TW201815592A - 用於積層背光單元的方法及裝置 - Google Patents

用於積層背光單元的方法及裝置 Download PDF

Info

Publication number
TW201815592A
TW201815592A TW106127244A TW106127244A TW201815592A TW 201815592 A TW201815592 A TW 201815592A TW 106127244 A TW106127244 A TW 106127244A TW 106127244 A TW106127244 A TW 106127244A TW 201815592 A TW201815592 A TW 201815592A
Authority
TW
Taiwan
Prior art keywords
mol
glass
bonding material
optical component
refractive index
Prior art date
Application number
TW106127244A
Other languages
English (en)
Inventor
瑟吉利安托伊菲奇 古青斯基
瀋平 李
史蒂芬S 羅森布魯姆
詹姆斯安德魯 韋斯特
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW201815592A publication Critical patent/TW201815592A/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一種背光單元,該背光單元包含:第一光學組件,該第一光學組件具有第一主面及第二主面;積層的第二光學組件,該第二光學組件具有第三主面及第四主面,其中第一主面與第三主面彼此相反;及不連續黏結材料,該黏結材料沉積在第一主面與第三主面之間,該黏結材料將第一光學組件與第二光學組件積層。

Description

用於積層背光單元的方法及裝置
本申請案根據專利法主張2016年8月11日申請之美國臨時申請案序列號第62/373611號之優先權權益,該申請案之內容為本文之基礎且以全文引用方式併入本文中。本揭示內容係關於用於積層背光單元的方法及裝置。
習知側亮式背光單元包括光導板(light guide plate;LGP),該光導板通常由諸如聚甲基丙烯酸甲酯(polymethylmethacrylate;PMMA)之高透射率塑膠材料製成。儘管此等塑膠材料呈現諸如透光性之極佳性質,但此等材料展現相對不良的機械性質,諸如剛度、熱膨脹係數(coefficient of thermal expansion;CTE)及吸濕性。
光導板(light guide plate;LGP)可用於邊緣照亮LCD TV中以便將來自一維線性LED照明器之光分佈至整個LCD面板上之均勻2D表面照明系統中。LGP通常與LED、後部反射器、亮度增強薄膜(brightness enhancing film;BEF)、漫射器及雙重亮度增強薄膜(dual brightness enhancing film;DBEF,或反射偏光器)一起構成示範性LCD背光單元(backlight unit;BLU)。在習知背光單元中,來自LED條帶之光從一個邊緣(或兩個邊緣)耦合至LGP中,並且LGP必須在整個其表面上、在顏色及亮度方面產生光之均勻分佈。
邊緣照亮BLU之優勢係其能夠實現LCD TV之纖薄設計。聚合物LGP被玻璃LGP取代之趨勢使得此特徵更顯著,此歸因於玻璃之獨特性質,諸如但不限於較低光學衰減、較低熱膨脹係數及良好機械強度。玻璃之機械強度使得LGP能夠執行光分佈功能而且充當LCD顯示器之框架,從而能夠消除基於聚合物LGP之顯示器所需要的金屬框架。出於各種原因,諸如剛度、厚度及製造簡化,可需要將不同層諸如漫射器、TFT背板及後部反射器積層至玻璃LGP。然而,習知積層方法導致LGP及一些光學薄膜(諸如,BEF、DBEF或反射偏光器)之光學效能的顯著降級,此歸因於缺乏空氣/玻璃介面影響全內反射。
因此,合乎需要的為提供改良光導板及含有此光導板之背光單元,該改良光導板達成就透光性、曝曬、散射及光耦合而言的改良光學效能,並且展現就剛度、CTE及吸濕性而言的特殊機械效能。亦需要提供積層方法,該方法最大限度地減少積層對於LGP及光學薄膜之光學效能的影響。
標的之態樣係關於用於製造光導板之化合物、組成物、物件、裝置及方法,以及包括自玻璃製成的此等光導板之背光單元。在一些實施例中,提供光導板(light guide plate;LGP),其具有與自PMMA製成的光導板相似或較之優異的光學性質,且相較於PMMA光導板而言,具有在高濕氣條件下諸如剛度、CTE及尺寸穩定性的特殊機械性質。
在一些實施例中,本發明標的之原理及實施例涉及用於背光單元中之光導板。在一些實施例中,背光單元可包括玻璃物件或光導板,該玻璃物件或光導板(在一些實例中)具有玻璃片,該玻璃片具有具備寬度及高度之正面、與正面相反之背面,及正面與背面之間之厚度,從而形成圍繞正面及背面之四個邊緣。
額外實施例包括一種方法,該方法使得能夠將不同組件在背光單元中積層在一起,同時最大限度地減少積層對於背光單元中之光學組件之光學效能的影響。在一些實施例中,該方法包括沉積不連續黏結點以便將兩個組件積層在一起,該等黏結點具有適當折射率。黏結點可均勻地或不均勻地分佈在兩個組件之間的介面上。黏結材料可為光學透明黏著劑(optically clear adhesive;OCA)、玻璃料,或具有適當折射率及黏結性質的任何其他合適材料。
本文所述之一些實施例針對製造背光單元之方法,該方法包含以下步驟:提供第一光學組件,該第一光學組件具有第一主面及第二主面,並且使用不連續黏結材料將第一光學組件積層至第二光學組件之第三主面,第三主面與第一光學組件之第一主面相反。在一些實施例中,第一光學組件係光導板。在一些實施例中,光導板包含玻璃或玻璃陶瓷材料。在一些實施例中,玻璃或玻璃陶瓷材料包含約65.79 mol%至約78.17 mol%之間的SiO2 、約2.94 mol%至約12.12 mol%之間的Al2 O3 、約0 mol%至約11.16 mol%之間的B2 O3 、約0 mol%至約2.06 mol%之間的Li2 O、約3.52 mol%至約13.25 mol%之間的Na2 O、約0 mol%至約4.83 mol%之間的K2 O、約0 mol%至約3.01 mol%之間的ZnO、約0 mol%至約8.72 mol%之間的MgO、約0 mol%至約4.24 mol%之間的CaO、約0 mol%至約6.17 mol%之間的SrO、約0 mol%至約4.3 mol%之間的BaO及約0.07 mol%至約0.11 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約66 mol%至約78 mol%之間的SiO2 、約4 mol%至約11 mol%之間的Al2 O3 、約4 mol%至約11 mol%之間的B2 O3 、約0 mol%至約2 mol%之間的Li2 O、約4 mol%至約12 mol%之間的Na2 O、約0 mol%至約2 mol%之間的K2 O、約0 mol%至約2 mol%之間的ZnO、約0 mol%至約5 mol%之間的MgO、約0 mol%至約2 mol%之間的CaO、約0 mol%至約5 mol%之間的SrO、約0 mol%至約2 mol%之間的BaO及約0 mol%至約2 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約72 mol%至約80 mol%之間的SiO2 、約3 mol%至約7 mol%之間的Al2 O3 、約0 mol%至約2 mol%之間的B2 O3 、約0 mol%至約2 mol%之間的Li2 O、約6 mol%至約15 mol%之間的Na2 O、約0 mol%至約2 mol%之間的K2 O、約0 mol%至約2 mol%之間的ZnO、約2 mol%至約10 mol%之間的MgO、約0 mol%至約2 mol%之間的CaO、約0 mol%至約2 mol%之間的SrO、約0 mol%至約2 mol%之間的BaO及約0 mol%至約2 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約80 mol%之間的SiO2 、約0 mol%至約15 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的B2 O3 以及約2 mol%至約50 mol%的Rx O,其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且其中Fe+30Cr+35Ni <約60 ppm。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約80 mol%之間的SiO2 、約0 mol%至約15 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的B2 O3 以及約2 mol%至約50 mol%的Rx O,其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且其中玻璃具有<0.005的色移。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約81 mol%之間的SiO2 、約0 mol%至約2 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的MgO、約0 mol%至約2 mol%之間的Li2 O、約9 mol%至約15 mol%之間的Na2 O、約0 mol%至約1.5 mol%之間的K2 O、約7 mol%至約14 mol%之間的CaO、約0 mol%至約2 mol%之間的SrO,並且其中Fe+30Cr+35Ni<約60 ppm。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約81 mol%之間的SiO2 、約0 mol%至約2 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的MgO、約0 mol%至約2 mol%之間的Li2 O、約9 mol%至約15 mol%之間的Na2 O、約0 mol%至約1.5 mol%之間的K2 O、約7 mol%至約14 mol%之間的CaO及約0 mol%至約2 mol%之間的SrO,其中玻璃具有< 0.005之色移。在一些實施例中,第二光學組件係薄膜。在一些實施例中,薄膜係稜鏡薄膜、反射薄膜、漫射薄膜、亮度增強薄膜、偏光薄膜或其組合。在一些實施例中,積層步驟包括將黏結材料以一定型樣沉積在第一主面或第三主面上,該型樣係黏結材料之均勻分佈、不均勻分佈或梯度分佈。在一些實施例中,黏結材料係光學透明黏著劑或玻璃料。在一些實施例中,黏結材料之折射率小於第一光學組件之折射率。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小3%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.18%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小6%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.25%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小10%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.45%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小13%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的1.4%以下。
本文所述之其他實施例針對一種背光單元,該背光單元包含:第一光學組件,該第一光學組件具有第一主面及第二主面;積層的第二光學組件,該第二光學組件具有第三主面及第四主面,其中第一及第三主面彼此相反;及不連續黏結材料,該黏結材料沉積在第一與第三主面之間,該黏結材料將第一與第二光學組件積層。在一些實施例中,第一光學組件係光導板。在一些實施例中,光導板包含玻璃或玻璃陶瓷材料。在一些實施例中,玻璃或玻璃陶瓷材料包含約65.79 mol%至約78.17 mol%之間的SiO2 、約2.94 mol%至約12.12 mol%之間的Al2 O3 、約0 mol%至約11.16 mol%之間的B2 O3 、約0 mol%至約2.06 mol%之間的Li2 O、約3.52 mol%至約13.25 mol%之間的Na2 O、約0 mol%至約4.83 mol%之間的K2 O、約0 mol%至約3.01 mol%之間的ZnO、約0 mol%至約8.72 mol%之間的MgO、約0 mol%至約4.24 mol%之間的CaO、約0 mol%至約6.17 mol%之間的SrO、約0 mol%至約4.3 mol%之間的BaO及約0.07 mol%至約0.11 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約66 mol%至約78 mol%之間的SiO2 、約4 mol%至約11 mol%之間的Al2 O3 、約4 mol%至約11 mol%之間的B2 O3 、約0 mol%至約2 mol%之間的Li2 O、約4 mol%至約12 mol%之間的Na2 O、約0 mol%至約2 mol%之間的K2 O、約0 mol%至約2 mol%之間的ZnO、約0 mol%至約5 mol%之間的MgO、約0 mol%至約2 mol%之間的CaO、約0 mol%至約5 mol%之間的SrO、約0 mol%至約2 mol%之間的BaO及約0 mol%至約2 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約72 mol%至約80 mol%之間的SiO2 、約3 mol%至約7 mol%之間的Al2 O3 、約0 mol%至約2 mol%之間的B2 O3 、約0 mol%至約2 mol%之間的Li2 O、約6 mol%至約15 mol%之間的Na2 O、約0 mol%至約2 mol%之間的K2 O、約0 mol%至約2 mol%之間的ZnO、約2 mol%至約10 mol%之間的MgO、約0 mol%至約2 mol%之間的CaO、約0 mol%至約2 mol%之間的SrO、約0 mol%至約2 mol%之間的BaO及約0 mol%至約2 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約80 mol%之間的SiO2 、約0 mol%至約15 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的B2 O3 以及約2 mol%至約50 mol%的Rx O,其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且其中Fe+30Cr+35Ni <約60 ppm。