TW201821377A - Liquid metal viscosity control of molten glass - Google Patents

Liquid metal viscosity control of molten glass Download PDF

Info

Publication number
TW201821377A
TW201821377A TW106137552A TW106137552A TW201821377A TW 201821377 A TW201821377 A TW 201821377A TW 106137552 A TW106137552 A TW 106137552A TW 106137552 A TW106137552 A TW 106137552A TW 201821377 A TW201821377 A TW 201821377A
Authority
TW
Taiwan
Prior art keywords
glass
conduit
heat transfer
liquid metal
flowing
Prior art date
Application number
TW106137552A
Other languages
Chinese (zh)
Inventor
蘇米 畢瓦司
布倫特 柯卡圖倫
麥可嘉也 西本
尤瑞 尤可夫斯基
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW201821377A publication Critical patent/TW201821377A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/094Means for heating, cooling or insulation
    • C03B7/096Means for heating, cooling or insulation for heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/084Tube mechanisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A method and apparatus for controlling the viscosity of a glass melt flowing through a glass processing conduit. The viscosity of the glass melt can be controlled by controlling the temperature and flow rate of a liquid metal, such as tin, flowing through the heat transfer conduit, which extends around at least a portion of the glass processing conduit.

Description

熔融玻璃的液體金屬黏度控制Liquid metal viscosity control of molten glass

本申請案依U.S.C. § 119主張美國臨時申請案序列第62/415,098號之優先權利益(申請日為2016年10月31日),本發明依賴於該申請之內容並且該申請全文以引用方式併入本文。The present application claims priority to U.S. Provisional Application Serial No. 62/415,098, filed on Jan. 31, s. Into this article.

本揭示案大體係關於用於控制熔融玻璃的黏度之設備及方法,更特定地,係關於將液體金屬使用為熱傳遞媒介的用於控制熔融玻璃的黏度之設備及方法。The apparatus and method for controlling the viscosity of molten glass, and more particularly, to an apparatus and method for controlling the viscosity of molten glass using liquid metal as a heat transfer medium.

在玻璃製品的生產中,例如用於顯示器應用的玻璃片(包含電視及手持裝置如電話及平板電腦),具有改良玻璃製造處理的效率的持續需求,包含延長該等處理中所使用的資本設施的有效壽命。在玻璃片製造處理(例如熔化下拉處理)中,玻璃形成主體在生產活動期間可經歷形狀上的逐漸改變。例如,作為曝露於升高溫度達延長時間段的結果,玻璃形成主體可經歷下垂。可藉由例如相對於覆蓋中間之熔融玻璃質量流改變覆蓋玻璃形成主體末端之熔融玻璃的相對質量流而抵銷此下垂。可藉由調整熔融玻璃抵達玻璃形成主體處的黏度來達到此種質量流改變。據此,需要具有強健且可靠的方式以控制玻璃製品生產期間熔融玻璃的黏度。In the production of glass products, such as glass sheets for display applications, including televisions and handheld devices such as telephones and tablets, there is a continuing need to improve the efficiency of glass manufacturing processes, including extending the capital facilities used in such processes. Effective life. In a glass sheet manufacturing process (eg, a melt down draw process), the glass forming body can undergo a gradual change in shape during production activities. For example, the glass forming body can experience sagging as a result of exposure to elevated temperatures for extended periods of time. This sagging can be counteracted by, for example, varying the relative mass flow of the molten glass covering the ends of the glass forming body relative to the molten glass mass flow covering the middle. This mass flow change can be achieved by adjusting the viscosity of the molten glass to the glass forming body. Accordingly, there is a need for a robust and reliable way to control the viscosity of molten glass during the production of glass articles.

於此揭露的實施例包含用於控制流經玻璃處理管道的玻璃熔體的黏度的方法。該方法包含以下步驟:使液體金屬流動經過熱傳遞管道,該熱傳遞管道繞著流經該玻璃處理管道的該玻璃熔體的至少一部分延伸。該方法也包含以下步驟:相對於流經該玻璃處理管道的該玻璃熔體的溫度及流速,控制流經該熱傳遞管道的該液體金屬的溫度及流速,以便控制流經該玻璃處理管道的該玻璃熔體的該黏度於預先決定範圍內。Embodiments disclosed herein include methods for controlling the viscosity of a glass melt flowing through a glass processing conduit. The method includes the steps of flowing a liquid metal through a heat transfer conduit that extends around at least a portion of the glass melt flowing through the glass processing conduit. The method also includes the steps of controlling the temperature and flow rate of the liquid metal flowing through the heat transfer conduit relative to the temperature and flow rate of the glass melt flowing through the glass processing conduit to control flow through the glass processing conduit The viscosity of the glass melt is within a predetermined range.

於此揭露的實施例也包含用於控制流經玻璃處理管道的玻璃熔體的黏度的設備。該設備包含:熱傳遞管道,該熱傳遞管道繞著玻璃處理管道的至少一部分延伸。該設備經配置以相對於流經該玻璃處理管道的該玻璃熔體的溫度及流速而控制流經該熱傳遞管道的液體金屬的溫度及流速,以便控制流經該玻璃處理管道的該玻璃熔體的該黏度於預先決定範圍內。Embodiments disclosed herein also include apparatus for controlling the viscosity of a glass melt flowing through a glass processing conduit. The apparatus includes a heat transfer conduit extending around at least a portion of the glass processing conduit. The apparatus is configured to control a temperature and a flow rate of liquid metal flowing through the heat transfer conduit relative to a temperature and a flow rate of the glass melt flowing through the glass processing conduit to control the glass melting through the glass processing conduit The viscosity of the body is within a predetermined range.

將在以下細節描述中提出於此揭露的實施例的額外特徵及優點,且部分對發明所屬領域具有通常知識者而言由說明書或藉由實踐如此處所描述之所揭露實施例來理解為顯而易見的,包含以下的詳細描述、申請專利範圍、以及所附圖式。Additional features and advantages of the disclosed embodiments will be set forth in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The following detailed description, the scope of the patent application, and the drawings are included.

應理解前述一般描述及以下詳細描述皆呈現實施例以意圖提供用於理解所主張的實施例的本質及特色的概觀或框架。包含所附圖式以提供進一步的理解,且併入及組成本說明書的一部分。圖式圖示了本揭示案的多種實施例,且與描述一同幫助說明本揭示案的原則及操作。It is to be understood that the foregoing general description The drawings are included to provide a further understanding and are incorporated in and constitute a part of this specification. The drawings illustrate various embodiments of the present disclosure, and together with the description, illustrate the principles and operation of the disclosure.

現在可詳細參考本揭示案的較佳實施例,在所附圖式中圖示該等實施例的實例。儘可能在圖式中使用相同參考數字來代表相同或相似零件。然而,可以許多不同形式來體現本揭示案且不應詮釋為限制此處所提出的實施例。Reference will now be made in detail to the preferred embodiments embodiments Wherever possible, the same reference numerals are used in the drawings to the However, the present disclosure may be embodied in many different forms and should not be construed as limiting the embodiments set forth herein.

此處可自「約」一個特定數值及/或至「約」另一特定數值來表示範圍。當表示該範圍時,另一實施例包含自該一個特定數值及/或至該另一特定數值。相似地,當表示數值為近似值時,例如藉由使用先行詞「約」,應理解為特定數值形成另一實施例。應進一步理解為每一範圍的端點相對於其他端點皆為有意義的且獨立於其他端點。Here, the range can be expressed by "about" a specific value and/or to "about" another specific value. When the range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when the value is an approximation, such as the use of the It should be further understood that the endpoints of each range are meaningful and independent of the other endpoints.

