TW201818665A - Transition enforcing coding receiver ahd a receiving method used by the transition enforcing coding receiver - Google Patents

Transition enforcing coding receiver ahd a receiving method used by the transition enforcing coding receiver Download PDF

Info

Publication number
TW201818665A
TW201818665A TW106129627A TW106129627A TW201818665A TW 201818665 A TW201818665 A TW 201818665A TW 106129627 A TW106129627 A TW 106129627A TW 106129627 A TW106129627 A TW 106129627A TW 201818665 A TW201818665 A TW 201818665A
Authority
TW
Taiwan
Prior art keywords
time
vector signal
test vector
transition
delay
Prior art date
Application number
TW106129627A
Other languages
Chinese (zh)
Other versions
TWI626831B (en
Inventor
章晉祥
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/407,265 external-priority patent/US9866413B2/en
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201818665A publication Critical patent/TW201818665A/en
Application granted granted Critical
Publication of TWI626831B publication Critical patent/TWI626831B/en

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Dc Digital Transmission (AREA)

Abstract

The invention provides a transition enforcing coding (TEC) receiver comprising: a delay line circuit, configured to employ a calibrated delay setting to delay a plurality of vector signals to generate a plurality of delayed vector signals under a normal mode, respectively; a transition detection circuit, configured to detect a transition of at least one specific delayed vector signal among the delayed vector signals; a data sampling circuit, configured to sample the vector signals according to a sampling timing, wherein the sampling timing is determined based on an output of the transition detection circuit; and a skew calibration circuit, configured to set the calibrated delay setting under a calibration mode, wherein transition skew between different delayed vector signals is reduced by the calibrated delay setting under the normal mode.

Description

轉態強制編碼接收器及用於轉態強制編碼接收器中接收方法Transition state forced code receiver and receiving method for transition state forced code receiver

本發明涉及接收器端的資料恢復技術領域,尤其涉及不使用時鐘資料恢復(Clock and Data Recovery,CDR)以採樣向量信號的轉態強制編碼(Transition Enforcing Coding, TEC)接收器。The present invention relates to the field of data recovery technologies at the receiver end, and more particularly to a Transition Enforcing Coding (TEC) receiver that does not use Clock and Data Recovery (CDR) to sample vector signals.

轉態強制編碼是用以將位元序列(bit sequence)轉換為在不同晶片間收發的多個向量信號(vector signal)的技術,轉態強制編碼使得轉態(transition)總是在向量信號的鄰近狀態間出現,舉例來說,向量信號記錄代表目前傳送時鐘週期中的目前狀態的資料位元(data bit),並且記錄代表下一個傳送時鐘週期的下一狀態的資料位元,其中代表目前狀態的資料位元以及下一狀態的資料位元具有至少一位元的轉置(例如1→0 或 0 →1)。傳統的轉態強制編碼接收器具有時鐘資料恢復(Clock and Data Recovery, CDR)電路,該時鐘資料恢復電路用以調整採樣時間使得資料採樣器可獲得最佳設定/保持時間餘量(margin)以正確採樣所接收的向量信號,然而,該時鐘資料恢復電路將導致較大的晶片面積以及較高的功率消耗,並且將需要額外的鎖定時間(lock-in time)以確保資料採樣的正確性,另外,若該轉態強制編碼傳送器需要較廣範圍的資料率,該轉態強制編碼接收器中的時鐘資料恢復電路需要使用較廣範圍的時鐘資料恢復電路來實現,其將造成較高的製造成本。The transition forced coding is a technique for converting a bit sequence into a plurality of vector signals transmitted and received between different wafers, and the transitional forced encoding causes the transition to always be in the vector signal. Appearing between adjacent states, for example, the vector signal records a data bit representing the current state in the current transfer clock cycle, and records the data bit representing the next state of the next transfer clock cycle, which represents the current The data bit of the state and the data bit of the next state have a transposition of at least one bit (eg, 1→0 or 0→1). The conventional transition state forced code receiver has a Clock and Data Recovery (CDR) circuit, which is used to adjust the sampling time so that the data sampler can obtain the optimal set/hold time margin. The received vector signal is correctly sampled, however, the clock data recovery circuit will result in a larger die area and higher power consumption, and will require additional lock-in time to ensure correct data sampling, In addition, if the transition state forced code transmitter requires a wide range of data rates, the clock data recovery circuit in the transition state forced code receiver needs to be implemented using a wide range of clock data recovery circuits, which will result in a higher manufacturing cost.

因此,需要可在不使用任何時鐘資料恢復電路下正確採樣所接收的向量信號的轉態強制編碼接收器設計。Therefore, there is a need for a transitional forced code receiver design that can correctly sample the received vector signal without using any clock data recovery circuitry.

根據本發明的實施例,揭露一種轉態強制編碼接收器,可在無需時鐘資料 恢復時正確採樣所接收的向量信號。In accordance with an embodiment of the present invention, a transition state forced code receiver is disclosed that can correctly sample a received vector signal without the need for clock data recovery.

根據本發明的第一實施例,揭露一種轉態強制編碼接收器,其可包括:延遲線電路,用於在普通模式下,使用校準後的延遲設定來延遲多個向量信號以分別產生多個延遲後的向量信號;轉態偵測電路,用於偵測所述多個延遲後的向量信號中的一個特定延遲後的向量信號的轉態;資料採樣電路,用於根據採樣時間對所述多個向量信號進行採樣,其中,所述採樣時間根據所述轉態偵測電路的輸出確定;以及偏差校準電路,用於在校準模式下,設置所述校準後的延遲設定;其中,在所述普通模式下,不同延遲後的向量信號的轉態偏差被所述校準後的延遲設定減小。According to a first embodiment of the present invention, a transition state forced code receiver is disclosed, which may include: a delay line circuit for delaying a plurality of vector signals to generate a plurality of respectively using a calibrated delay setting in a normal mode a delayed vector signal; a transition detection circuit configured to detect a transition of a vector signal after the specific delay of the plurality of delayed vector signals; and a data sampling circuit configured to: Sampling a plurality of vector signals, wherein the sampling time is determined according to an output of the transition detecting circuit; and a deviation calibration circuit configured to set the adjusted delay setting in the calibration mode; In the normal mode, the transition deviation of the vector signal after different delays is reduced by the calibrated delay setting.

根據本發明的第二實施例,揭露一用於轉態強制編碼接收器的接收方法,其可包括:在校準模式下,執行偏差校準以設置校準後的延遲設定;在普通模式下,使用校準後的延遲設定來延遲多個向量信號以分別產生多個延遲後的向量信號,其中,在所述普通模式下,不同延遲後的向量信號的轉態偏差被所述校準後的延遲設定減小;偵測所述多個延遲後的向量信號中的一個特定延遲後的向量信號的轉態;根據採樣時間對所述多個向量信號進行採樣,其中,所述採樣時間根據所述轉態偵測輸出確定。According to a second embodiment of the present invention, a receiving method for a transition state forced code receiver is disclosed, which may include: performing a offset calibration to set a calibrated delay setting in a calibration mode; and using a calibration in a normal mode The subsequent delay setting delays the plurality of vector signals to respectively generate a plurality of delayed vector signals, wherein, in the normal mode, the transition state deviation of the vector signals after the different delays is reduced by the calibrated delay setting Detecting a transition state of a vector signal after the specific delay in the plurality of delayed vector signals; sampling the plurality of vector signals according to a sampling time, wherein the sampling time is according to the transition state The measured output is determined.

通過以上所述實施例,本發明可在無需時鐘資料恢復的情形下正確採樣所接收的向量信號。With the above described embodiments, the present invention can correctly sample the received vector signal without the need for clock data recovery.

在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的“包含”及“包括”為一開放式的用語,故應解釋成“包含但不限定於”。“大體上”是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決該技術問題,基本達到該技術效果。此外,“耦接”一詞在此包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電性連接於該第二裝置,或通過其它裝置或連接手段間接地電性連接至該第二裝置。以下該為實施本發明的較佳方式,目的在於說明本發明的精神而非用以限定本發明的保護範圍,本發明的保護範圍當視後附的申請專利範圍所界定者為准。Certain terms are used throughout the description and claims to refer to particular elements. Those skilled in the art will appreciate that a hardware manufacturer may refer to the same component by a different noun. The scope of the present specification and the patent application do not use the difference in the name as the means for distinguishing the elements, but the difference in function of the elements as the criterion for distinguishing. The words "including" and "including" as used throughout the specification and claims are intended to be interpreted as "including but not limited to". "Substantially" means that within the acceptable tolerances, those skilled in the art will be able to solve the technical problem within a certain error range, substantially achieving the technical effect. In addition, the term "coupled" is used herein to include any direct and indirect electrical connection means. Therefore, if a first device is coupled to a second device, the first device can be directly electrically connected to the second device, or can be electrically connected to the second device through other devices or connection means. Device. The following is a preferred embodiment of the present invention, and is intended to be illustrative of the scope of the invention, and the scope of the invention is defined by the scope of the appended claims.

第1圖是根據本發明一個實施例的通信系統的示意圖,其中通信系統100包含位於第一晶片102中的編碼器112和傳送器114,並另包含位於第二晶片104中的接收器122以及解碼器124,編碼器112可根據所使用的轉態強制編碼演算法來將n位元的二進位資料b[n-1, 0]編碼為k個向量信號v[k-1, 0],傳送器114具有串列器(serializer)(未顯示於圖中)以將k個向量信號v[k-1, 0]轉換為用以高速資料傳送的m個向量信號s[m-1, 0],然後通過m個平行通道將該m個向量信號s[m-1, 0] 從第一晶片102傳送至第二晶片104。該接收器122從該m個平行通道接收該m個向量信號s[m-1, 0],並且具有解串列器(未顯示於圖中)以將所接收的m個向量信號s[m-1, 0]的採樣資料轉換為k個向量信號v[k-1, 0]的採樣資料;解碼器124可根據所使用的轉態強制編碼演算法將k個向量信號v[k-1, 0]恢復為n位的二進位資料b[n-1, 0],在此實施例中,接收器122利用所提出的轉態強制編碼接收器架構在不使用傳統時鐘資料恢復電路的情況下產生m個向量信號s[m-1, 0]的採樣資料,有關轉態強制編碼接收器結構的詳細細節將描述於後續段落。1 is a schematic diagram of a communication system including an encoder 112 and a transmitter 114 located in a first wafer 102 and a receiver 122 located in a second wafer 104, and in accordance with an embodiment of the present invention. The decoder 124, the encoder 112 may encode the n-bit binary data b[n-1, 0] into k vector signals v[k-1, 0] according to the used forced coding algorithm. The transmitter 114 has a serializer (not shown) to convert k vector signals v[k-1, 0] into m vector signals s[m-1, 0 for high speed data transfer. The m vector signals s[m-1, 0] are then transferred from the first wafer 102 to the second wafer 104 through m parallel channels. The receiver 122 receives the m vector signals s[m-1, 0] from the m parallel channels and has a deserializer (not shown) to receive the received m vector signals s[m The sample data of -1, 0] is converted into sample data of k vector signals v[k-1, 0]; the decoder 124 can convert k vector signals v[k-1 according to the transition state forced coding algorithm used. , 0] is restored to the n-bit binary data b[n-1, 0]. In this embodiment, the receiver 122 utilizes the proposed transition state forced encoding receiver architecture without using the conventional clock data recovery circuit. The sampling data of the m vector signals s[m-1, 0] are generated, and the details of the structure of the transitional forced coding receiver will be described in the following paragraphs.

第2圖是根據本發明一個實施例的不使用傳統時鐘資料恢復電路以採樣向量信號的第一概念示意圖,假設m=3,三個向量信號s[2]、s[1]、s[0]由轉態強制編碼接收器自平行通道所分別接收。如上所述,該轉態強制編碼接收器使至少一個轉態(transition)發生于向量信號的鄰近狀態(state)之間,在該鄰近狀態(例如,在傳送時鐘週期的邊緣附近)間的最後轉態(last transition)可以被偵測到,若在向量信號的鄰近狀態間僅有一個轉態發生,該所偵測到的轉態會被視為最後轉態;若向量信號的鄰近狀態間有多個轉態發生,所偵測到的轉態中具有最後發生時間的轉態會被視為最後轉態。通過預設延遲時間D來延遲所偵測到的最後轉態的時間使其滿足向量信號s[2]、s[1]、s[0]的一個採樣時間。由向量信號s[2]、s[1]、s[0]的眼圖(eye diagram)可觀察,自目前狀態間的最後轉態至下一狀態轉態間的第一轉態之間的信號電平為穩定且乾淨的。適當的設定預設延遲時間D,預設延遲時間D將足夠滿足資料採樣操作設定/保持時間,因此,可藉由該採樣時間正確的恢復代表向量信號s[2]、s[1]、s[0]的狀態的資料位元,其中該採樣時間是根據鄰近狀態間所偵測到的最後轉態的延遲版本所決定。2 is a first conceptual diagram of sampling a vector signal without using a conventional clock data recovery circuit, assuming m=3, three vector signals s[2], s[1], s[0, in accordance with an embodiment of the present invention. ] The transmissive forced code receiver is received separately from the parallel channel. As described above, the transition state forcing the code receiver causes at least one transition to occur between adjacent states of the vector signal, in the end between the neighboring states (eg, near the edge of the transmit clock cycle) The last transition can be detected. If only one transition occurs between adjacent states of the vector signal, the detected transition will be regarded as the final transition; if the vector signal is in the adjacent state When there are multiple transitions, the transition with the last occurrence of the detected transitions is considered the last transition. The time of the last transition detected is delayed by a preset delay time D to satisfy one sampling time of the vector signals s[2], s[1], s[0]. Observable from the eye diagram of the vector signals s[2], s[1], s[0], from the last transition between the current state to the first transition between the next state transitions The signal level is stable and clean. By setting the preset delay time D appropriately, the preset delay time D will be sufficient to satisfy the data sampling operation setting/holding time. Therefore, the representative vector signal s[2], s[1], s can be correctly restored by the sampling time. A data bit of the state of [0], wherein the sampling time is determined based on a delayed version of the last transition detected between adjacent states.

第3圖是根據本發明一實施例的不使用傳統時鐘資料恢復電路以採樣向量信號的第二概念示意圖,假設m=3,三個向量信號s[2]、s[1]、s[0]由轉態強制編碼接收器自平行通道所分別接收,如上所述,該轉態強制編碼接收器使至少一轉態發生于向量信號的鄰近狀態之間,在該鄰近狀態(例如,在傳送時鐘週期的邊緣附近) 間的第一轉態可以被偵測到。若在向量信號的鄰近狀態間僅有一個轉態發生,該所偵測到的轉態會被視為該第一轉態;若向量信號的鄰近狀態間有多個轉態發生,所偵測到的轉態中具有第一發生時間的轉態會被視為該第一轉態,通過一預設的提前時間(advance time)D’來提前(advance)所偵測到的第一轉態的時間使其滿足向量信號s[2]、s[1]、s[0]的一採樣時間。由向量信號s[2]、s[1]、s[0]的眼圖可觀察,自目前狀態間的第一轉態至前一狀態間的最後轉態的信號電平為穩定且乾淨的。適當的設定預設提前時間D’,預設提前時間D’將足夠滿足資料採樣操作的設定/保持時間,因此,可藉由該採樣時間正確地恢復代表向量信號s[2]、s[1]、s[0]的狀態的資料位元,其中該採樣時間是根據在鄰近狀態間所偵測到的第一轉態的提前版本所決定。3 is a second conceptual diagram of sampling a vector signal without using a conventional clock data recovery circuit, assuming m=3, three vector signals s[2], s[1], s[0, in accordance with an embodiment of the present invention. Obtained by the transition state forced code receiver from the parallel channels, as described above, the transition state forcing the code receiver to cause at least one transition state to occur between adjacent states of the vector signal in the proximity state (eg, in transmission) The first transition between the edges of the clock cycle can be detected. If only one transition occurs between adjacent states of the vector signal, the detected transition state is regarded as the first transition state; if multiple transition states occur between adjacent states of the vector signal, the detected The transition state with the first occurrence time in the transition state is regarded as the first transition state, and the first transition state detected by advance by a preset advance time D' The time is such that it satisfies a sampling time of the vector signals s[2], s[1], s[0]. Observed from the eye diagrams of the vector signals s[2], s[1], s[0], the signal level from the first transition state between the current state to the last transition state between the previous states is stable and clean. . Appropriately setting the preset advance time D', the preset advance time D' will be sufficient to satisfy the setting/holding time of the data sampling operation, and therefore, the representative vector signal s[2], s[1] can be correctly restored by the sampling time. ], the data bit of the state of s[0], wherein the sampling time is determined based on an early version of the first transition detected between adjacent states.