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約80 mol%之間的SiO2 、約0 mol%至約15 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的B2 O3 以及約2 mol%至約50 mol%的Rx O,其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且其中玻璃具有<0.005的色移。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約81 mol%之間的SiO2 、約0 mol%至約2 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的MgO、約0 mol%至約2 mol%之間的Li2 O、約9 mol%至約15 mol%之間的Na2 O、約0 mol%至約1.5 mol%之間的K2 O、約7 mol%至約14 mol%之間的CaO、約0 mol%至約2 mol%之間的SrO,並且其中Fe+30Cr+35Ni<約60 ppm。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約81 mol%之間的SiO2 、約0 mol%至約2 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的MgO、約0 mol%至約2 mol%之間的Li2 O、約9 mol%至約15 mol%之間的Na2 O、約0 mol%至約1.5 mol%之間的K2 O、約7 mol%至約14 mol%之間的CaO及約0 mol%至約2 mol%之間的SrO,其中玻璃具有< 0.005之色移。在一些實施例中,第二光學組件係薄膜。在一些實施例中,薄膜係稜鏡薄膜、反射薄膜、漫射薄膜、亮度增強薄膜、偏光薄膜或其組合。在一些實施例中,不連續黏結材料以均勻分佈、不均勻分佈或梯度分佈包含在第一與第三主面之間。在一些實施例中,黏結材料係光學透明黏著劑或玻璃料。在一些實施例中,黏結材料之折射率小於第一光學組件之折射率。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小3%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.18%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小6%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.25%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小10%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.45%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小13%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的1.4%以下。
本揭示內容之其他特徵及優點將在以下的詳細描述中闡述,且在部分程度上,熟習此項技術者將根據該描述而容易明白該等特徵及優點,或藉由實踐如本文(包括隨後的實施方式、發明申請專利範圍以及隨附圖式)所述的方法來認識該等特徵及優點。
應理解,前述的一般描述及以下詳細描述提出本揭示內容之各種實施例,且意欲提供用於理解發明申請專利範圍之性質及特徵的概述或框架。隨附圖式係納入來提供對本揭示內容的進一步理解,且併入本說明書中並構成本說明書之一部分。圖式例示本揭示內容之各種實施例,且連同說明書一起用以解釋本揭示內容之原理及操作。
本文描述的為光導板、背光單元及製造光導板之方法及利用根據本發明之實施例的光導板的背光單元。
用於LCD背光應用中之習知光導板典型地自PMMA材料製得,因為該材料為就可見光譜中之光學透射率而言的最佳材料之一。然而,PMMA存在的機械問題在於:就諸如剛度、吸濕性及熱膨脹係數(coefficient of thermal expansion;CTE)之機械設計而言,製得大型(例如,50吋對角線及更大)顯示器面臨挑戰。
就剛度而言,習知LCD面板由兩塊薄玻璃(濾色器基板及TFT基板)製成,該薄玻璃具有PMMA光導及複數個薄塑膠薄膜(漫射器、雙重亮度增強薄膜(dual brightness enhancement film;DBEF)薄膜等等)。由於PMMA之不良彈性模數,LCD面板之整體結構不具有足夠剛度,且必需要另外的機械結構來提供用於LCD面板之剛性。應注意,PMMA通常具有約2 GPa之楊氏模數,而某些示範性玻璃具有在約60 GPa至90 GPa或更大之範圍變化的楊氏模數。
就吸濕性而言,濕度測試展示:PMMA對濕氣敏感,且大小可改變約0.5%。對具有一公尺之長度的PMMA面板而言,該0.5%改變可使長度增加5 mm,此為顯著的,且使得相應背光單元之機械設計面臨挑戰。解決此問題之習知手段為在發光二極體(light emitting diode;LED)與PMMA光導板(light guide plate;LGP)之間留出氣隙,以使材料膨脹。此方法之問題係光耦合對於LED至LGP之距離係極其敏感的,從而可導致顯示器亮度隨著濕度而變化。第2圖為展示光耦合百分比對比LED邊緣與LGP邊緣之間的距離的圖表。參考第2圖,展示一關係,該關係例示利用PMMA來解決挑戰的習知措施之缺點。更確切言之,第2圖例示光耦合對比LED至LGP距離之繪圖,假定該LED及LGP兩者高度皆為2 mm。可觀察到,LED與LGP之間的距離愈遠,LED與LGP之間達成的光耦合有效性愈小。
就CTE而言,PMMA之CTE為約75E-6 C-1 ,且具有相對低的熱傳導率(0.2 W/m/K),而一些玻璃具有約8E-6 C-1 之CTE及0.8 W/m/K之熱傳導率。當然,其他玻璃之CTE可有所變化,且此揭示內容不應限制隨附之發明申請專利範圍之範疇。PMMA亦具有約105℃之轉移溫度,且當使用作LGP時,PMMA LGP材料可變得極熱,藉以該PMMA LGP材料之低傳導率使得難以消散熱量。因此,使用玻璃替代PMMA作為用於光導板之材料提供就此而言之益處,但習知玻璃具有相較於PMMA而言相對不良的透射率,此主要歸因於鐵及其他雜質。此外,諸如表面粗糙度、波紋度及邊緣品質拋光之一些其他參數可在玻璃光導板可如何表現方面起重要作用。根據本發明之實施例,適用於背光單元之玻璃光導板可具有以下屬性中之一或多者。
玻璃光導板結構及組成物
第1圖為光導板之示範性實施例之圖像圖解。參考第1圖,提供具有示範性光導板之形狀及結構的示範性實施例之圖解,該示範性光導板包含玻璃片100,該玻璃片具有可為正面之第一面110,及與第一面相反的可為背面之第二面。第一面及第二面可具有高度H及寬度W。第一面及/或第二面可具有小於0.6 nm、小於0.5 nm、小於0.4 nm、小於0.3 nm、小於0.2 nm、小於0.1 nm或約0.1 nm與約0.6 nm之間的粗糙度。
玻璃片可具有在正面與背面之間的厚度T,其中厚度形成四個邊緣。玻璃片之厚度可小於正面及背面之高度及寬度。在各種實施例中,板之厚度可小於正面及/或背面之高度的1.5%。或者,厚度T可小於約3 mm、小於約2 mm、小於約1 mm或約0.1 mm至約3 mm之間。光導板之高度、寬度及厚度可經組配及定尺寸以便用於LCD背光應用中。
第一邊緣130可為光注入邊緣,其接收例如藉由發光二極體(light emitting diode;LED)提供的光。光注入邊緣可在透射中、在小於12.8度半高寬(full width half maximum;FWHM)之角度內散射光。光注入邊緣可藉由研磨邊緣而不拋光該光注入邊緣而獲得。玻璃片可進一步包含與光注入邊緣相鄰之第二邊緣140及與第二邊緣相反並且與光注入邊緣相鄰之第三邊緣,其中第二邊緣及/或第三邊緣在反射中、在小於12.8度FWHM之角度內散射光。第二邊緣140及/或第三邊緣可在反射中具有低於6.4度之擴散角。應注意,儘管第1圖所繪示的實施例展示由光注入的單一邊緣130,但所請求標的不應受此限制,因為示範性實施例100之邊緣的任一者或數者可由光注入。例如,在一些實施例中,第一邊緣130及其相反邊緣可皆由光注入。此示範性實施例可用於具有大的及或曲線寬度W之顯示裝置。另外的實施例可在第二邊緣140及其相反邊緣處注入光,而非在第一邊緣130及/或其相反邊緣處注入光。示範性顯示裝置之厚度可小於約10 mm、小於約9 mm、小於約8 mm、小於約7 mm、小於約6 mm、小於約5 mm、小於約4 mm、小於約3 mm或小於約2 mm。
在各種實施例中,玻璃板之玻璃組成物可包含60-80 mol%之間的SiO2 、0-20 mol%之間的Al2 O3 及0-15 mol%之間的B2 O3 ,以及小於50 ppm的鐵(Fe)濃度。在一些實施例中,可存在小於25 ppm的Fe,或在一些實施例中,Fe濃度可為約20 ppm或更小。在各種實施例中,光導板100之熱傳導可大於0.5 W/m/K。在另外的實施例中,玻璃片可藉由拋光浮製玻璃、熔融拉製製程、狹槽拉製製程、再拉製程或另一適合成形製程來形成。
在其他實施例中,玻璃片之玻璃組成物可包含63-81 mol%之間的SiO2 、0-5 mol%之間的Al2 O3 、0-6 mol%之間的MgO、7-14 mol%之間的CaO、0-2 mol%之間的Li2 O、9-15 mol%之間的Na2 O、0-1.5 mol%之間的K2 O,及微量Fe2 O3 、Cr2 O3 、MnO2 、Co3 O4 、TiO2 、SO3 及/或Se。
根據一或多個實施例,LGP可由包含無色氧化物組分之玻璃製成,該等組分選自玻璃形成體SiO2 、Al2 O3 及B2 O3 。示範性玻璃亦可包括助熔劑以獲得有利的熔融及成形屬性。此等助熔劑包括鹼金屬氧化物(Li2 O、Na2 O、K2 O、Rb2 O及Cs2 O)及鹼土金屬氧化物(MgO、CaO、SrO、ZnO及BaO)。在一個實施例中,玻璃含有以下成分:在60-80 mol%範圍內的SiO2 、在0-20 mol%範圍內的Al2 O3 、在0-15 mol%範圍內的B2 O3 ,及在5%及20%範圍內的鹼金屬氧化物、鹼土金屬氧化物,或其組合。在其他實施例中,玻璃片之玻璃組成物可不包含B2 O3 並且包含63-81 mol%之間的SiO2 、0-5 mol%之間的Al2 O3 、0-6 mol%之間的MgO、7-14 mol%之間的CaO、0-2 mol%之間的Li2 O、9-15 mol%之間的Na2 O、0-1.5 mol%之間的K2 O,及微量Fe2 O3 、Cr2 O3 、MnO2 、Co3 O4 、TiO2 、SO3 及/或Se。
在本文所述的一些玻璃組成物中,SiO2 可充當基礎玻璃成形體。在某些實施例中,SiO2 之濃度可大於60莫耳百分比,以便提供具有適合於顯示器玻璃或光導板玻璃之密度及化學耐受性以及液相溫度(液相黏度)之玻璃,該液相溫度允許玻璃藉由下拉製程(例如,熔融製程)來形成。就上限而言,SiO2 濃度一般而言可小於或等於約80莫耳百分比,以允許分批材料使用習知、高容量、熔融技術(例如,於耐火熔爐中之焦耳熔融)來熔融。在SiO2 之濃度增加時,200泊溫度(熔融溫度)通常升高。在各種應用中,SiO2 濃度得以調整以使得玻璃組成物具有小於或等於1,750℃之熔融溫度。在各種實施例中,SiO2 之mol%可在約60%至約81%範圍內,或替代地在約66%至約78%範圍內,或在約72%至約80%範圍內,或在約65%至約79%範圍內,以及其之間的所有子範圍。在另外的實施例中,SiO2 之mol%可在約70%至約74%之間,或在約74%至約78%之間。在一些實施例中,SiO2 之mol%可為約72%至73%。在其他實施例中,SiO2 之mol%可為約76%至77%。
Al2 O3 為用於製成本文所述的玻璃的另一玻璃成形體。較高莫耳百分比Al2 O3 可改良玻璃之退火點及模數。在各種實施例中,Al2 O3 之mol%可在約0%至約20%範圍內,或替代地在約4%至約11%範圍內,或在約6%至約8%範圍內,或在約3%至約7%範圍內,以及其之間的所有子範圍。在另外的實施例中,Al2 O3 之mol%可在約4%至約10%之間,或在約5%至約8%之間。在一些實施例中,Al2 O3 之mol%可為約7%至8%。在其他實施例中,Al2 O3 之mol%可為約5%至6%,或0%至約5%或0%至約2%。
B2 O3 為玻璃成形體及輔助熔融並降低熔融溫度之助熔劑。其對於液相溫度及黏度兩者均具有影響。增加B2 O3 可用於增加玻璃之液相黏度。為了達成此等作用,一或多個實施例之玻璃組成物可具有等於或大於0.1莫耳百分比之B2 O3 濃度;然而,一些組成物可具有可忽略量之B2 O3 。如以上關於SiO2 所論述,玻璃耐久性對LCD顯示器應用極為重要。耐久性可在某種程度上由鹼土金屬氧化物之升高的濃度來控制,且因升高的B2 O3 含量而顯著減小。當B2 O3 增加時,退火點減少,因此保持B2 O3 含量較低可為有用的。因此,在各種實施例中,B2 O3 之mol%可在約0%至約15%範圍內,或替代地在約0%至約12%範圍內,或在約0%至約11%範圍內,在約3%至約7%範圍內,或在約0%至約2%範圍內,以及其之間的所有子範圍。在一些實施例中,B2 O3 之mol%可為約7%至8%。在其他實施例中,B2 O3 之mol%可為可忽略的或約0%至1%。
除玻璃成形體(SiO2 、Al2 O3 及B2 O3 )之外,本文所述的玻璃亦包括鹼土金屬氧化物。在一個實施例中,至少三種鹼土金屬氧化物為玻璃組成物之部分,該等鹼土金屬氧化物例如MgO、CaO及BaO,以及視需要SrO。鹼土金屬氧化物提供具有對熔融、澄清、成形及最終使用重要的各種性質。因此,為了就此等方面而言來改良玻璃效能,在一個實施例中,(MgO+CaO+SrO+BaO)/Al2 O3 比率在0與2.0之間。當此比率增加時,黏度傾向於比液相溫度更強烈地增加,並且因此愈來愈難以獲得T35k -Tliq 之適當較高值。因此在另一實施例中,比率(MgO+CaO+SrO+BaO)/Al2 O3 小於或等於約2。在一些實施例中,(MgO+CaO+SrO+BaO)/Al2 O3 比率在約0至約1.0範圍內,或在約0.2至約0.6範圍內,或在約0.4至約0.6範圍內。在詳細實施例中,(MgO+CaO+SrO+BaO)/Al2 O3 比率小於約0.55或小於約0.4。
對本發明之某些實施例而言,鹼土金屬氧化物可實際上看成是單一組成組分。此係因為該等鹼土金屬氧化物對黏彈性性質、液相溫度及液相關係之影響定性而言在彼此間比在其與玻璃成形氧化物SiO2 、Al2 O3 及B2 O3 間更為類似。然而,鹼土金屬氧化物CaO、SrO及BaO可形成長石礦物,特別是鈣斜長石(CaAl2 Si2 O8 )及鋇長石(BaAl2 Si2 O8 )及其帶有鍶之固溶體,但MgO並不參與此等晶體至顯著程度。因此,當長石晶體已為液相時,追加MgO可用於使液體相對於晶體穩定且由此降低液相溫度。同時,黏度曲線典型地變得陡峭,從而降低熔融溫度而同時對低溫黏度幾乎不具有或不具有影響。
發明人發現添加少量MgO可藉由減少熔融溫度而有益於熔融,藉由減少液相溫度並且增加液相黏度,同時保持高退火點而有益於成形。在各種實施例中,玻璃組成物包含的MgO之量在約0 mol%至約10 mol%範圍內,或在約0 mol%至約6 mol%範圍內,或在約1.0 mol%至約8.0 mol%範圍內,或在約0 mol%至約8.72 mol%範圍內,或在約1.0 mol%至約7.0 mol%範圍內,或在約0 mol%至約5 mol%範圍內,或在約1 mol%至約3 mol%範圍內,或在約2 mol%至約10 mol%範圍內,或在約4 mol%至約8 mol%範圍內,以及其之間的所有子範圍。
