,000 or less, still more preferably 2,000,000 or less. By setting the weight average molecular weight of the isobutylene polymer (A2) to 500,000 or more, it is possible to obtain an adhesive composition which is more excellent in durability during storage at a high temperature. The content of the rubber-based polymer (A) in the adhesive (adhesive composition) is preferably 30% by weight or more, more preferably 40% by weight or more, based on the total solid content of the adhesive composition. It is preferably 50% by weight or more, and particularly preferably 60% by weight or more. The upper limit of the content of the rubber-based polymer is preferably 95% by weight or less, more preferably 90% by weight or less. In the rubber-based adhesive, the rubber-based polymer (A) can be used in combination with other rubber-based polymers. Specific examples of the other rubber-based polymer include butyl rubber (IIR), butadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), and EPR (binary ethylene-propylene rubber). EPT (ternary ethylene-propylene rubber), acrylic rubber, urethane rubber, polyurethane thermoplastic elastomer; polyester thermoplastic elastomer; polypropylene and EPT (ternary ethylene) A blend of a polymer blend or the like of propylene rubber) is a thermoplastic elastomer. The blending amount of the other rubber-based polymer is preferably about 10 parts by weight or less based on 100 parts by weight of the rubber-based polymer (A). The acrylic polymer of the acrylic adhesive (adhesive composition) typically contains an alkyl (meth)acrylate as a main component, and may contain an aromatic ring as a copolymer component corresponding to the purpose. Acrylate, guanamine containing monomer, carboxyl containing monomer and/or hydroxyl containing monomer. In the present specification, the term "(meth)acrylate" means acrylate and/or methacrylate. The alkyl (meth)acrylate may, for example, be a linear or branched alkyl group having 1 to 18 carbon atoms. The (meth) acrylate containing an aromatic ring is a compound containing an aromatic ring structure in its structure and containing a (meth) acrylonitrile group. The aromatic ring may, for example, be a benzene ring, a naphthalene ring or a biphenyl ring. The (meth) acrylate containing an aromatic ring satisfies durability (especially for the durability of the transparent conductive layer) and improves display unevenness caused by discoloration of the peripheral portion. A monoamine-containing system comprising a guanamine group in its structure and a compound containing a polymerizable unsaturated double bond such as a (meth) acrylonitrile group or a vinyl group. The single system containing a carboxyl group contains a carboxyl group and a compound containing a polymerizable unsaturated double bond such as a (meth)acryl fluorenyl group or a vinyl group. The hydroxyl group-containing single system contains a hydroxyl group in its structure, and contains a compound of a polymerizable unsaturated double bond such as a (meth)acryl fluorenyl group or a vinyl group. The details of the acrylic adhesive are described, for example, in Japanese Laid-Open Patent Publication No. 2015-199942, the disclosure of which is incorporated herein by reference. When the substrate is a resin film, any suitable resin can be used as the resin constituting the resin film. Specifically, the resin may be a thermoplastic resin, may be a thermosetting resin, or may be an active energy ray-curable resin. Examples of the active energy ray-curable resin include an electron beam curable resin, an ultraviolet curable resin, and a visible light curable resin. Specific examples of the resin include an epoxy resin, a (meth) acrylate (for example, methyl methacrylate, butyl acrylate), norbornene, polyethylene, poly(vinyl butyral), and poly(vinyl acetate). Ester), polyurea, polyurethane, amine polyoxymethane (AMS), polyphenylmethyl oxa oxide, polyphenylalkyl siloxane, polydiphenyl siloxane, poly Alkyl oxane, sesquiterpene oxide, fluorinated polyfluorene oxide, polyoxynium substituted by vinyl and hydride, styrenic polymer (eg polystyrene, amine polystyrene (APS), Poly(acrylonitrile vinyl styrene) (AES), a polymer obtained by crosslinking with a difunctional monomer (for example, divinylbenzene), a polyester polymer (for example, polyethylene terephthalate), Cellulose-based polymer (for example, triacetyl cellulose), vinyl chloride polymer, guanamine polymer, quinone-based polymer, vinyl alcohol polymer, epoxy polymer, polyoxyl polymerization Amino acid acrylate polymer. These may be used singly or in combination (for example, blending, copolymerization). These resins may be subjected to treatment such as stretching, heating, pressurization, etc. after forming a film. It is preferably a thermosetting resin or an ultraviolet curable resin, more preferably a thermosetting resin. The reason for this is that it can be suitably applied when the optical member of the present invention is produced by roll-to-roll.D. Refractive index adjustment layer The refractive index adjusting layer has a refractive index of 1.2 or less, preferably 1.15 or less, more preferably 1.01 to 1.1. If it is such a range, the utilization efficiency of the light emitted from the light-emitting layer can be improved, and external light reflection can be suppressed. The refractive index adjusting layer typically has a void inside. The void ratio of the refractive index adjusting layer may take any appropriate value. The void ratio is, for example, 5% to 99%, preferably 25% to 95%. When the void ratio is within the above range, the refractive index of the refractive index adjusting layer can be sufficiently lowered, and high mechanical strength can be obtained. The refractive index adjusting layer having a void inside may have, for example, a structure having at least one of a particle shape, a fiber shape, and a flat shape. The structure in which the particles are formed (constituting unit) may be solid particles or hollow particles, and specific examples thereof include polyfluorene oxide particles or polycrystalline oxygen particles having fine pores, hollow cerium oxide nanoparticles or dioxide.