所提出的轉態強制編碼接收器可根據第2圖及第3圖所描述的概念去配置,以在不使用傳統資料時鐘恢復電路的情形下恢復/採樣正確的資料,以下將描述轉態強制編碼接收器的多個範例。The proposed transition state forced code receiver can be configured according to the concepts described in FIG. 2 and FIG. 3 to recover/sampling the correct data without using the conventional data clock recovery circuit. Multiple examples of encoding receivers.

第4圖是根據本發明第一實施例的轉態強制編碼接收器的示意圖。第1圖所示的接收器122可使用第4圖所示的轉態強制編碼接收器來實現,轉態強制編碼接收器400包含延遲線電路402、轉態偵測電路404以及資料採樣電路406,需注意的是,第4圖僅顯示與本發明相關的部分元件,實際上轉態強制編碼接收器400可包含額外的電路元件,舉例來說,轉態強制編碼接收器400可具有用以處理資料採樣電路406的輸出的至少一個解串列器。Figure 4 is a schematic diagram of a transition state forced code receiver in accordance with a first embodiment of the present invention. The receiver 122 shown in FIG. 1 can be implemented by using the transition state forced code receiver shown in FIG. 4. The transition state forced code receiver 400 includes a delay line circuit 402, a transition state detection circuit 404, and a data sampling circuit 406. It should be noted that FIG. 4 only shows some of the components related to the present invention. In fact, the transitional forced code receiver 400 may include additional circuit components. For example, the transitional forced code receiver 400 may have At least one deserializer that processes the output of the data sampling circuit 406.

延遲線電路402用以延遲多個向量信號(如m個向量信號s[m-1] - s[0])以分別產生多個延遲後的向量信號(如m個延遲後的向量信號m個向量信號s[m-1]_D- s[0]_D),需注意的是,應用至向量信號s[m-1]-s[0]中的每一個的延遲時間D足夠滿足資料採樣電路406的設定/保持時間餘量,在一個實施例中,合理設定的相同延遲時間D可被應用於全部的向量信號,在另一實施例中,不同的延遲時間D可被應用至不同的向量信號以確保有足夠的設定/保持時間餘量以採樣不同的向量信號及減少不同向量信號間的轉態偏差(即不同向量信號的鄰近狀態間的校準轉態)。The delay line circuit 402 is configured to delay a plurality of vector signals (such as m vector signals s[m-1] - s[0]) to respectively generate a plurality of delayed vector signals (eg, m delayed vector signals m) Vector signal s[m-1]_D- s[0]_D), it should be noted that the delay time D applied to each of the vector signals s[m-1]-s[0] is sufficient for the data sampling circuit The set/hold time margin of 406, in one embodiment, the same set delay time D can be applied to all vector signals, and in another embodiment, different delay times D can be applied to different vectors. The signal is used to ensure that there is sufficient set/hold time margin to sample different vector signals and to reduce the transitional deviation between different vector signals (ie, the calibration transition between adjacent states of different vector signals).

轉態偵測電路404用以偵測延遲後的向量信號s[m-1]_D–s[0]_D中的至少一個特定延遲後的向量信號的轉態,在此實施例中,該至少一個特定延遲後的向量信號的該轉態是延遲後的向量信號s[m-1]_D–s[0]_D的鄰近狀態間所偵測到的該最後轉態。需注意的是,延遲後的向量信號s[m-1]_D–s[0]_D以及向量信號s[m-1]–s[0]傳遞相同的資料位元但時間間隔延遲時間D。資料採樣電路406用以根據採樣時間TS來採樣向量信號s[m-1]–s[0],其中採樣時間TS根據轉態偵測電路404的輸出來決定。在此實施例中,轉態強制編碼接收器400在不使用時鐘資料恢復電路的情況下決定採樣時間TS,舉例來說,直接設定採樣時間TS為該至少一個特定延遲後的向量信號的轉態的時間(即鄰近狀態間所偵測的該最後轉態的時間)。The transition detection circuit 404 is configured to detect a transition state of the vector signal after the at least one specific delay in the delayed vector signal s[m-1]_D−s[0]_D, in this embodiment, the at least The transition of the vector signal after a particular delay is the last transition detected between adjacent states of the delayed vector signal s[m-1]_D−s[0]_D. It should be noted that the delayed vector signal s[m-1]_D–s[0]_D and the vector signal s[m-1]–s[0] convey the same data bit but the time interval delay time D. The data sampling circuit 406 is configured to sample the vector signal s[m-1]−s[0] according to the sampling time TS, wherein the sampling time TS is determined according to the output of the transition detecting circuit 404. In this embodiment, the transition state forced code receiver 400 determines the sampling time TS without using the clock data recovery circuit, for example, directly setting the sampling time TS to the transition state of the vector signal after the at least one specific delay. Time (ie, the time of the last transition detected between adjacent states).

如上所述,延遲線電路402用以延遲向量信號s[m-1]–s[0]以產生延遲後的向量信號s[m-1]_D–s[0]_D,其中轉態偵測電路404使用延遲後的向量信號s[m-1]_D–s[0]_D以偵測至少一個特定延遲後的向量信號的轉態。由於延遲線電路402位於轉態偵測電路404之前,通過某些校準方法即可能克服向量信號s[m-1]–s[0]間的偏差問題,因此,除了作為延遲後的向量信號產生器,延遲線電路402可另作為向量信號s[m-1]–s[0]的鄰近狀態間的校準轉態的消除偏差電路,如此一來,延遲線電路402可消除向量信號s[m-1]–s[0]的偏差並且延遲向量信號s[m-1]–s[0]。As described above, the delay line circuit 402 is used to delay the vector signal s[m-1]–s[0] to generate the delayed vector signal s[m-1]_D–s[0]_D, where the transition detection Circuit 404 uses the delayed vector signal s[m-1]_D−s[0]_D to detect the transition of the vector signal after at least one particular delay. Since the delay line circuit 402 is located before the transition detection circuit 404, the deviation problem between the vector signals s[m-1]–s[0] may be overcome by some calibration methods, and therefore, in addition to being generated as a delayed vector signal The delay line circuit 402 can additionally serve as a cancellation offset circuit for the calibration transition between adjacent states of the vector signal s[m-1] - s[0], such that the delay line circuit 402 can eliminate the vector signal s[m -1] - s[0] deviation and delay vector signal s[m-1]–s[0].

第5圖是根據第4圖所示的轉態強制編碼接收器所執行的資料採樣操作的範例示意圖,其中轉態強制編碼接收器400可根據第2圖所示的概念來設計。轉態偵測電路404確認(check)延遲後的向量信號s[m-1]_D–s[0]_D以尋找鄰近狀態間的該最後轉態,延遲後的向量信號s[m-1]_D–s[0]_D中的至少一個信號所擁有的該最後轉態的時間等同于向量信號s[m-1]–s[0]中的至少一個信號所擁有的該最後轉態的時間的延遲,因此,可使用延遲後的向量信號s[m-1]_D–s[0]_D中的至少一個信號所擁有的該最後轉態的時間來作為資料採樣電路406的採樣時間TS以自向量信號s[m-1]–s[0]獲得採樣資料。Fig. 5 is a diagram showing an example of a data sampling operation performed by the transition state forced code receiver shown in Fig. 4, wherein the transition state forced code receiver 400 can be designed according to the concept shown in Fig. 2. The transition detection circuit 404 checks the delayed vector signal s[m-1]_D−s[0]_D to find the last transition state between adjacent states, the delayed vector signal s[m-1] The time of the last transition state possessed by at least one of the signals _D - s[0]_D is equal to the time of the last transition state possessed by at least one of the vector signals s[m-1] - s[0] The delay, therefore, the time of the last transition state possessed by at least one of the delayed vector signals s[m-1]_D−s[0]_D can be used as the sampling time TS of the data sampling circuit 406. The sampled data is obtained from the vector signal s[m-1]–s[0].

第6圖是根據第4圖所示的轉態強制編碼接收器的電路實現示意圖,如第6圖所示,延遲線電路402包含分別用以產生延遲後的向量信號s[m-1]_D–s[0]_D的多個延遲線(標注為“D”)6020-602m-1,延遲線6020-602m-1所使用的延遲時間設定可為相同或不同,其具體依照設計上的考慮決定。在此電路設計中,提供向量信號s[m-1]-s[0]給資料採樣電路406以及轉態偵測電路404,因此,除了包括延遲後的向量信號s[m-1]_D-s[0]_D,最後轉態偵測同樣包括向量信號s[m-1]-s[0]。Figure 6 is a schematic diagram of the circuit implementation of the transition state forced code receiver according to Fig. 4. As shown in Fig. 6, the delay line circuit 402 includes a vector signal s[m-1]_D for generating the delay, respectively. Multiple delay lines of –s[0]_D (labeled "D") 6020-602m-1, delay time settings used by delay lines 6020-602m-1 may be the same or different, depending on design considerations Decide. In this circuit design, the vector signal s[m-1]-s[0] is supplied to the data sampling circuit 406 and the transition detection circuit 404. Therefore, in addition to including the delayed vector signal s[m-1]_D- s[0]_D, the final transition detection also includes the vector signal s[m-1]-s[0].

轉態偵測電路404包含多個邏輯門6040-604m-1(如異反或閘(Exclusive NOR,XNOR))以及一個邏輯門606(如及閘(AND gate)),根據邏輯門6040-604m-1以及606的邏輯操作,轉態偵測電路404的輸出(尤指邏輯門606的輸出)在延遲向量信號s[m-1]_D-s[0]_D的鄰近狀態間所偵測到的該最後轉態具有一上升邊緣(rising edge)。資料採樣電路406包含使用D型觸發器(D-type flip flips,DFFs)所實現的多個資料採樣器6080-608m-1,資料採樣器6080-608m-1是由轉態偵測電路404的輸出的相同上升邊緣進行時鐘控制,以在相同時間採樣向量信號s[m-1]-s[0],由此分別得到採樣後資料位元s[0]_接收 - s[m-1]_接收。The transition detection circuit 404 includes a plurality of logic gates 6040-604m-1 (such as an exclusive NOR (XNOR)) and a logic gate 606 (such as an AND gate) according to logic gates 6040-604m. -1 and 606 logic operations, the output of the transition detection circuit 404 (especially the output of the logic gate 606) is detected between adjacent states of the delay vector signal s[m-1]_D-s[0]_D This last transition has a rising edge. The data sampling circuit 406 includes a plurality of data samplers 6080-608m-1 implemented by D-type flip flips (DFFs), and the data samplers 6080-608m-1 are controlled by the transition detection circuit 404. The same rising edge of the output is clocked to sample the vector signal s[m-1]-s[0] at the same time, thereby obtaining the sampled data bit s[0]_receive-s[m-1], respectively. _receive.

第7圖是根據本發明第二實施例的轉態強制編碼接收器的示意圖,第1圖所示的接收器122可使用第7圖所示的轉態強制編碼接收器700來實現,轉態強制編碼接收器700包含延遲線電路702、轉態偵測電路704以及資料採樣電路706,需注意的是,第7圖僅顯示與本發明相關的電路元件,實際上轉態強制編碼接收器700可包含額外的電路元件,舉例來說,轉態強制編碼接收器700可具有用以處理資料採樣電路706的輸出的至少一個解串列器。7 is a schematic diagram of a transition state forced code receiver according to a second embodiment of the present invention, and the receiver 122 shown in FIG. 1 can be implemented by using the transition state forced code receiver 700 shown in FIG. The forced code receiver 700 includes a delay line circuit 702, a transition state detection circuit 704, and a data sampling circuit 706. It should be noted that FIG. 7 only shows the circuit elements related to the present invention. In fact, the transition state forced code receiver 700 Additional circuit components may be included, for example, the transitional forced code receiver 700 may have at least one deserializer to process the output of the data sampling circuit 706.

延遲線電路702用以延遲多個向量信號(如m個向量信號s[m-1] - s[0])以分別產生多個延遲後的向量信號(如m個延遲後的向量信號m個向量信號s[m-1]_D - s[0]_D),需注意的是,延遲時間D’足夠滿足資料採樣電路406的設定/保持時間餘量,在一實施例中,具有適當設定的相同延遲時間D’可被應用於全部的向量信號,在另一實施例中,不同的延遲時間D’可被應用至不同的向量信號以確保有足夠的設定/保持時間餘量以採樣不同的向量信號及減少不同向量信號間的轉態偏差。The delay line circuit 702 is configured to delay a plurality of vector signals (such as m vector signals s[m-1] - s[0]) to respectively generate a plurality of delayed vector signals (eg, m delayed vector signals m) The vector signal s[m-1]_D - s[0]_D), it should be noted that the delay time D' is sufficient to satisfy the set/hold time margin of the data sampling circuit 406, in an embodiment, with appropriate settings The same delay time D' can be applied to all vector signals, in another embodiment, different delay times D' can be applied to different vector signals to ensure that there is sufficient set/hold time margin to sample different Vector signals and reduce the deviation of the transition between different vector signals.

轉態偵測電路704用以偵測向量信號s[m-1]-s[0]中的至少一個特定向量信號的轉態,在此實施例中,該至少一個特定向量信號的該轉態為向量信號s[m-1]-s[0]的鄰近狀態間所偵測到的第一個轉態,資料採樣電路706用以根據採樣時間TS來採樣延遲後的向量信號s[m-1]_D-s[0]_D,其中採樣時間TS是根據轉態偵測電路704的輸出確定,在此實施例中,轉態強制編碼接收器700在不使用時鐘資料恢復的情形下決定採樣時間TS,舉例來說,直接設定採樣時間TS為該至少一個特定向量信號的該轉態的時間(即鄰近狀態間所偵測的第一個轉態的時間)。The transition detection circuit 704 is configured to detect a transition state of at least one specific vector signal in the vector signal s[m-1]-s[0], in this embodiment, the transition state of the at least one specific vector signal For the first transition detected between the adjacent states of the vector signal s[m-1]-s[0], the data sampling circuit 706 is configured to sample the delayed vector signal s[m- according to the sampling time TS. 1]_D-s[0]_D, wherein the sampling time TS is determined according to the output of the transition detecting circuit 704. In this embodiment, the transition state forced encoding receiver 700 determines sampling without using clock data recovery. The time TS, for example, directly sets the sampling time TS to the time of the transition of the at least one particular vector signal (ie, the time of the first transition detected between adjacent states).

第8圖是根據第7圖所示的轉態強制編碼接收器700所執行的資料採樣操作的範例示意圖,其中轉態強制編碼接收器700可根據第3圖所示的概念設定。轉態偵測電路704確認向量信號s[m-1]-s[0]以尋找鄰近狀態間的第一個轉態,由於為了使資料採樣電路706採樣資料而延遲向量信號s[m-1]-s[0],參考向量信號s[m-1]-s[0]的其中一個信號所擁有的第一個轉態的時間以採樣向量信號s[m-1]-s[0],因此,可使用向量信號s[m-1]-s[0]的至少一個信號所擁有的第一個轉態的時間做為資料採樣電路406的採樣時間TS以自延遲後的向量信號s[m-1]_D-s[0]_D獲得採樣資料,其中延遲後的向量信號s[m-1]_D-s[0]_D為向量信號s[m-1]-s[0]的延遲,並且因此具有由向量信號s[m-1]-s[0]所傳送的相同資料位元。Fig. 8 is a diagram showing an example of a data sampling operation performed by the transition state forced code receiver 700 shown in Fig. 7, wherein the transition state forced code receiver 700 can be set according to the concept shown in Fig. 3. The transition detection circuit 704 acknowledges the vector signal s[m-1]-s[0] to find the first transition between adjacent states, since the vector signal s[m-1 is delayed in order for the data sampling circuit 706 to sample the data. ]-s[0], the time of the first transition state possessed by one of the reference vector signals s[m-1]-s[0] is the sample vector signal s[m-1]-s[0] Therefore, the time of the first transition state possessed by at least one signal of the vector signal s[m-1]-s[0] can be used as the sampling time TS of the data sampling circuit 406 to the self-delayed vector signal s [m-1]_D-s[0]_D obtains sampling data, wherein the delayed vector signal s[m-1]_D-s[0]_D is a vector signal s[m-1]-s[0] The delay, and therefore the same data bits transmitted by the vector signal s[m-1]-s[0].

