JP7002840B2 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
JP7002840B2
JP7002840B2 JP2016240731A JP2016240731A JP7002840B2 JP 7002840 B2 JP7002840 B2 JP 7002840B2 JP 2016240731 A JP2016240731 A JP 2016240731A JP 2016240731 A JP2016240731 A JP 2016240731A JP 7002840 B2 JP7002840 B2 JP 7002840B2
Authority
JP
Japan
Prior art keywords
layer
refractive index
light
polarizing plate
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016240731A
Other languages
Japanese (ja)
Other versions
JP2018097124A (en
Inventor
恒三 中村
大輔 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2016240731A priority Critical patent/JP7002840B2/en
Priority to KR1020197016287A priority patent/KR102253195B1/en
Priority to CN201780076687.9A priority patent/CN110062901B/en
Priority to PCT/JP2017/043583 priority patent/WO2018110363A1/en
Priority to TW106143313A priority patent/TWI782934B/en
Publication of JP2018097124A publication Critical patent/JP2018097124A/en
Application granted granted Critical
Publication of JP7002840B2 publication Critical patent/JP7002840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Description

本発明は、画像表示装置に関する。 The present invention relates to an image display device.

近年、色再現性に優れる画像表示装置として、量子ドット等の発光材料から構成される発光層を備える画像表示装置が注目されている。例えば、量子ドットを用いた量子ドットフィルムは、光が入射すると、量子ドットが励起されて蛍光を発光する。例えば、青色LEDのバックライトを用いると、量子ドットフィルムにより青色光の一部が赤色光および緑色光に変換され、青色光の一部はそのまま青色光として出射される。その結果、白色光を実現することができる。さらに、このような量子ドットフィルムを用いることにより、NTSC比100%以上の色再現性が実現できるとされている。一方、近年、画像表示装置には低消費電力化、外光反射の低減等の高度な改善が求められており、上記のような発光層を備える画像表示装置においても、光の利用効率を高めて低消費電力化すること、さらには、外光反射の低減が求められている。 In recent years, as an image display device having excellent color reproducibility, an image display device including a light emitting layer made of a light emitting material such as a quantum dot has attracted attention. For example, in a quantum dot film using quantum dots, when light is incident, the quantum dots are excited to emit fluorescence. For example, when a blue LED backlight is used, a part of the blue light is converted into red light and green light by the quantum dot film, and a part of the blue light is emitted as blue light as it is. As a result, white light can be realized. Further, it is said that by using such a quantum dot film, color reproducibility of 100% or more of NTSC ratio can be realized. On the other hand, in recent years, high-level improvements such as low power consumption and reduction of external light reflection have been required for image display devices, and even in image display devices provided with a light emitting layer as described above, the efficiency of light utilization has been improved. Therefore, it is required to reduce the power consumption and further to reduce the reflection of external light.

特開2015-111518号公報Japanese Unexamined Patent Publication No. 2015-11518

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、発光層を備える画像表示装置であって、光の利用効率が高く、かつ、外光反射が少ない画像表示装置を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and the main object thereof is an image display device provided with a light emitting layer, which has high light utilization efficiency and low external light reflection. To provide the device.

本発明の画像表示装置は、少なくとも、偏光板と、屈折率調整層と、発光層とをこの順に備え、該屈折率調整層の屈折率が1.2以下である。
1つの実施形態においては、上記発光層が、入射光の一部の波長を変換して発光する層である。
1つの実施形態においては、上記発光層が、波長変換材料として、量子ドットまたは蛍光体を含む。
1つの実施形態においては、上記発光層が、カラーフィルターである。
1つの実施形態においては、上記偏光板が円偏光板として機能する。
1つの実施形態においては、上記画像表示装置は、着色層をさらに備える。
1つの実施形態においては、上記着色層が、上記屈折率調整層と発光層との間に配置される。
本発明の別の局面によれば、偏光板と、屈折率調整層とを備える、光学積層体であって、発光層を備える光学部材に積層して用いられる、光学積層体が提供される。
The image display device of the present invention includes at least a polarizing plate, a refractive index adjusting layer, and a light emitting layer in this order, and the refractive index of the refractive index adjusting layer is 1.2 or less.
In one embodiment, the light emitting layer is a layer that converts a part of the wavelength of the incident light to emit light.
In one embodiment, the light emitting layer comprises quantum dots or phosphors as wavelength conversion materials.
In one embodiment, the light emitting layer is a color filter.
In one embodiment, the polarizing plate functions as a circular polarizing plate.
In one embodiment, the image display device further comprises a colored layer.
In one embodiment, the colored layer is arranged between the refractive index adjusting layer and the light emitting layer.
According to another aspect of the present invention, there is provided an optical laminate provided with a polarizing plate and a refractive index adjusting layer, which is used by being laminated on an optical member provided with a light emitting layer.

本発明によれば、偏光板と発光層との間に屈折率調整層を配置することにより、光の利用効率が高く、かつ、外光反射が少ない画像表示装置を提供することができる。 According to the present invention, by arranging the refractive index adjusting layer between the polarizing plate and the light emitting layer, it is possible to provide an image display device having high light utilization efficiency and low external light reflection.

本発明の1つの実施形態による画像表示装置の概略断面図である。It is a schematic sectional drawing of the image display device by one Embodiment of this invention. 本発明の1つの実施形態による円偏光板の概略断面図である。It is the schematic sectional drawing of the circular polarizing plate by one Embodiment of this invention. 本発明の別の実施形態による円偏光板の概略断面図である。FIG. 3 is a schematic cross-sectional view of a circularly polarizing plate according to another embodiment of the present invention.

以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the slow-phase axis direction), and "ny" is the direction orthogonal to the slow-phase axis in the plane (that is, the phase-advancing axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth = (nx-nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.

A.画像表示装置の全体構成
図1は、本発明の1つの実施形態による画像表示装置の概略断面図である。画像表示装置100は、偏光板10と、屈折率調整層20と、発光層30とをこの順に備える。好ましくは、偏光板10と、屈折率調整層20と、発光層30とは視認側からこの順に配置される。1つの実施形態においては、上記発光層は、入射光の一部の波長を変換して発光し得る層である。1つの実施形態においては、発光層は、入射した青色~青紫色の光の一部を緑色光および赤色光に変換し、一部を青色光としてそのまま出射することで、赤色光と緑色光と青色光との組み合わせにより白色光を発光する。図1においては、代表例として、画像表示装置が液晶表示装置である場合を図示している。1つの実施形態において、画像表示装置が液晶表示装置である場合、該液晶表示装置100は、液晶パネル110とバックライト30とを備え、偏光板10と屈折率調整層20と発光層30とは、液晶パネル110の部材であり得る。また、液晶パネル110は、液晶セル40と、液晶セル40の両側に配置される視認側偏光板10と、背面側偏光板50とから構成され得る。この場合、発光層30は、液晶パネル40に含まれ得る。より具体的には、発光層30は、液晶パネル40に備えられるカラーフィルターとすることができる。また、偏光板10は、液晶パネル40の視認側偏光板として機能し得る。
A. Overall Configuration of the Image Display Device FIG. 1 is a schematic cross-sectional view of the image display device according to one embodiment of the present invention. The image display device 100 includes a polarizing plate 10, a refractive index adjusting layer 20, and a light emitting layer 30 in this order. Preferably, the polarizing plate 10, the refractive index adjusting layer 20, and the light emitting layer 30 are arranged in this order from the visual recognition side. In one embodiment, the light emitting layer is a layer capable of converting a part of the wavelength of the incident light to emit light. In one embodiment, the light emitting layer converts a part of the incident blue to bluish purple light into green light and red light, and emits a part as blue light as it is, thereby producing red light and green light. It emits white light in combination with blue light. FIG. 1 illustrates a case where the image display device is a liquid crystal display device as a typical example. In one embodiment, when the image display device is a liquid crystal display device, the liquid crystal display device 100 includes a liquid crystal panel 110 and a backlight 30, and the polarizing plate 10, the refractive index adjusting layer 20, and the light emitting layer 30 are , Can be a member of the liquid crystal panel 110. Further, the liquid crystal panel 110 may be composed of a liquid crystal cell 40, a viewing side polarizing plate 10 arranged on both sides of the liquid crystal cell 40, and a back side polarizing plate 50. In this case, the light emitting layer 30 may be included in the liquid crystal panel 40. More specifically, the light emitting layer 30 can be a color filter provided in the liquid crystal panel 40. Further, the polarizing plate 10 can function as a viewing-side polarizing plate of the liquid crystal panel 40.

本発明においては、偏光板10と発光層30との間に屈折率調整層20を配置することにより、発光層から屈折率調整層20側に出射する光(例えば、発光層を透過したバックライト30からの光を含む)を屈折率調整層20の発光層30側面で反射させることができる。ここで反射した光は、再び、発光層30により波長変換され得る。その結果、光利用効率を高めることができる。また、屈折率調整層を配置しない場合、発光層から偏光板側に出射した光の大部分は、偏光板を透過して、偏光板の発光層とは反対側の面(例えば、偏光板の空気界面)で、反射する。その場合、反射光は、偏光板で吸収されてしまい、発光層には到達し難く、光の利用効率が低下する。本発明においては、上記のように屈折率調整層を配置することにより、偏光板での反射光の吸収を生じさせることなく、光の利用効率を高めることができる。 In the present invention, by arranging the refractive index adjusting layer 20 between the polarizing plate 10 and the light emitting layer 30, the light emitted from the light emitting layer to the refractive index adjusting layer 20 side (for example, the backlight transmitted through the light emitting layer). (Including light from 30) can be reflected on the side surface of the light emitting layer 30 of the refractive index adjusting layer 20. The light reflected here can be wavelength-converted again by the light emitting layer 30. As a result, the light utilization efficiency can be improved. When the refractive index adjusting layer is not arranged, most of the light emitted from the light emitting layer to the polarizing plate side passes through the polarizing plate and is on the surface opposite to the light emitting layer of the polarizing plate (for example, of the polarizing plate). Reflects at the air interface). In that case, the reflected light is absorbed by the polarizing plate, it is difficult to reach the light emitting layer, and the light utilization efficiency is lowered. In the present invention, by arranging the refractive index adjusting layer as described above, it is possible to improve the efficiency of light utilization without causing absorption of the reflected light by the polarizing plate.

好ましくは、画像表示装置100は、偏光板10と屈折率調整層20との間、および、屈折率調整層20と発光層30との間に空気層が存在しないように構成される。1つの実施形態においては、偏光板10と屈折率調整層20とが直接積層される。また、1つの実施形態においては、屈折率調整層20と発光層30とが直接積層される。上記のように空気層を排除すれば、外光反射を低減することができる。本発明においては、屈折率調整層の屈折率を適切に調整することにより(詳細は後述)、発光層から出射する光の利用効率を高め、かつ、外光反射を抑制することができる。なお、本明細書において、「直接積層される」とは、任意の適切な粘着剤または接着剤を介して、2つの部材が積層されることを含む概念である。 Preferably, the image display device 100 is configured so that there is no air layer between the polarizing plate 10 and the refractive index adjusting layer 20 and between the refractive index adjusting layer 20 and the light emitting layer 30. In one embodiment, the polarizing plate 10 and the refractive index adjusting layer 20 are directly laminated. Further, in one embodiment, the refractive index adjusting layer 20 and the light emitting layer 30 are directly laminated. If the air layer is eliminated as described above, the reflection of external light can be reduced. In the present invention, by appropriately adjusting the refractive index of the refractive index adjusting layer (details will be described later), it is possible to improve the utilization efficiency of the light emitted from the light emitting layer and suppress the reflection of external light. In addition, in this specification, "directly laminated" is a concept including laminating two members via any suitable adhesive or adhesive.

1つの実施形態において、本発明の画像表示装置は、着色層をさらに備え得る。好ましくは、該着色層は、屈折率調整層と発光層との間に配置される。該着色層は、特定波長の光を吸収し得る。該着色層は、上記偏光板がλ/4板を有して円偏光板として機能する際に(詳細は後述)、好適に用いられる。λ/4板を有する偏光板(円偏光板)は、反射防止機能を発揮するところ、着色層を配置し、該着色層が特定波長の光を吸収することにより、該円偏光板の反射防止機能を向上させることができる。また、着色層が特定波長範囲の光を選択的に吸収することにより、反射色相を適切に調整することができ、かつ、広色域化された画像表示装置を得ることができる。なお、着色層がいかなる波長の光を吸収するかは、画像表示装置が備える反射体(例えば、液晶表示パネル、有機ELパネル等の画像表示パネル)の反射特性に応じて、適切に調整され得る。屈折率調整層と着色層との間、および着色層と発光層との間には、空気層が存在しないことが好ましい。1つの実施形態においては、屈折率調整層と着色層とが直接積層される。また、1つの実施形態においては、着色層と発光層とが直接積層される。 In one embodiment, the image display device of the present invention may further include a colored layer. Preferably, the colored layer is arranged between the refractive index adjusting layer and the light emitting layer. The colored layer may absorb light of a specific wavelength. The colored layer is preferably used when the polarizing plate has a λ / 4 plate and functions as a circular polarizing plate (details will be described later). A polarizing plate having a λ / 4 plate (circular polarizing plate) exhibits an antireflection function, and a colored layer is arranged, and the colored layer absorbs light of a specific wavelength to prevent reflection of the circular polarizing plate. The function can be improved. Further, by selectively absorbing light in a specific wavelength range by the colored layer, the reflected hue can be appropriately adjusted, and an image display device having a wide color gamut can be obtained. The wavelength of light absorbed by the colored layer can be appropriately adjusted according to the reflection characteristics of the reflector (for example, an image display panel such as a liquid crystal display panel or an organic EL panel) included in the image display device. .. It is preferable that there is no air layer between the refractive index adjusting layer and the colored layer, and between the colored layer and the light emitting layer. In one embodiment, the refractive index adjusting layer and the colored layer are directly laminated. Further, in one embodiment, the colored layer and the light emitting layer are directly laminated.

B.偏光板
上記偏光板としては、任意の適切な偏光板が用いられる。代表的には、偏光板は、偏光子と、偏光子の片側または両側に配置された保護フィルムとから構成される。
B. Polarizer As the above-mentioned polarizing plate, any suitable polarizing plate is used. Typically, the polarizing plate is composed of a polarizing element and a protective film arranged on one side or both sides of the polarizing element.

B-1.偏光子、保護フィルム
上記偏光子としては、任意の適切な偏光子が用いられる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く、特に好ましい。偏光子の厚みは、好ましくは、0.5μm~80μmである。
B-1. Polarizer, protective film As the polarizing element, any suitable polarizing element can be used. For example, a dichroic substance such as iodine or a bicolor dye is adsorbed on a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, or an ethylene / vinyl acetate copolymer partially saponified film. Examples thereof include uniaxially stretched films, polyvinyl alcohol dehydrated products, polyvinyl chloride dehydrogenated products, and other polyene-based oriented films. Among these, a decoder in which a dichroic substance such as iodine is adsorbed on a polyvinyl alcohol-based film and uniaxially stretched is particularly preferable because it has a high polarization dichroic ratio. The thickness of the stator is preferably 0.5 μm to 80 μm.

ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、代表的には、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製される。延伸は染色した後に行ってもよいし、染色しながら延伸してもよいし、延伸してから染色してもよい。延伸、染色以外にも、例えば、膨潤、架橋、調整、水洗、乾燥等の処理が施されて作製される。例えば、染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗することで、ポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、ポリビニルアルコール系フィルムを膨潤させて染色ムラなどを防止することができる。なお、ポリビニルアルコール系フィルムは、単層のフィルム(通常のフィルム成形されたフィルム)であってもよく、樹脂基材上に塗布形成されたポリビニルアルコール系樹脂層であってもよい。単層のポリビニルアルコール系フィルムから偏光子を作製する技術は当業界で周知である。樹脂基材上に塗布形成されたポリビニルアルコール系樹脂層から偏光子を作製する技術は、例えば特開2009-098653号公報に記載されている。 A polarizing element that is uniaxially stretched by adsorbing iodine on a polyvinyl alcohol-based film is typically produced by dyeing by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it to 3 to 7 times the original length. To. Stretching may be performed after dyeing, stretching while dyeing, or stretching and then dyeing. In addition to stretching and dyeing, it is produced by subjecting it to treatments such as swelling, cross-linking, adjustment, washing with water, and drying. For example, by immersing a polyvinyl alcohol-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the polyvinyl alcohol-based film, but also to swell and dye the polyvinyl alcohol-based film. It is possible to prevent unevenness and the like. The polyvinyl alcohol-based film may be a single-layer film (a film formed by molding a normal film), or may be a polyvinyl alcohol-based resin layer coated and formed on a resin substrate. The technique for producing a polarizing element from a single-layer polyvinyl alcohol-based film is well known in the art. A technique for producing a polarizing element from a polyvinyl alcohol-based resin layer coated and formed on a resin substrate is described in, for example, Japanese Patent Application Laid-Open No. 2009-098653.

偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40%~45.5%であり、より好ましくは42%~45%である。 The splitter preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizing element is preferably 40% to 45.5%, more preferably 42% to 45%.

偏光子の偏光度は、99.9%以上であり、好ましくは99.95%以上である。 The degree of polarization of the polarizing element is 99.9% or more, preferably 99.95% or more.

上記保護フィルムとしては、任意の適切なフィルムが用いられる。このようなフィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、(メタ)アクリル系、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、アセテート系等の透明樹脂等が挙げられる。また、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。上記ポリマーフィルムは、例えば、前記樹脂組成物の押出成形物であり得る。偏光子と保護フィルムとの積層には、任意の適切な粘着剤層または接着剤層が用いられる。粘着剤層は、代表的にはアクリル系粘着剤で形成される。接着剤層は、代表的にはポリビニルアルコール系接着剤で形成される。 As the protective film, any suitable film is used. Specific examples of the material that is the main component of such a film include cellulose-based resins such as triacetylcellulose (TAC), (meth) acrylic-based, polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, and polyimide-based. , Polyethersulfone-based, polysulfone-based, polystyrene-based, polynorbornene-based, polyolefin-based, acetate-based transparent resins and the like. Further, thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the resin composition. Any suitable adhesive layer or adhesive layer is used for laminating the polarizing element and the protective film. The pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive. The adhesive layer is typically formed of a polyvinyl alcohol-based adhesive.

B-2.円偏光板
1つの実施形態においては、上記偏光板は位相差層をさらに備える。例えば、位相差層として、λ/4板として機能し得る層を配置することにより、上記偏光板は、円偏光板として機能する。円偏光板を用いることにより、本発明の画像表示装置は、外光反射防止効果が顕著となる。
B-2. Circular polarizing plate In one embodiment, the polarizing plate further includes a retardation layer. For example, by arranging a layer that can function as a λ / 4 plate as a retardation layer, the polarizing plate functions as a circular polarizing plate. By using the circular polarizing plate, the image display device of the present invention has a remarkable effect of preventing external light reflection.

図2は、本発明の1つの実施形態による円偏光板の概略断面図である。円偏光板10’は、偏光子1と、位相差層2aとを備える。位相差層2aは、λ/4板として機能し得る。円偏光板10’は、偏光子1が視認側となるように配置され得る。1つの実施形態においては、円偏光板10’は、偏光子1の位相差層2aとは反対側の面に保護フィルム3を備える。保護フィルム3は、用途、円偏光板を備える画像表示装置の構成等に応じて省略されてもよい。また、円偏光板は、偏光子と位相差層との間に別の保護フィルム(内側保護フィルムとも称する:図示せず)を備えてもよい。図示例においては、内側保護フィルムは省略されている。この場合、位相差層2が内側保護フィルムとしても機能し得る。このような構成であれば、円偏光板のさらなる薄型化が実現され得る。 FIG. 2 is a schematic cross-sectional view of a circularly polarizing plate according to one embodiment of the present invention. The circular polarizing plate 10'includes a polarizing element 1 and a retardation layer 2a. The retardation layer 2a can function as a λ / 4 plate. The circular polarizing plate 10'can be arranged so that the polarizing element 1 is on the viewing side. In one embodiment, the circularly polarizing plate 10'is provided with a protective film 3 on the surface of the polarizing element 1 opposite to the retardation layer 2a. The protective film 3 may be omitted depending on the application, the configuration of the image display device including the circular polarizing plate, and the like. Further, the circularly polarizing plate may be provided with another protective film (also referred to as an inner protective film: not shown) between the polarizing element and the retardation layer. In the illustrated example, the inner protective film is omitted. In this case, the retardation layer 2 can also function as an inner protective film. With such a configuration, further reduction in thickness of the circularly polarizing plate can be realized.

本実施形態においては、偏光子1の吸収軸と位相差層2aの遅相軸とのなす角度は35°~55°であり、好ましくは38°~52°であり、より好ましくは40°~50°であり、さらに好ましくは42°~48°であり、特に好ましくは44°~46°である。当該角度がこのような範囲であれば、所望の円偏光機能が実現され得る。なお、本明細書において角度に言及するときは、特に明記しない限り、当該角度は時計回りおよび反時計回りの両方の方向の角度を包含する。 In the present embodiment, the angle formed by the absorption axis of the polarizing element 1 and the slow axis of the retardation layer 2a is 35 ° to 55 °, preferably 38 ° to 52 °, and more preferably 40 ° to 40 °. It is 50 °, more preferably 42 ° to 48 °, and particularly preferably 44 ° to 46 °. If the angle is in such a range, the desired circular polarization function can be realized. When referring to an angle in the present specification, the angle includes an angle in both clockwise and counterclockwise directions, unless otherwise specified.

図3は、本発明の別の実施形態による円偏光板の概略断面図である。この円偏光板10’’は、偏光子1と位相差層2a(λ/4板)との間に、別の位相差層2bをさらに備える。別の位相差層2bは、λ/2板として機能する。なお、本明細書においては便宜上、位相差層2a(λ/4板)を第1の位相差層と称し、別の位相差層2b(λ/2板)を第2の位相差層と称する場合がある。図示例の円偏光板10’’は、偏光子1の別の位相差層2bとは反対側に保護フィルム3を備える。また、円偏光板は、偏光子と位相差層との間に別の保護フィルム(内側保護フィルムとも称する:図示せず)を備えてもよい。図示例においては、内側保護フィルムは省略されている。この場合、別の位相差層(第2の位相差層)2bが内側保護フィルムとしても機能し得る。 FIG. 3 is a schematic cross-sectional view of a circularly polarizing plate according to another embodiment of the present invention. The circular polarizing plate 10 ″ further includes another retardation layer 2b between the polarizing element 1 and the retardation layer 2a (λ / 4 plate). Another retardation layer 2b functions as a λ / 2 plate. In the present specification, for convenience, the retardation layer 2a (λ / 4 plate) is referred to as a first retardation layer, and another retardation layer 2b (λ / 2 plate) is referred to as a second retardation layer. In some cases. The circular polarizing plate 10 ″ of the illustrated example includes a protective film 3 on the side opposite to another retardation layer 2b of the polarizing element 1. Further, the circularly polarizing plate may be provided with another protective film (also referred to as an inner protective film: not shown) between the polarizing element and the retardation layer. In the illustrated example, the inner protective film is omitted. In this case, another retardation layer (second retardation layer) 2b can also function as an inner protective film.

本実施形態においては、偏光子1の吸収軸と第1の位相差層2aの遅相軸とのなす角度は、好ましくは65°~85°であり、より好ましくは72°~78°であり、さらに好ましくは約75°である。さらに、偏光子1の吸収軸と第2の位相差層2bの遅相軸とのなす角度は、好ましくは10°~20°であり、より好ましくは13°~17°であり、さらに好ましくは約15°である。2つの位相差層を上記のような軸角度で配置することにより、広帯域において非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する円偏光板が得られ得る。 In the present embodiment, the angle formed by the absorption axis of the polarizing element 1 and the slow axis of the first retardation layer 2a is preferably 65 ° to 85 °, more preferably 72 ° to 78 °. , More preferably about 75 °. Further, the angle formed by the absorption axis of the polarizing element 1 and the slow axis of the second retardation layer 2b is preferably 10 ° to 20 °, more preferably 13 ° to 17 °, still more preferably. It is about 15 °. By arranging the two retardation layers at the axial angles as described above, a circularly polarizing plate having very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics) can be obtained in a wide band.

B-2-1.第1の位相差層(λ/4板)
第1の位相差層は、上記のとおりλ/4板として機能し得る。このような第1の位相差層の面内位相差Re(550)は、100nm~180nmであり、好ましくは110nm~170nmであり、さらに好ましくは120nm~160nmであり、特に好ましくは135nm~155nmである。第1の位相差層は、代表的にはnx>ny=nzまたはnx>ny>nzの屈折率楕円体を有する。なお、本明細書において例えば「ny=nz」は、厳密に等しいのみならず、実質的に等しいものを包含する。1つの実施形態においては、第1の位相差層のNz係数は、例えば0.9~2であり、好ましくは1~1.5であり、より好ましくは1~1.3である。
B-2-1. First phase difference layer (λ / 4 plate)
The first retardation layer can function as a λ / 4 plate as described above. The in-plane retardation Re (550) of such a first retardation layer is 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, and particularly preferably 135 nm to 155 nm. be. The first retardation layer typically has a refractive index ellipsoid of nx> ny = nz or nx>ny> nz. In addition, in this specification, for example, "ny = nz" includes not only exactly equal but also substantially equal. In one embodiment, the Nz coefficient of the first retardation layer is, for example, 0.9 to 2, preferably 1 to 1.5, and more preferably 1 to 1.3.

上記第1の位相差層の厚みは、λ/4板として最も適切に機能し得るように設定され得る。言い換えれば、厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは10μm~80μmであり、さらに好ましくは10μm~60μmであり、最も好ましくは30μm~50μmである。 The thickness of the first retardation layer can be set so that it can function most appropriately as a λ / 4 plate. In other words, the thickness can be set to obtain the desired in-plane phase difference. Specifically, the thickness is preferably 10 μm to 80 μm, more preferably 10 μm to 60 μm, and most preferably 30 μm to 50 μm.

第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。 The first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, and may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measured light.

1つの実施形態においては、上記第1の位相差層は、フラットな波長分散特性を示す。フラットな波長分散特性を示す第1の位相差層を採用することにより、優れた反射防止特性および斜め方向の反射色相を実現することができる。本実施形態において、第1の位相差層のRe(450)/Re(550)は好ましくは0.99~1.03であり、Re(650)/Re(550)は好ましくは0.98~1.02である。 In one embodiment, the first retardation layer exhibits flat wavelength dispersion characteristics. By adopting the first retardation layer exhibiting a flat wavelength dispersion characteristic, excellent antireflection characteristics and oblique reflection hue can be realized. In the present embodiment, Re (450) / Re (550) of the first retardation layer is preferably 0.99 to 1.03, and Re (650) / Re (550) is preferably 0.98 to Re (550). It is 1.02.

別の実施形態においては、上記第1の位相差層は、逆分散波長特性を示す。逆分散波長特性を示す第1の位相差層を採用することにより、正面方向において反射色相を向上させることができる。また、逆分散波長特性を示す第1の位相差層を採用することにより、実用的な反射色相を維持しつつ、その他の特性(例えば、輝度)の向上を図ることができる。本実施形態において、第1の位相差層のRe(450)/Re(550)は、好ましくは0.5以上1.0未満であり、より好ましくは0.7~0.95である。また、第1の位相差層のRe(650)/Re(550)は、好ましくは1を超えて1.2以下であり、より好ましくは1.01~1.15である。本実施形態において、第1の位相差層のNz係数は、好ましくは0.3~0.7であり、より好ましくは0.4~0.6であり、さらに好ましくは0.45~0.55であり、特に好ましくは約0.5である。Nz係数がこのような範囲であれば、より優れた反射色相を達成し得る。 In another embodiment, the first retardation layer exhibits reverse dispersion wavelength characteristics. By adopting the first retardation layer exhibiting the inverse dispersion wavelength characteristic, the reflected hue can be improved in the front direction. Further, by adopting the first retardation layer exhibiting the inverse dispersion wavelength characteristic, it is possible to improve other characteristics (for example, luminance) while maintaining a practical reflected hue. In the present embodiment, the Re (450) / Re (550) of the first retardation layer is preferably 0.5 or more and less than 1.0, and more preferably 0.7 to 0.95. The Re (650) / Re (550) of the first retardation layer preferably exceeds 1 and is 1.2 or less, and more preferably 1.01 to 1.15. In the present embodiment, the Nz coefficient of the first retardation layer is preferably 0.3 to 0.7, more preferably 0.4 to 0.6, and even more preferably 0.45 to 0. It is 55, particularly preferably about 0.5. If the Nz coefficient is in such a range, a better reflected hue can be achieved.

上記λ/4板は、好ましくは、高分子フィルムの延伸フィルムである。具体的には、ポリマーの種類、延伸処理(例えば、延伸方法、延伸温度、延伸倍率、延伸方向)を適切に選択することにより、λ/4板が得られる。 The λ / 4 plate is preferably a stretched film of a polymer film. Specifically, a λ / 4 plate can be obtained by appropriately selecting the type of polymer and the stretching treatment (for example, stretching method, stretching temperature, stretching ratio, stretching direction).

上記高分子フィルムを形成する樹脂としては、任意の適切な樹脂が用いられる。具体例としては、ポリノルボルネン等のシクロオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリスルホン系樹脂等の正の複屈折フィルムを構成する樹脂が挙げられる。中でも、ノルボルネン系樹脂、ポリカーボネート系樹脂が好ましい。なお、高分子フィルムを形成する樹脂の詳細は、例えば、特開2014-010291に記載されている。当該記載は、参考として本明細書に援用される。 Any suitable resin is used as the resin for forming the polymer film. Specific examples thereof include cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, polysulfone resins and other resins constituting a positive compound refraction film. Of these, norbornene-based resins and polycarbonate-based resins are preferable. Details of the resin forming the polymer film are described in, for example, Japanese Patent Application Laid-Open No. 2014-010291. This description is incorporated herein by reference.

上記ポリノルボルネンとは、出発原料(モノマー)の一部または全部に、ノルボルネン環を有するノルボルネン系モノマーを用いて得られる(共)重合体をいう。当該ノルボルネン系モノマーとしては、例えば、ノルボルネン、およびそのアルキルおよび/またはアルキリデン置換体、例えば、5-メチル-2-ノルボルネン、5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン等、これらのハロゲン等の極性基置換体;ジシクロペンタジエン、2,3-ジヒドロジシクロペンタジエン等;ジメタノオクタヒドロナフタレン、そのアルキルおよび/またはアルキリデン置換体、およびハロゲン等の極性基置換体、例えば、6-メチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチリデン-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-クロロ-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-シアノ-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-ピリジル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-メトキシカルボニル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン等;シクロペンタジエンの3~4量体、例えば、4,9:5,8-ジメタノ-3a,4,4a,5,8,8a,9,9a-オクタヒドロ-1H-ベンゾインデン、4,11:5,10:6,9-トリメタノ-3a,4,4a,5,5a,6,9,9a,10,10a,11,11a-ドデカヒドロ-1H-シクロペンタアントラセン等が挙げられる。 The polynorbornene refers to a (co) polymer obtained by using a norbornene-based monomer having a norbornene ring in a part or all of a starting material (monomer). Examples of the norbornene-based monomer include norbornene and its alkyl and / or anthracene substituents, such as 5-methyl-2-norbornene, 5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl. Polar group substituents such as these halogens such as -2-norbornene, 5-ethylidene-2-norbornene; dicyclopentadiene, 2,3-dihydrodicyclopentadiene and the like; dimethanooctahydronaphthalene, alkyl and / or alkylidene thereof. Substituents and polar group substituents such as halogens such as 6-methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6- Ethyl-1,4: 5,8-dimethano-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-ethylidene-1,4: 5,8-dimethano-1,4 4a, 5,6,7,8,8a-octahydronaphthalene, 6-chloro-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-Cyano-1,4: 5,8-dimethano-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-pyridyl-1,4: 5,8-dimethano-1, 4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-methoxycarbonyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octa Hydronaphthalene, etc .; 3-4 dimensions of cyclopentadiene, eg, 4,9: 5,8-dimethano-3a, 4,4a, 5,8,8a, 9,9a-octahydro-1H-benzoinden, 4, Examples thereof include 11: 5,10: 6,9-trimethano-3a, 4,4a, 5,5a, 6,9,9a, 10,10a, 11,11a-dodecahydro-1H-cyclopentadiene and the like.

上記ポリノルボルネンとしては、種々の製品が市販されている。具体例としては、日本ゼオン社製の商品名「ゼオネックス」、「ゼオノア」、JSR社製の商品名「アートン(Arton)」、TICONA社製の商品名「トーパス」、三井化学社製の商品名「APEL」が挙げられる。 As the polynorbornene, various products are commercially available. Specific examples include Zeon Corporation's product names "Zeonex" and "Zeonoa", JSR's product name "Arton", TICONA's product name "Topus", and Mitsui Chemicals' product name. "APEL" can be mentioned.