矽 hollow nanosphere and so on. The fibrous constituent unit is, for example, a nanofiber having a diameter of a nanometer, and specific examples thereof include cellulose nanofibers and alumina nanofibers. For example, a nano-sized bentonite (for example, Kunipia F [trade name]) can be mentioned. Further, in the void structure of the present invention, a single constituent unit which forms the fine void structure or a portion in which one or a plurality of constituent units are bonded to each other by a catalyst, for example, chemically bonded directly or indirectly, is included. In the present invention, the term "indirectly bonded" to each other means that the constituent units are bonded to each other via a small amount of the binder component of the constituent unit amount or less. The term "directly bonded" to each other means that the constituent units are directly bonded to each other without passing through a binder component or the like. As the material constituting the refractive index adjusting layer, any appropriate material can be employed. As the above-mentioned materials, for example, materials described in International Publication No. 2004/113966, Japanese Patent Laid-Open Publication No. 2013-254183, and Japanese Patent Laid-Open No. 2012-189802 can be used. Specific examples thereof include a cerium oxide compound; a hydrolyzable decane, and a partial hydrolyzate and a dehydrated condensate thereof; an organic polymer; a hydrazine compound containing a stanol group; Active cerium oxide obtained by contacting ion exchange resin; polymerizable monomer (for example, (meth)acrylic monomer and styrene monomer); curable resin (for example, (meth)acrylic resin, fluorine-containing Resin, and urethane resin); and combinations of these. Examples of the organic polymer include polyolefins (for example, polyethylene and polypropylene), polyurethanes, and fluorine-containing polymers (for example, fluorine-containing monomer units are used to impart crosslinking. a fluorocopolymer as a constituent component of a reactive component, or a polyester (for example, a poly(meth)acrylic acid derivative (in the present specification, the term "(meth)acrylic acid means acrylic acid and methacrylic acid," ( Methyl)" is used in this sense), polyethers, polyamines, polyimides, polyureas, and polycarbonates. The above material preferably contains a cerium oxide compound; a hydrolyzable decane, and a partial hydrolyzate thereof and a dehydrated condensate. As the above-mentioned cerium oxide-based compound, for example, SiO is mentioned.2 (phthalic anhydride); containing SiO2 Selected from Na2 O-B2 O3 (boronic acid), Al2 O3 (alumina), B2 O3 TiO2 ZrO2 , SnO2 Ce2 O3 , P2 O5 , Sb2 O3 MoO3 ZnO2 , WO3 TiO2 -Al2 O3 TiO2 -ZrO2 In2 O3 -SnO2 And Sb2 O3 -SnO2 A compound of at least one compound of the group (the "-" is represented by a composite oxide). Examples of the hydrolyzable decanes include hydrolyzable decanes containing an alkyl group which may have a substituent (for example, fluorine). The hydrolyzable decane, and a partial hydrolyzate and a dehydrated condensate thereof are preferably alkoxy decane and sesquiterpene oxide. The alkoxydecane may be a monomer or an oligomer. The alkoxydecane monomer preferably has three or more alkoxy groups. Examples of the alkoxydecane monomer include methyltrimethoxydecane, methyltriethoxydecane, phenyltriethoxydecane, tetramethoxydecane, tetraethoxydecane, and tetrabutoxy Alkane, tetrapropoxydecane, diethoxydimethoxydecane, dimethyldimethoxydecane, and dimethyldiethoxydecane. The alkoxydecane oligomer is preferably a polycondensate obtained by hydrolysis and polycondensation of the above monomers. By using an alkoxydecane as the above material, a refractive index adjusting layer having excellent uniformity can be obtained. Sesquiterpene oxide from the general formula RSiO1.5 A general term for a network of polyoxyalkylenes (wherein R represents an organofunctional group). Examples of R include an alkyl group (which may be a straight chain or a branched chain having a carbon number of 1 to 6), a phenyl group, and an alkoxy group (for example, a methoxy group and an ethoxy group). Examples of the structure of the sesquiterpene oxide include a ladder type and a cage type. By using sesquiterpene oxide as the above material, a refractive index adjusting layer having excellent uniformity, weather resistance, transparency, and hardness can be obtained. As the above particles, any appropriate particles can be employed. The above particles typically comprise a cerium oxide compound. The shape of the cerium oxide particles can be confirmed, for example, by observation using a transmission electron microscope. The average particle diameter of the above particles is, for example, 5 nm to 200 nm, preferably 10 nm to 200 nm. According to the above configuration, the refractive index adjusting layer having a sufficiently low refractive index can be obtained, and the transparency of the refractive index adjusting layer can be maintained. In addition, in the present specification, the average particle diameter refers to a specific surface area (m) measured by a nitrogen adsorption method (BET method).2 /g), and the value obtained by the formula of the average particle diameter = (2720 / specific surface area) (refer to Japanese Patent Laid-Open No. Hei 1-317115). Examples of the method of obtaining the refractive index adjusting layer include, for example, JP-A-2010-189212, JP-A-2008-040171, JP-A-2006-011175, and WO 2004/113966. And the methods described in the references. Specifically, a method of hydrolyzing and polycondensing at least one of a cerium oxide-based compound, a hydrolyzable decane, and a partial hydrolyzate and a dehydrated condensate thereof; and using porous particles and/or hollow microparticles a method of producing an aerogel layer by using a rebound phenomenon; using a gel obtained by sol gel pulverization, and chemically combining microporous particles in the pulverized liquid with a catalyst or the like A method of pulverizing a gel or the like. However, the refractive index adjusting layer is not limited to this manufacturing method, and can be produced by any manufacturing method. The refractive index adjusting layer is bonded to the light-emitting layer and the polarizing plate via any appropriate adhesive layer (for example, an adhesive layer or an adhesive layer, not shown). In the case where the refractive index adjusting layer contains an adhesive, the adhesive layer may be omitted. The haze of the refractive index adjusting layer is, for example, 0.1% to 30%, preferably 0.2% to 10%. The mechanical strength of the refractive index adjusting layer is preferably, for example, 60% to 100% by the BEMCOT (registered trademark). The gripping force between the refractive index adjusting layer and the light-emitting layer is not particularly limited, and is, for example, 0.01 N/25 mm or more, preferably 0.1 N/25 mm or more, and more preferably 1 N/25 mm or more. Further, in order to increase the mechanical strength or the gripping force, the primer treatment, the heat treatment, the