此處所使用的方向性用語(例如,上、下、右、左、前部、背部、頂部、底部)僅用以參考所繪製圖式且不意圖暗示絕對方位。The directional terms (eg, up, down, right, left, front, back, top, bottom) used herein are used merely to refer to the drawings and are not intended to imply an absolute orientation.

除非明白陳述,不意圖將此處任何提出的方法詮釋為需要將該等方法之步驟依特定順序來執行或需要任何設備處於特定方位。據此,當方法請求項並未真實描述該方法的步驟所遵循的順序、或任何設備請求項並未真實描述針對個別部件的順序或方位、或並未在請求項或說明書中特別陳述該等步驟限制於特定順序、或並未描述針對設備的部件的特定順序或方位時,並不意圖在任何方面推斷順序或方位。此針對任何可能的用於闡釋的非表示基礎而保持,包含:相關於步驟安排、操作流程、部件順序、或部件方位的邏輯問題;自語法組織或標點獲得的清楚意義,及;說明書中所描述的實施例的數量或類型。Except as expressly stated, it is not intended that any of the methods presented herein be interpreted as requiring that the steps of the methods be performed in a particular order or that the device is in a particular orientation. Accordingly, the method request item does not actually describe the order in which the steps of the method are followed, or any device request item does not actually describe the order or orientation of the individual components, or does not specifically recite such items in the claim or specification. The order is not intended to infer a sequence or orientation in any way, in a particular order, or a particular order or orientation of the components of the device. This is maintained for any possible non-representation basis for interpretation, including: logic issues related to step arrangement, operational flow, component order, or component orientation; clear meanings obtained from grammatical organization or punctuation, and; The number or type of embodiments described.

如此處所使用,單數形式的「一(a)」、「一(an)」、及「該(the)」包含複數所指,除非內文清楚反向規定。因此,例如,提及「一(a)」部件包含具有兩個或更多個該等部件的態樣,除非內文清楚反向指示。As used herein, the singular forms "a", "an", and "the" Thus, for example, reference to "a" or "a" or "an"

第1圖中所圖示為示範性玻璃製造設備10。在一些實例中,玻璃製造設備10可包括玻璃熔融爐12,玻璃熔融爐12可包含熔融容器14。除熔融容器14之外,可選地,玻璃熔融爐12可包含一個或更多個額外部件,例如加熱元件(例如,燃燒器或電極)以加熱原料及轉換原料成為熔融玻璃。在進一步的實例中,玻璃熔融爐12可包含熱管理裝置(例如,絕緣部件)以減低來自熔融容器附近的熱損耗。而更進一步的實例中,玻璃熔融爐12可包含電子裝置及/或機電裝置以便於熔融原料成為玻璃熔體。更進一步地,玻璃熔融爐12可包含支撐結構(例如,支撐機架、支撐構件等等)或其他部件。An exemplary glass manufacturing apparatus 10 is illustrated in FIG. In some examples, glass manufacturing apparatus 10 can include a glass melting furnace 12 that can include a melting vessel 14. In addition to the melting vessel 14, optionally, the glass melting furnace 12 may include one or more additional components, such as heating elements (eg, burners or electrodes) to heat the feedstock and convert the feedstock to molten glass. In a further example, the glass melting furnace 12 can include a thermal management device (eg, an insulating component) to reduce heat loss from near the molten vessel. In still further examples, the glass melting furnace 12 can include electronics and/or electromechanical devices to facilitate melting the feedstock into a glass melt. Still further, the glass melting furnace 12 can include support structures (eg, support frames, support members, etc.) or other components.

玻璃熔融容器14典型地由耐火材料組成,例如耐火陶瓷材料,例如,包括礬土或氧化鋯的耐火陶瓷材料。在一些實例中,玻璃熔融容器14可由耐火陶瓷磚建構。將在下文更詳細描述玻璃熔融容器14的特定實施例。The glass melting vessel 14 is typically comprised of a refractory material, such as a refractory ceramic material, for example, a refractory ceramic material including alumina or zirconia. In some examples, the glass melting vessel 14 can be constructed from refractory ceramic tiles. Particular embodiments of the glass melting vessel 14 will be described in greater detail below.

在一些實例中,可併入玻璃熔融爐為玻璃製造設備的一部件以製造玻璃基板,例如,連續長度的玻璃帶。在一些實例中,可併入本揭示案的玻璃熔融爐為玻璃製造設備的一部件,包括插槽拉動設備、浮浴設備、下拉設備例如熔化處理、上拉設備、壓滾設備、管拉設備或任何其他自於此揭露態樣獲益的玻璃製造設備。舉例而言,第1圖示意地將玻璃熔融爐12圖示為熔化下拉玻璃製造設備10的一部件以用於熔化拉動玻璃帶以供後續處理成個別玻璃片。In some examples, a glass melting furnace can be incorporated into a component of a glass manufacturing facility to make a glass substrate, such as a continuous length of glass ribbon. In some examples, a glass melting furnace that can be incorporated into the present disclosure is a component of a glass manufacturing apparatus, including a slot pull device, a float bath device, a pull down device such as a melt process, a pull up device, a roll roll device, a tube pull device Or any other glass manufacturing equipment that benefits from this exposure. By way of example, Figure 1 schematically illustrates the glass melting furnace 12 as a component of the melt down glass manufacturing apparatus 10 for melting the glass ribbon for subsequent processing into individual glass sheets.

可選地,玻璃製造設備10(例如,熔化下拉設備10)可包含位於相對於玻璃熔融容器14上游的上游玻璃製造設備16。在一些實例中,可將上游玻璃製造設備16的一部分或整體併入為玻璃熔融爐12的部分。Alternatively, the glass making apparatus 10 (eg, the melt down apparatus 10) may include an upstream glass making apparatus 16 located upstream relative to the glass melting vessel 14. In some examples, a portion or the entirety of the upstream glass making apparatus 16 may be incorporated as part of the glass melting furnace 12.

如所圖示的實例中所展示,上游玻璃製造設備16可包含儲存槽18、原料輸送裝置20及連接至原料輸送裝置的馬達22。儲存槽18可經配置以儲存一數量的原料24,原料24可饋送進入玻璃熔融爐12的熔融容器14,如箭頭26所指示。原料24典型地包括一種或更多種玻璃形成金屬氧化物及一種或更多種修飾劑。在一些實例中,原料輸送裝置20可由馬達22供電,使得原料輸送裝置20自儲存槽18輸送預先決定量的原料24至熔融容器14。在進一步的實例中,馬達22可對原料輸送裝置20供電而基於自熔融容器14下游所感應的熔融玻璃的位階以控制的速率導入原料24。其後可加熱熔融容器14內的原料24以形成熔融玻璃28。As shown in the illustrated example, the upstream glass manufacturing apparatus 16 can include a storage tank 18, a feedstock delivery device 20, and a motor 22 coupled to the feedstock delivery device. The storage tank 18 can be configured to store a quantity of feedstock 24 that can be fed into the molten vessel 14 of the glass melting furnace 12 as indicated by arrow 26. Feedstock 24 typically includes one or more glass forming metal oxides and one or more modifiers. In some examples, the feedstock delivery device 20 can be powered by the motor 22 such that the feedstock delivery device 20 delivers a predetermined amount of feedstock 24 from the storage tank 18 to the melt vessel 14. In a further example, motor 22 can supply raw material delivery device 20 with a feed rate 24 at a controlled rate based on the order of molten glass induced downstream of molten vessel 14. Thereafter, the raw material 24 in the melting vessel 14 can be heated to form the molten glass 28.