上記ポリカーボネート系樹脂としては、好ましくは、芳香族ポリカーボネートが用いられる。芳香族ポリカーボネートは、代表的には、カーボネート前駆物質と芳香族2価フェノール化合物との反応によって得ることができる。カーボネート前駆物質の具体例としては、ホスゲン、2価フェノール類のビスクロロホーメート、ジフェニルカーボネート、ジ-p-トリルカーボネート、フェニル-p-トリルカーボネート、ジ-p-クロロフェニルカーボネート、ジナフチルカーボネート等が挙げられる。これらの中でも、ホスゲン、ジフェニルカーボネートが好ましい。芳香族2価フェノール化合物の具体例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジプロピルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等が挙げられる。これらは単独で、または2種以上組み合わせて用いてもよい。好ましくは、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンが用いられる。特に、2,2-ビス(4-ヒドロキシフェニル)プロパンと1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンとを共に使用することが好ましい。 As the polycarbonate-based resin, aromatic polycarbonate is preferably used. Aromatic polycarbonate can be typically obtained by reacting a carbonate precursor with an aromatic divalent phenolic compound. Specific examples of the carbonate precursor include phosgene, bischlorohomates of divalent phenols, diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, dinaphthyl carbonate and the like. Can be mentioned. Among these, phosgene and diphenyl carbonate are preferable. Specific examples of the aromatic divalent phenol compound include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and bis (4-hydroxyphenyl). ) Methan, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) butane, 2, 2-Bis (4-hydroxy-3,5-dipropylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethyl Cyclohexane and the like can be mentioned. These may be used alone or in combination of two or more. Preferably, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane are used. Used. In particular, it is preferable to use 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane together.

延伸方法としては、例えば、横一軸延伸、固定端二軸延伸、逐次二軸延伸が挙げられる。固定端二軸延伸の具体例としては、高分子フィルムを長手方向に走行させながら、短手方向(横方向)に延伸させる方法が挙げられる。この方法は、見かけ上は横一軸延伸であり得る。また、斜め延伸も採用することができる。斜め延伸を採用することにより、幅方向に対して所定の角度の配向軸(遅相軸)を有する長尺状の延伸フィルムを得ることができる。 Examples of the stretching method include horizontal uniaxial stretching, fixed-end biaxial stretching, and sequential biaxial stretching. Specific examples of the fixed-end biaxial stretching include a method of stretching the polymer film in the lateral direction (lateral direction) while running the polymer film in the longitudinal direction. This method may apparently be laterally uniaxially stretched. In addition, diagonal stretching can also be adopted. By adopting diagonal stretching, it is possible to obtain a long stretched film having an orientation axis (slow phase axis) at a predetermined angle with respect to the width direction.

上記延伸フィルムの厚みは、代表的には5μm~80μm、好ましくは15μm~60μm、さらに好ましくは25μm~45μmである。 The thickness of the stretched film is typically 5 μm to 80 μm, preferably 15 μm to 60 μm, and more preferably 25 μm to 45 μm.

B-2-2.第2の位相差層(λ/2板)
第2の位相差層は、上記のとおりλ/2板として機能し得る。このような第2の位相差層の面内位相差Re(550)は、好ましくは180~300nmであり、さらに好ましくは210~280nmであり、最も好ましくは230~240nmである。第2の位相差層は、代表的には、nx>ny=nzの屈折率楕円体を有することが好ましい。第2の位相差層のNz係数は、例えば0.9~2であり、好ましくは1~1.5であり、より好ましくは1~1.3である。
B-2-2. Second phase difference layer (λ / 2 plate)
The second retardation layer can function as a λ / 2 plate as described above. The in-plane retardation Re (550) of such a second retardation layer is preferably 180 to 300 nm, more preferably 210 to 280 nm, and most preferably 230 to 240 nm. The second retardation layer typically preferably has a refractive index ellipsoid of nx> ny = nz. The Nz coefficient of the second retardation layer is, for example, 0.9 to 2, preferably 1 to 1.5, and more preferably 1 to 1.3.

上記第2の位相差層の厚みは、λ/2板として最も適切に機能し得るように設定され得る。言い換えれば、厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは0.5μm~5μmであり、さらに好ましくは1μm~4μmであり、最も好ましくは1.5μm~3μmである。 The thickness of the second retardation layer can be set so that it can function most appropriately as a λ / 2 plate. In other words, the thickness can be set to obtain the desired in-plane phase difference. Specifically, the thickness is preferably 0.5 μm to 5 μm, more preferably 1 μm to 4 μm, and most preferably 1.5 μm to 3 μm.

上記第2の位相差層の材料としては、上記のような特性が得られる限りにおいて任意の適切な材料が採用され得る。液晶材料が好ましく、液晶相がネマチック相である液晶材料(ネマチック液晶)がさらに好ましい。液晶材料を用いることにより、得られる第2の位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができる。その結果、所望の面内位相差を得るための第2の位相差層の厚みを格段に小さくすることができる。このような液晶材料としては、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶材料の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。また、液晶の配向状態は、ホモジニアス配向であることが好ましい。また、第2の位相差層の材料として、上記高分子フィルムを形成する樹脂を用いてもよい。 As the material of the second retardation layer, any suitable material can be adopted as long as the above-mentioned characteristics can be obtained. A liquid crystal material is preferable, and a liquid crystal material (nematic liquid crystal) in which the liquid crystal phase is a nematic phase is more preferable. By using the liquid crystal material, the difference between nx and ny of the obtained second retardation layer can be made much larger than that of the non-liquid crystal material. As a result, the thickness of the second retardation layer for obtaining a desired in-plane retardation can be significantly reduced. As such a liquid crystal material, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal expression mechanism of the liquid crystal material may be either lyotropic or thermotropic. Further, the orientation state of the liquid crystal is preferably homogenius orientation. Further, as the material of the second retardation layer, a resin forming the polymer film may be used.

第2の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。フラットな波長分散特性を示すことが好ましい。フラットな波長分散特性を有するλ/2板を採用することにより、優れた反射防止特性および斜め方向の反射色相を実現することができる。位相差層のRe(450)/Re(550)は好ましくは0.99~1.03であり、Re(650)/Re(550)は好ましくは0.98~1.02である。 The second retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, and may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measured light. It is preferable to show flat wavelength dispersion characteristics. By adopting a λ / 2 plate having flat wavelength dispersion characteristics, excellent antireflection characteristics and oblique reflection hue can be realized. The retardation layer Re (450) / Re (550) is preferably 0.99 to 1.03, and Re (650) / Re (550) is preferably 0.98 to 1.02.

C.着色層
上記着色層は、任意の適切な1種以上の色材を含む。代表的には、着色層において、色材は、マトリックス中に存在する。
C. Colored Layer The colored layer comprises any suitable one or more colorants. Typically, in the colored layer, the colorant is present in the matrix.

1つの実施形態においては、着色層は、特定波長範囲の光を選択的に吸収する(すなわち、特定範囲の波長帯域に吸収極大波長を有する)。別の実施形態においては、着色層は、可視光領域全波長を吸収するように機能する。好ましくは、着色層は、特定波長範囲の光を選択的に吸収する。特定波長範囲の光を選択的に吸収するようにして着色層を構成すれば、可視光透過率の低下(すなわち、輝度の低下)を抑制しつつ、円偏光板の反射防止機能を高めることができる。また、吸収される光の波長を調整することにより、反射色相をニュートラルにすることができ、不要な着色を防止することができる。 In one embodiment, the colored layer selectively absorbs light in a particular wavelength range (ie, has an absorption maximum wavelength in a particular wavelength band). In another embodiment, the colored layer functions to absorb all wavelengths in the visible light region. Preferably, the colored layer selectively absorbs light in a specific wavelength range. If the colored layer is configured to selectively absorb light in a specific wavelength range, it is possible to enhance the antireflection function of the circularly polarizing plate while suppressing a decrease in visible light transmittance (that is, a decrease in brightness). can. Further, by adjusting the wavelength of the absorbed light, the reflected hue can be made neutral, and unnecessary coloring can be prevented.

1つの実施形態においては、上記着色層は、440nm~510nmの範囲の波長帯域に吸収極大波長を有する。このような着色層を形成すれば、反射色相を適切に調整することができる。 In one embodiment, the colored layer has an absorption maximum wavelength in the wavelength band in the range of 440 nm to 510 nm. By forming such a colored layer, the reflected hue can be appropriately adjusted.

別の実施形態においては、上記着色層は、560nm~610nmの範囲の波長帯域に吸収極大波長を有する。このような着色層を形成すれば、反射色相を適切に調整することができる。 In another embodiment, the colored layer has an absorption maximum wavelength in the wavelength band in the range of 560 nm to 610 nm. By forming such a colored layer, the reflected hue can be appropriately adjusted.

さらに別の実施形態においては、上記着色層は、440nm~510nmおよび560nm~610nmの範囲の波長帯域に吸収極大波長を有する。このような構成であれば、画像表示装置を顕著に広色域化することができる。上記のように、2以上の吸収極大波長を有する着色層は、複数種の色材を用いることにより得ることができる。 In yet another embodiment, the colored layer has an absorption maximum wavelength in the wavelength band in the range of 440 nm to 510 nm and 560 nm to 610 nm. With such a configuration, the image display device can be remarkably widened in color gamut. As described above, the colored layer having two or more absorption maximum wavelengths can be obtained by using a plurality of kinds of coloring materials.

着色層の吸収極大波長での透過率は、好ましくは0%~80%であり、より好ましくは0%~70%である。このような範囲であれば、本発明の上記効果はより顕著となる。 The transmittance of the colored layer at the absorption maximum wavelength is preferably 0% to 80%, more preferably 0% to 70%. Within such a range, the above-mentioned effect of the present invention becomes more remarkable.

上記着色層の可視光透過率は、好ましくは30%~90%であり、より好ましくは30%~80%である。このような範囲であれば、輝度低下を抑制しつつ、円偏光板の反射防止機能を高めることができる。 The visible light transmittance of the colored layer is preferably 30% to 90%, more preferably 30% to 80%. Within such a range, the antireflection function of the circularly polarizing plate can be enhanced while suppressing the decrease in brightness.

上記着色層のヘイズ値は、好ましくは15%以下であり、より好ましくは10%以下である。着色層のヘイズ値をこのような範囲に収めることにより、上記位相差層を透過した円偏光の偏光解消が防止され、その結果、円偏光板の反射防止機能が有効に発揮される。着色層のヘイズ値は小さいほど好ましいが、その下限は、例えば、0.1%である。 The haze value of the colored layer is preferably 15% or less, more preferably 10% or less. By keeping the haze value of the colored layer within such a range, the depolarization of the circularly polarized light transmitted through the retardation layer is prevented, and as a result, the antireflection function of the circularly polarizing plate is effectively exhibited. The smaller the haze value of the colored layer is, the more preferable it is, but the lower limit thereof is, for example, 0.1%.

着色層の厚みは、好ましくは1μm~100μmであり、より好ましくは2μm~30μmである。 The thickness of the colored layer is preferably 1 μm to 100 μm, more preferably 2 μm to 30 μm.

(色材)
上記色材の具体例としては、アントラキノン系、トリフェニルメタン系、ナフトキノン系、チオインジゴ系、ペリノン系、ペリレン系、スクアリリウム系、シアニン系、ポルフィリン系、アザポルフィリン系、フタロシアニン系、サブフタロシアニン系、キニザリン系、ポリメチン系、ローダミン系、オキソノール系、キノン系、アゾ系、キサンテン系、アゾメチン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリドン系、イソインドリノン系、インダンスロン系、インジゴ系、チオインジゴ系、キノフタロン系、キノリン系、トリフェニルメタン系等の染料が挙げられる。
(Color material)
Specific examples of the above coloring materials include anthraquinone-based, triphenylmethane-based, naphthoquinone-based, thioindigo-based, perinone-based, perylene-based, squarylium-based, cyanine-based, porphyrin-based, azaporphyrin-based, phthalocyanine-based, subphthalocyanine-based, and quinizarin. System, Polymethin system, Rhodamine system, Oxonol system, Kinone system, Azo system, Xantene system, Azomethin system, Quinacridone system, Dioxazine system, Diketopyrrolopyrrole system, Anthraquinone system, Isodolinone system, Indanslon system, Indigo Examples thereof include dyes such as thioindigo, quinophthalone, quinoline, and triphenylmethane.

1つの実施形態においては、色材として、アントラキノン系、オキシム系、ナフトキノン系、キニザリン系、オキソノール系、アゾ系、キサンテン系またはフタロシアニン系の染料が用いられる。これらの染料を用いれば、440nm~510nmの範囲の波長帯域に吸収極大波長を有する着色層を形成することができる。 In one embodiment, anthraquinone-based, oxime-based, naphthoquinone-based, quinizarin-based, oxonol-based, azo-based, xanthene-based or phthalocyanine-based dyes are used as the coloring material. By using these dyes, it is possible to form a colored layer having an absorption maximum wavelength in a wavelength band in the range of 440 nm to 510 nm.

1つの実施形態においては、色材として、上記範囲に吸収極大波長を有する着色層は、例えば、色材として、インジゴ系、ローダミン系、キナクリドン系またはポルフィリン系の染料が用いられる。これらの染料を用いれば、560nm~610nmの範囲の波長帯域に吸収極大波長を有する着色層を形成することができる。 In one embodiment, as the coloring material, as the coloring layer having an absorption maximum wavelength in the above range, for example, an indigo-based, rhodamine-based, quinacridone-based or porphyrin-based dye is used as the coloring material. By using these dyes, it is possible to form a colored layer having an absorption maximum wavelength in a wavelength band in the range of 560 nm to 610 nm.

また、上記色材として、顔料を用いてもよい。顔料の具体例としては、例えば、黒色顔料(カーボンブラック、ボーンブラック、グラファイト、鉄黒、チタンブラック等)、アゾ系顔料、フタロシアニン系顔料、多環式顔料(キナクリドン系、ペリレン系、ペリノン系、イソインドリノン系、イソインドリン系、ジオキサジン系、チオインジゴ系、アントラキノン系、キノフタロン系、金属錯体系、ジケトピロロピロール系等)、染料レーキ系顔料、白色・体質顔料(酸化チタン、酸化亜鉛、硫化亜鉛、クレー、タルク、硫酸バリウム、炭酸カルシウム等)、有彩顔料(黄鉛、カドミニウム系、クロムバーミリオン、ニッケルチタン、クロムチタン、黄色酸化鉄、ベンガラ、ジンククロメート、鉛丹、群青、紺青、コバルトブルー、クロムグリーン、酸化クロム、バナジン酸ビスマス等)、光輝材顔料(パール顔料、アルミ顔料、ブロンズ顔料等)、蛍光顔料(硫化亜鉛、硫化ストロンチウム、アルミン酸ストロンチウム等)等が挙げられる。 Further, a pigment may be used as the coloring material. Specific examples of the pigment include black pigments (carbon black, bone black, graphite, iron black, titanium black, etc.), azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone, perylene, perinone, etc.). Isoindrinone-based, isoindolin-based, dioxazine-based, thioindigo-based, anthraquinone-based, quinophthalone-based, metal complex-based, diketopyrrolopyrrole-based, dye lake pigments, white / extender pigments (titanium oxide, zinc oxide, sulfide) Zinc, clay, talc, barium sulfate, calcium carbonate, etc.), chromatic pigments (yellow lead, cadmium, chrome vermillion, nickel titanium, chrome titanium, yellow iron oxide, red iron oxide, zinc chromate, lead tan, ultramarine, dark blue, Cobalt blue, chrome green, chromium oxide, bismuth vanadate, etc.), bright material pigments (pearl pigments, aluminum pigments, bronze pigments, etc.), fluorescent pigments (zinc sulfide, strontium sulfide, strontium aluminate, etc.) and the like can be mentioned.

上記色材の含有割合は、色材の種類、所望の光吸収特性等に応じて、任意の適切な割合とされ得る。上記色材の含有割合は、マトリックス材料100重量部に対して、例えば、0.01重量部~100重量部であり、より好ましくは0.01重量部~50重量部である。 The content ratio of the coloring material may be any appropriate ratio depending on the type of coloring material, desired light absorption characteristics, and the like. The content ratio of the coloring material is, for example, 0.01 part by weight to 100 parts by weight, and more preferably 0.01 part by weight to 50 parts by weight with respect to 100 parts by weight of the matrix material.