humidification treatment, and the step of before and after the formation of the coating film or before and after the bonding of any appropriate adhesive layer or other member may be performed. UV treatment, corona treatment, plasma treatment, etc. The thickness of the refractive index adjusting layer is preferably from 100 nm to 5000 nm, more preferably from 200 nm to 4000 nm, further preferably from 300 nm to 3000 nm, and particularly preferably from 500 nm to 2000 nm. In the case of such a range, the light in the visible light region sufficiently exhibits an optical function, and a refractive index adjusting layer having excellent durability can be realized.E. Luminous layer The luminescent layer typically comprises a wavelength converting material. In more detail, the light-emitting layer may comprise a matrix and a wavelength converting material dispersed in the matrix. E-1. Substrate As the material constituting the substrate (hereinafter, also referred to as a matrix material), any appropriate material can be used. Examples of such a material include a resin, an organic oxide, and an inorganic oxide. The matrix material preferably has low oxygen permeability and moisture permeability, high light stability and chemical stability, has a specific refractive index, has excellent transparency, and/or has excellent dispersion for wavelength conversion materials. Sex. The substrate may practically comprise a resin film or an adhesive. E-1-1. Resin film When the substrate is a resin film, any suitable resin can be used as the resin constituting the resin film. Specifically, the resin may be a thermoplastic resin, may be a thermosetting resin, or may be an active energy ray-curable resin. Examples of the active energy ray-curable resin include an electron beam curable resin, an ultraviolet curable resin, and a visible light curable resin. Specific examples of the resin include an epoxy resin, a (meth) acrylate (for example, methyl methacrylate, butyl acrylate), norbornene, polyethylene, poly(vinyl butyral), and poly(vinyl acetate). Ester), polyurea, polyurethane, amine polyoxymethane (AMS), polyphenylmethyl oxa oxide, polyphenylalkyl siloxane, polydiphenyl siloxane, poly Alkyl oxane, sesquiterpene oxide, fluorinated polyfluorene oxide, polyoxynium substituted by vinyl and hydride, styrenic polymer (eg polystyrene, amine polystyrene (APS), Poly(acrylonitrile vinyl styrene) (AES), a polymer obtained by crosslinking with a difunctional monomer (for example, divinylbenzene), a polyester polymer (for example, polyethylene terephthalate), Cellulose-based polymer (for example, triacetyl cellulose), vinyl chloride polymer, guanamine polymer, quinone-based polymer, vinyl alcohol polymer, epoxy polymer, polyoxyl polymerization Amino acid acrylate polymer. These may be used singly or in combination (for example, blending, copolymerization). These resins may be subjected to treatment such as stretching, heating, pressurization, etc. after forming a film. It is preferably a thermosetting resin or an ultraviolet curable resin, more preferably a thermosetting resin. E-1-2. Adhesive When the substrate is an adhesive, any suitable adhesive can be used as the adhesive. The adhesive preferably has transparency and optical isotropy. Specific examples of the adhesive include a rubber-based adhesive, an acrylic adhesive, a polyoxygen-based adhesive, an epoxy-based adhesive, and a cellulose-based adhesive. A rubber-based adhesive or an acrylic adhesive is preferred. E-2. Wavelength Conversion Material The wavelength conversion material controls the wavelength conversion characteristics of the light-emitting layer. The wavelength converting material may be, for example, a quantum dot or a phosphor. The content of the wavelength converting material in the light-emitting layer (the total amount when two or more kinds are used) is preferably 0.01 with respect to 100 parts by weight of the matrix material (typically a resin or an adhesive solid content). The parts by weight are -50 parts by weight, more preferably 0.01 parts by weight to 30 parts by weight. When the content of the wavelength converting material is within such a range, an image display device excellent in hue balance of all of RGB (Red Green Blue) can be realized. E-2-1. Quantum Dots The center wavelength of the quantum dot can be adjusted by the material and/or composition of the quantum dot, particle size, shape, and the like. Quantum dots can comprise any suitable material. The quantum dots preferably comprise an inorganic material, more preferably an inorganic conductor material or an inorganic semiconductor material. Examples of the semiconductor material include semiconductors of Groups II-VI, III-V, IV-VI, and Group IV. Specific examples include Si, Ge, Sn, Se, Te, B, and C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, and InN. , InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe , PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3 N4 Ge3 N4 Al2 O3 , (Al, Ga, In)2 (S, Se, Te)3 Al2 CO. These may be used alone or in combination of two or more. The quantum dots may contain a p-type dopant or an n-type dopant. Also, the quantum dots may have a core-shell structure. In the core-shell structure, any suitable functional layer (single layer or plural layer) may be formed around the shell depending on the purpose, and the surface of the shell may be surface-treated and/or chemically modified. As the shape of the quantum dot, any appropriate shape can be adopted depending on the purpose. Specific examples include a true spherical shape, a scaly shape, a plate shape, an elliptical shape, and an amorphous shape. The size of the quantum dots can be any suitable size depending on the desired wavelength of illumination. The size of the quantum dots is preferably from 1 nm to 10 nm, more preferably from 2 nm to 8 nm. If the size of the quantum dot is such a range, green and red respectively show vivid light, and high color rendering can be achieved. For example, green light can be illuminated at a quantum dot size of about 7 nm, and red light can be illuminated at about 3 nm. Further, the size of the quantum dot is an average particle diameter when the quantum dot is, for example, a true spherical shape, and is a size corresponding to the smallest axis of the shape in the case of a shape other than the quantum dot. The details of the quantum dots are described, for example, in JP-A-2012-169271, JP-A-2015-102857, JP-A-2015-65158, JP-A-2013-544018, and Japan. In the specification of the Japanese Patent Application Publication No. 2010-533976, the disclosure of each of the publications is incorporated herein by