不受任何具體操作理論約束,咸信存在於玻璃組成物中之氧化鈣可產生低液相溫度(高液相黏度)、高退火點及模數,及用於顯示器及光導板應用之最合意範圍中之CTE。氧化鈣亦有利地貢獻於化學耐受性,且相較於其他鹼土金屬氧化物而言,氧化鈣作為分批材料為相對廉價的。然而,在高濃度下,CaO增加密度及CTE。此外,在充分低的SiO2 濃度下,CaO可使鈣斜長石穩定,因此減小液相黏度。因此,在一或多個實施例中,CaO濃度可在0與6 mol%之間。在各種實施例中,玻璃組成物之CaO濃度在約0 mol%至約4.24 mol%範圍內,或在約0 mol%至約2 mol%範圍內,或在約0 mol%至約1 mol%範圍內,或在約0 mol%至約0.5 mol%範圍內,或在約0 mol%至約0.1 mol%範圍內,以及其之間的所有子範圍。在其他實施例中,玻璃組成物之CaO濃度在約7-14 mol%範圍內,或約9-12 mol%。
SrO及BaO可均貢獻於低液相溫度(高液相黏度)。此等氧化物之選擇及濃度可經選擇以便避免CTE及密度之增加以及模數及退火點之減小。SrO及BaO之相對比例可經平衡以便獲得物理性質及液相黏度之適合組合,以使得玻璃可藉由下拉製程來形成。在各種實施例中,玻璃包含的SrO在約0至約8.0 mol%範圍內,或約0 mol%至約4.3 mol%之間,或約0至約5 mol%、1 mol%至約3 mol%,或約小於約2.5 mol%,以及其之間的所有子範圍。在一或多個實施例中,玻璃包含的BaO在約0至約5 mol%範圍內,或0至約4.3 mol%之間,或0至約2.0 mol%之間,或0至約1.0 mol%之間,或0至約0.5 mol%之間,以及其之間的所有子範圍。
除以上組分之外,本文所述的玻璃組成物可包括各種其他氧化物,以調整玻璃之各種物理、熔融、澄清及成形屬性。此等其他氧化物之實例包括但不限於TiO2 、MnO、V2 O3 、Fe2 O3 、ZrO2 、ZnO、Nb2 O5 、MoO3 、Ta2 O5 、WO3 、Y2 O3 、La2 O3 及CeO2 以及其他稀土氧化物及磷酸鹽。在一個實施例中,此等氧化物中之每一者之量可小於或等於2.0莫耳百分比,並且其總組合濃度可小於或等於5.0莫耳百分比。在一些實施例中,玻璃組成物包含的ZnO之量在約0至約3.5 mol%範圍內,或約0至約3.01 mol%,或約0至約2.0 mol%,以及其之間的所有子範圍。在其他實施例中,玻璃組成物包含約0.1 mol%至約1.0 mol%氧化鈦;約0.1 mol%至約1.0 mol%氧化釩;約0.1 mol%至約1.0 mol%氧化鈮;約0.1 mol%至約1.0 mol%氧化錳;約0.1 mol%至約1.0 mol%氧化鋯;約0.1 mol%至約1.0 mol%氧化錫;約0.1 mol%至約1.0 mol%氧化鉬;約0.1 mol%至約1.0 mol%氧化鈰;以及其之間的所有子範圍的以上列出過渡金屬氧化物中之任一者。本文所述的玻璃組成物亦可包括各種污染物,該等污染物與分批材料相關聯,及/或藉由用於生產玻璃之熔融、澄清及/或成形設備引入。玻璃亦可含有SnO2 ,此為使用氧化錫電極之焦耳熔融之結果,及/或係經由含錫材料之配料而含有,該等含錫材料例如SnO2 、SnO、SnCO3 、SnC2 O2 等等。
本文所述的玻璃組成物可含有一些鹼成分,例如,此等玻璃並非不含鹼之玻璃。如本文所使用,「不含鹼之玻璃」為具有小於或等於0.1莫耳百分比之總鹼濃度的玻璃,其中總鹼濃度為Na2 O、K2 O及Li2 O濃度之總和。在一些實施例中,玻璃包含的Li2 O在約0至約3.0 mol%範圍內,在約0至約3.01 mol%範圍內,在約0至約2.0 mol%範圍內,在約0至約1.0 mol%範圍內,小於約3.01 mol%,或小於約2.0 mol%,以及其之間的所有子範圍。在其他實施例中,玻璃包含的Na2 O在約3.5 mol%至約13.5 mol%範圍內,在約3.52 mol%至約13.25 mol%範圍內,在約4至約12 mol%範圍內,在約6至約15 mol%範圍內,或在約6至約12 mol%範圍內,在約9 mol%至約15 mol%範圍內,以及其之間的所有子範圍。在一些實施例中,玻璃包含的K2 O在約0至約5.0 mol%範圍內,在約0至約4.83 mol%範圍內,在約0至約2.0 mol%範圍內,在約0至約1.5 mol%範圍內,在約0至約1.0 mol%範圍內,或小於約4.83 mol%,以及其之間的所有子範圍。
在一些實施例中,本文所述的玻璃組成物可具有以下組成特徵之一或多者或所有:(i)至多0.05至1.0 mol%之As2 O3 濃度;(ii)至多0.05至1.0 mol%之Sb2 O3 濃度;(iii)至多0.25至3.0 mol%之SnO2 濃度。
As2 O3 為用於顯示器玻璃之有效高溫澄清劑,且在本文所述的一些實施例中,As2 O3 由於其優異的澄清性質而用於澄清。然而,As2 O3 為有毒的且需要在玻璃製造製程期間的特殊處置。因此,在某些實施例中,澄清在不使用實質量之As2 O3 的情況下進行,亦即,成品玻璃具有至多0.05莫耳百分比之As2 O3 。在一個實施例中,無As2 O3 特意地用於玻璃之澄清。在此等狀況下,由於存在於分批材料及/或用於熔融分批材料之設備中的污染物的結果,成品玻璃將典型地具有至多0.005莫耳百分比之As2 O3
儘管毒性並不與As2 O3 一樣,但Sb2 O3 亦為有毒的且需要特殊處置。另外,與使用As2 O3 或SnO2 作為澄清劑之玻璃比較,Sb2 O3 升高密度,升高CTE,且降低退火點。因此,在某些實施例中,澄清在不使用實質量之Sb2 O3 的情況下進行,亦即,成品玻璃具有至多0.05莫耳百分比之Sb2 O3 。在另一實施例中,無Sb2 O3 特意地用於玻璃之澄清。在此等狀況下,由於存在於分批材料及/或用於熔融分批材料之設備中的污染物的結果,成品玻璃將典型地具有至多0.005莫耳百分比之Sb2 O3
相較於As2 O3 及Sb2 O3 澄清而言,錫澄清(亦即,SnO2 澄清)有效性較小,但SnO2 為遍存材料,已知其不具有有害的性質。此外,多年來,經由在用於顯示器玻璃之分批材料之焦耳熔融中使用氧化錫電極,SnO2 已成為此等玻璃之組分。SnO2 於顯示器玻璃中之存在尚未在此等玻璃於製造液晶顯示器之使用中導致任何已知的不利效應。然而,高濃度之SnO2 不為較佳的,因為此會導致顯示器玻璃中結晶缺陷之形成。在一個實施例中,成品玻璃中之SnO2 之濃度小於或等於0.25莫耳百分比,在約0.07至約0.11 mol%範圍內,在約0至約2 mol%範圍內,約0至約3 mol%,以及其之間的所有子範圍。
錫澄清可單獨使用或在需要時與其他澄清技術組合使用。例如,錫澄清可與鹵化物澄清(例如,溴澄清)組合。其他可能的組合包括但不限於錫澄清加硫酸鹽、硫化物、氧化鈰、機械起泡及/或真空澄清。涵蓋的是:此等其他澄清技術可單獨使用。在某些實施例中,將(MgO+CaO+SrO+BaO)/Al2 O3 比率及個別鹼土金屬濃度保持在以上論述之範圍內使得澄清過程更容易執行並且更有效。
在各種實施例中,玻璃可包含Rx O,其中R係Li、Na、K、Rb、Cs並且x係2,或R係Zn、Mg、Ca、Sr或Ba,並且x係1。在一些實施例中,Rx O – Al2 O3 > 0。在其他實施例中,0 < Rx O - Al2 O3 < 15。在一些實施例中,Rx O/Al2 O3 在0與10之間、0與5之間、大於1,或1.5與3.75之間,或1與6之間,或1.1與5.7之間,以及其之間的所有子範圍。在其他實施例中,0 < Rx O - Al2 O3 < 15。在其他實施例中,x=2並且R2 O - Al2 O3 < 15、< 5、< 0、-8與0之間,或-8與-1之間,以及其之間的所有子範圍。在另外的實施例中,R2 O - Al2 O3 < 0。在另外的實施方案中,x=2並且R2 O - Al2 O3 - MgO > -10、> -5、0與-5之間、0與-2之間、> -2、-5與5之間、-4.5與4之間,以及其之間的所有子範圍。在其他實施例中,x=2並且Rx O/Al2 O3 在0與4之間、0與3.25之間、0.5與3.25之間、0.95與3.25之間,以及其之間的所有子範圍。此等比率在建立玻璃物件之可製造性以及判定其透射效能方面起重要作用。例如,具有Rx O– Al2 O3 大致等於或大於零之玻璃將趨向於具有較好熔融品質,但若Rx O– Al2 O3 變為過大之值,則透射曲線將受不利地影響。相似地,若Rx O– Al2 O3 (例如,R2 O– Al2 O3 )處於如上所述給定範圍內,則玻璃將可能在可見光譜中具有高透射率,而維持玻璃之可熔性且抑止玻璃之液相溫度。類似地,如上所述之R2 O-Al2 O3 -MgO值亦可幫助抑止玻璃之液相溫度。
在一或多個實施例中並且如以上提及,示範性玻璃可具有低濃度之元素,該等元素在玻璃基質中時產生可見光吸收。此等吸收體包括:過渡元素,諸如Ti、V、Cr、Mn、Fe、Co、Ni及Cu;以及具有部分填充f軌道的稀土元素,包括Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er及Tm。此等元素中,用於玻璃熔融之習知原料中最富含的為Fe、Cr及Ni。鐵為砂(SiO2 之來源)中之常見污染物,且亦為鋁、鎂及鈣之原料來源中的典型污染物。鉻及鎳典型地以低濃度存在於標準玻璃原料中,但可存在於砂之各種礦石中,且必須控制在低濃度下。另外,鉻及鎳可經由與不銹鋼接觸而引入,例如,當原料或碎玻璃遭夾鉗壓碎、經由襯鋼混合器或螺桿進料器之侵蝕,或與熔融單元自身中之結構鋼接觸時引入。在一些實施例中,鐵之濃度可尤其小於50 ppm,更尤其小於40 ppm或小於25 ppm,且Ni及Cr之濃度可尤其小於5 ppm且更尤其小於2 ppm。在其他實施例中,以上列出的所有其他吸收體之濃度可各自小於1 ppm。在各種實施例中,玻璃包含1 ppm或更小的Co、Ni及Cr,或替代地小於1 ppm之Co、Ni及Cr。在各種實施例中,過渡元素(V、Cr、Mn、Fe、Co、Ni及Cu)可以0.1 wt%或更小存在於玻璃中。在一些實施例中,Fe之濃度可為<約50 ppm、<約40 ppm、<約30 ppm、<約20 ppm或<約10 ppm。在其他實施例中,Fe+30Cr+35Ni <約60 ppm、<約50 ppm、<約40 ppm、<約30 ppm、<約20 ppm或<約10 ppm。
在其他實施例中,發現添加不導致300 nm至650 nm之吸收並且具有<約300 nm之吸收帶的某些過渡金屬氧化物在成形過程中防止網狀物缺陷並且在固化墨水時,防止在UV曝露之後的色中心(例如,300 nm至650 nm之光的吸收),因為玻璃網狀物中之過渡金屬氧化物之鍵吸收光,而不允許光將玻璃網狀物之基本鍵分解。因此,為了最大限度地減少UV色中心形成,示範性實施例可包括以下過渡金屬氧化物中之任一者或組合:約0.1 mol%至約3.0 mol%氧化鋅;約0.1 mol%至約1.0 mol%氧化鈦;約0.1 mol%至約1.0 mol%氧化釩;約0.1 mol%至約1.0 mol%氧化鈮;約0.1 mol%至約1.0 mol%氧化錳;約0.1 mol%至約1.0 mol%氧化鋯;約0.1 mol%至約1.0 mol%氧化砷;約0.1 mol%至約1.0 mol%氧化錫;約0.1 mol%至約1.0 mol%氧化鉬;約0.1 mol%至約1.0 mol%氧化銻;約0.1 mol%至約1.0 mol%氧化鈰;以及其之間的所有子範圍的以上列出過渡金屬氧化物中之任一者。在一些實施例中,示範性玻璃可含有0.1 mol%至小於或不超過約3.0 mol%之氧化鋅、氧化鈦、氧化釩、氧化鈮、氧化錳、氧化鋯、氧化砷、氧化錫、氧化鉬、氧化銻及氧化鈰之任何組合。
甚至在過渡金屬之濃度處於上述範圍內之狀況下,可存在導致非所欲吸收之基質及氧化還原效應。舉例而言,熟習此項技術者熟知的是,鐵以兩種原子價存在於玻璃中,該等原子價即+3或三價鐵狀態及+2或二價鐵狀態。在玻璃中,Fe3+ 在大致380、420及435 nm下產生吸收,而Fe2+ 主要在IR波長下吸收。因此,根據一或多個實施例,可能需要迫使儘可能多的鐵成為二價鐵狀態,以在可見光波長下達成高透射率。完成此舉的一種非限制性方法為將本質上為還原性的組分添加至玻璃批料中。此等組分可包括碳、烴或某些類金屬之還原形式,該等類金屬例如矽、硼或鋁。然而,若鐵量處於所述範圍內,則根據一或多個實施例,達成至少10%之鐵呈二價鐵狀態且更確切言之大於20%之鐵呈二價鐵狀態,改良透射率可在短波長下產生。因此,在各種實施例中,玻璃中鐵之濃度在玻璃片中產生小於1.1 dB/500 mm的衰減。另外,在各種實施例中,當硼矽酸鹽玻璃之比率(Li2 O+Na2 O+K2 O+Rb2 O+Cs2 O+MgO+ZnO+ CaO+SrO+BaO)/Al2 O3 為0與4之間時,V+Cr+Mn+Fe+Co+Ni+Cu之濃度在玻璃片中產生2 dB/500 mm或更小的光衰減。
玻璃基質中鐵之原子價及配位狀態亦可受玻璃之整體組成的影響。例如,已在高溫下、在空氣中平衡的系統SiO2 -K2 O-Al2 O3 中檢查熔融玻璃中之鐵氧化還原比率。據發現,呈Fe3+ 的鐵之分數隨比率K2 O/(K2 O+Al2 O3 )而增加,此實際上將理解為在短波長更大的吸收。在探究此基質效應中,據發現,比率(Li2 O+Na2 O+K2 O+Rb2 O+Cs2 O)/Al2 O3 及(MgO+CaO+ZnO+SrO+BaO)/Al2 O3 亦可對最大化硼矽酸鹽玻璃中之透射率為重要的。因此,對於如上所述之Rx O範圍,示範性波長下之透射率可針對給定鐵含量來最大化。此係部分地歸因於較高比例之Fe2+ ,且部分地歸因於與鐵之配位環境相關聯的基質效應。
玻璃粗糙度
第3圖為展示估計光洩漏(以dB/m計)對比LGP之RMS粗糙度的圖表。參考第3圖,可展示當光在LGP之表面上彈跳許多次時,表面散射在LGP中發揮作用。第3圖描繪之曲線例示隨著LGP之RMS粗糙度而變化的光洩漏(以dB/m計)。第3圖展示,為了達成低於1dB/m,表面品質必需優於約0.6 nm RMS。此粗糙度位準可藉由使用熔融拉製製程或浮製玻璃繼之以拋光來達成。此模型假定:粗糙度如同藍伯特散射表面一樣起作用,從而意指吾等僅考慮高的空間頻率粗糙度。因此,粗糙度應藉由考慮功率譜密度且僅考慮高於約20微米-1 之頻率來計算。表面粗糙度可藉由原子力顯微術(atomic force microscopy;AFM);使用諸如藉由Zygo製造之商業系統的白光干涉量測;或使用諸如藉由Keyence提供之商業系統的雷射共焦顯微術來量測。來自表面之散射可藉由製備一系列樣本,隨後如下所述量測每一者之內部透射率來量測,該等樣本除了表面粗糙度以外係相同的。樣本之間之內部透射率之差異可歸因於藉由粗糙表面誘導之散射損失。
UV處理
在處理示範性玻璃中,亦可使用紫外(ultraviolet;UV)光。例如,光提取特徵常常藉由在玻璃上之白色印刷點製成,且UV係用於乾燥墨水。此外,提取特徵可由其上具有一些特定結構之聚合物層製成,且需要UV曝露以用於聚合。已發現,玻璃之UV曝露可顯著地影響透射率。根據一或多個實施例,可在用於LGP之玻璃的玻璃處理期間使用濾光器,以消除低於約400 nm之所有波長。一個可能的濾光器在於使用與當前曝露之玻璃相同的玻璃。
玻璃波紋度
在低得多的頻率(以mm或更大範圍計)意義上,玻璃波紋度稍微不同於粗糙度。因而,波紋度不貢獻於提取光,因為角度極小,但其改質提取特徵之效率,因為效率隨光導厚度而變化。光提取效率一般而言與波導厚度成反比。因此,為保持高頻影像亮度波動低於5% (其為由吾等閃光人類知覺分析得到的人類知覺閾值),玻璃之厚度需要在小於5%以內恆定。示範性實施例可具有小於0.3 um、小於0.2 um、小於1 um、小於0.08 um或小於0.06 um之A側波紋度。