可選地,玻璃製造設備10也可包含位於相對於玻璃熔融爐12下游的下游玻璃製造設備30。在一些實例中,可將下游玻璃製造設備30的一部分併入為玻璃熔融爐12的部分。在一些例子中,可將下文論述的第一連接管道32、或下游玻璃製造設備30的其他部分併入為玻璃熔融爐12的部分。可由貴金屬形成下游玻璃製造設備的元件(包含第一連接管道32)。合適的貴金屬包含自以下所組成的金屬群組所選擇的鉑系金屬:鉑、銥、銠、鋨、釕及鈀、或其合金。例如,玻璃製造設備的下游部件可由鉑-銠合金形成,包含重量自約70%至約90%的鉑及約10%至約30%的銠。然而,其他合適的金屬可包含鉬、鈀、錸、鉭、鈦、鎢、及其合金。Alternatively, the glass making apparatus 10 may also include a downstream glass making apparatus 30 located downstream of the glass melting furnace 12. In some examples, a portion of the downstream glass making apparatus 30 can be incorporated as part of the glass melting furnace 12. In some examples, the first connecting conduit 32 discussed below, or other portions of the downstream glass making apparatus 30, may be incorporated as part of the glass melting furnace 12. The elements of the downstream glass making equipment (including the first connecting conduit 32) may be formed from a precious metal. Suitable noble metals comprise platinum group metals selected from the group consisting of platinum, rhodium, ruthenium, osmium, iridium, and palladium, or alloys thereof. For example, the downstream components of the glass making equipment can be formed from a platinum-rhodium alloy comprising from about 70% to about 90% platinum and from about 10% to about 30% rhodium. However, other suitable metals may include molybdenum, palladium, rhodium, iridium, titanium, tungsten, and alloys thereof.

下游玻璃製造設備30可包含第一調節(亦即,處理)容器,例如澄清容器34,位於熔融容器14的下游且藉由上述第一連接管道32耦合至熔融容器14。在一些實例中,熔融玻璃28可藉由第一連接管道32自熔融容器14重力饋送至澄清容器34。例如,重力可造成熔融玻璃28自熔融容器14穿過第一連接管道32的內部通路至澄清容器34。然而,應理解:其他調節容器可位於熔融容器14的下游,例如介於熔融容器14及澄清容器34之間。在一些實施例中,可在熔融容器及澄清容器之間施用調節容器,其中進一步加熱來自主要熔融容器的熔融玻璃以持續熔融處理,或在進入澄清容器之前冷卻至低於熔融容器中的熔融玻璃的溫度之一溫度。The downstream glass making apparatus 30 can include a first conditioning (i.e., processing) vessel, such as a clarification vessel 34, downstream of the melting vessel 14 and coupled to the melting vessel 14 by the first connecting conduit 32 described above. In some examples, the molten glass 28 can be gravity fed from the melting vessel 14 to the clarification vessel 34 by the first connecting conduit 32. For example, gravity can cause the molten glass 28 to pass from the inner passage of the first connecting conduit 32 from the melting vessel 14 to the clarification vessel 34. However, it should be understood that other conditioning vessels may be located downstream of the melting vessel 14, such as between the melting vessel 14 and the clarification vessel 34. In some embodiments, the conditioning vessel can be applied between the molten vessel and the clarification vessel, wherein the molten glass from the primary melting vessel is further heated to continue the melt processing, or cooled to a lower temperature than the molten glass in the molten vessel prior to entering the clarification vessel One of the temperatures of the temperature.

可藉由多種技術在澄清容器34內自熔融玻璃28移除氣泡。例如,原料24可包含多原子價的化合物(亦即,澄清劑),例如氧化錫,該等多原子價的化合物當被加熱時,經受化學還原反應且釋放氧氣。其他合適的澄清劑包含但不限於:砷、銻、鐵及鈰。加熱澄清容器34至大於熔融容器溫度的一溫度,因而加熱熔融玻璃及澄清劑。由一種或多種澄清劑的溫度誘發化學還原所產生的氧氣氣泡在澄清容器內上升穿過熔融玻璃,其中熔融爐中所產生的熔融玻璃中的氣體可擴散或合流進入澄清劑所產生的氧氣氣泡。變大的氣體氣泡接著可上升至澄清容器中的熔融玻璃的自由表面,其後排出澄清容器。氧氣氣泡可進一步誘發澄清容器中的熔融玻璃的機械混和。Air bubbles can be removed from the molten glass 28 within the clarification vessel 34 by a variety of techniques. For example, feedstock 24 may comprise a polyvalent valence compound (i.e., a fining agent), such as tin oxide, which, when heated, undergoes a chemical reduction reaction and releases oxygen. Other suitable fining agents include, but are not limited to, arsenic, antimony, iron, and antimony. The clarification vessel 34 is heated to a temperature greater than the temperature of the molten vessel, thereby heating the molten glass and the fining agent. The oxygen bubbles generated by the temperature-induced chemical reduction of the one or more fining agents rise through the molten glass in the clarification vessel, wherein the gas in the molten glass produced in the melting furnace can diffuse or merge into the oxygen bubbles generated by the clarifying agent . The enlarged gas bubbles can then rise to the free surface of the molten glass in the clarification vessel, after which it exits the clarification vessel. Oxygen bubbles can further induce mechanical mixing of the molten glass in the clarification vessel.

下游玻璃製造設備30可進一步包含另一調節容器,例如用於混和熔融玻璃的混和容器36。混和容器36可位於澄清容器34的下游。可使用混和容器36以提供均質玻璃熔體組合物,因而減少了離開澄清容器的澄清熔融玻璃內可存在的具有化學或熱非均質性的索。如所展示,澄清容器34可藉由第二連接管道38耦合至混和容器36。在一些實例中,熔融玻璃28可藉由第二連接管道38自澄清容器34重力饋送至混和容器36。例如,重力可造成熔融玻璃28自澄清容器34穿過第二連接管道38的內部通路至混和容器36。應注意:儘管混和容器36被圖示於澄清容器34的下游,混和容器36可位於澄清容器34的上游。在一些實施例中,下游玻璃製造設備30可包含多個混和容器,例如澄清容器34上游的混和容器及澄清容器34下游的混和容器。該多個混和容器可為相同設計,或可為不同設計。The downstream glass making apparatus 30 may further comprise another conditioning vessel, such as a mixing vessel 36 for mixing molten glass. The mixing vessel 36 can be located downstream of the clarification vessel 34. Mixing vessel 36 can be used to provide a homogeneous glass melt composition, thereby reducing the presence of chemically or thermally heterogeneous cords that may be present in the clarified molten glass exiting the clarification vessel. As shown, the clarification vessel 34 can be coupled to the mixing vessel 36 by a second connecting conduit 38. In some examples, the molten glass 28 can be gravity fed from the clarification vessel 34 to the mixing vessel 36 by a second connecting conduit 38. For example, gravity can cause the molten glass 28 to pass from the clarification vessel 34 through the internal passage of the second connecting conduit 38 to the mixing vessel 36. It should be noted that although the mixing vessel 36 is illustrated downstream of the clarification vessel 34, the mixing vessel 36 may be located upstream of the clarification vessel 34. In some embodiments, the downstream glass making apparatus 30 can include a plurality of mixing vessels, such as a mixing vessel upstream of the clarification vessel 34 and a mixing vessel downstream of the clarification vessel 34. The plurality of mixing containers can be of the same design or can be of different designs.