色材として顔料を用いる場合、マトリックス中の該顔料の数平均粒子径は、好ましくは500nm以下であり、より好ましくは1nm~100nmである。このような範囲であれば、ヘイズ値の小さい着色層を形成することができる。顔料の数平均粒子径は、着色層の断面観察により測定・算出される。 When a pigment is used as the coloring material, the number average particle size of the pigment in the matrix is preferably 500 nm or less, more preferably 1 nm to 100 nm. Within such a range, a colored layer having a small haze value can be formed. The number average particle size of the pigment is measured and calculated by observing the cross section of the colored layer.

(マトリックス)
マトリックスは、粘着剤であってもよく、樹脂フィルムであってもよい。好ましくは粘着剤である。
(matrix)
The matrix may be an adhesive or a resin film. It is preferably an adhesive.

マトリックスが粘着剤である場合、粘着剤としては、任意の適切な粘着剤を用いることができる。粘着剤は、好ましくは、透明性および光学的等方性を有する。粘着剤の具体例としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、エポキシ系粘着剤、セルロース系粘着剤が挙げられる。好ましくは、ゴム系粘着剤またはアクリル系粘着剤である。 When the matrix is a pressure-sensitive adhesive, any suitable pressure-sensitive adhesive can be used as the pressure-sensitive adhesive. The pressure-sensitive adhesive preferably has transparency and optical isotropic properties. Specific examples of the pressure-sensitive adhesive include rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, and cellulose-based pressure-sensitive adhesives. A rubber-based pressure-sensitive adhesive or an acrylic-based pressure-sensitive adhesive is preferable.

ゴム系粘着剤(粘着剤組成物)のゴム系ポリマーは、室温付近の温度域においてゴム弾性を示すポリマーである。好ましいゴム系ポリマー(A)としては、スチレン系熱可塑性エラストマー(A1)、イソブチレン系ポリマー(A2)、およびその組み合わせが挙げられる。 The rubber-based polymer of the rubber-based pressure-sensitive adhesive (adhesive composition) is a polymer that exhibits rubber elasticity in a temperature range near room temperature. Preferred rubber-based polymers (A) include styrene-based thermoplastic elastomers (A1), isobutylene-based polymers (A2), and combinations thereof.

スチレン系熱可塑性エラストマー(A1)としては、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS、SISの水添物)、スチレン-エチレン-プロピレンブロック共重合体(SEP、スチレン-イソプレンブロック共重合体の水添物)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、スチレン-ブタジエンゴム(SBR)等のスチレン系ブロックコポリマーを挙げることができる。これらの中でも、分子の両末端にポリスチレンブロックを有し、ポリマーとして高い凝集力を有する点から、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS、SISの水添物)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)が好ましい。スチレン系熱可塑性エラストマー(A1)として市販品を用いてもよい。市販品の具体例としては、クラレ社製のSEPTON、HYBRAR、旭化成ケミカルズ社製のタフテック、カネカ社製のSIBSTARが挙げられる。 Examples of the styrene-based thermoplastic elastomer (A1) include a styrene-ethylene-butylene-styrene block copolymer (SEBS), a styrene-isoprene-styrene block copolymer (SIS), and a styrene-butadiene-styrene block copolymer. (SBS), styrene-ethylene-propylene-styrene block copolymer (SEPS, SIS hydrogenated product), styrene-ethylene-propylene block copolymer (SEP, styrene-isoprene block copolymer hydrogenated product), Examples thereof include styrene-based block polymers such as styrene-isobutylene-styrene block copolymer (SIBS) and styrene-butadiene rubber (SBR). Among these, styrene-ethylene-propylene-styrene block copolymer (SEPS, SIS hydrogenated product), styrene-ethylene- Butylene-styrene block copolymer (SEBS) and styrene-isobutylene-styrene block copolymer (SIBS) are preferable. A commercially available product may be used as the styrene-based thermoplastic elastomer (A1). Specific examples of commercially available products include Kuraray's SEPTON, HYBRAR, Asahi Kasei Chemicals' Tough Tech, and Kaneka's SIBSTAR.

スチレン系熱可塑性エラストマー(A1)の重量平均分子量は、好ましくは5万~50万程度であり、より好ましくは5万~30万程度であり、さらに好ましくは5万~25万程度である。スチレン系熱可塑性エラストマー(A1)の重量平均分子量がこのような範囲であれば、ポリマーの凝集力と粘弾性を両立できるため好ましい。 The weight average molecular weight of the styrene-based thermoplastic elastomer (A1) is preferably about 50,000 to 500,000, more preferably about 50,000 to 300,000, and further preferably about 50,000 to 250,000. When the weight average molecular weight of the styrene-based thermoplastic elastomer (A1) is in such a range, it is preferable because both the cohesive force of the polymer and the viscoelasticity can be achieved.

スチレン系熱可塑性エラストマー(A1)中のスチレン含有量は、好ましくは5重量%~70重量%程度であり、より好ましくは5重量%~40重量%程度であり、さらに好ましくは10重量%~20重量%程度である。スチレン系熱可塑性エラストマー(A1)中のスチレン含有量がこのような範囲であれば、スチレン部位による凝集力を保ちながら、ソフトセグメントによる粘弾性を確保できるため好ましい。 The styrene content in the styrene-based thermoplastic elastomer (A1) is preferably about 5% by weight to 70% by weight, more preferably about 5% by weight to 40% by weight, still more preferably 10% by weight to 20% by weight. It is about% by weight. When the styrene content in the styrene-based thermoplastic elastomer (A1) is in such a range, viscoelasticity due to the soft segment can be ensured while maintaining the cohesive force due to the styrene moiety, which is preferable.

イソブチレン系ポリマー(A2)としては、イソブチレンを構成単量体として含み、重量平均分子量(Mw)が好ましくは50万以上であるものを挙げることができる。イソブチレン系ポリマー(A2)は、イソブチレンのホモポリマー(ポリイソブチレン、PIB)であってもよく、イソブチレンを主モノマーとするコポリマー(すなわち、イソブチレンが50モル%を超える割合で共重合されたコポリマー)であってもよい。このようなコポリマーとしては、例えば、イソブチレンとノルマルブチレンとの共重合体、イソブチレンとイソプレンとの共重合体(例えば、レギュラーブチルゴム、塩素化ブチルゴム、臭素化ブチルゴム、部分架橋ブチルゴム等のブチルゴム類)、これらの加硫物や変性物(例えば、水酸基、カルボキシル基、アミノ基、エポキシ基等の官能基で変性したもの)等を挙げることができる。これらの中でも、主鎖の中に二重結合を含まず耐候性に優れる点から、ポリイソブチレン(PIB)が好ましい。イソブチレン系ポリマー(A2)として市販品を用いてもよい。市販品の具体例としては、BASF社製のOPPANOLが挙げられる。 Examples of the isobutylene polymer (A2) include those containing isobutylene as a constituent monomer and having a weight average molecular weight (Mw) of preferably 500,000 or more. The isobutylene-based polymer (A2) may be a homopolymer of isobutylene (polyisobutylene, PIB), and is a copolymer containing isobutylene as a main monomer (that is, a copolymer in which isobutylene is copolymerized in an amount of more than 50 mol%). There may be. Examples of such copolymers include copolymers of isobutylene and normal butylene, copolymers of isobutylene and isoprene (for example, butyl rubbers such as regular butyl rubber, chlorinated butyl rubber, brominated butyl rubber, and partially crosslinked butyl rubber). Examples thereof include these sulfides and modified products (for example, those modified with functional groups such as hydroxyl groups, carboxyl groups, amino groups and epoxy groups). Among these, polyisobutylene (PIB) is preferable because it does not contain a double bond in the main chain and has excellent weather resistance. A commercially available product may be used as the isobutylene polymer (A2). Specific examples of commercially available products include OPPANOL manufactured by BASF.

イソブチレン系ポリマー(A2)の重量平均分子量(Mw)は、好ましくは50万以上であり、より好ましくは60万以上であり、さらに好ましくは70万以上である。また、重量平均分子量(Mw)の上限は、好ましくは500万以下であり、より好ましくは300万以下であり、さらに好ましくは200万以下である。イソブチレン系ポリマー(A2)の重量平均分子量を50万以上とすることで、高温保管時の耐久性がより優れる粘着剤組成物とすることができる。 The weight average molecular weight (Mw) of the isobutylene polymer (A2) is preferably 500,000 or more, more preferably 600,000 or more, and further preferably 700,000 or more. The upper limit of the weight average molecular weight (Mw) is preferably 5 million or less, more preferably 3 million or less, and further preferably 2 million or less. By setting the weight average molecular weight of the isobutylene polymer (A2) to 500,000 or more, a pressure-sensitive adhesive composition having better durability during high-temperature storage can be obtained.

粘着剤(粘着剤組成物)におけるゴム系ポリマー(A)の含有量は、粘着剤組成物の全固形分中、好ましくは30重量%以上であり、より好ましくは40重量%以上であり、さらに好ましくは50重量%以上であり、特に好ましくは60重量%以上である。ゴム系ポリマーの含有量の上限は、好ましくは95重量%以下であり、より好ましくは90重量%以下である。 The content of the rubber-based polymer (A) in the pressure-sensitive adhesive (pressure-sensitive adhesive composition) is preferably 30% by weight or more, more preferably 40% by weight or more, and further preferably 40% by weight or more, based on the total solid content of the pressure-sensitive adhesive composition. It is preferably 50% by weight or more, and particularly preferably 60% by weight or more. The upper limit of the content of the rubber-based polymer is preferably 95% by weight or less, and more preferably 90% by weight or less.

ゴム系粘着剤において上記のゴム系ポリマー(A)と他のゴム系ポリマーとを組み合わせて用いてもよい。他のゴム系ポリマーの具体例としては、ブチルゴム(IIR)、ブタジエンゴム(BR)、アクリロニトリル-ブタジエンゴム(NBR)、EPR(二元系エチレン-プロピレンゴム)、EPT(三元系エチレン-プロピレンゴム)、アクリルゴム、ウレタンゴム、ポリウレタン系熱可塑性エラストマー;ポリエステル系熱可塑性エラストマー;ポリプロピレンとEPT(三元系エチレン-プロピレンゴム)とのポリマーブレンド等のブレンド系熱可塑性エラストマーが挙げられる。他のゴム系ポリマーの配合量は、上記ゴム系ポリマー(A)100重量部に対して好ましくは10重量部程度以下である。 In the rubber-based pressure-sensitive adhesive, the above-mentioned rubber-based polymer (A) may be used in combination with another rubber-based polymer. Specific examples of other rubber-based polymers include butyl rubber (IIR), butadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), EPR (binary ethylene-propylene rubber), and EPT (ternary ethylene-propylene rubber). ), Acrylic rubber, urethane rubber, polyurethane-based thermoplastic elastomer; polyester-based thermoplastic elastomer; blend-based thermoplastic elastomer such as a polymer blend of polypropylene and EPT (ternary ethylene-propylene rubber). The blending amount of the other rubber-based polymer is preferably about 10 parts by weight or less with respect to 100 parts by weight of the rubber-based polymer (A).

アクリル系粘着剤(粘着剤組成物)のアクリル系ポリマーは、代表的には、アルキル(メタ)アクリレートを主成分として含有し、目的に応じた共重合成分として、芳香環含有(メタ)アクリレート、アミド基含有モノマー、カルボキシル基含有モノマーおよび/またはヒドロキシル基含有モノマーを含有し得る。本明細書において「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを意味する。アルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。芳香環含有(メタ)アクリレートは、その構造中に芳香環構造を含み、かつ(メタ)アクリロイル基を含む化合物である。芳香環としては、ベンゼン環、ナフタレン環、またはビフェニル環が挙げられる。芳香環含有(メタ)アクリレートは、耐久性(特に、透明導電層に対する耐久性)を満足し、かつ周辺部の白ヌケによる表示ムラを改善することができる。アミド基含有モノマーは、その構造中にアミド基を含み、かつ(メタ)アクリロイル基、ビニル基等の重合性不飽和二重結合を含む化合物である。カルボキシル基含有モノマーは、その構造中にカルボキシル基を含み、かつ(メタ)アクリロイル基、ビニル基等の重合性不飽和二重結合を含む化合物である。ヒドロキシル基含有モノマーは、その構造中にヒドロキシル基を含み、かつ(メタ)アクリロイル基、ビニル基等の重合性不飽和二重結合を含む化合物である。アクリル系粘着剤の詳細は、例えば特開2015-199942号公報に記載されており、当該公報の記載は本明細書に参考として援用される。 Acrylic polymers of acrylic pressure-sensitive adhesives (tacket composition) typically contain an alkyl (meth) acrylate as a main component, and as a copolymerization component according to the purpose, an aromatic ring-containing (meth) acrylate, It may contain an amide group-containing monomer, a carboxyl group-containing monomer and / or a hydroxyl group-containing monomer. As used herein, the term "(meth) acrylate" means acrylate and / or methacrylate. Examples of the alkyl (meth) acrylate include linear or branched alkyl groups having 1 to 18 carbon atoms. An aromatic ring-containing (meth) acrylate is a compound having an aromatic ring structure in its structure and containing a (meth) acryloyl group. Examples of the aromatic ring include a benzene ring, a naphthalene ring, and a biphenyl ring. The aromatic ring-containing (meth) acrylate can satisfy durability (particularly, durability against a transparent conductive layer) and can improve display unevenness due to white spots in the peripheral portion. The amide group-containing monomer is a compound containing an amide group in its structure and containing a polymerizable unsaturated double bond such as a (meth) acryloyl group and a vinyl group. The carboxyl group-containing monomer is a compound containing a carboxyl group in its structure and containing a polymerizable unsaturated double bond such as a (meth) acryloyl group and a vinyl group. The hydroxyl group-containing monomer is a compound containing a hydroxyl group in its structure and containing a polymerizable unsaturated double bond such as a (meth) acryloyl group and a vinyl group. Details of the acrylic pressure-sensitive adhesive are described in, for example, Japanese Patent Application Laid-Open No. 2015-199942, and the description of the publication is incorporated herein by reference.

マトリックスが樹脂フィルムである場合、樹脂フィルムを構成する樹脂としては、任意の適切な樹脂を用いることができる。具体的には、樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよく、活性エネルギー線硬化性樹脂であってもよい。活性エネルギー線硬化性樹脂としては、電子線硬化型樹脂、紫外線硬化型樹脂、可視光線硬化型樹脂が挙げられる。樹脂の具体例としては、エポキシ、(メタ)アクリレート(例えば、メチルメタクリレート、ブチルアクリレート)、ノルボルネン、ポリエチレン、ポリ(ビニルブチラール)、ポリ(ビニルアセテート)、ポリ尿素、ポリウレタン、アミノシリコーン(AMS)、ポリフェニルメチルシロキサン、ポリフェニルアルキルシロキサン、ポリジフェニルシロキサン、ポリジアルキルシロキサン、シルセスキオキサン、フッ化シリコーン、ビニルおよび水素化物置換シリコーン、スチレン系ポリマー(例えば、ポリスチレン、アミノポリスチレン(APS)、ポリ(アクリルニトリルエチレンスチレン)(AES))、二官能性モノマーと架橋したポリマー(例えば、ジビニルベンゼン)、ポリエステル系ポリマー(例えば、ポリエチレンテレフタレート)、セルロース系ポリマー(例えば、トリアセチルセルロース)、塩化ビニル系ポリマー、アミド系ポリマー、イミド系ポリマー、ビニルアルコール系ポリマー、エポキシ系ポリマー、シリコーン系ポリマー、アクリルウレタン系ポリマーが挙げられる。これらは、単独で用いてもよく、組み合わせて(例えば、ブレンド、共重合)用いてもよい。これらの樹脂は膜を形成後に延伸、加熱、加圧といった処理を施してもよい。好ましくは、熱硬化性樹脂または紫外線硬化型樹脂であり、より好ましくは熱硬化性樹脂である。本発明の光学部材をロールトゥロールにより製造する場合に、好適に適用することができるからである。 When the matrix is a resin film, any suitable resin can be used as the resin constituting the resin film. Specifically, the resin may be a thermoplastic resin, a thermosetting resin, or an active energy ray-curable resin. Examples of the active energy ray-curable resin include an electron beam curable resin, an ultraviolet curable resin, and a visible light curable resin. Specific examples of the resin include epoxy, (meth) acrylate (eg, methyl methacrylate, butyl acrylate), norbornene, polyethylene, poly (vinyl butyral), poly (vinyl acetate), polyurea, polyurethane, aminosilicone (AMS), and the like. Polyphenylmethylsiloxane, polyphenylalkylsiloxane, polydiphenylsiloxane, polydialkylsiloxane, silsesquioxane, fluorinated silicones, vinyl and hydride substituted silicones, styrene-based polymers (eg, polystyrene, aminopolystyrene (APS), poly (eg, polystyrene, aminopolystyrene (APS), poly) Acrylic nitrile ethylene styrene) (AES)), polymers crosslinked with bifunctional monomers (eg, divinylbenzene), polyester-based polymers (eg, polyethylene terephthalate), cellulose-based polymers (eg, triacetyl cellulose), vinyl chloride-based polymers. , Amid-based polymer, imide-based polymer, vinyl alcohol-based polymer, epoxy-based polymer, silicone-based polymer, acrylic urethane-based polymer. These may be used alone or in combination (eg, blend, copolymer). These resins may be subjected to treatments such as stretching, heating, and pressurization after forming the film. A thermosetting resin or an ultraviolet curable resin is preferable, and a thermosetting resin is more preferable. This is because it can be suitably applied when the optical member of the present invention is manufactured by roll-to-roll.