第9圖是根據本發明第7圖所示的轉態強制編碼接收器的電路實現示意圖,如第9圖所示,延遲線電路702包含根據向量信號s[m-1]-s[0]來產生延遲後的向量信號s[m-1]_D–s[0]_D的多個延遲線7030-703m-1(標注為“D’”),需注意的是,延遲線7030-703m-1所使用的延遲時間可相同或不同,依照設計上的考慮決定。延遲後的向量信號s[m-1]_D–s[0]_D被提供給資料採樣電路706以及轉態偵測電路704,因此,除了包括向量信號s[m-1]-s[0]外,第一個轉態的偵測同樣包括延遲後的向量信號s[m-1]_D-s[0]_D。Figure 9 is a circuit diagram showing the implementation of the transition state forced code receiver shown in Fig. 7 of the present invention. As shown in Fig. 9, the delay line circuit 702 includes the vector signal s[m-1]-s[0]. To generate a plurality of delay lines 7030-703m-1 (labeled as "D'") of the delayed vector signal s[m-1]_D−s[0]_D, it should be noted that the delay line 7030-703m- The delay times used may be the same or different and are determined by design considerations. The delayed vector signal s[m-1]_D−s[0]_D is supplied to the data sampling circuit 706 and the transition detection circuit 704, thus, in addition to including the vector signal s[m-1]-s[0] In addition, the detection of the first transition also includes the delayed vector signal s[m-1]_D-s[0]_D.

轉態偵測電路704包含多個邏輯門6040-604m-1(如異反或閘(XNOR))以及一個邏輯門906(如反及閘(NAND gate)),根據邏輯門6040-604m-1以及906的邏輯操作,轉態偵測電路704的輸出(尤指邏輯門906的輸出)在向量信號s[m-1]-s[0]的鄰近狀態間所偵測到的該第一個轉態具有上升邊緣。資料採樣電路706包含使用D型觸發器所實現的多個採樣器6080-608m-1,採樣器6080-608m-1由轉態偵測電路704的輸出的相同上升邊緣時鐘控制,以在相同時間採樣向量信號s[m-1]-s[0],由此分別得到採樣後資料位元s[0]_接收 - s[m-1]_接收。The transition detection circuit 704 includes a plurality of logic gates 6040-604m-1 (such as a negation or gate (XNOR)) and a logic gate 906 (such as a NAND gate) according to logic gates 6040-604m-1. And the logic operation of 906, the output of the transition detection circuit 704 (especially the output of the logic gate 906) is detected between the adjacent states of the vector signal s[m-1]-s[0] The transition has a rising edge. The data sampling circuit 706 includes a plurality of samplers 6080-608m-1 implemented using D-type flip-flops, and the samplers 6080-608m-1 are controlled by the same rising edge clock of the output of the transition detection circuit 704 at the same time. The sample vector signal s[m-1]-s[0] is sampled, thereby obtaining the sampled data bit s[0]_received-s[m-1]_ received, respectively.

如第6圖與第9圖所示,邏輯門606/906用於驅動所有資料採樣器6080-608m-1的時鐘輸入節點,當資料率高時,脈寬較短,當採樣器6080-608m-1操作在全速率時鐘域時,邏輯門606/906要在短時間內驅動所有資料採樣器6080-608m-1的時鐘輸入節點可能會有困難,且/或可能消耗更多功率以短時間內驅動所有資料採樣器6080-608m-1的時鐘輸入節點,為了舒緩邏輯門606/906的驅動需求,本發明提出具有時鐘產生及相關還原序列化(例如,1轉2的還原序列化(1-to-2 deserialization))且較省功率的轉態強制編碼接收器設計。As shown in Figures 6 and 9, logic gates 606/906 are used to drive the clock input nodes of all data samplers 6080-608m-1. When the data rate is high, the pulse width is shorter, when the sampler 6080-608m -1 operation in the full rate clock domain, it may be difficult for logic gates 606/906 to drive the clock input nodes of all data samplers 6080-608m-1 in a short time, and/or may consume more power for a short time In order to drive the clock input nodes of all data samplers 6080-608m-1, in order to ease the driving requirements of the logic gates 606/906, the present invention proposes to have clock generation and related reduction serialization (for example, 1 to 2 reduction serialization (1) -to-2 deserialization)) and a more power-saving transition state forced code receiver design.

第10圖是根據本發明一個第三實施例的轉態強制編碼接收器的示意圖,轉態強制編碼接收器400及1000主要的差異在於轉態強制編碼接收器1000另包含分頻器1002,其用以驅動具有多個資料採樣器群(如第一資料採樣器群1003以及第二資料採樣器群1004)的資料採樣電路1006,在此實施例中,第一資料採樣群1003由多個資料採樣器10080-1008m-1所組成,第二資料採樣器群1004由多個資料採樣器10090-1009m-1,分頻器1002用以對轉態偵測電路404的輸出執行分頻以產生時鐘信號CK至資料採樣電路1006。舉例來說,分頻器1002可由除2計數器所實現,如此一來,分頻器1002的輸入可操作在全速率時鐘域,而分頻器1002的輸出可操作在半速率時鐘域,雖然轉態偵測電路404的輸出的脈寬較短,但是由於除2計數器的固有特性,時鐘信號CK的工作週期可能等同於或接近50%。在此實施例中,第一資料採樣器群1003可被設計由時鐘信號CK的上升邊緣進行時鐘控制,而第二資料採樣器群1004可被設計由時鐘信號CK的下降邊緣進行時鐘控制,因此,資料採樣器10080-1008m-1用以根據時鐘信號CK的上升邊緣來採樣向量信號s[0]-s[m-1],而資料採樣器10090-1009m-1用以根據時鐘信號CK的下降邊緣來採樣向量信號s[0]-s[m-1]。10 is a schematic diagram of a transition state forced code receiver according to a third embodiment of the present invention. The main difference between the transition state forced code receivers 400 and 1000 is that the transition state forced code receiver 1000 further includes a frequency divider 1002. The data sampling circuit 1006 is configured to drive a plurality of data sampler groups (such as the first data sampler group 1003 and the second data sampler group 1004). In this embodiment, the first data sampling group 1003 is composed of multiple data. The sampler 10080-1008m-1 is composed of a plurality of data samplers 10090-1009m-1, and the frequency divider 1002 is used to perform frequency division on the output of the rotation detecting circuit 404 to generate a clock. Signal CK is applied to data sampling circuit 1006. For example, the frequency divider 1002 can be implemented by a divide-by-2 counter, such that the input of the frequency divider 1002 can operate in the full rate clock domain, while the output of the frequency divider 1002 can operate in the half rate clock domain, although The pulse width of the output of the state detecting circuit 404 is short, but due to the inherent characteristics of the 2 counter, the duty cycle of the clock signal CK may be equal to or close to 50%. In this embodiment, the first data sampler group 1003 can be designed to be clocked by the rising edge of the clock signal CK, and the second data sampler group 1004 can be designed to be clocked by the falling edge of the clock signal CK, thus The data sampler 10080-1008m-1 is configured to sample the vector signal s[0]-s[m-1] according to the rising edge of the clock signal CK, and the data sampler 10090-1009m-1 is used according to the clock signal CK. The falling edge is used to sample the vector signal s[0]-s[m-1].

與轉態偵測電路404的輸出相比,時鐘信號CK具有較低時鐘率及較長的邏輯高值/邏輯低值寬度,分頻器1002代表轉態偵測電路404來驅動資料採樣電路1006。與轉態偵測電路404相比,當同時驅動所有資料採樣器10080-1008m-1(或10090-1009m-1)時,分頻器1002具有較舒緩的驅動需求,而由於轉態偵測電路404的輸出僅需驅動分頻器1002,轉態偵測電路404的驅動需求可得到舒緩。另外,由於第一資料採樣器群1003以及第二資料採樣器群1004分別由時鐘信號CK的上升邊緣及下降邊緣來進行時鐘控制,1轉2的還原序列化亦可由資料採樣電路1006完成。Compared with the output of the transition detection circuit 404, the clock signal CK has a lower clock rate and a longer logic high value/logic low value width, and the frequency divider 1002 represents the transition detection circuit 404 to drive the data sampling circuit 1006. . Compared with the transition detection circuit 404, when all the data samplers 10080-1008m-1 (or 10090-1009m-1) are driven at the same time, the frequency divider 1002 has a relatively slow driving demand, and the transition detection circuit The output of the 404 only needs to drive the frequency divider 1002, and the driving demand of the transition detection circuit 404 can be relieved. In addition, since the first data sampler group 1003 and the second data sampler group 1004 are clocked by the rising edge and the falling edge of the clock signal CK, the retransition serialization of 1 to 2 can also be completed by the data sampling circuit 1006.

第11圖是根據本發明第四實施例的轉態強制編碼接收器的示意圖,轉態強制編碼接收器700與1100的主要差異在於轉態強制編碼接收器1100另包含用以驅動具有多個資料採樣器群(如第一資料採樣器群1103以及第二資料採樣器群1104)的資料採樣電路1106的分頻器1102,在此實施例中,第一資料採樣群1103由多個資料採樣器11080-1108m-1所組成,第二資料採樣器群1104由多個資料採樣器11090-1109m-1,分頻器1102用以對轉態偵測電路704的輸出執行分頻以產生時鐘信號CK至資料採樣電路1106。舉例來說,分頻器1102可由除2計數器所實現,如此一來,分頻器1102的輸入可操作在全速率時鐘域,而除頻器1102的輸出可操作在半速率時鐘域,雖然轉態偵測電路704的輸出的脈寬較短,但是由於除2計數器的固有特性,時鐘信號CK的工作週期可能等同於或接近50%。在此實施例中,第一資料採樣器群1103可被設計由時鐘信號CK的上升邊緣進行時鐘控制,而第二資料採樣器群1104可被設計由時鐘信號CK的下降邊緣進行時鐘控制,因此,資料採樣器11080-1108m-1用以根據時鐘信號CK的上升邊緣來採樣向量信號s[0]-s[m-1],而資料採樣器11090-1109m-1用以根據時鐘信號CK的下降邊緣來採樣向量信號s[0]-s[m-1]。11 is a schematic diagram of a transition state forced code receiver according to a fourth embodiment of the present invention. The main difference between the transition state forced code receivers 700 and 1100 is that the transition state forced code receiver 1100 further includes a plurality of data for driving. a frequency divider 1102 of the data sampling circuit 1106 of the sampler group (such as the first data sampler group 1103 and the second data sampler group 1104). In this embodiment, the first data sampling group 1103 is composed of a plurality of data samplers. 11080-1108m-1, the second data sampler group 1104 is composed of a plurality of data samplers 11900-1109m-1, and the frequency divider 1102 is used to perform frequency division on the output of the transition detection circuit 704 to generate a clock signal CK. To the data sampling circuit 1106. For example, the frequency divider 1102 can be implemented by a divide-by-2 counter, such that the input of the frequency divider 1102 can operate in the full rate clock domain, while the output of the frequency divider 1102 can operate in the half rate clock domain, although The pulse width of the output of the state detecting circuit 704 is short, but due to the inherent characteristics of the two counters, the duty cycle of the clock signal CK may be equal to or close to 50%. In this embodiment, the first data sampler group 1103 can be designed to be clocked by the rising edge of the clock signal CK, and the second data sampler group 1104 can be designed to be clocked by the falling edge of the clock signal CK, thus The data sampler 11080-1108m-1 is configured to sample the vector signal s[0]-s[m-1] according to the rising edge of the clock signal CK, and the data sampler 11090-1109m-1 is used according to the clock signal CK. The falling edge is used to sample the vector signal s[0]-s[m-1].

與轉態偵測電路704的輸出相比,時鐘信號CK具有較低時鐘率及較長的邏輯高值/邏輯低值寬度,分頻器1102代表轉態偵測電路704來驅動資料採樣電路1106。與轉態偵測電路704相比,當同時驅動所有資料採樣器11080-1108m-1(或11090-1109m-1)時,分頻器1102具有較舒緩的驅動需求,而由於轉態偵測電路704的輸出僅需驅動分頻器1402,轉態偵測電路704的驅動需求可得到舒緩。另外,由於第一資料採樣器群1103以及第二資料採樣器群1104分別由時鐘信號CK的上升邊緣及下降邊緣進行時鐘控制,1轉2的還原序列化亦可由資料採樣電路1106完成。Compared with the output of the transition detection circuit 704, the clock signal CK has a lower clock rate and a longer logic high value/logic low value width, and the frequency divider 1102 represents the transition detection circuit 704 to drive the data sampling circuit 1106. . Compared with the transition detection circuit 704, when all the data samplers 11080-1108m-1 (or 11900-1109m-1) are driven at the same time, the frequency divider 1102 has a relatively slow driving demand, and the transition detection circuit The output of 704 only needs to drive the frequency divider 1402, and the driving demand of the transition detection circuit 704 can be relieved. In addition, since the first data sampler group 1103 and the second data sampler group 1104 are clocked by the rising edge and the falling edge of the clock signal CK, respectively, the retransition serialization of 1 to 2 can also be completed by the data sampling circuit 1106.

第12圖是第10圖所示的分頻器1002與資料採樣電路1006的電路實現示意圖,在此實施例中,分頻器1002通過將D型觸發器設定為除2計數器來實現,資料採樣器10080-1008m-1通過使用由時鐘信號CK的上升邊緣時鐘控制的D型觸發器來實現以採樣向量信號s[0]-s[m-1]以分別產生採樣資料位元s[0]_ODD-s[m-1]_ODD,而資料採樣器10090-1009m-1通過使用由時鐘信號CK的下降邊緣時鐘控制的的D型觸發器來實現以採樣向量信號s[0]-s[m-1]以分別產生採樣資料位元s[0]_EVEN-s[m-1]_EVEN。12 is a circuit implementation diagram of the frequency divider 1002 and the data sampling circuit 1006 shown in FIG. 10. In this embodiment, the frequency divider 1002 is implemented by setting a D-type flip-flop as a divide-by-2 counter, data sampling. The 10080-1008m-1 is implemented by using a D-type flip-flop controlled by the rising edge clock of the clock signal CK to sample the vector signal s[0]-s[m-1] to respectively generate the sample data bit s[0] _ODD-s[m-1]_ODD, and the data sampler 10090-1009m-1 is implemented by using a D-type flip-flop controlled by the falling edge clock of the clock signal CK to sample the vector signal s[0]-s[m -1] to generate the sample data bit s[0]_EVEN-s[m-1]_EVEN, respectively.

第13圖是第11圖所示的分頻器1102與資料採樣電路1106的電路實現示意圖,在此實施例中,分頻器1102通過將D型觸發器設定為除2計數器來實現,資料採樣器11080-1108m-1通過使用由時鐘信號CK的上升邊緣時鐘控制的D型觸發器來實現以採樣向量信號s[0]-s[m-1]以分別產生採樣資料位元s[0]_ODD-s[m-1]_ODD,而資料採樣器11090-1109m-1通過使用由時鐘信號CK的下降邊緣時鐘控制的D型觸發器實現來採樣向量信號s[0]-s[m-1]以分別產生採樣資料位元s[0]_EVEN-s[m-1]_EVEN。FIG. 13 is a schematic diagram of the circuit implementation of the frequency divider 1102 and the data sampling circuit 1106 shown in FIG. 11. In this embodiment, the frequency divider 1102 is implemented by setting a D-type flip-flop as a divide-by-2 counter, data sampling. The 11080-1108m-1 is implemented by using a D-type flip-flop controlled by the rising edge clock of the clock signal CK to sample the vector signal s[0]-s[m-1] to respectively generate the sample data bit s[0] _ODD-s[m-1]_ODD, and the data sampler 11090-1109m-1 samples the vector signal s[0]-s[m-1 by using a D-type flip-flop controlled by the falling edge clock of the clock signal CK. ] to generate the sample data bit s[0]_EVEN-s[m-1]_EVEN, respectively.

針對第4圖所示的轉態強制編碼接收器400,向量信號先通過延遲線電路402延遲,然後經過轉態偵測電路404處理以偵測最後轉態,除此之外,相同的延遲線電路被用以延遲資料與轉態,然而,此僅為範例說明,並非本發明的限制,第2圖所示的相同概念可通過適當修改應用於第4圖所示的轉態強制編碼接收器400來完成,詳細細節將於下面段落描述。For the transition state forced code receiver 400 shown in FIG. 4, the vector signal is first delayed by the delay line circuit 402, and then processed by the transition detection circuit 404 to detect the final transition state, in addition to the same delay line. The circuit is used to delay the data and the transition state. However, this is merely an example and is not a limitation of the present invention. The same concept shown in FIG. 2 can be applied to the transition state forced code receiver shown in FIG. 4 by appropriate modification. 400 to complete, the details will be described in the following paragraphs.