reference. Commercially available products can be used for the quantum dots. E-2-2. Phosphor As a phosphor, any suitable phosphor that emits light of a desired color can be used depending on the purpose. Specific examples include a red phosphor and a green phosphor. As the red phosphor, for example, Mn can be cited.4+ Activated composite fluoride phosphor. The complex fluoride fluorescent system means that at least one coordination center (for example, M below) is surrounded by fluoride ions functioning as a ligand, and a counter ion (for example, A below) is used to compensate a charge as needed. Coordination compound. As a specific example, a2 [MF5 ]:Mn4+ , A3 [MF6 ]:Mn4+ Zn2 [MF7 ]:Mn4+ , A[In2 F7 ]:Mn4+ , A2 [M'F6 ]:Mn4+ , E[M'F6 ]:Mn4+ , A3 [ZrF7 ]:Mn4+ Ba0.65 Zr0.35 F2.70 :Mn4+ . Here, A is Li, Na, K, Rb, Cs, NH4 Or a combination thereof. M is Al, Ga, In, or a combination thereof. M' is Ge, Si, Sn, Ti, Zr or a combination thereof. E is Mg, Ca, Sr, Ba, Zn or a combination thereof. A complex fluoride phosphor having a coordination number of 6 in the coordination center is preferred. The details of such a red phosphor are described, for example, in Japanese Laid-Open Patent Publication No. 2015-84327. The entire disclosure of this publication is incorporated herein by reference. As the green phosphor, for example, it is possible to include β-type Si.3 N4 A compound in which a solid solution of a crystalline structure of Sialon is used as a main component. It is preferred to carry out a treatment in which the amount of oxygen contained in the crystal of the sialon is set to a specific amount (for example, 0.8% by mass) or less. By performing such a treatment, a green phosphor that emits bright light with a narrow peak width can be obtained. The details of such a green phosphor are described, for example, in Japanese Laid-Open Patent Publication No. 2013-28814. The entire disclosure of this publication is incorporated herein by reference. The light emitting layer may be a single layer or may have a laminated structure. In the case where the light-emitting layer has a laminated structure, each layer may typically include a wavelength converting material having different light-emitting characteristics. The thickness of the light-emitting layer (the total thickness thereof in the case of a laminated structure) is preferably from 1 μm to 500 μm, more preferably from 100 μm to 400 μm. When the thickness of the light-emitting layer is in this range, the conversion efficiency and durability can be excellent. The thickness of each layer in the case where the light-emitting layer has a laminated structure is preferably from 1 μm to 300 μm, more preferably from 10 μm to 250 μm. The visible light reflectance of the light-emitting layer is preferably 20% or more, more preferably 25% or more. In the present invention, by providing the refractive index adjusting layer, even if a light-emitting layer having a high reflectance is used, an image display device having less external light reflection can be obtained. The upper limit of the visible light reflectance is, for example, 90%.F. Other components F-1. Backlight As the light source included in the backlight, for example, a cold cathode tube light source (CCFL), an LED light source, or the like can be given. In one embodiment, the backlight includes an LED light source. When an LED light source is used, an image display device having excellent viewing angle characteristics can be obtained. In one embodiment, a light source that emits blue light (preferably an LED light source) can be used. The backlight may be in a direct type or an edge illumination. In addition to the light source, the backlight may further include other members such as a light guide plate, a diffusion plate, and a cymbal sheet as needed. F-2. Liquid crystal panel The liquid crystal panel 110 is typically provided with a liquid crystal cell 40, a polarizing plate (viewing side polarizing plate) 10 disposed on the viewing side of the liquid crystal cell 40, and a liquid crystal cell disposed as shown in FIG. The back side polarizing plate 50 on the back side. In one embodiment, the polarizing plate (viewing side polarizing plate) 10 and the back side polarizing plate 50 may be disposed such that their absorption axes are substantially orthogonal or parallel. The liquid crystal cell 40 has a pair of substrates 41 and 41' and a liquid crystal layer 42 as a display medium sandwiched between the substrates. In a typical configuration, a color filter (light-emitting layer 30) and a black matrix are disposed on one substrate 41, and a switching element for controlling electro-optic characteristics of the liquid crystal is provided on the other substrate 41', and a gate signal is provided to the switching element. A scan line and a signal line, a pixel electrode, and a counter electrode that provide a source signal. The interval (cell gap) of the above substrates can be controlled by a spacer or the like. An alignment film containing polyimine or the like may be provided on the side of the substrate in contact with the liquid crystal layer, for example. In one embodiment, the liquid crystal layer includes liquid crystal molecules aligned in a vertical alignment in the absence of an electric field. Such a liquid crystal layer (resulting in a liquid crystal cell) typically exhibits a three-dimensional refractive index of nz > nx = ny. As a driving mode for liquid crystal molecules aligned in a vertical alignment in the absence of an electric field, for example, a vertical alignment (VA) mode can be cited. The VA mode includes a multi-domain VA (MVA) mode. In another embodiment, the liquid crystal layer includes liquid crystal molecules aligned in a surface in a state where no electric field exists. Such a liquid crystal layer (resulting in a liquid crystal cell) typically exhibits a three-dimensional refractive index of nx > ny = nz. Furthermore, in the present specification, the term "ny=nz" includes not only the case where ny and nz are completely the same, but also the case where ny and nz are substantially the same. A typical example of a driving mode in which a liquid crystal layer exhibiting such a three-dimensional refractive index is used is a lateral electric field effect (IPS) mode, a fringe electric field switching (FFS) mode, and the like. Furthermore, the IPS mode described above includes a super transverse electric field effect (S-IPS) mode or an advanced super transverse electric field effect (AS-IPS) mode using a V-shaped electrode or a zigzag electrode. Further, the FFS mode includes an advanced edge electric field switching (A-FFS) mode