D.屈折率調整層
屈折率調整層の屈折率は、1.2以下であり、好ましくは1.15以下であり、より好ましくは1.01~1.1である。このような範囲であれば、発光層から出射する光の利用効率を高め、かつ、外光反射を抑制することができる。
D. Refractive index adjusting layer The refractive index of the refractive index adjusting layer is 1.2 or less, preferably 1.15 or less, and more preferably 1.01 to 1.1. Within such a range, it is possible to improve the utilization efficiency of the light emitted from the light emitting layer and suppress the reflection of external light.

屈折率調整層は、代表的には、内部に空隙を有する。屈折率調整層の空隙率は、任意の適切な値を取り得る。上記空隙率は、例えば5%~99%であり、好ましくは25%~95%である。空隙率が上記範囲内であることにより、屈折率調整層の屈折率を充分低くすることができ、かつ高い機械的強度を得ることができる。 The refractive index adjusting layer typically has voids inside. The porosity of the refractive index adjusting layer can be any appropriate value. The porosity is, for example, 5% to 99%, preferably 25% to 95%. When the porosity is within the above range, the refractive index of the refractive index adjusting layer can be sufficiently lowered, and high mechanical strength can be obtained.

上記内部に空隙を有する屈折率調整層としては、例えば、粒子状、繊維状、平板状の少なくとも一つの形状を有する構造からなっていても良い。粒子状を形成する構造体(構成単位)は、実粒子でも中空粒子でもよく、具体的にはシリコーン粒子や微細孔を有するシリコーン粒子、シリカ中空ナノ粒子やシリカ中空ナノバルーンなどが挙げられる。繊維状の構成単位は、例えば、直径がナノサイズのナノファイバーであり、具体的にはセルロースナノファイバーやアルミナナノファイバー等が挙げられる。平板状の構成単位は、例えば、ナノクレイが挙げられ、具体的にはナノサイズのベントナイト(例えばクニピアF[商品名])などが挙げられる。また、本発明の空隙構造体において、前記微細な空隙構造を形成する単一もしくは一種類または複数種類からなる構成単位同士は、触媒作用を介して、例えば、直接的または間接的に化学的に結合している部分を含んでいる。なお、本発明において、構成単位同士が「間接的に結合している」とは、構成単位量以下の少量のバインダー成分を仲介して構成単位同士が結合していることを指す。構成単位同士が「直接的に結合している」とは、構成単位同士が、バインダー成分等を介さずに直接結合していることを指す。 The refractive index adjusting layer having voids inside may have, for example, a structure having at least one particle-like, fibrous-like, or flat plate-like shape. The structure (constituent unit) that forms particles may be real particles or hollow particles, and specific examples thereof include silicone particles, silicone particles having fine pores, silica hollow nanoparticles, and silica hollow nanoparticles. The fibrous structural unit is, for example, nanofibers having a nano-sized diameter, and specific examples thereof include cellulose nanofibers and alumina nanofibers. Examples of the flat plate-shaped structural unit include nanoclay, and specific examples thereof include nano-sized bentonite (for example, Kunipia F [trade name]). Further, in the void structure of the present invention, the single, one or more structural units forming the fine void structure are chemically, for example, directly or indirectly, through catalytic action. Includes connected parts. In the present invention, "indirectly bound" to each other means that the constituent units are bound to each other via a small amount of binder component equal to or less than the amount of the constituent units. The phrase "directly bonded" to each other means that the constituent units are directly bonded to each other without the intervention of a binder component or the like.

屈折率調整層を構成する材料としては、任意の適切な材料を採用し得る。上記材料としては、例えば、国際公開第2004/113966号パンフレット、特開2013-254183号公報、および特開2012-189802号公報に記載の材料を採用し得る。具体的には、例えば、シリカ系化合物;加水分解性シラン類、ならびにその部分加水分解物および脱水縮合物;有機ポリマー;シラノール基を含有するケイ素化合物;ケイ酸塩を酸やイオン交換樹脂に接触させることにより得られる活性シリカ;重合性モノマー(例えば、(メタ)アクリル系モノマー、およびスチレン系モノマー);硬化性樹脂(例えば、(メタ)アクリル系樹脂、フッ素含有樹脂、およびウレタン樹脂);およびこれらの組み合わせが挙げられる。 Any suitable material may be adopted as the material constituting the refractive index adjusting layer. As the material, for example, the materials described in International Publication No. 2004/113966, Japanese Patent Application Laid-Open No. 2013-254183, and Japanese Patent Application Laid-Open No. 2012-189802 can be adopted. Specifically, for example, silica-based compounds; hydrolyzable silanes and their partial hydrolysates and dehydration condensates; organic polymers; silicon compounds containing silanol groups; silicates in contact with acids and ion exchange resins. Active silica obtained by subjecting to; polymerizable monomers (eg, (meth) acrylic monomers and styrene monomers); curable resins (eg, (meth) acrylic resins, fluorine-containing resins, and urethane resins); These combinations can be mentioned.

上記有機ポリマーとしては、例えば、ポリオレフィン類(例えば、ポリエチレン、およびポリプロピレン)、ポリウレタン類、フッ素含有ポリマー(例えば、フッ素含有モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体)、ポリエステル類(例えば、ポリ(メタ)アクリル酸誘導体(本明細書では(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を意味し、「(メタ)」は、全てこのような意味で用いるものとする。))、ポリエーテル類、ポリアミド類、ポリイミド類、ポリ尿素類、およびポリカーボネート類が挙げられる。 Examples of the organic polymer include polyolefins (for example, polyethylene and polypropylene), polyurethanes, and fluorine-containing polymers (for example, a fluorine-containing monomer unit and a fluorine-containing copolymer having a constituent unit for imparting cross-linking reactivity as constituents). Polymers), polyesters (eg, poly (meth) acrylic acid derivatives (here, (meth) acrylic acid means acrylic acid and methacrylic acid, and "(meth)" all have such meanings. )), Polyethers, polyamides, polyimides, polyureas, and polycarbonates.

上記材料は、好ましくは、シリカ系化合物;加水分解性シラン類、ならびにその部分加水分解物および脱水縮合物;を含む。 The material preferably contains a silica-based compound; hydrolyzable silanes, as well as partial hydrolysates and dehydration condensates thereof.

上記シリカ系化合物としては、例えば、SiO(無水ケイ酸);SiOと、NaO-B(ホウケイ酸)、Al(アルミナ)、B、TiO、ZrO、SnO、Ce、P、Sb、MoO、ZnO、WO、TiO-Al、TiO-ZrO、In-SnO、およびSb-SnOからなる群より選択される少なくとも1つの化合物と、を含む化合物(上記「-」は、複合酸化物であることを示す。);が挙げられる。 Examples of the silica-based compound include SiO 2 (silicic anhydride); SiO 2 and Na 2 O-B 2 O 3 (borosilicate), Al 2 O 3 (alumina), B 2 O 3 , TiO 2 , and the like. ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3 , TiO 2 -Al 2 O 3 , TiO 2 -ZrO 2 , In 2 O 3 -SnO 2 and a compound containing at least one compound selected from the group consisting of Sb 2 O 3 -SnO 2 (the above-mentioned "-" indicates a composite oxide);

上記加水分解性シラン類としては、例えば、置換基(例えば、フッ素)を有していてもよいアルキル基を含有する加水分解性シラン類が挙げられる。上記加水分解性シラン類、ならびにその部分加水分解物および脱水縮合物は、好ましくは、アルコキシシラン、およびシルセスキオキサンである。 Examples of the hydrolyzable silanes include hydrolyzable silanes containing an alkyl group which may have a substituent (for example, fluorine). The hydrolyzable silanes and their partially hydrolyzed and dehydrated condensates are preferably alkoxysilanes and silsesquioxane.

アルコキシシランはモノマーでも、オリゴマーでも良い。アルコキシシランモノマーはアルコキシル基を3つ以上有するのが好ましい。アルコキシシランモノマーとしては、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラプロポキシシラン、ジエトキシジメトキシシラン、ジメチルジメトキシシラン、およびジメチルジエトキシシランが挙げられる。アルコキシシランオリゴマーとしては、上記モノマーの加水分解及び重縮合により得られる重縮合物が好ましい。上記材料としてアルコキシシランを用いることにより、優れた均一性を有する屈折率調整層が得られる。 The alkoxysilane may be a monomer or an oligomer. The alkoxysilane monomer preferably has three or more alkoxyl groups. Examples of the alkoxysilane monomer include methyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetrapropoxysilane, diethoxydimethoxysilane, dimethyldimethoxysilane, and dimethyldi. Ethoxysilane is mentioned. As the alkoxysilane oligomer, a polycondensate obtained by hydrolysis and polycondensation of the above-mentioned monomer is preferable. By using alkoxysilane as the above material, a refractive index adjusting layer having excellent uniformity can be obtained.

シルセスキオキサンは、一般式RSiO1.5(ただしRは有機官能基を示す。)により表されるネットワーク状ポリシロキサンの総称である。Rとしては、例えば、アルキル基(直鎖でも分岐鎖でも良く、炭素数1~6である。)、フェニル基、およびアルコキシ基(例えば、メトキシ基、およびエトキシ基)が挙げられる。シルセスキオキサンの構造としては、例えば、ラダー型、および籠型が挙げられる。上記材料としてシルセスキオキサンを用いることにより、優れた均一性、耐候性、透明性、および硬度を有する屈折率調整層が得られる。 Sylsesquioxane is a general term for networked polysiloxanes represented by the general formula RSiO 1.5 (where R represents an organic functional group). Examples of R include an alkyl group (which may be a straight chain or a branched chain and have 1 to 6 carbon atoms), a phenyl group, and an alkoxy group (for example, a methoxy group and an ethoxy group). Examples of the structure of silsesquioxane include a ladder type and a cage type. By using silsesquioxane as the above material, a refractive index adjusting layer having excellent uniformity, weather resistance, transparency, and hardness can be obtained.

上記粒子としては、任意の適切な粒子を採用し得る。上記粒子は、代表的には、シリカ系化合物からなる。 Any suitable particles may be adopted as the particles. The particles are typically made of a silica-based compound.

シリカ粒子の形状は、例えば透過電子顕微鏡で観察することによって確認できる。上記粒子の平均粒子径は、例えば5nm~200nmであり、好ましくは10nm~200nmである。上記構成を有することにより、充分に屈折率が低い屈折率調整層を得ることができ、かつ屈折率調整層の透明性を維持することができる。なお、本明細書では、平均粒子径とは、窒素吸着法(BET法)により測定された比表面積(m/g)から、平均粒子径=(2720/比表面積)の式によって与えられた値を意味するものとする(特開平1-317115号参照)。 The shape of the silica particles can be confirmed, for example, by observing with a transmission electron microscope. The average particle size of the particles is, for example, 5 nm to 200 nm, preferably 10 nm to 200 nm. By having the above structure, it is possible to obtain a refractive index adjusting layer having a sufficiently low refractive index, and it is possible to maintain the transparency of the refractive index adjusting layer. In the present specification, the average particle size is given by the formula of average particle size = (2720 / specific surface area) from the specific surface area (m 2 / g) measured by the nitrogen adsorption method (BET method). It shall mean a value (see Japanese Patent Application Laid-Open No. 1-3171115).

屈折率調整層を得る方法としては、例えば、特開2010-189212号公報、特開2008-040171号公報、特開2006-011175号公報、国際公開第2004/113966号パンフレット、およびそれらの参考文献に記載された方法が挙げられる。具体的には、シリカ系化合物;加水分解性シラン類、ならびにその部分加水分解物および脱水縮合物の少なくともいずれか1つを加水分解及び重縮合させる方法、多孔質粒子および/または中空微粒子を用いる方法、ならびにスプリングバック現象を利用してエアロゲル層を生成する方法、ゾルゲルにより得られたゲルを粉砕し、かつ上記粉砕液中の微細孔粒子同士を触媒等で化学的に結合させた粉砕ゲルを用いる方法、等が挙げられる。ただし、屈折率調整層は、この製造方法に限定されず、どのような製造方法により製造しても良い。 Examples of the method for obtaining the refractive index adjusting layer include JP-A-2010-189212, JP-A-2008-040171, JP-A-2006-01175, Pamphlet International Publication No. 2004/113966, and their references. The method described in is mentioned. Specifically, a silica-based compound; a method for hydrolyzing and polycondensing at least one of hydrolyzable silanes and a partial hydrolyzate and dehydration condensate thereof, porous particles and / or hollow fine particles is used. A method of forming an airgel layer using a springback phenomenon, a pulverized gel obtained by pulverizing a gel obtained by a sol-gel and chemically bonding fine pore particles in the pulverized solution with a catalyst or the like. The method to be used, etc. may be mentioned. However, the refractive index adjusting layer is not limited to this manufacturing method, and may be manufactured by any manufacturing method.

屈折率調整層は、任意の適切な接着層(例えば、接着剤層、粘着剤層:図示せず)を介して発光層および偏光板に貼り合わせられる。屈折率調整層が粘着剤で構成される場合には、接着層を省略することができる。 The refractive index adjusting layer is attached to the light emitting layer and the polarizing plate via any suitable adhesive layer (for example, an adhesive layer, an adhesive layer: not shown). When the refractive index adjusting layer is composed of an adhesive, the adhesive layer can be omitted.

屈折率調整層のヘイズは、例えば0.1%~30%であり、好ましくは0.2%~10%である。 The haze of the refractive index adjusting layer is, for example, 0.1% to 30%, preferably 0.2% to 10%.

屈折率調整層の機械強度は、例えば、ベンコット(登録商標)による耐擦傷性が60%~100%であることが望ましい。 As for the mechanical strength of the refractive index adjusting layer, for example, it is desirable that the scratch resistance by Bencot (registered trademark) is 60% to 100%.

屈折率調整層と発光層との間の投錨力は特に制限されないが、例えば0.01N/25mm以上であり、好ましくは0.1N/25mm以上であり、より好ましくは1N/25mm以上である。なお、上記機械強度や投錨力を上げるために、塗膜形成前後や任意の適切な接着層、もしくは他部材との貼り合わせ前後の工程にて、下塗り処理、加熱処理、加湿処理、UV処理、コロナ処理、プラズマ処理等を施しても良い。 The anchoring force between the refractive index adjusting layer and the light emitting layer is not particularly limited, but is, for example, 0.01 N / 25 mm or more, preferably 0.1 N / 25 mm or more, and more preferably 1 N / 25 mm or more. In order to increase the mechanical strength and anchoring force, undercoating treatment, heat treatment, humidification treatment, UV treatment, etc. Corona treatment, plasma treatment, or the like may be performed.

屈折率調整層の厚みは、好ましくは100nm~5000nmであり、より好ましくは200nm~4000nmであり、さらに好ましくは300nm~3000nmであり、特に好ましくは500nm~2000nmである。このような範囲であれば、可視光領域の光に対して光学的に十分機能を発現するとともに、優れた耐久性を有する屈折率調整層を実現できる。 The thickness of the refractive index adjusting layer is preferably 100 nm to 5000 nm, more preferably 200 nm to 4000 nm, further preferably 300 nm to 3000 nm, and particularly preferably 500 nm to 2000 nm. Within such a range, it is possible to realize a refractive index adjusting layer that optically exhibits sufficient functions for light in the visible light region and has excellent durability.

E.発光層
発光層は、代表的には、波長変換材料を含む。より詳細には、発光層は、マトリックスと該マトリックス中に分散された波長変換材料とを含み得る。
E. Light emitting layer The light emitting layer typically contains a wavelength conversion material. More specifically, the light emitting layer may include a matrix and wavelength conversion materials dispersed in the matrix.