下游玻璃製造設備30可進一步包含另一調節容器,例如可位於混和容器36下游的輸送容器40。輸送容器40可調節待饋送進入下游形成裝置的熔融玻璃28。例如,輸送容器40可作為累積器及/或流動控制器以藉由出口管道44調整及/或提供熔融玻璃28一致的流動至形成主體42。如所展示,混和容器36可藉由第三連接管道46耦合至輸送容器40。在一些實例中,熔融玻璃28可藉由第三連接管道46自混和容器36重力饋送至輸送容器40。例如,重力可驅動熔融玻璃28自混和容器36穿過第三連接管道46的內部通路至輸送容器40。The downstream glass making apparatus 30 may further comprise another conditioning vessel, such as a transport vessel 40 that may be located downstream of the mixing vessel 36. The delivery container 40 can regulate the molten glass 28 to be fed into the downstream forming device. For example, the delivery container 40 can act as an accumulator and/or flow controller to adjust and/or provide consistent flow of molten glass 28 to the forming body 42 by the outlet conduit 44. As shown, the mixing vessel 36 can be coupled to the delivery vessel 40 by a third connecting conduit 46. In some examples, the molten glass 28 can be gravity fed from the mixing container 36 to the delivery container 40 by a third connecting conduit 46. For example, gravity can drive the molten glass 28 from the internal passage of the mixing vessel 36 through the third connecting conduit 46 to the delivery vessel 40.

下游玻璃製造設備30可進一步包含形成設備48,該形成設備包括上述形成主體42及入口管道50。可放置出口管道44以自輸送容器40輸送熔融玻璃28至形成設備48的入口管道50。例如在實例中,出口管道44可嵌套於入口管道50的內表面內且與入口管道50的內表面間隔開,因而提供位於出口管道44的外表面與入口管道50的內表面之間的熔融玻璃的自由表面。在熔化下拉玻璃製造設備中的形成主體42可包括流槽52,流槽52位於形成主體的上表面中;以及收斂形成表面54,收斂形成表面54在拉動方向上沿著形成主體的底部邊緣56收斂。經由輸送容器40、出口管道44及入口管道50輸送至形成主體流槽的熔融玻璃溢出流槽的側壁且沿著收斂形成表面54下降成為熔融玻璃的分流。熔融玻璃的分流在下方及沿著底部邊緣56結合以產生單一玻璃帶58,藉由施加張力(例如藉由重力、邊緣滾輪72及拉輪82)至玻璃帶在拉動方向60上自底部邊緣56拉動玻璃帶58,以在玻璃冷卻及玻璃黏度增加時控制玻璃帶的尺寸。據此,玻璃帶58經過黏彈性轉換且獲得賦予玻璃帶58穩定尺寸特性的機械屬性。在一些實施例中,可藉由玻璃分離設備100在玻璃帶的彈性區域中將玻璃帶58分成個別玻璃片62。接著,機械手64可使用抓取工具65傳輸個別玻璃片62至輸送帶系統,因此可進一步在該輸送帶系統上處理個別玻璃片。The downstream glass manufacturing apparatus 30 may further include a forming apparatus 48 including the above-described forming body 42 and inlet duct 50. An outlet conduit 44 can be placed to deliver molten glass 28 from the transfer vessel 40 to the inlet conduit 50 forming the apparatus 48. For example, in an example, the outlet conduit 44 can be nested within the inner surface of the inlet conduit 50 and spaced from the inner surface of the inlet conduit 50, thereby providing melting between the outer surface of the outlet conduit 44 and the inner surface of the inlet conduit 50. The free surface of the glass. The forming body 42 in the melt-down glass manufacturing apparatus may include a launder 52 located in the upper surface forming the main body; and a converging forming surface 54 along the bottom edge 56 forming the main body in the pulling direction convergence. The transfer container 40, the outlet duct 44, and the inlet duct 50 are transported to the side wall of the molten glass overflow launder that forms the main body flow channel, and descends along the convergence forming surface 54 to become a shunt of the molten glass. The split of the molten glass joins below and along the bottom edge 56 to create a single glass ribbon 58 by applying tension (e.g., by gravity, edge roller 72 and puller 82) to the glass ribbon in the pull direction 60 from the bottom edge 56. The glass ribbon 58 is pulled to control the size of the glass ribbon as the glass cools and the glass viscosity increases. Accordingly, the glass ribbon 58 undergoes viscoelastic conversion and obtains mechanical properties that impart stable dimensional characteristics to the glass ribbon 58. In some embodiments, the glass ribbon 58 can be divided into individual glass sheets 62 in the elastic region of the glass ribbon by the glass separation apparatus 100. Next, the robot 64 can use the gripping tool 65 to transport the individual glass sheets 62 to the conveyor system so that individual glass sheets can be further processed on the conveyor system.

第2圖及第3圖分別圖示範例液體金屬系統150的前方及側面視圖,該系統用於控制流經形成設備48的入口管道50的玻璃熔體的黏度。在第2圖中所圖示的實施例中,液體金屬(例如液體錫)在第2圖及第3圖中的箭頭所指示的方向上流經熱傳遞管道156。特定地,藉由第一熱交換器162、第二熱交換器164、及第三熱交換器168之其中至少一者來加熱熱傳遞管道156(包含容器154)至至少約攝氏300度的溫度,例如至少約攝氏350度,且進一步例如約攝氏400度,包含自約攝氏300度至約攝氏1500度。2 and 3 illustrate front and side views, respectively, of an exemplary liquid metal system 150 for controlling the viscosity of the glass melt flowing through the inlet conduit 50 of the forming apparatus 48. In the embodiment illustrated in FIG. 2, liquid metal (e.g., liquid tin) flows through the heat transfer conduit 156 in the direction indicated by the arrows in Figures 2 and 3. Specifically, the heat transfer conduit 156 (including the vessel 154) is heated by at least one of the first heat exchanger 162, the second heat exchanger 164, and the third heat exchanger 168 to a temperature of at least about 300 degrees Celsius For example, at least about 350 degrees Celsius, and further, for example, about 400 degrees Celsius, including from about 300 degrees Celsius to about 1500 degrees Celsius.

例如,當使用錫為液體金屬時,加熱熱傳遞管道156(包含容器154)使得容器154內的錫的溫度超過其熔點攝氏232度,使得錫達到至少約攝氏250度的溫度,例如至少約攝氏300度,且進一步例如至少約攝氏350度,且進一步例如至少約攝氏400度的溫度,且更進一步例如至少約攝氏450度的溫度,且甚至更進一步例如至少約攝氏500度的溫度,包含自約攝氏250度至約攝氏1400度,例如自約攝氏750度至約攝氏1350度,且進一步例如自約攝氏1100度至約攝氏1300度。容器154可包含至少一個攪拌器,該攪拌器可賦予液體金屬更好的溫度均勻性以及改良其循環。For example, when tin is used as the liquid metal, the heat transfer conduit 156 (including the vessel 154) is heated such that the temperature of the tin within the vessel 154 exceeds its melting point by 232 degrees Celsius such that the tin reaches a temperature of at least about 250 degrees Celsius, such as at least about Celsius. 300 degrees, and further, for example, at least about 350 degrees Celsius, and further, for example, at least about 400 degrees Celsius, and further, for example, at least about 450 degrees Celsius, and even further, for example, at least about 500 degrees Celsius, including It is about 250 degrees Celsius to about 1400 degrees Celsius, for example, from about 750 degrees Celsius to about 1350 degrees Celsius, and further, for example, from about 1100 degrees Celsius to about 1300 degrees Celsius. The vessel 154 can include at least one agitator that imparts better temperature uniformity to the liquid metal and improves its circulation.