or a super fringe electric field switching (U-FFS) mode using a V-shaped electrode or a zigzag electrode. As the back side polarizing plate, any appropriate polarizing plate can be used.G. Optical laminate According to another aspect of the present invention, an optical laminate is provided. The optical laminate includes a polarizing plate and a refractive index adjusting layer. As the polarizing plate, the polarizing plate described in the above item B can be used. The polarizing plate may be a polarizing plate that functions as a circular polarizing plate as described in the item B. As the refractive index adjusting layer, the refractive index adjusting layer described in the above item D can be used. The optical laminate of the present invention can be laminated and bonded to an optical member having a light-emitting layer. As the light-emitting layer, a layer which can convert a part of the wavelength of the incident light and emit light can be used. Specifically, the light-emitting layer described in the above item E can be used. The optical laminate of the present invention can be used by being bonded to a light-emitting layer via any appropriate adhesive or adhesive. In one embodiment, the optical layered body may further include a colored layer. Preferably, the colored layer is disposed on the opposite side of the refractive index adjusting layer from the polarizing plate. When the polarizing plate has a λ/4 plate and functions as a circular polarizing plate (details are described below), the colored layer can be suitably used. EXAMPLES Hereinafter, the present invention will be specifically described by examples, but the present invention is not limited by the examples. Furthermore, the measurement method of each characteristic is as follows. [Evaluation] (1) The refractive index of the refractive index adjusting layer was formed into a refractive index adjusting layer on an acrylic film, and then cut into a size of 50 mm × 50 mm, and bonded to a glass plate via an adhesive layer (thickness: 3 mm) surface. The center portion of the back surface of the glass plate (about 20 mm in diameter) was coated with a black marking ink to prepare a sample which was not reflected on the back surface of the glass plate. The sample was attached to an ellipsometer (manufactured by J. A. Woollam Japan Co., Ltd., VASE), and the refractive index was measured at a wavelength of 500 nm and an incident angle of 50 to 80 degrees. (2) Reflectance The total light reflectance (reflectance of light incident on the side from the polarizing plate) of the laminate obtained in the examples and the comparative examples was carried out using a spectrophotometer CM-2600d manufactured by Konica Minolta Co., Ltd. Determination. (3) Front Brightness Each of the laminates obtained in the examples and the comparative examples was placed in uniform illumination of the blue LED in such a manner that the polarizing plate was on the upper side (manufactured by Aitecsystem, Model: TMN150×180-22BD-4) On the polarizing plate side, the brightness was measured by a luminance meter (manufactured by Konica Minolta Co., Ltd., trade name "SR-UL1"). Furthermore, the luminance of uniform illumination is set to 1300 cd/m.2 . [Production Example 1] Production of a polarizing plate A polymer film containing polyvinyl alcohol as a main component (manufactured by Kuraray Co., Ltd., trade name "9P75R", thickness: 75 μm, average polymerization degree: 2,400, saponification degree: 99.9 mol % While immersing in a water bath for 1 minute, it was extended 1.2 times in the transport direction, and then immersed in an aqueous solution having an iodine concentration of 0.3% by weight for 1 minute, thereby dyeing the film with a completely unstretched film (original length) as a reference. It extends 3 times in the direction of transport. Then, the stretched film was immersed in an aqueous solution having a boric acid concentration of 4% by weight and a potassium iodide concentration of 5% by weight, and further extended to 6 times in the transport direction based on the original length, and dried at 70 ° C for 2 minutes. A polarizing element is obtained. On the other hand, an alumina-containing colloid-based adhesive was applied to a single side of a triacetyl cellulose (TAC) film (manufactured by Konica Minolta Co., Ltd., product name "KC4UYW", thickness: 40 μm), and both were used. The transport direction is parallelized by winding a pair of convolution layers on one side of the polarizing element obtained in the above. Further, the alumina-containing colloid-based adhesive is based on a polyvinyl alcohol-based resin having an ethyl acetate group (average degree of polymerization: 1200, degree of saponification of 98.5 mol%, degree of acetylation of 5 mol%) 100 parts by weight, 50 parts by weight of methylol melamine is dissolved in pure water to prepare an aqueous solution having a solid content concentration of 3.7% by weight, and is added in an amount of 10% by weight based on 100 parts by weight of the aqueous solution. It was prepared by using 18 parts by weight of an aqueous solution of a positively charged alumina colloid (having an average particle diameter of 15 nm). Then, the same alumina-containing colloid-containing adhesive was applied to the opposite side of the polarizing element, and the saponified 40 μm-thick acrylic resin film was bonded to each other to prepare a polarizing plate. [Production Example 2] Preparation of coating liquid for forming a refractive index adjusting layer (1) Gelation of a ruthenium compound, MTMS (Methyltrimethoxysilane, 0.95 g) as a precursor of a ruthenium compound was dissolved in 2.2 g. Mixture A was prepared in DMSO (Dimethylsulfoxide). To the mixed solution A, 0.5 g of a 0.01 mol/L aqueous oxalic acid solution was added, and the mixture was stirred at room temperature for 30 minutes to thereby hydrolyze MTMS to form a mixed liquid B containing tris(hydroxy)methylnonane. After adding 288% by weight of 28% by weight aqueous ammonia and 0.2 g of pure water to 5.5 g of DMSO, the mixed liquid B was further added thereto, and stirred at room temperature for 15 minutes to carry out tris(hydroxy)methylnonane. Gelation was carried out to obtain a mixed solution C containing a gelatinous quinone compound. (2) Ripening treatment The mixed liquid C containing the gelatinous quinone compound prepared as described above was directly cultured at 40 ° C for 20 hours to carry out a ripening treatment. (3) Crushing treatment Next, the gelatinous cerium compound which has been subjected to the aging treatment as described above is pulverized into granules having a size of several