TW201824855A - 具有x射線檢測器的圖像傳感器 - Google Patents

具有x射線檢測器的圖像傳感器 Download PDF

Info

Publication number
TW201824855A
TW201824855A TW106144630A TW106144630A TW201824855A TW 201824855 A TW201824855 A TW 201824855A TW 106144630 A TW106144630 A TW 106144630A TW 106144630 A TW106144630 A TW 106144630A TW 201824855 A TW201824855 A TW 201824855A
Authority
TW
Taiwan
Prior art keywords
ray
image sensor
image
voltage
controller
Prior art date
Application number
TW106144630A
Other languages
English (en)
Other versions
TWI776834B (zh
Inventor
曹培炎
劉雨潤
Original Assignee
中國大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國大陸商深圳幀觀德芯科技有限公司 filed Critical 中國大陸商深圳幀觀德芯科技有限公司
Publication of TW201824855A publication Critical patent/TW201824855A/zh
Application granted granted Critical
Publication of TWI776834B publication Critical patent/TWI776834B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/166Scintigraphy involving relative movement between detector and subject
    • G01T1/1663Processing methods of scan data, e.g. involving contrast enhancement, background reduction, smoothing, motion correction, dual radio-isotope scanning, computer processing ; Ancillary equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/249Measuring radiation intensity with semiconductor detectors specially adapted for use in SPECT or PET

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本文公開圖像傳感器,其包括:多個X射線檢測器;驅動器,其被配置為將所述多個X射線檢測器移動到多個位置,其中,所述圖像傳感器被配置為:分別在所述位置處,使用所述檢測器捕獲場景的部分的圖像,並被配置為通過對所述部分的圖像進行拼接而形成所述場景的圖像。