藉由例如自容器154重力饋送至熱傳遞管道156的區段158來經由熱傳遞管道156循環液體金屬(例如,液體錫),區段158經配置以繞著流經入口管道50的玻璃熔體的至少一部分延伸。在第2圖及第3圖中所圖示的實施例中,熱傳遞管道156的區段158以螺旋配置延伸經過熱傳導性材料160,其中熱傳導性材料160經配置以圓周地圍繞流經入口管道50的玻璃熔體。特定地,在第2圖及第3圖中所圖示的實施例中,熱傳遞管道156的區段158經配置以圓周地圍繞與形成主體42中介流體連通的入口管道50的實質水平部分。儘管第2圖及第3圖圖示了熱傳遞管道156以螺旋配置繞著玻璃熔體延伸,但是應理解於此揭露的實施例可包含其他配置,其中熱傳遞管道156經配置以繞著玻璃熔體的至少一部分延伸。The section 158 is configured to bypass the glass melt flowing through the inlet conduit 50 by, for example, gravity pumping a section 158 from the vessel 154 to the section 158 of the heat transfer conduit 156 to circulate liquid metal (eg, liquid tin) via the heat transfer conduit 156. At least part of it extends. In the embodiment illustrated in Figures 2 and 3, the section 158 of the heat transfer conduit 156 extends through the thermally conductive material 160 in a helical configuration, wherein the thermally conductive material 160 is configured to circumferentially surround the inlet conduit 50 glass melt. In particular, in the embodiments illustrated in FIGS. 2 and 3, the section 158 of the heat transfer conduit 156 is configured to circumferentially surround a substantially horizontal portion of the inlet conduit 50 that is in fluid communication with the forming body 42. Although FIGS. 2 and 3 illustrate the heat transfer conduit 156 extending around the glass melt in a spiral configuration, it should be understood that the disclosed embodiments may include other configurations in which the heat transfer conduit 156 is configured to surround the glass. At least a portion of the melt extends.

熱傳導性材料160(非為限制)可包括在高於至少約攝氏1000度,例如高於至少約攝氏1100度,且進一步例如高於至少約攝氏1200度,且更進一步例如高於至少約攝氏1300度的溫度,例如約攝氏1000度至約攝氏1500度的範圍內的溫度時在化學上及機械上穩定,同時仍維持將致能玻璃熔體與熱傳遞管道156之間穩定及相對均勻的熱傳遞的熱傳導屬性的材料。示範的熱傳導性材料可包括高傳導性礬土材料,例如可由CoorsTek取得的AD995礬土(99.5% Al2 O3 )。可選地,熱傳導性材料可被至少一種熱絕緣性材料(未圖示)圍繞,該材料在升高溫度時為化學上及機械上穩定的。Thermally conductive material 160 (not limited) can be included at least above 1000 degrees Celsius, such as above at least about 1100 degrees Celsius, and further, for example, above at least about 1200 degrees Celsius, and further, for example, above at least about 1300 degrees Celsius. Temperatures, such as temperatures ranging from about 1000 degrees Celsius to about 1500 degrees Celsius, are chemically and mechanically stable while still maintaining a stable and relatively uniform heat between the enabled glass melt and the heat transfer conduit 156. The material that conveys the thermal conductivity properties. Exemplary thermally conductive materials may include highly conductive alumina materials such as AD995 alumina (99.5% Al 2 O 3 ) available from CoorsTek. Alternatively, the thermally conductive material may be surrounded by at least one thermally insulating material (not shown) that is chemically and mechanically stable at elevated temperatures.

在某些示範性實施例中,熱傳遞管道156包括自鉑及鉬所組成群組所選擇的至少一種材料。在某些示範性實施例中,熱傳遞管道156包括鉬。例如,熱傳遞管道156可主要由鉬組成。也可使用抗氧化材料來塗佈熱傳遞管道156,例如可由Plansee SE購得的SIBOR® (Si-10B-2C)抗氧化塗料。In certain exemplary embodiments, heat transfer conduit 156 includes at least one material selected from the group consisting of platinum and molybdenum. In certain exemplary embodiments, heat transfer conduit 156 includes molybdenum. For example, heat transfer conduit 156 can be composed primarily of molybdenum. The heat transfer conduit 156 may also be coated with an oxidation resistant material such as the SIBOR ® (Si-10B-2C) antioxidant coating available from Plansee SE.

可經由泵166的操作經由熱傳遞管道156循環液體金屬。在某些示範性實施例中,泵166為電磁泵。當使用電磁泵且使用錫為液體金屬時,需要流經泵166的液體錫處於低於攝氏861度,例如低於約攝氏850度,包含在約攝氏250度與約攝氏850度之間的溫度。在電磁泵的操作中,設定磁場對液體金屬流動方向呈直角且電流流經該液體金屬。此造成移動液體金屬的電磁力。Liquid metal can be circulated via heat transfer conduit 156 via operation of pump 166. In certain exemplary embodiments, pump 166 is an electromagnetic pump. When an electromagnetic pump is used and tin is used as the liquid metal, the liquid tin flowing through the pump 166 is required to be below 861 degrees Celsius, such as below about 850 degrees Celsius, including temperatures between about 250 degrees Celsius and about 850 degrees Celsius. . In operation of the electromagnetic pump, the magnetic field is set at a right angle to the direction of flow of the liquid metal and current flows through the liquid metal. This causes the electromagnetic force of the moving liquid metal.

在某些示範性實施例中,流經熱傳遞管道的液體金屬(例如錫)的最大溫度範圍係自約攝氏1100度至約攝氏1300度,例如自約攝氏1130度至約攝氏1270度,且進一步諸如自約攝氏1170度至約攝氏1230度。例如,流經熱傳遞管道156的區段158(該區段繞著流經入口管道150的玻璃熔體的至少一部分延伸)的液體金屬的溫度範圍係自約攝氏1100度至約攝氏1300度,例如自約攝氏1130度至約攝氏1270度,且進一步諸如自約攝氏1170度至約攝氏1230度。在此類實施例中,當使用電磁泵時,可藉由第一熱交換器162及第二熱交換器164中的至少一者在液體金屬進入泵166之前冷卻液體金屬至低於攝氏861度的溫度,例如低於約攝氏850度的溫度。在離開泵166之後,可藉由第三熱交換器168來加熱液體金屬至高於約攝氏1100度的溫度,例如自約攝氏1100度至約攝氏1300度的溫度。In certain exemplary embodiments, the maximum temperature range of liquid metal (eg, tin) flowing through the heat transfer conduit is from about 1100 degrees Celsius to about 1300 degrees Celsius, such as from about 1130 degrees Celsius to about 1270 degrees Celsius, and Further, such as from about 1170 degrees Celsius to about 1230 degrees Celsius. For example, the temperature of the liquid metal flowing through the section 158 of the heat transfer conduit 156 (which extends around at least a portion of the glass melt flowing through the inlet conduit 150) ranges from about 1100 degrees Celsius to about 1300 degrees Celsius. For example, from about 1130 degrees Celsius to about 1270 degrees Celsius, and further such as from about 1170 degrees Celsius to about 1230 degrees Celsius. In such an embodiment, when an electromagnetic pump is used, the liquid metal can be cooled to below 861 degrees Celsius by the at least one of the first heat exchanger 162 and the second heat exchanger 164 before the liquid metal enters the pump 166. The temperature, for example, is less than about 850 degrees Celsius. After exiting pump 166, the liquid metal can be heated by a third heat exchanger 168 to a temperature above about 1100 degrees Celsius, such as from about 1100 degrees Celsius to about 1300 degrees Celsius.

泵166也可為機械泵。例如,機械泵可包括耐火部件,例如選自鉑、鉬、及耐火陶瓷部件的部件,例如從Georgia Institute of Technology Atomistic Simulation and Energy Research Group可購得的用於連續液體錫抽取的陶瓷泵。使用機械泵的潛在優點為:此類泵可在高溫,例如高至至少約攝氏1350度的溫度下操作,致能用於加熱及冷卻液體金屬的較低能量需求,此類較低量的加熱及冷卻係藉由第一熱交換器162、第二熱交換器164及第三熱交換器168之中的至少一者。Pump 166 can also be a mechanical pump. For example, the mechanical pump can include a refractory component, such as a component selected from the group consisting of platinum, molybdenum, and refractory ceramic components, such as a ceramic pump commercially available from the Georgia Institute of Technology Atomistic Simulation and Energy Research Group for continuous liquid tin extraction. A potential advantage of using a mechanical pump is that such a pump can be operated at high temperatures, for example up to at least about 1350 degrees Celsius, enabling lower energy requirements for heating and cooling liquid metals, such lower amounts of heating. And cooling is performed by at least one of the first heat exchanger 162, the second heat exchanger 164, and the third heat exchanger 168.