mm to several cm using a spatula. Then, 40 g of IPA (isopropyl alcohol) was added to the mixed solution C, and the mixture was gently stirred, and then allowed to stand at room temperature for 6 hours to decanse the solvent and the catalyst in the gel. The mixture D was subjected to the same decantation treatment three times to obtain a mixed liquid D. Then, the gelatinous quinone compound in the mixed solution D was pulverized (high-pressure medium-free pulverization). The pulverization treatment (high-pressure medium-free pulverization) was carried out using a homogenizer (manufactured by SMT Co., Ltd., trade name "UH-50"), and the gel-like compound in the mixture D' was weighed to 1.85 g and IPA 1.15 g and placed at 5 cc. After being placed in a screw bottle, it was pulverized at 50 W and 20 kHz for 2 minutes. The gelatinous ruthenium compound in the mixed liquid D is pulverized by the pulverization treatment, whereby the mixed liquid D' becomes a sol liquid of the pulverized product. The volume average particle diameter of the pulverized material contained in the mixed liquid D' showing uneven particle size was confirmed by a dynamic light scattering type Nanotrac particle size analyzer (manufactured by Nikkiso Co., Ltd., UPA-EX150 type), and found to be 0.50 to 0.70. Further, the sol solution (mixture C') was 0.75 g, and a solution of a photobase generator (Wako Pure Chemical Industries Co., Ltd.: trade name WPBG266) at a concentration of 1.5% by weight of a MEK (methyl ethyl ketone) solution of 0.062 g, A 5% concentration of bis(trimethoxydecyl)ethane in a MEK solution of 0.036 g was added to obtain a coating liquid for forming a refractive index adjusting layer. [Example 1] The coating liquid for forming a refractive index adjusting layer prepared in Production Example 2 was applied to the surface of the acrylic resin film of the polarizing plate produced in Production Example 1. At this time, the Wet thickness (thickness before drying) of the formed coating layer was about 27 μm. The coating layer was dried at a temperature of 100 ° C for 1 minute, and further, for the coated layer after drying, a light having a wavelength of 360 nm was used at 300 mJ/cm.2 The light irradiation amount (energy) is subjected to UV irradiation to obtain a layered body a on which the refractive index adjusting layer is formed on the polarizing plate. The refractive index adjusting layer has a refractive index of 1.15. A commercially available TV (television) (manufactured by Samsung Co., Ltd., trade name "UN65JS9000FXZA") was decomposed to obtain a wavelength conversion material contained in the backlight side, that is, a quantum dot sheet. This quantum dot sheet is used as a light-emitting layer, and is bonded to the low refractive index layer side of the laminated body a via an acrylic adhesive. A laminate A having a polarizing plate, a refractive index adjusting layer, and a light-emitting layer was obtained by the above method. The obtained laminate A was supplied to the above evaluations (2) and (3). The results are shown in Table 1. [Example 2] A laminate B (polarizing plate/refractive index adjusting layer/colored layer) was obtained in the same manner as in Example 1 except that the layered product a and the quantum dot sheet (light-emitting layer) were laminated via a colored layer. / luminescent layer). The obtained layered body B was supplied to the above evaluations (2) and (3). The results are shown in Table 1. Further, the colored layer is formed in the following manner. (Formation of a colored layer) 100 parts by weight of an acrylic polymer obtained by copolymerizing n-butyl acrylate or a hydroxyl group-containing monomer, and a radical generator (manganese peroxide, manufactured by Nippon Oil & Fats Co., Ltd.) "Oyper BMT", 0.3 parts by weight, an isocyanate-based crosslinking agent (manufactured by Tosoh Co., Ltd., trade name "Coronate L"), 1 part by weight, and a pigment (manufactured by Yamamoto Chemical Co., Ltd., trade name "PD-320"), 0.25 parts by weight And a pigment-containing adhesive obtained by 0.2 part by weight of a phenolic antioxidant (manufactured by BASF Japan Co., Ltd., trade name "IRGANOX 1010"). A PET (Polyethylene Terephthalate) substrate (manufactured by Mitsubishi Plastics Co., Ltd., trade name "MRF38CK") was applied to the adhesive to facilitate the peeling of the adhesive, and the thickness of the applicator was 20 μm. After the adhesive was applied and dried at 155 ° C for 2 minutes, the adhesive sample was taken out, and the surface of the adhesive was bonded to the side of the refractive index adjusting layer of the laminate a to form a colored layer. [Comparative Example 1] A laminate C (polarizing plate/light-emitting layer) including a polarizing plate and a light-emitting layer was obtained in the same manner as in Example 1 except that the refractive index adjusting layer was not formed. The obtained layered body C was supplied to the above evaluations (2) and (3). The results are shown in Table 1. [Comparative Example 2] A layered body D was obtained in the same manner as in Example 1 except that the refractive index adjusting layer was not formed and the polarizing plate and the light emitting layer were not laminated. Further, in the laminated body D, an air layer is formed between the polarizing plate and the light-emitting layer. The obtained layered body D was supplied to the above evaluations (2) and (3). The results are shown in Table 1. [Table 1]As is clear from Table 1, according to the present invention, by arranging the refractive index adjusting layer between the polarizing plate and the light-emitting layer, it is possible to achieve both excellent front luminance and external light reflection suppression. On the other hand, in Comparative Example 1, since there was no air layer, external light reflection was small, but the front luminance was lowered. The reason is considered to be that although the light from the backlight causes reflection at the interface between the polarizing plate and the air, the reflected light is absorbed by the polarizing plate. In the present invention, by arranging the refractive index adjusting layer, reflection is generated on the back side of the polarizing plate (specifically, the interface between the refractive index adjusting layer and the light-emitting layer), and the amount of light emitted from the light-emitting layer is increased by reflecting light. The utilization efficiency of light is excellent. Further, in Comparative Example 2, since the air layer was present, the light utilization efficiency was high, but the external light reflection was enhanced.