Description

具有X射線檢測器的圖像傳感器
本發明涉及X射線檢測器,特別涉及具有X射線檢測器的圖像傳感器及其使用方法。
X射線檢測器可以是用於測量X射線的通量,空間分布,光譜或其它特性的器件。
X射線檢測器可用於許多應用。一種重要的應用是成像。X射線成像是一種射線照相技術,可用於揭示非均勻組成的以及不透明物體(例如人體)的內部結構。
用於成像的早期X射線檢測器包括攝影板和攝影膠片。攝影板可以是具有光敏乳劑塗層的玻璃板。雖然攝影板被攝影膠片代替,它們仍然可以在特 殊情況下使用,這是由於它們提供更好的質量和極好的穩定性。攝影膠片可以是具有光敏乳劑塗層的塑料膜(例如,帶或片)。
在20世紀80年代,出現了光激勵螢光板(PSP板)。PSP板可包含在它的晶格中具有色心的螢光材料。在將PSP板暴露於X射線時,X射線激發的電子被困在色心中直到它們受到在板表面上掃描的鐳射光束的激勵。在鐳射掃描板時,捕獲的激發電子發出光,其被光電倍增管收集。收集的光轉換成數位圖像。與照相底片和攝影膠片相反,PSP板可以被重復使用。
另一種X射線檢測器是X射線圖像增強器。X射線圖像增強器的部件通常在真空中密封。與攝影板,攝影膠片和PSP板相反,X射線圖像增強器可以產生實時圖像,即,不需要曝光後處理來產生圖像。X射線首先撞擊輸入熒光體(例如,碘化銫)並被轉換為可見光。可見光然後撞擊光電陰極(例如含有銫和銻化合物的薄金屬層)並引起電子發射。發射電子的數量與入射X射線的強度成比例。發射的電子通過電子光學被投射到輸出熒光體上,並使所述輸出熒光體產生可見光圖像。
閃爍體的操作與X射線圖像增強器有些類似之處在於閃爍體(例如,碘化鈉)吸收X射線並且發射可見光,其然後可以被對可見光合適的圖像感測器檢測到。在閃爍體中,可見光在各個方向上傳播和散射並且從而降低空間 解析度。使閃爍體厚度減少有助於提高空間解析度但也減少X射線吸收。閃爍體從而必須在吸收效率與解析度之間達成妥協。
半導體X射線檢測器通過將X射線直接轉換成電信號而在很大程度上克服該問題。半導體X射線檢測器可包括半導體層,其在感興趣波長吸收X射線。當在半導體層中吸收X射線光子時,產生多個載荷子(例如,電子和空穴)並且在電場下,這些載荷子被掃向半導體層上的電觸點。現有的半導體X射線檢測器(例如,Medipix)中需要的繁瑣的熱管理會使得具有大面積和大量圖元的檢測器難以生產或不可能生產。
本發明公開圖像傳感器,其包括:多個X射線檢測器;配置為將所述多個X射線檢測器移動到多個位置的驅動器,其中,所述圖像傳感器被配置為:通過使用所述檢測器,分別在所述位置處捕獲場景的部分的圖像,並被配置為通過對所述部分的圖像進行拼接而形成所述場景的圖像。
根據實施例,多個X射線檢測器被間隔開。
根據實施例,圖像傳感器還包括具有多個X射線透射區和X射線阻擋區的的準直器。X射線阻擋區被配置成阻擋X射線(否則其將入射在圖像傳感 器的死區),並且所述X射線透射區被配置為允許X射線的至少一部分入射到所述圖像傳感器的活躍區。
根據實施例,驅動器被配置為:移動準直器,以使得在所述位置處保持X射線檢測器與X射線透射區和X射線阻擋區對準。
根據實施例,多個X射線檢測器中的至少一些以交錯的行排列。
根據實施例,同一行中的X射線檢測器的尺寸一致;在同一行中的兩個相鄰的X射線檢測器之間的距離大於同一行中的一個X射線檢測器沿所述行的延伸方向上的寬度,並小於所述寬度的兩倍。
根據實施例,所述X射線檢測器的活躍區在所述位置處將場景細分。
根據實施例,所述驅動器包括機械臂。
根據實施例,所述多個X射線檢測器中的至少一些包括多層檢測器。
根據實施例,所述多個X射線檢測器中的至少一些是矩形的。
根據實施例,所述多個X射線檢測器中的至少一些是六邊形的。
根據實施例,所述驅動器包括控制單元,其被配置成確定位置。
根據實施例,所述多個X射線檢測器中的至少一個包括X射線吸收層和電子層;其中所述X射線吸收層包括電極;其中所述電子層包括電子系統;其中所述電子系統包括:第一電壓比較器,其被配置為將所述電極的電壓與第一閾值進行比較,第二電壓比較器,其被配置為將所述電壓與第二閾值進行比較;計數器,其被配置為記錄到達所述X射線吸收層的X射線光子數;控制器;其被配置為從所述第一電壓比較器確定所述電壓的絕對值等於或超過所述第一閾值的絕對值的時刻開始時間延遲;其中所述控制器被配置為在所述時間時延期間激活所述第二電壓比較器;其中所述控制器被配置為:如果第二電壓比較器確定所述電壓的絕對值等於或超過所述第二閾值的絕對值,那麽,使由所述計數器記錄的數字增加1。
根據實施例,電子系統進一步包括電容器模組,其電連接到電極,其中該電容器模組配置成從電極收集載荷子。
根據實施例,控制器配置成在時間延遲開始或終止時激活第二電壓比較器。
根據實施例,電子系統進一步包括電壓表,其中控制器配置成在時間延遲終止時促使電壓表測量電壓。
根據實施例,控制器配置成基於在時間延遲終止時測量的電壓值確定X射線光子能量。
根據實施例,控制器配置成使電極連接到電接地。
根據實施例,電壓變化率在時間延遲終止時大致為零。
根據實施例,電壓變化率在時間延遲終止時大致為非零。
本文公開包括本文描述的圖像傳感器和X射線源的系統,其中,所述系統被配置為對人體胸部或腹部進行X射線照相。
本文公開包括本文描述的圖像傳感器和X射線源的系統,其中所述系統被配置成對人的口腔進行X射線放射攝影。
本文公開貨物掃描或非侵入式檢查(NII)系統,其包括本文描述的圖像傳感器和X射線源,其中該貨物掃描或非侵入式檢查(NII)系統配置成使用背散射X射線形成圖像。
本文公開貨物掃描或非侵入式檢查(NII)系統,其包括本文描述的圖像傳感器和X射線源,其中該貨物掃描或非侵入式檢查(NII)系統配置成使用穿過被檢查物體的X射線來形成圖像。
本文公開全身掃描系統,其包括本文描述的圖像傳感器和X射線源。
本文公開X射線電腦斷層攝影(X射線CT)系統,其包括本文描述的圖像傳感器和X射線源。
本文公開包括本文描述的圖像傳感器、電子源和電子光學系統的電子顯微鏡。
本文公開包括本文描述的圖像傳感器的系統,其中該系統是X射線望遠鏡或X射線顯微鏡,或其中該系統配置成進行乳房放射攝影、工業缺陷檢測、顯微放射攝影、鑄件檢查、焊縫檢查或數位減影血管攝影。
本文公開使用包括多個X射線檢測器的圖像傳感器來形成場景的圖像的方法,該方法包括:將X射線檢測器放置到第一位置來獲取所述場景的第一部分的第一圖像;將所述X射線檢測器放置到第二位置來獲取所述場景的第二部分的第二圖像;通過至少對所述第一圖像和所述第二圖像進行拼接而形成所述場景的圖像。
根據實施例,第一和第二圖像在空間上有重疊。
根據實施例,圖像傳感器還包括準直器;其中所述方法還包括:在拍攝所述第一圖像和所述第二圖像之前,對所述準直器進行定位。
50‧‧‧場景
51A‧‧‧部分圖像
51B‧‧‧部分圖像
51C‧‧‧部分圖像
100‧‧‧檢測器
100A‧‧‧檢測器
100B‧‧‧檢測器
100C‧‧‧檢測器
100D‧‧‧檢測器
100E‧‧‧檢測器
100F‧‧‧檢測器
100G‧‧‧檢測器
100H‧‧‧檢測器
110‧‧‧X射線層
111‧‧‧第一摻雜區
112‧‧‧本征區
113‧‧‧第二摻雜區
114‧‧‧離散區
119A‧‧‧電觸點
119B‧‧‧電觸點
120‧‧‧電子層
121‧‧‧電子系統
122‧‧‧襯底
124‧‧‧第一表面
125‧‧‧電觸點
128‧‧‧第二表面
130‧‧‧填充材料
131‧‧‧通孔
150‧‧‧圖元
190‧‧‧活躍區
195‧‧‧周邊區
199‧‧‧焊料凸點
200‧‧‧封裝
201‧‧‧X射線透射區
202‧‧‧X射線阻擋區
300‧‧‧二極體
301‧‧‧第一電壓比較器
302‧‧‧第二電壓比較器
305‧‧‧開關
306‧‧‧電壓表
309‧‧‧電容器模組
310‧‧‧控制器
320‧‧‧計數器
400‧‧‧印刷電路板(PCB)
405‧‧‧區域
450‧‧‧印刷電路板(PCB)
410‧‧‧結合線
488‧‧‧死區
500‧‧‧驅動器
600‧‧‧控制單元
1201‧‧‧X射線源
1202‧‧‧物體
1301‧‧‧X射線源
1302‧‧‧物體
1401‧‧‧X射線源
1402‧‧‧物體
1501‧‧‧X射線源
1502‧‧‧行李
1601‧‧‧X射線源
1602‧‧‧人
1701‧‧‧X射線源
1801‧‧‧電子源
1802‧‧‧樣本
1803‧‧‧電子光學系統
9000‧‧‧圖像傳感器
A‧‧‧位置
B‧‧‧位置
C‧‧‧位置
t0‧‧‧時間
t1‧‧‧時間
t2‧‧‧時間
te‧‧‧時間
th‧‧‧時間
ts‧‧‧時間
RST‧‧‧復位期
TD1‧‧‧時間延遲
TD2‧‧‧時間延遲
V1‧‧‧第一閾值
VR‧‧‧殘余電壓
X1‧‧‧寬度
X2‧‧‧距離
Y1‧‧‧寬度
Y2‧‧‧距離
圖1A示意性地示出根據實施例的X射線檢測器的截面圖。
圖1B示意性地示出根據實施例的檢測器的詳細橫截面視圖。
圖1C示意性地示出根據實施例的檢測器的可供替代的詳細橫截面視圖。