可藉由使用至少一個溫度量測裝置(例如,熱電耦)沿著液體金屬的流動通路來監視流經熱傳遞管道156的液體金屬的溫度,該熱電耦為例如位於或靠近容器154、區段158、泵166、及第一熱交換器162、第二熱交換器164及第三熱交換器168之中的至少一者的熱電耦。也可藉由使用至少一個溫度量測裝置(例如,熱電耦)沿著玻璃熔體的流動通路來監視玻璃熔體的溫度,該熱電耦為例如位於或靠近入口管道50的入口及/或出口的熱電耦。The temperature of the liquid metal flowing through the heat transfer conduit 156 can be monitored by using at least one temperature measuring device (e.g., thermocouple) along a flow path of the liquid metal, such as at or near the vessel 154, section 158. A thermocouple of at least one of pump 166 and first heat exchanger 162, second heat exchanger 164, and third heat exchanger 168. The temperature of the glass melt can also be monitored by using at least one temperature measuring device (e.g., thermocouple) along the flow path of the glass melt, such as an inlet and/or an outlet at or near the inlet conduit 50. Thermocouple.

控制方案(包含例如控制演算法)可使用液體金屬及玻璃熔體的量測溫度來例如控制液體金屬的溫度及/或流速,以便控制流經玻璃處理管道(例如,入口管道50)的玻璃熔體的溫度及黏度。控制方案可考慮因素例如液體金屬的溫度、玻璃熔體的溫度、液體金屬的流速、玻璃熔體的流速、以及熱傳遞特性,該等熱傳遞特性為設計的功能及系統的材料。Control schemes (including, for example, control algorithms) may use the measurement temperature of the liquid metal and glass melt to, for example, control the temperature and/or flow rate of the liquid metal to control glass melting through the glass processing conduit (eg, inlet conduit 50). Body temperature and viscosity. Control schemes may take into account factors such as the temperature of the liquid metal, the temperature of the glass melt, the flow rate of the liquid metal, the flow rate of the glass melt, and the heat transfer characteristics that are the function of the design and the material of the system.

例如,若需要減少流經玻璃處理管道的玻璃熔體的黏度,則流經區段158的液體金屬可以較玻璃熔體的溫度高的溫度流動,使得熱自液體金屬傳輸至玻璃熔體。例如,流經區段158的液體金屬的溫度可為較流入玻璃處理管道(例如,入口管道50)的玻璃熔體的溫度高至少約攝氏20度,例如至少約攝氏30度,且進一步例如至少約攝氏40度,且進一步例如至少約攝氏50度,包含自約攝氏20度至約攝氏200度。For example, if it is desired to reduce the viscosity of the glass melt flowing through the glass processing tubing, the liquid metal flowing through section 158 can flow at a higher temperature than the temperature of the glass melt, allowing heat to be transferred from the liquid metal to the glass melt. For example, the temperature of the liquid metal flowing through section 158 may be at least about 20 degrees Celsius higher than the temperature of the glass melt flowing into the glass processing conduit (eg, inlet conduit 50), such as at least about 30 degrees Celsius, and further, for example, at least About 40 degrees Celsius, and further, for example, at least about 50 degrees Celsius, including from about 20 degrees Celsius to about 200 degrees Celsius.

例如,在某些示範性實施例中,流入玻璃處理管道(例如,入口管道50)的玻璃熔體的溫度範圍可自約攝氏1175度至約攝氏1275度,例如自約攝氏1200度至約攝氏1250度,同時流經玻璃處理管道(例如,區段158)的液體金屬的溫度可較流入玻璃處理管道的玻璃熔體的溫度高至少攝氏50度,例如,流出玻璃處理管道的玻璃熔體的溫度較流入玻璃處理管道的玻璃熔體的溫度高至少攝氏20度。For example, in certain exemplary embodiments, the temperature of the glass melt flowing into the glass processing conduit (eg, inlet conduit 50) may range from about 1175 degrees Celsius to about 1275 degrees Celsius, such as from about 1200 degrees Celsius to about celsius. At 1250 degrees, the temperature of the liquid metal flowing through the glass processing conduit (eg, section 158) may be at least 50 degrees Celsius higher than the temperature of the glass melt flowing into the glass processing conduit, for example, the glass melt exiting the glass processing conduit. The temperature is at least 20 degrees Celsius above the temperature of the glass melt flowing into the glass processing tubing.

相反地,若需要增加流經玻璃處理管道的玻璃熔體的黏度,則流經區段158的液體金屬可以較玻璃熔體的溫度低的溫度流動,使得熱自玻璃熔體傳輸至液體金屬。例如,流經區段158的液體金屬的溫度可為較流入玻璃處理管道(例如,入口管道50)的玻璃熔體的溫度低至少約攝氏20度,例如至少約攝氏30度,且進一步例如至少約攝氏40度,且進一步例如至少約攝氏50度,包含自約攝氏20度至約攝氏200度。Conversely, if it is desired to increase the viscosity of the glass melt flowing through the glass processing conduit, the liquid metal flowing through section 158 can flow at a lower temperature than the temperature of the glass melt, allowing heat to be transferred from the glass melt to the liquid metal. For example, the temperature of the liquid metal flowing through section 158 may be at least about 20 degrees Celsius lower than the temperature of the glass melt flowing into the glass processing conduit (eg, inlet conduit 50), such as at least about 30 degrees Celsius, and further, for example, at least About 40 degrees Celsius, and further, for example, at least about 50 degrees Celsius, including from about 20 degrees Celsius to about 200 degrees Celsius.

例如,在某些示範性實施例中,流入玻璃處理管道(例如,入口管道50)的玻璃熔體的溫度範圍可自約攝氏1175度至約攝氏1275度,例如自約攝氏1200度至約攝氏1250度,同時流經玻璃處理管道(例如,區段158)的液體金屬的溫度可較流入玻璃處理管道的玻璃熔體的溫度低至少攝氏50度,例如,流出玻璃處理管道的玻璃熔體的溫度較流入玻璃處理管道的玻璃熔體的溫度低至少攝氏20度。For example, in certain exemplary embodiments, the temperature of the glass melt flowing into the glass processing conduit (eg, inlet conduit 50) may range from about 1175 degrees Celsius to about 1275 degrees Celsius, such as from about 1200 degrees Celsius to about celsius. At 1250 degrees, the temperature of the liquid metal flowing through the glass processing conduit (eg, section 158) may be at least 50 degrees lower than the temperature of the glass melt flowing into the glass processing conduit, for example, the glass melt exiting the glass processing conduit. The temperature is at least 20 degrees Celsius lower than the temperature of the glass melt flowing into the glass processing tubing.