1‧‧‧偏光元件1‧‧‧Polarized elements

2‧‧‧相位差層2‧‧‧ phase difference layer

2a‧‧‧相位差層2a‧‧‧ phase difference layer

2b‧‧‧相位差層2b‧‧‧ phase difference layer

3‧‧‧保護膜3‧‧‧Protective film

10‧‧‧偏光板10‧‧‧Polar plate

10'‧‧‧圓偏光板10'‧‧‧Polar polarizer

10''‧‧‧圓偏光板10''‧‧‧ round polarizer

20‧‧‧折射率調整層20‧‧‧ refractive index adjustment layer

30‧‧‧發光層30‧‧‧Lighting layer

40‧‧‧液晶單元40‧‧‧Liquid Crystal Unit

41‧‧‧基板41‧‧‧Substrate

41'‧‧‧基板41'‧‧‧Substrate

42‧‧‧液晶層42‧‧‧Liquid layer

50‧‧‧背面側偏光板50‧‧‧Back side polarizer

100‧‧‧圖像顯示裝置100‧‧‧Image display device

110‧‧‧液晶面板110‧‧‧LCD panel

圖1係本發明之一實施形態之圖像顯示裝置之概略剖視圖。 圖2係本發明之一實施形態之圓偏光板之概略剖視圖。 圖3係本發明之另一實施形態之圓偏光板之概略剖視圖。Fig. 1 is a schematic cross-sectional view showing an image display device according to an embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing a circularly polarizing plate according to an embodiment of the present invention. Fig. 3 is a schematic cross-sectional view showing a circularly polarizing plate according to another embodiment of the present invention.