圖2示意性地示出根據實施例的器件可具有圖元陣列。
圖3示意性地示出根據實施例的檢測器中的電子層的截面圖。
圖4A示意性地示出包括檢測器和印刷電路板(PCB)的封裝體的頂視圖。
圖4B示意性地示出圖像傳感器的截面圖,這裏將多個圖4A的封裝體安裝到另一PCB上。
圖5示意性地示出根據實施例的圖像傳感器的功能框圖。
圖6示意性地示出根據實施例的圖像傳感器,其包括多個X射線檢測器和準直器,用於拍攝場景的圖像。
圖7示意性地示出根據實施例的拍攝場景的一系列圖像的圖像傳感器。
圖8A-8C示意性地示出根據一些實施例的圖像傳感器中的檢測器的布置。
圖9示意性地示出根據實施例的具有多個檢測器(形狀為六邊形的)的圖像傳感器。
圖10示意性地示出根據實施例的系統,其包括本文所述的圖像傳感器,適用於醫學成像,例如胸部X射線照相術,腹部X射線照相術等。
圖11示意性地示出根據實施例的系統,其包括本文描述的圖像傳感器,適於牙科X射線照相術。
圖12示意性地示出根據實施例的貨物掃描或非侵入性檢查(NII)系統,其包括本文所述的圖像傳感器。
圖13示意性地示出根據實施例的另一個貨物掃描或非侵入性檢查(NII)系統,其包括本文所述的圖像傳感器。
圖14示意性地示出了根據實施例的全身掃描儀系統,其包括本文所述的圖像傳感器。
圖15示意性地示出根據實施例的X射線電腦斷層攝影(X射線CT),其包括本文所述的圖像傳感器的系統。
圖16示意性地示出根據實施例的電子顯微鏡,其包括本文所述的圖像傳感器。
圖17A和圖17B各自示出:根據實施例,圖1A,圖1B和圖1C中檢測器的電子系統的部件圖。
圖18示意性地示出根據實施例流過暴露於X射線的X射線吸收層的二極體的電極或電阻器的電觸點的電流(電流由X射線吸收層上入射的X射線光子產生的載荷子引起)的時間變化(上曲線)和電極電壓的對應時間變化(下曲線)。
圖19示意示出根據實施例在采用圖18中示出的方式操作的電子系統中雜訊(例如,暗電流)引起的流過電極的電流的時間變化(上曲線)和電極電壓的對應時間變化(下曲線)。
圖20示意示出根據實施例當電子系統操作來檢測處於較高速率的入射X射線光子時流過暴露於X射線的X射線吸收層的電極的電流(電流由X射線吸收層上入射的X射線光子產生的載荷子引起)的時間變化(上曲線)和電極電壓的對應時間變化(下曲線)。
圖21示意示出根據實施例在采用圖20中示出的方式操作的電子系統中雜訊(例如,暗電流)引起的流過電極的電流的時間變化(上曲線)和電極電壓的對應時間變化(下曲線)。
圖22示意示出根據實施例在采用圖20中示出的方式(其中RST在tc之前終止)操作的電子系統中由X射線吸收層上入射的一系列X射線光子產生的載荷子引起的流過電極的電流的時間變化(上曲線)和電極電壓的對應時間變化。
圖1A示意示出根據實施例的檢測器100的橫截面圖。檢測器100可包括X射線層110和電子層120(例如,ASIC),用於處理或分析入射X射線在X射線吸收層110中產生的電信號。在實施例中,檢測器100不包括閃爍體。X射線吸收層110可包括半導體材料,例如矽、鍺、GaAs、CdTe、CdZnTe或其組合。半導體對於感興趣的X射線能量可具有高的質量衰減系數。
如在圖1B中的檢測器100的詳細橫截面圖中示出的,根據實施例,X射線吸收層110可包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114形成的一個或多個二極體(例如,p-i-n或p-n)。第二摻雜區113可通過本征區112(可選)而與第一摻雜區111分離。離散部分114通過第一摻雜區111或本征區112而彼此分離。第一摻雜區111和第二摻雜區113具有相反類型的摻雜(例如,區111是p型並且區113是n型,或區111是n 型並且區113是p型)。在圖3B中的示例中,第二摻雜區113的離散區114中的每個與第一摻雜區111和本征區112(可選)一起形成二極體。即,在圖1B中的示例中,X射線吸收層110具有多個二極體,其具有第一摻雜區111作為共用電極。第一摻雜區111還可具有離散部分。
當X射線光子撞擊X射線吸收層110(其包括二極體)時,X射線光子可被吸收並且通過多個機制產生一個或多個載荷子。一個X射線光子可產生10至100000個載荷子。載荷子可在電場下向二極體中的一個的電極漂移。場可以是外部電場。電觸點119B可包括離散部分,其中的每個與離散區114電接觸。在實施例中,載荷子可在多個方向上漂移使得單個X射線光子產生的載荷子大致未被兩個不同離散區114共用(“大致未被共用”在這裏意指這些載荷子中不到2%、不到0.5%、不到0.1%或不到0.01%流向與余下載荷子不同的離散區114中的一個)。在這些離散區114中的一個的足跡周圍入射的X射線光子產生的載荷子大致未與這些離散區114中的另一個共用。與離散區114關聯的圖元150可以是圍繞離散區114的區域,其中,由其中入射的X射線光子產生的載荷子中的大致全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向離散區114。即,這些載荷子中不到2%、不到1%、不到0.1%或不到0.01%流到圖元外。
如在圖1C中的檢測器100的可供替代的詳細橫截面圖中示出的,根據實施例,X射線吸收層110可包括具有半導體材料(例如矽、鍺、GaAs、CdTe、CdZnTe或其組合)的電阻器,但不包括二極體。半導體對於感興趣的X射線能量可具有高的質量衰減系數。
在X射線光子撞擊X射線吸收層110(其包括電阻器但不包括二極體)時,它可被吸收並且通過多個機制產生一個或多個載荷子。一個X射線光子可產生10至100000個載荷子。載荷子可在電場下向電觸點119A和119B漂移。場可以是外部電場。電觸點119B包括離散部分。在實施例中,載荷子可在多個方向上漂移使得單個X射線光子產生的載荷子大致未被電觸點119B的兩個不同離散部分共用(“大致未被共用”在這裏意指這些載荷子中不到2%、不到0.5%、不到0.1%或不到0.01%流向與余下載荷子不同的離散區中的一個)。在電觸點119B的這些離散部分中的一個的足跡周圍入射的X射線光子產生的載荷子大致未與電觸點119B的這些離散部分中的另一個共用。與電觸點119B的離散部分關聯的圖元150可以是圍繞離散部分的區域,其中,由其中入射的X射線光子產生的載荷子中的大致全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向電觸點119B的離散部分。即,這些載荷子中不到2%、不到0.5%、不到0.1%或不到0.01%流到與電觸點119B的一個離散部分關聯的圖元外。
電子層120可包括電子系統121,其適合於處理或解釋X射線吸收層110上入射的X射線光子產生的信號。電子系統121可包括類比電路,例如濾波網路、放大器、積分器和比較器,或數位電路,例如微處理器和記憶體。電子系統121可包括圖元共用的部件或專用於單個圖元的部件。例如,電子系統121可包括專用於每個圖元的放大器和在所有圖元之間共用的微處理器。電子系統121可通過通孔131電連接到圖元。通孔之間的空間可用填充材料130填充,其可使電子層120到X射線吸收層110的連接的機械穩定性增加。在不使用通孔的情況下使電子系統121連接到圖元的其他接合技術是可能的。
圖2示意示出檢測器100可具有圖元150的陣列。陣列可以是矩形陣列、蜂窩狀陣列、六邊形陣列或任何其他適合的陣列。每個圖元150可配置成檢測其上入射的X射線光子、測量X射線光子的能量或兩者兼而有之。例如,每個圖元150可配置成在一段時間內對其上入射的、能量落在多個倉中的X射線光子的數目計數。所有圖元150可配置成在相同時段內對其上入射的、在多個能量倉內的X射線光子的數目計數。每個圖元150可具有它自己的模數轉換器(ADC),其配置成使代表入射X射線光子的能量的類比信號數位化為數位信號。ADC可具有10位或更高的解析度。每個圖元150可配置成測量它的暗電流,例如在每個X射線光子入射在其上之前或與之並發。每個圖元150可配置成從其上入射的X射線光子的能量減去暗電流的貢獻。圖元 150可配置成並行操作。例如,在一個圖元150測量入射X射線光子時,另一個圖元150可等待X射線光子到達。圖元150可以但不必獨立可尋址。
圖3示意示出根據實施例的電子層120。電子層120包括襯底122,其具有第一表面124和第二表面128。如本文使用的“表面”不一定被暴露,而可以全部或部分被掩埋。電子層120包括第一表面124上的一個或多個電觸點125。該一個或多個電觸點125可配置成電連接到X射線吸收層110的一個或多個電觸點119B。電子系統121可在襯底122中或襯底122上。
襯底122可以是被變薄襯底。例如,襯底可具有750微米或更少、200微米或更少、100微米或更少、50微米或更少、20微米或更少或5微米或更少的厚度。襯底122可以是矽襯底或其他適合的半導體或絕緣體襯底。襯底122可通過將較厚襯底研磨到期望厚度而產生。