於此揭露的實施例可致能玻璃處理管道(例如,形成設備的入口管道)中玻璃熔體的溫度控制至預先決定的設定點的約攝氏1度內,以便控制流經玻璃處理管道的玻璃熔體的黏度至預先決定範圍內。此外,於此揭露的實施例可致能玻璃處理管道中的玻璃熔體的溫度控制,以回應例如以下至少一者的改變:玻璃熔體的成分、玻璃熔體的流速、及預先決定的設定點。此類實施例可致能多種處理條件下高品質玻璃製品(例如,玻璃片)的生產,而沒有頻繁更換或修理玻璃處理系統部件的需求。Embodiments disclosed herein can control the temperature of the glass melt in a glass processing conduit (eg, an inlet conduit forming a device) to within about 1 degree Celsius of a predetermined set point to control the glass flowing through the glass processing conduit The viscosity of the melt is within a predetermined range. Moreover, the embodiments disclosed herein enable temperature control of the glass melt in the glass processing conduit in response to, for example, at least one of the following: composition of the glass melt, flow rate of the glass melt, and predetermined settings. point. Such embodiments can enable the production of high quality glass articles (e.g., glass sheets) under a variety of processing conditions without the need to frequently replace or repair glass processing system components.

例如,在生產活動期間,用於流出形成設備的入口管道的玻璃熔體的溫度及/或黏度的預先決定的設定點可改變,此係歸因於例如形成主體的幾何形狀上的改變。例如,在生產活動期間,形成主體的中間區域可經歷至少一些程度的下垂,此可導致相對於覆蓋中間之熔融玻璃質量流的覆蓋玻璃形成主體末端之熔融玻璃的相對質量流的改變。根據於此揭露的實施例,藉由改變流出形成設備的入口管道的熔融玻璃的黏度可抵消該等效應,而可繼而改變相對於覆蓋中間之熔融玻璃質量流的覆蓋玻璃形成主體末端之熔融玻璃的相對質量流至所需範圍內,因而延長玻璃形成主體的有效壽命。For example, during production activities, predetermined set points for the temperature and/or viscosity of the glass melt flowing out of the inlet conduit forming the apparatus may vary due to, for example, changes in the geometry of the forming body. For example, during production activities, the intermediate region forming the body may experience at least some degree of sagging, which may result in a change in the relative mass flow of the molten glass that forms the body end with respect to the molten glass mass flow covering the middle. According to the disclosed embodiment, the effect can be offset by changing the viscosity of the molten glass flowing out of the inlet duct of the forming apparatus, and the molten glass forming the body end of the covering glass with respect to the mass flow of the molten glass covering the middle can be changed. The relative mass flows within the desired range, thereby extending the useful life of the glass forming body.

儘管於此所描述及圖示的實施例涉及流動液體金屬(例如液體錫)經過繞著流經入口管道50的玻璃熔體的至少一部分延伸的熱傳遞管道,此類實施例也可適用於玻璃製造設備中的其他管道,例如,如第一連接管道32、第二連接管道38、及第三連接管道46。Although the embodiments described and illustrated herein relate to a flow of liquid metal (eg, liquid tin) through a heat transfer conduit extending around at least a portion of the glass melt flowing through the inlet conduit 50, such embodiments are also applicable to glass. Other conduits in the manufacturing facility, such as, for example, a first connecting conduit 32, a second connecting conduit 38, and a third connecting conduit 46.

此外,儘管參考熔化下拉處理來描述上述實施例,但是應理解此類實施例也可適用於其他玻璃形成處理,例如浮動處理、插槽拉動處理、上拉處理、及壓滾處理。Further, although the above embodiment has been described with reference to the melt pull-down process, it should be understood that such an embodiment is also applicable to other glass forming processes such as a floating process, a slot pull process, a pull-up process, and a roll process.

發明所屬領域具有通常知識者明顯知悉:可對本揭示案的實施例進行多種修改及變化,而不脫離本揭示案的精神及範疇。因此意圖使本揭示案涵蓋所附申請專利範圍及其等效物的範疇內所提供的該等修改及變化。It is obvious to those skilled in the art that the present invention may be variously modified and varied without departing from the spirit and scope of the present disclosure. It is intended that the present disclosure cover the modifications and variations of the scope of the appended claims.

10‧‧‧玻璃製造設備10‧‧‧Glass manufacturing equipment

12‧‧‧玻璃熔融爐12‧‧‧Glass melting furnace

14‧‧‧熔融容器14‧‧‧fusion vessel

16‧‧‧上游玻璃製造設備16‧‧‧Upstream glass manufacturing equipment

18‧‧‧儲存槽18‧‧‧ storage tank

20‧‧‧原料輸送裝置20‧‧‧Material conveying device

22‧‧‧馬達22‧‧‧Motor

24‧‧‧原料24‧‧‧Materials

26‧‧‧箭頭26‧‧‧ arrow

28‧‧‧熔融玻璃28‧‧‧Solder glass

30‧‧‧下游玻璃製造設備30‧‧‧Down glass manufacturing equipment

32‧‧‧第一連接管道32‧‧‧First connecting pipe

34‧‧‧澄清容器34‧‧‧Clarification container

36‧‧‧混和容器36‧‧‧Mixed containers

38‧‧‧第二連接管道38‧‧‧Second connecting pipe

40‧‧‧輸送容器40‧‧‧Transport container

42‧‧‧形成主體42‧‧‧ Forming the subject

44‧‧‧出口管道44‧‧‧Export pipeline

46‧‧‧第三連接管道46‧‧‧ Third connecting pipe

48‧‧‧形成設備48‧‧‧ forming equipment

50‧‧‧入口管道50‧‧‧Inlet Pipeline

52‧‧‧流槽52‧‧‧Rough

54‧‧‧形成表面54‧‧‧Form surface

56‧‧‧底部邊緣56‧‧‧ bottom edge

58‧‧‧玻璃帶58‧‧‧glass ribbon

60‧‧‧拉動方向60‧‧‧ Pulling direction

62‧‧‧個別玻璃片62‧‧‧Individual glass

64‧‧‧機械手64‧‧‧manipulator

65‧‧‧抓取工具65‧‧‧Grab tools

72‧‧‧邊緣滾輪72‧‧‧Edge wheel

82‧‧‧拉輪82‧‧‧ Pulling

100‧‧‧玻璃分離設備100‧‧‧glass separation equipment

150‧‧‧液體金屬系統150‧‧‧Liquid metal system

154‧‧‧容器154‧‧‧ Container

156‧‧‧熱傳遞管道156‧‧‧heat transfer pipeline

158‧‧‧區段Section 158‧‧‧

160‧‧‧熱傳導性材料160‧‧‧Hot conductive materials

162‧‧‧第一熱交換器162‧‧‧First heat exchanger

164‧‧‧第二熱交換器164‧‧‧second heat exchanger

166‧‧‧泵166‧‧‧ pump

168‧‧‧第三熱交換器168‧‧‧ third heat exchanger

第1圖為範例熔化下拉玻璃製造設備及處理的示意視圖;Figure 1 is a schematic view of an exemplary melted down glass manufacturing apparatus and process;

第2圖為範例液體金屬系統的示意前視圖,該系統用於控制流經形成設備的入口管道的玻璃熔體之黏度;及Figure 2 is a schematic front view of an exemplary liquid metal system for controlling the viscosity of a glass melt flowing through an inlet conduit of a forming apparatus;

第3圖為第2圖中所圖示的實施例的示意側視圖。Figure 3 is a schematic side view of the embodiment illustrated in Figure 2.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic deposit information (please note according to the order of the depository, date, number)

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of country, organization, date, number)

Claims (21)