第4圖為展示針對耦合在2 mm厚LGP中的2 mm厚LED的預期耦合(無菲涅耳損失)隨LGP與LED之間的距離而變化的圖表。參考第4圖,在示範性實施例中之光注入通常涉及將LGP置放在一或多個發光二極體(light emitting diode;LED)之直接鄰近處。根據一或多個實施例,光自LED至LGP之有效耦合涉及使用具有小於或等於玻璃之厚度的厚度或高度的LED。因此,根據一或多個實施例,可控制LED至LGP之距離以便改良LED光注入。第4圖展示隨著此距離而變化之預期耦合(無菲涅耳損失)並且考慮到耦合至2 mm厚LGP之2 mm高度LED。根據第4圖,距離應<約0.5mm以保持耦合>約80%。當諸如PMMA之塑膠係用作習知LGP材料時,將LGP置放成與LED實體接觸在某種程度上存在問題。首先,需要最小距離來使材料膨脹。此外,LED趨向於顯著地加熱,且在實體接觸的狀況下,PMMA可接近於其Tg (對PMMA而言為105℃)。當將PMMA置放成與LED接觸時所量測的溫度升高為在接近LED處約50℃。因此,對PMMA LGP而言,需要最小氣隙以使耦合降級,如第4圖所示。根據利用玻璃LGP之標的之實施例,加熱玻璃不成問題,因為玻璃之Tg高得多,且實體接觸可實際上為優點,因為玻璃具有足夠大的熱傳導係數,以使LGP成為一個另外的熱消散機構。
第5圖為自LED至玻璃LGP之耦合機制之圖像圖解。參考第5圖,假定LED接近於藍伯特發射體且假定玻璃折射率為約1.5,角α將保持小於41.8度(如(1/1.5)),且角β將保持大於48.2度 (90-α)。因為全內反射(total internal reflection;TIR)角為約41.8度,所以此意指所有光保持處於引導件內部,且耦合接近於100%。在LED注入之層面,注入面可引起一些擴散,從而將光傳播至LGP中之角度增加。在此角度變得大於TIR角度之情況下,光可漏出LGP,從而導致耦合損失。然而,不引入顯著損失之條件係光得以散射的角度應小於48.2-41.8=+/-6.4度(散射角<12.8度)。因此,根據一或多個實施例,LGP之複數個邊緣可具有鏡面拋光,以改良LED耦合及TIR。在一些實施例中,四個邊緣中之三個具有鏡面拋光。當然,此等角度僅為示範性的且不應限制隨附發明申請專利範圍之範疇,因為示範性散射角可為<20度、<19度、<18度、<17度、<16度、<14度、<13度、<12度、<11度或<10度。另外,在反射中之示範性擴散角可為但不限於<15度、<14度、<13度、<12度、<11度、<10度、<9度、<8度、<7度、<6度、<5度、<4度或<3度。
第6圖為展示自表面拓撲學計算的預期角能量分佈的圖表。參考第6圖,例示僅研磨邊緣之典型紋理,其中粗糙度幅度為相對高的(大約1 nm),但特殊頻率為相對低的(大約20微米),從而產生低散射角。另外,此圖例示自表面拓撲學計算的預期角能量分佈。如可見的,散射角可遠小於12.8度半高寬(full width half maximum;FWHM)。
就表面定義而言,表面之特徵可為局部斜率分佈θ(x,y),其可例如藉由對表面輪廓取導數來計算。玻璃中之角偏轉可以一次近似計算為: θ’(x,y)= θ (x,y)/n 因此,對表面粗糙度之條件為θ(x,y) <n *6.4度,其中在2個相鄰邊緣處存在TIR。
第7圖為展示光於玻璃LGP之兩個相鄰邊緣處的全內反射的圖像圖解。參考第7圖,注入至第一邊緣130中之光可入射於相鄰於注入邊緣之第二邊緣140及相鄰於注入邊緣之第三邊緣150上,其中第二邊緣140與第三邊緣150相反。第二邊緣及第三邊緣亦可具有低粗糙度,以便入射光經歷自相鄰第一邊緣之兩個邊緣的總內反射(internal reflectance;TIR)。在光於彼等介面處擴散或部分擴散之情況下,光可自彼等邊緣中之每一者洩漏,進而使得影像之邊緣呈現得更暗。在一些實施例中,光可自沿第一邊緣130定位的LED之陣列200注入至第一邊緣130中。LED可位於離光注入邊緣小於0.5 mm之距離。根據一或多個實施例,LED可具有小於或等於玻璃片之厚度的厚度或高度,以提供耦合至光導板100之有效光。如參考第1圖所論述的,第7圖展示由光注入的單一邊緣130,但所請求標的不應受此限制,因為示範性實施例100之邊緣的任一者或數者可由光注入。例如,在一些實施例中,第一邊緣130及其相反邊緣可皆由光注入。另外的實施例可在第二邊緣140及其相反邊緣150處注入光,而非在第一邊緣130及/或其相反邊緣處注入光。根據一或多個實施例,兩個邊緣140、150可在反射中具有低於6.4度之擴散角以使得對粗糙度形狀之條件藉由θ(x,y)<6.4/2=3.2度來表示。
LCD面板剛度
LCD面板之一個屬性為總厚度。在用以製成較薄結構之習知嘗試中,足夠剛性之缺少已成為嚴重問題。然而,剛性可隨示範性玻璃LGP而增加,因為玻璃之彈性模數顯著地大於PMMA之彈性模數。在一些實施例中,為獲得受益於剛性觀點之最大值,面板之所有元件可在邊緣處黏結在一起。
第8A及8B圖係具有根據一或多個實施例之LGP之示範性背光單元的簡化橫截面圖解。參考第8A及8B圖,提供背光單元500之示範性實施例。單元包含安裝在背板(未展示)上之第一光學組件100(例如,LGP),光可穿過該第一光學組件行進並且重定向至LCD或觀察者。結構元件(未展示)可使第一光學組件100附加至背板,並且在第一光學組件100之背面與背板之一面之間產生間隙。在一些實施例中,反射及/或漫射薄膜(未展示)可定位在第一光學組件100之背面與背板之間以便將所回收之光發送回到第一光學組件100。複數個LED 502、有機發光二極體(organic light emitting diode;OLED)或冷陰極螢光燈(cold cathode fluorescent lamp;CCFL)可定位成相鄰於LGP之光注入邊緣130,其中LED具有與第一光學組件100之厚度相同的寬度,且處於與第一光學組件100相同的高度。在其他實施例中,與第一光學組件100之厚度相比,LED具有更大寬度及/或高度。習知LCD可使用用色彩轉換磷光體包裝之LED或CCFL以產生白光。在一些實施例中,一個或第二光學組件570(例如,光學薄膜)可定位在與第一光學組件100之正面相鄰處。在一些實施例中,光學薄膜570可積層至第一光學組件100。為了最大限度地減少積層對於示範性背光單元500之光學組件之光學性能之任何影響,具有示範性折射率之不連續黏結材料504可用於將兩個組件,例如LGP 100及光學薄膜570積層。黏結材料504可以點、線、矩陣或其他合適型樣來分佈並且亦可均勻分佈、不均勻分佈、以從光注入邊緣130之遞增梯度來分佈、以從光注入邊緣130之遞減梯度來分佈,或在兩個組件(在此實施例中,LGP 100及薄膜570)之間之介面上之其他合適分佈。示範性積層或結構將黏結材料504之折射率與第一光學組件100之主表面上之接觸面積加以平衡。
舉例而言,已經發現藉由黏結材料具有比第一光學組件100之折射率小3%之折射率,並且接觸第一光學組件100之黏結材料之總面積係第一光學組件100之總表面積之0.18%以下,可達成可接受之光學效能。在其他實施例中,判定當黏結材料之折射率比第一光學組件100之折射率小6%並且與第一光學組件100接觸之黏結材料之總面積較佳係第一光學組件100之總表面積之0.25%以下時,達成背光單元之可接受之光學效能。在其他實施例中,判定當黏結材料之折射率比第一光學組件之折射率小10%並且與第一光學組件接觸之黏結材料之總面積係第一光學組件之總表面積之0.45%以下時,達成背光單元之可接受之光學效能。在另外的實施例中,判定當黏結材料之折射率比第一光學組件之折射率小13%並且與第一光學組件接觸之黏結材料之總面積係第一光學組件之總表面積之1.4%以下時,達成背光單元之可接受之光學效能。
參考第8B圖,例示具有1.1mm之厚度的示範性LGP 100,出於實驗目的,該LGP與諸如但不限於稜鏡薄膜之光學薄膜570積層。具有1mm寬度之LED 502之輸出光從光注入邊緣來耦合至LGP 100。實驗性LGP 100及光學薄膜570之大小係500 mm x 500 mm。呈OCA點形式之黏結材料504均勻地沉積在LGP 100與光學薄膜570之間之介面上。兩個鄰近點之間之最小距離係約10 mm。以下表1展示若干模擬情況之黏結材料、LGP及光學薄膜之折射率。 表1
第9圖係針對某些黏結材料折射率及(1.25、1.30、1.35)及LGP及光學薄膜折射率(1.5)的隨著總黏結面積與LGP面積之比率而變化的從示範性LGP耦合至光學薄膜之功率之圖形描述。參考第9圖,例示針對情況1-3的隨著總黏結材料面積與LGP面積之比率而變化的從LGP耦合至光學薄膜之功率之曲線(參見表1)。對於所有三種情況,可觀察到從LGP耦合至光學薄膜之功率之百分比隨著總黏結材料面積與LGP面積之比率之增加而增加。然而,對於情況1,當總黏結材料面積與LGP面積之比率大於0.1時,從LGP耦合至光學薄膜之功率之百分比在大約7%處飽和。
第10圖係對於其他黏結材料、LGP及光學薄膜折射率的隨著總黏結面積與LGP面積之比率而變化的從LGP耦合至光學薄膜之功率的圖形描述。參考第10圖,例示針對情況4-9的隨著總黏結材料面積與LGP面積之比率而變化的從LGP耦合至光學薄膜之功率之曲線(參見表1)。參考第9及10圖,可觀察到以下結果。首先,從LGP耦合至光學薄膜之功率隨著黏結材料之折射率減少而減少(參見情況1-6)。其次,當LGP、黏結材料及光學薄膜之折射率相同時,最多的光從LGP耦合至光學薄膜(參見情況6)。第三,當黏結材料之折射率小於LGP之折射率時,光學薄膜之折射率對於耦合功率之影響小得足以忽略(參見情況4、8及9)。第四,黏結材料折射率低於LGP的情況優於黏結材料折射率高於LGP的情況(參見情況4及7)。
LGP之示範性寬度及高度通常取決於各別LCD面板之大小。應注意本發明標的之實施例可適用於任何大小LCD面板,不論較小(<40”對角線)或較大(>40”對角線)顯示器。LGP之示例性尺寸包括但不限於20”、30”、40”、50”、60”對角線或更大。
色移補償
在先前玻璃中,儘管減少鐵濃度使得吸收及黃色位移最小化,但是很難將其完全消除。對於約700mm之傳播距離,對於PMMA所量測的Δx、Δy係0.0021及0.0063。在具有本文所述組成範圍之示範性玻璃中,色移Δy<0.015並且在示範性實施例中小於0.0021,及小於0.0063。舉例而言,在一些實施例中,色移量測為0.007842並且在其他實施例中量測為0.005827。在其他實施例中,示範性玻璃片可包含小於0.015,諸如在以下範圍內變化的色移Δy:約0.001至約0.015(例如,約0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.010、0.011、0.012、0.013、0.014或0.015)。在其他實施例中,透明基板可包含小於0.008、小於約0.005或小於約0.003之色移。色移可使用給定光源照度之色彩量測之CIE 1931標準、藉由量測沿著長度L之x及/或y色度坐標之變化來表徵。對於示範性玻璃光導板,色移Δy可報告為Δy=y(L2 )-y(L1 ),其中L2 及L1 係沿著面板或基板方向遠離光源發射(例如,LED或其他光源)的Z位置並且其中L2 -L1 =0.5米。本文所述之示例性光導板具有Δy<0.015、Δy<0.005、Δy<0.003或Δy<0.001。光導板之色移可藉由以下方法來估算:量測光導板之光學吸收,使用光學吸收來計算在0.5 m內之LGP之內部透射率,隨後將所得透射曲線乘以用於LCD背光中之典型LED光源諸如Nichia NFSW157D-E。隨後,可使用CIE色彩匹配函數來計算此光譜之(X,Y,Z)三刺激值。隨後,此等值藉由其總和來正規化以便提供(x,y)色度坐標。乘以0.5 m LGP透射率的LED光譜之(x,y)值與原始LED光譜之(x,y)值之間的差異係光導材料之色移影響的估計值。為解決殘餘色移,可實行若干示範性解決方案。在一個實施例中,可使用光導藍色塗漆。藉由將光導藍色塗漆,可人工地增加紅色及綠色之吸收,且增加藍色中之光提取。因此,藉由知道存在多少差異顏色吸收,可反算並且應用藍色塗漆型樣,從而可補償色移。在一或多個實施例中,可使用淺表面散射特徵來以取決於波長之效率提取光。舉例而言,當光程差等於波長一半時,正方形光柵具有效率最大值。因此,示範性紋理可用於優先提取藍色,且可添加至主光提取紋理中。在另外的實施例中,亦可利用影像處理。例如,可應用影像濾光器,該影像濾光器使接近於光進行注入之邊緣的藍色衰減。此可需要將LED自身之色彩移位以保持正確的白色色彩。在其他實施例中,像素幾何形狀可藉由以下方式用於解決色移:調整面板中RGB像素之表面比,且增加遠離光進行注入之邊緣的藍色像素之表面。
實例及玻璃組成物
關於示範性組成物,每一元素之衰減影響可藉由識別在可見光中其最強烈地衰減的波長來估計。在以下表2所示的實例中,各種過渡金屬之吸收係數已在實驗上相對於Al2 O3 與Rx O(然而,出於簡潔起見,以下僅展示改質劑Na2 O)之濃度來測定。 表2
除V (釩)之外,對具有Al2 O3 =Na2 O之濃度或更一般而言Al2 O3 約等於Rx O之濃度的玻璃發現最小衰減。在各種情況下,過渡金屬可呈現兩個或兩個以上原子價(例如,Fe可為+2及+3),因此在某種程度上,此等各種原子價之氧化還原比率可受整體組成物的影響。過渡金屬不同地回應於已知為「晶場」或「配位子場」效應之效應,該等效應自該等過渡金屬之部分填充d軌道中的電子與周圍陰離子(氧,在此狀況下)之相互作用而產生,尤其在最鄰近陰離子之數量(亦稱為配位數)存在改變的情況下如此。因此,氧化還原比率及晶場效應可能貢獻於此結果。
各種過渡金屬之吸收係數亦可利用來測定玻璃組成物在可見光譜(亦即,380 nm與700 nm之間)中之路徑長度上的衰減並且解決曝曬問題,如以下表3所示並且在以下進一步詳細論述。 表3
當然,表3識別的值僅為示範性的,且不應限制隨附發明申請專利範圍之範疇。例如,亦出乎意料地發現:當Fe+30Cr+35Ni <60 ppm時,可獲得高透射率玻璃。在一些實施例中,Fe之濃度可為<約50 ppm、<約40 ppm、<約30 ppm、<約20 ppm或<約10 ppm。在其他實施例中,Fe+30Cr+35Ni<約50 ppm、<約40 ppm、<約30 ppm、<約20 ppm或<約10 ppm。亦出乎意料地發現添加不導致300 nm至650 nm之吸收並且具有<約300 nm之吸收帶的某些過渡金屬氧化物在成形過程中防止網狀物缺陷並且在固化墨水時,防止在UV曝露之後的色中心(例如,300 nm至650 nm之光的吸收),因為玻璃網狀物中之過渡金屬氧化物之鍵吸收光,而不允許光將玻璃網狀物之基本鍵分解。因此,為了最大限度地減少UV色中心形成,示範性實施例可包括以下過渡金屬氧化物中之任一者或組合:約0.1 mol%至約3.0 mol%氧化鋅;約0.1 mol%至約1.0 mol%氧化鈦;約0.1 mol%至約1.0 mol%氧化釩;約0.1 mol%至約1.0 mol%氧化鈮;約0.1 mol%至約1.0 mol%氧化錳;約0.1 mol%至約1.0 mol%氧化鋯;約0.1 mol%至約1.0 mol%氧化砷;約0.1 mol%至約1.0 mol%氧化錫;約0.1 mol%至約1.0 mol%氧化鉬;約0.1 mol%至約1.0 mol%氧化銻;約0.1 mol%至約1.0 mol%氧化鈰;以及其之間的所有子範圍的以上列出過渡金屬氧化物中之任一者。在一些實施例中,示範性玻璃可含有0.1 mol%至小於或不超過約3.0 mol%之氧化鋅、氧化鈦、氧化釩、氧化鈮、氧化錳、氧化鋯、氧化砷、氧化錫、氧化鉬、氧化銻及氧化鈰之任何組合。