E-1.マトリックス
マトリックスを構成する材料(以下、マトリックス材料とも称する)としては、任意の適切な材料を用いることができる。このような材料としては、樹脂、有機酸化物、無機酸化物が挙げられる。マトリックス材料は、好ましくは、低い酸素透過性および透湿性を有し、高い光安定性および化学的安定性を有し、所定の屈折率を有し、優れた透明性を有し、および/または、波長変換材料に対して優れた分散性を有する。マトリックスは、実用的には、樹脂フィルムまたは粘着剤で構成され得る。
E-1. Matrix As a material constituting the matrix (hereinafter, also referred to as a matrix material), any suitable material can be used. Examples of such materials include resins, organic oxides, and inorganic oxides. The matrix material preferably has low oxygen permeability and moisture permeability, high photostability and chemical stability, a predetermined index of refraction, excellent transparency, and / or. , Has excellent dispersibility for wavelength conversion materials. Practically, the matrix can be composed of a resin film or an adhesive.

E-1-1.樹脂フィルム
マトリックスが樹脂フィルムである場合、樹脂フィルムを構成する樹脂としては、任意の適切な樹脂を用いることができる。具体的には、樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよく、活性エネルギー線硬化性樹脂であってもよい。活性エネルギー線硬化性樹脂としては、電子線硬化型樹脂、紫外線硬化型樹脂、可視光線硬化型樹脂が挙げられる。樹脂の具体例としては、エポキシ、(メタ)アクリレート(例えば、メチルメタクリレート、ブチルアクリレート)、ノルボルネン、ポリエチレン、ポリ(ビニルブチラール)、ポリ(ビニルアセテート)、ポリ尿素、ポリウレタン、アミノシリコーン(AMS)、ポリフェニルメチルシロキサン、ポリフェニルアルキルシロキサン、ポリジフェニルシロキサン、ポリジアルキルシロキサン、シルセスキオキサン、フッ化シリコーン、ビニルおよび水素化物置換シリコーン、スチレン系ポリマー(例えば、ポリスチレン、アミノポリスチレン(APS)、ポリ(アクリルニトリルエチレンスチレン)(AES))、二官能性モノマーと架橋したポリマー(例えば、ジビニルベンゼン)、ポリエステル系ポリマー(例えば、ポリエチレンテレフタレート)、セルロース系ポリマー(例えば、トリアセチルセルロース)、塩化ビニル系ポリマー、アミド系ポリマー、イミド系ポリマー、ビニルアルコール系ポリマー、エポキシ系ポリマー、シリコーン系ポリマー、アクリルウレタン系ポリマーが挙げられる。これらは、単独で用いてもよく、組み合わせて(例えば、ブレンド、共重合)用いてもよい。これらの樹脂は膜を形成後に延伸、加熱、加圧といった処理を施してもよい。好ましくは、熱硬化性樹脂または紫外線硬化型樹脂であり、より好ましくは熱硬化性樹脂である。
E-1-1. When the resin film matrix is a resin film, any suitable resin can be used as the resin constituting the resin film. Specifically, the resin may be a thermoplastic resin, a thermosetting resin, or an active energy ray-curable resin. Examples of the active energy ray-curable resin include an electron beam curable resin, an ultraviolet curable resin, and a visible light curable resin. Specific examples of the resin include epoxy, (meth) acrylate (eg, methyl methacrylate, butyl acrylate), norbornene, polyethylene, poly (vinyl butyral), poly (vinyl acetate), polyurea, polyurethane, aminosilicone (AMS), and the like. Polyphenylmethylsiloxane, polyphenylalkylsiloxane, polydiphenylsiloxane, polydialkylsiloxane, silsesquioxane, fluorinated silicones, vinyl and hydride substituted silicones, styrene-based polymers (eg, polystyrene, aminopolystyrene (APS), poly (eg, polystyrene, aminopolystyrene (APS), poly) Acrylic nitrile ethylene styrene) (AES)), polymers crosslinked with bifunctional monomers (eg, divinylbenzene), polyester-based polymers (eg, polyethylene terephthalate), cellulose-based polymers (eg, triacetyl cellulose), vinyl chloride-based polymers. , Amid-based polymer, imide-based polymer, vinyl alcohol-based polymer, epoxy-based polymer, silicone-based polymer, acrylic urethane-based polymer. These may be used alone or in combination (eg, blend, copolymer). These resins may be subjected to treatments such as stretching, heating, and pressurization after forming the film. A thermosetting resin or an ultraviolet curable resin is preferable, and a thermosetting resin is more preferable.

E-1-2.粘着剤
マトリックスが粘着剤である場合、粘着剤としては、任意の適切な粘着剤を用いることができる。粘着剤は、好ましくは、透明性および光学的等方性を有する。粘着剤の具体例としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、エポキシ系粘着剤、セルロース系粘着剤が挙げられる。好ましくは、ゴム系粘着剤またはアクリル系粘着剤である。
E-1-2. When the pressure-sensitive adhesive matrix is a pressure-sensitive adhesive, any suitable pressure-sensitive adhesive can be used as the pressure-sensitive adhesive. The pressure-sensitive adhesive preferably has transparency and optical isotropic properties. Specific examples of the pressure-sensitive adhesive include rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, and cellulose-based pressure-sensitive adhesives. A rubber-based pressure-sensitive adhesive or an acrylic-based pressure-sensitive adhesive is preferable.

E-2.波長変換材料
波長変換材料は、発光層の波長変換特性を制御し得る。波長変換材料は、例えば量子ドットであってもよく蛍光体であってもよい。
E-2. Wavelength conversion material The wavelength conversion material can control the wavelength conversion characteristics of the light emitting layer. The wavelength conversion material may be, for example, a quantum dot or a phosphor.

発光層における波長変換材料の含有量(2種以上を用いる場合には合計の含有量)は、マトリックス材料(代表的には、樹脂または粘着剤固形分)100重量部に対して、好ましくは0.01重量部~50重量部、より好ましくは0.01重量部~30重量部である。波長変換材料の含有量がこのような範囲であれば、RGBすべての色相バランスに優れた画像表示装置を実現することができる。 The content of the wavelength conversion material in the light emitting layer (the total content when two or more kinds are used) is preferably 0 with respect to 100 parts by weight of the matrix material (typically, the solid content of the resin or the pressure-sensitive adhesive). It is 0.01 part by weight to 50 parts by weight, more preferably 0.01 part by weight to 30 parts by weight. When the content of the wavelength conversion material is within such a range, it is possible to realize an image display device having excellent hue balance in all RGB.

E-2-1.量子ドット
量子ドットの発光中心波長は、量子ドットの材料および/または組成、粒子サイズ、形状等により調整することができる。
E-2-1. Quantum dots The emission center wavelength of quantum dots can be adjusted by the material and / or composition, particle size, shape, etc. of the quantum dots.

量子ドットは、任意の適切な材料で構成され得る。量子ドットは、好ましくは無機材料、より好ましくは無機導体材料または無機半導体材料で構成され得る。半導体材料としては、例えば、II-VI族、III-V族、IV-VI族、およびIV族の半導体が挙げられる。具体例としては、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Al、(Al、Ga、In)(S、Se、Te)、AlCOが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。量子ドットは、p型ドーパントまたはn型ドーパントを含んでいてもよい。また、量子ドットはコアシェル構造を有していてもよい。当該コアシェル構造においては、シェルの周囲に目的に応じて任意の適切な機能層(単一層または複数層)が形成されていてもよく、シェル表面に表面処理および/または化学修飾がなされていてもよい。 Quantum dots can be made of any suitable material. The quantum dots may be preferably composed of an inorganic material, more preferably an inorganic conductor material or an inorganic semiconductor material. Examples of the semiconductor material include II-VI group, III-V group, IV-VI group, and IV group semiconductors. Specific examples include Si, Ge, Sn, Se, Te, B, C (including diamonds), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeSe, Se PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al, Ga, In) 2 (S, Se, Te) 3 , Al 2 CO can be mentioned. These may be used alone or in combination of two or more. Quantum dots may include p-type dopants or n-type dopants. Further, the quantum dots may have a core-shell structure. In the core-shell structure, any suitable functional layer (single layer or multiple layers) may be formed around the shell depending on the purpose, and the shell surface may be surface-treated and / or chemically modified. good.

量子ドットの形状としては、目的に応じて任意の適切な形状が採用され得る。具体例としては、真球状、燐片状、板状、楕円球状、不定形が挙げられる。 As the shape of the quantum dot, any appropriate shape can be adopted depending on the purpose. Specific examples include a true spherical shape, a flaky shape, a plate shape, an elliptical spherical shape, and an amorphous shape.

量子ドットのサイズは、所望の発光波長に応じて任意の適切なサイズが採用され得る。量子ドットのサイズは、好ましくは1nm~10nmであり、より好ましくは2nm~8nmである。量子ドットのサイズがこのような範囲であれば、緑色および赤色のそれぞれがシャープな発光を示し、高演色性を実現することができる。例えば、緑色光は量子ドットのサイズが7nm程度で発光し得、赤色光は3nm程度で発光し得る。なお、量子ドットのサイズは、量子ドットが例えば真球状である場合には平均粒径であり、それ以外の形状である場合には当該形状における最小軸に沿った寸法である。 As the size of the quantum dots, any appropriate size may be adopted depending on the desired emission wavelength. The size of the quantum dots is preferably 1 nm to 10 nm, more preferably 2 nm to 8 nm. When the size of the quantum dots is within such a range, each of green and red emits sharp light, and high color rendering properties can be realized. For example, green light can emit light when the size of the quantum dot is about 7 nm, and red light can emit light when the size of the quantum dot is about 3 nm. The size of the quantum dots is, for example, an average particle size when the quantum dots are spherical, and is a dimension along the minimum axis in the shape when the quantum dots have other shapes.

量子ドットの詳細は、例えば、特開2012-169271号公報、特開2015-102857号公報、特開2015-65158号公報、特表2013-544018号公報、特表2010-533976号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。量子ドットは、市販品を用いてもよい。 Details of the quantum dots are described in, for example, JP-A-2012-169271, JP-A-2015-102857, JP-A-2015-65158, JP-A-2013-544018, and JP-A-2010-533976. The description of these publications is incorporated herein by reference. Commercially available products may be used for the quantum dots.

E-2-2.蛍光体
蛍光体としては、目的に応じて所望の色の光を発光し得る任意の適切な蛍光体を用いることができる。具体例としては、赤色蛍光体、緑色蛍光体が挙げられる。
E-2-2. Fluorescent material As the fluorescent material, any suitable fluorescent material capable of emitting light of a desired color depending on the purpose can be used. Specific examples include a red fluorescent substance and a green fluorescent substance.

赤色蛍光体としては、例えば、Mn4+で活性化された複合フッ化物蛍光体が挙げられる。複合フッ化物蛍光体とは、少なくとも一つの配位中心(例えば、後述のM)を含有し、配位子として作用するフッ化物イオンに囲まれ、必要に応じて対イオン(例えば、後述のA)により電荷を補償される配位化合物をいう。その具体例としては、A[MF]:Mn4+、A[MF]:Mn4+、Zn[MF]:Mn4+、A[In]:Mn4+、A[M´F]:Mn4+、E[M´F]:Mn4+、A[ZrF]:Mn4+、Ba0.65Zr0.352.70:Mn4+が挙げられる。ここで、Aは、Li、Na、K、Rb、Cs、NHまたはその組み合わせである。Mは、Al、Ga、Inまたはその組み合わせである。M´は、Ge、Si、Sn、Ti、Zrまたはその組み合わせである。Eは、Mg、Ca、Sr、Ba、Znまたはその組み合わせである。配位中心における配位数が6である複合フッ化物蛍光体が好ましい。このような赤色蛍光体の詳細は、例えば特開2015-84327号公報に記載されている。当該公報の記載は、その全体が参考として本明細書に援用される。 Examples of the red phosphor include a complex fluoride phosphor activated with Mn 4+ . The complex fluoride phosphor contains at least one coordination center (for example, M described later), is surrounded by a fluoride ion acting as a ligand, and counterion (for example, A described later) as necessary. ) Refers to a coordination compound whose charge is compensated. Specific examples thereof include A 2 [MF 5 ]: Mn 4+ , A 3 [MF 6 ]: Mn 4+ , Zn 2 [MF 7 ]: Mn 4+ , A [In 2 F 7 ]: Mn 4+ , A 2 [. M'F 6 ]: Mn 4+ , E [M'F 6 ]: Mn 4+ , A 3 [ZrF 7 ]: Mn 4+ , Ba 0.65 Zr 0.35 F 2.70 : Mn 4+ . Here, A is Li, Na, K, Rb, Cs, NH 4 or a combination thereof. M is Al, Ga, In or a combination thereof. M'is Ge, Si, Sn, Ti, Zr or a combination thereof. E is Mg, Ca, Sr, Ba, Zn or a combination thereof. A composite fluoride phosphor having a coordination number of 6 at the coordination center is preferable. Details of such a red phosphor are described in, for example, Japanese Patent Application Laid-Open No. 2015-8427. The description of the publication is incorporated herein by reference in its entirety.

緑色蛍光体としては、例えば、β型Si結晶構造を有するサイアロンの固溶体を主成分として含む化合物が挙げられる。好ましくは、このようなサイアロン結晶中に含まれる酸素量を特定量(例えば、0.8質量%)以下とするような処理が行われる。このような処理を行うことにより、ピーク幅が狭い、シャープな光を発光する緑色蛍光体が得られ得る。このような緑色蛍光体の詳細は、例えば特開2013-28814号公報に記載されている。当該公報の記載は、その全体が参考として本明細書に援用される。 Examples of the green phosphor include a compound containing a solid solution of sialon having a β-type Si 3N 4 crystal structure as a main component. Preferably, the treatment is performed so that the amount of oxygen contained in such a sialon crystal is a specific amount (for example, 0.8% by mass) or less. By performing such a process, a green phosphor having a narrow peak width and emitting sharp light can be obtained. Details of such a green phosphor are described in, for example, Japanese Patent Application Laid-Open No. 2013-28814. The description of the publication is incorporated herein by reference in its entirety.

発光層は、単一層であってもよく、積層構造を有していてもよい。発光層が積層構造を有する場合には、それぞれの層は、代表的には異なる発光特性を有する波長変換材料を含み得る。 The light emitting layer may be a single layer or may have a laminated structure. When the light emitting layers have a laminated structure, each layer may typically contain wavelength conversion materials having different light emitting properties.

発光層の厚み(積層構造を有する場合には、その総厚み)は、好ましくは1μm~500μmであり、より好ましくは100μm~400μmである。発光層の厚みがこのような範囲であれば、変換効率および耐久性に優れ得る。発光層が積層構造を有する場合の各層の厚みは、好ましくは1μm~300μmであり、より好ましくは10μm~250μmである。 The thickness of the light emitting layer (in the case of having a laminated structure, the total thickness thereof) is preferably 1 μm to 500 μm, and more preferably 100 μm to 400 μm. When the thickness of the light emitting layer is within such a range, conversion efficiency and durability can be excellent. When the light emitting layer has a laminated structure, the thickness of each layer is preferably 1 μm to 300 μm, more preferably 10 μm to 250 μm.

発光層の可視光線反射率は、好ましくは20%以上であり、より好ましくは25%以上である。本発明においては、屈折率調整層を備えることにより、反射率の高い発光層を用いても、外光反射が少ない画像表示装置を得ることができる。該可視光反射率の上限は、例えば、90%である。 The visible light reflectance of the light emitting layer is preferably 20% or more, more preferably 25% or more. In the present invention, by providing the refractive index adjusting layer, it is possible to obtain an image display device having less external light reflection even if a light emitting layer having a high reflectance is used. The upper limit of the visible light reflectance is, for example, 90%.

F.その他の部材
F-1.バックライト
上記バックライトが備える光源としては、例えば、冷陰極管光源(CCFL)、LED光源等が挙げられる。1つの実施形態においては、上記バックライトは、LED光源を備える。LED光源を用いれば、視野角特性に優れる画像表示装置を得ることができる。1つの実施形態においては、青色の光を発する光源(好ましくLED光源)が用いられる。
F. Other members F-1. Backlight Examples of the light source included in the backlight include a cold cathode fluorescent lamp (CCFL), an LED light source, and the like. In one embodiment, the backlight comprises an LED light source. If an LED light source is used, an image display device having excellent viewing angle characteristics can be obtained. In one embodiment, a light source that emits blue light (preferably an LED light source) is used.

上記バックライトは、直下型方式であってもよく、エッジライト方式であってもよい。 The backlight may be a direct type type or an edge light type.