Claims (8)

一種圖像顯示裝置,其至少依序具備偏光板、折射率調整層、及發光層,且 該折射率調整層之折射率為1.2以下。An image display device comprising, at least in order, a polarizing plate, a refractive index adjusting layer, and a light emitting layer, wherein the refractive index adjusting layer has a refractive index of 1.2 or less. 如請求項1之圖像顯示裝置,其中上述發光層係對入射光之一部分波長進行轉換而發光之層。The image display device of claim 1, wherein the light-emitting layer is a layer that converts a part of wavelength of incident light to emit light. 如請求項1或2之圖像顯示裝置,其中上述發光層包含量子點或螢光體作為波長轉換材料。The image display device of claim 1 or 2, wherein the luminescent layer comprises a quantum dot or a phosphor as a wavelength converting material. 如請求項1至3中任一項之圖像顯示裝置,其中上述發光層為彩色濾光片。The image display device according to any one of claims 1 to 3, wherein the luminescent layer is a color filter. 如請求項1至4中任一項之圖像顯示裝置,其中上述偏光板作為圓偏光板發揮功能。The image display device according to any one of claims 1 to 4, wherein the polarizing plate functions as a circular polarizing plate. 如請求項1至5中任一項之圖像顯示裝置,其進而具備著色層。The image display device according to any one of claims 1 to 5, further comprising a colored layer. 如請求項1至6中任一項之圖像顯示裝置,其中上述著色層配置於上述折射率調整層與發光層之間。The image display device according to any one of claims 1 to 6, wherein the colored layer is disposed between the refractive index adjusting layer and the light emitting layer. 一種光學積層體,其係具備偏光板及折射率調整層者,且 積層於具備發光層之光學構件而使用。An optical laminate comprising a polarizing plate and a refractive index adjusting layer and laminated on an optical member having a light-emitting layer.
TW106143313A 2016-12-12 2017-12-11 image display device TWI782934B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-240731 2016-12-12
JP2016240731A JP7002840B2 (en) 2016-12-12 2016-12-12 Image display device

Publications (2)

Publication Number Publication Date
TW201827899A true TW201827899A (en) 2018-08-01
TWI782934B TWI782934B (en) 2022-11-11

Family

ID=62558729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143313A TWI782934B (en) 2016-12-12 2017-12-11 image display device

Country Status (5)

Country Link
JP (1) JP7002840B2 (en)
KR (1) KR102253195B1 (en)
CN (1) CN110062901B (en)
TW (1) TWI782934B (en)
WO (1) WO2018110363A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902602B2 (en) * 2017-03-06 2021-07-14 日東電工株式会社 Adhesive composition for polarizing film, adhesive layer for polarizing film, polarizing film with adhesive layer, liquid crystal panel and liquid crystal display device
JP2019128430A (en) * 2018-01-24 2019-08-01 日東電工株式会社 Liquid crystal display device, and optical member and set of optical member used for the same
KR20210017519A (en) * 2019-08-08 2021-02-17 삼성전자주식회사 Display module, display panel, and display apparatus
WO2023054641A1 (en) * 2021-09-30 2023-04-06 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
CN116283287B (en) * 2023-03-20 2024-04-05 西北工业大学 Quantum sheet anchored bismuth vanadate film, preparation method and application

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4350969B2 (en) * 2003-04-07 2009-10-28 日東電工株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND POLARIZING PLANE LIGHT SOURCE AND DISPLAY DEVICE USING THE SAME
JP5005164B2 (en) * 2004-03-03 2012-08-22 株式会社ジャパンディスプレイイースト LIGHT EMITTING ELEMENT, LIGHT EMITTING DISPLAY DEVICE AND LIGHTING DEVICE
JP2015084000A (en) * 2012-02-07 2015-04-30 シャープ株式会社 Display element and illumination device
JP2017010609A (en) * 2013-11-13 2017-01-12 パナソニックIpマネジメント株式会社 Light emitting device
JP2015111518A (en) 2013-12-06 2015-06-18 株式会社ジャパンディスプレイ Backlight and liquid crystal display device using the same
JP6277065B2 (en) * 2014-05-30 2018-02-07 富士フイルム株式会社 Backlight unit and liquid crystal display device
JP6326006B2 (en) * 2014-06-20 2018-05-16 富士フイルム株式会社 Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device
KR102223421B1 (en) * 2014-08-05 2021-03-08 삼성디스플레이 주식회사 Display device
JP2016058586A (en) * 2014-09-10 2016-04-21 シャープ株式会社 Display device and television receiver
JP2016142845A (en) * 2015-01-30 2016-08-08 株式会社ジャパンディスプレイ Display device
JP7152129B2 (en) * 2015-02-27 2022-10-12 三星エスディアイ株式会社 Polarizing plate and liquid crystal display including the same

Also Published As

Publication number Publication date
CN110062901A (en) 2019-07-26
JP7002840B2 (en) 2022-01-20
KR20190076039A (en) 2019-07-01
CN110062901B (en) 2022-11-01
JP2018097124A (en) 2018-06-21
WO2018110363A1 (en) 2018-06-21
KR102253195B1 (en) 2021-05-17
TWI782934B (en) 2022-11-11

Similar Documents

Publication Publication Date Title
TWI647494B (en) Optical member and backlight unit and liquid crystal display device using the same
TWI644146B (en) Optical member and backlight unit and liquid crystal display device using the same
TW201827899A (en) Image display apparatus
TWI647493B (en) Optical member and backlight unit and liquid crystal display device using the same
TWI701471B (en) Optical laminated body and image display device
TWI746811B (en) Image display device
KR102615876B1 (en) optical laminate