表4A、4B、5A及5B提供針對本發明標的之實施例製備的玻璃之一些示範性非限制性實例。 表4A 表4B 表5A 表5B
如至此所述的示範性組成物可因此用於達成在以下範圍變化的應變點:約525℃至約575℃、約540℃至約570 ℃或約545℃至約565 ℃,以及其之間的所有子範圍。在一個實施例中,應變點係約547℃,並且在另一實施例中,應變點係約565℃。示範性退火點可在以下範圍內變化:約575℃至約625℃、約590℃至約620℃,以及其之間的所有子範圍。在一個實施例中,退火點係約593℃,並且在另一實施例中,退火點係約618℃。玻璃之示範性軟化點在以下範圍變化:約800℃至約890 ℃、約820℃至約880 ℃或約835℃至約875℃,以及其之間的所有子範圍。在一個實施例中,軟化點係約836.2℃,在另一實施例中,軟化點係約874.7℃。示範性玻璃組成物之密度可在以下範圍變化:20℃下約1.95 gm/cc至20℃下約2.7 gm/cc、20℃下約2.1 gm/cc至20℃下約2.4 gm/cc或20℃下約2.3 gm/cc至20℃下約2.4 gm/cc,以及其之間的所有子範圍。在一個實施例中,密度係20℃下約2.389 gm/cc,並且在另一實施例中密度係20℃下約2.388 gm/cc。示範性實施例之CTE (0-300℃)可在以下範圍變化:約30 x 10-7/℃至約95 x 10-7/℃、約50 x 10-7/℃至約80 x 10-7/℃或約55 x 10-7/℃至約80 x 10-7/℃,以及其之間的所有子範圍。在一個實施例中,CTE係約55.7 x 10-7/℃並且在另一實施例中CTE係約69 x 10-7/℃。
本文描述之某些實施例及組成物提供大於90%、大於91%、大於92%、大於93%、大於94%及甚至大於95%之400-700 nm之內部透射率。內部透射率可藉由將透過樣本透射之光與從光源發出之光比較來量測。寬頻帶、非相干光可圓柱聚焦在將要測試之材料之末端上。從遠側發出之光可藉由耦合至光譜儀之積分球纖維來收集並且形成樣本資料。獲得參考資料,該獲得過程係藉由將在測試中之材料從系統中移除,將積分球直接平移至聚焦光學部件前面,並且經由與參考資料相同的裝置來收集光。給定波長下之吸收隨後藉由下式給出:0.5 m內之內部透射率藉由下式給出: 透射率(%)=100 × 10- 吸收 ×0.5/10 因此,本文所述的示範性實施例可具有長度500 mm時在450 nm下大於85%、大於90%、大於91%、大於92%、大於93%、大於94%及甚至大於95%之內部透射率。本文所述的示範性實施例亦可具有長度500 mm時在550 nm下大於90%、大於91%、大於92%、大於93%、大於94%及甚至大於96%之內部透射率。本文所述之其他實施例可具有長度500 mm時在630 nm下大於85%、大於90%、大於91%、大於92%、大於93%、大於94%及甚至大於95%之透射率。
在一或多個實施例中,LGP具有至少約1270 mm之寬度及約0.5 mm與約3.0 mm之間之厚度,其中LGP之透射率係每500 mm至少80%。在各種實施例中,LGP之厚度在約1 mm與約8 mm之間,並且板之寬度在約1100 mm與約1300 mm之間。
在一或多個實施例中,LGP可為強化的。例如,諸如中等壓縮應力(compressive stress;CS)、高的壓縮層深度(depth of compressive layer;DOL)及/或中等中心張力(central tension;CT)之某些特徵可提供在用於LGP之示範性玻璃片中。一個示範性製程包括藉由製備能夠離子交換之玻璃片來化學強化玻璃。玻璃片可隨後經受離子交換製程,且此後玻璃片可在必要時經受退火製程。當然,若需要玻璃片之CS及DOL處於自離子交換步驟所得之位準,則不需要退火步驟。在其他實施例中,酸蝕刻製程可用於增加適當玻璃表面上之CS。離子交換製程可涉及使玻璃片經受包括KNO3 、較佳相對純的KNO3 之熔融鹽浴、經受約400-500℃範圍內之一或多個第一溫度及/或歷時在約1-24小時範圍內之第一時間段(諸如但不限於約8小時)。應注意,其他鹽浴組成物為可能的,且考慮此等替代者在技藝人士之技藝水平內。因此,對KNO3 之揭示內容不應限制隨附發明申請專利範圍之範疇。此示範性離子交換製程可在玻璃片之表面處產生初始CS、在玻璃片中產生初始DOL,且在玻璃片內產生初始CT。退火可隨後按需要產生最終CS、最終DOL及最終CT。
實例
以下闡述下列實例以說明根據所揭示標的之方法及結果。此等實例不意欲包括本文揭示的標的之所有實施例,而只是說明代表性方法及結果。此等實例不意欲排除對熟習此項技術者顯而易見的本揭示內容之等效物及變化。
已做出努力來就數量(例如,量、溫度等等)而言確保準確度,但應考慮一些誤差及偏差。除非另外指示,否則溫度係以℃表示或處於周圍溫度下,且壓力係處於大氣壓下或接近大氣壓。組成物自身係基於氧化物以莫耳百分比來給出,且已正規化至100%。存在反應條件之眾多變化及組合,該等反應條件例如組分濃度、溫度、壓力及其他反應範圍及條件,該等其他反應範圍及條件可用於最佳化自所述製程獲得的產品純度及產率。最佳化此等製程條件將僅需要合理及例行的實驗。
在本文中並且在以下表5中闡述之玻璃性質根據玻璃領域中習知之技術來判定。因此,25-300℃溫度範圍內之線性熱膨脹係數(coefficient of thermal expansion;CTE)以x10-7/℃來表示並且退火點以℃來表示。此等熱膨脹係數及退火點係由纖維伸長技術(分別為ASTM參考E228-85及C336)來測定。就公克/cm3而言表示的密度係經由阿基米德方法(ASTM C693)來量測。以℃表示的熔融溫度(定義為玻璃熔體表現出200泊之黏度所處的溫度)係使用Fulcher方程式對經由旋轉圓柱黏度學(ASTM C965-81)量測的高溫黏度資料擬合來計算。
以℃表示的玻璃之液相溫度係使用ASTM C829-81之標準梯度舟液相方法來量測。此方法涉及將壓碎玻璃粒子置放於鉑舟中,將該舟置放於具有梯度溫度之區域的爐中,在適當溫度區域內加熱該舟24小時,且藉助於顯微檢查測定晶體在玻璃內部中出現所處的最高溫度。更特定而言,自Pt舟移除一塊玻璃樣本,且使用偏振光顯微術檢查來識別已抵靠Pt及空氣界面形成及在樣本內部形成的晶體之位置及性質。因為爐之梯度為明確已知的,所以可良好地估計在5-10℃內的溫度對比位置關係。取在樣本之內部部分中觀察到晶體時所處的溫度來表示玻璃之液相(針對相應試驗週期而言)。有時將測試進行更長時間(例如72小時),以便觀察較慢的生長相。以泊計的液相黏度係由液相溫度及Fulcher方程式之係數來測定。若包括,則就GPa而言表示的楊氏模數值係使用ASTM E1875-00e1中闡述的一般類型之共振超音波光譜學技術來測定。
本文中之各個表之示範性玻璃係使用商業砂石作為二氧化矽來源來製備,該等砂石經碾磨以使得90重量%者通過標準美國100目篩。礬土為氧化鋁來源,方鎂石為MgO之來源,石灰石為CaO之來源,碳酸鍶、硝酸鍶或其混合物為SrO之來源,碳酸鋇為BaO之來源,且氧化錫(IV)為SnO2 之來源。將原料徹底混合,裝入懸浮於由碳化矽輝光棒(glowbar)加熱的爐中之鉑容器中,在1600℃與1650℃之間的溫度下熔融並攪拌數小時以確保均質性,且經由在鉑容器基底處之孔口遞送。將所得玻璃小片在退火點處或接近退火點處退火,且隨後經受各種實驗性方法以測定物理、黏性及液相屬性。
此等方法並非唯一的,並且本文中之各個表之玻璃可使用熟習此項技術者熟知之標準方法來製備。此等方法包括連續熔融過程,諸如在連續熔融過程中執行者,其中用於連續熔融過程中之熔爐藉由氣體、電力或其組合來加熱。
適於生產示範性玻璃之原料包括:作為SiO2 之來源的市售砂石;作為Al2 O3 之來源的礬土、氫氧化鋁、礬土之水合形式及各種鋁矽酸鹽、硝酸鹽及鹵化物;作為B2 O3 之來源的硼酸、無水硼酸及氧化硼;作為MgO之來源的方鎂石、白雲石(亦為CaO之來源)、氧化鎂、碳酸鎂、氫氧化鎂及各種形式的鎂矽酸鹽、鋁矽酸鹽、硝酸鹽及鹵化物;作為CaO之來源的石灰石、文石、白雲石(亦為MgO之來源)、矽灰石及各種形式的鈣矽酸鹽、鋁矽酸鹽、硝酸鹽及鹵化物;以及鍶及鋇之氧化物、碳酸鹽、硝酸鹽及鹵化物。若需要化學澄清劑,則可將錫作為以下者來添加:SnO2 ,與另一主要玻璃組分(例如CaSnO3 )之混合氧化物,或在氧化條件下作為SnO、草酸錫、鹵化錫,或熟習此項技術者已知的錫之其他化合物。
本文中之各個表之玻璃含有作為澄清劑之SnO2 ,但其他化學澄清劑亦可用於獲得用於顯示器應用之足夠品質的玻璃。例如,示範性玻璃可使用As2 O3 、Sb2 O3 、CeO2 、Fe2 O3 及鹵化物中之任一者或組合作為故意添加物以促進澄清,且任何此等添加物可與實例中展示的SnO2 化學澄清劑結合使用。此等添加物中,As2 O3 及Sb2 O3 通常公認為有害材料,經受廢物流控制,該等廢物流諸如可在玻璃製造的過程中或在TFT面板的處理中產生。因此,需要將As2 O3 及Sb2 O3 之濃度個別地或組合地限制至不超過0.005 mol%。
除故意併入示範性玻璃中之元素之外,週期表中之幾乎所有穩定元素以某一位準存在於玻璃中,此係經由原料中低位準之污染、經由製造製程中耐火材料及貴金屬之高溫侵蝕,或經由以低位準故意引入以微調最終玻璃之屬性而達成。例如,鋯可作為污染物經由與富集鋯之耐火材料的相互作用而引入。作為另一實例,鉑及銠可經由與貴金屬之相互作用而引入。作為另一實例,鐵可作為原料中之混入物而引入,或故意添加來增強對氣態夾雜物之控制。作為另一實例,錳可引入來控制色彩或增強對氣態夾雜物之控制。
氫不可避免以羥基陰離子OH-之形式存在,且其存在可經由標準紅外線光譜學技術來確定。溶解的羥基離子顯著地且非線性地影響示範性玻璃之退火點,且因此為獲得所要退火點,可能有必要調整主要氧化物組分之濃度以便進行補償。羥基離子濃度可經由對原料之選擇或對熔融系統之選擇而控制至某種程度。例如,硼酸為羥基之主要來源,且以氧化硼置換硼酸可為控制最終玻璃中之羥基濃度的有用手段。相同推理適用於包含以下者的其他潛在原料:羥基離子、水合物或包含物理吸附或化學吸附水分子之化合物。若燃燒器用於熔融製程中,則羥基離子亦可經由來自天然氣及相關烴之燃燒的燃燒產物引入,且因此可能需要將用於熔融之能量自燃燒器移位至電極以進行補償。或者,可替代地使用調整主要氧化物組分之迭代方法以便補償溶解的羥基離子之有害影響。
硫常常存在於天然氣中,且同樣地為許多碳酸鹽、硝酸鹽、鹵化物及氧化物原料中的混入物組分。在呈SO2形式的情況下,硫可為氣態夾雜物之困擾性來源。形成富集SO2之缺陷的趨勢可藉由以下方式管理而達到顯著程度:控制原料中之硫位準,且將低位準之相比較而言還原的多價陽離子併入玻璃基質中。儘管不希望受理論束縛,但似乎富集SO2之氣態夾雜物主要經由溶解於玻璃中之硫酸根(SO4=)之還原而產生。示範性玻璃之升高的鋇濃度似乎在熔融之早期階段中增加玻璃中的硫保持量,但如上所述,需要鋇來獲得低液相溫度,並因此獲得高T35k -Tliq 及高液相黏度。故意地控制原料中之硫位準至低位準為減少玻璃中的溶解硫(推測為硫酸根)之有用手段。詳言之,硫在分批材料中以重量計較佳地小於200 ppm,且更佳地,在分批材料中以重量計小於100 ppm。
還原的多價物亦可用於控制示範性玻璃形成SO2發泡體之趨勢。儘管不希望受理論約束,但此等元素起到潛在電子供體之作用,該等電子供體抑止用於硫酸根還原的電動力。硫酸根還原可就半反應而言來寫出,該半反應諸如SO4= → SO2+O2+2e-,其中e-表示電子。半反應之「平衡常數」係Keq=[SO2][O2][e-]2/[SO4=],其中括號指示化學活性。理想地,將可能驅使反應以便由SO2、O2及2e-產生硫酸根。添加硝酸鹽、過氧化物或其他富集氧之原料可幫助而且可抵抗在熔融之早期階段中的硫酸根還原,從而可抵消首先添加該等原料之益處。SO2在大多數玻璃中具有極低溶解度,且因此增加至玻璃熔融製程中為不切實際的。電子可經由還原的多價物來「添加」。例如,用於二價鐵(Fe2+ )之適當推電子半反應係表示為2Fe2+ → 2Fe3+ +2e-。
電子之此「活性」可驅使硫酸根還原反應向左進行,從而使SO4=穩定在玻璃中。合適還原的多價物包括但不限於Fe2+、Mn2+、Sn2+、Sb3+、As3+、V3+、Ti3+及熟習此項技術者熟悉的其他者。在每個情況中,最大限度地減少此等組分之濃度可為重要的,以避免對於玻璃之色彩的有害影響,或在As及Sb的情況下,避免以足夠高的位準來添加此等組分以致於最終使用者製程中之廢物管理變得複雜。
除示範性玻璃之主要氧化物組分以及以上指出的微量或混入物成分之外,鹵化物可以各種位準存在,係作為經由原料之選擇而引入的污染物或作為用於消除玻璃中之氣態夾雜物的故意組分而存在。作為澄清劑,鹵化物可以約0.4 mol%或更小的位準來併入,儘管通常合乎需要的是在可能避免排氣處置設備之腐蝕的情況下使用較低的量。在一些實施例中,個別鹵化物元素之濃度對每一個別鹵化物而言以重量計低於約200 ppm,或對所有鹵化物元素之總和而言以重量計低於約800 ppm。
除了此等主要氧化物組分、微量及混入物組分、多價物及鹵化物澄清劑以外,併入低濃度之其他無色氧化物組分可為有用的,以便達成所需物理、曝曬、光學或黏彈性性質。此等氧化物包括但不限於TiO2、ZrO2、HfO2、Nb2O5、Ta2O5、MoO3、WO3、ZnO、In2O3、Ga2O3、Bi2O3、GeO2、PbO、SeO3、TeO2、Y2O3、La2O3、Gd2O3及熟習此項技術者已知的其他者。藉由調整示範性玻璃之主要氧化物組分之相對比例,此等無色氧化物可以高達約2 mol%至3 mol%之位準來添加,而不會對於退火點、T35k -Tliq 或液相黏度產生不可接受的影響。舉例而言,為了最大限度地減少UV色中心形成,一些實施例可包括以下過渡金屬氧化物中之任一者或組合:約0.1 mol%至約3.0 mol%氧化鋅;約0.1 mol%至約1.0 mol%氧化鈦;約0.1 mol%至約1.0 mol%氧化釩;約0.1 mol%至約1.0 mol%氧化鈮;約0.1 mol%至約1.0 mol%氧化錳;約0.1 mol%至約1.0 mol%氧化鋯;約0.1 mol%至約1.0 mol%氧化砷;約0.1 mol%至約1.0 mol%氧化錫;約0.1 mol%至約1.0 mol%氧化鉬;約0.1 mol%至約1.0 mol%氧化銻;約0.1 mol%至約1.0 mol%氧化鈰;以及其之間的所有子範圍的以上列出過渡金屬氧化物中之任一者。在一些實施例中,示範性玻璃可含有0.1 mol%至小於或不超過約3.0 mol%之氧化鋅、氧化鈦、氧化釩、氧化鈮、氧化錳、氧化鋯、氧化砷、氧化錫、氧化鉬、氧化銻及氧化鈰之任何組合。
表6展示具有如本文所述的高透射性之玻璃(樣本1-133)之實例。 表6
另外的實例可包括以mol%計的以下組成物:
本文所述之一些實施例針對製造背光單元之方法,該方法包含以下步驟:提供第一光學組件,該第一光學組件具有第一主面及第二主面,並且使用不連續黏結材料將第一光學組件積層至第二光學組件之第三主面,第三主面與第一光學組件之第一主面相反。在一些實施例中,第一光學組件係光導板。在一些實施例中,光導板包含玻璃或玻璃陶瓷材料。在一些實施例中,玻璃或玻璃陶瓷材料包含約65.79 mol%至約78.17 mol%之間的SiO2 、約2.94 mol%至約12.12 mol%之間的Al2 O3 、約0 mol%至約11.16 mol%之間的B2 O3 、約0 mol%至約2.06 mol%之間的Li2 O、約3.52 mol%至約13.25 mol%之間的Na2 O、約0 mol%至約4.83 mol%之間的K2 O、約0 mol%至約3.01 mol%之間的ZnO、約0 mol%至約8.72 mol%之間的MgO、約0 mol%至約4.24 mol%之間的CaO、約0 mol%至約6.17 mol%之間的SrO、約0 mol%至約4.3 mol%之間的BaO及約0.07 mol%至約0.11 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約66 mol%至約78 mol%之間的SiO2 、約4 mol%至約11 mol%之間的Al2 O3 、約4 mol%至約11 mol%之間的B2 O3 、約0 mol%至約2 mol%之間的Li2 O、約4 mol%至約12 mol%之間的Na2 O、約0 mol%至約2 mol%之間的K2 O、約0 mol%至約2 mol%之間的ZnO、約0 mol%至約5 mol%之間的MgO、約0 mol%至約2 mol%之間的CaO、約0 mol%至約5 mol%之間的SrO、約0 mol%至約2 mol%之間的BaO及約0 mol%至約2 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約72 mol%至約80 mol%之間的SiO2 、約3 mol%至約7 mol%之間的Al2 O3 、約0 mol%至約2 mol%之間的B2 O3 、約0 mol%至約2 mol%之間的Li2 O、約6 mol%至約15 mol%之間的Na2 O、約0 mol%至約2 mol%之間的K2 O、約0 mol%至約2 mol%之間的ZnO、約2 mol%至約10 mol%之間的MgO、約0 mol%至約2 mol%之間的CaO、約0 mol%至約2 mol%之間的SrO、約0 mol%至約2 mol%之間的BaO及約0 mol%至約2 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約80 mol%之間的SiO2 、約0 mol%至約15 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的B2 O3 以及約2 mol%至約50 mol%的Rx O,其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且其中Fe+30Cr+35Ni <約60 ppm。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約80 mol%之間的SiO2 、約0 mol%至約15 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的B2 O3 以及約2 mol%至約50 mol%的Rx O,其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且其中玻璃具有<0.005的色移。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約81 mol%之間的SiO2 、約0 mol%至約2 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的MgO、約0 mol%至約2 mol%之間的Li2 O、約9 mol%至約15 mol%之間的Na2 O、約0 mol%至約1.5 mol%之間的K2 O、約7 mol%至約14 mol%之間的CaO、約0 mol%至約2 mol%之間的SrO,並且其中Fe+30Cr+35Ni<約60 ppm。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約81 mol%之間的SiO2 、約0 mol%至約2 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的MgO、約0 mol%至約2 mol%之間的Li2 O、約9 mol%至約15 mol%之間的Na2 O、約0 mol%至約1.5 mol%之間的K2 O、約7 mol%至約14 mol%之間的CaO及約0 mol%至約2 mol%之間的SrO,其中玻璃具有<0.005之色移。在一些實施例中,第二光學組件係薄膜。在一些實施例中,薄膜係稜鏡薄膜、反射薄膜、漫射薄膜、亮度增強薄膜、偏光薄膜或其組合。在一些實施例中,積層步驟包括將黏結材料以一定型樣沉積在第一主面或第三主面上,該型樣係黏結材料之均勻分佈、不均勻分佈或梯度分佈。在一些實施例中,黏結材料係光學透明黏著劑或玻璃料。在一些實施例中,黏結材料之折射率小於第一光學組件之折射率。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小3%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.18%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小6%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.25%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小10%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.45%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小13%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的1.4%以下。
本文所述之其他實施例針對一種背光單元,該背光單元包含:第一光學組件,該第一光學組件具有第一主面及第二主面;積層的第二光學組件,該第二光學組件具有第三主面及第四主面,其中第一及第三主面彼此相反;及不連續黏結材料,該黏結材料沉積在第一與第三主面之間,該黏結材料將第一與第二光學組件積層。在一些實施例中,第一光學組件係光導板。在一些實施例中,光導板包含玻璃或玻璃陶瓷材料。在一些實施例中,玻璃或玻璃陶瓷材料包含約65.79 mol%至約78.17 mol%之間的SiO2 、約2.94 mol%至約12.12 mol%之間的Al2 O3 、約0 mol%至約11.16 mol%之間的B2 O3 、約0 mol%至約2.06 mol%之間的Li2 O、約3.52 mol%至約13.25 mol%之間的Na2 O、約0 mol%至約4.83 mol%之間的K2 O、約0 mol%至約3.01 mol%之間的ZnO、約0 mol%至約8.72 mol%之間的MgO、約0 mol%至約4.24 mol%之間的CaO、約0 mol%至約6.17 mol%之間的SrO、約0 mol%至約4.3 mol%之間的BaO及約0.07 mol%至約0.11 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約66 mol%至約78 mol%之間的SiO2 、約4 mol%至約11 mol%之間的Al2 O3 、約4 mol%至約11 mol%之間的B2 O3 、約0 mol%至約2 mol%之間的Li2 O、約4 mol%至約12 mol%之間的Na2 O、約0 mol%至約2 mol%之間的K2 O、約0 mol%至約2 mol%之間的ZnO、約0 mol%至約5 mol%之間的MgO、約0 mol%至約2 mol%之間的CaO、約0 mol%至約5 mol%之間的SrO、約0 mol%至約2 mol%之間的BaO及約0 mol%至約2 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約72 mol%至約80 mol%之間的SiO2 、約3 mol%至約7 mol%之間的Al2 O3 、約0 mol%至約2 mol%之間的B2 O3 、約0 mol%至約2 mol%之間的Li2 O、約6 mol%至約15 mol%之間的Na2 O、約0 mol%至約2 mol%之間的K2 O、約0 mol%至約2 mol%之間的ZnO、約2 mol%至約10 mol%之間的MgO、約0 mol%至約2 mol%之間的CaO、約0 mol%至約2 mol%之間的SrO、約0 mol%至約2 mol%之間的BaO及約0 mol%至約2 mol%之間的SnO2 。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約80 mol%之間的SiO2 、約0 mol%至約15 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的B2 O3 以及約2 mol%至約50 mol%的Rx O,其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且其中Fe+30Cr+35Ni <約60 ppm。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約80 mol%之間的SiO2 、約0 mol%至約15 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的B2 O3 以及約2 mol%至約50 mol%的Rx O,其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且其中玻璃具有<0.005的色移。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約81 mol%之間的SiO2 、約0 mol%至約2 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的MgO、約0 mol%至約2 mol%之間的Li2 O、約9 mol%至約15 mol%之間的Na2 O、約0 mol%至約1.5 mol%之間的K2 O、約7 mol%至約14 mol%之間的CaO、約0 mol%至約2 mol%之間的SrO,並且其中Fe+30Cr+35Ni<約60 ppm。在一些實施例中,玻璃或玻璃陶瓷材料包含約60 mol%至約81 mol%之間的SiO2 、約0 mol%至約2 mol%之間的Al2 O3 、約0 mol%至約15 mol%之間的MgO、約0 mol%至約2 mol%之間的Li2 O、約9 mol%至約15 mol%之間的Na2 O、約0 mol%至約1.5 mol%之間的K2 O、約7 mol%至約14 mol%之間的CaO及約0 mol%至約2 mol%之間的SrO,其中玻璃具有<0.005之色移。在一些實施例中,第二光學組件係薄膜。在一些實施例中,薄膜係稜鏡薄膜、反射薄膜、漫射薄膜、亮度增強薄膜、偏光薄膜或其組合。在一些實施例中,不連續黏結材料以均勻分佈、不均勻分佈或梯度分佈包含在第一與第三主面之間。在一些實施例中,黏結材料係光學透明黏著劑或玻璃料。在一些實施例中,黏結材料之折射率小於第一光學組件之折射率。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小3%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.18%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小6%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.25%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小10%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的0.45%以下。在一些實施例中,黏結材料之折射率比第一光學組件之折射率小13%並且與第一光學組件接觸之總黏結材料面積係第一主面之總表面積的1.4%以下。
應瞭解,各種所揭示實施例可涉及結合特定實施例描述的特定特徵、要素或步驟。亦應瞭解,儘管相對於特定實施例描述特定特徵、要素或步驟,但其可以各種未說明的組合或置換與替代實施例互換或組合。
亦應理解,如本文所使用,術語「該」或「一」意指「至少一個」,且不應限於「僅一個」,除非明確指示為相反。因此,例如,除非上下文另外明確指示,否則提及「環」包括具有兩個或更多個此等環之實例。同樣地,「複數個」或「陣列」意欲表示「多於一個」。因而,「複數個小滴」包括兩個或兩個以上此等小滴,諸如三個或三個以上此等小滴等等,且「環之陣列」包含兩個或兩個以上此等小滴,諸如三個或三個以上此等環等等。
本文中可將範圍表述為自「約」一個特定值,及/或至「約」另一特定值。當表述此範圍時,實例包括自該一個特定值及/或至該另一特定值。類似地,當藉由使用先行詞「約」將值表述為近似值時,將理解,特定值形成另一態樣。應進一步理解,範圍中每一者之端點相對於另一端點而言及獨立於另一端點而言均有意義。
如本文所使用的術語「實質」、「實質上」及其變化意欲指:所描述特徵與值或描述相等或大致相等。例如,「實質上平面」表面意欲表示平面的或大致平面的表面。此外,如以上所定義,「實質上相似」意欲表示兩個值相等或大致相等。在一些實施例中,「實質上相似」可表示在彼此之約10%內的值,諸如在彼此之約5%內或彼此之約2%內的值。
除非另外明確地說明,否則絕不意欲將本文中所闡述的任何方法解釋為需要其步驟以特定順序進行。因此,在方法請求項實際上未敘述其步驟所遵循之順序或在發明申請專利範圍或說明書中未另外明確說明步驟應限於一特定順序的情況下,絕不意欲推斷任何具體順序。
儘管可使用過渡片語「包含」來揭示特定實施例之各種特徵、要素或步驟,但應理解,其暗示替代實施例,包括可使用過渡片語「由...組成」或「基本上由...組成」描述的彼等實施例。因此,例如,對包含A+B+C之裝置的所暗示替代實施例包括其中裝置由A+B+C組成之實施例及其中裝置基本上由A+B+C組成之實施例。
熟習此項技術者將明白的是,可在不脫離本揭示內容之精神及範疇的情況下對本揭示內容做出各種修改及變化。因為熟習此項技術者可思及併入有本揭示內容之精神及實質的所揭示實施例之修改、組合、子組合及變化,所以本揭示內容應理解為包括所附申請專利範圍及其等效物的範疇內的一切事物。
100‧‧‧玻璃片
110‧‧‧第一面
130‧‧‧第一邊緣
140‧‧‧第二邊緣
150‧‧‧第三邊緣
200‧‧‧陣列
500‧‧‧背光單元
502‧‧‧LED
504‧‧‧不連續黏結材料
570‧‧‧第二光學組件
H‧‧‧高度
W‧‧‧寬度
T‧‧‧厚度
當結合以下圖式閱讀時,以下詳細描述可得以進一步理解。
第1圖為光導板之示範性實施例之圖像圖解;
第2圖為展示光耦合百分比對比LED邊緣與LGP邊緣之間的距離的圖表;
第3圖為展示估計光洩漏(以dB/m計)對比LGP之RMS粗糙度的圖表;
第4圖為展示針對耦合在2 mm厚LGP中的2 mm厚LED的預期耦合(無菲涅耳損失)隨LGP與LED之間的距離而變化的圖表;
第5圖為自LED至玻璃LGP之耦合機制之圖像圖解;
第6圖為自表面拓撲學計算的預期角能量分佈的圖表;
第7圖為展示光於玻璃LGP之兩個相鄰邊緣處的全內反射的圖像圖解;
第8A及8B圖為具有根據一或多個實施例之LGP之示範性背光單元之簡化橫截面圖解;
第9圖為就一些實施例而言的從示範性LGP耦合至光學薄膜之功率的圖形描述;及
第10圖為就其他實施例而言的從示範性LGP耦合至光學薄膜之功率的圖形描述。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (38)