上記バックライトは、光源の他、必要に応じて、導光板、拡散板、プリズムシート等のその他の部材をさらに備え得る。 In addition to the light source, the backlight may further include other members such as a light guide plate, a diffuser plate, and a prism sheet, if necessary.

F-2.液晶パネル
上記液晶パネル110は、代表的には、図1に示すように、液晶セル40と、該液晶セル40の視認側に配置された偏光板(視認側偏光板)10と、該液晶セルの背面側に配置された背面側偏光板50とを備える。1つの実施形態においては、偏光板(視認側偏光板)10および背面側偏光板50は、それぞれの吸収軸が実質的に直交または平行となるようにして配置され得る。
F-2. Liquid crystal panel The liquid crystal panel 110 is typically a liquid crystal cell 40, a polarizing plate (viewing side polarizing plate) 10 arranged on the viewing side of the liquid crystal cell 40, and the liquid crystal cell. It is provided with a back side polarizing plate 50 arranged on the back side of the above. In one embodiment, the polarizing plate (viewing side polarizing plate) 10 and the back surface side polarizing plate 50 may be arranged so that their respective absorption axes are substantially orthogonal or parallel to each other.

液晶セル40は、一対の基板41、41’と、当該基板間に挟持された表示媒体としての液晶層42とを有する。一般的な構成においては、一方の基板41に、カラーフィルター(発光層30)及びブラックマトリクスが設けられており、他方の基板41’に、液晶の電気光学特性を制御するスイッチング素子と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極及び対向電極とが設けられている。上記基板の間隔(セルギャップ)は、スペーサー等によって制御できる。上記基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜等を設けることができる。 The liquid crystal cell 40 has a pair of substrates 41, 41'and a liquid crystal layer 42 as a display medium sandwiched between the substrates. In a general configuration, one substrate 41 is provided with a color filter (light emitting layer 30) and a black matrix, and the other substrate 41'is provided with a switching element for controlling the electro-optical characteristics of the liquid crystal and this switching. A scanning line that gives a gate signal to the element, a signal line that gives a source signal, and a pixel electrode and a counter electrode are provided. The spacing (cell gap) between the substrates can be controlled by a spacer or the like. For example, an alignment film made of polyimide can be provided on the side of the substrate in contact with the liquid crystal layer.

1つの実施形態においては、液晶層は、電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を含む。このような液晶層(結果として、液晶セル)は、代表的には、nz>nx=nyの3次元屈折率を示す。電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を用いる駆動モードとしては、例えば、バーティカル・アライメント(VA)モードが挙げられる。VAモードは、マルチドメインVA(MVA)モードを包含する。 In one embodiment, the liquid crystal layer comprises liquid crystal molecules oriented in a homeotropic arrangement in the absence of an electric field. Such a liquid crystal layer (as a result, a liquid crystal cell) typically exhibits a three-dimensional refractive index of nz> nx = ny. As a drive mode using liquid crystal molecules oriented in a homeotropic arrangement in the absence of an electric field, for example, a vertical alignment (VA) mode can be mentioned. The VA mode includes a multi-domain VA (MVA) mode.

別の実施形態においては、液晶層は、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む。このような液晶層(結果として、液晶セル)は、代表的には、nx>ny=nzの3次元屈折率を示す。なお、本明細書において、ny=nzとは、nyとnzが完全に同一である場合だけでなく、nyとnzとが実質的に同一である場合も包含する。このような3次元屈折率を示す液晶層を用いる駆動モードの代表例としては、インプレーンスイッチング(IPS)モード、フリンジフィールドスイッチング(FFS)モード等が挙げられる。なお、上記のIPSモードは、V字型電極又はジグザグ電極等を採用した、スーパー・インプレーンスイッチング(S-IPS)モードや、アドバンスド・スーパー・インプレーンスイッチング(AS-IPS)モードを包含する。また、上記のFFSモードは、V字型電極又はジグザグ電極等を採用した、アドバンスド・フリンジフィールドスイッチング(A-FFS)モードや、ウルトラ・フリンジフィールドスイッチング(U-FFS)モードを包含する。 In another embodiment, the liquid crystal layer comprises liquid crystal molecules oriented in a homogeneous arrangement in the absence of an electric field. Such a liquid crystal layer (as a result, a liquid crystal cell) typically exhibits a three-dimensional refractive index of nx> ny = nz. In addition, in this specification, ny = nz includes not only the case where ny and nz are completely the same, but also the case where ny and nz are substantially the same. Typical examples of the drive mode using the liquid crystal layer exhibiting such a three-dimensional refractive index include an in-plane switching (IPS) mode, a fringe field switching (FFS) mode, and the like. The above IPS mode includes a super inplane switching (S-IPS) mode and an advanced super inplane switching (AS-IPS) mode in which a V-shaped electrode, a zigzag electrode, or the like is adopted. Further, the FFS mode described above includes an advanced fringe field switching (A-FFS) mode and an ultra fringe field switching (U-FFS) mode in which a V-shaped electrode, a zigzag electrode, or the like is adopted.

上記背面側偏光板としては、任意の適切な偏光板が用いられ得る。 Any suitable polarizing plate can be used as the back-side polarizing plate.

G.光学積層体
本発明の別の局面によれば、光学積層体が提供される。該光学積層体は、偏光板と、屈折率調整層とを備える。偏光板としては、上記B項で説明した偏光板が用いられ得る。該偏光板は、B項で説明したとおり、円偏光板として機能し得る偏光板であってもよい。屈折率調整層としては、上記D項で説明した屈折率調整層が用いられる。本発明の光学積層体は、発光層を備える光学部材に積層して貼り合せて用いられる。発光層としては、入射光の一部の波長を変換して発光し得る層であり、具体的には、上記E項で説明した発光層が用いられ得る。本発明の光学積層体は、任意の適切な粘着剤または接着剤を介して、発光層に貼り合わせて用いることができる。
G. Optical Laminates According to another aspect of the invention, optical laminates are provided. The optical laminate includes a polarizing plate and a refractive index adjusting layer. As the polarizing plate, the polarizing plate described in Section B above can be used. As described in Section B, the polarizing plate may be a polarizing plate that can function as a circular polarizing plate. As the refractive index adjusting layer, the refractive index adjusting layer described in Section D above is used. The optical laminate of the present invention is used by laminating and laminating it on an optical member provided with a light emitting layer. The light emitting layer is a layer capable of converting a part of the wavelength of the incident light to emit light, and specifically, the light emitting layer described in the above item E can be used. The optical laminate of the present invention can be used by being bonded to a light emitting layer via any suitable adhesive or adhesive.

1つの実施形態においては、上記光学積層体は、着色層をさらに備え得る。好ましくは、着色層は、屈折率調整層の偏光板とは反対側に配置される。着色層は、上記偏光板がλ/4板を有して円偏光板として機能する際に(詳細は後述)、好適に用いられる。 In one embodiment, the optical laminate may further comprise a colored layer. Preferably, the colored layer is arranged on the opposite side of the polarizing plate of the refractive index adjusting layer. The colored layer is preferably used when the polarizing plate has a λ / 4 plate and functions as a circular polarizing plate (details will be described later).

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method for each characteristic is as follows.

[評価]
(1)屈折率調整層の屈折率
アクリルフィルムに屈折率調整層を形成した後に、50mm×50mmのサイズにカットし、これを粘着層を介してガラス板(厚み:3mm)の表面に貼合した。上記ガラス板の裏面中央部(直径20mm程度)を黒マジックで塗りつぶして、該ガラス板の裏面で反射しないサンプルとした。エリプソメーター(J.A.Woollam Japan社製:VASE)に上記サンプルをセットし、500nmの波長、入射角50~80度の条件で、屈折率を測定した。
(2)反射率
実施例および比較例で得られた積層体の全光線反射率(偏光板側から光を入射させた際の反射率)を、コニカミノルタ社製の分光測色計CM-2600dを用いて、測定した。
(3)正面輝度
実施例および比較例で得られた積層体のそれぞれを、偏光板が上側となるようにして、青色LEDの均一発光照明(アイテックシステム社製:型番:TMN150×180-22BD-4)の上に置き、偏光板側から、輝度計(コニカミノルタ社製、商品名「SR-UL1」)にて輝度を測定した。なお、均一発光照明の発光輝度は1300cd/mとした。
[evaluation]
(1) Refractive index of the refractive index adjusting layer After forming the refractive index adjusting layer on the acrylic film, it is cut into a size of 50 mm × 50 mm and bonded to the surface of a glass plate (thickness: 3 mm) via an adhesive layer. did. The central portion (about 20 mm in diameter) of the back surface of the glass plate was painted with black magic to prepare a sample that does not reflect on the back surface of the glass plate. The above sample was set in an ellipsometer (manufactured by JA Woollam Japan: VASE), and the refractive index was measured under the conditions of a wavelength of 500 nm and an incident angle of 50 to 80 degrees.
(2) Reflectance
The total light reflectance (reflectance when light is incident from the polarizing plate side) of the laminates obtained in Examples and Comparative Examples is measured using a spectrophotometer CM-2600d manufactured by Konica Minolta. did.
(3) Front Luminance Uniform light emission illumination of blue LED (manufactured by Aitec System Co., Ltd .: model number: TMN150 × 180-22BD-) with the polarizing plate on the upper side of each of the laminates obtained in Examples and Comparative Examples. It was placed on 4), and the luminance was measured from the polarizing plate side with a luminance meter (manufactured by Konica Minolta, trade name "SR-UL1"). The emission brightness of the uniform emission illumination was set to 1300 cd / m 2 .

[製造例1]偏光板の作成
ポリビニルアルコールを主成分とする高分子フィルム(クラレ社製、商品名「9P75R」、厚み:75μm、平均重合度:2,400、ケン化度99.9モル%)を水浴中に1分間浸漬させつつ搬送方向に1.2倍に延伸した後、ヨウ素濃度0.3重量%の水溶液中で1分間浸漬することで、染色しながら、搬送方向に、全く延伸していないフィルム(原長)を基準として3倍に延伸した。次いで、この延伸フィルムを、ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%の水溶液中に浸漬しながら、搬送方向に、原長基準で6倍までさらに延伸し、70℃で2分間乾燥することにより、偏光子を得た。
一方、トリアセチルセルロース(TAC)フィルム(コニカミノルタ社製、製品名「KC4UYW」、厚み:40μm)の片面に、アルミナコロイド含有接着剤を塗布し、これを上記で得られた偏光子の片面に両者の搬送方向が平行となるようにロール・トゥー・ロールで積層した。なお、アルミナコロイド含有接着剤は、アセトアセチル基を有するポリビニルアルコール系樹脂(平均重合度1200、ケン化度98.5モル%、アセトアセチル化度5モル%)100重量部に対して、メチロールメラミン50重量部を純水に溶解し、固形分濃度3.7重量%の水溶液を調製し、この水溶液100重量部に対して、正電荷を有するアルミナコロイド(平均粒子径15nm)を固形分濃度10重量%で含有する水溶液18重量部を加えて調製した。続いて、偏光子の反対側に同様のアルミナコロイド含有接着剤を塗布し、けん化処理した40μm厚のアクリル樹脂フィルムを貼合せ、偏光板を作製した。
[Production Example 1] Preparation of polarizing plate A polymer film containing polyvinyl alcohol as a main component (manufactured by Kuraray, trade name "9P75R", thickness: 75 μm, average degree of polymerization: 2,400, degree of saponification: 99.9 mol% ) Is immersed in a water bath for 1 minute and stretched 1.2 times in the transport direction, and then immersed in an aqueous solution having an iodine concentration of 0.3% by weight for 1 minute to be completely stretched in the transport direction while being dyed. It was stretched three times based on the uncoated film (original length). Next, while immersing this stretched film in an aqueous solution having a boric acid concentration of 4% by weight and a potassium iodide concentration of 5% by weight, the stretched film was further stretched up to 6 times in the transport direction based on the original length, and dried at 70 ° C. for 2 minutes. By doing so, a substituent was obtained.
On the other hand, an alumina colloid-containing adhesive was applied to one side of a triacetyl cellulose (TAC) film (manufactured by Konica Minolta, product name "KC4UYW", thickness: 40 μm), and this was applied to one side of the above-mentioned polarizing element. They were laminated by roll-to-roll so that the transport directions of both were parallel. The alumina colloid-containing adhesive is methylol melamine based on 100 parts by weight of a polyvinyl alcohol-based resin having an acetoacetyl group (average polymerization degree 1200, saponification degree 98.5 mol%, acetoacetylation degree 5 mol%). 50 parts by weight is dissolved in pure water to prepare an aqueous solution having a solid content concentration of 3.7% by weight, and an alumina colloid having a positive charge (average particle diameter of 15 nm) is added to 100 parts by weight of this aqueous solution to have a solid content concentration of 10. It was prepared by adding 18 parts by weight of an aqueous solution contained in% by weight. Subsequently, a similar alumina colloid-containing adhesive was applied to the opposite side of the polarizing element, and a saponified 40 μm-thick acrylic resin film was attached to prepare a polarizing plate.

[製造例2]屈折率調整層形成用塗工液の調製
(1)ケイ素化合物のゲル化
2.2gのDMSOに、ケイ素化合物の前駆体であるMTMSを0.95g溶解させて混合液Aを調製した。この混合液Aに、0.01mol/Lのシュウ酸水溶液を0.5g添加し、室温で30分撹拌を行うことでMTMSを加水分解して、トリス(ヒドロキシ)メチルシランを含む混合液Bを生成した。
5.5gのDMSOに、28重量%のアンモニア水0.38g、および純水0.2gを添加した後、さらに、上記混合液Bを追添し、室温で15分撹拌することで、トリス(ヒドロキシ)メチルシランのゲル化を行い、ゲル状ケイ素化合物を含む混合液Cを得た。
(2)熟成処理
上記のように調製したゲル状ケイ素化合物を含む混合液Cを、そのまま、40℃で20時間インキュベートして、熟成処理を行った。
(3)粉砕処理
つぎに、上記のように熟成処理したゲル状ケイ素化合物を、スパチュラを用いて数mm~数cmサイズの顆粒状に砕いた。次いで、混合液CにIPAを40g添加し、軽く撹拌した後、室温で6時間静置して、ゲル中の溶媒および触媒をデカンテーションした。同様のデカンテーション処理を3回行うことにより、溶媒置換し、混合液Dを得た。次いで、混合液D中のゲル状ケイ素化合物を粉砕処理(高圧メディアレス粉砕)した。粉砕処理(高圧メディアレス粉砕)は、ホモジナイザー(エスエムテー社製、商品名「UH-50」)を使用し、5ccのスクリュー瓶に、混合液D’中のゲル状化合物1.85gおよびIPAを1.15g秤量した後、50W、20kHzの条件で2分間の粉砕で行った。
この粉砕処理によって、上記混合液D中のゲル状ケイ素化合物が粉砕されたことにより、該混合液D’は、粉砕物のゾル液となった。混合液D’に含まれる粉砕物の粒度バラツキを示す体積平均粒子径を、動的光散乱式ナノトラック粒度分析計(日機装社製、UPA-EX150型)にて確認したところ、0.50~0.70であった。さらに、このゾル液(混合液C’)0.75gに対し、光塩基発生剤(和光純薬工業株式会社:商品名WPBG266)の1.5重量%濃度MEK(メチルエチルケトン)溶液を0.062g、ビス(トリメトキシシリル)エタンの5%濃度MEK溶液を0.036gの比率で添加し、屈折率調整層形成用塗工液を得た。
[Production Example 2] Preparation of a coating solution for forming a refractive index adjusting layer (1) Gelation of a silicon compound 0.95 g of MTMS, which is a precursor of a silicon compound, is dissolved in 2.2 g of DMSO to prepare a mixed solution A. Prepared. MTMS is hydrolyzed by adding 0.5 g of a 0.01 mol / L oxalic acid aqueous solution to this mixed solution A and stirring at room temperature for 30 minutes to produce a mixed solution B containing tris (hydroxy) methylsilane. did.
To 5.5 g of DMSO, 0.38 g of 28% by weight aqueous ammonia and 0.2 g of pure water were added, and then the above mixture B was added and stirred at room temperature for 15 minutes to obtain Tris ( Hydroxy) methylsilane was gelled to obtain a mixed solution C containing a gelled silicon compound.
(2) Aging treatment The mixed solution C containing the gelled silicon compound prepared as described above was incubated as it was at 40 ° C. for 20 hours for aging treatment.
(3) Crushing Treatment Next, the gelled silicon compound aged as described above was crushed into granules having a size of several mm to several cm using a spatula. Then, 40 g of IPA was added to the mixture C, and the mixture was lightly stirred and then allowed to stand at room temperature for 6 hours to decant the solvent and catalyst in the gel. The same decantation treatment was carried out three times to replace the solvent, and a mixed solution D was obtained. Next, the gelled silicon compound in the mixed solution D was pulverized (high pressure medialess pulverization). For the pulverization treatment (high-pressure medialess pulverization), a homogenizer (manufactured by SMTE, trade name "UH-50") was used, and 1.85 g of the gel compound and IPA in the mixed solution D'were placed in a 5 cc screw bottle. After weighing .15 g, pulverization was performed for 2 minutes under the conditions of 50 W and 20 kHz.
By this pulverization treatment, the gelled silicon compound in the mixed solution D was pulverized, so that the mixed solution D'became a sol solution of the pulverized product. The volume average particle size showing the variation in the particle size of the pulverized material contained in the mixed solution D'was confirmed by a dynamic light scattering type nanotrack particle size analyzer (UPA-EX150 type manufactured by Nikkiso Co., Ltd.) and found to be 0.50 to. It was 0.70. Further, with respect to 0.75 g of this sol solution (mixed solution C'), 0.062 g of a 1.5 wt% MEK (methyl ethyl ketone) solution of a photobase generator (Wako Pure Chemical Industries, Ltd .: trade name WPBG266) was added. A 5% concentration MEK solution of bis (trimethoxysilyl) ethane was added at a ratio of 0.036 g to obtain a coating liquid for forming a refractive index adjusting layer.