一個或多個電觸點125可以是金屬或摻雜半導體的層。例如,電觸點125可以是金、銅、鉑、鈀、摻雜矽等。
圖3示意示出在X射線吸收層110的電觸點119B和電子層120的電觸點125處X射線吸收層110與電子層120之間的接合。該接合可以通過適合的技術,例如直接接合或倒裝接合。
直接接合是沒有任何額外中間層(例如,焊料凸點)的晶圓接合工藝。接合工藝基於兩個表面之間的化學接合。直接接合可在被升高的溫度但不是必須如此。
倒裝接合使用沈積到接觸墊(例如X射線吸收層110的電觸點119B,或電觸點125)上的焊料凸點199。X射線吸收層110或電子層120翻轉並且X射線吸收層110的電觸點119B與電觸點125對齊。焊料凸點199可熔融以將電觸點119B和電觸點125焊接在一起。焊料凸點199之間的任何空隙空間可用絕緣材料填充。
圖4A示意示出封裝200的頂視圖,該封裝包括檢測器100和印刷電路板(PCB)400。如本文使用的術語“PCB”不限於特定材料。例如,PCB可包括半導體。檢測器100安裝到PCB 400。為了清楚起見未示出檢測器100與PCB 400之間的線。PCB 400可具有一個或更多檢測器100。PCB 400可具有未被檢測器100覆蓋的區域(例如,用於容納結合線410)。檢測器100可具有活躍區190,其是圖元150位於的地方。檢測器100可具有在檢測器100的邊緣附近的周邊區195。周邊區195沒有圖元並且檢測器100不檢測入射在周邊區195上的光子。
封裝200可以安裝在PCB 450系統。封裝200中的PCB400和系統PCB450之間的電連接可以由結合線410形成。為了在PCB400上容納結合線410,PCB400具有未被檢測器100覆蓋的區域405。為了在系統PCB450上容納結合線410,封裝200在中間具有間隙。間隙可以是約1mm或更大。入射在周邊區195上、區域405上或間隙上的光,不能被PCB450系統上的封裝200檢測。檢測器的死區是檢測器表面接受光子、其中入射光子不能被檢測器檢測的區域。封裝(例如,封裝200)的死區是封裝的表面接受光子、其中入射光子不能被所述檢測器或所述封裝中的檢測器檢測的區域。在圖4A中所示的例子中,封裝200的死區包括周邊區195和區域405。具有一組封裝(例如,安裝在同一PCB上的封裝,安裝在同一層的封裝)的圖像傳感器的死區(例如,488)包括組中的封裝的死區以及封裝之間間隙的組合。
為了捕捉在封裝層的死區488中入射的光,封裝200可安置在多個層中,這裏封裝200可以這樣安置,以使得在一個層的死區488上入射的光被另一個層中的封裝200捕捉。多層封裝將導致更高的成本。
包括檢測器100的圖像傳感器可具有死區。如果圖像傳感器捕獲場景的多個部分的圖像,所述多個部分的圖像可以被縫合成整個場景的圖像。如圖5所示,根據實施例,圖像傳感器9000包括如上所述的多個X射線檢測器 100(其可以是多個封裝的部分)、可選的準直器200和驅動器500。驅動器500可包括控制單元600。在一些實施例中,可省略準直器200。驅動器500被配置成將檢測器100和可選準直器200移動到多個位置。可以通過控制單元600確定所述位置。所述位置可以這樣選擇,使得檢測器100的活躍區在多個位置共同地細分整個場景。
圖6示意性地示出:根據實施例的圖像傳感器9000,其被用於拍攝場景50的部分的圖像。驅動器500可將X射線檢測器100移動到多個位置(例如,在控制單元600控制的控制下)。在每個位置,圖像傳感器9000拍攝場景50的部分的圖像。這些部分的圖像被拼接以形成場景50的圖像。所述部分的圖像可以彼此重疊以便於拼接。
可選準直器200可以被這樣配置,以使得其防止入射在圖像傳感器9000的死區上的X射線到達被成像的物體。可選準直器200可具有多個X射線透射區201和X射線阻擋區202。X射線阻擋區202阻擋X射線(否則其入射到圖像傳感器9000的死區),X射線透射區域201允許至少一部分X射線(其將入射到圖像傳感器9000的活躍區)通過。X射線阻擋區域202可以與圖像傳感器的死區對準。當驅動器500移動圖像傳感器9000時,可選準直器200和檢測器100可一起移動(即,不相對移動)。
根據實施例,準直器200可以是金屬片,其厚度足以阻擋X射線透射,金屬片上有孔。孔可以起X射線透射區的作用,金屬片的其余部分可以起到X射線阻擋區202的作用。孔的布置和大小可以與圖像傳感器9000上的X射線檢測器100的活躍區相同。
根據實施例,驅動器500被配置為使準直器200和檢測器100這樣移動,以至於在拍攝場景50的部分的圖像的每個位置處保持檢測器100與準直器200之間的對準。在每個所述位置,入射X射線(否則將入射到圖像傳感器9000的死區)由準直器200的X射線阻擋區202阻擋。驅動器500可具有各種設計。例如,驅動器500可以是機械臂,其連接到系統PCB450並用系統PCB450移動X射線檢測器100。
如圖7所示,根據實施例,圖像傳感器9000的至少一些X射線檢測器100布置在陣列中。為了形成場景50的圖像,驅動器500將X射線檢測器100移動到相對於場景50的多個位置(例如,圖7中A,B和C),這裏圖像傳感器9000在這些位置處分別捕獲所述場景的部分的圖像(例如,51A,51B和51C)。場景50的每個點至少位於部分的一個圖中。即,部分的圖像當拼接在一起時覆蓋整個場景50。所述部分的圖像可以在其之間重疊以便於拼接。
檢測器100可以以各種方式布置在圖像傳感器9000中。圖8A示意性地示出了一種布置,根據實施例,這裏所述檢測器100以交錯的行排列。例如,檢測器100A和100B在同一行中,在Y方向上對準,且大小均勻;檢測器100C和100D為同一行,在Y方向上對準,且大小均勻。檢測器100A和100B相對於檢測器100C和100D在X方向上交錯。根據實施例,在兩個相鄰的X射線檢測器100A和100B之間的距離X2,大於同一行的一個X射線檢測器的寬度X1(即,維度為X方向,其為所述行的延伸方向),並且小於寬度X1的兩倍。檢測器100A和100E在同一列中,沿X方向對準,且大小均勻;在同一列中兩個相鄰的X射線檢測器100A和100E之間的距離Y2小於同一列中一個X射線檢測器的寬度Y1(即,維度為Y方向)。該布置允許如圖7所示的場景的成像,並且所述場景的圖像可以從在所述X方向上隔開的三個位置處捕獲的所述場景的三個部分的圖像進行拼接而獲得。
圖8B示意性地示出了根據實施例的另一種布置,這裏檢測器100布置在矩形網格中。例如,檢測器100可以包括檢測器100A,100B,100E和100F(正如圖8A中布置的),但沒有圖8A中的檢測器100C,100D,100G或100H。該配置允許通過在六個位置拍攝場景的部分的圖像來對所述場景進行成像。例如,三個位置在X方向上隔開,另外三個位置在X方向上隔開並與頭三個位置在Y方向隔開。
其它布置也是可能的。例如,在圖8C中,檢測器100可以跨越圖像傳感器9000在X方向上的整個寬度,兩個相鄰檢測器100之間的距離Y2小於一個X射線檢測器的寬度Y1。假定檢測器沿X方向的寬度大於所述場景沿X方向上的寬度,所述場景的圖像可以從在Y方向間隔開的兩個位置捕獲的場景的兩個部分的圖像來拼接。
上述X射線檢測器可以具有任何合適的尺寸和形狀。根據實施例(例如,在圖7中),至少一些X射線檢測器的形狀是矩形的。根據如圖9所示的實施例,至少一些X射線檢測器是六邊形的。在這樣的X射線檢測器中,X射線檢測器和相應的被對準的準直器可以具有相同的形狀。
如所討論的,使用上述圖像傳感器獲得場景圖像的方法包括:通過將所述X射線檢測器定位到第一位置,獲取所述場景的第一部分的第一圖像;通過將所述X射線檢測器定位到第二位置,獲取所述場景的第二部分的第二圖像;通過至少對所述第一圖像和所述第二圖像進行拼接而形成所述場景的圖像。
根據實施例,第一和第二圖像具有空間重疊。
根據實施例,圖像傳感器還包括準直器;其中所述方法還包括:在拍攝所述第一圖像和所述第二圖像之前,對所述準直器進行定位。
上述圖像傳感器可用於諸如下面提供的各種系統中。
圖10示意性地示出包括圖4A-圖9描述的圖像傳感器9000的系統。該系統可用於醫學成像,例如胸部X射線放射攝影、腹部X射線放射攝影等。系統包括X射線源1201。從X射線源1201發射的X射線穿過物體1202(例如,諸如胸部、肢體、腹部等人體部位)、由於物體1202的內部結構(例如,骨頭、肌肉、脂肪和器官等)而衰減不同程度並且被投射到圖像傳感器9000。圖像傳感器9000通過檢測X射線的強度分布來形成圖像。
圖11示意性地示出包括圖4A-圖9描述的圖像傳感器9000的系統。該系統可用於醫學成像,例如牙齒X射線放射攝影。系統包括X射線源1301。從X射線源1301發射的X射線穿過物體1302,其是哺乳動物(例如,人)口腔的部分。物體1302可包括上顎骨、顎骨、牙齒、下顎或舌頭。X射線由於物體1302的不同結構而衰減不同程度並且被投射到圖像傳感器9000。圖像傳感器9000通過檢測X射線的強度分布來形成圖像。牙齒比齲齒、感染和牙周膜吸收更多的X射線。牙科患者接收的X射線輻射的劑量典型地是小的(對於全口系列是近似0.150mSv)。