  1. 一種製造一背光單元之方法,其包含以下步驟: 提供一第一光學組件,該第一光學組件具有一第一主面及一第二主面;及 使用一不連續黏結材料將該第一光學組件積層至一第二光學組件之一第三主面,該第三主面與該第一光學組件之第一主面相反。
  2. 如請求項1所述之方法,其中該第一光學組件係一光導板。
  3. 如請求項2所述之方法,其中該光導板包含一玻璃或玻璃陶瓷材料。
  4. 如請求項3所述之方法,其中該玻璃或玻璃陶瓷材料包含: 約65.79 mol%至約78.17 mol%之間的SiO2 、 約2.94 mol%至約12.12 mol%之間的Al2 O3 、 約0 mol%至約11.16 mol%之間的B2 O3 、 約0 mol%至約2.06 mol%之間的Li2 O、 約3.52 mol%至約13.25 mol%之間的Na2 O、 約0 mol%至約4.83 mol%之間的K2 O、 約0 mol%至約3.01 mol%之間的ZnO、 約0 mol%至約8.72 mol%之間的MgO、 約0 mol%至約4.24 mol%之間的CaO、 約0 mol%至約6.17 mol%之間的SrO、 約0 mol%至約4.3 mol%之間的BaO及 約0.07 mol%至約0.11 mol%之間的SnO2
  5. 如請求項3所述之方法,其中該玻璃或玻璃陶瓷材料包含: 約66 mol%至約78 mol%之間的SiO2 、 約4 mol%至約11 mol%之間的Al2 O3 、 約4 mol%至約11 mol%之間的B2 O3 、 約0 mol%至約2 mol%之間的Li2 O、 約4 mol%至約12 mol%之間的Na2 O、 約0 mol%至約2 mol%之間的K2 O、 約0 mol%至約2 mol%之間的ZnO、 約0 mol%至約5 mol%之間的MgO、 約0 mol%至約2 mol%之間的CaO、 約0 mol%至約5 mol%之間的SrO、 約0 mol%至約2 mol%之間的BaO及 約0 mol%至約2 mol%之間的SnO2
  6. 如請求項3所述之方法,其中該玻璃或玻璃陶瓷材料包含: 約72 mol%至約80 mol%之間的SiO2 、 約3 mol%至約7 mol%之間的Al2 O3 、 約0 mol%至約2 mol%之間的B2 O3 、 約0 mol%至約2 mol%之間的Li2 O、 約6 mol%至約15 mol%之間的Na2 O、 約0 mol%至約2 mol%之間的K2 O、 約0 mol%至約2 mol%之間的ZnO、 約2 mol%至約10 mol%之間的MgO、 約0 mol%至約2 mol%之間的CaO、 約0 mol%至約2 mol%之間的SrO、 約0 mol%至約2 mol%之間的BaO及 約0 mol%至約2 mol%之間的SnO2
  7. 如請求項3所述之方法,其中該玻璃或玻璃陶瓷材料包含: 約60 mol%至約80 mol%之間的SiO2 、 約0 mol%至約15 mol%之間的Al2 O3 、 約0 mol%至約15 mol%之間的B2 O3 以及 約2 mol%至約50 mol%的Rx O, 其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且 其中Fe+30Cr+35Ni <約60 ppm。
  8. 如請求項3所述之方法,其中該玻璃或玻璃陶瓷材料包含: 約60 mol%至約80 mol%之間的SiO2 、 約0 mol%至約15 mol%之間的Al2 O3 、 約0 mol%至約15 mol%之間的B2 O3 以及 約2 mol%至約50 mol%的Rx O, 其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且 其中該玻璃具有<0.005之一色移。
  9. 如請求項3所述之方法,其中該玻璃或玻璃陶瓷材料包含: 約60 mol%至約81 mol%之間的SiO2 、 約0 mol%至約2 mol%之間的Al2 O3 、 約0 mol%至約15 mol%之間的MgO、 約0 mol%至約2 mol%之間的Li2 O、 約9 mol%至約15 mol%之間的Na2 O、 約0 mol%至約1.5 mol%之間的K2 O、 約7 mol%至約14 mol%之間的CaO、 約0 mol%至約2 mol%之間的SrO,並且 其中Fe+30Cr+35Ni<約60 ppm。
  10. 如請求項3所述之方法,其中該玻璃或玻璃陶瓷材料包含: 約60 mol%至約81 mol%之間的SiO2 、 約0 mol%至約2 mol%之間的Al2 O3 、 約0 mol%至約15 mol%之間的MgO、 約0 mol%至約2 mol%之間的Li2 O、 約9 mol%至約15 mol%之間的Na2 O、 約0 mol%至約1.5 mol%之間的K2 O、 約7 mol%至約14 mol%之間的CaO及 約0 mol%至約2 mol%之間的SrO, 其中該玻璃具有<0.005之一色移。
  11. 如請求項1所述之方法,其中該第二光學組件係一薄膜。
  12. 如請求項11所述之方法,其中該薄膜係一稜鏡薄膜、一反射薄膜、一漫射薄膜、一亮度增強薄膜、一偏光薄膜或其組合。
  13. 如請求項1所述之方法,其中該積層步驟包括以下步驟:將黏結材料以一定型樣沉積在該第一主面或該第三主面上,該型樣係黏結材料之一均勻分佈、一不均勻分佈或一梯度分佈。
  14. 如請求項1所述之方法,其中該黏結材料係一光學透明黏著劑或一玻璃料。
  15. 如請求項1所述之方法,其中該黏結材料之折射率小於該第一光學組件之一折射率。
  16. 如請求項1所述之方法,其中黏結材料之該折射率比該第一光學組件之一折射率小3%並且與該第一光學組件接觸之總黏結材料面積係該第一主面之總表面積的0.18%以下。
  17. 如請求項1所述之方法,其中黏結材料之該折射率比該第一光學組件之一折射率小6%並且與該第一光學組件接觸之總黏結材料面積係該第一主面之總表面積的0.25%以下。
  18. 如請求項1所述之方法,其中黏結材料之該折射率比該第一光學組件之一折射率小10%並且與該第一光學組件接觸之總黏結材料面積係該第一主面之總表面積的0.45%以下。
  19. 如請求項1所述之方法,其中黏結材料之該折射率比該第一光學組件之一折射率小13%並且與該第一光學組件接觸之總黏結材料面積係該第一主面之總表面積的1.4%以下。
  20. 一種背光單元,該背光單元包含: 一第一光學組件,該第一光學組件具有一第一主面及一第二主面; 積層的一第二光學組件,該第二光學組件具有一第三主面及一第四主面,其中該第一主面與該第三主面彼此相反;及 一不連續黏結材料,該黏結材料沉積在該第一主面與該第三主面之間,該黏結材料將該第一光學組件與該第二光學組件積層。
  21. 如請求項20所述之背光單元,其中該第一光學組件係一光導板。
  22. 如請求項20所述之背光單元,其中該光導板包含一玻璃或玻璃陶瓷材料。
  23. 如請求項20所述之背光單元,其中該玻璃或玻璃陶瓷材料包含: 約65.79 mol%至約78.17 mol%之間的SiO2 、 約2.94 mol%至約12.12 mol%之間的Al2 O3 、 約0 mol%至約11.16 mol%之間的B2 O3 、 約0 mol%至約2.06 mol%之間的Li2 O、 約3.52 mol%至約13.25 mol%之間的Na2 O、 約0 mol%至約4.83 mol%之間的K2 O、 約0 mol%至約3.01 mol%之間的ZnO、 約0 mol%至約8.72 mol%之間的MgO、 約0 mol%至約4.24 mol%之間的CaO、 約0 mol%至約6.17 mol%之間的SrO、 約0 mol%至約4.3 mol%之間的BaO及 約0.07 mol%至約0.11 mol%之間的SnO2
  24. 如請求項20所述之背光單元,其中該玻璃或玻璃陶瓷材料包含: 約66 mol%至約78 mol%之間的SiO2 、 約4 mol%至約11 mol%之間的Al2 O3 、 約4 mol%至約11 mol%之間的B2 O3 、 約0 mol%至約2 mol%之間的Li2 O、 約4 mol%至約12 mol%之間的Na2 O、 約0 mol%至約2 mol%之間的K2 O、 約0 mol%至約2 mol%之間的ZnO、 約0 mol%至約5 mol%之間的MgO、 約0 mol%至約2 mol%之間的CaO、 約0 mol%至約5 mol%之間的SrO、 約0 mol%至約2 mol%之間的BaO及 約0 mol%至約2 mol%之間的SnO2
  25. 如請求項20所述之背光單元,其中該玻璃或玻璃陶瓷材料包含: 約72 mol%至約80 mol%之間的SiO2 、 約3 mol%至約7 mol%之間的Al2 O3 、 約0 mol%至約2 mol%之間的B2 O3 、 約0 mol%至約2 mol%之間的Li2 O、 約6 mol%至約15 mol%之間的Na2 O、 約0 mol%至約2 mol%之間的K2 O、 約0 mol%至約2 mol%之間的ZnO、 約2 mol%至約10 mol%之間的MgO、 約0 mol%至約2 mol%之間的CaO、 約0 mol%至約2 mol%之間的SrO、 約0 mol%至約2 mol%之間的BaO及 約0 mol%至約2 mol%之間的SnO2
  26. 如請求項20所述之背光單元,其中該玻璃或玻璃陶瓷材料包含: 約60 mol%至約80 mol%之間的SiO2 、 約0 mol%至約15 mol%之間的Al2 O3 、 約0 mol%至約15 mol%之間的B2 O3 以及 約2 mol%至約50 mol%的Rx O, 其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且 其中Fe+30Cr+35Ni <約60 ppm。
  27. 如請求項20所述之背光單元,其中該玻璃或玻璃陶瓷材料包含: 約60 mol%至約80 mol%之間的SiO2 、 約0 mol%至約15 mol%之間的Al2 O3 、 約0 mol%至約15 mol%之間的B2 O3 以及 約2 mol%至約50 mol%的Rx O, 其中R為Li、Na、K、Rb、Cs中之任何一或多者且x為2,或為Zn、Mg、Ca、Sr或Ba中之任何一或多者且x為1,且 其中該玻璃具有<0.005之一色移。
  28. 如請求項20所述之背光單元,其中該玻璃或玻璃陶瓷材料包含: 約60 mol%至約81 mol%之間的SiO2 、 約0 mol%至約2 mol%之間的Al2 O3 、 約0 mol%至約15 mol%之間的MgO、 約0 mol%至約2 mol%之間的Li2 O、 約9 mol%至約15 mol%之間的Na2 O、 約0 mol%至約1.5 mol%之間的K2 O、 約7 mol%至約14 mol%之間的CaO、 約0 mol%至約2 mol%之間的SrO,並且 其中Fe+30Cr+35Ni<約60 ppm。
  29. 如請求項20所述之背光單元,其中該玻璃或玻璃陶瓷材料包含: 約60 mol%至約81 mol%之間的SiO2 、 約0 mol%至約2 mol%之間的Al2 O3 、 約0 mol%至約15 mol%之間的MgO、 約0 mol%至約2 mol%之間的Li2 O、 約9 mol%至約15 mol%之間的Na2 O、 約0 mol%至約1.5 mol%之間的K2 O、 約7 mol%至約14 mol%之間的CaO及 約0 mol%至約2 mol%之間的SrO, 其中該玻璃具有<0.005之一色移。
  30. 如請求項20所述之背光單元,其中該第二光學組件係一薄膜。
  31. 如請求項30所述之背光單元,其中該薄膜係一稜鏡薄膜、一反射薄膜、一漫射薄膜、一亮度增強薄膜、一偏光薄膜或其組合。
  32. 如請求項20所述之背光單元,其中該不連續黏結材料以一均勻分佈、一不均勻分佈或一梯度分佈包含在該第一主面與該第三主面之間。
  33. 如請求項20所述之背光單元,其中該黏結材料係一光學透明黏著劑或一玻璃料。
  34. 如請求項20所述之背光單元,其中該黏結材料之折射率小於該第一光學組件之一折射率。
  35. 如請求項20所述之背光單元,其中黏結材料之該折射率比該第一光學組件之一折射率小3%並且與該第一光學組件接觸之總黏結材料面積係該第一主面之總表面積的0.18%以下。
  36. 如請求項20所述之背光單元,其中黏結材料之該折射率比該第一光學組件之一折射率小6%並且與該第一光學組件接觸之總黏結材料面積係該第一主面之總表面積的0.25%以下。
  37. 如請求項20所述之背光單元,其中黏結材料之該折射率比該第一光學組件之一折射率小10%並且與該第一光學組件接觸之總黏結材料面積係該第一主面之總表面積的0.45%以下。
  38. 如請求項20所述之背光單元,其中黏結材料之該折射率比該第一光學組件之一折射率小13%並且與該第一光學組件接觸之總黏結材料面積係該第一主面之總表面積的1.4%以下。
TW106127244A 2016-08-11 2017-08-11 用於積層背光單元的方法及裝置 TW201815592A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662373611P 2016-08-11 2016-08-11
US62/373,611 2016-08-11