[実施例1]
製造例1で作製した偏光板のアクリル樹脂フィルムの表面に、製造例2で調製した屈折率調整層形成用塗工液を塗布した。このとき、形成された塗布層のWet厚み(乾燥させる前の厚み)は約27μmであった。該塗布層を、温度100℃で1分処理して乾燥し、さらに、乾燥後の塗工層に、波長360nmの光を用いて300mJ/cmの光照射量(エネルギー)でUV照射し、上記偏光板上に屈折率調整層が形成された積層体aを得た。この屈折率調整層の屈折率は1.15であった。
市販のTV(Samsung社製、商品名「UN65JS9000FXZA」)を分解し、バックライト側に含まれる波長変換材料、すなわち量子ドットシートを得た。該量子ドットシートを発光層として用い、上記積層体aの低屈折率層側に、アクリル系粘着剤を介して貼り合せた。
上記のようにして、偏光板と、屈折率調整層と、発光層とを備える積層体Aを得た。得られた積層体Aを上記評価(2)および(3)に供した。結果を表1に示す。
[Example 1]
The coating liquid for forming the refractive index adjusting layer prepared in Production Example 2 was applied to the surface of the acrylic resin film of the polarizing plate produced in Production Example 1. At this time, the Wet thickness (thickness before drying) of the formed coating layer was about 27 μm. The coated layer was treated at a temperature of 100 ° C. for 1 minute and dried, and the dried coated layer was further irradiated with UV at a light irradiation amount (energy) of 300 mJ / cm 2 using light having a wavelength of 360 nm. A laminated body a having a refractive index adjusting layer formed on the polarizing plate was obtained. The refractive index of this refractive index adjusting layer was 1.15.
A commercially available TV (manufactured by Samsung, trade name "UN65JS9000FXZA") was disassembled to obtain a wavelength conversion material contained in the backlight side, that is, a quantum dot sheet. The quantum dot sheet was used as a light emitting layer, and was bonded to the low refractive index layer side of the laminated body a via an acrylic pressure-sensitive adhesive.
As described above, a laminated body A including a polarizing plate, a refractive index adjusting layer, and a light emitting layer was obtained. The obtained laminate A was subjected to the above evaluations (2) and (3). The results are shown in Table 1.

[実施例2]
積層体aと量子ドットシート(発光層)とを、着色層を介して積層したこと以外は、実施例1と同様にして積層体B(偏光板/屈折率調整層/着色層/発光層)を得た。得られた積層体Bを上記評価(2)および(3)に供した。結果を表1に示す。なお、着色層は以下のようにして形成した。
(着色層の形成)
アクリル酸n-ブチル、水酸基含有モノマーを共重合してなるアクリル系ポリマー100重量部に対し、ラジカル発生剤(ベンゾイルパーオキサイド、日本油脂社製、商品名「ナイパーBMT」)を0.3重量部、イソシアネート系架橋剤(東ソー社製、商品名「コロネートL」)を1重量部、色素(山本化成社製、商品名「PD-320」)を0.25重量部、フェノール系酸化防止剤(BASFジャパン社製、商品名「IRGANOX1010」)を0.2重量部含んでなる色素含有粘着剤を作製した。粘着剤の剥離が容易となる処理を施したPET基材(三菱樹脂社製、商品名「MRF38CK」)上に、アプリケータに上記粘着剤を20μmの厚みで塗工し、155℃2分乾燥後、粘着剤サンプルを取出し、積層体aの屈折率調整層側に、上記粘着材面を貼り合せて、着色層を形成した。
[Example 2]
Laminated body B (polarizing plate / refractive index adjusting layer / colored layer / light emitting layer) in the same manner as in Example 1 except that the laminated body a and the quantum dot sheet (light emitting layer) are laminated via the colored layer. Got The obtained laminate B was subjected to the above evaluations (2) and (3). The results are shown in Table 1. The colored layer was formed as follows.
(Formation of colored layer)
0.3 parts by weight of a radical generator (benzoyl peroxide, manufactured by Nippon Oil & Fats Co., Ltd., trade name "Niper BMT") is added to 100 parts by weight of an acrylic polymer obtained by copolymerizing n-butyl acrylate and a hydroxyl group-containing monomer. , Isocyanate-based cross-linking agent (manufactured by Toso Co., Ltd., trade name "Coronate L") by 1 part by weight, dye (manufactured by Yamamoto Kasei Co., Ltd., trade name "PD-320") by 0.25 parts by weight, phenol-based antioxidant (manufactured by Yamamoto Kasei Co., Ltd., trade name "PD-320") A dye-containing pressure-sensitive adhesive containing 0.2 parts by weight of BASF Japan, trade name "IRGANOX1010") was produced. The above adhesive is applied to an applicator to a thickness of 20 μm on a PET substrate (manufactured by Mitsubishi Plastics, trade name “MRF38CK”) that has been treated to facilitate peeling of the adhesive, and dried at 155 ° C for 2 minutes. After that, the pressure-sensitive adhesive sample was taken out, and the pressure-sensitive adhesive surface was bonded to the refractive index adjusting layer side of the laminated body a to form a colored layer.

[比較例1]
屈折率調整層を形成しなかったこと以外は、実施例1と同様にして、偏光板と発光層とを含む積層体C(偏光板/発光層)を得た。得られた積層体Cを上記評価(2)および(3)に供した。結果を表1に示す。
[Comparative Example 1]
A laminate C (polarizing plate / light emitting layer) containing a polarizing plate and a light emitting layer was obtained in the same manner as in Example 1 except that the refractive index adjusting layer was not formed. The obtained laminate C was subjected to the above evaluations (2) and (3). The results are shown in Table 1.

[比較例2]
屈折率調整層を形成せず、かつ、偏光板と発光層とを貼り合せることなく積層したこと以外は、実施例1と同様にして積層体Dを得た。なお、積層体Dにおいては、偏光板と発光層との間に空気層が形成されていた。得られた積層体Dを上記評価(2)および(3)に供した。結果を表1に示す。
[Comparative Example 2]
A laminated body D was obtained in the same manner as in Example 1 except that the polarizing plate and the light emitting layer were laminated without forming the refractive index adjusting layer and without laminating the polarizing plate and the light emitting layer. In the laminated body D, an air layer was formed between the polarizing plate and the light emitting layer. The obtained laminate D was subjected to the above evaluations (2) and (3). The results are shown in Table 1.

Figure 0007002840000001
Figure 0007002840000001

表1から明らかなように、本発明によれば、偏光板と発光層との間に屈折率調整層を配置することにより、優れた正面輝度と、外光反射の抑制とを両立することができる。一方、比較例1においては、空気層がないことにより、外光反射は少ないが、正面輝度が低くなっている。これは、バックライトからの光が偏光板と空気との界面で反射するものの、反射光が偏光板で吸収されるためであると考えられる。本発明においては、屈折率調整層を配置することにより、偏光板より背面側(具体的には、屈折率調整層と発光層との界面)での反射が生じ、反射光により発光層の発光量が増えることとなり、光の利用効率に優れる。また、比較例2においては、空気層が存在することにより、光の利用効率は高いが、外光反射が強くなる。 As is clear from Table 1, according to the present invention, by arranging the refractive index adjusting layer between the polarizing plate and the light emitting layer, it is possible to achieve both excellent front luminance and suppression of external light reflection. can. On the other hand, in Comparative Example 1, since there is no air layer, the external light reflection is small, but the front luminance is low. It is considered that this is because the light from the backlight is reflected at the interface between the polarizing plate and the air, but the reflected light is absorbed by the polarizing plate. In the present invention, by arranging the refractive index adjusting layer, reflection occurs on the back surface side of the polarizing plate (specifically, the interface between the refractive index adjusting layer and the light emitting layer), and the reflected light emits light from the light emitting layer. The amount will increase, and the efficiency of light utilization will be excellent. Further, in Comparative Example 2, due to the presence of the air layer, the light utilization efficiency is high, but the external light reflection becomes strong.

10 偏光板
20 屈折率調整層
30 発光層
100 画像表示装置
10 Polarizing plate 20 Refractive index adjustment layer 30 Light emitting layer 100 Image display device

Claims (5)

少なくとも、偏光板と、屈折率調整層と、着色層と、発光層とをこの順に備え、
該偏光板と該屈折率調整層とが直接積層され、該屈折率調整層と該着色層とが直接積層され、かつ、該着色層と該発光層とが直接積層され、
該屈折率調整層の屈折率が1.2以下であり、
該着色層が、所定波長の光を吸収する層であり、
該発光層が、入射光の一部の波長を変換して発光する層である、
画像表示装置。
At least, a polarizing plate, a refractive index adjusting layer, a colored layer, and a light emitting layer are provided in this order.
The polarizing plate and the refractive index adjusting layer are directly laminated, the refractive index adjusting layer and the colored layer are directly laminated, and the colored layer and the light emitting layer are directly laminated.
The refractive index of the refractive index adjusting layer is 1.2 or less, and the refractive index is 1.2 or less.
The colored layer is a layer that absorbs light having a predetermined wavelength.
The light emitting layer is a layer that converts a part of the wavelength of the incident light to emit light.
Image display device.
前記発光層が、波長変換材料として、量子ドットまたは蛍光体を含む、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the light emitting layer contains a quantum dot or a phosphor as a wavelength conversion material. 前記発光層が、カラーフィルターである、請求項1または2に記載の画像表示装置。 The image display device according to claim 1 or 2, wherein the light emitting layer is a color filter. 前記偏光板が円偏光板として機能する、請求項1から3のいずれかに記載の画像表示装置。 The image display device according to any one of claims 1 to 3, wherein the polarizing plate functions as a circular polarizing plate. 前記屈折率調整層の空隙率が5%~99%である、請求項1から4のいずれかに記載の画像表示装置。The image display device according to any one of claims 1 to 4, wherein the refractive index adjusting layer has a porosity of 5% to 99%.
JP2016240731A 2016-12-12 2016-12-12 Image display device Active JP7002840B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016240731A JP7002840B2 (en) 2016-12-12 2016-12-12 Image display device
KR1020197016287A KR102253195B1 (en) 2016-12-12 2017-12-05 Image display device
CN201780076687.9A CN110062901B (en) 2016-12-12 2017-12-05 Image display device
PCT/JP2017/043583 WO2018110363A1 (en) 2016-12-12 2017-12-05 Image display apparatus
TW106143313A TWI782934B (en) 2016-12-12 2017-12-11 image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240731A JP7002840B2 (en) 2016-12-12 2016-12-12 Image display device

Publications (2)

Publication Number Publication Date
JP2018097124A JP2018097124A (en) 2018-06-21
JP7002840B2 true JP7002840B2 (en) 2022-01-20

Family

ID=62558729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240731A Active JP7002840B2 (en) 2016-12-12 2016-12-12 Image display device

Country Status (5)

Country Link
JP (1) JP7002840B2 (en)
KR (1) KR102253195B1 (en)
CN (1) CN110062901B (en)
TW (1) TWI782934B (en)
WO (1) WO2018110363A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102483096B1 (en) * 2017-03-06 2022-12-30 닛토덴코 가부시키가이샤 Pressure-sensitive adhesive composition for polarizing film, pressure-sensitive adhesive layer for polarizing film, polarizing film having a pressure-sensitive adhesive layer, liquid crystal panel and liquid crystal display device
JP2019128430A (en) * 2018-01-24 2019-08-01 日東電工株式会社 Liquid crystal display device, and optical member and set of optical member used for the same
KR20210017519A (en) * 2019-08-08 2021-02-17 삼성전자주식회사 Display module, display panel, and display apparatus
WO2023054641A1 (en) * 2021-09-30 2023-04-06 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
CN116283287B (en) * 2023-03-20 2024-04-05 西北工业大学 Quantum sheet anchored bismuth vanadate film, preparation method and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311186A (en) 2003-04-07 2004-11-04 Nitto Denko Corp Organic electroluminescent element, polarization surface light source using electroluminescent element, and display device
JP2005251488A (en) 2004-03-03 2005-09-15 Hitachi Displays Ltd Light-emitting element, light-emitting type display device, and lighting device
WO2013118653A1 (en) 2012-02-07 2013-08-15 シャープ株式会社 Display element and illumination device
WO2015182685A1 (en) 2014-05-30 2015-12-03 富士フイルム株式会社 Wavelength conversion member, backlight unit, polarizing plate, liquid crystal panel and liquid crystal display device
JP2016021056A (en) 2014-06-20 2016-02-04 富士フイルム株式会社 Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device
JP2016058586A (en) 2014-09-10 2016-04-21 シャープ株式会社 Display device and television receiver
JP2016142845A (en) 2015-01-30 2016-08-08 株式会社ジャパンディスプレイ Display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010609A (en) * 2013-11-13 2017-01-12 パナソニックIpマネジメント株式会社 Light emitting device
JP2015111518A (en) 2013-12-06 2015-06-18 株式会社ジャパンディスプレイ Backlight and liquid crystal display device using the same
KR102223421B1 (en) * 2014-08-05 2021-03-08 삼성디스플레이 주식회사 Display device
JP7152129B2 (en) * 2015-02-27 2022-10-12 三星エスディアイ株式会社 Polarizing plate and liquid crystal display including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311186A (en) 2003-04-07 2004-11-04 Nitto Denko Corp Organic electroluminescent element, polarization surface light source using electroluminescent element, and display device
JP2005251488A (en) 2004-03-03 2005-09-15 Hitachi Displays Ltd Light-emitting element, light-emitting type display device, and lighting device
WO2013118653A1 (en) 2012-02-07 2013-08-15 シャープ株式会社 Display element and illumination device
WO2015182685A1 (en) 2014-05-30 2015-12-03 富士フイルム株式会社 Wavelength conversion member, backlight unit, polarizing plate, liquid crystal panel and liquid crystal display device
JP2016021056A (en) 2014-06-20 2016-02-04 富士フイルム株式会社 Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device
JP2016058586A (en) 2014-09-10 2016-04-21 シャープ株式会社 Display device and television receiver
JP2016142845A (en) 2015-01-30 2016-08-08 株式会社ジャパンディスプレイ Display device

Also Published As

Publication number Publication date
TWI782934B (en) 2022-11-11
KR102253195B1 (en) 2021-05-17
TW201827899A (en) 2018-08-01
WO2018110363A1 (en) 2018-06-21
CN110062901A (en) 2019-07-26
JP2018097124A (en) 2018-06-21
KR20190076039A (en) 2019-07-01
CN110062901B (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP7002840B2 (en) Image display device
JP6966850B2 (en) An optical member, and a backlight unit and a liquid crystal display device using the optical member.
JP6951847B2 (en) An optical member, and a backlight unit and a liquid crystal display device using the optical member.
JP6829969B2 (en) An optical member, a set of polarizing plates using the optical member, and a liquid crystal display device.
JP6966851B2 (en) An optical member, and a backlight unit and a liquid crystal display device using the optical member.
TWI701471B (en) Optical laminated body and image display device
JP6762813B2 (en) Liquid crystal display device
TWI746811B (en) Image display device
JP6766265B2 (en) Optical laminate
WO2017057394A1 (en) Liquid crystal display device
WO2017057395A1 (en) Optical member, and polarizing plate set and liquid crystal display device that use said optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7002840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150