圖12示意示出貨物掃描或非侵入式檢查(NII)系統,其包括圖4A-圖9描述的圖像傳感器9000。該系統可用於在例如海運集裝箱、車輛、輪船、行 李等傳輸系統中檢查和識別物品。系統包括X射線源1401。從X射線源1401發射的X射線可從物體1402(例如,海運集裝箱、車輛、輪船等)背散射並且被投射到圖像傳感器9000。物體1402的不同內部結構可有差異地背散射X射線。圖像傳感器9000通過檢測背散射X射線的強度分布和/或背散射X射線光子的能量來形成圖像。
圖13示意示出另一個貨物掃描或非侵入式檢查(NII)系統,其包括圖4A-圖9描述的圖像傳感器9000。系統可用於公交站和機場處的行李篩查。系統包括X射線源1501。從X射線源1501發射的X射線可穿過行李1502,由於行李的內含物而有差異地衰減並且被投射到圖像傳感器9000。圖像傳感器9000通過檢測透射的X射線的強度分布來形成圖像。系統可揭示行李的內含物並且識別公共交通上禁用的專案,例如槍支、毒品、鋒利武器、易燃物。
圖14示意示出全身掃描系統,其包括圖4A-圖9描述的圖像傳感器9000。該全身掃描系統可為了安全篩查目的來檢測人體上的物體而不物理脫衣或進行物理接觸。全身掃描系統可以能夠檢測非金屬物體。全身掃描系統包括X射線源1601。從X射線源1601發射的X射線可從被篩查的人1602和其上的物體背散射,並且被投射到圖像傳感器9000。物體和人體可有差異地背散射 X射線。圖像傳感器9000通過檢測背散射X射線的強度分布來形成圖像。圖像傳感器9000和X射線源1601可配置成直線或旋轉方向上掃描人。
圖15示意示出X射線電腦斷層攝影(X射線CT)系統。X射線CT系統使用電腦處理的X射線來產生被掃描物體的特定區域的斷層攝影圖像(虛擬“切片”)。斷層攝影圖像在各種醫學學科中可用於診斷和治療目的,或用於缺陷檢測、失效分析、計量、組件分析和逆向工程。X射線CT系統包括圖4A-圖9描述的圖像傳感器9000和X射線源1701。圖像傳感器9000和X射線源1701可配置成沿一個或多個圓形或螺旋形路徑同步旋轉。
圖16示意示出電子顯微鏡。該電子顯微鏡包括電子源1801(也叫作電子槍),其配置成發射電子。電子源1801可具有各種發射機制,例如熱離子、光電陰極、冷發射或等離子體源。發射的電子經過電子光學系統1803,其可配置成使電子成形、加速或聚焦。電子然後到達樣本1802並且圖像檢測器可從其處形成圖像。電子顯微鏡可包括圖4A-圖9描述的圖像傳感器9000,用於進行能量色散X射線光譜分析(EDS)。EDS是用於樣本的元素分析或化學表征的分析技術。當電子入射在樣本上時,它們促使從樣本發射特征X射線。入射電子可激發樣本中原子的內殼層中的電子,從殼層逐出電子,同時在電子所在的地方形成電子空穴。來自外部較高能量殼層的電子然後填充該 空穴,並且較高能量殼層與較低能量殼層之間的能量差可采用X射線的形式釋放。從樣本發射的X射線的數量和能量可以被圖像傳感器9000測量。
這裏描述的圖像傳感器9000可具有其他應用,例如在X射線望遠鏡、X射線乳房攝影、工業X射線缺陷檢測、X射線顯微鏡或顯微放射攝影、X射線鑄件檢查、X射線無損檢驗、X射線焊縫檢查、X射線數位減影血管攝影等中。該圖像傳感器9000適於用來代替照相板、照相膠片、PSP板、X射線圖像增強器、閃爍體或另一個半導體X射線檢測器。
圖17A和圖17B各自示出根據實施例的電子系統121的部件圖。電子系統121可包括第一電壓比較器301、第二電壓比較器302、計數器320、開關305、電壓表306和控制器310。
第一電壓比較器301配置成將二極體300的電極的電壓與第一閾值比較。二極體可以是由第一摻雜區111、第二摻雜區113的離散區114中的一個和本征區112(可選)形成的二極體。備選地,第一電壓比較器301配置成將電觸點(例如,電觸點119B的離散部分)的電壓與第一閾值比較。第一電壓比較器301可配置成直接監測電壓,或通過使一段時間內流過二極體或電觸點的電流整合來計算電壓。第一電壓比較器301可由控制器310可控地啟動或停用。第一電壓比較器301可以是連續比較器。即,第一電壓比較器 301可配置成被連續啟動,並且連續監測電壓。配置為連續比較器的第一電壓比較器301使系統121錯過由入射X射線光子產生的信號的機會減少。配置為連續比較器的第一電壓比較器301在入射X射線強度相對高時尤其適合。第一電壓比較器301可以是鐘控比較器,其具有較低功耗的益處。配置為鐘控比較器的第一電壓比較器301可導致系統121錯過由一些入射X射線光子產生的信號。在入射X射線強度低時,錯過入射X射線光子的機會因為兩個連續光子之間的間隔相對長而較低。因此,配置為鐘控比較器的第一電壓比較器301在入射X射線強度相對低時尤其適合。第一閾值可以是一個入射X射線光子可在二極體或電阻器中產生的最大電壓的5-10%、10%-20%、20-30%、30-40%或40-50%。最大電壓可取決於入射X射線光子的能量(即,入射X射線的波長),X射線吸收層110的材料和其它因素。例如,第一閾值可以是50mV、100mV、150mV或200mV。
第二電壓比較器302配置成將電壓與第二閾值比較。第二電壓比較器302可配置成直接監測電壓,或通過使一段時間內流過二極體或電觸點的電流整合來計算電壓。第二電壓比較器302可以是連續比較器。第二電壓比較器302可由控制器310可控地啟動或停用。在停用第二電壓比較器302時,第二電壓比較器302的功耗可以是啟動第二電壓比較器302時的功耗的不到1%、不到5%、不到10%或不到20%。第二閾值的絕對值大於第一閾值的絕 對值。如本文使用的,術語實數x的“絕對值”或“模數”|x|是x的非負值而不考慮它的符號。即,。第二閾值可以是第一閾值的200%-300%。第二閾值可以是一個入射X射線光子可在二極體或電阻器中產生的最大電壓的至少50%。例如,第二閾值可以是100mV、150mV、200mV、250mV或300mV。第二電壓比較器302和第一電壓比較器310可以是相同部件。即,系統121可具有一個電壓比較器,其可以在不同時間將電壓與兩個不同閾值比較。
第一電壓比較器301或第二電壓比較器302可包括一個或多個運算放大器或任何其他適合的電路。第一電壓比較器301或第二電壓比較器302可具有高的速度以允許系統121在高的入射X射線通量下操作。然而,具有高的速度通常以功耗為代價。
計數器320配置成記錄到達二極體或電阻器的X射線光子的數目。計數器320可以是軟體部件(例如,電腦記憶體中存儲的數目)或硬體部件(例如,4017 IC和7490 IC)。
控制器310可以是例如微控制器和微處理器等硬體部件。控制器310配置成從第一電壓比較器301確定電壓的絕對值等於或超出第一閾值的絕對值(例如,電壓的絕對值從第一閾值的絕對閾值以下增加到等於或超過第一閾 值的絕對值的值)的時間啟動時間延遲。在這裏因為電壓可以是負的或正的而使用絕對值,這取決於是使用二極體的陰極還是陽極的電壓或使用哪個電觸點。控制器310可配置成:在第一電壓比較器301確定電壓的絕對值等於或超出第一閾值的絕對值的時間之前,保持停用第二電壓比較器302、計數器320和第一電壓比較器301的操作不需要的任何其他電路。時間延遲可在電壓變穩定(即,電壓的變化率大致為零)之前或之後終止。短語“電壓的變化率大致為零”意指電壓的時間變化小於0.1%/ns。短語“電壓的變化率大致為非零”意指電壓的時間變化是至少0.1%/ns。
控制器310可配置成在時間延遲期間(其包括開始和終止)啟動第二電壓比較器。在實施例中,控制器310配置成在時間延遲開始時啟動第二電壓比較器。術語“啟動”意指促使部件進入操作狀態(例如,通過發送諸如電壓脈沖或邏輯電平等信號、通過提供電力等)。術語“停用”意指促使部件進入非操作狀態(例如,通過發送諸如電壓脈沖或邏輯電平等信號、通過切斷電力等)。操作狀態可具有比非操作狀態更高的功耗(例如,高10倍、高100倍、高1000倍)。控制器310本身可被停用直到第一電壓比較器301的輸出在電壓的絕對值等於或超出第一閾值的絕對值時啟動控制器310。
如果在時間延遲期間第二電壓比較器302確定電壓的絕對值等於或超出第二閾值的絕對值,控制器310可配置成促使計數器320記錄的數字增加一。
控制器310可配置成促使電壓表306在時間延遲終止時測量電壓。控制器310可配置成使電極連接到電接地,以便使電壓重定並且使電極上累積的任何載荷子放電。在實施例中,電極在時間延遲終止後連接到電接地。在實施例中,電極在有限復位時期連接到電接地。控制器310可通過控制開關305而使電極連接到電接地。開關可以是電晶體,例如場效應電晶體(FET)。
在實施例中,系統121沒有類比濾波器網路(例如,RC網路)。在實施例中,系統121沒有類比電路。