第14圖是根據本發明第五實施例的轉態強制編碼接收器的示意圖,第1圖所示的接收器122可使用第14圖所示的轉態強制編碼接收器1400來實現,其中轉態強制編碼接收器1400包含轉態偵測電路1402、延遲線電路1404以及資料採樣電路1406,需注意的是,第14圖僅顯示與本發明相關的部分元件,實際上轉態強制編碼接收器1400可包含額外的電路元件,舉例來說,轉態強制編碼接收器1400可具有用以處理資料採樣電路1406的輸出的至少一個解串列器。Figure 14 is a schematic diagram of a transition state forced code receiver according to a fifth embodiment of the present invention, and the receiver 122 shown in Fig. 1 can be implemented by using the transition state forced code receiver 1400 shown in Fig. 14, wherein The state-enforced code receiver 1400 includes a transition state detection circuit 1402, a delay line circuit 1404, and a data sampling circuit 1406. It should be noted that FIG. 14 only shows some components related to the present invention, and actually the state-locked coded receiver The 1400 can include additional circuit components. For example, the transition state forced code receiver 1400 can have at least one deserializer to process the output of the data sampling circuit 1406.

轉態強制編碼接收器1400可通過交換第4圖中所示的轉態偵測電路404以及延遲線電路402來實現,因此,針對第14圖所示的轉態強制編碼接收器1400,轉態偵測電路1402用以偵測向量信號s[m-1]-s[0]中的至少一個特定向量信號的轉態,在此實施例中,該至少一個特定向量信號的該轉態是向量信號s[m-1]-s[0]的鄰近狀態之間所偵測到的最後轉態;延遲線電路1404用以根據轉態偵測電路的輸出來產生延遲後信號,其中延遲時間D足夠滿足資料採樣電路1406的設定/保持時間餘量;資料採樣電路1406用以根據採樣時間TS來採樣向量信號s[m-1]-s[0],其中採樣時間TS根據延遲線電路1404所產生的該延遲後信號所決定。在此實施例中,轉態強制編碼接收器1400在不使用時鐘資料恢復的情形下決定採樣時間TS,舉例來說,直接設定採樣時間TS為該至少一個特定向量信號的故意延遲轉態的時間(即故意延遲的最後轉態的時間)。The transition state forced code receiver 1400 can be implemented by exchanging the transition state detecting circuit 404 and the delay line circuit 402 shown in FIG. 4, and therefore, for the transition state forced code receiver 1400 shown in FIG. The detecting circuit 1402 is configured to detect a transition state of at least one specific vector signal in the vector signal s[m-1]-s[0]. In this embodiment, the transition state of the at least one specific vector signal is a vector. a final transition detected between adjacent states of the signal s[m-1]-s[0]; the delay line circuit 1404 is configured to generate a delayed signal according to the output of the transition detection circuit, wherein the delay time D Sufficient to meet the set/hold time margin of the data sampling circuit 1406; the data sampling circuit 1406 is configured to sample the vector signal s[m-1]-s[0] according to the sampling time TS, wherein the sampling time TS is according to the delay line circuit 1404. The resulting delayed signal is determined. In this embodiment, the transition state forced code receiver 1400 determines the sampling time TS without using clock data recovery, for example, directly setting the sampling time TS to the intentional delay transition time of the at least one particular vector signal. (ie the time of the last transition of the intentional delay).

第15圖是根據本發明第六實施例的轉態強制編碼接收器的示意圖,第1圖所示的接收器122可使用第15圖所示的轉態強制編碼接收器1500來實現,其中轉態強制編碼接收器1500包含多個延遲電路1502及1506,其中一個延遲電路位於轉態偵測電路1504之前而另一個延遲電路位於該轉態偵測電路1504以及資料採樣電路1508之間,需注意的是,第15圖僅顯示與本發明相關的部分元件,實際上轉態強制編碼接收器1500可包含額外的電路元件,舉例來說,轉態強制編碼接收器1500可具有用以處理資料採樣電路1508的輸出的至少一個解串列器。15 is a schematic diagram of a transition state forced code receiver according to a sixth embodiment of the present invention, and the receiver 122 shown in FIG. 1 can be implemented by using the transition state forced code receiver 1500 shown in FIG. The state-enforced code receiver 1500 includes a plurality of delay circuits 1502 and 1506. One of the delay circuits is located before the transition detection circuit 1504 and the other delay circuit is located between the transition detection circuit 1504 and the data sampling circuit 1508. Figure 15 shows only some of the components associated with the present invention. In effect, the transitional forced code receiver 1500 can include additional circuit components. For example, the transitional forced code receiver 1500 can have processing data samples. At least one deserializer of the output of circuit 1508.

在此實施例中,延遲線電路1502用以延遲向量信號s[m-1]-s[0]以產生延遲後的向量信號s[m-1]_D-s[0]_D,其中轉態偵測電路1504使用延遲後的向量信號s[m-1]_D-s[0]_D來偵測至少一個特定延遲後的向量信號的轉態。由於延遲線電路1502位於轉態偵測電路1504之前,通過某些校準方法即可能克服向量信號s[m-1]–s[0]間的偏差問題,換句話說,延遲線電路1502可作為向量信號s[m-1] – s[0]的鄰近狀態間的校準轉態的消除偏差電路。In this embodiment, the delay line circuit 1502 is configured to delay the vector signal s[m-1]-s[0] to generate the delayed vector signal s[m-1]_D-s[0]_D, where the transition state The detecting circuit 1504 uses the delayed vector signal s[m-1]_D-s[0]_D to detect the transition state of the vector signal after at least one specific delay. Since the delay line circuit 1502 is located before the transition detection circuit 1504, it is possible to overcome the deviation problem between the vector signals s[m-1] - s[0] by some calibration methods. In other words, the delay line circuit 1502 can be used as Vector signal s[m-1] – s[0] The deviation of the calibration transition between adjacent states.

在此實施例中,該至少一個特定延遲後向量信的該轉態為延遲後的向量信號s[m-1]_D-s[0]_D的鄰近狀態間所偵測到的最後轉態,另一個延遲線電路1506用以根據轉態偵測電路1504的輸出來產生延遲後信號,其中採樣時間TS是根據該延遲後信號所決定。在此實施例中,轉態強制編碼接收器1400在不使用時鐘資料恢復的情形下決定採樣時間TS,舉例來說,延遲線電路1506用以延遲所偵測的最後轉態的時間以設定資料採樣電路1508所使用的採樣時間TS來採樣向量信號s[m-1]-s[0]。In this embodiment, the transition state of the at least one specific delayed post vector signal is the last transition detected between the adjacent states of the delayed vector signal s[m-1]_D-s[0]_D, The other delay line circuit 1506 is configured to generate a delayed signal according to the output of the transition detection circuit 1504, wherein the sampling time TS is determined according to the delayed signal. In this embodiment, the transition state forced code receiver 1400 determines the sampling time TS without using clock data recovery. For example, the delay line circuit 1506 is configured to delay the detected last transition time to set the data. The sampling time TS used by the sampling circuit 1508 samples the vector signal s[m-1]-s[0].

使用分頻器來產生具有較低時鐘率及較長週期的時鐘信號以減緩驅動需求的技術內容可集成到第15圖所示的轉態強制編碼接收器1500。The technical content of using a frequency divider to generate a clock signal having a lower clock rate and a longer period to slow down the driving demand can be integrated into the transition state forced code receiver 1500 shown in FIG.

第16圖是根據本發明第七實施例的轉態強制編碼接收器1600的示意圖,在此實施例中,資料採樣功能可使用第10圖所示的資料採樣電路1006來實現,且分頻器1002(如除2計數器)可位於轉態偵測電路1504以及延遲線電路1506之間,因此,在分頻器1002根據轉態偵測電路1504的輸出產生時鐘信號之後,延遲線電路1506延遲時鐘信號CK以產生延遲後時鐘信號CK_D至資料採樣電路1006。由於延遲線電路1506延遲時鐘信號CK來產生延遲後時鐘信號CK_D以作為延遲後信號來設定資料採樣電路1006的採樣時間,資料採樣電路1006中的資料採樣器10080-1008m-1是用以根據延遲後時鐘信號CK_D的上升邊緣來分別採樣向量信號s[0]-s[m-1],而資料採樣電路1006中的資料採樣器10090-1009m-1用以根據延遲後時鐘信號CK_D的下降邊緣來分別採樣向量信號s[0]-s[m-1]。Figure 16 is a diagram showing a transition state forced code receiver 1600 according to a seventh embodiment of the present invention. In this embodiment, the data sampling function can be implemented using the data sampling circuit 1006 shown in Fig. 10, and the frequency divider 1002 (such as the divide-by-2 counter) may be located between the transition detection circuit 1504 and the delay line circuit 1506. Therefore, after the frequency divider 1002 generates a clock signal according to the output of the transition detection circuit 1504, the delay line circuit 1506 delays the clock. Signal CK is generated to generate delayed post clock signal CK_D to data sampling circuit 1006. Since the delay line circuit 1506 delays the clock signal CK to generate the delayed clock signal CK_D to set the sampling time of the data sampling circuit 1006 as the delayed signal, the data sampler 10080-1008m-1 in the data sampling circuit 1006 is used to delay. The rising edge of the rear clock signal CK_D samples the vector signal s[0]-s[m-1], respectively, and the data sampler 10090-1009m-1 in the data sampling circuit 1006 is used to follow the falling edge of the delayed clock signal CK_D. To sample the vector signal s[0]-s[m-1] separately.

第17圖是根據本發明第八實施例的轉態強制編碼接收器1700的示意圖,在此實施例中,資料採樣功能可使用第10圖所示的資料採樣電路1006來實現,且分頻器1002(如除2計數器)可位於延遲線電路1506以及資料採樣電路1006之間,因此在延遲線電路1506根據轉態偵測電路1504的輸出產生該延遲後信號之後,分頻器1002根據該延遲後信號產生時鐘信號CK,因此,資料採樣電路1006中的資料採樣器10080-1008m-1用以根據時鐘信號CK的上升邊緣來分別採樣向量信號s[0]-s[m-1],而資料採樣電路1006中的資料採樣器10090-1009m-1用以根據時鐘信號CK的下降邊緣來分別採樣向量信號s[0]-s[m-1]。Figure 17 is a diagram showing a transition state forced code receiver 1700 according to an eighth embodiment of the present invention. In this embodiment, the data sampling function can be implemented using the data sampling circuit 1006 shown in Fig. 10, and the frequency divider 1002 (such as a divide-by-2 counter) may be located between the delay line circuit 1506 and the data sampling circuit 1006. Therefore, after the delay line circuit 1506 generates the delayed signal according to the output of the transition detecting circuit 1504, the frequency divider 1002 according to the delay The post signal generates a clock signal CK. Therefore, the data sampler 10080-1008m-1 in the data sampling circuit 1006 is configured to separately sample the vector signal s[0]-s[m-1] according to the rising edge of the clock signal CK. The data sampler 10090-1009m-1 in the data sampling circuit 1006 is configured to separately sample the vector signal s[0]-s[m-1] according to the falling edge of the clock signal CK.

如第2圖所示,通過向量信號s[2]、s[1]、s[0]來傳送的資料位元可由採樣時間正確的恢復,其中該採樣時間是根據向量信號s[2]、s[1]、s[0]的鄰近狀態所偵測到的最後轉態的延遲所決定,然而,該延遲後的最後轉態無法獲得向量信號s[2]、s[1]及s[0]的初始狀態的採樣結果。關於利用第2圖所示的概念的轉態強制編碼接收器,資料採樣電路可用以輸出預設位元形式以作為向量信號的初始狀態的採樣結果,亦即,由傳送器端所使用的轉態強制編碼演算法可強迫向量信號的該初始狀態具有該預設位元形式,因此向量信號的該初始狀態在使用相同轉態強制編碼演算法的該接收器端可被正確地重制。As shown in Fig. 2, the data bits transmitted by the vector signals s[2], s[1], s[0] can be recovered correctly by the sampling time, wherein the sampling time is based on the vector signal s[2], The delay of the last transition detected by the neighboring states of s[1] and s[0] is determined, however, the final transition state after the delay cannot obtain the vector signals s[2], s[1], and s[ The sampling result of the initial state of 0]. Regarding the transition state forced code receiver using the concept shown in FIG. 2, the data sampling circuit can be used to output a preset bit form as a sampling result of the initial state of the vector signal, that is, the turn used by the transmitter end. The state forcing coding algorithm can force the initial state of the vector signal to have the preset bit form, such that the initial state of the vector signal can be correctly recreated at the receiver end using the same transitional forced coding algorithm.

如第3圖所示,通過向量信號s[2]、s[1]、s[0]來傳送的資料位元可由採樣時間正確的恢復,其中該採樣時間是根據向量信號s[2]、s[1]、s[0]的鄰近狀態所偵測到的該第一轉態的提前所決定,然而,該提前的第一個轉態無法獲得向量信號s[2]、s[1]及s[0]的結束狀態的採樣結果。關於利用第3圖所示的概念的轉態強制編碼接收器,資料採樣電路可用以輸出預設位元形式以作為向量信號的結束狀態的採樣結果,亦即,由傳送器端所使用的轉態強制編碼演算法可強迫向量信號的該結束狀態具有該預設位元形式,因此向量信號的該結束狀態在使用相同轉態強制編碼演算法的該接收器端可被正確地重制。As shown in Fig. 3, the data bits transmitted by the vector signals s[2], s[1], s[0] can be recovered correctly by the sampling time, wherein the sampling time is based on the vector signal s[2], The advance of the first transition state detected by the proximity state of s[1], s[0], however, the first transition state of the advance cannot obtain the vector signal s[2], s[1] And the sampling result of the end state of s[0]. Regarding the transition state forced code receiver using the concept shown in FIG. 3, the data sampling circuit can be used to output the preset bit form as the sampling result of the end state of the vector signal, that is, the turn used by the transmitter end. The state-enforced coding algorithm can force the end state of the vector signal to have the preset bit form, such that the end state of the vector signal can be correctly recreated at the receiver end using the same transitional forced coding algorithm.

在上述的實施例中,向量信號s[m-1]-s[0]中的每一個信號可為具有二進位電壓電平信號來代表邏輯值0或邏輯值1,或著,向量信號s[m-1]-s[0]中的每一個信號可為多電平信號,例如具有多於兩個電壓電平的電壓信號。第18圖為根據本發明一個實施例的多電平向量信號的示意圖,使用多電平信號來實現的向量信號可在類比領域(如電壓域)中完成轉態強制編碼,舉例來說,可省略編碼器112以及解碼器124,且可通過使用該多電平信號所擁有的電壓電平的特定組合轉態強迫編碼/解碼二進位資料b[n-1:0]中的每一位。In the above embodiment, each of the vector signals s[m-1]-s[0] may have a binary voltage level signal to represent a logical value of 0 or a logical value of 1, or a vector signal s Each of [m-1]-s[0] may be a multi-level signal, such as a voltage signal having more than two voltage levels. Figure 18 is a schematic diagram of a multilevel vector signal according to an embodiment of the present invention. A vector signal implemented using a multilevel signal can perform a forced encoding in an analog domain (e.g., a voltage domain), for example, The encoder 112 and the decoder 124 are omitted, and each bit in the binary data b[n-1:0] can be forced/decoded by using a particular combination of voltage levels possessed by the multilevel signal.

並且,可使用該多電平向量信號以減少傳送介面的接腳數及/或攜帶更多資料,舉例來說,可在不同接腳DP與DN中使用該多電平來定義電平轉態,如第19圖所示。Moreover, the multilevel vector signal can be used to reduce the number of pins of the transfer interface and/or carry more data. For example, the multilevel can be used in different pins DP and DN to define the level transition. As shown in Figure 19.

如第2圖所示,向量信號s[2],s[1]以及s[0]由轉態強制編碼接收器從平行通道分別獲取。但是,當在當前傳輸時鐘週期記憶體在的當前狀態和下一傳輸時鐘週期記憶體在的下一狀態之間出現多個轉態時,特定的因素可能使所述多個轉態的時間彼此不對齊。所述多個轉態之間的時間差稱之為不同向量信號之間的偏差或多層次轉態導致的編碼抖動(coding jitter)。當延遲線性電路402使用的延遲時間D不夠隱藏所述編碼抖動,由轉態偵測電路404至資料採樣電路406產生的觸發時鐘定義的採樣時間TS將遭遇不期望的短時脈衝波干擾。第20圖示出觸發時鐘由於較短的延遲時間D而遭遇短時脈衝波干擾的一種情形。假設有三個向量信號AB、BC以及CA。因此,根據第6圖所示的轉態偵測電路的實施例,向量信號AB、BC以及CA和相應的延遲向量信號AB_D、BC_D以及CA_D用於產生定義採樣時間TS的觸發時鐘。但是,在該情形中,提供給向量信號AB、BC以及CA的延遲時間D長度不夠。因此,觸發時鐘遭遇短時脈衝波干擾(glitch),並提供不正確的採樣時間TS。As shown in Fig. 2, the vector signals s[2], s[1] and s[0] are respectively obtained from the parallel channels by the transition state forced code receiver. However, when a plurality of transitions occur between the current state in which the current transfer clock cycle is in memory and the next state in which the next transfer clock cycle memory is present, a specific factor may cause the plurality of transition states to time each other. not aligned. The time difference between the plurality of transition states is referred to as a deviation between different vector signals or a coding jitter caused by a multi-level transition. When the delay time D used by the delay linear circuit 402 is insufficient to hide the code jitter, the sampling time TS defined by the trigger clock generated by the transition detection circuit 404 to the data sampling circuit 406 will encounter undesired short-term pulse interference. Figure 20 shows a situation in which the trigger clock encounters short-term pulse wave interference due to the short delay time D. Suppose there are three vector signals AB, BC, and CA. Therefore, according to the embodiment of the transition detection circuit shown in FIG. 6, the vector signals AB, BC and CA and the corresponding delay vector signals AB_D, BC_D and CA_D are used to generate a trigger clock defining the sampling time TS. However, in this case, the delay time D length supplied to the vector signals AB, BC, and CA is insufficient. Therefore, the trigger clock encounters glitches and provides an incorrect sampling time TS.

相反,如果合理地設置延遲線電路402使用的延遲時間D,由轉態偵測電路404至資料採樣電路406產生的觸發時鐘定義的採樣時間TS將不會遭遇短時脈衝波干擾。第21圖示出觸發時鐘由於合理配置的延遲時間D而不遭遇短時脈衝波干擾的一種情形。由於提供給向量信號AB、BC以及CA的延遲時間D長度足夠長,因此,轉態偵測電路404的組合邏輯將不會產生短時脈衝波干擾。Conversely, if the delay time D used by the delay line circuit 402 is reasonably set, the sampling time TS defined by the trigger clock generated by the transition detecting circuit 404 to the data sampling circuit 406 will not suffer from glitch. Figure 21 shows a situation in which the trigger clock does not encounter short-term pulse wave interference due to a reasonably configured delay time D. Since the delay time D length supplied to the vector signals AB, BC, and CA is sufficiently long, the combinational logic of the transition detection circuit 404 will not generate glitches.

為了阻止觸發時鐘遭遇短時脈衝波干擾,本發明使用相位或時間偏差補償(de-skew)機制來最小化或消除不同向量信號的多個轉態之間的時間差(也即,編碼抖動)。第22圖根據本發明的一個實施例示出一種採樣向量信號,該採樣向量信號使用依據相位或時間偏差補償後的向量信號確定的採樣時間。假設,m=3,向量信號s[2],s[1]以及s[0]由轉態強制編碼接收器從平行通道分別獲取。關於採樣時間的產生,向量信號s[2],s[1]以及s[0]分別被相位或時間偏差補償來產生被相位或時間偏差補償後的向量信號s[2:0]’。如第22圖所示,當在當前傳輸時鐘週期記憶體在的當前狀態和下一傳輸時鐘週期記憶體在的下一狀態之間出現多個轉態時,由於使用了相位或時間偏差補償機制,所述多個轉態的時間彼此對齊。如前所述,轉態強制編碼接收器使至少一個轉態始終發生在向量信號的相鄰狀態之間。相鄰的狀態之間的最後轉態可被偵測出(例如,處於一個傳輸時鐘週期的邊沿周圍)。如果向量信號的相鄰狀態之間僅出現一個轉態,則該偵測到的轉態被視為所述最後轉態。如果向量信號的相鄰狀態之間出現多個轉態,則被偵測出的彼此對齊的多個轉態中任意一個被視為所述最後轉態。所述被偵測出的最後轉態的時間可從預先設定的延遲時間D延長至接收的向量信號s[2],s[1]以及s[0]的一個採樣時間。如相位或時間偏差補償後的向量信號s[2:0]’的眼圖所示,從當前狀態的最後轉態至下一狀態的第一轉態的信號電平是穩定和乾淨的。此外,由於採樣時間取自相位或時間偏差補償後的向量信號s[2:0]’,因此,接收的向量信號s[2],s[1]以及s[0]的採樣時間不遭遇短時脈衝波干擾。因此,表示向量信號s[2],s[1]以及s[0]的一個狀態的多個資料位元可通過直接由偵測出的最後轉態的一個延遲確定的採樣時間進行恢復,所述最後轉態在相位或時間偏差補償後的向量信號s[2:0] ’的相鄰狀態之間被偵測出。To prevent the trigger clock from encountering glitches, the present invention uses a phase or time offset de-skew mechanism to minimize or eliminate the time difference (i.e., code jitter) between multiple transitions of different vector signals. Figure 22 illustrates a sample vector signal using a sample time determined from a phase or time offset compensated vector signal, in accordance with one embodiment of the present invention. Assuming that m=3, the vector signals s[2], s[1], and s[0] are respectively obtained from the parallel channels by the transition state forced code receiver. Regarding the generation of the sampling time, the vector signals s[2], s[1] and s[0] are respectively compensated by the phase or time offset to generate the vector signal s[2:0]' compensated by the phase or time offset. As shown in FIG. 22, when a plurality of transition states occur between the current state of the memory in the current transfer clock cycle and the next state of the memory in the next transfer clock cycle, the phase or time offset compensation mechanism is used. The plurality of transition states are aligned with each other. As previously mentioned, the transition state forced code receiver causes at least one transition to always occur between adjacent states of the vector signal. The last transition between adjacent states can be detected (eg, around the edge of a transmission clock cycle). If only one transition occurs between adjacent states of the vector signal, the detected transition is considered to be the last transition. If a plurality of transition states occur between adjacent states of the vector signal, any one of the plurality of transition states that are detected to be aligned with each other is regarded as the last transition state. The time of the detected last transition state may be extended from the preset delay time D to the received vector signal s[2], s[1] and one sampling time of s[0]. As shown by the eye diagram of the phase or time offset compensated vector signal s[2:0]', the signal level from the last transition state of the current state to the first transition state of the next state is stable and clean. In addition, since the sampling time is taken from the vector signal s[2:0]' after phase or time offset compensation, the sampling time of the received vector signals s[2], s[1] and s[0] is not short. Pulse wave interference. Therefore, a plurality of data bits representing a state of the vector signals s[2], s[1], and s[0] can be recovered by a sampling time determined directly by a delay of the detected last transition state. The final transition is detected between adjacent states of the vector signal s[2:0] ' after phase or time offset compensation.

在一些實施例中,轉態強制編碼接收器中的延遲線電路也可作用為相位或時間偏差補償電路。也即,可通過對轉態強制編碼接收器接收的不同測試向量信號的延遲時間進行控制來獲得相位或時間偏差補償功能。後續將介紹相位或時間偏差補償設計的更為詳細的細節。In some embodiments, the delay line circuit in the transition state forced code receiver can also function as a phase or time offset compensation circuit. That is, the phase or time offset compensation function can be obtained by controlling the delay time of different test vector signals received by the transition state forced code receiver. More detailed details of the phase or time offset compensation design will be presented later.

第23圖根據本發明的第九實施例示出包括偏差校準的轉態強制編碼接收器。第1圖中所示的接收器122可被替換為第23圖所示的轉態強制編碼接收器2300。轉態強制編碼接收器2300包括偏差校準電路2302、延遲線電路2304、轉態偵測電路404以及資料採樣電路406。需要注意的是,第23圖僅示出與本發明相關的電路元件。在實際應用中,轉態強制編碼接收器2300可包括其他額外的電路元件。例如,轉態強制編碼接收器2300可包括至少一個解串器,用於處理資料採樣電路406的輸出。Figure 23 shows a transitional forced code receiver including offset calibration in accordance with a ninth embodiment of the present invention. The receiver 122 shown in Fig. 1 can be replaced with the transition state forced code receiver 2300 shown in Fig. 23. The transition state forced code receiver 2300 includes a deviation calibration circuit 2302, a delay line circuit 2304, a transition state detection circuit 404, and a data sampling circuit 406. It is to be noted that Fig. 23 only shows circuit elements related to the present invention. In a practical application, the transition state forced code receiver 2300 can include other additional circuit elements. For example, the transition state forced code receiver 2300 can include at least one deserializer for processing the output of the data sampling circuit 406.

在本實施例中,偏差校準電路2302用於在校準模式下設置校準後的延遲設定DS。延遲線電路2304在普通模式下,使用所述校準延遲設定(可包括多個不同的延遲時間)分別延遲多個向量信號s[m-1], s[m-2] … s[0]來產生多個延遲後的向量信號s[m-1]_D, s[m-2]_D … s[0]_D。其中,在所述普通模式下,不同延遲向量信號的轉態的延遲通過校準後的延遲設定得以減小。不同於前面提到的對所有的向量信號使用相同延遲時間D的延遲線電路402,延遲線電路2304對不同的向量信號使用不同的延遲時間,由此,不同向量信號的偏差得以最小化或者消除。此外,要求不使用時鐘和資料恢復來設置所述採樣時間TS的延遲時間D也可用於設置所述校準後的延遲設定DS。也即,延遲線電路2304使用的校準後的延遲設定DS可同時具有無時鐘和資料恢復採樣時間設定功能和相位或時間偏差補償功能。In the present embodiment, the offset calibration circuit 2302 is configured to set the calibrated delay setting DS in the calibration mode. The delay line circuit 2304 delays the plurality of vector signals s[m-1], s[m-2] ... s[0], respectively, in the normal mode using the calibration delay settings (which may include a plurality of different delay times) A plurality of delayed vector signals s[m-1]_D, s[m-2]_D ... s[0]_D are generated. Wherein, in the normal mode, the delay of the transition state of the different delay vector signals is reduced by the post-calibration delay setting. Unlike the aforementioned delay line circuit 402, which uses the same delay time D for all vector signals, the delay line circuit 2304 uses different delay times for different vector signals, whereby the deviation of different vector signals is minimized or eliminated. . Further, the delay time D required to set the sampling time TS without using clock and data recovery can also be used to set the calibrated delay setting DS. That is, the calibrated delay setting DS used by the delay line circuit 2304 can have both a clockless and data recovery sampling time setting function and a phase or time offset compensation function.

第24圖示出第23圖的轉態強制編碼接收器2300執行的資料採樣操作的一個實施例。轉態強制編碼接收器2300可依照第22圖所示的概念進行配置。向量信號s[m-1]_D, s[m-2]_D … s[0]_D為相位或時間偏差補償以及延遲後的向量信號。轉態偵測電路404偵測向量信號s[m-1]_D, s[m-2]_D … s[0]_D來發現相鄰狀態之間的最後轉態。由於延遲後的向量s[m-1]_D, s[m-2]_D … s[0]_D被相位或時間偏差補償,所述最後轉態可為一個轉態或者多個對齊的轉態中的任一個,其取決於相鄰狀態之間出現的轉態數量。此外,延遲的向量信號s[m-1]_D, s[m-2]_D … s[0]_D的至少一個佔用的最後轉態的時間等於相位或時間偏差補償後的向量信號的至少一個佔用的最後轉態的時間的延遲。因此,被延遲的向量信號s[m-1]_D, s[m-2]_D … s[0]_D的至少一個佔用的最後轉態的時間可直接作為資料採樣電路406的採樣時間TS,資料採樣電路406用於從向量信號s[m-1]-s[0]獲取採樣資料。Fig. 24 shows an embodiment of the data sampling operation performed by the transition state forced code receiver 2300 of Fig. 23. The transition state forced code receiver 2300 can be configured in accordance with the concept shown in FIG. The vector signal s[m-1]_D, s[m-2]_D ... s[0]_D is a phase or time offset compensation and a delayed vector signal. The transition detection circuit 404 detects the vector signal s[m-1]_D, s[m-2]_D ... s[0]_D to find the last transition between adjacent states. Due to the delayed vector s[m-1]_D, s[m-2]_D ... s[0]_D is compensated by the phase or time offset, which may be a transition state or a plurality of aligned transition states. Any of them depends on the number of transitions that occur between adjacent states. Furthermore, at least one of the delayed vector signals s[m-1]_D, s[m-2]_D ... s[0]_D occupies the last transition state equal to at least one of the phase or time offset compensated vector signals The delay in the time of the last transition. Therefore, the time of the last transition state occupied by at least one of the delayed vector signals s[m-1]_D, s[m-2]_D ... s[0]_D can be directly used as the sampling time TS of the data sampling circuit 406. The data sampling circuit 406 is configured to acquire sampling data from the vector signal s[m-1]-s[0].

在第一個示例性的設計中,第23圖所示的延遲線電路2304可在校準模式下重新被使用以提供需要被偏差校準電路2302執行偏差校準的信號。請同時參考第25圖和第26圖。第25圖示出一個可同時實現第23圖的延遲線電路2304、轉態偵測電路404以及資料採樣電路406的電路。第26圖示出可實現第23圖的偏差校準電路的電路。當轉態強制編碼接收器2300操作在普通模式,延遲線電路2304、轉態偵測電路404以及資料採樣電路406被使能,偏差校準電路2302被禁能。當轉態強制編碼接收器2300操作在校準模式,轉態偵測電路404和資料採樣電路406被禁能,偏差校準電路2302和延遲線電路2304被使能。因此,在普通和校準模式下,均會使用延遲線電路2304。延遲線電路2304包括多個延遲線25020-2502m-1。延遲線25020-2502m-1用於在普通模式下,根據向量信號s[0]-s[m-1](為普通模式下從對應的轉態強制編碼傳送器發射的法向量(normal vector)信號)和校準的設定DS(包括在校準模式下設置的多個延遲時間Dm-1-D0,Dm-1-D0彼此可不相同)產生延遲後的向量信號s[0]_D-s[m-1]_D給後續的轉態偵測電路404。延遲線25020-2502m-1還用於在校準模式下,為向量信號s[m-1]-s[0](為校準模式下從對應的轉態強制編碼傳送器發射的測試向量信號)中的每一個提供多個延遲後的向量信號s[m-1]_D[n:0], s[m-2]_D[n:0] …s[0]_D[n:0]。例如,當操作在校準模式,每一個延遲線(例如,2502m-1)對輸入的測試信號(例如,s[m-1])使用不同數量的單元延遲來產生延遲後的測試向量信號(例如,s[m-1]_D[n]… s[m-1]_D[0]),每一個單元延遲由延遲線中的一個延遲單元提供,根據每一個測試向量信號穿過的串聯延遲單元的數量來確定應用至所述測試向量信號的單元延遲的數量。因此,對於同一個測試向量信號(例如,s[m-1]),延遲後的多個測試向量信號(例如,s[m-1]_D[n]… s[m-1]_D[0])具有不同的延遲時間。延遲後的多個測試向量信號s[m-1]_D[n]… s[m-1]_D[0]提供給偏差校準電路2302用於後續的處理。In a first exemplary design, the delay line circuit 2304 shown in FIG. 23 can be reused in the calibration mode to provide a signal that needs to be subjected to the offset calibration by the offset calibration circuit 2302. Please also refer to Figure 25 and Figure 26. Fig. 25 shows a circuit which can simultaneously realize the delay line circuit 2304, the state transition detecting circuit 404, and the data sampling circuit 406 of Fig. 23. Fig. 26 shows a circuit which can realize the deviation calibration circuit of Fig. 23. When the transition state forced code receiver 2300 operates in the normal mode, the delay line circuit 2304, the transition state detection circuit 404, and the data sampling circuit 406 are enabled, and the offset calibration circuit 2302 is disabled. When the transition state forced code receiver 2300 is operating in the calibration mode, the transition detection circuit 404 and the data sampling circuit 406 are disabled, and the offset calibration circuit 2302 and the delay line circuit 2304 are enabled. Therefore, delay line circuit 2304 is used in both normal and calibration modes. Delay line circuit 2304 includes a plurality of delay lines 25020-2502m-1. The delay line 25020-2502m-1 is used in the normal mode according to the vector signal s[0]-s[m-1] (normal vector transmitted from the corresponding transition state forced encoding transmitter in the normal mode) Signal) and calibration setting DS (including multiple delay times Dm-1-D0 set in the calibration mode, Dm-1-D0 may be different from each other) to generate the delayed vector signal s[0]_D-s[m- 1]_D is given to the subsequent transition detection circuit 404. The delay line 25020-2502m-1 is also used in the calibration mode for the vector signal s[m-1]-s[0] (the test vector signal transmitted from the corresponding transition state forced code transmitter in calibration mode) Each of them provides a plurality of delayed vector signals s[m-1]_D[n:0], s[m-2]_D[n:0] ...s[0]_D[n:0]. For example, when operating in a calibration mode, each delay line (eg, 2502m-1) uses a different amount of unit delay for the input test signal (eg, s[m-1]) to generate a delayed test vector signal (eg, , s[m-1]_D[n]... s[m-1]_D[0]), each unit delay is provided by a delay unit in the delay line, and the series delay unit is passed according to each test vector signal The number of units determines the number of unit delays applied to the test vector signal. Thus, for the same test vector signal (eg, s[m-1]), the delayed multiple test vector signals (eg, s[m-1]_D[n]... s[m-1]_D[0 ]) has different delay times. The delayed plurality of test vector signals s[m-1]_D[n]...s[m-1]_D[0] are supplied to the deviation calibration circuit 2302 for subsequent processing.

如第26圖所示,偏差校準電路2302包括時間-數位轉換器(Time-to-Digital Converter,TDC)2602和校準狀態機2604。時間-數位轉換器為處理電路,用於在校準模式下測試多個時間差,每一個時間差為接收的多個測試信號s[0]-s[m-1]中任兩個之間的時間差。每一個測量所得的時間差通過採樣比特[n:0]構成的時間-數位轉換器碼指示。校準狀態機2604為處理電路,用於根據所述時間差(由時間-數位轉換器2602測得的時間-數位轉換器碼指示)確定校準後的延遲設定DS(包括將被應用至在普通模式接收的法向量s[0]-s[m-1]的多個延遲時間Dm-1-D0)。例如,假設測試向量信號s[0]-s[m-1]包括s[0],s[1] 和 s[2] (m=3),時間-數位轉換器2602用於測量s[0]和s[2]之間的時間差TD0-2,s[0]和s[1]之間的時間差TD0-1,以及s[1]和s[2]之間的時間差TD1-2。校準狀態機2604至少根據時間差TD0-2,TD0-1,以及TD1-2確定校準後的延遲設定DS。As shown in FIG. 26, the offset calibration circuit 2302 includes a Time-to-Digital Converter (TDC) 2602 and a calibration state machine 2604. The time-to-digital converter is a processing circuit for testing a plurality of time differences in a calibration mode, each time difference being a time difference between any two of the received plurality of test signals s[0]-s[m-1]. The time difference obtained for each measurement is indicated by a time-to-digital converter code consisting of sample bits [n:0]. The calibration state machine 2604 is a processing circuit for determining a calibrated delay setting DS based on the time difference (indicated by the time-to-digital converter code measured by the time-to-digital converter 2602) (including being applied to receive in normal mode) The multiple delay times of the normal vector s[0]-s[m-1] are Dm-1-D0). For example, assume that the test vector signal s[0]-s[m-1] includes s[0], s[1] and s[2] (m=3), and the time-to-bit converter 2602 is used to measure s[0 The time difference TD0-2 between s[2], the time difference TD0-1 between s[0] and s[1], and the time difference TD1-2 between s[1] and s[2]. The calibration state machine 2604 determines the calibrated delay setting DS based at least on the time differences TD0-2, TD0-1, and TD1-2.

此外,在校準模式下接收的測試向量s[0]-s[m-1]應當被合適設置以便在測試向量信號s[0]-s[m-1]的相鄰狀態之間僅發生兩個轉態。在一個實施例中,轉態強制編碼接收器2300根據預先設定的校準模式(calibration pattern)接收轉態強制編碼傳送器(例如,第1圖所示的傳送器114)產生的測試向量信號s[0]-s[m-1]。假設轉態強制編碼接收器2300用於遵循移動行業處理器介面(Mobile Industry Processor Interface,MIPI)C-PHY規範的介面中。預定的校準模式可為用於引發最大的切換抖動的最壞偏差模式(worst skew pattern)。例如,如第27圖所示,預定的校準模式可依照MIPI C-PHY規範由一串“2”符號(為雙轉態符號(double-transition))設置。再例如,如第28圖所示,預定的校準模式可依照MIPI C-PHY規範由一串“4”符號(為雙轉態符號)設置。Furthermore, the test vector s[0]-s[m-1] received in the calibration mode should be suitably set so that only two occurrences between adjacent states of the test vector signal s[0]-s[m-1] A change of state. In one embodiment, the transition state forced code receiver 2300 receives the test vector signal s generated by the transition state forced code transmitter (eg, the transmitter 114 shown in FIG. 1) according to a preset calibration pattern. 0]-s[m-1]. It is assumed that the transitional forced code receiver 2300 is used in an interface that follows the Mobile Industry Processor Interface (MIPI) C-PHY specification. The predetermined calibration mode can be the worst skew pattern used to induce the maximum switching jitter. For example, as shown in FIG. 27, the predetermined calibration mode can be set by a string of "2" symbols (which are double-transitions) in accordance with the MIPI C-PHY specification. As another example, as shown in FIG. 28, the predetermined calibration mode can be set by a string of "4" symbols (which are double transition symbols) in accordance with the MIPI C-PHY specification.

假設測試向量信號s[0]-s[m-1]包括s[0],s[1] 和 s[2] (m=3)。在第一校準階段,合理設置測試向量信號s[0]-s[2]以便在測試向量信號s[0]和s[1]的每兩個鄰近狀態之間僅出現兩個轉態,並且在測試向量s[2]中沒有轉態出現,此外,時間-數位轉換器2602被控制使用單個測量結果或者多個測量結果的平均值獲得s[0]和s[1]之間的測量時間差TD0-1(也即,編碼抖動)。在第二校準階段,合理設置測試向量信號s[0]-s[2] 以便在測試向量信號s[0]和s[2]的每兩個鄰近狀態之間僅出現兩個轉態,並且在測試向量s[1]中沒有轉態出現,此外,時間-數位轉換器2602被控制使用單個測量結果或者多個測量結果的平均值獲得s[0]和s[2]之間的測量時間差TD0-2(也即,編碼抖動)。在第三校準階段,合理設置測試向量信號s[0]-s[2] 以便在測試向量信號s[1]和s[2]的每兩個鄰近狀態之間僅出現兩個轉態,並且在測試向量s[0]中沒有轉態出現,此外,時間-數位轉換器2602被控制使用單個測量結果或者多個測量結果的平均值獲得s[1]和s[2]之間的測量時間差TD1-2(也即,編碼抖動)。需要注意的是,時間差TD0-1 、TD0-2 以及TD1-2的測量順序可依照實際的設計的考慮而調整。Assume that the test vector signal s[0]-s[m-1] includes s[0], s[1] and s[2] (m=3). In the first calibration phase, the test vector signal s[0]-s[2] is reasonably set so that only two transition states occur between every two adjacent states of the test vector signals s[0] and s[1], and There is no transition in the test vector s[2]. Furthermore, the time-to-digital converter 2602 is controlled to obtain the measurement time difference between s[0] and s[1] using a single measurement result or an average of multiple measurement results. TD0-1 (ie, code jitter). In the second calibration phase, the test vector signal s[0]-s[2] is reasonably set so that only two transition states occur between every two adjacent states of the test vector signals s[0] and s[2], and There is no transition in the test vector s[1], and in addition, the time-to-digital converter 2602 is controlled to obtain a measurement time difference between s[0] and s[2] using a single measurement result or an average of a plurality of measurement results. TD0-2 (ie, code jitter). In the third calibration phase, the test vector signal s[0]-s[2] is reasonably set so that only two transition states occur between every two adjacent states of the test vector signals s[1] and s[2], and There is no transition in the test vector s[0]. Furthermore, the time-to-digital converter 2602 is controlled to obtain the measurement time difference between s[1] and s[2] using a single measurement result or an average of multiple measurement results. TD1-2 (ie, code jitter). It should be noted that the measurement order of the time differences TD0-1, TD0-2, and TD1-2 can be adjusted according to actual design considerations.

如第26圖所示,時間-數位轉換器2602包括多個多工器(MUXes)2612、2614以及採樣電路(例如,D型觸發器)2616。多工器2612選擇第一測試向量信號(也即,s[m-1], s[m-2]… s[0]中的一個)的延遲的測試向量信號(也即,s[m-1]_D[n:0], s[m-2]_D[n:0]… s[0]_D[n:0]中的一個),並輸出所選擇的延遲的測試向量信號給採樣電路2616(特別的,輸出給採樣電路2616的資料登錄節點)。多工器2614器選擇第二測試向量信號(也即,s[m-1], s[m-2]… s[0]中的另一個),並輸出所選擇的第二測試向量信號給採樣電路2616(特別的,輸出給採樣電路2616的時鐘輸入節點)。當被所述第二測試向量信號觸發時,採樣電路2616通過對所述第一測試向量信號的所述延遲後的測試向量信號進行採樣來測量所述第一測試向量信號和所述第二測試向量信號的時間差,以產生由採樣比特D[n:0]構成的時間-數位轉換器碼。第29圖根據本發明的一個實施例示出時間-數位轉換器和延遲線合作操作來獲得時間-數位轉換的實施例。假設,要求時間-數位轉換器2602在一個校準階段內測量第一測試向量信號(例如,s[0])和第二測試向量信號(例如,s[1])的時間差,其中,在所述校準階段內,所述第一測試向量信號s[0]和所述第二測試向量信號s[1]在每兩個狀態之間具有轉態。一個延遲線可包括多個串聯連接的延遲單元,其中,每一個延遲單元可對所述第一測試向量信號s[0]提供一個單元延遲。因此,延遲的測試向量信號s[0]_D[0], s[0]_D[1]… s[0]_D[n]分別由串聯的延遲單元的輸出節點產生。時間-數位轉換器的採樣電路可包括多個D型觸發器,每個D型觸發器多個輸入節點(例如,資料登錄節點D、時鐘輸入節點C以及重定輸入節點)和多個輸出節點(例如,資料輸出節點Q和反相資料輸出節點)。所述延遲後的測試向量信號s[0]_D[0], s[0]_D[1]… s[0]_D[n]被送入所述D型觸發的資料登錄節點。此外,所述第二測試向量信號s[1]送入D型觸發器的時鐘輸入節點,且由所述D型觸發器的資料輸出節點產生所述採樣比特D[0]_D[n]。As shown in FIG. 26, the time-to-digital converter 2602 includes a plurality of multiplexers (MUXes) 2612, 2614 and sampling circuits (e.g., D-type flip-flops) 2616. The multiplexer 2612 selects the delayed test vector signal of the first test vector signal (ie, one of s[m-1], s[m-2]...s[0]) (ie, s[m- 1] _D[n:0], s[m-2]_D[n:0]... s[0]_D[n:0]), and output the selected delayed test vector signal to the sampling circuit 2616 (in particular, the data registration node output to the sampling circuit 2616). The multiplexer 2614 selects the second test vector signal (ie, s[m-1], the other of s[m-2]...s[0]), and outputs the selected second test vector signal to Sampling circuit 2616 (in particular, a clock input node that is output to sampling circuit 2616). When triggered by the second test vector signal, the sampling circuit 2616 measures the first test vector signal and the second test by sampling the delayed test vector signal of the first test vector signal The time difference of the vector signal to produce a time-to-digital converter code consisting of sample bits D[n:0]. Figure 29 illustrates an embodiment of a time-to-digital converter and delay line cooperative operation to obtain time-to-digital conversion, in accordance with one embodiment of the present invention. Assume that the time-to-digital converter 2602 is required to measure the time difference between the first test vector signal (eg, s[0]) and the second test vector signal (eg, s[1]) during a calibration phase, wherein During the calibration phase, the first test vector signal s[0] and the second test vector signal s[1] have transitions between every two states. A delay line can include a plurality of delay cells connected in series, wherein each delay cell can provide a unit delay to the first test vector signal s[0]. Therefore, the delayed test vector signals s[0]_D[0], s[0]_D[1]...s[0]_D[n] are respectively generated by the output nodes of the series delay units. The sampling circuit of the time-digital converter may include a plurality of D-type flip-flops, and each D-type flip-flop has multiple input nodes (for example, data login node D, clock input node C, and re-determined input node) And multiple output nodes (eg, data output node Q and inverted data output node) ). The delayed test vector signal s[0]_D[0], s[0]_D[1]...s[0]_D[n] is sent to the data entry node of the D-type trigger. Furthermore, the second test vector signal s[1] is fed to the clock input node of the D-type flip-flop, and the sample bit D[0]_D[n] is generated by the data output node of the D-type flip-flop.

第30圖依據本發明的一個實施例示出執行時間-數位轉換來測量兩個測試向量信號的時間差的實施例。當所述第二測試向量信號s[1]的轉態發生時,對所述延遲後的測試向量信號s[0]_D[0], s[0]_D[1]… s[0]_D[n]進行採樣來產生由採樣比特D[0], D[1]… D[n]構成的時間-數位轉換器碼,其中,時間-數位轉換器碼中包括的數位1’s指示所述第一測試向量信號s[0]和第二測試向量信號s[1]的時間差。通過多工器2612和2614的適當選擇,時間-數位轉換器2602可獲得測試向量信號s[0]-s[m-1]中任意兩個測試向量信號的時間差。Figure 30 illustrates an embodiment of performing a time-to-digital conversion to measure the time difference of two test vector signals, in accordance with one embodiment of the present invention. When the transition state of the second test vector signal s[1] occurs, the delayed test vector signal s[0]_D[0], s[0]_D[1]...s[0]_D [n] performs sampling to generate a time-to-digital converter code composed of sampling bits D[0], D[1]... D[n], wherein the digit 1's included in the time-to-digital converter code indicates the said The time difference between a test vector signal s[0] and a second test vector signal s[1]. With appropriate selection of multiplexers 2612 and 2614, time-to-digital converter 2602 can obtain the time difference of any two of the test vector signals s[0]-s[m-1].

當校準狀態機2604獲知測試向量信號s[0]-s[m-1] 的時間差,則所述測試向量信號s[0]-s[m-1]的實際的偏差狀況便可輕易獲知。在普通模式下,校準狀態機2604根據測試向量信號s[0]-s[m-1]的實際的偏差狀況和用於設置採樣時間TS的延遲時間D來確定延遲線電路2304可使用的校準延遲設定DS,由此獲得無時鐘資料恢復的採樣時間設定和消除偏差的向量信號。When the calibration state machine 2604 knows the time difference of the test vector signal s[0]-s[m-1], the actual deviation condition of the test vector signal s[0]-s[m-1] can be easily known. In the normal mode, the calibration state machine 2604 determines the calibration that the delay line circuit 2304 can use based on the actual deviation condition of the test vector signal s[0]-s[m-1] and the delay time D for setting the sampling time TS. The DS is delayed, thereby obtaining a sampling time setting without clock data recovery and a vector signal for eliminating the deviation.

在第二種示例性的設計中,第23圖中的延遲線電路2304可無需在校準模式下被重新使用來提供偏差校準電路2302執行偏差校準所需的信號。當轉態強制編碼接收器2300操作在普通模式,延遲線電路2304、轉態偵測電路404以及資料採樣電路406被使能,偏差校準電路2302被禁能。當轉態強制編碼接收器2300操作在校準模式,延遲線電路2304、轉態偵測電路404以及資料採樣電路406被禁能,偏差校準電路2302被使能。因此,延遲線電路2304僅在普通模式中被使用。為獲得偏差校準所需的延遲後的信號,偏差校準電路2302可配置為包括副本延遲線在其內。In a second exemplary design, delay line circuit 2304 in FIG. 23 may be reused in calibration mode to provide the signals required by deviation calibration circuit 2302 to perform offset calibration. When the transition state forced code receiver 2300 operates in the normal mode, the delay line circuit 2304, the transition state detection circuit 404, and the data sampling circuit 406 are enabled, and the offset calibration circuit 2302 is disabled. When the transition state forced code receiver 2300 operates in the calibration mode, the delay line circuit 2304, the transition state detection circuit 404, and the data sampling circuit 406 are disabled, and the offset calibration circuit 2302 is enabled. Therefore, the delay line circuit 2304 is only used in the normal mode. To obtain the delayed signal required for the offset calibration, the offset calibration circuit 2302 can be configured to include a replica delay line therein.

第31圖示出第23圖所示的偏差校準電路2302的可替換的電路的實施例。第26圖和第31圖所示的電路設計的主要不同在於:第31圖的電路設計包括副本延遲線3114,耦接於時間-數位轉換器3102的多工器3112和採樣電路2616之間。當通過第31圖所示的替代電路替換偏差校準電路2302,延遲線電路2304可替換為僅在普通模式下操作的延遲線25020-2502m-1。因此,延遲線電路2304的延遲線25020-2502m-1不會在校準模式下用來提供所述延遲後的測試信號s[0]_D[n:0]-s[m-1]_D[n:0]。例如,當測試向量信號s[0]-s[m-1]中的一個被多工器3112選擇後,副本延遲線3114延遲所述選擇的測試向量信號來產生相較於所述選擇的測試向量信號而言具有不同延遲時間的多個延遲後的測試向量信號c[n:0]。例如,當選擇的測試向量信號為s[0],延遲後的測試向量信號c[n:0]為s[0]_D[n:0];當選擇的測試向量信號為s[m-1],延遲後的測試向量信號c[n:0]為s[m-1]_D[n:0];當選擇的測試向量信號為s[m-2],延遲後的測試向量信號c[n:0]為s[m-2]_D[n:0]。經過多工器3112和2614的合理選擇,可使用第31圖所示的時間-數位轉換器3102獲得測試向量信號s[0]-s[m-1]中的任意兩個測試向量信號的時間差。Fig. 31 shows an embodiment of an alternative circuit of the offset calibration circuit 2302 shown in Fig. 23. The main difference between the circuit design shown in FIG. 26 and FIG. 31 is that the circuit design of FIG. 31 includes a replica delay line 3114 coupled between the multiplexer 3112 of the time-to-digital converter 3102 and the sampling circuit 2616. When the offset calibration circuit 2302 is replaced by the replacement circuit shown in FIG. 31, the delay line circuit 2304 can be replaced with a delay line 25020-2502m-1 that operates only in the normal mode. Therefore, the delay line 25020-2502m-1 of the delay line circuit 2304 is not used in the calibration mode to provide the delayed test signal s[0]_D[n:0]-s[m-1]_D[n :0]. For example, when one of the test vector signals s[0]-s[m-1] is selected by the multiplexer 3112, the replica delay line 3114 delays the selected test vector signal to produce a test that is compared to the selection. The vector signal has a plurality of delayed test vector signals c[n:0] having different delay times. For example, when the selected test vector signal is s[0], the delayed test vector signal c[n:0] is s[0]_D[n:0]; when the selected test vector signal is s[m-1 ], the delayed test vector signal c[n:0] is s[m-1]_D[n:0]; when the selected test vector signal is s[m-2], the delayed test vector signal c[ n:0] is s[m-2]_D[n:0]. After reasonable selection by the multiplexers 3112 and 2614, the time difference of any two test vector signals in the test vector signal s[0]-s[m-1] can be obtained using the time-to-digital converter 3102 shown in FIG. .

類似地,當校準狀態機2604獲知測試向量信號s[0]-s[m-1] 的時間差,則所述測試向量信號s[0]-s[m-1]的實際的偏差狀況便可輕易獲知。在普通模式下,校準狀態機2604根據測試向量信號s[0]-s[m-1]的實際的偏差狀況和用於設置採樣時間TS的延遲時間D來確定延遲線電路2304可使用的校準延遲設定DS,由此獲得無時鐘資料恢復的採樣時間設定和消除偏差的向量信號。Similarly, when the calibration state machine 2604 knows the time difference of the test vector signal s[0]-s[m-1], the actual deviation of the test vector signal s[0]-s[m-1] can be Easy to know. In the normal mode, the calibration state machine 2604 determines the calibration that the delay line circuit 2304 can use based on the actual deviation condition of the test vector signal s[0]-s[m-1] and the delay time D for setting the sampling time TS. The DS is delayed, thereby obtaining a sampling time setting without clock data recovery and a vector signal for eliminating the deviation.

使用偏差校準電路2302在校準模式下合理地設置校準後的延遲設定DS,在普通模式下使用所述校準後的延遲設定DS的延遲線電路可作用為消除偏差電路,以最小化或者消除普通模式下所接收的向量信號的偏差。相同的發明理念也可用於其他的轉態強制編碼接收器。The offset calibration circuit 2302 is used to appropriately set the calibrated delay setting DS in the calibration mode, and the delay line circuit using the calibrated delay setting DS in the normal mode can function as a cancellation bias circuit to minimize or eliminate the normal mode. The deviation of the received vector signal. The same inventive concept can also be applied to other transitional forced code receivers.

第32圖根據本發明的第十實施例示出包括偏差校準功能的轉態強制編碼接收器。可通過在第10圖所示的轉態強制編碼接收器架構上增加偏差校準電路2302來形成轉態強制編碼接收器3200,其中,在普通模式下,延遲線電路3202使用校準後的延遲設定DS來獲得無時鐘資料恢復的採樣時間設定和消除偏差的向量信號。Figure 32 shows a transition state forced code receiver including a deviation calibration function in accordance with a tenth embodiment of the present invention. The transition state forced code receiver 3200 can be formed by adding a deviation calibration circuit 2302 to the transition state forced code receiver architecture shown in FIG. 10, wherein in the normal mode, the delay line circuit 3202 uses the calibrated delay setting DS. To obtain the sampling time setting without clock data recovery and the vector signal for eliminating the deviation.

在前述的實施例中,在普通模式下,校準狀態機2604根據測試向量信號s[0]-s[m-1]實際的偏差狀況和用於設置採樣時間TS的延遲時間D來確定可被延遲線電路2304/3202使用的校準後的延遲設定DS,由此獲得無時鐘資料恢復的採樣時間設定和消除偏差的向量信號。但是,這僅僅是舉例說明,並不表示對本發明進行限定。作為替代,在普通模式下,校準狀態機2604可僅根據測試向量信號s[0]-s[m-1]實際的偏差狀況來確定可被延遲線電路使用的校準後的延遲設定DS。該可替代的設計仍屬於本發明的保護範圍。In the foregoing embodiment, in the normal mode, the calibration state machine 2604 determines that it can be determined based on the actual deviation condition of the test vector signal s[0]-s[m-1] and the delay time D for setting the sampling time TS. The calibrated delay setting DS used by the delay line circuit 2304/3202, thereby obtaining a sampling time setting without clock data recovery and a vector signal for eliminating the deviation. However, this is merely an exemplification and is not intended to limit the invention. Alternatively, in the normal mode, the calibration state machine 2604 can determine the calibrated delay setting DS that can be used by the delay line circuit based only on the actual deviation condition of the test vector signal s[0]-s[m-1]. This alternative design is still within the scope of the invention.

第33圖根據本發明的第十一實施例示出包括偏差校準功能的轉態強制編碼接收器。可通過在第15圖所示的轉態強制編碼接收器架構上增加偏差校準電路2302來形成轉態強制編碼接收器3300,其中,在普通模式下,延遲線電路3302使用校準後的延遲設定DS來獲得無時鐘資料恢復的採樣時間設定和消除偏差的向量信號。Figure 33 shows an escrow forced code receiver including a deviation calibration function in accordance with an eleventh embodiment of the present invention. The transition forced code receiver 3300 can be formed by adding a deviation calibration circuit 2302 to the transition state forced code receiver architecture shown in FIG. 15, wherein in the normal mode, the delay line circuit 3302 uses the calibrated delay setting DS. To obtain the sampling time setting without clock data recovery and the vector signal for eliminating the deviation.

第34圖根據本發明的第十二實施例示出包括偏差校準功能的轉態強制編碼接收器。可通過在第16圖所示的轉態強制編碼接收器架構上增加偏差校準電路2302來形成轉態強制編碼接收器3400,其中,在普通模式下,延遲線電路3402使用校準後的延遲設定DS來獲得無時鐘資料恢復的採樣時間設定和消除偏差的向量信號。Figure 34 shows a transition state forced code receiver including a deviation calibration function in accordance with a twelfth embodiment of the present invention. The transition state forced code receiver 3400 can be formed by adding a deviation calibration circuit 2302 to the transition state forced code receiver architecture shown in FIG. 16, wherein in the normal mode, the delay line circuit 3402 uses the calibrated delay setting DS. To obtain the sampling time setting without clock data recovery and the vector signal for eliminating the deviation.

第35圖根據本發明的第十三實施例示出包括偏差校準功能的轉態強制編碼接收器。可通過在第17圖所示的轉態強制編碼接收器架構上增加偏差校準電路2302來形成轉態強制編碼接收器3500,其中,在普通模式下,延遲線電路3502使用校準後的延遲設定DS來獲得無時鐘資料恢復的採樣時間設定和消除偏差的向量信號。Figure 35 shows a transition state forced code receiver including a deviation calibration function in accordance with a thirteenth embodiment of the present invention. The transition forced code receiver 3500 can be formed by adding a deviation calibration circuit 2302 to the transition state forced code receiver architecture shown in FIG. 17, wherein in the normal mode, the delay line circuit 3502 uses the calibrated delay setting DS. To obtain the sampling time setting without clock data recovery and the vector signal for eliminating the deviation.

本發明該描述的裝置和技術的各部分可獨立使用,或合併使用,或以本發明前面並未描述的其他方式使用,因此,本發明不限於前面所描述的或附圖所示出的組件的應用或排布。例如,一個實施例中描述的部件也可與其他實施例描述的部件以任何方式進行組合。Portions of the described apparatus and techniques of the present invention may be used independently, or in combination, or in other ways not previously described herein, and thus, the invention is not limited to the components described above or illustrated in the drawings. Application or arrangement. For example, the components described in one embodiment can also be combined in any manner with the components described in the other embodiments.

申請專利範圍書中用以修飾元件的“第一”、“第二”等序數詞的使用本身未暗示任何優先權、優先次序、各元件之間的先後次序、或所執行方法的時間次序,而僅用作標識來區分具有相同名稱(具有不同序數詞)的不同元件。The use of ordinal numbers such as "first," "second," etc., used to modify elements in the scope of the claims is not intended to suggest any priority, prioritization, or It is only used as an identifier to distinguish different components with the same name (with different ordinal numbers).

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬領域技術人員,在不脫離本發明的精神和範圍內,當可做些許的更動與潤飾,因此本發明的保護範圍當視申請專利範圍所界定者為准。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of protection of the invention is subject to the definition of the scope of the patent application. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧通信系統
10‧‧‧第一晶片
104‧‧‧第二晶片
112‧‧‧編碼器
114‧‧‧傳送器
122‧‧‧接收器
124‧‧‧解碼器
400,700,1000,1100,1400,1500,1600,1700,2300,3200,3300,3400,3500‧‧‧轉態強制編碼接收器
402,702,1404,1502,1506,2304,3202,3302,3402,3502‧‧‧延遲線電路
404,704,1402,1504‧‧‧轉態偵測電路
406,706,1006,1106,1406,1508‧‧‧資料採樣電路
6040-604m-1‧‧‧邏輯門
6080-608m-1,10080-1008m-1,10090-1009m-1‧‧‧資料採樣器
1002,1102‧‧‧分頻器
1003,1103‧‧‧第一資料採樣群
1004,1104‧‧‧第二資料採樣群
2302‧‧‧偏差校準電路
2602,3102‧‧‧時間-數位轉換器
2612,2614,3112‧‧‧多工器
2616‧‧‧D型觸發器
2604‧‧‧校準狀態機
3114‧‧‧副本延遲線
100‧‧‧Communication system
10‧‧‧First chip
104‧‧‧second chip
112‧‧‧Encoder
114‧‧‧transmitter
122‧‧‧ Receiver
124‧‧‧Decoder
400,700,1000,1100,1400,1500,1600,1700,2300,3200,3300,3400,3500‧‧‧Transitive forced code receiver
402,702,1404,1502,1506,2304,3202,3302,3402,3502‧‧‧ delay line circuit
404, 704, 1402, 1504‧‧‧Transient detection circuit
406,706,1006,1106,1406,1508‧‧‧ data sampling circuit
604 0 -604 m-1 ‧‧‧ logic gate
608 0 -608 m-1, 1008 0 -1008 m-1, 1009 0 -1009 m-1 ‧‧‧ data sampler
1002, 1102‧‧ ‧ crossover
1003, 1103‧‧‧First data sampling group
1004, 1104‧‧‧Second data sampling group
2302‧‧‧ Deviation calibration circuit
2602, 3102‧‧‧Time-Digital Converter
2612, 2614, 3112‧‧‧ multiplexers
2616‧‧‧D type trigger
2604‧‧‧calibration state machine
3114‧‧‧Copy delay line

第1圖是根據本發明一個實施例的通信系統的示意圖。 第2圖是根據本發明一個實施例的不使用傳統時鐘資料恢復以採樣向量信號的第一概念示意圖。 第3圖是根據本發明一個實施例的不使用傳統時鐘資料恢復以採樣向量信號的第二概念示意圖。 第4圖是根據本發明第一實施例的轉態強制編碼接收器的示意圖。 第5圖是根據第4圖所示的轉態強制編碼接收器所執行的資料採樣操作的範例示意圖。 第6圖是根據第4圖所示的轉態強制編碼接收器的電路實現示意圖。 第7圖是根據本發明第二實施例的轉態強制編碼接收器的示意圖。 第8圖是根據第7圖所示的轉態強制編碼接收器所執行的資料採樣操作的範例示意圖。 第9圖是根據第7圖所示的轉態強制編碼接收器的電路實現示意圖。 第10圖是根據本發明第三實施例的轉態強制編碼接收器的示意圖。 第11圖是根據本發明第四實施例的轉態強制編碼接收器的示意圖。 第12圖是根據第10圖所示的分頻器與資料採樣電路的電路實現示意圖。 第13圖是根據第11圖所示的分頻器與資料採樣電路的電路實現示意圖。 第14圖是根據本發明第五實施例的轉態強制編碼接收器的示意圖。 第15圖是根據本發明第六實施例的轉態強制編碼接收器的示意圖。 第16圖是根據本發明第七實施例的轉態強制編碼接收器的示意圖。 第17圖是根據本發明第八實施例的轉態強制編碼接收器的示意圖。 第18圖是根據本發明實施例的多電平向量信號的示意圖。 第19圖是根據本發明實施例的由通過不同接腳所傳送的多電平信號所定義的電平過渡的示意圖。 第20圖示出觸發時鐘由於較短的延遲時間D而遭遇短時脈衝波干擾的一種情形。 第21圖示出觸發時鐘由於合理配置的延遲時間D而不遭遇短時脈衝波干擾的一種情形。 第22圖根據本發明的一個實施例示出一種採樣向量信號,該採樣向量信號使用依據相位或時間偏差補償後的向量信號確定的採樣時間。 第23圖根據本發明的第九實施例示出包括偏差校準的轉態強制編碼接收器。 第24圖示出第23圖的轉態強制編碼接收器2300執行的資料採樣操作的一個實施例。 第25圖示出一個可同時實現第23圖的延遲線電路2304、轉態偵測電路404以及資料採樣電路406的電路。 第26圖示出可實現第23圖的偏差校準電路的電路。 第27圖依照MIPI C-PHY規範示出一串“2”符號(為雙轉態符號)。 第28圖依照MIPI C-PHY規範示出一串“4”符號(為雙轉態符號)。 第29圖根據本發明的一個實施例示出時間-數位轉換器和延遲線合作操作來獲得時間-數位轉換的實施例。 第30圖依據本發明的一個實施例示出執行時間-數位轉換來測量兩個測試向量信號的時間差的實施例。 第31圖示出第23圖所示的偏差校準電路2302的可替換的電路的實施例。 第32圖根據本發明的第十實施例示出包括偏差校準功能的轉態強制編碼接收器。 第33圖根據本發明的第十一實施例示出包括偏差校準功能的轉態強制編碼接收器。 第34圖根據本發明的第十二實施例示出包括偏差校準功能的轉態強制編碼接收器。 第35圖根據本發明的第十三實施例示出包括偏差校準功能的轉態強制編碼接收器。Figure 1 is a schematic illustration of a communication system in accordance with one embodiment of the present invention. 2 is a first conceptual diagram of a sample vector signal recovered without using conventional clock data, in accordance with one embodiment of the present invention. Figure 3 is a second conceptual diagram of a sample vector signal recovered without the use of conventional clock data, in accordance with one embodiment of the present invention. Figure 4 is a schematic diagram of a transition state forced code receiver in accordance with a first embodiment of the present invention. Fig. 5 is a diagram showing an example of a data sampling operation performed by the transition state forced code receiver shown in Fig. 4. Fig. 6 is a schematic diagram showing the circuit implementation of the transition state forced code receiver shown in Fig. 4. Figure 7 is a schematic diagram of a transition state forced code receiver in accordance with a second embodiment of the present invention. Fig. 8 is a diagram showing an example of a data sampling operation performed by the transition state forced code receiver shown in Fig. 7. Figure 9 is a schematic diagram showing the circuit implementation of the transition state forced code receiver shown in Figure 7. Figure 10 is a schematic diagram of a transition state forced code receiver in accordance with a third embodiment of the present invention. Figure 11 is a diagram showing a transition state forced code receiver according to a fourth embodiment of the present invention. Fig. 12 is a schematic diagram showing the circuit implementation of the frequency divider and the data sampling circuit shown in Fig. 10. Figure 13 is a schematic diagram showing the circuit implementation of the frequency divider and data sampling circuit shown in Figure 11. Figure 14 is a diagram showing a transition state forced code receiver according to a fifth embodiment of the present invention. Figure 15 is a diagram showing a transition state forced code receiver according to a sixth embodiment of the present invention. Figure 16 is a diagram showing a transition state forced code receiver according to a seventh embodiment of the present invention. Figure 17 is a diagram showing a transition state forced code receiver according to an eighth embodiment of the present invention. Figure 18 is a schematic diagram of a multilevel vector signal in accordance with an embodiment of the present invention. Figure 19 is a schematic illustration of level transitions defined by multilevel signals transmitted through different pins, in accordance with an embodiment of the present invention. Figure 20 shows a situation in which the trigger clock encounters short-term pulse wave interference due to the short delay time D. Figure 21 shows a situation in which the trigger clock does not encounter short-term pulse wave interference due to a reasonably configured delay time D. Figure 22 illustrates a sample vector signal using a sample time determined from a phase or time offset compensated vector signal, in accordance with one embodiment of the present invention. Figure 23 shows a transitional forced code receiver including offset calibration in accordance with a ninth embodiment of the present invention. Fig. 24 shows an embodiment of the data sampling operation performed by the transition state forced code receiver 2300 of Fig. 23. Fig. 25 shows a circuit which can simultaneously realize the delay line circuit 2304, the state transition detecting circuit 404, and the data sampling circuit 406 of Fig. 23. Fig. 26 shows a circuit which can realize the deviation calibration circuit of Fig. 23. Figure 27 shows a string of "2" symbols (which are double-transition symbols) in accordance with the MIPI C-PHY specification. Figure 28 shows a string of "4" symbols (which are double-transition symbols) in accordance with the MIPI C-PHY specification. Figure 29 illustrates an embodiment of a time-to-digital converter and delay line cooperative operation to obtain time-to-digital conversion, in accordance with one embodiment of the present invention. Figure 30 illustrates an embodiment of performing a time-to-digital conversion to measure the time difference of two test vector signals, in accordance with one embodiment of the present invention. Fig. 31 shows an embodiment of an alternative circuit of the offset calibration circuit 2302 shown in Fig. 23. Figure 32 shows a transition state forced code receiver including a deviation calibration function in accordance with a tenth embodiment of the present invention. Figure 33 shows an escrow forced code receiver including a deviation calibration function in accordance with an eleventh embodiment of the present invention. Figure 34 shows a transition state forced code receiver including a deviation calibration function in accordance with a twelfth embodiment of the present invention. Figure 35 shows a transition state forced code receiver including a deviation calibration function in accordance with a thirteenth embodiment of the present invention.

Claims (20)

一種轉態強制編碼接收器,包含: 延遲線電路,用於在普通模式下,使用校準後的延遲設定來延遲多個向量信號以分別產生多個延遲後的向量信號; 轉態偵測電路,用於偵測所述多個延遲後的向量信號中的一個特定延遲後的向量信號的轉態; 資料採樣電路,用於根據採樣時間對所述多個向量信號進行採樣,其中,所述採樣時間根據所述轉態偵測電路的輸出確定;以及 偏差校準電路,用於在校準模式下,設置所述校準後的延遲設定; 其中,在所述普通模式下,不同延遲後的向量信號的轉態偏差被所述校準後的延遲設定減小。A transition state forced code receiver comprising: a delay line circuit for delaying a plurality of vector signals using a calibrated delay setting to generate a plurality of delayed vector signals in a normal mode; a transition detection circuit, And a data sampling circuit, configured to sample the plurality of vector signals according to a sampling time, wherein the sampling The time is determined according to the output of the transition detection circuit; and the offset calibration circuit is configured to set the adjusted delay setting in the calibration mode; wherein, in the normal mode, the vector signals after different delays The transition deviation is reduced by the calibrated delay setting. 如申請專利範圍第1項所述的轉態強制編碼接收器,在不使用時鐘資料恢復的情形下確定所述採樣時間。The transition state forced code receiver as described in claim 1 of the patent application determines the sampling time without using clock data recovery. 如申請專利範圍第1項所述的轉態強制編碼接收器,所述校準後的延遲設定包括不同的延遲時間,所述延遲線電路分別對不同的向量信號使用不同的延遲時間。The transition state forced code receiver as described in claim 1, wherein the calibrated delay setting includes different delay times, the delay line circuits respectively using different delay times for different vector signals. 如申請專利範圍第1項所述的轉態強制編碼接收器,所述偏差校準電路包括: 時間-數位轉換器,用於在所述校準模式下測量多個時間差,其中每一個時間差為每兩個測試向量信號之間的時間差;以及 校準狀態機,用於根據所述時間-數位轉換器測量得到的所述時間差確定所述校準後的延遲設定。The transition state mandatory code receiver according to claim 1, wherein the deviation calibration circuit comprises: a time-digital converter for measuring a plurality of time differences in the calibration mode, wherein each time difference is every two a time difference between the test vector signals; and a calibration state machine for determining the calibrated delay setting based on the time difference measured by the time-to-digital converter. 如申請專利範圍第4項所述的轉態強制編碼接收器, 所述延遲線電路在所述校準模式下被重新使用來延遲每一個所述測試向量信號以產生多個延遲後的測試向量信號,所述多個延遲後的測試向量信號相較於所述測試向量信號具有不同的延遲時間; 當所述時間-數位轉換器被第二測試信號觸發後, 通過對所述第一測試向量信號的延遲後的測試向量信號進行採樣來測量所述第一測試向量信號和所述第二測試向量信號的時間差。The transition state forced code receiver of claim 4, wherein the delay line circuit is reused in the calibration mode to delay each of the test vector signals to generate a plurality of delayed test vector signals. The plurality of delayed test vector signals have different delay times than the test vector signals; after the time-digital converter is triggered by the second test signal, the first test vector signal is passed The delayed test vector signal is sampled to measure the time difference between the first test vector signal and the second test vector signal. 如申請專利範圍第4項所述的轉態強制編碼接收器,所述偏差校準電路還包括: 延遲線,用於延遲每一個測試向量信號來產生多個延遲後的測試向量信號,所述多個延遲後的測試向量信號相較於所述測試向量信號具有不同的延遲時間; 當所述時間-數位轉換器被第二測試信號觸發後, 通過對所述第一測試向量信號的延遲後的測試向量信號進行採樣來測量所述第一測試向量信號和所述第二測試向量信號的時間差。The transition state mandatory code receiver according to claim 4, wherein the deviation calibration circuit further comprises: a delay line for delaying each test vector signal to generate a plurality of delayed test vector signals, The delayed test vector signal has a different delay time than the test vector signal; after the time-digital converter is triggered by the second test signal, by delaying the first test vector signal The test vector signal is sampled to measure a time difference between the first test vector signal and the second test vector signal. 如申請專利範圍第4項所述的轉態強制編碼接收器,在所述測試向量信號的每兩個相鄰的狀態之間僅出現兩個轉態。The transition state forced code receiver as described in claim 4, wherein only two transition states occur between every two adjacent states of the test vector signal. 如申請專利範圍第4項所述的轉態強制編碼接收器,根據預定的校準模式接收轉態強制編碼傳送器產生的所述測試向量信號。The transition state forced code receiver according to claim 4, wherein the test vector signal generated by the transition state forced code transmitter is received according to a predetermined calibration mode. 如申請專利範圍第8項所述的轉態強制編碼接收器,所述預定的校準模式依照移動行業處理器介面C-PHY規範由一組”2”符號設置。The transition state mandatory code receiver of claim 8, wherein the predetermined calibration mode is set by a set of "2" symbols in accordance with the mobile industry processor interface C-PHY specification. 如申請專利範圍第8項所述的轉態強制編碼接收器,所述預定的校準模式依照移動行業處理器介面C-PHY規範由一組”4”符號設置。The transition state mandatory code receiver of claim 8, wherein the predetermined calibration mode is set by a set of "4" symbols in accordance with the mobile industry processor interface C-PHY specification. 一種用於轉態強制編碼接收器的接收方法,包括: 在校準模式下,執行偏差校準以設置校準後的延遲設定; 在普通模式下,使用校準後的延遲設定來延遲多個向量信號以分別產生多個延遲後的向量信號,其中,在所述普通模式下,不同延遲後的向量信號的轉態偏差被所述校準後的延遲設定減小; 偵測所述多個延遲後的向量信號中的一個特定延遲後的向量信號的轉態; 根據採樣時間對所述多個向量信號進行採樣,其中,所述採樣時間根據所述轉態偵測輸出確定。A receiving method for a transition state forced code receiver, comprising: performing a offset calibration in a calibration mode to set a calibrated delay setting; and in a normal mode, using a calibrated delay setting to delay a plurality of vector signals to respectively Generating a plurality of delayed vector signals, wherein, in the normal mode, a transition state deviation of the vector signals after different delays is reduced by the calibrated delay setting; detecting the plurality of delayed vector signals a transition state of the vector signal after a particular delay; sampling the plurality of vector signals according to a sampling time, wherein the sampling time is determined according to the transition detection output. 如申請專利範圍第11項所述的接收方法,在不使用時鐘資料恢復的情形下確定所述採樣時間。As in the receiving method described in claim 11, the sampling time is determined without using clock data recovery. 如申請專利範圍第11項所述的接收方法,所述校準後的延遲設定包括不同的延遲時間,分別對不同的向量信號使用不同的延遲時間。In the receiving method according to claim 11, the calibrated delay setting includes different delay times, and different delay times are respectively used for different vector signals. 如申請專利範圍第11項所述的接收方法,所述偏差校準包括: 執行時間-數位轉換以在所述校準模式下測量多個時間差,其中每一個時間差為每兩個測試向量信號之間的時間差;以及 根據所述時間-數位轉換測量得到的所述時間差確定所述校準後的延遲設定。The receiving method according to claim 11, wherein the offset calibration comprises: performing a time-digital conversion to measure a plurality of time differences in the calibration mode, wherein each time difference is between every two test vector signals a time difference; and determining the adjusted delay setting based on the time difference obtained by the time-to-digital conversion measurement. 如申請專利範圍第14項所述的接收方法, 通過延遲線電路在所述普通模式下根據所述校準後的延遲設定延遲所述向量信號來產生所述延遲後的向量信號; 所述接收方法還包括: 在所述校準模式下重新使用所述延遲線電路來延遲每一個所述測試向量信號以產生多個延遲後的測試向量信號,所述多個延遲後的測試向量信號相較於所述測試向量信號具有不同的延遲時間; 所述執行時間-數位轉換來測量所述時間差包括: 當被第二測試信號觸發後, 通過對所述第一測試向量信號的延遲後的測試向量信號進行採樣來測量所述第一測試向量信號和所述第二測試向量信號的時間差。The receiving method according to claim 14, wherein the delayed vector signal is generated by the delay line circuit delaying the vector signal according to the calibrated delay setting in the normal mode; the receiving method The method further includes: reusing the delay line circuit to delay each of the test vector signals to generate a plurality of delayed test vector signals in the calibration mode, the plurality of delayed test vector signals being compared to The test vector signal has a different delay time; the performing the time-digital conversion to measure the time difference comprises: after being triggered by the second test signal, performing the delayed test vector signal of the first test vector signal Sampling to measure a time difference between the first test vector signal and the second test vector signal. 如申請專利範圍第14項所述的接收方法,所述偏差校準還包括: 延遲每一個測試向量信號來產生多個延遲後的測試向量信號,所述多個延遲後的測試向量信號相較於所述測試向量信號具有不同的延遲時間; 所述執行時間-數位轉換來測量所述時間差包括: 當被第二測試信號觸發後, 通過對所述第一測試向量信號的延遲後的測試向量信號進行採樣來測量所述第一測試向量信號和所述第二測試向量信號的時間差。The receiving method of claim 14, wherein the offset calibration further comprises: delaying each test vector signal to generate a plurality of delayed test vector signals, wherein the plurality of delayed test vector signals are compared to The test vector signal has a different delay time; the performing the time-digital conversion to measure the time difference comprises: after being triggered by the second test signal, passing the delayed test vector signal of the first test vector signal Sampling is performed to measure a time difference between the first test vector signal and the second test vector signal. 如申請專利範圍第14項所述的接收方法,在所述測試向量信號的每兩個相鄰的狀態之間僅出現兩個轉態。In the receiving method of claim 14, the two transition states occur between every two adjacent states of the test vector signal. 如申請專利範圍第14項所述的接收方法,根據預定的校準模式接收轉態強制編碼傳送器產生的所述測試向量信號。The receiving method according to claim 14, wherein the test vector signal generated by the transition state forced code transmitter is received according to a predetermined calibration mode. 如申請專利範圍第18項所述的接收方法,所述預定的校準模式依照移動行業處理器介面C-PHY規範由一組”2”符號設置。The receiving method of claim 18, wherein the predetermined calibration mode is set by a set of "2" symbols in accordance with a mobile industry processor interface C-PHY specification. 如申請專利範圍第18項所述的接收方法,所述預定的校準模式依照移動行業處理器介面C-PHY規範由一組”4”符號設置。The receiving method of claim 18, wherein the predetermined calibration mode is set by a set of "4" symbols in accordance with a mobile industry processor interface C-PHY specification.
TW106129627A 2016-11-14 2017-08-31 Tansition enforcing coding receiver ahd a receiving method used by the tansition enforcing coding receiver TWI626831B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662421375P 2016-11-14 2016-11-14
US62/421,375 2016-11-14
US15/407,265 2017-01-17
US15/407,265 US9866413B2 (en) 2015-01-28 2017-01-17 Transition enforcing coding receiver for sampling vector signals without using clock and data recovery

Publications (2)

Publication Number Publication Date
TW201818665A true TW201818665A (en) 2018-05-16
TWI626831B TWI626831B (en) 2018-06-11

Family

ID=62949545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129627A TWI626831B (en) 2016-11-14 2017-08-31 Tansition enforcing coding receiver ahd a receiving method used by the tansition enforcing coding receiver

Country Status (1)

Country Link
TW (1) TWI626831B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396329B1 (en) * 1999-10-19 2002-05-28 Rambus, Inc Method and apparatus for receiving high speed signals with low latency
TWI329873B (en) * 2007-02-15 2010-09-01 Realtek Semiconductor Corp Sampling circuit and method
GB0806157D0 (en) * 2008-04-04 2008-05-14 Nxp Bv Improved clock recovery of serial data signal
TWI347085B (en) * 2009-10-09 2011-08-11 Ind Tech Res Inst Pipeline time-to-digital converter
US9374216B2 (en) * 2013-03-20 2016-06-21 Qualcomm Incorporated Multi-wire open-drain link with data symbol transition based clocking
US9118457B2 (en) * 2013-03-15 2015-08-25 Qualcomm Incorporated Multi-wire single-ended push-pull link with data symbol transition based clocking

Also Published As

Publication number Publication date
TWI626831B (en) 2018-06-11

Similar Documents

Publication Publication Date Title
US9699009B1 (en) Dual-mode non-return-to-zero (NRZ)/ four-level pulse amplitude modulation (PAM4) receiver with digitally enhanced NRZ sensitivity
US11374558B2 (en) Measurement and correction of multiphase clock duty cycle and skew
US9577815B1 (en) Clock data alignment system for vector signaling code communications link
US7346819B2 (en) Through-core self-test with multiple loopbacks
US9866413B2 (en) Transition enforcing coding receiver for sampling vector signals without using clock and data recovery
US10560097B1 (en) High-speed 4:1 multiplexer for voltage-mode transmitter with automatic phase alignment technique
JP2007060655A (en) Eye size measurement circuit, receiver of data communication system, and eye size measurement method
US8453043B2 (en) Built-in bit error rate test circuit
EP3114792B1 (en) Clock recovery circuit for multiple wire data signals
US9154291B2 (en) Differential signal skew adjustment method and transmission circuit
US9853647B2 (en) Transition enforcing coding receiver for sampling vector signals without using clock and data recovery
US11334321B2 (en) True random number generator based on period jitter
US20190089521A1 (en) Phase rotator
GB2456517A (en) Serial data communication circuit for use with transmission lines using both data and clock to enable recovery of data synchronously
US7342520B1 (en) Method and system for multilevel serializer/deserializer
EP3214554B1 (en) Transition enforcing coding receiver for sampling vector signals without using clock and data recovery
TWI626831B (en) Tansition enforcing coding receiver ahd a receiving method used by the tansition enforcing coding receiver
US7750711B2 (en) Phase select circuit with reduced hysteresis effect
US20050259772A1 (en) Circuit arrangement and method to provide error detection for multi-level analog signals, including 3-level pulse amplitude modulation (PAM-3) signals
Hussein et al. A 16gbps low power self-timed serdes transceiver for multi-core communication
US7321647B2 (en) Clock extracting circuit and clock extracting method
US7660364B2 (en) Method of transmitting serial bit-stream and electronic transmitter for transmitting a serial bit-stream
US11444746B1 (en) Phasing detection of asynchronous dividers
US8891717B1 (en) Method and system for comparing digital values
US20230327670A1 (en) Apparatus and method for generating dummy signal that has transitions constrained to occur within transition enable windows set by detection of more than two consecutive identical digits in serial data

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees