TW201816493A - Method for manufacturing a liquid-crystal electro-optical element - Google Patents

Method for manufacturing a liquid-crystal electro-optical element Download PDF

Info

Publication number
TW201816493A
TW201816493A TW105135146A TW105135146A TW201816493A TW 201816493 A TW201816493 A TW 201816493A TW 105135146 A TW105135146 A TW 105135146A TW 105135146 A TW105135146 A TW 105135146A TW 201816493 A TW201816493 A TW 201816493A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
gradient
fiber
electric field
field
Prior art date
Application number
TW105135146A
Other languages
Chinese (zh)
Other versions
TWI623799B (en
Inventor
黃素真
蘇賢賓
何柏彥
張孟筑
林潁
Original Assignee
國立聯合大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立聯合大學 filed Critical 國立聯合大學
Priority to TW105135146A priority Critical patent/TWI623799B/en
Publication of TW201816493A publication Critical patent/TW201816493A/en
Application granted granted Critical
Publication of TWI623799B publication Critical patent/TWI623799B/en

Links

Abstract

A method for manufacturing a liquid-crystal electro-optical element is disclosed. The present application discloses a method to align liquid crystal in a non-contact way, which provide liquid-crystal molecules sealed in an electro-optical element a stable alignment with a defined pre-tilt angle and thereby prevent the liquid crystal under an external field from having defects caused by inverse tilts. The method comprising: providing an optical unit having at least one hollow space; injecting a liquid-crystal mixture into the at least one hollow space; and applying a gradient field with strength exhibiting a gradient distribution to the liquid-crystal mixture.

Description

製造液晶電光元件的方法  Method of manufacturing liquid crystal electro-optical components  

本發明涉及一種製造液晶電光元件的方法,尤其是涉及一種以非接觸方式來進行液晶配向,提供密封在液晶電光元件中的液晶分子達到穩定配向之效果,致使液晶分子在穩態時具有定義的預傾角,從而能預防液晶分子在外加電場趨動態時因反向傾斜所導致的缺陷發生。 The invention relates to a method for manufacturing a liquid crystal electro-optical component, in particular to a liquid crystal alignment in a non-contact manner, and provides a liquid crystal molecule sealed in a liquid crystal electro-optical element to achieve a stable alignment effect, so that liquid crystal molecules have a definition at steady state. The pretilt angle can prevent the occurrence of defects caused by the reverse tilt of the liquid crystal molecules when the applied electric field tends to be dynamic.

要將液晶(liquid crystal,LC)材料與中空光纖、光子晶體或封閉結構做結合來開發新穎的電光元件時,會面臨無法在中空孔柱內有效控制液晶分子成穩定排列的難題,使得液晶分子在有外加電場的情況下會有配向缺陷的向錯線(disclination line,亦可稱作不連續線)發生,此缺陷會嚴重造成光散射損失。而發生缺陷的原因乃中空圓柱體的封閉表面是無法進行摩擦處理(rubbing process)的,所以局限在一未經摩擦處理的封閉圓柱體(或結構體)中的彈性體液晶分子是無法得到一穩定且一致的排列方向,且液晶分子在封閉孔隙內的取向(orientation)機制相當複雜,並非如傳統液晶胞(liquid-crystal cell)的方形結構體中的單純;因此,配向缺陷問題嚴重地限制了液晶光纖或電光元件的開發。 When a liquid crystal (LC) material is combined with a hollow fiber, a photonic crystal or a closed structure to develop a novel electro-optical element, there is a problem that it is impossible to effectively control the liquid crystal molecules in a hollow column to form a stable arrangement, so that liquid crystal molecules In the case of an applied electric field, a disclination line (also referred to as a discontinuous line) may occur, which may seriously cause light scattering loss. The reason for the defect is that the closed surface of the hollow cylinder cannot be rubbed, so it is impossible to obtain an elastomer liquid crystal molecule in a closed cylinder (or structure) which is not rubbed. Stable and consistent alignment direction, and the orientation mechanism of liquid crystal molecules in the closed pores is quite complicated, not simple in the square structure of the traditional liquid-crystal cell; therefore, the problem of alignment defects is severely limited. Development of liquid crystal optical fibers or electro-optical components.

在中空光纖或光子晶體的圓柱孔壁上,由於無法在圓柱腔壁上進行摩擦配向處理來提供液晶分子一首選的方向(preferred direction),以致熱擾動會造成液晶分子的光軸方向不在一穩定方向上,故當一電場外加於液晶(光纖)元件時,將可能造成液晶分子會往兩個不同的方向轉動並傾斜,以致在反向傾斜的兩個區域間之邊界發生取向缺陷,如第1圖所示。在第1圖中,在光學單元11中,電源19驅動上電極18a及下電極18b在其間產生電場施加於液晶混合物13,使得液晶分子13a轉向傾斜而造成反向傾斜區域,導致向錯線的發生。此缺陷導致與周圍的液晶分子間有折 射率差異而形成界面,故將導致液晶/光纖元件的光訊號損失、以及光學特性的劣化。因此,將限制液晶光纖或電光元件之應用範圍。 On the cylindrical hole wall of a hollow fiber or a photonic crystal, since the rubbing alignment treatment cannot be performed on the wall of the cylindrical cavity to provide a preferred direction of the liquid crystal molecules, the thermal perturbation causes the optical axis direction of the liquid crystal molecules to be unstable. In the direction, when an electric field is applied to the liquid crystal (optical fiber) component, liquid crystal molecules may be rotated and tilted in two different directions, so that orientation defects occur at the boundary between the two regions that are oppositely inclined, such as Figure 1 shows. In Fig. 1, in the optical unit 11, the power source 19 drives the upper electrode 18a and the lower electrode 18b to generate an electric field applied therebetween to the liquid crystal mixture 13, so that the liquid crystal molecules 13a are tilted to cause a reverse tilt region, resulting in a disclination line. occur. This defect causes a difference in refractive index with the surrounding liquid crystal molecules to form an interface, which causes loss of optical signals of the liquid crystal/fiber element and deterioration of optical characteristics. Therefore, the application range of the liquid crystal fiber or electro-optical element will be limited.

液晶分子的排列狀態對光纖元件之光傳播特性有著顯著的影響。為改善液晶光纖元件的光學特性,必先解決液晶分子的反向傾斜之取向缺陷問題。然而,因灌注在中空光纖內的液晶分子排列方式受到許多因素所影響,例如液晶彈性常數、液晶介電各向異性、液晶分子的偶極矩和剛性、液晶和玻璃的表面張力、玻璃空氣柱管壁之平整度、以及缺陷的存在與否等參數。因此,液晶分子在圓柱孔中的排列相當複雜。 The arrangement state of the liquid crystal molecules has a significant influence on the light propagation characteristics of the fiber element. In order to improve the optical characteristics of the liquid crystal fiber element, it is necessary to first solve the problem of orientation defects of the reverse tilt of the liquid crystal molecules. However, the arrangement of liquid crystal molecules permeated in the hollow fiber is affected by many factors such as liquid crystal elastic constant, liquid crystal dielectric anisotropy, dipole moment and rigidity of liquid crystal molecules, surface tension of liquid crystal and glass, and glass air column. Parameters such as the flatness of the pipe wall and the presence or absence of defects. Therefore, the arrangement of liquid crystal molecules in the cylindrical pores is quite complicated.

液晶分子在圓柱孔中常見的排列有平行於光纖軸向的平行排列(planar-aligned)、與擴張排列(splayed-aligned)。由於擴張排列的液晶分子沒有臨界電壓(Fredericks transition threshold),不會有如平行排列的液晶分子因反向傾斜所生的區塊缺陷(reverse tilt domain defects)。因此,現有文獻中提出要避免區塊缺陷的產生,則必須選用光配向技術或使用可在中空光纖中呈現擴張排列的液晶材料(如雙頻液晶或負型液晶),如此將限制液晶材料的選擇性。此外,負型液晶材料的介電異向性(△ε)較正型液晶為小,故其閾值電壓(threshold voltage)較高。 The common arrangement of liquid crystal molecules in a cylindrical hole is planar-aligned and splayed-aligned parallel to the axial direction of the fiber. Since the expanded liquid crystal molecules have no Fredericks transition threshold, there is no reverse tilt domain defects such as parallel alignment of liquid crystal molecules due to reverse tilt. Therefore, in the prior literature, it is proposed to avoid the occurrence of block defects, and it is necessary to use a light alignment technique or a liquid crystal material (such as a dual-frequency liquid crystal or a negative liquid crystal) which can exhibit an expanded arrangement in a hollow fiber, which will limit the liquid crystal material. Selectivity. Further, the dielectric anisotropy (Δε) of the negative liquid crystal material is smaller than that of the positive liquid crystal, so that the threshold voltage is high.

雖然高分子穩定配向(polymer stabilized alignment,PSA)技術早在1998年時就已被提出,但主要應用於液晶顯示器的特性改善,近幾年來也因為其良好的特性與相關技術方面的改良,漸漸地又受到各方的關注。高分子穩定液晶分子配向的技術主要是藉由光聚合(phtopolymerization)致使相分離(phase separation)來得到高分子網絡結構。利用反應型液晶或光感單體(photo-sensitive monomers)在外加電場(或驅動電場)作用下發生紫外(UV)光聚合,進而產生用來控制液晶分子預傾方向的高分子網絡。由於固化(curing)電場會導引液晶分子排列於特定方向,因此致使在中空光纖內的液晶指向矢(director,液晶軸所指方向)具有一特定方向的特性。而且,高分子網絡致使的預傾角(pretilt angle,液晶軸與介面之間的夾角)可控制液晶分子旋轉的傾向,故高分子穩定配向技術可提供一個配向穩定、製程簡易、低成本、以及具有低臨界電壓、快速響應、高調諧與高穩定的液晶光纖或電光元件。 Although polymer stabilized alignment (PSA) technology has been proposed as early as 1998, it is mainly used for the improvement of the characteristics of liquid crystal displays. In recent years, due to its good characteristics and related technical improvements, gradually The land has received the attention of all parties. The technique of polymer-stabilized liquid crystal molecular alignment is mainly to obtain a polymer network structure by phase separation by phtopolymerization. Ultraviolet (UV) photopolymerization is carried out by a reactive liquid crystal or photo-sensitive monomers under an applied electric field (or a driving electric field) to generate a polymer network for controlling the pretilt direction of the liquid crystal molecules. Since the curing electric field guides the liquid crystal molecules to be aligned in a specific direction, the liquid crystal director (the direction indicated by the liquid crystal axis) in the hollow fiber has a specific direction characteristic. Moreover, the pretilt angle (the angle between the liquid crystal axis and the interface) caused by the polymer network can control the tendency of the liquid crystal molecules to rotate, so the polymer stable alignment technology can provide a stable alignment, simple process, low cost, and Low threshold voltage, fast response, highly tuned and highly stable liquid crystal fiber or electro-optical components.

高分子穩定配向技術亦被應用在液晶面板產業。於此,高分子穩定配向技術可應用於垂直配向模式(vertical alignment mode)。也就是,在垂直配向模式中所使用的液晶為負型液晶,原始預傾角為90°但無特定方向,以及用於驅動的電場為垂直電場(垂直於基板)。為了使液晶面板中的液晶分子具有一定方向初始預輕角以及廣視角顯示特性,須要利用斜向電場使得液晶分子在外加電場驅動下先朝向所需要的方向傾倒,而上述的斜向電場則需要特殊的電極圖案設計來達成。當液晶分子因斜向電場而朝向所需要的方向傾倒時,執行照光聚合程序使得液晶混合物中的光感單體聚合成表面高分子網絡。所述高分子網絡能提供液晶分子與執行光照聚合程序時液晶分子傾倒的方向一致的預傾角的方向,而預傾角的角度則部分取決於執行照光聚合程序時致始液晶分子傾倒的斜向電場的強弱。雖然採用高分子穩定配向技術以提供液晶分子具有一定方向的初始預傾角,但在藉由照光聚合程序形成表面高分子之前基板仍需要垂直配向層的存在。 Polymer stable alignment technology is also applied in the liquid crystal panel industry. Here, the polymer stable alignment technique can be applied to a vertical alignment mode. That is, the liquid crystal used in the vertical alignment mode is a negative liquid crystal, the original pretilt angle is 90° but no specific direction, and the electric field for driving is a vertical electric field (perpendicular to the substrate). In order to make the liquid crystal molecules in the liquid crystal panel have a certain initial pre-light angle and a wide viewing angle display characteristic, it is necessary to use an oblique electric field so that the liquid crystal molecules are tilted toward the desired direction under the application of an external electric field, and the above oblique electric field is required. Special electrode pattern design is achieved. When the liquid crystal molecules are tilted in a desired direction due to the oblique electric field, an illuminating polymerization process is performed to polymerize the photosensitive monomers in the liquid crystal mixture into a surface polymer network. The polymer network can provide a direction of the pretilt angle of the liquid crystal molecules in the direction in which the liquid crystal molecules are tilted when performing the illumination polymerization process, and the angle of the pretilt angle depends in part on the oblique electric field at which the liquid crystal molecules are tilted when the photopolymerization process is performed. Strength. Although a polymer stable alignment technique is employed to provide an initial pretilt angle of liquid crystal molecules in a certain direction, the substrate still requires the presence of a vertical alignment layer before the surface polymer is formed by an illuminating polymerization procedure.

一般而言,為使液晶分子能在基材(玻璃)表面有一定的排列方向,通常會在基材表面上進行配向處理,但對於中空光纖而言,困難之處在於對其圓柱孔壁上進行摩擦配向處理。雖然液晶分子會因為注入的毛細流力關係而傾向於光纖軸向排列,但其在外加電場的作用下並未有一首選的排列方向,故易造成液晶分子之反傾斜排列的局部配向缺陷發生,而此缺陷的產生會造成液晶光纖元件的光功率損失、響應速度變慢、及光學特性的劣化。 In general, in order to enable liquid crystal molecules to have a certain alignment direction on the surface of the substrate (glass), alignment treatment is usually performed on the surface of the substrate, but for the hollow fiber, the difficulty lies in the wall of the cylindrical hole. Perform rubbing alignment treatment. Although the liquid crystal molecules tend to be axially aligned due to the capillary flow force of the injection, they do not have a preferred alignment direction under the action of an applied electric field, so that local alignment defects of the reverse tilt alignment of the liquid crystal molecules are likely to occur. The occurrence of this defect causes loss of optical power, slow response speed, and deterioration of optical characteristics of the liquid crystal optical fiber element.

當液晶填入中空光纖後,若孔隙壁面未作任何處理時,因液晶分子呈現棒狀結構,毛細現象的流力作用將導致液晶的整體排列方向大致為平行於光纖軸,如第2圖的(a)部分所示。以微觀的角度來看,液晶分子23a是以不同方向的傾角排列於光纖21內部的中空空間22中,因此在正交偏光顯微鏡下無法觀察到全黑狀態,如第2圖的(b)部分所觀察到些微漏光,其中光纖管21a包覆著液晶混合物23,符號A及P分別表示偏光片及檢光片的軸向。由於液晶分子易受外加電場驅動而改變排列方向,當外加電場於液晶光纖時,由於在中空光纖管的孔隙玻璃壁面是無法進行摩擦配向處理,液晶分子在無配向的圓柱孔內存在不同方向的傾角排列, 以致於外加電場的作用會使液晶分子作出反向傾斜的排列響應,進而液晶導軸排列的不連續性使得向錯線隨機產生,如第3圖所示。在第3圖中,光纖31的光纖管31a包覆液晶混合物33,上電極38a及下電極38b對液晶混合物33施加電場E使得液晶分子33a轉動傾斜。此外,由液晶連續彈性體理論得知,液晶分子的排列狀況會受到向錯線所影響,因此在電場驅動下將形成以向錯線為界面的多重區塊液晶排列,此向錯線缺陷將造成液晶光纖元件之光訊號損失、電光響應的磁滯現象、以及響應速度變慢。 When the liquid crystal is filled into the hollow fiber, if the pore wall surface is not treated, since the liquid crystal molecules exhibit a rod-like structure, the flow force of the capillary phenomenon will cause the overall arrangement direction of the liquid crystal to be substantially parallel to the fiber axis, as shown in FIG. Shown in part (a). From a microscopic point of view, the liquid crystal molecules 23a are arranged in the hollow space 22 inside the optical fiber 21 at different inclinations in the direction of the optical fiber 21, so that the all black state cannot be observed under the orthogonal polarizing microscope, as shown in part (b) of Fig. 2 A slight light leakage was observed in which the optical fiber tube 21a was covered with the liquid crystal mixture 23, and symbols A and P indicate the axial directions of the polarizer and the light detecting sheet, respectively. Since the liquid crystal molecules are easily driven by the applied electric field to change the alignment direction, when an electric field is applied to the liquid crystal fiber, since the rubbing alignment treatment cannot be performed on the pore glass wall surface of the hollow fiber tube, the liquid crystal molecules exist in different directions in the unaligned cylindrical holes. The dip angles are arranged such that the action of the applied electric field causes the liquid crystal molecules to make a reverse tilt alignment response, and the discontinuity of the liquid crystal guide axis arrangement causes the disclination lines to be randomly generated, as shown in FIG. In Fig. 3, the optical fiber tube 31a of the optical fiber 31 covers the liquid crystal mixture 33, and the upper electrode 38a and the lower electrode 38b apply an electric field E to the liquid crystal mixture 33 so that the liquid crystal molecules 33a are tilted. In addition, it is known from the theory of liquid crystal continuous elastomer that the alignment of liquid crystal molecules is affected by the disclination line, so that the multi-block liquid crystal alignment with the disclination line as the interface will be formed under the electric field drive, and this disclination line defect will be The optical signal loss of the liquid crystal fiber component, the hysteresis of the electro-optic response, and the response speed are slowed down.