一種用於控制流經一玻璃處理管道的一玻璃熔體的一黏度的方法,該方法包括以下步驟: 使一液體金屬流動經過一熱傳遞管道,該熱傳遞管道繞著流經該玻璃處理管道的該玻璃熔體的至少一部分延伸;及相對於流經該玻璃處理管道的該玻璃熔體的一溫度及流速,控制流經該熱傳遞管道的該液體金屬的一溫度及流速,以便控制流經該玻璃處理管道的該玻璃熔體的該黏度於一預先決定範圍內。A method for controlling a viscosity of a glass melt flowing through a glass processing pipe, the method comprising the steps of: flowing a liquid metal through a heat transfer conduit, the heat transfer conduit flowing through the glass processing conduit At least a portion of the glass melt extends; and a temperature and a flow rate of the liquid metal flowing through the heat transfer conduit relative to a temperature and flow rate of the glass melt flowing through the glass processing conduit to control flow The viscosity of the glass melt through the glass processing conduit is within a predetermined range. 如請求項1所述之方法,其中該玻璃處理管道為一玻璃形成設備的一入口管道。The method of claim 1 wherein the glass processing conduit is an inlet conduit for a glass forming apparatus. 如請求項1所述之方法,其中該液體金屬包括錫。The method of claim 1 wherein the liquid metal comprises tin. 如請求項1所述之方法,其中該熱傳遞管道包括鉬。The method of claim 1 wherein the heat transfer conduit comprises molybdenum. 如請求項1所述之方法,其中使用一抗氧化材料來塗佈該熱傳遞管道。The method of claim 1 wherein an anti-oxidation material is used to coat the heat transfer conduit. 如請求項1所述之方法,其中經由一電磁泵的操作以抽吸該液體金屬經過該熱傳遞管道。The method of claim 1 wherein the liquid metal is pumped through the heat transfer conduit via operation of an electromagnetic pump. 如請求項1所述之方法,其中經由一機械泵的操作以抽吸該液體金屬經過該熱傳遞管道。The method of claim 1 wherein the liquid metal is pumped through the heat transfer conduit via operation of a mechanical pump. 如請求項6所述之方法,其中該液體金屬的該溫度在流經該電磁泵之前減少且在流經該電磁泵之後增加。The method of claim 6 wherein the temperature of the liquid metal decreases prior to flowing through the electromagnetic pump and increases after flowing through the electromagnetic pump. 如請求項3所述之方法,其中流經該熱傳遞管道的該液體金屬的一最大溫度的範圍自約攝氏1100度至約攝氏1300度。The method of claim 3, wherein a maximum temperature of the liquid metal flowing through the heat transfer conduit ranges from about 1100 degrees Celsius to about 1300 degrees Celsius. 如請求項1所述之方法,其中在使該液體金屬流動經過該熱傳遞管道之前加熱該熱傳遞管道至至少約攝氏300度。The method of claim 1 wherein the heat transfer conduit is heated to at least about 300 degrees Celsius before flowing the liquid metal through the heat transfer conduit. 如請求項1所述之方法,其中流經該熱傳遞管道的該液體金屬的該溫度低於流經該玻璃處理管道的該玻璃熔體的該溫度。The method of claim 1 wherein the temperature of the liquid metal flowing through the heat transfer conduit is lower than the temperature of the glass melt flowing through the glass processing conduit. 如請求項1所述之方法,其中流經該熱傳遞管道的該液體金屬的該溫度高於流經該玻璃處理管道的該玻璃熔體的該溫度。The method of claim 1 wherein the temperature of the liquid metal flowing through the heat transfer conduit is higher than the temperature of the glass melt flowing through the glass processing conduit. 一種用於控制流經一玻璃處理管道的一玻璃熔體的一黏度的設備,該設備包括: 一熱傳遞管道,該熱傳遞管道繞著一玻璃處理管道的至少一部分延伸;其中該設備經配置以相對於流經該玻璃處理管道的該玻璃熔體的一溫度及流速而控制流經該熱傳遞管道的一液體金屬的一溫度及流速,以便控制流經該玻璃處理管道的該玻璃熔體的該黏度於一預先決定範圍內。An apparatus for controlling a viscosity of a glass melt flowing through a glass processing pipe, the apparatus comprising: a heat transfer conduit extending around at least a portion of a glass processing conduit; wherein the apparatus is configured Controlling a temperature and flow rate of a liquid metal flowing through the heat transfer conduit relative to a temperature and flow rate of the glass melt flowing through the glass processing conduit to control the glass melt flowing through the glass processing conduit The viscosity is within a predetermined range. 如請求項13所述之設備,其中該玻璃處理管道為一玻璃形成設備的一入口管道。The apparatus of claim 13 wherein the glass processing conduit is an inlet conduit for a glass forming apparatus. 如請求項13所述之設備,其中該液體金屬包括錫。The device of claim 13 wherein the liquid metal comprises tin. 如請求項13所述之設備,其中該熱傳遞管道包括鉬。The apparatus of claim 13 wherein the heat transfer conduit comprises molybdenum. 如請求項13所述之設備,其中使用一抗氧化材料來塗佈該熱傳遞管道。The apparatus of claim 13 wherein an anti-oxidation material is used to coat the heat transfer conduit. 如請求項13所述之設備,其中該設備包括一電磁泵,該電磁泵經配置以抽吸該液體金屬經過該熱傳遞管道。The apparatus of claim 13 wherein the apparatus comprises an electromagnetic pump configured to draw the liquid metal through the heat transfer conduit. 如請求項13所述之設備,其中該設備包括一機械泵,該機械泵經配置以抽吸該液體金屬經過該熱傳遞管道。The apparatus of claim 13 wherein the apparatus comprises a mechanical pump configured to draw the liquid metal through the heat transfer conduit. 一種由請求項1所述之該方法所製成的玻璃製品。A glass article made by the method of claim 1. 一種電子裝置,包括請求項20所述之玻璃製品。An electronic device comprising the glass article of claim 20.
TW106137552A 2016-10-31 2017-10-31 Liquid metal viscosity control of molten glass TW201821377A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662415098P 2016-10-31 2016-10-31
US62/415,098 2016-10-31

Publications (1)

Publication Number Publication Date
TW201821377A true TW201821377A (en) 2018-06-16

Family

ID=62024078

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137552A TW201821377A (en) 2016-10-31 2017-10-31 Liquid metal viscosity control of molten glass

Country Status (2)

Country Link
TW (1) TW201821377A (en)
WO (1) WO2018081664A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319236B2 (en) * 2019-10-30 2022-05-03 Owens-Brockway Glass Container Inc. Glass fining using an objective and molten metal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928012A (en) * 1973-03-06 1975-12-23 Ppg Industries Inc Method and apparatus for regulating the temperature of a glass sheet float tank
US4092140A (en) * 1976-09-08 1978-05-30 Ppg Industries, Inc. Apparatus and method using heat pipes for manipulating temperature gradients in a glass forming chamber
US4741750A (en) * 1987-01-02 1988-05-03 Ppg Industries, Inc. Method and apparatus for cooling in a float glass forming operation
US5100449A (en) * 1990-08-16 1992-03-31 Corning Incorporated Method of forming glass articles
EP2390237B1 (en) * 2010-05-31 2015-07-29 Corning Incorporated System and method for forming a glass sheet

Also Published As

Publication number Publication date
WO2018081664A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
TWI761395B (en) Method and apparatus for glass ribbon thermal control
US11427493B2 (en) Method and apparatus for managing glass ribbon cooling
TW201808833A (en) Apparatus and method for glass delivery orientation
TW201821377A (en) Liquid metal viscosity control of molten glass
CN111032586A (en) Method and apparatus for adjustable glass ribbon heat transfer
TW201825414A (en) High temperature glass melting vessel
TW202136161A (en) Apparatus and method for improving electrical current flow in glass melt conduit
US20230120775A1 (en) Apparatus and method for reducing defects in glass melt systems
KR102700028B1 (en) Pipe heating device and method with improved corrosion resistance
WO2024091384A1 (en) Apparatus and method for manufacturing a glass article
TW202035312A (en) Conduit heating apparatus and method with improved corrosion resistance
CN116639863A (en) Glass melting furnace and melting vessel with improved thermal properties
TW202220935A (en) Apparatus and method to improve attributes of drawn glass
TW201817687A (en) Method and apparatus for glass ribbon thermal management