電壓表306可將它測量的電壓作為類比或數位信號饋送給控制器310。
系統121可包括電容器模組309,其電連接到二極體300的電極或電觸點,其中電容器模組配置成從電極收集載荷子。電容器模組可以包括放大器的回饋路徑中的電容器。如此配置的放大器叫作電容跨阻放大器(CTIA)。CTIA通過防止放大器飽和而具有高的動態範圍並且通過限制信號路徑中的帶寬來提高信噪比。來自電極的載荷子在一段時間(“整合期”)(例如,如在圖18中示出的,在t0至t1或t1-t2之間)內在電容器上累積。在整合期終 止後,對電容器電壓采樣並且然後由重定開關將其重定。電容器模組可以包括直接連接到電極的電容器。
圖18示意示出由二極體或電阻器上入射的X射線光子產生的載荷子引起的流過電極的電流的時間變化(上曲線)和電極的電壓的對應時間變化(下曲線)。電壓可以是電流關於時間的整合。在時間t0,X射線光子撞擊二極體或電阻器,載荷子開始在二極體或電阻器中產生,電流開始流過二極體的電極或電阻器,並且電極或電觸點的電壓的絕對值開始增加。在時間t1,第一電壓比較器301確定電壓的絕對值等於或超出第一閾值V1的絕對值,並且控制器310啟動時間延遲TD1並且控制器310可在TD1開始時停用第一電壓比較器301。如果控制器310在t1之前被停用,在t1啟動控制器310。在TD1期間,控制器310啟動第二電壓比較器302。如這裏使用的術語在時間延遲“期間”意指開始和終止(即,結束)和中間的任何時間。例如,控制器310可在TD1終止時啟動第二電壓比較器302。如果在TD1期間,第二電壓比較器302確定在時間t2電壓的絕對值等於或超出第二閾值的絕對值,控制器310促使計數器320記錄的數字增加一。在時間te,X射線光子產生的所有載荷子漂移出X射線吸收層110。在時間ts,時間延遲TD1終止。在圖18的示例中,時間ts在時間te之後;即TD1在X射線光子產生的所有載荷子漂移出X射線吸收層110之後終止。電壓的變化率從而在ts大致為零。控制 器310可配置成在TD1終止時或在t2或中間的任何時間停用第二電壓比較器302。
控制器310可配置成促使電壓表306在時間延遲TD1終止時測量電壓。在實施例中,在電壓的變化率在時間延遲TD1終止後大致變為零之後,控制器310促使電壓表306測量電壓。該時刻的電壓與X射線光子產生的載荷子的數量成正比,其與X射線光子的能量有關。控制器310可配置成基於電壓表306測量的電壓確定X射線光子的能量。確定能量的一個方式是通過使電壓裝倉。計數器320對於每個倉可具有子計數器。在控制器310確定X射線光子的能量落在倉中時,控制器310可促使對於該倉的子計數器中記錄的數字增加一。因此,系統121可以能夠檢測X射線圖像並且可以能夠分辨每個X射線光子的X射線光子能量。
在TD1終止後,控制器310在復位期RST使電極連接到電接地以允許電極上累積的載荷子流到地面並且使電壓重定。在RST之後,系統121準備檢測另一個入射X射線光子。系統121在圖18的示例中可以應對的入射X射線光子的速率隱式地受限於1/(TD1+RST)。如果第一電壓比較器301被停用,控制器310可以在RST終止之前的任何時間啟動它。如果控制器310被停用,可在RST終止之前啟動它。
圖19示意示出在采用圖18中示出的方式操作的系統121中雜訊(例如,暗電流、背景輻射、散射X射線、螢光X射線、來自相鄰圖元的共用電荷)引起的流過電極的電流的時間變化(上曲線)和電極的電壓的對應時間變化(下曲線)。在時間t0,雜訊開始。如果雜訊未大到足以促使電壓的絕對值超出V1的絕對值,控制器310未啟動第二電壓比較器302。如果在時間t1雜訊大到足以促使電壓的絕對值超出V1的絕對值(由第一電壓比較器301確定),控制器310啟動時間延遲TD1並且控制器310可在TD1開始時停用第一電壓比較器301。在TD1期間(例如,在TD1終止時),控制器310啟動第二電壓比較器302。在TD1期間,雜訊不太可能大到足以促使電壓的絕對值超出V2的絕對值。因此,控制器310未促使計數器320記錄的數字增加。在時間te,雜訊結束。在時間ts,時間延遲TD1終止。控制器310可配置成在TD1終止時停用第二電壓比較器302。如果在TD1期間電壓的絕對值未超出V2的絕對值,控制器310可配置成未促使電壓表306測量電壓。在TD1終止後,控制器310在復位期RST使電極連接到電接地以允許電極上由於雜訊而累積的載荷子流到地面並且使電壓重定。因此,系統121在雜訊抑制方面可非常有效。
圖20示意示出當系統121操作來檢測處於比1/(TD1+RST)更高速率的入射X射線光子時由二極體或電阻器上入射的X射線光子產生的載荷子所引起 的流過電極的電流的時間變化(上曲線)和電極的電壓的對應時間變化(下曲線)。電壓可以是電流關於時間的整合。在時間t0,X射線光子撞擊二極體或電阻器,載荷子開始在二極體或電阻器中產生,電流開始流過二極體的電極或電阻器的電觸點,並且電極或電觸點的電壓的絕對值開始增加。在時間t1,第一電壓比較器301確定電壓的絕對值等於或超出第一閾值V1的絕對值,並且控制器310啟動比時間延遲TD1短的時間延遲TD2,並且控制器310可在TD2開始時停用第一電壓比較器301。如果控制器310在t1之前被停用,在t1啟動控制器310。在TD2期間(例如,在TD2終止時),控制器310啟動第二電壓比較器302。如果在TD2期間,第二電壓比較器302確定在時間t2電壓的絕對值等於或超出第二閾值的絕對值,控制器310促使計數器320記錄的數字增加一。在時間te,X射線光子產生的所有載荷子漂移出X射線吸收層110。在時間th,時間延遲TD2終止。在圖20的示例中,時間th在時間te之前;即TD2在X射線光子產生的所有載荷子漂移出X射線吸收層110之前終止。電壓的變化率從而在th大致為非零。控制器310可配置成在TD2終止時或在t2或中間的任何時間停用第二電壓比較器302。
控制器310可配置成從在TD2期間作為時間函數的電壓推斷在te的電壓並且使用推斷的電壓來確定X射線光子的能量。
在TD2終止後,控制器310在復位期RST使電極連接到電接地以允許電極上累積的載荷子流到地面並且使電壓重定。在實施例中,RST在te之前終止。當RST在te之前終止時,RST之後電壓的變化率可因為X射線光子產生的所有載荷子未漂移出X射線吸收層110而大致為非零。電壓的變化率在te後大致變為零並且電壓在te後穩定為殘余電壓VR。在實施例中,RST在te或te之後終止,並且RST之後電壓的變化率可因為X射線光子產生的所有載荷子在te漂移出X射線吸收層110而大致為零。在RST之後,系統121準備檢測另一個入射X射線光子。如果第一電壓比較器301被停用,控制器310可以在RST終止之前的任何時間啟動它。如果控制器310被停用,可在RST終止之前啟動它。
圖21示意示出在采用圖20中示出的方式操作的系統121中雜訊(例如,暗電流、背景輻射、散射X射線、螢光X射線、來自相鄰圖元的共用電荷)引起的流過電極的電流的時間變化(上曲線)和電極的電壓的對應時間變化(下曲線)。在時間t0,雜訊開始。如果雜訊未大到足以促使電壓的絕對值超出V1的絕對值,控制器310未啟動第二電壓比較器302。如果在時間t1雜訊大到足以促使電壓的絕對值超出V1的絕對值(由第一電壓比較器301確定),控制器310啟動時間延遲TD2並且控制器310可在TD2開始時停用第一電壓比較器301。在TD2期間(例如,在TD2終止時),控制器310啟動 第二電壓比較器302。在TD2期間雜訊不太可能大到足以促使電壓的絕對值超出V2的絕對值。因此,控制器310未促使計數器320記錄的數字增加。在時間te,雜訊結束。在時間th,時間延遲TD2終止。控制器310可配置成在TD2終止時停用第二電壓比較器302。在TD2終止後,控制器310在復位期RST使電極連接到電接地以允許電極上由於雜訊而累積的載荷子流到地面並且使電壓重定。因此,系統121在雜訊抑制方面可非常有效。
圖22示意示出在采用圖20中示出的方式(其中RST在te之前終止)操作的系統121中由二極體或電阻器上入射的一系列X射線光子產生的載荷子所引起的流過電極的電流的時間變化(上曲線)和電極電壓的對應時間變化(下曲線)。由每個入射X射線光子產生的載荷子引起的電壓曲線在該光子之前偏移了殘余電壓。殘余電壓的絕對值隨每個入射光子而依次增加。當殘余電壓的絕對值超出V1時(見圖22中的虛線矩形),控制器啟動時間延遲TD2並且控制器310可在TD2開始時停用第一電壓比較器301。如果在TD2期間在二極體或電阻器上沒有其它X射線光子入射,控制器在TD2結束時在復位時期RST期間使電極連接到電接地,由此使殘余電壓重定。殘余電壓從而未促使計數器320記錄的數字增加。
盡管本文公開各種方面和實施例,其他方面和實施例對於本領域內技術人員將變得明顯。本文公開的各種方面和實施例是為了說明目的而不意在為限制性的,其真正範圍和精神由下列權利要求指示。