Publications (1)

Publication Number Publication Date
TW201815592A true TW201815592A (zh) 2018-05-01

Family

ID=59677428

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127244A TW201815592A (zh) 2016-08-11 2017-08-11 用於積層背光單元的方法及裝置

Country Status (7)

Country Link
US (1) US20190185367A1 (zh)
EP (1) EP3497065A1 (zh)
JP (1) JP2019525418A (zh)
KR (1) KR20190038633A (zh)
CN (1) CN109843816A (zh)
TW (1) TW201815592A (zh)
WO (1) WO2018031892A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161769B2 (en) * 2016-09-16 2021-11-02 Corning Incorporated High transmission glasses with alkaline earth oxides as a modifier
KR102590179B1 (ko) * 2017-03-31 2023-10-19 코닝 인코포레이티드 고투과율 유리
TWI814817B (zh) * 2018-05-01 2023-09-11 美商康寧公司 低鹼金屬高透射玻璃
JP7445186B2 (ja) * 2018-12-07 2024-03-07 日本電気硝子株式会社 ガラス
US20230133052A1 (en) * 2020-04-13 2023-05-04 Corning Incorporated K2o-containing display glasses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070114747A (ko) * 2005-04-01 2007-12-04 마츠시타 덴끼 산교 가부시키가이샤 램프용 유리조성물, 램프, 백라이트 유닛 및 램프용유리조성물의 제조방법
JP4485572B2 (ja) * 2005-04-01 2010-06-23 パナソニック株式会社 ランプおよびバックライトユニット
US8835011B2 (en) * 2010-01-07 2014-09-16 Corning Incorporated Cover assembly for electronic display devices
US9902644B2 (en) * 2014-06-19 2018-02-27 Corning Incorporated Aluminosilicate glasses
KR102642779B1 (ko) * 2015-10-22 2024-03-05 코닝 인코포레이티드 고 투과 유리

Also Published As

Publication number Publication date
EP3497065A1 (en) 2019-06-19
CN109843816A (zh) 2019-06-04
JP2019525418A (ja) 2019-09-05
US20190185367A1 (en) 2019-06-20
KR20190038633A (ko) 2019-04-08
WO2018031892A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP7150116B2 (ja) 高透過率ガラス
US11001521B2 (en) Aluminosilicate glasses
TW201815592A (zh) 用於積層背光單元的方法及裝置
JP2019511984A (ja) 複合導光板
JP7145147B2 (ja) アルカリ土類酸化物を改質剤として含む高透過性ガラス