為能使液晶材料與中空光纖能成功地結合並且應用於高調諧的光纖或電光元件之開發,則必須解決在狹小封閉空間(微米尺度)中難以對液晶分子進行配向處理之問題,進而改善液晶分子的反向傾斜所生之向錯線發生。因此,本發明以梯度場(gradient field)(電場、磁場、溫度場或應力場等,但不限於此)與表面高分子穩定配向(surface polymer stabilized alignment,SPSA)技術來提供液晶分子在中空纖核內能達一穩定的排列方向與具有一預傾角分佈。 In order to enable the successful combination of liquid crystal materials and hollow fibers and application to the development of highly tunable optical fibers or electro-optical components, it is necessary to solve the problem that it is difficult to align liquid crystal molecules in a narrow closed space (micrometer scale), thereby improving liquid crystals. The disclination line produced by the reverse tilt of the molecule occurs. Therefore, the present invention provides a liquid crystal molecule in a hollow fiber by a gradient field (electric field, magnetic field, temperature field or stress field, etc., but not limited thereto) and surface polymer stabilized alignment (SPSA) technology. The core can reach a stable alignment direction and have a pretilt angle distribution.

更詳細地,本發明主要先利用梯度場來驅使液晶分子往一致的方向排列,以消弭向錯缺陷的產生,接著再以表面高分子穩定配向技術來使液晶分子固定在所要的方向與傾角上。而此梯度場部分可以運用電場、溫度場、磁場或者是應力場來實現梯度場致使液晶分子流動。 In more detail, the present invention mainly utilizes a gradient field to drive liquid crystal molecules in a uniform direction to eliminate the generation of a disclination defect, and then to fix the liquid crystal molecules in a desired direction and inclination by a surface polymer stable alignment technique. . The gradient field portion can use an electric field, a temperature field, a magnetic field, or a stress field to realize a gradient field to cause liquid crystal molecules to flow.

亦即,為讓各種正負型液晶材料皆能廣泛使用於電控液晶光纖或電光元件的開發,本發明提出利用梯度場與表面高分子穩定配向技術的結合來提供空氣柱中的液晶分子能獲得一預傾角並且被錨定(anchor)在一定的方向上,使得在電場作用時,液晶分子即有首選的穩定方向來重新排列,進而改善外加電場驅動下所生之向錯線現象。 That is, in order to enable various positive and negative liquid crystal materials to be widely used in the development of electronically controlled liquid crystal optical fibers or electro-optical components, the present invention proposes to provide liquid crystal molecules in an air column by using a combination of a gradient field and a surface polymer stable alignment technique. A pretilt angle is anchored in a certain direction, so that when the electric field acts, the liquid crystal molecules have a preferred stable direction to rearrange, thereby improving the phenomenon of the disclination line generated by the applied electric field.

據此,本發明在此提供一種製造液晶電光元件的方法,包含:提供一光學單元,該光學單元包括一中空空間;注入液晶混合物至該中空空間;以及施加一梯度場至該液晶混合物,該梯度場的強度係呈現一梯度分布。如此,可消弭本發明液晶電光元件的向錯缺陷的產生。 Accordingly, the present invention provides a method of fabricating a liquid crystal electro-optical element comprising: providing an optical unit comprising a hollow space; injecting a liquid crystal mixture into the hollow space; and applying a gradient field to the liquid crystal mixture, The intensity of the gradient field presents a gradient distribution. Thus, the occurrence of a disclination defect of the liquid crystal electro-optical element of the present invention can be eliminated.

依據本發明一實施例,該梯度場可為一梯度電場、一梯度溫度場、一梯度磁場或一梯度應力場。 According to an embodiment of the invention, the gradient field may be a gradient electric field, a gradient temperature field, a gradient magnetic field or a gradient stress field.

依據本發明一實施例,該光學單元可為一光纖;該中空空間可平行該光纖的軸的方向延伸;以及該梯度場的強度可沿該光纖的軸的方向增強或減弱。 According to an embodiment of the invention, the optical unit may be an optical fiber; the hollow space may extend parallel to the axis of the optical fiber; and the strength of the gradient field may be increased or decreased in the direction of the axis of the optical fiber.

依據本發明另一實施例,該光纖可為一光子晶體光纖。 According to another embodiment of the invention, the optical fiber can be a photonic crystal fiber.

依據本發明另一實施例,該光學單元可為一光波導(optical waveguide),該光波導可由定義該中空空間的一基板組成;以及該梯度場的強度可沿平行該基板的方向增強或減弱。 According to another embodiment of the present invention, the optical unit may be an optical waveguide, and the optical waveguide may be composed of a substrate defining the hollow space; and the intensity of the gradient field may be increased or decreased in a direction parallel to the substrate. .

依據本發明另一實施例,該光學單元可為一液晶胞,該液晶胞可由定義該中空空間的二基板組成;以及該梯度場的強度可沿平行該二基板的其中之一的方向增強或減弱。 According to another embodiment of the present invention, the optical unit may be a liquid crystal cell, and the liquid crystal cell may be composed of two substrates defining the hollow space; and the intensity of the gradient field may be enhanced in a direction parallel to one of the two substrates or Weakened.

依據本發明一實施例,該中空空間具有小於100μm的一空間維度。 According to an embodiment of the invention, the hollow space has a spatial dimension of less than 100 μm.

為了更進一步穩固液晶分子預傾角的方向及角度,依據本發明一實施例,本發明方法可進一步包含:照射一固化光至該液晶混合物,其中該液晶混合物可包括液晶分子及光感單體。 In order to further stabilize the direction and angle of the pretilt angle of the liquid crystal molecules, according to an embodiment of the present invention, the method of the present invention may further comprise: irradiating a curing light to the liquid crystal mixture, wherein the liquid crystal mixture may include liquid crystal molecules and photosensitive monomers.

依據本發明一實施例,在執行該照射一固化光時該等光感單體可在該中空空間的介面上聚合成表面高分子網絡。 According to an embodiment of the invention, the photo-sensitive monomers can be polymerized into a surface polymer network on the interface of the hollow space when the irradiation-curing light is performed.

為了調制液晶分子預傾角的方向及角度,依據在本發明一實施例,本發明方法可進一步包含:施加一固化電場於該液晶混合物,其中該施加一固化電場的程序可在該照射一固化光的程序之前,以及該固化電場可為一空間均勻電場。 In order to modulate the direction and angle of the pretilt angle of the liquid crystal molecules, according to an embodiment of the invention, the method of the present invention may further comprise: applying a curing electric field to the liquid crystal mixture, wherein the applying a curing electric field is performed in the curing light Before the program, and the curing electric field can be a spatially uniform electric field.

最後,依據上述本發明方式所製造的液晶電光元件中的液晶分子可具有一穩態的具有被定義的方向及角度的預傾角。 Finally, the liquid crystal molecules in the liquid crystal electro-optical element manufactured according to the above aspect of the invention may have a steady state pretilt angle having a defined direction and angle.

11‧‧‧光學單元 11‧‧‧ Optical unit

13‧‧‧液晶混合物 13‧‧‧Liquid Crystal Mixture

13a‧‧‧液晶分子 13a‧‧‧liquid crystal molecules

18a‧‧‧上電極 18a‧‧‧Upper electrode

18b‧‧‧下電極 18b‧‧‧ lower electrode

19‧‧‧電源 19‧‧‧Power supply

21‧‧‧光纖 21‧‧‧ fiber

21a‧‧‧光纖管 21a‧‧‧Fiber tube

22‧‧‧中空空間 22‧‧‧ hollow space

23‧‧‧液晶混合物 23‧‧‧Liquid Crystal Mixture

23a‧‧‧液晶分子 23a‧‧‧liquid crystal molecules

31‧‧‧光纖 31‧‧‧ fiber optic

31a‧‧‧光纖管 31a‧‧‧Fiber tube

33‧‧‧液晶混合物 33‧‧‧Liquid Crystal Mixture

33a‧‧‧液晶分子 33a‧‧‧liquid crystal molecules

38a‧‧‧上電極 38a‧‧‧Upper electrode

38b‧‧‧下電極 38b‧‧‧ lower electrode

41‧‧‧光纖 41‧‧‧Fiber

42‧‧‧中空空間 42‧‧‧ hollow space

41a‧‧‧光纖管 41a‧‧‧Fiber tube

43‧‧‧液晶混合物 43‧‧‧Liquid Crystal Mixture

43a‧‧‧液晶分子 43a‧‧‧liquid crystal molecules

45‧‧‧光感單體 45‧‧‧Lighting monomer

46‧‧‧高分子 46‧‧‧ Polymer

48a‧‧‧上電極 48a‧‧‧Upper electrode

48b‧‧‧下電極 48b‧‧‧ lower electrode

49‧‧‧電源 49‧‧‧Power supply

51‧‧‧光纖 51‧‧‧ fiber optic

51A‧‧‧光纖 51A‧‧‧Fiber

51B‧‧‧光纖 51B‧‧‧Fiber

52‧‧‧加熱台 52‧‧‧heating station

57‧‧‧墊片 57‧‧‧shims

第1圖係說明習知液晶電光元件中的液晶反向傾斜區域的示意圖。 Fig. 1 is a schematic view showing a reverse tilt region of a liquid crystal in a conventional liquid crystal electro-optical element.

第2圖係說明習知液晶於光纖中的(a)分子排列的示意圖及(b)偏光顯微鏡下的觀察結果。 Fig. 2 is a view showing the (a) molecular arrangement of a conventional liquid crystal in an optical fiber and (b) observation under a polarizing microscope.

第3圖係說明液晶於光纖中的向錯線缺陷的(a)產生的示意圖及(b)偏光顯微鏡下的觀察結果。 Fig. 3 is a view showing the generation of (a) of the disclination line defects of the liquid crystal in the optical fiber and (b) the observation results under a polarizing microscope.

第4圖係依據本發明第一實施例說明製作液晶電光元件的方法的示意圖。 Fig. 4 is a schematic view showing a method of fabricating a liquid crystal electro-optical element according to a first embodiment of the present invention.

第5圖係依據本發明第一實施例說明液晶光纖型馬赫-詹德干涉儀的元件的示意圖。 Fig. 5 is a view showing the elements of a liquid crystal fiber type Mach-Zehnder interferometer according to a first embodiment of the present invention.

第6圖係顯示依據本發明第一實施例的液晶光纖在偏光顯微鏡下的觀察結果。 Fig. 6 is a view showing the observation of a liquid crystal optical fiber according to the first embodiment of the present invention under a polarizing microscope.

第7圖係顯示依據本發明第一實施例的液晶光纖型馬赫-詹德干涉儀在不同外加電壓驅動下的穿透頻譜的曲線圖。 Fig. 7 is a graph showing a transmission spectrum of a liquid crystal fiber type Mach-Zehnder interferometer driven by different applied voltages according to the first embodiment of the present invention.

第8圖係顯示依據本發明第一實施例的液晶光纖型馬赫-詹德干涉儀在不同外加電壓下驅動的共振波長位移量的曲線圖。 Fig. 8 is a graph showing the resonance wavelength shift amount of the liquid crystal optical fiber type Mach-Zehnder interferometer driven at different applied voltages according to the first embodiment of the present invention.

第9圖係依據本發明第二實施例說明製作液晶電光元件的方法的示意圖。 Figure 9 is a schematic view showing a method of fabricating a liquid crystal electro-optical element according to a second embodiment of the present invention.

在此揭示本發明的實施方式,以提供對本發明原理及精神的進一步認識,但其實施或體現方式並不限於此。 The embodiments of the present invention are disclosed herein to provide a further understanding of the principles and spirit of the invention.

本發明提供一種製造液晶電光元件的方法,包含:提供光學單元,光學單元包括一中空空間;注入液晶混合物至該中空空間;以及施加梯度場至液晶混合物,梯度場的強度係呈現一梯度分布。如此,可消弭本發明液晶電光元件的向錯缺陷的產生。亦即,以此方法製作的液晶光電元件的液晶分子具有定義的預傾角。 The present invention provides a method of fabricating a liquid crystal electro-optical element comprising: providing an optical unit comprising a hollow space; injecting a liquid crystal mixture into the hollow space; and applying a gradient field to the liquid crystal mixture, the intensity of the gradient field exhibiting a gradient distribution. Thus, the occurrence of a disclination defect of the liquid crystal electro-optical element of the present invention can be eliminated. That is, the liquid crystal molecules of the liquid crystal cell fabricated by this method have a defined pretilt angle.

依據本發明一實施例,梯度場可為一梯度電場、一梯度溫度場、一梯度磁場或一梯度應力場。 According to an embodiment of the invention, the gradient field may be a gradient electric field, a gradient temperature field, a gradient magnetic field or a gradient stress field.

依據本發明一實施例,該光學單元可為一光纖;該中空空間可平行該光纖的軸的方向延伸;以及該梯度場的強度可沿該光纖的軸的方向增強或減弱,但不限於此。例如,該梯度場的梯度向量可平行於該光纖的軸的方向、垂直於該光纖的軸的方向、或指向空間中的任一方位。 According to an embodiment of the invention, the optical unit may be an optical fiber; the hollow space may extend parallel to the direction of the axis of the optical fiber; and the strength of the gradient field may be increased or decreased along the direction of the axis of the optical fiber, but is not limited thereto. . For example, the gradient vector of the gradient field can be parallel to the direction of the axis of the fiber, perpendicular to the axis of the fiber, or to any orientation in space.

依據本發明另一實施例,該光纖可為一光子晶體光纖。 According to another embodiment of the invention, the optical fiber can be a photonic crystal fiber.

依據本發明另一實施例,該光學單元可為一光波導,該光波導可由定義該中空空間的一基板組成;以及該梯度場的強度可沿平行該基板的方向增強或減弱,但不限於此。例如,該梯度場的梯度向量可平行於該基板、垂直於該基板、或指向空間中的任一方位。 According to another embodiment of the present invention, the optical unit may be an optical waveguide, and the optical waveguide may be composed of a substrate defining the hollow space; and the intensity of the gradient field may be increased or decreased along a direction parallel to the substrate, but is not limited thereto. this. For example, the gradient vector of the gradient field can be parallel to the substrate, perpendicular to the substrate, or to any orientation in the space.

依據本發明另一實施例,該光學單元可為一液晶胞,該液晶胞可由定義該中空空間的二基板組成;以及該梯度場的強度可沿平行該二基板的其中之一的方向增強或減弱,但不限於此。例如,該梯度場的梯度向量可平行於該二基板的其中之一、垂直於該二基板的其中之一、或指向空間中的任一方位。 According to another embodiment of the present invention, the optical unit may be a liquid crystal cell, and the liquid crystal cell may be composed of two substrates defining the hollow space; and the intensity of the gradient field may be enhanced in a direction parallel to one of the two substrates or Weakened, but not limited to this. For example, the gradient vector of the gradient field can be parallel to one of the two substrates, perpendicular to one of the two substrates, or to any orientation in the space.

在完成上述施加梯度場程序之後,本發明的光學單元在外加電場的驅動下不會出現因反向傾斜所導致的向錯線缺陷。亦即,梯度場的施加能使本發明的光學單元中的液晶混合物具有被定義的預傾角,使得液晶混合物的液晶分子在外加電場驅動下能有一致的轉向,從而能預防因反向傾斜所導致的向錯線缺陷。 After the above-described application of the gradient field program is completed, the optical unit of the present invention does not exhibit a disclination line defect due to the reverse tilt driven by the applied electric field. That is, the application of the gradient field enables the liquid crystal mixture in the optical unit of the present invention to have a defined pretilt angle, so that the liquid crystal molecules of the liquid crystal mixture can be uniformly steered by the applied electric field, thereby preventing the tilt due to the reverse tilt. The resulting disclination line defect.

為了因應各種應用需求及型態,依據本發明一實施例,液晶混合物可包括液晶分子及光感單體,其中液晶分子可包含複數種液晶,例如正型液晶、負型液晶及雙頻液晶。 In order to meet various application requirements and types, according to an embodiment of the invention, the liquid crystal mixture may include liquid crystal molecules and photosensitive monomers, wherein the liquid crystal molecules may comprise a plurality of liquid crystals, such as a positive liquid crystal, a negative liquid crystal, and a dual frequency liquid crystal.

此外,為了更進一步調製穩固液晶分子預傾角的方向及角度,在本發明一實施例中,本發明方法可進一步包含:照射一固化光至該液晶混合物,其中該液晶混合物可包括液晶分子及光感單體。 In addition, in order to further modulate the direction and angle of the liquid crystal molecule pretilt angle, in an embodiment of the invention, the method of the present invention may further comprise: irradiating a curing light to the liquid crystal mixture, wherein the liquid crystal mixture may include liquid crystal molecules and light. Sensitive monomer.

在執行該照射一固化光時該等光感單體可在該中空空間的介面上聚合成表面高分子網絡,以提供液晶分子定義的預傾角,但不限於 此。例如,該等光感單體可在該中空空間中(包括其介面及其介面之間的空間)聚合成空間型高分子網絡。 The photo-sensitive monomers may be polymerized into a surface polymer network at the interface of the hollow space to perform the irradiation-curing light to provide a pretilt angle defined by the liquid crystal molecules, but is not limited thereto. For example, the photo-sensitive monomers can be polymerized into a spatial polymer network in the hollow space, including the space between its interface and its interface.

為了調制液晶分子預傾角的方向及角度,在本發明一實施例中,本發明方法可進一步包含:施加一固化電場於該液晶混合物,其中該施加一固化電場的程序可在該照射一固化光的程序之前,以及該固化電場可為一空間均勻電場。 In an embodiment of the invention, the method of the present invention may further comprise: applying a curing electric field to the liquid crystal mixture, wherein the applying a curing electric field is performed in the curing light. Before the program, and the curing electric field can be a spatially uniform electric field.

依據本發明另一實施例,施加梯度場程序與照射固化光程序可同時執行。在此情況下,可在照射固化光程序結束時同時結束施加梯度場程序。 According to another embodiment of the present invention, the application of the gradient field program and the illumination curing light program can be performed simultaneously. In this case, the application of the gradient field program can be ended simultaneously at the end of the irradiation of the curing light program.

更詳細地,依據本發明另一實施例,可在執行施加梯度場程序第一時間間隔後再執行照射固化光程序並且可同時維持施加梯度場程序之執行,其中第一時間間隔可在1~90分鐘的範圍內。具體地,第一時間間隔可為1分鐘、5分鐘、10分鐘、15分鐘、30分鐘、60分鐘或90分鐘;較佳地,第一時間間隔可為5~15分鐘;更佳地,第一時間間隔可為8~12分鐘。在執行照射固化光程序第一時間間隔後,液晶混合物在外加電場作用下可被檢測為不具有因反向傾斜所導致的向錯線缺陷。在此情況下,當照射固化光程序開始執行時施加梯度場程序可持續執行,並且在此情況下,可在照射固化光程序結束時同時結束施加梯度場程序。 In more detail, according to another embodiment of the present invention, the illumination curing light program may be executed after the first time interval of applying the gradient field program and the execution of the applied gradient field program may be maintained, wherein the first time interval may be 1~ Within 90 minutes. Specifically, the first time interval may be 1 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 60 minutes, or 90 minutes; preferably, the first time interval may be 5 to 15 minutes; more preferably, the first A time interval can be 8 to 12 minutes. After the first time interval of performing the irradiation curing light program, the liquid crystal mixture can be detected to have no disclination line defects due to the reverse tilt under the applied electric field. In this case, the application of the gradient field program can be continuously performed when the irradiation of the curing light program is started, and in this case, the application of the gradient field program can be ended simultaneously at the end of the irradiation of the curing light program.

上述施加固化電場程序能更進一步調制並且穩固液晶混合物藉由施加梯度場程序而具有的預傾角特性。亦即,上述施加固化電場程序能調制預傾角的大小及方向,並且藉由光感單體的聚合穩固被調制的預卿角的大小及方向。 The application of the curing electric field procedure described above can further modulate and stabilize the pretilt characteristics of the liquid crystal mixture by applying a gradient field program. That is, the above-described application of the solidified electric field program can modulate the magnitude and direction of the pretilt angle, and stabilize the size and direction of the pre-warp angle modulated by the polymerization of the photosensitive monomer.

依據本發明一實施例,本發明之中空空間可具有在1-100μm的範圍之間的一空間維度。具體地,本發明之中空空間可具有小於100μm、50μm、或10μm的一空間維度。例如,以中空軸芯光纖作為本發明之光學單元時,其光纖管內徑可小於100μm、50μm、或10μm;以多中空軸芯光纖作為本發明之光學單元時,其各中空軸心內徑可小於100μm、50μm、或10μm;或者以液晶胞作為本發明之光學單元時,其胞間隙可小於100μm、50μm、或10μm。 According to an embodiment of the invention, the hollow space of the invention may have a spatial dimension between the range of 1-100 μm. In particular, the hollow space of the present invention may have a spatial dimension of less than 100 μm, 50 μm, or 10 μm. For example, when a hollow core fiber is used as the optical unit of the present invention, the inner diameter of the fiber tube may be less than 100 μm, 50 μm, or 10 μm; and when the hollow core fiber is used as the optical unit of the present invention, the inner diameter of each hollow axis The cell gap may be less than 100 μm, 50 μm, or 10 μm when the liquid crystal cell is used as the optical unit of the present invention.

以下,將進一步揭露更具體的實施方式。 Hereinafter, more specific embodiments will be further disclosed.

[第一實施例:梯度電場實驗][First Embodiment: Gradient Electric Field Experiment]

步驟1:為能於實驗中產生梯度電場,直接利用ITO(indium tin oxide,銦錫氧化物)玻璃基板的ITO膜來當供應外加電壓的電極板。 Step 1: In order to generate a gradient electric field in the experiment, an ITO film of an ITO (indium tin oxide) glass substrate is directly used to supply an electrode plate to which an applied voltage is applied.

步驟2:先將填充有液晶/光感單體混合物的光纖或光子晶體光纖附加在ITO玻璃基板上(下電極48b),之後於上端蓋上另一片ITO玻璃電極(上電極48a),如第4圖的(a)部分所示。 Step 2: first attaching an optical fiber or a photonic crystal fiber filled with a liquid crystal/photosensitive monomer mixture to an ITO glass substrate (lower electrode 48b), and then covering another upper ITO glass electrode (upper electrode 48a) at the upper end, as described in Figure 4 (a) shows.

步驟3:為了在電極板之間產生梯度電場,將上電極48a微微傾斜使得其與下電極48b夾一小角度,如第4圖的(b)部分所示。 Step 3: In order to generate a gradient electric field between the electrode plates, the upper electrode 48a is slightly inclined so as to be at a small angle with the lower electrode 48b as shown in part (b) of Fig. 4.

步驟4:施加電壓後,梯度電場可行形成在上電極48a與下電極48b之間。隨後,利用偏光顯微鏡(POM)觀察梯度電場使液晶分子43a轉動情況;若有向錯線發生(如第3圖所示),可再適度調整上電極48a,並且施加電壓,直到沒向錯線缺陷的發生。或者,本實驗可利用可產生精密梯度電場的系統、或在元件上直接利用鍍膜技術來製作在光纖上的上下導電膜,使其上下二電極間距成漸變的結構,藉以施加梯度電場來達到無缺陷的液晶配向。 Step 4: After applying a voltage, a gradient electric field may be formed between the upper electrode 48a and the lower electrode 48b. Subsequently, the gradient electric field is observed by a polarizing microscope (POM) to cause the liquid crystal molecules 43a to rotate; if a disclination line occurs (as shown in FIG. 3), the upper electrode 48a can be appropriately adjusted, and a voltage is applied until the disclination line is not The occurrence of defects. Alternatively, this experiment can use a system that can generate a precise gradient electric field, or directly use the coating technology on the component to fabricate the upper and lower conductive films on the optical fiber, so that the upper and lower electrodes are tapered to form a gradient structure, thereby applying a gradient electric field to achieve no Defective liquid crystal alignment.

步驟5:將有外加電壓而無向錯線缺陷的光纖41進行UV曝光,如第4圖的(c)部分所示,曝光功率為1mW,曝光時間為3min。利用UV曝光使光纖41中的光感單體45產生光聚合而形成高分子46網絡,進而穩定液晶分子43a的排列,如第4圖的(d)部分所示。 Step 5: UV exposure was performed on the optical fiber 41 having an applied voltage without a disclination line defect, as shown in part (c) of Fig. 4, the exposure power was 1 mW, and the exposure time was 3 min. The light-sensitive monomer 45 in the optical fiber 41 is photopolymerized by UV exposure to form a network of the polymer 46, thereby stabilizing the arrangement of the liquid crystal molecules 43a as shown in part (d) of Fig. 4.

具體而言,如第4圖所示,在沒有外加電場的情況下,注入至中空空間42的液晶混合物44中的光感單體45和液晶分子43a(具有正的△ε)大致都平行於光纖41的軸向(第4圖的(a)部分)。當藉由電源49驅動上電極48a及下電極48b在光纖41上外加一梯度電場時,由於電場的梯度變化致使作用力會驅使液晶分子43a往一定方向排列:若為正型液晶材料,則其分子軸方向傾向於與電場方向平行;反之,若為負型液晶材料,則其分子軸方向傾向於與電場方向垂直,如第4圖的(b)部分所示,其中虛線箭頭的長度表示電場強度的大小。 Specifically, as shown in Fig. 4, in the absence of an applied electric field, the photosensitive monomer 45 and the liquid crystal molecules 43a (having a positive Δ ε) injected into the liquid crystal mixture 44 of the hollow space 42 are substantially parallel to each other. The axial direction of the optical fiber 41 (part (a) of Fig. 4). When a gradient electric field is applied to the optical fiber 41 by driving the upper electrode 48a and the lower electrode 48b by the power source 49, the force will drive the liquid crystal molecules 43a to be aligned in a certain direction due to the gradient change of the electric field: if it is a positive liquid crystal material, The molecular axis direction tends to be parallel to the direction of the electric field; conversely, if it is a negative liquid crystal material, its molecular axis direction tends to be perpendicular to the direction of the electric field, as shown in part (b) of Fig. 4, wherein the length of the dotted arrow indicates the electric field. The size of the intensity.

為穩定此液晶分子43a的配向及給予一預傾角,保持此外加電場,然後以UV光對液晶光纖41樣品進行照射(第4圖的(c)部分)。經由此固化電場的作用與UV光的固化,光感單體45以相對於基材表面的預傾角度被聚合在光纖管41a內側壁面上。而且,當電場解除後,液晶會被高分子46網絡的排列所錨定,導致液晶分子43a在初始狀態時具有一個傾斜角及一定的排列方向,此預傾角角度將永久維持著,如第4圖的(d)部分所示。 In order to stabilize the alignment of the liquid crystal molecules 43a and impart a pretilt angle, an electric field is additionally applied, and then the liquid crystal fiber 41 sample is irradiated with UV light (part (c) of Fig. 4). Upon the action of the curing electric field and the curing of the UV light, the photosensitive monomer 45 is polymerized on the inner wall surface of the optical fiber tube 41a at a pretilt angle with respect to the surface of the substrate. Moreover, when the electric field is released, the liquid crystal is anchored by the arrangement of the network of the polymer 46, causing the liquid crystal molecules 43a to have an inclination angle and a certain arrangement direction in the initial state, and the pretilt angle will be permanently maintained, as in the fourth. Shown in part (d) of the figure.

所以,利用此簡單的製程可以在沒有被摩擦處理的光纖41壁表面上以高分子46網絡控制液晶的預傾角及排列方向。高分子網絡可視為提供液晶分子43a恢復或錨定邊界的一作用力,故可消除缺陷發生與導致液晶分子43a更快速度的鬆弛(恢復)。然而光感單體45聚合所得到的預傾角與其表面形貌是與單體45的濃度、曝光條件、及固化電場有關。 Therefore, with this simple process, the pretilt angle and the alignment direction of the liquid crystal can be controlled by the polymer 46 network on the wall surface of the optical fiber 41 which is not subjected to the rubbing treatment. The polymer network can be regarded as providing a force for recovering or anchoring the boundary of the liquid crystal molecules 43a, so that the occurrence of defects and the relaxation (restoration) of the liquid crystal molecules 43a at a faster speed can be eliminated. However, the pretilt angle obtained by polymerization of the photosensitive monomer 45 and its surface topography are related to the concentration of the monomer 45, the exposure conditions, and the curing electric field.

藉由特定接合參數,將經過上述步驟處理的液晶光纖與單模光纖接合,並且使接合端面形成光纖錐。將兩端接合後就完成液晶光纖型馬赫-詹德干涉儀(Mach-Zehnder Interferometer)的元件(如第5圖所示)。 The liquid crystal fiber processed through the above steps is bonded to the single mode fiber by a specific bonding parameter, and the joint end face is formed into a fiber cone. After joining the two ends, the components of the liquid crystal fiber type Mach-Zehnder Interferometer (as shown in Fig. 5) are completed.

參考第5圖,當入射光從單模光纖傳導到第一個光纖錐時,在光纖芯的一部分的光會被耦合至光纖殼中,而另一部分的光會留在光纖心中,當光傳導到達第二個光纖錐時,在光纖殼中的光會耦合回到光纖芯,使得兩道光形成干涉,其中元件干涉公式為:λ p =2L(n co -n cl )/(2N+1),其中n co 為液晶光纖的光纖芯有效折射率、n cl 為光纖殼的有效折射率、L為液晶的填注長度、N為常數項(N=1,2,3...)、及λ p 為滿足最低光強度之共振波長。當施加電場於液晶光纖上時,空芯光纖中的液晶分子之排列方向會發生改變,進而影響的值n co λ p 使得值發生位移。 Referring to Figure 5, when incident light is conducted from a single mode fiber to a first fiber cone, light in one portion of the fiber core is coupled into the fiber shell, and light from the other portion remains in the fiber core when light is conducted. When the second fiber cone is reached, the light in the fiber shell is coupled back to the fiber core, causing the two lights to form an interference, where the component interference formula is: λ p = 2L( n co - n cl ) / (2 N +1 ), where n co is the effective refractive index of the fiber core of the liquid crystal fiber, n cl is the effective refractive index of the fiber shell, L is the filling length of the liquid crystal, and N is a constant term ( N =1, 2, 3...), And λ p is the resonance wavelength that satisfies the minimum light intensity. When an electric field is applied to the liquid crystal fiber, the alignment direction of the liquid crystal molecules in the hollow fiber is changed, and the affected values n co , λ p cause the value to be displaced.

如第6圖所示,由偏光顯微鏡(POM)可以觀察到本發明的表面高分子穩定配向技術可以有效地消弭液晶的向錯線發生。由於液晶分子排列的改變會導致纖芯有效折射率發生變化,因此引發了干涉儀的共振波長改變。在此本發明利用光頻譜分析儀來分析電壓與共振波長變化關係。如第7圖所示,電壓的增加會使共振波長發生紅位移現象,其原因是由於施加電場時正型液晶的排列方向傾向與電場的方向平行,導致纖芯整 體的有效折射率上升,所以共振波長會往長波長移動,其中液晶填注長度為1400μm。 As shown in Fig. 6, it can be observed from a polarizing microscope (POM) that the surface polymer stable alignment technique of the present invention can effectively eliminate the occurrence of disclination of liquid crystals. Since the change in the alignment of the liquid crystal molecules causes a change in the effective refractive index of the core, the resonance wavelength of the interferometer is changed. The present invention utilizes an optical spectrum analyzer to analyze the relationship between voltage and resonant wavelength variation. As shown in Fig. 7, the increase in voltage causes a red shift in the resonance wavelength. This is because the alignment direction of the positive liquid crystal tends to be parallel to the direction of the electric field when an electric field is applied, resulting in an increase in the effective refractive index of the entire core. The resonant wavelength shifts to a long wavelength with a liquid crystal fill length of 1400 μm.

再進一步整理與分析,可以得到波長的位移量與電壓間的相關性。如第8圖所示,該電壓引致波長變化的趨勢是符合液晶的物理特性。由實驗結果發現驅動液晶分子的閾值電壓約為30V。當工作電壓小於30V時,電壓所導致的共振波長的位移量是非常微少的。主要原因是液晶受限於高分子網絡的錨定影響,導致液晶受電場驅動的轉動程度非常小,因此驅動電壓所造成的折射率增加量僅呈現極微幅的變化。當外加電壓超過臨界電壓後(在30-70V時),液晶分子在此高壓電場作用下而具有較大的轉動量,因此其折射率變化範圍也會較大,因此可以得到較多的共振波長位移量。當外加電壓大於70V時,電壓所導致的共振波長位移量的變化不大的原因是:在大電壓的驅動下,在空芯光纖內的中間層液晶分子幾乎已平行電場方向並且達到穩定狀態,故此相對較大電壓主要是用來驅動表面邊界附近的液晶分子轉動,因此造成折射率僅呈現微幅增加,進而導致共振波長位移量的變化變小 Further finishing and analysis can obtain the correlation between the displacement of the wavelength and the voltage. As shown in Fig. 8, the voltage-induced wavelength change tends to conform to the physical properties of the liquid crystal. It was found from the experimental results that the threshold voltage for driving the liquid crystal molecules was about 30V. When the operating voltage is less than 30V, the amount of displacement of the resonant wavelength caused by the voltage is very small. The main reason is that the liquid crystal is limited by the anchoring effect of the polymer network, and the degree of rotation of the liquid crystal driven by the electric field is very small, so the refractive index increase caused by the driving voltage shows only a slight change. When the applied voltage exceeds the threshold voltage (at 30-70V), the liquid crystal molecules have a large amount of rotation under the action of the high-voltage electric field, so the refractive index variation range is also large, so that more resonant wavelengths can be obtained. The amount of displacement. When the applied voltage is greater than 70V, the change in the resonance wavelength displacement caused by the voltage is not large because the liquid crystal molecules in the intermediate layer in the hollow fiber are almost parallel to the electric field direction and reach a steady state under the driving of a large voltage. Therefore, the relatively large voltage is mainly used to drive the rotation of the liquid crystal molecules near the boundary of the surface, thereby causing the refractive index to increase only slightly, and thus the variation of the resonance wavelength shift amount becomes smaller.

[第二實施例:梯度溫場實驗][Second embodiment: gradient temperature field experiment]

步驟1:將液晶光纖51固定在兩片電極板(圖中未顯示)之間,並置放於加熱台52上,如第9圖所示。 Step 1: The liquid crystal optical fiber 51 is fixed between two electrode plates (not shown) and placed on the heating stage 52 as shown in Fig. 9.

步驟2:為了產生梯度溫度場,採用方法如下:(1)將光纖51A右側藉由絕熱的墊片57墊高(~2mm),使得基板傾斜並且愈往右側距離加熱台52的加熱表面愈遠,則光纖51A就會因為不均勻地受熱而具有一溫度梯度的溫度分布特性,如第9圖的(a)部分所示。或者,(2)將光纖51B右側騰空且僅左側接觸加熱台52(~70℃),使得光纖51B的左側受熱部分呈現最高溫度,而溫度隨著與左側受熱部分的距離的增加而逐漸降低,直到右側呈現最低溫度,如第9圖的(b)部分所示。 Step 2: In order to generate the gradient temperature field, the method is as follows: (1) Raising the right side of the optical fiber 51A by the insulating spacer 57 (~2 mm), so that the substrate is inclined and the further the right side is away from the heating surface of the heating stage 52. Then, the optical fiber 51A has a temperature gradient characteristic of temperature gradient because it is unevenly heated, as shown in part (a) of Fig. 9. Alternatively, (2) the right side of the optical fiber 51B is vacated and only the left side contacts the heating stage 52 (~70 ° C), so that the left side heated portion of the optical fiber 51B exhibits the highest temperature, and the temperature gradually decreases as the distance from the left heated portion increases. The lowest temperature is shown until the right side, as shown in part (b) of Figure 9.

步驟3:持續加熱一段時間之後,對液晶光纖51施加垂直固化電場,垂直固化電場係垂直於液晶光纖51的軸的方向,再利用偏光顯 微鏡POM觀察均勻外加電場使液晶(具有正的△ε)轉動的情況,並且觀察是否有向錯線出現的現象。 Step 3: After heating for a period of time, a vertical curing electric field is applied to the liquid crystal fiber 51, the vertical solidified electric field is perpendicular to the axis of the liquid crystal fiber 51, and the uniform applied electric field is observed by a polarizing microscope POM to make the liquid crystal (having a positive Δ ε). The situation of rotation, and observe whether there is a phenomenon of disclination.

步驟4:若有向錯線缺陷產生,則重複步驟2-3,一直到完全沒有觀測到向錯線出現為止。 Step 4: If there is a disclination line defect, repeat steps 2-3 until no disclination line is observed at all.

步驟5:當向錯線缺陷不會出現之後,藉由使用實驗需要的參數將光纖51曝光。本實施例中,曝光功率為1mW,曝光時間為3min。利用UV曝光使元件中的光感單體產生光聚合而形成高分子網絡,進而穩定液晶分子的排列。 Step 5: After the disclination defect does not occur, the optical fiber 51 is exposed by using parameters required for the experiment. In this embodiment, the exposure power is 1 mW and the exposure time is 3 min. The photo-sensing monomer in the element is photopolymerized by UV exposure to form a polymer network, thereby stabilizing the alignment of the liquid crystal molecules.

具體而言,將液晶樣品置放在加熱裝置,藉由適當安排使得液晶樣品上的溫度呈現梯度變化,如第9圖的左側與右側部分的液晶樣品的溫度由左側往右側呈現遞減的現象,所以此溫度場致使液晶分子往一定方向擾動。 Specifically, the liquid crystal sample is placed in a heating device, and the temperature on the liquid crystal sample exhibits a gradient change by an appropriate arrangement, and the temperature of the liquid crystal sample in the left and right portions of FIG. 9 is decremented from the left side to the right side, Therefore, this temperature field causes the liquid crystal molecules to perturb in a certain direction.

為了穩定液晶分子的排列方向,隨即利用表面高分子穩定配向技術來形成高分子網絡以穩定液晶分子於一特定方向上,並且無向錯線缺陷的出現。亦即,以外加固化電場與UV曝光的方式來使液晶指向矢形成以一特定預傾角穩定排列的效果。然而,表面高分子穩定配向製程類似上述第一實施例所揭示之方法,不同之處僅在於施加在液晶樣品上的電場是均勻的電場,而此電場可以根據所希望賦予液晶分子的預傾角大小而給定,當外加電場愈高,其所造成的預傾角愈大,而此液晶元件可電控調變的範圍也將愈小。 In order to stabilize the alignment direction of the liquid crystal molecules, the surface polymer stable alignment technique is used to form a polymer network to stabilize the liquid crystal molecules in a specific direction, and the occurrence of no misalignment line defects. That is, the curing electric field and the UV exposure are applied to form the liquid crystal director to form an effect of stably aligning at a specific pretilt angle. However, the surface polymer stable alignment process is similar to the method disclosed in the above first embodiment, except that the electric field applied to the liquid crystal sample is a uniform electric field, and the electric field can be given a pretilt angle to the liquid crystal molecules as desired. Given that, the higher the applied electric field is, the larger the pretilt angle is, and the smaller the range of electronically controllable modulation of the liquid crystal element will be.

在SPSA光纖元件中的高分子網絡可以影響液晶的排列,並且給予液晶一錨定力,使液晶分子在加電場時可以更快的轉動、提升其響應速度。因此,在本發明的實施例中,此SPSA之關鍵技術能有效改善中空光纖在製程上無法摩擦配向的缺點及元件的磁滯現象。此外,本發明利用SPSA技術的高分子網絡對液晶分子提供穩定及調制配向作用,而高分子網絡型態與結構取決於光聚合條件,如UV光強度、曝光溫度、單體濃度、電場分布、以及曝光時間等因素,故本發明可依據製程條件的設計來達到液晶光纖或液晶光電元件多元化的元件特性。 The polymer network in the SPSA fiber optic component can affect the alignment of the liquid crystal, and give the liquid crystal an anchoring force, so that the liquid crystal molecules can rotate faster and increase the response speed when the electric field is applied. Therefore, in the embodiment of the present invention, the key technology of the SPSA can effectively improve the shortcoming of the hollow fiber in the process and the hysteresis of the component. In addition, the polymer network utilizing SPSA technology provides stability and modulation alignment effect to liquid crystal molecules, and the polymer network type and structure depend on photopolymerization conditions, such as UV light intensity, exposure temperature, monomer concentration, electric field distribution, And the exposure time and other factors, the invention can achieve the diversified component characteristics of the liquid crystal optical fiber or the liquid crystal photoelectric element according to the design of the process conditions.

最後,依據上述本發明方式所製造的液晶電光元件中的液晶分子可具有一穩態的具有被定義的方向及角度的預傾角,進而可消弭本發明液晶電光元件的向錯缺陷的產生。 Finally, the liquid crystal molecules in the liquid crystal electro-optical element manufactured according to the above aspect of the invention may have a steady state pretilt angle having a defined direction and angle, thereby eliminating the occurrence of disclination defects of the liquid crystal electro-optical element of the present invention.

本發明已以實施方式揭露如上,然其並非用以限定本發明;在不脫離本發明之精神和範圍內,任何本發明所屬領域中具有通常知識者,可作各種均等改變與修飾。因此,本發明之保護範圍,應視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in the above-described embodiments, and is not intended to limit the scope of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be determined by the scope of the appended claims.

Claims (10)

一種製造液晶電光元件的方法,包含:提供一光學單元,該光學單元包括一中空空間;注入液晶混合物至該中空空間;以及施加一梯度場至該液晶混合物,其中該梯度場的強度係呈現一梯度分布。  A method of fabricating a liquid crystal electro-optical element, comprising: providing an optical unit comprising a hollow space; injecting a liquid crystal mixture into the hollow space; and applying a gradient field to the liquid crystal mixture, wherein the intensity of the gradient field is Gradient distribution.   依據申請專利範圍第1項所述之方法,其中該梯度場係一梯度電場、一梯度溫度場、一梯度磁場、或一梯度應力場。  The method of claim 1, wherein the gradient field is a gradient electric field, a gradient temperature field, a gradient magnetic field, or a gradient stress field.   依據申請專利範圍第1項所述之方法,其中該光學單元係一光纖;該中空空間平行該光纖的軸的方向延伸;以及該梯度場的強度沿該光纖的軸的方向增強或減弱。  The method of claim 1, wherein the optical unit is an optical fiber; the hollow space extends in a direction parallel to an axis of the optical fiber; and the intensity of the gradient field increases or decreases in a direction of an axis of the optical fiber.   依據申請專利範圍第3項所述之方法,其中該光纖係一光子晶體光纖。  The method of claim 3, wherein the fiber is a photonic crystal fiber.   依據申請專利範圍第1項所述之方法,其中該光學單元係一光波導,該光波導係由定義該中空空間的一基板組成;以及該梯度場的強度沿平行該基板的方向增強或減弱。  The method of claim 1, wherein the optical unit is an optical waveguide, the optical waveguide is composed of a substrate defining the hollow space; and the intensity of the gradient field is increased or decreased in a direction parallel to the substrate. .   依據申請專利範圍第1項所述之方法,其中該光學單元係一液晶胞,該液晶胞係由定義該中空空間的二基板組成;以及該梯度場的強度沿平行該二基板的其中之一的方向增強或減弱。  The method of claim 1, wherein the optical unit is a liquid crystal cell composed of two substrates defining the hollow space; and the intensity of the gradient field is parallel to one of the two substrates. The direction is increased or decreased.   依據申請專利範圍第1項所述之方法,其中該中空空間具有小於100μm的一空間維度。  The method of claim 1, wherein the hollow space has a spatial dimension of less than 100 μm.   依據申請專利範圍第1至7項中任意一項所述之方法,進一步包含:照射一固化光至該液晶混合物,其中該液晶混合物包括液晶分子及光感單體。  The method of any one of claims 1 to 7 further comprising: irradiating a curing light to the liquid crystal mixture, wherein the liquid crystal mixture comprises liquid crystal molecules and a photosensitive monomer.   依據申請專利範圍第8項所述之方法,其中在執行該照射一固化光時該等光感單體在該中空空間的介面上聚合成表面高分子網絡。  The method of claim 8, wherein the photosensitive monomers are polymerized into a surface polymer network on the interface of the hollow space when the irradiation-curing light is performed.   依據申請專利範圍第8項所述之方法,進一步在該照射一固化光的程序之前包含:施加一固化電場於該液晶混合物。  According to the method of claim 8, further comprising, prior to the step of irradiating a curing light, applying a curing electric field to the liquid crystal mixture.  
TW105135146A 2016-10-28 2016-10-28 Method for manufacturing a liquid-crystal electro-optical element TWI623799B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105135146A TWI623799B (en) 2016-10-28 2016-10-28 Method for manufacturing a liquid-crystal electro-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105135146A TWI623799B (en) 2016-10-28 2016-10-28 Method for manufacturing a liquid-crystal electro-optical element

Publications (2)

Publication Number Publication Date
TW201816493A true TW201816493A (en) 2018-05-01
TWI623799B TWI623799B (en) 2018-05-11

Family

ID=62949286

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135146A TWI623799B (en) 2016-10-28 2016-10-28 Method for manufacturing a liquid-crystal electro-optical element

Country Status (1)

Country Link
TW (1) TWI623799B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169590A1 (en) * 2003-12-31 2005-08-04 Crystal Fibre A/S Liquid crystal infiltrated optical fibre, method of its production, and use thereof
GB2410567A (en) * 2004-01-28 2005-08-03 Qinetiq Ltd Relief structure alignment layer for a phoretic display
EP2307924A4 (en) * 2008-07-14 2012-02-29 Lensvector Inc Liquid crystal lens using surface programming

Also Published As

Publication number Publication date
TWI623799B (en) 2018-05-11

Similar Documents

Publication Publication Date Title
KR100326965B1 (en) A liquid crystal display device and a method of manufacture thereof, and a substrate and a method of manufacture thereof
US8570460B2 (en) Electronically-controllable polarization independent liquid crystal optical medium and devices using same
US5882238A (en) Method for manufacturing bend-aligned liquid crystal cell using light
US8797499B2 (en) Liquid crystal lens or beam steering device comprising an alignment layer with a rubbed foundation layer and an ordered surface layer that aligns liquid crystal molecules in a zero field ground state
GB2281977A (en) Orientation film for a liquid crystal display
WO2016037061A1 (en) Methods and apparatus for liquid crystal photoalignment
JP2005266744A (en) Macromolecular network liquid crystal arraying method
JP2009139455A (en) Vertical alignment film and method of manufacturing the same, vertical alignment substrate and method of manufacturing the same, and liquid crystal display element
EP2764400B1 (en) Photo-alignment layers with strong uv-dichroism
JP6927876B2 (en) Manufacturing method of polymer-containing scattering type liquid crystal element and polymer-containing scattering type liquid crystal element
JP2010032860A (en) Alignment layer and method of manufacturing the same, alignment substrate and method of manufacturing the same, and liquid crystal display element
KR101258263B1 (en) Alignment axis measuring sample for liquid crystal display, and manufacturing method thereof
CN108020960B (en) Method for manufacturing liquid crystal electro-optical assembly
KR20110032216A (en) Dual mode liquid crystal display and method for manufacturing the same
US8542333B2 (en) Liquid crystal cell alignment surface programming method and liquid cell light modulator devices made thereof
Sergan et al. Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices
Rutkowska et al. Light propagation in periodic photonic structures formed by photo-orientation and photo-polymerization of nematic liquid crystals
TWI623799B (en) Method for manufacturing a liquid-crystal electro-optical element
KR100244705B1 (en) Liquid crystal alignment method
JP2002287151A (en) Liquid crystal display element and manufacturing method therefor
Su et al. A novel approach to fabricate high performance electrically tunable fiber device based on well-aligned liquid crystal-infiltrated hollow core fiber
Jung et al. Mechanical stability of pixel-isolated liquid crystal mode with plastic substrates
KR101655283B1 (en) Optical film without additional aligned film and method of making the same
JP2000275642A (en) Liquid crystal display device and its production
Lin et al. Alignment control of liquid crystal molecules in the hollow optic fiber