Claims (31)

  1. 包括下述各項的圖像傳感器:多個X射線檢測器;驅動器,其被配置成將多個X射線檢測器移動到多個位置,其中所述圖像傳感器被配置為分別在所述位置處通過使用所述檢測器來拍攝場景的部分的圖像,並被配置為通過對所述部分的圖像進行拼接而形成所述場景的圖像。
  2. 如申請專利範圍1之圖像傳感器,其中,所述多個X射線檢測器被間隔開。
  3. 如申請專利範圍1之圖像傳感器,其包括具有多個X射線透射區和X射線阻擋區的準直器;其中,所述X射線阻擋區被配置成阻擋X射線(否則其入射到圖像傳感器的死區),並且所述X射線透射區被配置為允許至少一部分X射線入射到所述圖像傳感器的活躍區。
  4. 如申請專利範圍3之圖像傳感器,其中所述驅動器被配置為:這樣移動所述準直器,以使得X射線檢測器和X射線透射區以及X射線阻擋區的對準在所述位置處得到保持。
  5. 如申請專利範圍1之圖像傳感器,其中,所述多個X射線檢測器中的至少一些以交錯的行排列。
  6. 如申請專利範圍5之圖像傳感器,其中同一行中的X射線檢測器的大小均勻;其中同一行的兩個相鄰的X射線檢測器之間的距離大於同一行的X射線檢測器沿該行的延伸方向的寬度,並小於所述寬度的兩倍。
  7. 如申請專利範圍1之圖像傳感器,其中所述X射線檢測器的活躍區在所述位置處細分所述場景。
  8. 如申請專利範圍1之圖像傳感器,其中,所述驅動器包括機械臂。
  9. 如申請專利範圍1之圖像傳感器,其中,所述多個X射線檢測器中的至少一些包括多層檢測器。
  10. 如申請專利範圍1之圖像傳感器,其中,所述多個X射線檢測器中的至少一些是矩形。
  11. 如申請專利範圍1之圖像傳感器,其中,所述多個X射線檢測器中的至少一些是六邊形。
  12. 如申請專利範圍1之圖像傳感器,其中,所述驅動器包括被配置為確定所述位置的控制單元。
  13. 如申請專利範圍1之圖像傳感器,其中,所述多個X射線檢測器中的至少一個包括X射線吸收層和電子層;其中所述X射線吸收層包括電極;其中所述電子層包括電子系統;其中所述電子系統包括:第一電壓比較器,其被配置為將電極的電壓與第一閾值進行比較,第二電壓比較器,其被配置為將所述電壓與第二閾值進行比較,計數器,其被配置為記錄到達X射線吸收層的X射線光子數;以及控制器;其中,所述控制器被配置為:從所述第一電壓比較器確定所述電壓的絕對值等於或超過所述第一閾值的絕對值的時刻開始時間延遲;其中,所述控制器被配置為在所述時延期間激活所述第二電壓比較器; 其中,所述控制器被配置為:如果所述第二電壓比較器確定所述電壓的絕對值等於或超過所述第二閾值的絕對值,則使由所述計數器記錄的數字增加1。
  14. 如申請專利範圍13之圖像傳感器,其中所述電子系統還包括電連接到所述電極的電容器模塊,其中,所述電容模塊配置為收集來自所述電極的載荷子。
  15. 如申請專利範圍13之圖像傳感器,其中,所述控制器被配置為在所述時間延遲開始或結束時激活所述第二電壓比較器。
  16. 如申請專利範圍13之圖像傳感器,其中,所述電子系統還包括電壓表,其中所述控制器被配置為在所述時延期滿時使所述電壓表測量電壓。
  17. 如申請專利範圍13之圖像傳感器,其中,所述控制器被配置為基於時間延遲終止時測量的電壓的值確定X射線光子能量。
  18. 如申請專利範圍13之圖像傳感器,其中,所述控制器被配置為將所述電極連接到電接地。
  19. 如申請專利範圍13之圖像傳感器,其中,所述電壓的變化率在時間延遲終止時基本為零。
  20. 如申請專利範圍13之圖像傳感器,其中,所述電壓的變化率在時間延遲終止時基本上為非零。
  21. 包括申請專利範圍1之圖像傳感器和X射線源的系統,其中,所述系統被配置為對人體胸部或腹部進行X射線照相。
  22. 包括申請專利範圍1之圖像傳感器和X射線源的系統,其中,所述系統被配置為對人的嘴巴進行X射線照相。
  23. 貨物掃描或非侵入性檢查(NII)系統,其包括申請專利範圍1之圖像傳感器和X射線源,其中,所述貨物掃描或非侵入性檢查(NII)系統被配置成使用背散射X射線形成圖像。
  24. 貨物掃描或非侵入性檢查(NII)系統,其包括申請專利範圍1之圖像傳感器和X射線源,其中,所述貨物掃描或非侵入性檢查(NII)系統被配置成使用穿過被檢查的物體的X射線形成圖像。
  25. 包括申請專利範圍1之圖像傳感器和X射線源的全身掃描系統。
  26. X射線電腦斷層攝影(X射線CT)系統,其包括申請專利範圍1之圖像傳感器和X射線源。
  27. 包括申請專利範圍1之圖像傳感器、電子源和電子光學系統的電子顯微鏡。
  28. 包括申請專利範圍1之圖像傳感器的系統,其中所述系統是X射線望遠鏡或X射線顯微鏡,或其中所述系統被配置成進行乳房放射攝影、工業缺陷檢測、顯微放射攝影、鑄件檢查、焊縫檢查或數位減影血管攝影。
  29. 使用包括多個X射線檢測器的圖像傳感器來形成場景圖像的方法,該方法包括:通過將所述X射線檢測器定位到第一位置,拍攝所述場景的第一部分的第一圖像;通過將所述X射線檢測器定位到第二位置,拍攝所述場景的第二部分的第二圖像;通過至少對所述第一圖像和所述第二圖像進行拼接而形成所述場景的圖像。
  30. 如申請專利範圍29之方法,其中,所述第一和第二圖像具有空間重疊。
  31. 如申請專利範圍29之方法,其中所述圖像傳感器還包括準直器;其中所述方法還包括:在拍攝所述第一圖像和所述第二圖像之前,對所述準直器進行定位。
TW106144630A 2016-12-20 2017-12-19 具有x射線檢測器的圖像傳感器 TWI776834B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??PCT/CN2016/110937 2016-12-20
PCT/CN2016/110937 WO2018112721A1 (en) 2016-12-20 2016-12-20 Image sensors having x-ray detectors
WOPCT/CN2016/110937 2016-12-20

Publications (2)

Publication Number Publication Date
TW201824855A true TW201824855A (zh) 2018-07-01
TWI776834B TWI776834B (zh) 2022-09-11

Family

ID=62624105

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106144630A TWI776834B (zh) 2016-12-20 2017-12-19 具有x射線檢測器的圖像傳感器

Country Status (5)

Country Link
US (1) US11224388B2 (zh)
EP (1) EP3558124A4 (zh)
CN (1) CN109996494B (zh)
TW (1) TWI776834B (zh)
WO (1) WO2018112721A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093239A1 (en) * 2018-11-06 2020-05-14 Shenzhen Xpectvision Technology Co., Ltd. Apparatus for imaging the prostate
CN112534247A (zh) * 2018-07-27 2021-03-19 深圳帧观德芯科技有限公司 多源锥束计算机断层扫描
TWI815208B (zh) * 2020-11-25 2023-09-11 大陸商深圳幀觀德芯科技有限公司 成像方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112449685B (zh) * 2018-07-12 2023-08-01 深圳帧观德芯科技有限公司 辐射检测器
EP3846694A4 (en) * 2018-09-07 2022-03-30 Shenzhen Xpectvision Technology Co., Ltd. DEVICE AND METHOD FOR IMAGING AN OBJECT BY RADIATION
EP3852631A4 (en) * 2018-09-19 2022-04-13 Shenzhen Xpectvision Technology Co., Ltd. IMAGING PROCESS
EP3877780A4 (en) 2018-11-06 2022-06-22 Shenzhen Xpectvision Technology Co., Ltd. IMAGE SENSORS WITH RADIATION DETECTORS AND MASKS
CN113287299A (zh) * 2019-01-10 2021-08-20 深圳帧观德芯科技有限公司 一种具有不同方向辐射检测器的图像传感器
WO2020198928A1 (en) * 2019-03-29 2020-10-08 Shenzhen Xpectvision Technology Co., Ltd. An image sensor having a calibration pattern
CN113543712B (zh) * 2019-03-29 2024-02-02 深圳帧观德芯科技有限公司 一种带有辐射检测器和准直器的图像传感器
CN111293131B (zh) * 2020-02-20 2021-06-04 中国科学院深圳先进技术研究院 X射线探测器及其制备方法
EP4111236A4 (en) * 2020-02-26 2023-12-06 Shenzhen Xpectvision Technology Co., Ltd. IMAGE SENSORS AND METHODS OF OPERATING THE SAME
CN114902080A (zh) * 2020-02-26 2022-08-12 深圳帧观德芯科技有限公司 成像系统及其操作方法
WO2022109870A1 (en) * 2020-11-25 2022-06-02 Shenzhen Xpectvision Technology Co., Ltd. Imaging methods using an image sensor with multiple radiation detectors
CN116669632A (zh) * 2021-01-05 2023-08-29 深圳帧观德芯科技有限公司 使用多辐射束的成像方法
EP4308976A1 (en) * 2021-03-19 2024-01-24 Shenzhen Xpectvision Technology Co., Ltd. Image sensor
CN115835820A (zh) * 2021-04-23 2023-03-21 深圳帧观德芯科技有限公司 使用具有多个辐射检测器的图像传感器的成像方法
US11948285B2 (en) * 2021-07-06 2024-04-02 Shenzhen Xpectvision Technology Co., Ltd. Imaging systems with multiple radiation sources
WO2024007185A1 (en) * 2022-07-06 2024-01-11 Shenzhen Xpectvision Technology Co., Ltd. Imaging method with magnetic positioning of radiation source

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315157A (en) * 1980-05-01 1982-02-09 The University Of Alabama In Birmingham Multiple beam computed tomography (CT) scanner
US4394676A (en) * 1980-12-17 1983-07-19 Agouridis Dimitrios C Photovoltaic radiation detector element
US5864146A (en) * 1996-11-13 1999-01-26 University Of Massachusetts Medical Center System for quantitative radiographic imaging
US7045787B1 (en) * 1995-10-23 2006-05-16 Science Applications International Corporation Density detection using real time discrete photon counting for fast moving targets
US6236051B1 (en) * 1998-03-27 2001-05-22 Kabushiki Kaisha Toshiba Semiconductor radiation detector
US6175609B1 (en) * 1999-04-20 2001-01-16 General Electric Company Methods and apparatus for scanning an object in a computed tomography system
US6823044B2 (en) * 2001-11-21 2004-11-23 Agilent Technologies, Inc. System for collecting multiple x-ray image exposures of a sample using a sparse configuration
EP1316818A3 (en) * 2001-12-03 2012-04-11 Hitachi, Ltd. Radiological imaging apparatus
WO2003084407A1 (en) * 2002-04-11 2003-10-16 J. Morita Manufacturing Corporation X-ray ct tomographic equipment
US7649981B2 (en) * 2003-10-15 2010-01-19 Varian Medical Systems, Inc. Multi-energy x-ray source
DE102004049917A1 (de) * 2004-10-13 2006-04-20 Siemens Ag Röntgendetektoreinrichtung und Verfahren zum Herstellen einer Röntgendetektoreinrichtung
US7835877B2 (en) * 2006-02-24 2010-11-16 General Electric Company Processes and apparatus for battery compensation
JP4881071B2 (ja) * 2006-05-30 2012-02-22 株式会社日立製作所 放射線検出器、及びこれを搭載した放射線撮像装置
US8237128B2 (en) * 2006-12-13 2012-08-07 Koninklijke Philips Electronics N.V. Apparatus, imaging device and method for counting X-ray photons
US7555100B2 (en) * 2006-12-20 2009-06-30 Carestream Health, Inc. Long length imaging using digital radiography
US8260019B2 (en) * 2007-08-17 2012-09-04 General Electric Company Methods and apparatus for data communication across a slip ring
US8213572B2 (en) * 2009-08-11 2012-07-03 Minnigh Todd R Retrofitable long-length digital radiography imaging apparatus and method
US8351568B2 (en) * 2009-09-11 2013-01-08 Carestream Health, Inc. Long length multiple detector imaging apparatus and method
DE102009055807B4 (de) * 2009-11-26 2016-11-24 Siemens Healthcare Gmbh Schaltungsanordnung zur Zählung von Röntgenquanten einer Röntgenstrahlung mittels quantenzählender Detektoren sowie anwendungsspezifische integrierte Schaltung und Strahler-Detektor-System
US20120307967A1 (en) * 2011-06-06 2012-12-06 Steven Winn Smith Reduced Width Body Scanner
US10987069B2 (en) * 2012-05-08 2021-04-27 Spectrum Dynamics Medical Limited Nuclear medicine tomography systems, detectors and methods
US20140064446A1 (en) * 2012-09-06 2014-03-06 General Electric Company X-ray absorptiometry using solid-state photomultipliers
KR20140132098A (ko) * 2013-05-07 2014-11-17 삼성전자주식회사 엑스선 검출기, 이를 포함하는 엑스선 영상 장치 및 그 제어 방법
US9466638B2 (en) * 2014-10-07 2016-10-11 Terapede Systems Inc. Seemless tiling and high pixel density in a 3D high resolution x-ray sensor with integrated scintillator grid for low noise and high image quality
EP3059613A1 (en) * 2015-02-23 2016-08-24 Institut de Física d'Altes Energies Photon counting
JP6554554B2 (ja) * 2015-04-07 2019-07-31 シェンゼン・エクスペクトビジョン・テクノロジー・カンパニー・リミテッド 半導体x線検出器
KR102126510B1 (ko) * 2015-04-22 2020-06-24 삼성전자주식회사 엑스선 장치 및 시스템

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534247A (zh) * 2018-07-27 2021-03-19 深圳帧观德芯科技有限公司 多源锥束计算机断层扫描
TWI808201B (zh) * 2018-07-27 2023-07-11 大陸商深圳幀觀德芯科技有限公司 多源錐束電腦斷層掃描及其使用方法
US11921056B2 (en) 2018-07-27 2024-03-05 Shenzhen Xpectvision Technology Co., Ltd. Multi-source cone beam computed tomography
WO2020093239A1 (en) * 2018-11-06 2020-05-14 Shenzhen Xpectvision Technology Co., Ltd. Apparatus for imaging the prostate
CN112930485A (zh) * 2018-11-06 2021-06-08 深圳帧观德芯科技有限公司 一种前列腺成像装置
TWI821429B (zh) * 2018-11-06 2023-11-11 大陸商深圳幀觀德芯科技有限公司 一種前列腺成像裝置及其使用方法
TWI815208B (zh) * 2020-11-25 2023-09-11 大陸商深圳幀觀德芯科技有限公司 成像方法

Also Published As

Publication number Publication date
EP3558124A4 (en) 2020-08-12
TWI776834B (zh) 2022-09-11
WO2018112721A1 (en) 2018-06-28
EP3558124A1 (en) 2019-10-30
US20190069858A1 (en) 2019-03-07
CN109996494A (zh) 2019-07-09
US11224388B2 (en) 2022-01-18
CN109996494B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
TWI776834B (zh) 具有x射線檢測器的圖像傳感器
US11009614B2 (en) Semiconductor X-ray detector
US10712456B2 (en) Method of making semiconductor X-ray detectors
TWI744385B (zh) 半導體x射線檢測器的封裝
US11002863B2 (en) Systems with multiple layers of semiconductor X-ray detectors
TW201828463A (zh) 製作半導體x射線檢測器的方法
TW202018283A (zh) 圖像感測器、射線照相系統、貨物掃描或非侵入式檢查(nii)系統、全身掃描器系統、輻射電腦斷層攝影(輻射ct)系統、電子顯微鏡及成像系統
CN109661595B (zh) 半导体x射线检测器的封装
JP2020008587A (ja) 半導体x線検出器の製造方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent