TW201814885A - 3D capacitor and manufacturing method for the same - Google Patents

3D capacitor and manufacturing method for the same Download PDF

Info

Publication number
TW201814885A
TW201814885A TW105133248A TW105133248A TW201814885A TW 201814885 A TW201814885 A TW 201814885A TW 105133248 A TW105133248 A TW 105133248A TW 105133248 A TW105133248 A TW 105133248A TW 201814885 A TW201814885 A TW 201814885A
Authority
TW
Taiwan
Prior art keywords
stacks
capacitor
conductive strips
terminal
conductive
Prior art date
Application number
TW105133248A
Other languages
Chinese (zh)
Other versions
TWI602281B (en
Inventor
胡志瑋
葉騰豪
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW105133248A priority Critical patent/TWI602281B/en
Application granted granted Critical
Publication of TWI602281B publication Critical patent/TWI602281B/en
Publication of TW201814885A publication Critical patent/TW201814885A/en

Links

Abstract

An integrated circuit includes 3D memory blocks and 3D capacitor blocks. The 3D capacitor comprises a plurality of stacks of conductive strips alternating with insulating strips, and a first terminal connected to conductive strips in consecutive levels in one or more stacks, whereby the conductive strips act as a first plate of the 3D capacitor. A second terminal is insulated from the first terminal, either connected to conductive strips in consecutive levels in another or other stacks, or connected to a plurality of pillars. No intervening conductive strip is disposed between the conducive strips in consecutive levels.

Description

三維電容及其製造方法Three-dimensional capacitor and manufacturing method thereof

本發明是有關於一種記憶體裝置,且特別是有關於一種其中包括三維(3D)電容的3D陣列記憶體裝置。This invention relates to a memory device, and more particularly to a 3D array memory device including a three-dimensional (3D) capacitance therein.

積體電路中裝置的臨界尺寸微縮化至共用記憶胞技術的極限,設計者尋求堆疊多階層之記憶胞的技術以達到更大的儲存容量與更低的每位元成本。因此,係發展多種三維結構,例如垂直通道與垂直閘極NAND記憶體。電容可用以幫助降低電壓變化,並可用以幫助在正常操作期間或由於非預期的電源失效保存資料在例如SRAM、DRAM與快閃記憶體中。在程式化與抹除操作中,係使用電荷幫浦提供偏壓至字元線/位元線,以提升高壓階層處的電壓,其需高電容。然而,提供大電容值的一般電容會佔大面積的預定著陸區(footprint),而這會影響記憶裝置的擴充性。The critical size of the device in the integrated circuit is reduced to the limit of the shared memory cell technology, and designers seek to stack multi-level memory cells to achieve greater storage capacity and lower cost per bit. Therefore, a variety of three-dimensional structures are developed, such as vertical channel and vertical gate NAND memory. Capacitors can be used to help reduce voltage variations and can be used to help save data in, for example, SRAM, DRAM, and flash memory during normal operation or due to unexpected power failures. In the stylization and erasing operations, the charge pump is used to provide a bias voltage to the word line/bit line to boost the voltage at the high voltage level, which requires high capacitance. However, a typical capacitor that provides a large capacitance value will occupy a large area of a predetermined footprint, which affects the expandability of the memory device.

因此係期望提供包括穩定的大電容值、所佔面積小、且不會提高製造成本的電容。Therefore, it is desirable to provide a capacitor including a stable large capacitance value, a small occupied area, and no increase in manufacturing cost.

所述3D電容包括交錯之複數個導電條與絕緣複數個導電條的複數個堆疊、第一終端與第二終端。第一終端連接至該些堆疊中第一組間隔堆疊中之該些堆疊中連續階層(consecutive levels)中的數個導電條。第二終端連接至該些堆疊中第二組間隔堆疊中之該些堆疊中連續階層中的數個導電條。第一組間隔堆疊中的堆疊係指叉(interdigitated)第二組間隔堆疊中的堆疊。第一組間隔堆疊中之堆疊中的連續階層中的導電條係電性且被動地連接在一起,並作用為3D電容的第一極板,且第二組間隔堆疊中之堆疊中的連續階層中的導電條係電性且被動地連接在一起,並作用為3D電容的第二極板。第一組間隔堆疊之堆疊中的連續階層中的導電條之間並未設置插入的導電條。類似地,第二組間隔堆疊之堆疊中的連續階層中的導電條之間並未設置插入的導電條。The 3D capacitor includes a plurality of staggered plurality of conductive strips and a plurality of insulated plurality of conductive strips, a first terminal and a second terminal. The first terminal is connected to a plurality of conductive strips in the consecutive levels of the stacks of the first set of spaced stacks in the stack. The second terminal is connected to the plurality of conductive strips in the successive layers of the stacks in the second set of spaced stacks in the stack. The stack in the first set of spaced stacks is interdigitated in a stack in the second set of spaced stacks. The conductive strips in successive layers in the stack in the first set of spaced stacks are electrically and passively connected together and act as a first plate of the 3D capacitor, and the successive layers in the stack in the second set of spaced stacks The conductive strips are electrically and passively connected together and act as a second plate of the 3D capacitor. The inserted conductive strips are not disposed between the conductive strips in successive layers in the stack of the first set of spaced stacks. Similarly, the inserted conductive strips are not disposed between the conductive strips in successive layers in the stack of the second set of spaced stacks.

所述3D電容包括導電條與絕緣條交錯之一或更多個堆疊、複數個柱體、第一終端與第二終端。複數個柱體分別包含垂直導電膜與第一絕緣體。第一終端連接至一或更多個堆疊中的導電條。第二終端連接至複數個柱體中的垂直導電膜。一或更多個堆疊中的導電條係電性且被動地連接在一起,並作用為3D電容的第一極板,且複數個柱體中的垂直導電膜係電性且被動地連接在一起,並作用為3D電容的第二極板。The 3D capacitor includes one or more stacks of conductive strips and insulating strips, a plurality of pillars, a first terminal and a second terminal. The plurality of pillars respectively comprise a vertical conductive film and a first insulator. The first terminal is connected to the conductive strips in one or more of the stacks. The second terminal is connected to the vertical conductive film in the plurality of pillars. The conductive strips in the one or more stacks are electrically and passively connected together and act as a first plate of the 3D capacitor, and the vertical conductive films in the plurality of columns are electrically and passively connected together And acts as the second plate of the 3D capacitor.

一概念中,複數個柱體可設置在一或更多個堆疊的側壁上。In one concept, a plurality of cylinders can be disposed on one or more stacked side walls.

另一概念中,複數個柱體可設置穿過一個堆疊中的導電條。此外,複數個柱體可具有錯開或蜂巢狀的配置。In another concept, a plurality of cylinders can be placed through the conductive strips in a stack. In addition, the plurality of cylinders may have a staggered or honeycomb configuration.

又另一概念中,於此所述的3D電容可有效地壓抑可變的寄生電容,並能耐住大於30V的電壓。In yet another concept, the 3D capacitor described herein effectively suppresses variable parasitic capacitance and can withstand voltages greater than 30V.

於此也提供製造所述3D電容的製造方法。一種製造3D電容的方法包含形成導電條與絕緣條交錯的複數個堆疊;形成第一終端連接至複數個堆疊中之第一組間隔堆疊中的堆疊中的連續階層中的導電條;及形成第一終端連接至複數個堆疊中之第二組間隔堆疊中的堆疊中的連續階層中的導電條;其中第一組間隔堆疊中的堆疊係指叉於第二組間隔堆疊中的堆疊。A method of manufacturing the 3D capacitor is also provided herein. A method of fabricating a 3D capacitor includes forming a plurality of stacked strips of conductive strips interleaved with the insulating strips; forming a first termination connected to the conductive strips in a continuous layer of the stack in the first set of spaced stacks of the plurality of stacks; and forming a A terminal is connected to the conductive strips in successive layers in the stack of the second set of spaced stacks in the plurality of stacks; wherein the stacks in the first set of spaced stacks are forked to the stack in the second set of spaced stacks.

3D電容的一種製造方法包含形成導電條與絕緣條交錯之一或更多個堆疊;形成複數個柱體,分別包含垂直導電膜與第一絕緣體;形成第一終端連接至一或更多個堆疊中的導電條;及形成第二終端連接至複數個柱體中的垂直導電膜。A method of fabricating a 3D capacitor includes forming one or more stacks of staggered conductive strips and insulating strips; forming a plurality of pillars respectively including a vertical conductive film and a first insulator; forming a first terminal connected to the one or more stacks a conductive strip in the middle; and a vertical conductive film formed in the plurality of pillars formed by the second terminal.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

以下參照第3圖至第33圖詳細說明實施例。The embodiment will be described in detail below with reference to Figs. 3 to 33.

第1圖繪示電荷幫浦之簡單示意圖。電荷幫浦係用以將較低的輸入電壓Vin提升至較高的輸出電壓Vout。如在示意圖中所繪示,電荷幫浦利用二極體D1-D4以控制至使用相反時脈CLK1、CLK2之電容C1-C4的電壓連接。在未考慮漏電流或其它因素的理想情況下,當時脈CLK1係為低時,二極體D1將把電容C1充電至Vin。當時脈CLK1係為高時,電容C1的第一終端係推高至2Vin。然後二極體D1被關閉,且二極體D2開啟,且電容C2開始充電至2Vin。在下一次時脈循環上,時脈CLK1再次為低,且此次時脈CLK2為高而推高電容C2的第一終端至3Vin。二極體D2關閉且二極體D3開啟,而充電電容C3至4Vin。如此重複下,此四階段電荷幫浦之輸出電壓Vout將充電至5Vin。第1圖係電荷幫浦的簡單示意圖,可應用其它電荷幫浦,如在此完全提出併入此說明書中做參考之美國專利號US 6,366,519 B1,其專利名稱為REGULATED REFERENCE VOLTAGE CIRCUIT FOR FLASH MEMORY DEVICE AND OTHER INTEGRATED CIRCUIT APPLICATIONS,發明人Hung et al。Figure 1 shows a simplified schematic of a charge pump. The charge pump is used to boost the lower input voltage Vin to a higher output voltage Vout. As illustrated in the schematic, the charge pump utilizes diodes D1-D4 to control the voltage connections to capacitors C1-C4 using opposite clocks CLK1, CLK2. In the ideal case where leakage current or other factors are not considered, when the pulse CLK1 is low, the diode D1 will charge the capacitor C1 to Vin. When the pulse CLK1 is high, the first terminal of the capacitor C1 is pushed up to 2Vin. The diode D1 is then turned off, and the diode D2 is turned on, and the capacitor C2 starts charging to 2Vin. On the next clock cycle, clock CLK1 is again low, and this time clock CLK2 is high and pushes the first terminal of capacitor C2 to 3Vin. The diode D2 is turned off and the diode D3 is turned on, and the charging capacitor C3 is 4Vin. Repeatedly, the output voltage Vout of the four-stage charge pump will be charged to 5Vin. Figure 1 is a simplified schematic diagram of a charge pump, and other charge pumps can be applied, as disclosed in U.S. Patent No. 6,366,519, the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in AND OTHER INTEGRATED CIRCUIT APPLICATIONS, inventor Hung et al.

第2圖繪示MOS電容,其通常使用在電荷幫浦中,係具有在P型基底(P-SUB)中的N型井(N-WELL)與N+摻雜的源極/汲極。為了具有大的電容(capacitance) Cox,MOS電容需要大面積的極板,例如閘極(GATE)與N型井。MOS電容必然包含由N型井及P型基底引起的寄生電容Cdep。寄生電容Cdep改變提高供應至N型井的電壓,其轉而造成高功耗並導致不穩定且易變的電容。Figure 2 illustrates a MOS capacitor, typically used in a charge pump, with an N-well (N-WELL) and an N+ doped source/drain in a P-type substrate (P-SUB). In order to have a large capacitance Cox, MOS capacitors require large-area plates such as gate (GATE) and N-type wells. The MOS capacitor must contain the parasitic capacitance Cdep caused by the N-well and the P-type substrate. The parasitic capacitance Cdep changes the voltage supplied to the N-well, which in turn causes high power consumption and results in unstable and variable capacitance.

第3圖係3D NAND記憶裝置100的簡單區塊圖,其包括形成在相同基底上的3D記憶體區塊(例如區塊0至區塊3)及3D電容(例如CAP 0至CAP 1)。3D電容可使用於電荷幫浦中以供給記憶裝置100之讀取、抹除及程式化操作所需的偏壓。3D電容也可應用於其它電路中,例如備用電源。3D NAND記憶體區塊與3D電容都具有複數個堆疊,且包括許多共用的沉積與蝕刻步驟的製程幾乎相容,因此複雜度及成本並未明顯提高。3 is a simple block diagram of a 3D NAND memory device 100 that includes 3D memory blocks (eg, block 0 through block 3) and 3D capacitors (eg, CAP 0 through CAP 1) formed on the same substrate. The 3D capacitor can be used in a charge pump to supply the bias voltage required for the read, erase, and program operations of the memory device 100. 3D capacitors can also be used in other circuits, such as backup power supplies. Both the 3D NAND memory block and the 3D capacitor have multiple stacks and are almost compatible with many common deposition and etch steps, so the complexity and cost are not significantly improved.

第4圖係應用在NAND記憶裝置中之3D記憶體區塊的立體圖。記憶體區塊包括導電條1102、1103、1104、1105、1106及1107與絕緣條1121、1122、1123、1124及1125交錯的複數個堆疊。導電條1103、1104、1105及1106作用為字元線(WL),且導電條1102作用為輔助閘極(assist gate; AG)。偶數堆疊中的導電條1107作用為接地選擇線(GSL)電晶體的閘極。類似地,奇數堆疊中的導電條1107作用為串列選擇線(SSL)電晶體的閘極。柱體包含設置在鄰近之導電條的堆疊之間的垂直半導體/導電膜(例如80a、80b)與第一絕緣體69。第一絕緣體69作用為包括阻擋層1130、電荷捕捉層1131與穿隧層1132的資料儲存結構,阻擋層1130例如氧化矽,電荷捕捉層1131例如氮化矽,穿隧層1132例如氧化矽。複數個串連的記憶胞係位在柱體與導電條(WL) 1103-1106之間的交點處。Figure 4 is a perspective view of a 3D memory block applied to a NAND memory device. The memory block includes a plurality of stacks of conductive strips 1102, 1103, 1104, 1105, 1106, and 1107 interleaved with insulating strips 1121, 1122, 1123, 1124, and 1125. The conductive strips 1103, 1104, 1105, and 1106 function as word lines (WL), and the conductive strips 1102 function as auxiliary gates (AGs). The conductive strip 1107 in the even stack acts as the gate of the ground select line (GSL) transistor. Similarly, the conductive strips 1107 in the odd stack act as the gates of a tandem select line (SSL) transistor. The post includes a vertical semiconductor/conductive film (e.g., 80a, 80b) disposed between the stack of adjacent conductive strips and a first insulator 69. The first insulator 69 functions as a data storage structure including a barrier layer 1130, a charge trapping layer 1131 such as hafnium oxide, a charge trapping layer 1131 such as tantalum nitride, and a tunneling layer 1132 such as hafnium oxide. A plurality of series of memory cell lines are located at the intersection between the pillars and the conductive strips (WL) 1103-1106.

參考線結構及位元線結構設置在堆疊上方。參考線結構,例如第一圖案化導電層中參考線2031、2034的區段,可配置在導電條之偶數堆疊中的接地選擇線(GSL)上方,並在接觸SL處連接至主動柱體。位元線結構,例如第二圖案化導電層中之位元線2060、2061、2062的區段,可正交地配置在導電條的偶數與奇數堆疊的上方,並在接觸BL處透過階層間連接體(inter-level connector) 2035、2036、2037連接至柱體。The reference line structure and the bit line structure are disposed above the stack. A reference line structure, such as a section of reference lines 2031, 2034 in the first patterned conductive layer, may be disposed over a ground select line (GSL) in an even stack of conductive strips and connected to the active pillar at contact SL. A bit line structure, such as a segment of bit lines 2060, 2061, 2062 in the second patterned conductive layer, may be orthogonally disposed over the even and odd stacks of the conductive strips and through the inter-levels at the contact BL Inter-level connectors 2035, 2036, 2037 are attached to the cylinder.

不同階層的導電條(例如1102、1103、1104、1105、1106及1107)透過著陸墊區域處的階梯接觸結構(未顯示)分別連接至堆疊上方的第一圖案化導體層中的對應金屬線。因此,相同堆疊中不同階層的導電條未連接在一起。Conductive strips of different levels (e.g., 1102, 1103, 1104, 1105, 1106, and 1107) are respectively connected to corresponding metal lines in the first patterned conductor layer above the stack through a step contact structure (not shown) at the landing pad area. Therefore, different levels of conductive strips in the same stack are not connected together.

第5圖係根據第一實施例之3D電容的立體圖。於此3D電容包括導電條1102、1103、1104、1105、1106及1107交錯於絕緣條1121、1122、1123、1124及1125的複數個堆疊。3D電容之第一終端係連接至該些堆疊中該第一組間隔堆疊(例如偶數堆疊)中之該些堆疊中連續階層(consecutive levels)的導電條,藉此,第一組間隔堆疊中的導電條係電性且被動地(conductively and passively)連接在一起,並作用為3D電容的第一極板。3D電容之第二終端係連接至該些堆疊中該第二組間隔堆疊(例如奇數堆疊)中之該些堆疊中的連續階層的導電條,藉此,第二組間隔堆疊中的導電條係電性且被動地連接在一起,並作用為3D電容的第二極板。第一終端絕緣於第二終端。第一組間隔堆疊中的堆疊係指叉(interdigitated)於第二組間隔堆疊中的堆疊。第二終端未連接至第一組間隔堆疊中的導電條。Fig. 5 is a perspective view of a 3D capacitor according to the first embodiment. The 3D capacitor includes a plurality of stacks of conductive strips 1102, 1103, 1104, 1105, 1106, and 1107 staggered across the insulating strips 1121, 1122, 1123, 1124, and 1125. a first terminal of the 3D capacitor is connected to the conductive strips of the plurality of consecutive stacks of the first set of spaced stacks (eg, even stacks) of the stacks, whereby the first set of spaced stacks The conductive strips are electrically and passively connected together and act as a first plate of the 3D capacitor. a second terminal of the 3D capacitor is connected to the conductive strips of the successive layers of the stacks of the second set of spaced stacks (eg, odd stacks) of the stacks, whereby the conductive strips in the second set of spaced stacks Electrically and passively connected together and function as a second plate of the 3D capacitor. The first terminal is insulated from the second terminal. The stacks in the first set of spaced stacks are interdigitated in a stack in the second set of spaced stacks. The second terminal is not connected to the conductive strips in the first set of spaced stacks.

此例子中,連接至第一終端的導電條包括從最底階層至最高階層之所有導電條,在其中、之間並未有連接至第二終端的任何插入的導電條。類似地,連接至第二終端的導電條包括從最底階層至最高階層之所有導電條,在其中、之間並未有連接至第一終端的任何插入的導電條。其它例子中,導電條可包括中間階層的導電條,例如連續階層之導電條1103至導電條1106,或連續階層之導電條1104至導電條1106,其中、之間並沒有任何插入的導電條。又其它例子中,導電條可包括在相同堆疊中之任何階層的導電條,而非連續階層的導電條。In this example, the conductive strips connected to the first terminal include all of the conductive strips from the lowest level to the highest level, with no intervening conductive strips connected to the second terminal therebetween. Similarly, the conductive strips connected to the second terminal include all of the conductive strips from the lowest level to the highest level with no intervening conductive strips connected to the first terminal therebetween. In other examples, the conductive strips may include conductive strips of intermediate levels, such as conductive strips 1103 to 1106 of continuous layers, or conductive strips 1104 to 1106 of successive layers, with no intervening conductive strips therebetween. In still other examples, the conductive strips can include any level of conductive strips in the same stack, rather than a continuous level of conductive strips.

第5A圖繪示第5圖之3D電容的放大圖。在此示範例中,第一絕緣體69係形成在導電條1105-E、1106-E的右側與導電條1105-O、1106-O的左側之間的相反側上。第二絕緣體3010係設置在相反側上的第一絕緣體69之間。導電條1105-E與1106-E係連接至3D電容的第一終端,並作用為3D電容的第一極板。導電條1105-E與1106-E之間並沒有連接至第二終端之插入的導電條。導電條1105-O與1106-O係連接至3D電容的第二終端,並作用為3D電容的第二極板。導電條1105-O與1106-O之間並沒有連接至第一終端之插入的導電條。3D電容的介電質包括相反側上的第一絕緣體69與其中、之間的第二絕緣體3010。因此,電容C1係形成在導電條1106-E與1106-O之間。類似地,電容C2係形成在導電條1105-E及1105-O之間。假設導電條的總厚度係H µm,導電條的長度係L µm,第一極板與第二極板之間的距離係D,且單元的數目係N,那麼總電容可以C= ε0 ×ε ×H×L×N/D大致估計,其中ε0 係真空中的介電常數,且ε係第一絕緣體與第二絕緣體的介電常數。Figure 5A is an enlarged view of the 3D capacitor of Figure 5. In this example, the first insulator 69 is formed on the opposite side between the right side of the conductive strips 1105-E, 1106-E and the left side of the conductive strips 1105-0, 1106-O. The second insulator 3010 is disposed between the first insulators 69 on the opposite side. Conductive strips 1105-E and 1106-E are connected to the first terminal of the 3D capacitor and act as the first plate of the 3D capacitor. There is no conductive strip connected between the conductive strips 1105-E and 1106-E to the second terminal. Conductive strips 1105-O and 1106-O are connected to the second terminal of the 3D capacitor and act as a second plate of the 3D capacitor. There is no conductive strip connected between the conductive strips 1105-O and 1106-O to the first terminal. The dielectric of the 3D capacitor includes a first insulator 69 on the opposite side and a second insulator 3010 therebetween. Therefore, the capacitor C1 is formed between the bus bars 1106-E and 1106-O. Similarly, capacitor C2 is formed between conductive strips 1105-E and 1105-O. Assuming that the total thickness of the conductive strip is H μm, the length of the conductive strip is L μm, the distance between the first plate and the second plate is D, and the number of cells is N, then the total capacitance can be C = ε 0 × ε × H × L × N / D is roughly estimated, where ε 0 is the dielectric constant in vacuum, and ε is the dielectric constant of the first insulator and the second insulator.

第6圖係根據第二實施例之3D電容的立體圖。大部份在第5圖中使用的參考符號係應用在以下圖示中,且不再敘述。第6圖的電容與第5圖的電容的差異在於3D電容的第一終端係連接至一或更多個堆疊中每個堆疊中的導電條,且3D電容的第二終端係連接至該一或更多個堆疊中堆疊之側壁上的複數個柱體。在此示範例中,3D電容包括與複數個絕緣條交錯之複數個導電條的複數個堆疊,且該些柱體分別包含垂直導電膜(例如80a、80b)與第一絕緣體69。導電膜1140C在複數個堆疊中之堆疊的頂部與側壁上之第一絕緣體69的上方。複數個堆疊中的導電條係電性且被動地一起連接至3D電容的第一終端,並作用為3D電容的第一極板。第一終端係絕緣於第二終端。鄰近堆疊之間之該些柱體中的垂直導電膜(例如80a、80b)係電性且被動地連接在一起,並作用為電容的第二極板。第一絕緣體69作用為3D電容的介電質。填充結構3060設置在鄰近堆疊之間之柱體之中,其中可能形成孔洞。Fig. 6 is a perspective view of a 3D capacitor according to the second embodiment. Most of the reference symbols used in FIG. 5 are applied to the following figures and will not be described again. The difference between the capacitance of FIG. 6 and the capacitance of FIG. 5 is that the first terminal of the 3D capacitor is connected to the conductive strip in each stack of the one or more stacks, and the second terminal of the 3D capacitor is connected to the one a plurality of columns on the sidewalls of the stack in the stack or more. In this example, the 3D capacitor includes a plurality of stacks of a plurality of conductive strips interleaved with a plurality of insulating strips, and the pillars respectively include a vertical conductive film (eg, 80a, 80b) and a first insulator 69. The conductive film 1140C is over the top of the stack in the plurality of stacks and over the first insulator 69 on the sidewalls. The conductive strips in the plurality of stacks are electrically and passively connected together to the first terminal of the 3D capacitor and function as the first plate of the 3D capacitor. The first terminal is insulated from the second terminal. Vertical conductive films (e.g., 80a, 80b) in the pillars adjacent the stack are electrically and passively connected together and function as a second plate of the capacitor. The first insulator 69 acts as a dielectric of the 3D capacitor. A fill structure 3060 is disposed adjacent the cylinder between the stacks, where holes may be formed.

此例子中,連接至第一終端之堆疊中連續階層的導電條包括從最底階層至最高階層的導電條,在其中、之間並未有連接至第二終端的任何插入的導電條。其它例子中,連接至第一終端的導電條可包括中間階層的導電條,例如從導電條1103至導電條1106,在其中、之間並未有連接至第二終端的任何插入的導電條。又其它例子中,連接至第一終端的導電條可包括相同堆疊中任何階層的導電條,而非連續階層的導電條。In this example, the conductive strips of successive layers in the stack connected to the first terminal include conductive strips from the lowest level to the highest level, with no intervening conductive strips connected to the second terminal therebetween. In other examples, the conductive strips connected to the first terminal may include conductive strips of intermediate levels, such as from conductive strips 1103 to conductive strips 1106, with no intervening conductive strips connected thereto to the second terminal. In still other examples, the conductive strips connected to the first terminal may comprise conductive strips of any level in the same stack, rather than conductive strips of successive layers.

第6A圖繪示第6圖之3D電容的放大圖。在此示範例中,第一絕緣體69係形成在導電條1105-E、1106-E的右側與導電條1105-O、1106-O的左側之間的相反側上。垂直導電膜(例如80a、80b)在形成在鄰近堆疊之間相反側上的第一絕緣體69上方。填充結構3060設置在複數個堆疊中之堆疊的相反側上的垂直導電膜(例如80a、80b)之間。導電條1105-E、1106-E、1105-O與1106-O係電性且被動地連接至3D電容的第一終端,並作用為3D電容的第一極板。導電條1105-E與1106-E之間,與導電條1105-O與1106-O之間,並沒有設置插入的導電條。垂直導電膜80a與80b係電性且被動地連接至3D電容的第二終端,並作用為3D電容的第二極板。第一絕緣體作用為3D電容的介電質。因此電容C1-C4係分別形成在垂直導電膜80a、80b與導電條1106-E、1105-E、1106-O與1106-O之間。假設導電條的總厚度係H µm,導電條的長度係L µm,第一極板與第二極板之間的距離係DONO ,且單元的數目係N,那麼總電容可以C= ε0 ×ε×2(H×L)×N/DONO 大致估計,其中ε0 係真空中的介電常數,且ε係第一絕緣體(ONO)的介電常數。相較於第5圖的電容,第6圖的電容包含至少兩倍電容。Figure 6A is an enlarged view of the 3D capacitor of Figure 6. In this example, the first insulator 69 is formed on the opposite side between the right side of the conductive strips 1105-E, 1106-E and the left side of the conductive strips 1105-0, 1106-O. Vertical conductive films (e.g., 80a, 80b) are formed over the first insulator 69 on the opposite side between adjacent stacks. The fill structure 3060 is disposed between vertical conductive films (eg, 80a, 80b) on opposite sides of the stack in the plurality of stacks. The conductive strips 1105-E, 1106-E, 1105-O, and 1106-O are electrically and passively connected to the first terminal of the 3D capacitor and function as a first plate of the 3D capacitor. Between the conductive strips 1105-E and 1106-E, and between the conductive strips 1105-O and 1106-O, no inserted conductive strips are provided. The vertical conductive films 80a and 80b are electrically and passively connected to the second terminal of the 3D capacitor and function as a second plate of the 3D capacitor. The first insulator acts as a dielectric of the 3D capacitor. Therefore, capacitors C1 - C4 are formed between the vertical conductive films 80a, 80b and the conductive strips 1106-E, 1105-E, 1106-O, and 1106-O, respectively. Assuming that the total thickness of the conductive strip is H μm, the length of the conductive strip is L μm, the distance between the first plate and the second plate is D ONO , and the number of cells is N, then the total capacitance can be C = ε 0 × ε × 2 (H × L) × N / D ONO is roughly estimated, where ε 0 is the dielectric constant in vacuum, and ε is the dielectric constant of the first insulator (ONO). The capacitance of Figure 6 contains at least twice the capacitance compared to the capacitance of Figure 5.

第7圖係根據第三實施例之3D電容的立體圖。第7圖的電容與第6圖的電容之間的差異在於,複數個柱體係設置穿過導電條,且複數個柱體具有錯開或蜂巢狀的配置。所述3D電容包括與複數個絕緣條交錯之複數個導電條的一或更多個堆疊,且複數個柱體分別包含垂直導電膜與第一絕緣體69。3D電容的第一終端係連接至一或更多個堆疊中的導電條,藉此導電條係電性且被動地連接在一起,並作用為3D電容的第一極板。3D電容的第二終端係連接至複數個柱體中的垂直導電膜,藉此垂直導電膜係電性且被動地連接在一起,並作用為3D電容的第二極板。第一終端係絕緣於第二終端。填充結構3160係設置在複數個柱體中各個之中。Fig. 7 is a perspective view of a 3D capacitor according to the third embodiment. The difference between the capacitance of FIG. 7 and the capacitance of FIG. 6 is that a plurality of column systems are disposed through the conductive strips, and the plurality of columns have a staggered or honeycomb configuration. The 3D capacitor includes one or more stacks of a plurality of conductive strips interleaved with a plurality of insulating strips, and the plurality of pillars respectively comprise a vertical conductive film and a first insulator 69. The first terminal of the 3D capacitor is connected to the Conductive strips in more than one stack, whereby the conductive strips are electrically and passively connected together and act as a first plate of the 3D capacitor. The second terminal of the 3D capacitor is connected to the vertical conductive film in the plurality of pillars, whereby the vertical conductive film is electrically and passively connected together and functions as a second plate of the 3D capacitor. The first terminal is insulated from the second terminal. The filling structure 3160 is disposed in each of the plurality of cylinders.

柱體的數目與位置可視需求應用,可且不同於第6圖及第7圖所述。為求簡潔,第7圖中僅繪示複數個堆疊中的一個堆疊。The number and position of the cylinders can be applied as needed, and can be different from those described in Figures 6 and 7. For the sake of brevity, only one of the plurality of stacks is shown in FIG.

此例子中,連接至第一終端之一或更多個堆疊中連續階層的導電條包括從最底階層至最高階層的導電條,在其中、之間並未有連接至第二終端的任何插入的導電條。其它例子中,連接至第一終端的導電條可包括中間階層的導電條,例如從導電條1103至導電條1106,在其中、之間並未有連接至第二終端的任何插入的導電條。又其它例子中,連接至第一終端的導電條可包括相同堆疊中任何階層的導電條,而非連續階層的導電條。In this example, the conductive strips connected to successive layers in one or more of the first terminals include conductive strips from the lowest level to the highest level, with no insertions connected to the second terminal therebetween Conductive strips. In other examples, the conductive strips connected to the first terminal may include conductive strips of intermediate levels, such as from conductive strips 1103 to conductive strips 1106, with no intervening conductive strips connected thereto to the second terminal. In still other examples, the conductive strips connected to the first terminal may comprise conductive strips of any level in the same stack, rather than conductive strips of successive layers.

第7A圖繪示第7圖之3D電容的放大圖。此例子中,柱體的剖面係具有半徑R的圓形。導電條1105、1106係電性且被動地一起連接至3D電容的第一終端,並作用為3D電容的第一極板。導電條1105、1106之間並沒有設置連接至第一終端之插入的導電條。垂直導電膜80係電性且被動地連接至3D電容的第二終端,並作用為3D電容的第二極板。第一絕緣體作用為3D電容的介電質。因此,電容C1係形成在導電條1106與垂直導電膜80之間。類似地,電容C2係形成在導電條1105與導電膜80之間。假設導電條的總厚度係H µm,柱體的半徑係R µm,且柱體的數目係N,那麼總電容可以C= ε0 ×ε ×(H×2πR)× N大致估計,其中ε0 係真空中的介電常數,且ε係第一絕緣體(ONO)的介電常數。其它例子中,柱體可為其它形狀,例如方形及橢圓形,且柱體可具有其它配置。Fig. 7A is an enlarged view showing the capacitance of the 3D of Fig. 7. In this example, the section of the cylinder has a circle with a radius R. The conductive strips 1105, 1106 are electrically and passively connected together to the first terminal of the 3D capacitor and function as a first plate of the 3D capacitor. The conductive strips connected to the first terminal are not disposed between the conductive strips 1105, 1106. The vertical conductive film 80 is electrically and passively connected to the second terminal of the 3D capacitor and functions as a second plate of the 3D capacitor. The first insulator acts as a dielectric of the 3D capacitor. Therefore, the capacitor C1 is formed between the bus bar 1106 and the vertical conductive film 80. Similarly, a capacitor C2 is formed between the bus bar 1105 and the conductive film 80. Assuming that the total thickness of the conductive strip is H μm, the radius of the cylinder is R μm, and the number of cylinders is N, then the total capacitance can be roughly estimated by C = ε 0 × ε × (H × 2πR) × N, where ε 0 The dielectric constant in vacuum and the dielectric constant of ε-based first insulator (ONO). In other examples, the cylinders can have other shapes, such as square and elliptical, and the cylinders can have other configurations.

第8圖繪示使用所述3D電容之電荷幫浦的簡單示意圖。此例子中,四階段(four-stage)電荷幫浦包含3D電容3DCAP1、3DCAP2、3DCAP3及3DCAP4。其它例子中,電荷幫浦使用一個3D電容,並放置其在輸出端處,以提供提升的電壓。如所述,3D電容的第一終端係連接至電荷幫浦的第一節點,且3D電容的第二終端係連接至電荷幫浦的第二節點。 A. 3D記憶體區塊Figure 8 is a simplified schematic diagram of the charge pump using the 3D capacitor. In this example, the four-stage charge pump contains 3D capacitors 3DCAP1, 3DCAP2, 3DCAP3, and 3DCAP4. In other examples, the charge pump uses a 3D capacitor and places it at the output to provide a boosted voltage. As described, the first terminal of the 3D capacitor is coupled to the first node of the charge pump and the second terminal of the 3D capacitor is coupled to the second node of the charge pump. A. 3D memory block

第9至17圖繪示3D記憶體區塊之製造流程的例子。Figures 9 through 17 illustrate examples of manufacturing processes for 3D memory blocks.

第9圖繪示製程在蝕刻複數個層,並停在絕緣層1101,以定義堆疊之後的步驟。為了形成第9圖中所示的結構,複數個與絕緣層交錯的導電層係沉積在基底(未顯示)上之絕緣層1101上方。在形成所述複數個層之後,係進行圖案化蝕刻以形成與絕緣條1121、1122、1123、1124、1125及1108交錯之導電條1102、1103、1104、1105、1106及1107的複數個堆疊1110、1111、1112及1113。Figure 9 illustrates the process of etching a plurality of layers and stopping at the insulating layer 1101 to define the steps after stacking. To form the structure shown in Fig. 9, a plurality of conductive layers interleaved with the insulating layer are deposited over the insulating layer 1101 on a substrate (not shown). After forming the plurality of layers, pattern etching is performed to form a plurality of stacks 1110 of conductive strips 1102, 1103, 1104, 1105, 1106, and 1107 interleaved with insulating strips 1121, 1122, 1123, 1124, 1125, and 1108. , 1111, 1112 and 1113.

導電層可使用n型或p型重摻雜的多晶矽或磊晶單晶矽之相同的導電材料形成。此例子中,可用以提供拉伸應力之最頂層的氮化矽層係沉積在所述複數個層上方。當它們被蝕刻為高深寬比且窄的線時,此層可提升堆疊的均一性並減緩彎折。絕緣材料層可包括以各種習知方法沉積的氧化矽。絕緣材料層也可包括其它絕緣材料,及絕緣材料的組合。此例子中,除了頂層,所有的絕緣層係以相同的材料構成,例如氧化矽。其它例子中,為符合特定的設計目的,不同層可使用不同的材料。The conductive layer may be formed using the same conductive material of an n-type or p-type heavily doped polysilicon or epitaxial single crystal germanium. In this example, a topmost layer of tantalum nitride that can be used to provide tensile stress is deposited over the plurality of layers. When they are etched into high aspect ratio and narrow lines, this layer improves the uniformity of the stack and slows the bend. The layer of insulating material may comprise cerium oxide deposited by various conventional methods. The layer of insulating material may also include other insulating materials, as well as combinations of insulating materials. In this example, except for the top layer, all of the insulating layers are made of the same material, such as yttrium oxide. In other examples, different layers may be used for different layers to meet specific design goals.

又其它例子中,作用輔助閘極的導電條1102可使用主動柱體下方之基底中摻雜的區域,或使用其它的技術。In still other examples, the conductive strip 1102 that acts on the auxiliary gate can use a region doped in the substrate beneath the active pillar or use other techniques.

堆疊包含至少作用輔助閘極(AG)之底階層的導電條、作用為字元線(WL)之複數個中間階層的導電條、及作用SSL/GLS電晶體之閘極的頂階層的導電條。堆疊之複數個中間階層可包含N階層,範圍從0至N-1。Stacking a conductive strip comprising at least a bottom level of the auxiliary gate (AG), a plurality of intermediate strips acting as a word line (WL), and a top layer of conductive strips acting as gates of the SSL/GLS transistor . The plurality of intermediate levels of the stack may include N levels ranging from 0 to N-1.

第10圖繪示繪示製程在形成第一絕緣體69於複數個堆疊之頂部與側壁上方及上,使得第一絕緣體69接觸複數個堆疊中之導電條的側壁之後的步驟。作用記憶體區塊之資料儲存結構的第一絕緣體69包括穿隧層1132、電荷捕捉層1131及阻擋層1130。Figure 10 illustrates the steps after forming the first insulator 69 over and over the top and side walls of the plurality of stacks such that the first insulator 69 contacts the sidewalls of the plurality of conductive strips in the stack. The first insulator 69 of the data storage structure of the functional memory block includes a tunneling layer 1132, a charge trapping layer 1131, and a barrier layer 1130.

穿隧層1132可包括例如使用LPCVD所形成之氧化矽,厚度約20Å至60Å,例如40Å。可使用其它穿隧材料及結構,例如複合的穿隧結構。複合穿隧結構包括厚度小於2 nm的二氧化矽層、厚度小於3 nm的氮化矽層、及厚度小於4 nm的二氧化矽層。一實施例中,複合穿隧結構由超薄氧化矽層O1 (例如≤15Å)、超薄氮化矽層N1 (例如≤30Å)及超薄氧化矽層O2 (例如≤35Å)構成,其造成在離與半導體主體之界面15Å或更近之偏移處的價電帶能階提高約2.6 eV。透過O2區域擁有較低價電帶能階(較高電洞穿隧阻障率)及較高傳導帶能階的特性,可於離界面之第二偏移處(例如約30Å至45Å)將N1 層與自電荷捕捉層隔離。在第二位置至有效消減電洞穿隧阻障的階層之後。由於第二位置係在離界面較大的距離處,足以引發電洞穿隧的電場提高價電帶能階。因此,當低電場操作時其特殊穿隧介電質仍擁有防止漏損之能力,因O2 層並不影響電場輔助的電洞穿隧。這些層可例如使用低壓化學氣相沉積法(LPCVD)共形地沉積。The tunneling layer 1132 can comprise, for example, yttrium oxide formed using LPCVD, having a thickness of about 20 Å to 60 Å, such as 40 Å. Other tunneling materials and structures can be used, such as a composite tunneling structure. The composite tunneling structure includes a cerium oxide layer having a thickness of less than 2 nm, a cerium nitride layer having a thickness of less than 3 nm, and a cerium oxide layer having a thickness of less than 4 nm. In one embodiment, the composite tunneling structure is composed of an ultra-thin yttrium oxide layer O 1 (for example, ≤ 15 Å), an ultra-thin tantalum nitride layer N 1 (for example, ≤ 30 Å), and an ultra-thin yttrium oxide layer O 2 (for example, ≤ 35 Å). It causes an increase in the valence band energy level of about 2.6 eV at an offset of 15 Å or less from the interface with the semiconductor body. The O2 region has a lower valence band (higher tunneling barrier) and a higher conduction band energy level, which can be N at a second offset from the interface (eg, about 30 Å to 45 Å). The 1 layer is isolated from the charge trapping layer. After the second position to the level of effective tunneling tunneling barrier. Since the second position is at a large distance from the interface, the electric field sufficient to cause the tunnel to tunnel increases the energy level of the valence band. Therefore, the special tunneling dielectric still has the ability to prevent leakage when operating at low electric field, because the O 2 layer does not affect the electric field-assisted hole tunneling. These layers can be conformally deposited, for example, using low pressure chemical vapor deposition (LPCVD).

電荷捕捉層1131可包括例如使用LPCVD形成的氮化矽,厚度約40Å至90Å,例如約70Å。可使用其它電荷捕捉材料及結構,例如包含氮氧化物矽(Six Oy Nz )、富矽氮化物、富矽氧化物、包含埋入的奈米粒子的捕捉層等等。The charge trap layer 1131 may include tantalum nitride formed, for example, using LPCVD, having a thickness of about 40 Å to 90 Å, for example, about 70 Å. Other charge trapping materials and structures can be used, including, for example, oxynitride strontium (Si x O y N z ), cerium-rich nitrides, cerium-rich oxides, capture layers comprising buried nanoparticles, and the like.

阻擋層1130可包括以LPCVD或其它藉由濕式爐管氧化製程從氮化物濕式轉化形成的氧化矽,厚度約50Å至130Å,例如約90Å。其它阻擋介電質可包含高介電常數(high-κ)材料,例如150Å的氧化鋁。Barrier layer 1130 can comprise cerium oxide formed by wet milling of nitrides by LPCVD or other wet tube oxidation process, having a thickness of from about 50 Å to about 130 Å, such as about 90 Å. Other barrier dielectrics can include high-k materials, such as 150 Å alumina.

用以形成多層資料儲存結構的沉積技術可以一般的LPCVD製程實施。另一方面,原子層沉積(ALD)或其它合適的機台可用於這些膜。SSL及GSL層之區域中的閘極介電層可具有不同於資料儲存結構的組成。The deposition technique used to form the multilayer data storage structure can be implemented in a general LPCVD process. On the other hand, atomic layer deposition (ALD) or other suitable machine can be used for these films. The gate dielectric layer in the area of the SSL and GSL layers can have a different composition than the data storage structure.

所述資料儲存結構可知為氧化物-氮化物-氧化物(ONO)、氧化物-氮化物-氧化物-氮化物-氧化物(ONONO)、矽-氧化物-氮化物-矽化物-矽(SONOS)、能隙工程的矽-氧化物-氮化物-氧化物-矽(BE-SONOS)、氮化鉭-氧化鋁-氮化矽-氧化矽-矽(TANOS)及金屬-high-k能隙工程的矽-氧化物-氮化物-氧化物-矽(MA BE-SONOS)。The data storage structure is known as oxide-nitride-oxide (ONO), oxide-nitride-oxide-nitride-oxide (ONONO), yttrium-oxide-nitride-telluride-矽 ( SONOS), energy-gap engineering 矽-oxide-nitride-oxide-矽 (BE-SONOS), tantalum nitride-alumina-tantalum nitride-tantalum oxide-tantalum (TANOS) and metal-high-k energy Graft-oxide-nitride-oxide-矽 (MA BE-SONOS).

第11圖繪示製程在形成半導體膜1140於堆疊上之第一絕緣體69上方且具有與第一絕緣體69共形的表面之後的步驟。半導體膜1140可具有約10奈米或更小的厚度。如所繪示的,在堆疊之間的區域(例如1141)中,半導體膜1140延伸至堆疊之間的區域(例如1141)底部,並在第一絕緣體69上方。氧化薄層(未顯示)可藉由半導體膜1140的短氧化形成。半導體膜1140包括由材料與摻雜濃度之選擇所採用的半導體,材料例如矽,摻雜濃度例如未摻雜的或輕摻雜的。在記憶體區塊中,至少在複數個堆疊中之鄰近堆疊之間的區域中的半導體膜1140係作用為記憶胞的通道區域。11 is a view showing a process after the semiconductor film 1140 is formed over the first insulator 69 on the stack and has a surface conformal to the first insulator 69. The semiconductor film 1140 may have a thickness of about 10 nm or less. As illustrated, in a region between the stacks (eg, 1141), the semiconductor film 1140 extends to the bottom of the region (eg, 1141) between the stacks and over the first insulator 69. An oxidized thin layer (not shown) can be formed by short oxidation of the semiconductor film 1140. The semiconductor film 1140 includes a semiconductor employed by the choice of material and doping concentration, such as germanium, doping concentrations such as undoped or lightly doped. In the memory block, the semiconductor film 1140 acts as a channel region of the memory cell at least in a region between adjacent stacks in the plurality of stacks.

第12圖繪示製程在進行以絕緣材料填充半導體膜1140之內側表面上之堆疊之間的區域(例如第10圖的1141)的步驟之後的步驟。當實施填充步驟時,突懸物可能形成在半導體膜1140之內側表面的頂部上。當兩個鄰近的突懸物係非常靠近或連接在一起時,可能會形成孔洞或孔隙1161,使得堆疊之間的區域無法完全被絕緣材料填充。在填充步驟之後,可進行回蝕刻或平坦化步驟例如化學機械研磨以露出半導體膜1140的頂表面。在所繪示的例子中,填充結構1160包含在中間與底階層處鄰近導電條之區域中的孔洞(例如1161),並包含在頂階層處鄰近導電條之區域中的填充部分。孔洞1161封住氣體,例如來自形成期間腔室中之氣氛的氣體,其在本說明中可被稱為「空氣(air)」。Fig. 12 is a view showing a step after the step of performing a region (e.g., 1141 of Fig. 10) between the stacks on the inner side surface of the semiconductor film 1140 filled with an insulating material. When the filling step is performed, a protrusion may be formed on the top of the inner side surface of the semiconductor film 1140. When two adjacent projectiles are in close proximity or joined together, holes or voids 1161 may be formed such that the area between the stacks cannot be completely filled with insulating material. After the filling step, an etch back or planarization step such as chemical mechanical polishing may be performed to expose the top surface of the semiconductor film 1140. In the illustrated example, the fill structure 1160 includes holes (e.g., 1161) in regions adjacent the conductive strips at the intermediate and bottom levels, and includes fill portions in regions adjacent the conductive strips at the top level. The hole 1161 encloses a gas, such as a gas from an atmosphere in the chamber during formation, which may be referred to as "air" in this description.

其它例子中,絕緣材料可完全填滿區域,使得堆疊之間的填充結構1160係被固質絕緣體所填充,例如氧化矽、low-κ介電材料或其它合適的絕緣體。In other examples, the insulating material may completely fill the area such that the filling structure 1160 between the stacks is filled with a solid insulator, such as tantalum oxide, a low-k dielectric material, or other suitable insulator.

在又其它例子中,孔洞可能延伸至堆疊之間區域的頂部。In still other examples, the holes may extend to the top of the area between the stacks.

包含孔洞或固質絕緣體的填充結構1160可降低主動柱體中半導體膜1140之相反側壁之間的電容耦合。A fill structure 1160 comprising holes or solid insulators can reduce capacitive coupling between opposite sidewalls of the semiconductor film 1140 in the active pillar.

第13圖繪示製程在進行柱體削減蝕刻之後的步驟,柱體削減蝕刻包含在複數個堆疊中之堆疊之間蝕刻出開口,以形成複數個絕緣結構2000、2001、2002、2003、2004及2005。在此例子中,開口係延伸以露出絕緣層1101。柱體削減蝕刻的結果係形成垂直通道結構,其係設置在偶數堆疊(例如2011-E)與奇數堆疊(例如2011-O)之間。此例子中,絕緣結構2002係設置在堆疊2011-E與堆疊2011-O之間。垂直通道結構包括偶數與奇數之具有外側表面與內側表面的垂直半導體膜。外側表面係設置在資料儲存結構上並接觸資料儲存結構,資料儲存結構係在形成記憶胞之3D陣列的偶數與奇數堆疊的側壁上。內側表面係與絕緣結構(例如2000、2001、2002、2003、2004及2005)交錯,此例子中絕緣結構包含絕緣材料及孔洞。垂直通道結構的垂直半導體膜可具有10 nm或更薄的厚度。Figure 13 illustrates the steps of the process after performing the pillar reduction etching. The pillar reduction etching includes etching openings between the stacks in the plurality of stacks to form a plurality of insulating structures 2000, 2001, 2002, 2003, 2004 and 2005. In this example, the opening is extended to expose the insulating layer 1101. The result of the cylinder cut etch is to form a vertical channel structure that is placed between an even stack (eg, 2011-E) and an odd stack (eg, 2011-O). In this example, the insulation structure 2002 is disposed between the stack 2011-E and the stack 2011-O. The vertical channel structure includes even and odd vertical semiconductor films having outer and inner surfaces. The outer surface is disposed on the data storage structure and contacts the data storage structure, the data storage structure being on the side walls of the even and odd stacks of the 3D array forming the memory cells. The inner surface is interleaved with an insulating structure (e.g., 2000, 2001, 2002, 2003, 2004, and 2005). In this example, the insulating structure includes an insulating material and a hole. The vertical semiconductor film of the vertical channel structure may have a thickness of 10 nm or less.

如在第12圖中所繪示,垂直通道結構係佈局成蜂巢狀配置,使得垂直通道結構的各列(row)係在列方向上偏移自鄰近的列。此蜂巢狀配置有利於以更緊密的間距形成上方的位元線。絕緣填充物(未顯示)係供應至垂直通道結構之間的開口中。As depicted in Fig. 12, the vertical channel structures are arranged in a honeycomb configuration such that the rows of vertical channel structures are offset from adjacent columns in the column direction. This honeycomb configuration facilitates forming the upper bit lines at a tighter pitch. Insulating fillers (not shown) are supplied into the openings between the vertical channel structures.

在柱體削減蝕刻之後,半導體膜1140係連續在堆疊之頂部的上方,並連接至垂直半導體膜,用作柱體的垂直通道結構。在第13圖中,半導體膜1140之部分1140-O 在奇數堆疊2011-O上方,且係連續沿著堆疊2011-O頂部。半導體膜1140的部分1140-O係連接絕緣結構2002左側上的垂直通道結構、絕緣結構2000右側上的垂直通道結構、及絕緣結構2001右側上的垂直通道結構。半導體膜1140的部分1140-E在偶數堆疊2011-E上方,且係連續沿著堆疊2011-E的頂部。在此示範例中,半導體膜1140的部分1140-E係連接絕緣結構2002右側上的垂直通道結構、絕緣結構2003左側上的垂直通道結構、及絕緣結構2004左側上的垂直通道結構。After the pillars are etched, the semiconductor film 1140 is continuously over the top of the stack and connected to the vertical semiconductor film for use as a vertical channel structure for the pillars. In Fig. 13, a portion 1140-O of the semiconductor film 1140 is over the odd stack 2011-O and is continuously along the top of the stack 2011-O. The portion 1140-O of the semiconductor film 1140 is connected to the vertical channel structure on the left side of the insulating structure 2002, the vertical channel structure on the right side of the insulating structure 2000, and the vertical channel structure on the right side of the insulating structure 2001. Portions 1140-E of semiconductor film 1140 are over even stack 2011-E and are continuous along the top of stack 2011-E. In this example, portion 1140-E of semiconductor film 1140 is connected to the vertical channel structure on the right side of insulating structure 2002, the vertical channel structure on the left side of insulating structure 2003, and the vertical channel structure on the left side of insulating structure 2004.

第14圖繪示製程在進行圖案化蝕刻以將堆疊之頂部上剩餘的半導體膜1140分開成複數個部分以達到形成陣列連接之目的之後的步驟。在圖案化蝕刻之後,半導體膜1140係分割成偶數堆疊上方的部分2070及2071,與奇數堆疊上方的部分2073、2074、2075、2077、2078及2079。部分2070及2071將NAND串列之共用源極側上的柱體連接在一起,並提供內層連接體的著陸區域以連接至共用源極線。部分2073、2074、2075、2077、2078及2079係分開,並提供形成至位元線之獨立連接的內層連接體的著陸區域。Figure 14 illustrates the steps after the patterning etch is performed to separate the remaining semiconductor film 1140 on top of the stack into a plurality of portions for the purpose of forming an array connection. After the patterned etch, the semiconductor film 1140 is divided into portions 2070 and 2071 over the even stack, and portions 2073, 2074, 2075, 2077, 2078, and 2079 over the odd stack. Portions 2070 and 2071 connect the pillars on the common source side of the NAND string together and provide a landing region of the inner layer connector to connect to the common source line. Portions 2073, 2074, 2075, 2077, 2078, and 2079 are separated and provide a landing zone that forms an interconnected inner layer connector to the bit line.

第15圖繪示形成內層連接體2020、2021、2022、2023、2024、2025、2026、2027的陣列穿過內層介電質(未顯示)並著陸在對應的部分2073、2074、2075、2077、2078及2079上後的結構。製程可包含形成內層介電質的層,例如在陣列頂部上的氧化矽,厚度可例如約100 nm至500 nm,然後形成通孔穿過內層介電質並露出部分2073、2074、2075、2077、2078及2079的著陸區域。沉積與半導體膜相容的導電材料以填充通孔,藉此形成內層連接體。內層連接體可包括多晶矽插塞。內層連接體2020與2024提供電性連接至部分2070與2071,部分2070與2071係連續於柱體之GSL側上的垂直通道結構。內層連接體2021、2022、2023、2025、2026及2027分別提供電性連接至部分2073、2074、2075、2077、2078及2079,部分2073、2074、2075、2077、2078及2079係柱體之SSL側上的部分。Figure 15 illustrates the formation of an array of inner layer connectors 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027 through the inner layer of dielectric (not shown) and landing at corresponding portions 2073, 2074, 2075, Structure after 2077, 2078 and 2079. The process can include forming a layer of an inner dielectric, such as yttrium oxide on top of the array, having a thickness of, for example, about 100 nm to 500 nm, then forming a via through the inner dielectric and exposing portions 2073, 2074, 2075 Landing areas of 2077, 2078 and 2079. A conductive material compatible with the semiconductor film is deposited to fill the via holes, thereby forming an inner layer connector. The inner layer connector may comprise a polysilicon plug. The inner layer connectors 2020 and 2024 are electrically connected to portions 2070 and 2071 which are continuous with the vertical channel structure on the GSL side of the cylinder. The inner layer connectors 2021, 2022, 2023, 2025, 2026, and 2027 are respectively electrically connected to the portions 2073, 2074, 2075, 2077, 2078, and 2079, and the portions 2073, 2074, 2075, 2077, 2078, and 2079 are cylindrical. The part on the SSL side.

第16圖繪示在形成包含參考線(例如2030、2034)與階層間連接體(例如2031、2032、2033、2035、2036及2037)之第一圖案化導體層之後的結構。參考線2034電性接觸內層連接體2024與設置在相同堆疊上方的其它內層連接體(未顯示),並連接至NAND串列之GSL側上的垂直通道結構。如此,參考線2034係作用為局部共用源極線,並提供至總體共用源極線的連接。Figure 16 illustrates the structure after forming a first patterned conductor layer comprising reference lines (e.g., 2030, 2034) and inter-layer connectors (e.g., 2031, 2032, 2033, 2035, 2036, and 2037). Reference line 2034 electrically contacts inner layer connector 2024 with other inner layer connectors (not shown) disposed over the same stack and is connected to the vertical channel structure on the GSL side of the NAND string. As such, the reference line 2034 acts as a local shared source line and provides a connection to the overall common source line.

所述參考線可為參考線的區段,且參考線的區段與階層間連接體在製造期間可為先沉積的金屬層所形成。The reference line may be a section of the reference line, and the section of the reference line and the inter-layer connector may be formed of a previously deposited metal layer during fabrication.

此例子中,階層間連接體2035、2036與2037係分別對準在內層連接體2025、2026與2027的上方,並與內層連接體2025、2026與2027電性接觸。階層間連接體係連接至NAND串列之SSL側上的垂直通道膜,並提供獨立的連接至位元線。In this example, the inter-layer connectors 2035, 2036, and 2037 are aligned above the inner layer connectors 2025, 2026, and 2027, respectively, and are in electrical contact with the inner layer connectors 2025, 2026, and 2027. The inter-level connection system is connected to the vertical channel film on the SSL side of the NAND string and provides independent connections to the bit lines.

參考線與階層間連接體可包括鎢或其它的導電材料,例如銅、矽化鈷、矽化鎢、其它金屬材料、或上述之組合,並形成在相同階層中。The reference and inter-layer connectors may comprise tungsten or other electrically conductive material such as copper, cobalt telluride, tungsten antimonide, other metallic materials, or combinations thereof, and formed in the same hierarchy.

第17圖繪示在第一圖案化導體層上方提供第二圖案化導體層之後的結構。第二圖案化導體層包括複數個位元線(例如2060、2061及2062),且位元線至少具有延伸部。延伸部係在位元線的形成步驟中形成並向下延伸。所述位元線可為位元線的區段。舉例來說,位元線2060包含延伸部2041與2045;位元線2061包含延伸部2043與2047;且位元線2062包含延伸部2042與2046。延伸部可包括鰭部。第二圖案化導體層係以雙鑲嵌製程的方式形成。如在第17圖中所繪示,包含柱體中之NAND串列的GSL側上的垂直半導體膜的半導體膜的部分2070係藉由內層連接體(例如第15圖的2020)連接至第一圖案化導體階層中的參考線2030。類似地,包含柱體中之NAND串列的GSL側上的垂直半導體膜的半導體膜的部分2071係藉由內層連接體(例如第15圖的2024)連接至第一圖案化導體階層中的參考線2034。參考線2030與2034沿著各自的列連接複數個內層連接體,並可操作為共用源極線。包含柱體中之NAND串列的SSL側上的垂直半導體膜結構的半導體膜的部分2073與2077係藉由階層間連接體連接至位元線2060的延伸部2041、2045。包含柱體中之NAND串列的SSL側上的垂直半導體膜的半導體膜的部分2075與2079係藉由階層間連接體連接至位元線2061的延伸部2043、2047。包含柱體中之NAND串列的SSL側上的垂直半導體膜結構的半導體膜的部分2074與2078係藉由階層間連接體連接至位元線2062的延伸部2042、2046。此例子中,記憶體區塊係三維垂直通道(3GVC)結構,如在美國專利申請號14/861,377中所述,其專利名稱為REFERENCE LINE AND BIT LINE STRUCTURE FOR 3D MEMORY,發明人Yeh et al,於此完全提出併入此說明書中做參考。Figure 17 illustrates the structure after the second patterned conductor layer is provided over the first patterned conductor layer. The second patterned conductor layer includes a plurality of bit lines (eg, 2060, 2061, and 2062), and the bit lines have at least an extension. The extension is formed in the forming step of the bit line and extends downward. The bit line can be a segment of a bit line. For example, bit line 2060 includes extensions 2041 and 2045; bit line 2061 includes extensions 2043 and 2047; and bit line 2062 includes extensions 2042 and 2046. The extension can include a fin. The second patterned conductor layer is formed in a dual damascene process. As shown in FIG. 17, the portion 2070 of the semiconductor film including the vertical semiconductor film on the GSL side of the NAND string in the column is connected to the first layer by an inner layer connector (for example, 2020 in FIG. 15). A reference line 2030 in the patterned conductor hierarchy. Similarly, a portion 2071 of a semiconductor film including a vertical semiconductor film on the GSL side of the NAND string in the pillar is connected to the first patterned conductor layer by an inner layer connector (for example, 2024 of FIG. 15). Reference line 2034. Reference lines 2030 and 2034 connect a plurality of inner layer connectors along respective columns and are operable as a common source line. Portions 2073 and 2077 of the semiconductor film including the vertical semiconductor film structure on the SSL side of the NAND string in the column are connected to the extensions 2041, 2045 of the bit line 2060 by the inter-layer connectors. The portions 2075 and 2079 of the semiconductor film including the vertical semiconductor film on the SSL side of the NAND string in the column are connected to the extensions 2043, 2047 of the bit line 2061 by the inter-layer connectors. The portions 2074 and 2078 of the semiconductor film including the vertical semiconductor film structure on the SSL side of the NAND string in the column are connected to the extensions 2042, 2046 of the bit line 2062 by the inter-layer connectors. In this example, the memory block is a three-dimensional vertical channel (3GVC) structure, as described in U.S. Patent Application Serial No. 14/861,377, the disclosure of which is incorporated herein in This is fully incorporated herein by reference.

其它例子中,記憶體區塊可應用三維垂直閘極(3DVG)結構,如在美國專利號US8,208,279 B2中所述,其專利名稱為INTEGRATED CIRCUIT SELF ALIGNED3D MEMORY ARRAY AND MANUFACTURING METHOD,發明人為H.T. Lue,於此完全提出併入此說明書中做參考。在3DVG記憶體陣列中,複數個堆疊中的導電條包含位元線,且垂直導電膜包含字元線。In other examples, the memory block can be applied with a three-dimensional vertical gate (3DVG) structure, as described in U.S. Patent No. 8,208,279 B2, entitled INTEGRATED CIRCUIT SELF ALIGNED 3D MEMORY ARRAY AND MANUFACTURING METHOD, inventor HT Lue This is fully incorporated herein by reference. In a 3DVG memory array, the conductive strips in the plurality of stacks comprise bit lines, and the vertical conductive film comprises word lines.

第17圖繪示出U型NAND串列之電流的電路路徑2069,其係連接在參考線2034與位元線2060之間。結構顯示導電條之堆疊之間的複數個柱體。該些柱體各包括具有外側表面與內側表面的垂直半導體膜。外側表面係設置在複數個堆疊中之鄰近堆疊的側壁上的第一絕緣體69的穿隧層1132上。記憶胞係串聯以形成從GSL側上之垂直半導體膜的較高端至較低端,與從SSL側上之垂直半導體膜的較低端至較高端的電流路徑。 B. 第一實施例之3D電容Figure 17 depicts a circuit path 2069 for the current of the U-type NAND string, which is connected between reference line 2034 and bit line 2060. The structure shows a plurality of cylinders between the stacks of conductive strips. The pillars each include a vertical semiconductor film having an outer side surface and an inner side surface. The outer side surface is disposed on the tunneling layer 1132 of the first insulator 69 on the adjacent stacked sidewalls in the plurality of stacks. The memory cell lines are connected in series to form a current path from the higher end to the lower end of the vertical semiconductor film on the GSL side, and from the lower end to the higher end of the vertical semiconductor film on the SSL side. B. 3D capacitor of the first embodiment

3D記憶體區塊的大多製程步驟係可應用至製造第一實施例之3D電容,使得記憶體區塊與電容區域中可共用並實施許多沉積與蝕刻步驟。因此,為了避免贅述,將只說明差異處。第一實施的3D電容例可使用以上參照第9至12圖所述的製程,接著進行以下參照第18至21圖所述的製程形成。Most of the process steps of the 3D memory block can be applied to the fabrication of the 3D capacitor of the first embodiment such that a number of deposition and etching steps can be shared and implemented in the memory block and the capacitor region. Therefore, in order to avoid redundancy, only the differences will be explained. The 3D capacitor example of the first embodiment can be formed using the processes described above with reference to FIGS. 9 to 12, followed by the process described below with reference to FIGS. 18 to 21.

第18圖繪示製程中在對第12圖的結構進行溝槽蝕刻以移除複數個堆疊之間的填充結構(例如第12圖的1160)並移除垂直半導體膜之後的步驟。如圖所繪示,溝槽蝕刻停在穿隧層1132以形成溝槽3000、3001與3002在堆疊之間。此例子中,複數個堆疊之側壁上的第一絕緣體69並未被蝕刻掉,且留下的半導體膜1140只在複數個堆疊的頂部上。其它例子中,溝槽蝕刻可移除堆疊之側壁上的垂直半導體膜與垂直的第一絕緣體,而留下其位在堆疊之頂部上的部分。Figure 18 illustrates the steps after the trench etch of the structure of Figure 12 to remove the fill structure between the plurality of stacks (e.g., 1160 of Figure 12) and remove the vertical semiconductor film in the process. As illustrated, the trench etch stops at the tunneling layer 1132 to form trenches 3000, 3001 and 3002 between the stacks. In this example, the first insulator 69 on the sidewalls of the plurality of stacks is not etched away, and the remaining semiconductor film 1140 is only on top of the plurality of stacks. In other examples, the trench etch removes the vertical semiconductor film on the sidewalls of the stack from the vertical first insulator leaving its portion on top of the stack.

第19圖繪示製程中以絕緣材料填充堆疊之間穿隧層1132之內側表面上的溝槽(例如第18圖的3000、3001及3002)的步驟之後的結構。當實施填充步驟時,突懸物可能形成在第二氧化矽層1132之內側表面的頂部上。當兩個鄰近的突懸物係非常靠近或連接在一起時,可能會形成孔洞或孔隙3011,使得堆疊之間的溝槽無法完全被絕緣材料填充。在填充步驟之後,可進行回蝕刻或平坦化步驟例如化學機械研磨以露出半導體膜1140的頂表面。在所繪示的例子中,第二絕緣體3010包含在中間與底階層處鄰近導電條的孔洞3011,並包含在頂階層處鄰近導電條的填充部分。孔洞3011封住氣體,例如來自形成期間腔室中之氣氛的氣體,其在本說明中可被稱為「空氣(air)」。Figure 19 is a diagram showing the structure after the step of filling the trenches on the inner side surface of the tunneling layer 1132 between the stacks (e.g., 3000, 3001, and 3002 of Fig. 18) with an insulating material in the process. When the filling step is performed, a protrusion may be formed on the top of the inner side surface of the second ruthenium oxide layer 1132. When two adjacent projectiles are in close proximity or joined together, holes or voids 3011 may be formed such that the trenches between the stacks are not completely filled with insulating material. After the filling step, an etch back or planarization step such as chemical mechanical polishing may be performed to expose the top surface of the semiconductor film 1140. In the illustrated example, the second insulator 3010 includes a hole 3011 adjacent the conductive strip at the intermediate and bottom levels and includes a filled portion adjacent the conductive strip at the top level. The holes 3011 enclose a gas, such as a gas from an atmosphere in the chamber during formation, which may be referred to as "air" in this description.

其它例子中,絕緣材料可完全填滿溝槽,使得第二絕緣體3010係被固質絕緣體所填充,例如氧化矽、low-κ介電材料或其它合適的絕緣體。In other examples, the insulating material can completely fill the trench such that the second insulator 3010 is filled with a solid insulator, such as hafnium oxide, a low-k dielectric material, or other suitable insulator.

在又其它例子中,孔洞可能延伸至堆疊之間區域的頂部。In still other examples, the holes may extend to the top of the area between the stacks.

第20圖繪示第19圖之結構的上視圖。在此示範例中,奇數堆疊3111、3113、3115與3117係從左側的著陸墊區域3013延伸,且偶數堆疊3112、3114與3116係從右側的著陸墊區域3012延伸。半導體膜1140係在複數個堆疊的頂部上,而未在著陸墊區域3012與3013上。奇數堆疊3111、3113、3115與3117係指叉偶數堆疊3112、3114與3116,並藉由第二絕緣體3010分開自偶數堆疊3112、3114與3116。如上所述,第一終端連接至第一組間隔堆疊中之堆疊中的連續階層的導電條,第一組間隔堆疊中之堆疊例如偶數堆疊3112、3114及3116,第二終端連接至第二組間隔堆疊中之堆疊中的連續階層的導電條,第二組間隔堆疊中之堆疊例如奇數堆疊3111、3113、3115及3117。此例子中,偶數堆疊中的導電條作用為3D電容的第一極板,奇數堆疊中的導電條作用為3D電容的第二極板,且第一絕緣體與第二絕緣體一起作用為3D電容的介電質。Figure 20 is a top view showing the structure of Figure 19. In this example, the odd stacks 3111, 3113, 3115, and 3117 extend from the landing pad region 3013 on the left side, and the even stacks 3112, 3114, and 3116 extend from the landing pad region 3012 on the right side. Semiconductor film 1140 is on top of a plurality of stacks and is not on landing pad regions 3012 and 3013. The odd stacks 3111, 3113, 3115, and 3117 refer to the fork even stacks 3112, 3114, and 3116, and are separated from the even stacks 3112, 3114, and 3116 by a second insulator 3010. As described above, the first terminal is connected to the continuous level of conductive strips in the stack in the first set of spaced stacks, the stack in the first set of spaced stacks is, for example, even stacks 3112, 3114 and 3116, and the second terminal is connected to the second set The strips of successive levels in the stack in the stack are stacked, and the stacks in the second set of spaced stacks are, for example, odd stacks 3111, 3113, 3115, and 3117. In this example, the conductive strips in the even stack act as the first plate of the 3D capacitor, the conductive strips in the odd stack act as the second plate of the 3D capacitor, and the first insulator and the second insulator act together as a 3D capacitor. Dielectric.

右側的著陸墊區域3012包括右側的接觸區域3014,接觸區域3014包含複數個接觸插塞連接至對應的導電條。類似地,左側的著陸墊區域3013包括左側的接觸區域3015,接觸區域3015包含複數個接觸連接至對應的導電條。The landing pad area 3012 on the right includes a contact area 3014 on the right side, and the contact area 3014 includes a plurality of contact plugs connected to corresponding conductive strips. Similarly, the landing pad area 3013 on the left includes a contact area 3015 on the left side, and the contact area 3015 includes a plurality of contact connections to corresponding conductive strips.

第21圖係第20圖之右側的接觸區域3014沿AA’線的簡單剖面圖。在此示範例中,接觸插塞3020、3021、3022、3023、3024與3025分別著陸在條1102、1103、1104、1105、1106及1107,以配置為階梯結構。中間連接體3026可設置在第一圖案化導體層中並接觸複數個接觸插塞3020、3021、3022、3023、3024與3025的各個,使得從右側著陸墊區域延伸之堆疊(亦即偶數堆疊)中的導電條係電性且被動地一起連接至設置在第一圖案化導體層中的中間連接體3026。中間連接體3026係連接至3D電容的第一終端,亦即連接至(第8圖中所示之)電荷幫浦的第一節點。如此,偶數堆疊(例如第20圖的3012、3014與3016)中的導電條係透過中間連接體3026與接觸插塞3020、3021、3022、3023、3024與3025一起電性且被動地連接至所述3D電容的第一終端。Figure 21 is a simplified cross-sectional view of the contact area 3014 on the right side of Figure 20 along the line AA'. In this example, contact plugs 3020, 3021, 3022, 3023, 3024, and 3025 land on strips 1102, 1103, 1104, 1105, 1106, and 1107, respectively, to configure a stepped configuration. The intermediate connector 3026 can be disposed in the first patterned conductor layer and contacts each of the plurality of contact plugs 3020, 3021, 3022, 3023, 3024, and 3025 such that the stack extends from the right landing pad region (ie, even stack) The conductive strips are electrically and passively connected together to an intermediate connector 3026 disposed in the first patterned conductor layer. The intermediate connector 3026 is connected to the first terminal of the 3D capacitor, that is, to the first node of the charge pump (shown in FIG. 8). Thus, the conductive strips in the even stack (eg, 3012, 3014, and 3016 of FIG. 20) are electrically and passively connected to the contact plugs 3020, 3021, 3022, 3023, 3024, and 3025 through the intermediate connector 3026. The first terminal of the 3D capacitor.

類似地,左側的接觸區域(第20圖的3015)包含複數個接觸插塞分別著陸在配置於如第21圖所示之階梯結構中之對應的導電條上。第二中間連接體(未顯示)接觸複數個接觸插塞的各個,使得從左側的著陸墊區域延伸之堆疊(亦即奇數堆疊)中的導電條係電性且被動地一起連接至第二中間連接體。第二中間連接體可設置在第二圖案化導體層中,使得第一中間連接體並未與第二中間連接體電性接觸。第二中間連接體係連接至3D電容的第二終端,亦即連接至(第8圖所示之)電荷幫浦的第二節點。如此,奇數堆疊(例如第20圖的3011、3013、3015與3017)中的導電條係透過第二中間連接體與接觸插塞一起電性且被動地連接至所述3D電容的第二終端。 C. 第二實施例的3D電容Similarly, the contact area on the left side (3015 of Fig. 20) includes a plurality of contact plugs respectively landing on corresponding conductive strips disposed in the stepped structure as shown in Fig. 21. A second intermediate connector (not shown) contacts each of the plurality of contact plugs such that the conductive strips in the stack (ie, odd stacks) extending from the landing pad region on the left are electrically and passively connected together to the second intermediate Connector. The second intermediate connector may be disposed in the second patterned conductor layer such that the first intermediate connector is not in electrical contact with the second intermediate connector. The second intermediate connection system is connected to the second terminal of the 3D capacitor, that is, to the second node of the charge pump (shown in FIG. 8). As such, the conductive strips in the odd stack (eg, 3011, 3013, 3015, and 3017 of FIG. 20) are electrically and passively coupled to the second terminal of the 3D capacitor through the second intermediate connector and the contact plug. C. The 3D capacitor of the second embodiment

3D記憶體陣列的大多製程步驟係可應用至製造第二實施例之3D電容,使得記憶體區塊與電容區域中可共用並實施許多沉積與蝕刻步驟。因此,為了避免贅述,將只說明差異處。第二實施例的3D電容例可使用以上參照第9至10圖所述的製程,接著進行以下參照第22至25圖所述的製程形成。Most of the process steps of the 3D memory array can be applied to the fabrication of the 3D capacitor of the second embodiment such that a number of deposition and etching steps can be shared and implemented in the memory and capacitance regions. Therefore, in order to avoid redundancy, only the differences will be explained. The 3D capacitor example of the second embodiment can be formed using the processes described above with reference to FIGS. 9 to 10, followed by the process described below with reference to FIGS. 22 to 25.

第22圖繪示製程在形成具有表面共形於複數個堆疊上之第一絕緣體的導電膜,藉此形成複數個柱體之步驟後的結構。導電膜1140C可為摻雜的半導體或導體以具有低電阻。在導電膜1140C為摻雜的半導體例子中,其可與參照第12圖所述之記憶體區塊中的半導體膜1140形成,然後添加雜質至半導體中以提高導電性。其它例子中,摻雜的半導體可臨場(in situ)與雜質形成。又其它例子中,更對半導體膜1140進行金屬矽化製程,以形成矽化物層,例如矽化鎢、矽化鈷及矽化鈦,其可降低電阻。在其它例子中,導電膜1140C可為金屬,例如鎢、銅、鈦、其它金屬材料、或上述之組合。導電膜1140C具有在堆疊之間的複數個垂直導電膜,作用為所述3D電容的一個極板。因此,當電容的極板其電阻愈低時,電容的電容值愈大。Figure 22 illustrates the structure of the process after forming a conductive film having a surface conformal to a first insulator on a plurality of stacks, thereby forming a plurality of pillars. The conductive film 1140C may be a doped semiconductor or a conductor to have a low resistance. In the example of a semiconductor in which the conductive film 1140C is doped, it can be formed with the semiconductor film 1140 in the memory block described with reference to FIG. 12, and then impurities are added to the semiconductor to improve conductivity. In other examples, the doped semiconductor can be formed in situ with impurities. In still other examples, the semiconductor film 1140 is further subjected to a metal deuteration process to form a vaporized layer such as tungsten telluride, cobalt telluride, and titanium telluride, which can reduce electrical resistance. In other examples, the conductive film 1140C can be a metal such as tungsten, copper, titanium, other metallic materials, or a combination thereof. The conductive film 1140C has a plurality of vertical conductive films between the stacks acting as one plate of the 3D capacitor. Therefore, when the resistance of the plate of the capacitor is lower, the capacitance value of the capacitor is larger.

第23圖繪示製程在以絕緣材料填充堆疊之間的區域(例如第22圖的1141)之步驟之後的結構。參照第12圖所述之應用在記憶體區塊中之填充步驟也應用在所述的電容。因而形成了填充結構3060,其類似第12圖的填充結構1060。Fig. 23 is a view showing the structure of the process after the step of filling the region between the stacks with an insulating material (e.g., 1141 of Fig. 22). The filling step applied in the memory block as described with reference to Fig. 12 is also applied to the capacitor. A fill structure 3060 is thus formed which is similar to the fill structure 1060 of FIG.

第24圖繪示在形成內層連接體(例如3030、3031)與階層間連接體(例如3032、3033)在堆疊之頂部上的導電膜1140C上之步驟後的結構。此例子中,於導電膜1140C上形成內層連接體(例如3030、3031)的步驟可在參照第15圖所述的步驟中執行,且在內層連接體上形成階層間連接體(例如3032、3033)的步驟可在參照第16圖所述的步驟中執行。如圖所示,階層間連接體(例如3032、3033)係在第二圖案化導體層中電性且被動地連接在一起,藉此3D電容的第二終端係連接至設置在鄰近堆疊之間之複數個柱體中的垂直導電膜。3D電容的第一終端係透過參照第21圖所述的中間連接體與階梯接觸結構連接至各個堆疊中的導電條1102、1103、1104、1105、1106及1107。Fig. 24 is a view showing the structure after the step of forming the inner layer connecting body (e.g., 3030, 3031) and the inter-layer connecting body (e.g., 3032, 3033) on the conductive film 1140C on the top of the stack. In this example, the step of forming the inner layer connection body (for example, 3030, 3031) on the conductive film 1140C can be performed in the step described with reference to FIG. 15, and an inter-layer connection body is formed on the inner layer connection body (for example, 3032). The steps of 3033) can be performed in the steps described with reference to FIG. As shown, the inter-layer connectors (eg, 3032, 3033) are electrically and passively connected together in the second patterned conductor layer, whereby the second terminal of the 3D capacitor is connected to be disposed between adjacent stacks. A vertical conductive film in a plurality of cylinders. The first terminal of the 3D capacitor is connected to the conductive strips 1102, 1103, 1104, 1105, 1106, and 1107 in the respective stacks by referring to the intermediate connector and the step contact structure described in FIG.

第25圖繪示第24圖之結構的上視圖。在此示範例中,奇數堆疊3111、3113、3115與3117係從左側的著陸墊區域3013延伸,且偶數堆疊3112、3114與3116係從右側的著陸墊區域3012延伸。導電膜1140C在堆疊3111、3112、3113、3114、3115、3116與3117上方,但並未在著陸墊區域3012與3013上方。填充結構3060設置在鄰近堆疊之相反側上的垂直導電膜之間。該些堆疊具有指叉狀的配置。偶數堆疊中的導電條係透過右側的接觸區域3014一起電性且被動地連接至3D電容的第一終端,亦即至電荷幫浦的第一節點,或其它電路。此外,奇數堆疊中的導電條係透過接觸區域3015一起電性且被動地連接至第一終端。如此,複數個堆疊(亦即奇數與偶數堆疊)中的導電條作用為3D電容的第一極板。此例子中,接觸區域3014與3015中的接觸插塞係連接在第一圖案化導體層中。另一方面,複數個柱體中的垂直導電膜係透過複數個連接體一起電性且被動地連接至3D電容的第二終端,亦即連接至電荷幫浦的第二節點,或其它電路,藉此垂直導電膜係作用為3D電容的第二極板。此例子中,複數個階層間連接體係連接在第二圖案化導體層中。Fig. 25 is a top view showing the structure of Fig. 24. In this example, the odd stacks 3111, 3113, 3115, and 3117 extend from the landing pad region 3013 on the left side, and the even stacks 3112, 3114, and 3116 extend from the landing pad region 3012 on the right side. Conductive film 1140C is above stacks 3111, 3112, 3113, 3114, 3115, 3116, and 3117, but not above landing pad regions 3012 and 3013. A fill structure 3060 is disposed between the vertical conductive films on opposite sides of the stack. The stacks have a forked configuration. The conductive strips in the even stack are electrically and passively connected to the first terminal of the 3D capacitor, that is, to the first node of the charge pump, or other circuitry, through the contact region 3014 on the right side. Furthermore, the conductive strips in the odd stack are electrically and passively connected to the first terminal through the contact area 3015. Thus, the conductive strips in a plurality of stacked (ie, odd and even stacks) act as the first plate of the 3D capacitor. In this example, the contact plugs in contact regions 3014 and 3015 are connected in the first patterned conductor layer. In another aspect, the vertical conductive film in the plurality of pillars is electrically and passively connected to the second terminal of the 3D capacitor through a plurality of connectors, that is, to the second node of the charge pump, or other circuit, Thereby, the vertical conductive film acts as a second plate of the 3D capacitor. In this example, a plurality of inter-layer connection systems are connected in the second patterned conductor layer.

第26圖繪示第二實施例之3D電容的變化例。此例中,堆疊之間的區域(例如第22圖的1141)係以導電膜1140C填充,使得所示之結構的整個頂表面係導電的。因此,其提供更多以包含中間(intermediate)與階層間(inter-level)連接體的空間,並消除在堆疊之間的填充結構3060上配置連接體時的誤對準問題。 D. 第三實施例的3D電容Fig. 26 is a view showing a variation of the 3D capacitance of the second embodiment. In this example, the area between the stacks (e.g., 1141 of Figure 22) is filled with a conductive film 1140C such that the entire top surface of the illustrated structure is electrically conductive. Therefore, it provides more space to include intermediate and inter-level connectors, and eliminates the problem of misalignment when the connectors are disposed on the filling structure 3060 between the stacks. D. 3D capacitor of the third embodiment

第27至31圖繪示第三實施例之3D電容之製造流程例。27 to 31 are diagrams showing an example of a manufacturing flow of the 3D capacitor of the third embodiment.

第27圖繪示製程中形成穿過與絕緣條1121、1122、1123、1124、1125及1108交錯之導電條1102、1103、1104、1105、1106及1107的堆疊的複數個開口,其中開口係配置為錯開(twisted)或蜂巢圖案之步驟後的結構。為了形成第28圖所示之結構,複數個交錯的導電層與絕緣層沉積在基底(未顯示)上的絕緣層1101上方。在形成複數個層之後,進行圖案化蝕刻,其停止在絕緣層1101,以形成穿過一或更多個堆疊中之導電條1102、1103、1104、1105、1106及1107的複數個開口(例如3101、3102及3103)。為求簡潔,第27圖中僅繪示一個堆疊。複數個開口的形成步驟可在記憶體區塊中形成複數個堆疊之步驟執行。Figure 27 illustrates a plurality of openings formed through the stack of conductive strips 1102, 1103, 1104, 1105, 1106, and 1107 interleaved with the insulating strips 1121, 1122, 1123, 1124, 1125, and 1108, wherein the opening is configured The structure after the step of twisted or honeycomb pattern. To form the structure shown in Fig. 28, a plurality of staggered conductive layers and insulating layers are deposited over the insulating layer 1101 on a substrate (not shown). After forming the plurality of layers, a patterning etch is performed that stops at the insulating layer 1101 to form a plurality of openings through the conductive strips 1102, 1103, 1104, 1105, 1106, and 1107 in the one or more stacks (eg, 3101, 3102 and 3103). For the sake of brevity, only one stack is shown in Figure 27. The step of forming the plurality of openings can be performed by the step of forming a plurality of stacks in the memory block.

第28圖製程中形成第一絕緣體69與導電膜1140C覆蓋複數個開口以形成接觸導電條之側壁的複數個柱體之步驟後的結構。第一絕緣體69與導電膜1140C並未完全填滿開口,而留下開口中的區域(例如3104、3105與3106)。第一絕緣體69可由參照第10圖所述的步驟形成,且導電膜1140C可由參照第23圖所示述的步驟形成。In the process of Fig. 28, a structure is formed in which the first insulator 69 and the conductive film 1140C cover a plurality of openings to form a plurality of pillars contacting the sidewalls of the bus bar. The first insulator 69 and the conductive film 1140C do not completely fill the opening, leaving areas in the opening (eg, 3104, 3105, and 3106). The first insulator 69 can be formed by the steps described with reference to FIG. 10, and the conductive film 1140C can be formed by referring to the steps described in FIG.

第29圖繪示製程中以絕緣材料填充區域(例如第28圖的3104、3105與3106)之形成步驟後的結構。參照第11圖所述之在記憶體區塊中進行的填充步驟也應用至於此所述的電容。如此,形成了填充結構3160,其類似第11圖的填充結構1060。Fig. 29 is a view showing the structure after the formation step of the region filled with the insulating material (e.g., 3104, 3105, and 3106 in Fig. 28) in the process. The filling step performed in the memory block as described with reference to Fig. 11 is also applied to the capacitance described herein. As such, a fill structure 3160 is formed that is similar to fill structure 1060 of FIG.

第30圖繪示製程中形成內層連接體(例如3030、3031)與階層間連接體(例如3032、3033)於堆疊之頂部上方的導電膜1140C上之步驟後的結構。此例子中,內層連接體(例如3030、3031)可於參照第15圖所述的步驟中形成,且階層間連接體3032、3033可於參照第16圖所述的步驟中形成。如圖所示,階層間連接體(例如3032、3033)係在第二圖案化導體層中電性且被動地連接在一起,3D電容的第二終端係透過其連接至設置在堆疊中之複數個柱體中的垂直導電膜。3D電容的第一終端係透過參照第21圖所述的中間連接體與階梯接觸結構連接至堆疊中的導電條1102、1103、1104、1105、1106及1107。Figure 30 is a diagram showing the structure after forming the inner layer connecting body (e.g., 3030, 3031) and the inter-layer connecting body (e.g., 3032, 3033) on the conductive film 1140C above the top of the stack in the process. In this example, the inner layer connectors (e.g., 3030, 3031) can be formed in the steps described with reference to Fig. 15, and the inter-layer connectors 3032, 3033 can be formed in the steps described with reference to Fig. 16. As shown, the inter-layer connectors (eg, 3032, 3033) are electrically and passively connected together in a second patterned conductor layer through which the second terminal of the 3D capacitor is connected to a plurality of layers disposed in the stack. A vertical conductive film in a cylinder. The first terminal of the 3D capacitor is connected to the conductive strips 1102, 1103, 1104, 1105, 1106, and 1107 in the stack by referring to the intermediate connector and the step contact structure described in FIG.

第31圖繪示第30圖之結構的上視圖。在此示範例中,堆疊包括右側的著陸墊區域3012與左側的著陸墊區域3013。其它例子中,右側的著陸墊區域3012可選擇性地消除,使得能形成更多柱體以提高電容。導電膜1140C在堆疊中之複數個開口上方,並能選擇性地覆蓋著陸墊區域3013之區域3016,使得能形成更多至第二終端的連接體。複數個柱體與柱體中的填充結構(例如3160)在堆疊中具有錯開或蜂巢狀的配置。堆疊中的導電條係透過右側的著陸墊區域3012中的右側的接觸區域3014與左側的著陸墊區域3013中左側的接觸區域3015一起電性且被動地連接至3D電容的第一終端,亦即連接至電荷幫浦的第一節點或其它電路。如此,導電條作用為3D電容的第一極板。此例子中,接觸區域3014與3015中的接觸插塞係連接在第一圖案化導體層中。另一方面,複數個柱體中的垂直導電膜係透過複數個連接體一起電性且被動地連接至3D電容的第二終端,亦即連接至電荷幫浦的第二節點或其它電路,藉此垂直導電膜係作用為3D電容的第二極板。此例子中,複數個階層間連接體係連接在第二圖案化導體層中。Figure 31 is a top view showing the structure of Figure 30. In this example, the stack includes a landing pad area 3012 on the right side and a landing pad area 3013 on the left side. In other examples, the landing pad area 3012 on the right side can be selectively eliminated so that more posts can be formed to increase capacitance. The conductive film 1140C is over a plurality of openings in the stack and can selectively cover the regions 3016 of the land pad region 3013 such that more connections to the second terminal can be formed. The plurality of cylinders and the filling structure (eg, 3160) in the cylinder have a staggered or honeycombed configuration in the stack. The conductive strips in the stack are electrically and passively connected to the first terminal of the 3D capacitor through the contact region 3014 on the right side of the landing pad region 3012 on the right side and the contact region 3015 on the left side in the landing pad region 3013 on the left side, that is, Connect to the first node or other circuit of the charge pump. As such, the conductive strip acts as the first plate of the 3D capacitor. In this example, the contact plugs in contact regions 3014 and 3015 are connected in the first patterned conductor layer. In another aspect, the vertical conductive film in the plurality of pillars is electrically and passively connected to the second terminal of the 3D capacitor through the plurality of connectors, that is, the second node or other circuit connected to the charge pump. This vertical conductive film acts as a second plate of the 3D capacitor. In this example, a plurality of inter-layer connection systems are connected in the second patterned conductor layer.

第32圖繪示第三實施例之3D電容之一變化例。此示範例中,係以導電膜1140C填充堆疊中之開口中的區域(例如第28圖的3104、3105與3106),使得繪示之結構的整個頂表面係導電的。因此,此變化例提供更多以包含中間(intermediate)與階層間(inter-level)連接體的空間,並消除在柱體中的填充結構3160上配置連接體時的誤對準問題。Fig. 32 is a diagram showing a variation of one of the 3D capacitors of the third embodiment. In this example, the area in the opening in the stack (e.g., 3104, 3105, and 3106 of Figure 28) is filled with a conductive film 1140C such that the entire top surface of the depicted structure is electrically conductive. Therefore, this variation provides more space to include intermediate and inter-level connectors, and eliminates misalignment problems when the connectors are placed on the filling structure 3160 in the cylinder.

第33圖係包含3D NAND快閃記憶體之積體電路901的簡單晶片方塊圖。積體電路901包含記憶體陣列960,記憶體陣列960包含在積體電路基底上之一或更多個於此所述的3D記憶體區塊。Figure 33 is a simplified wafer block diagram of an integrated circuit 901 including a 3D NAND flash memory. The integrated circuit 901 includes a memory array 960 that includes one or more of the 3D memory blocks described herein on the integrated circuit substrate.

SSL/GSL解碼器940耦接至配置在記憶體陣列960中複數個SSL/GSL線945。偶數/奇數階層解碼器950耦接至複數個偶數/奇數字元線955。總體位元線行解碼器970耦接至在記憶體陣列960沿著行(column)配置的複數個總體位元線965,以從記憶體陣列960讀取資料並寫入資料至記憶體陣列960。總體位元線係設置至如第16圖中所示之具有延伸部2041-2043、2045-2046之位元線2060-2062。位址係在匯流排930從控制邏輯910供應至解碼器970、解碼器940與解碼器950。此例子中,感測放大器與程式化緩衝電路980係透過第一資料線975耦接至行解碼器970。電路980中的程式化緩衝可儲存用於多階層程式化的程式碼、或為程式碼之功效的值,以指示所選擇之位元線的程式化或禁止狀態。行解碼器970可包含電路,用以回應程式化緩衝中的資料值,選擇性地供應程式化與禁止電壓至記憶體中的位元線。The SSL/GSL decoder 940 is coupled to a plurality of SSL/GSL lines 945 disposed in the memory array 960. The even/odd level decoder 950 is coupled to a plurality of even/odd digital lines 955. The overall bit line row decoder 970 is coupled to a plurality of overall bit lines 965 arranged along the column in the memory array 960 to read data from the memory array 960 and write data to the memory array 960. . The overall bit line is set to bit lines 2060-2062 having extensions 2041-2043, 2045-2046 as shown in FIG. The address is supplied from the control logic 910 to the decoder 970, the decoder 940, and the decoder 950 at the bus 930. In this example, the sense amplifier and the stylized buffer circuit 980 are coupled to the row decoder 970 via the first data line 975. The stylized buffer in circuit 980 can store code for multi-level programming, or a value for the power of the code to indicate the stylized or disabled state of the selected bit line. Row decoder 970 can include circuitry for selectively supplying stylized and inhibited voltages to bit lines in the memory in response to data values in the stylized buffer.

從感測放大器/程式化緩衝電路980的感測資料係透過第二資料線985供應至多階層資料緩衝990,然後藉由資料路徑993耦接至輸入/輸出電路991。此外,此例子中,輸入資料係提供至多階層資料緩衝990,用於支援陣列中獨立的雙閘極胞之獨立側各個的多階層程式化操作。The sensed data from the sense amplifier/stylized buffer circuit 980 is supplied to the multi-level data buffer 990 through the second data line 985 and then coupled to the input/output circuit 991 via the data path 993. In addition, in this example, the input data is provided to a multi-level data buffer 990 for supporting multi-level programming operations on separate sides of separate dual gate cells in the array.

輸入/輸出電路991驅動資料至積體電路901外部的目的端。輸入/輸出資料與控制訊號的移除係透過輸入/輸出電路991之間的資料匯流排905、控制邏輯910與積體電路901上的輸入/輸出埠,或積體電路901內部或外部的其它資料源,例如一般目的程序或特殊目的應用電路,或提供3D記憶體區塊與3D電容區塊960所支援之晶片上系統功能之模組的組合。The input/output circuit 991 drives the data to the destination outside the integrated circuit 901. The input/output data and the control signal are removed through the data bus 905 between the input/output circuit 991, the input/output port on the control logic 910 and the integrated circuit 901, or other internal or external to the integrated circuit 901. Data sources, such as general purpose programs or special purpose application circuits, or combinations of modules that provide 3D memory blocks and on-wafer system functions supported by 3D capacitor block 960.

在第33圖所示之例子中,控制邏輯910致能電荷幫浦,並使用電荷幫浦產生用以讀取、抹除與程式化操作的正電壓與負電壓,且控制應用透過區塊920中所產生或提供之電壓供給,例如讀取、抹除、驗證及程式化偏壓。控制邏輯910耦接至多階層資料緩衝990及3D記憶體區塊與3D電容區塊960。控制邏輯910包含用以控制多階層程式化操作的邏輯。在支援於此所述之U形垂直NAND結構的實施例中,安裝的邏輯係用以執行方法: 例如使用字元線層解碼器選擇陣列中記憶胞的層; 例如藉由選擇偶數或奇數側之字元線結構,以在選擇的層中選擇垂直通道結構的一側; 例如藉由使用垂直通道結構之列上的SSL開關與GSL開關,以在陣列中之選擇的列中選擇垂直通道結構;及 使用耦接至選擇列之垂直通道結構之像頁緩衝之總體位元線上的位元線電路,來儲存電荷在陣列中一或更多個選擇的行中的垂直通道結構之選擇側上的選擇層中的電荷捕捉側中以表示資料。In the example shown in FIG. 33, control logic 910 enables the charge pump and uses the charge pump to generate positive and negative voltages for reading, erasing, and stylizing operations, and the control application passes through block 920. Voltage supplies generated or provided in, such as read, erase, verify, and program bias. The control logic 910 is coupled to the multi-level data buffer 990 and the 3D memory block and the 3D capacitor block 960. Control logic 910 includes logic to control multi-level stylized operations. In an embodiment supporting a U-shaped vertical NAND structure as described herein, the logic installed is used to perform the method: for example, using a word line layer decoder to select a layer of memory cells in the array; for example by selecting an even or odd side a word line structure to select one side of the vertical channel structure in the selected layer; for example, by using an SSL switch and a GSL switch on the vertical channel structure column to select a vertical channel structure in a selected column in the array And using a bit line circuit coupled to the overall bit line of the page buffer of the vertical channel structure of the selected column to store charge on the selected side of the vertical channel structure in one or more selected rows in the array The charge trapping side of the selection layer is used to represent the data.

一些實施例中,係安裝邏輯,例如藉由控制偶數與奇數字元線層解碼器,來在陣列之選擇層中指叉的偶數與奇數字元線結構其中之一做選擇,以選擇層並選擇側。In some embodiments, the logic is installed, for example by controlling the even and odd digital line layer decoders, to select one of the even and odd digital line structures of the fingers in the selected layer of the array to select layers and select side.

一些實施例,係安裝邏輯以儲存多階層之電荷,以在選擇側上之選擇層中的電荷捕捉層中表示出多於一位元的資料。以此方法,陣列中垂直通道結構之選擇的平截頭體(frustum)中的選擇胞係儲存多於二位元,包括在各側胞上之多於一位元。In some embodiments, the logic is installed to store multiple levels of charge to represent more than one bit of data in the charge trapping layer in the selected layer on the selection side. In this way, the selected cell line in the selected frustum of the vertical channel structure in the array stores more than two bits, including more than one bit on each side cell.

控制邏輯910可使用已知的特殊目的邏輯電路。其它實施例中,控制邏輯包括一般目的程序,其可應用在相同的積體電路上,其執行電腦程式以控制裝置之操作。又其它實施例中,控制邏輯可應用特殊目的邏輯電路與一般目的程序之組合。Control logic 910 can use known special purpose logic circuits. In other embodiments, the control logic includes a general purpose program that can be applied to the same integrated circuit that executes a computer program to control the operation of the device. In still other embodiments, the control logic can apply a combination of special purpose logic circuitry to a general purpose program.

藉由建立對應於儲存電荷量之多程式化階層而建立記憶胞臨界電壓VT,3D記憶體區塊與3D電容區塊960可包括配置以在每胞中儲存多個位元的電荷捕捉記憶胞。如上所述,每胞單一位元的實施例可包含於此所述的結構。The memory cell threshold voltage VT is established by establishing a multi-stylized hierarchy corresponding to the amount of stored charge, and the 3D memory block and the 3D capacitance block 960 can include a charge trapping memory cell configured to store a plurality of bits in each cell. . As mentioned above, embodiments of a single bit per cell can include the structures described herein.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

69‧‧‧第一絕緣體
80、80a、80b‧‧‧導電膜
100‧‧‧記憶裝置
901‧‧‧積體電路
905‧‧‧輸入/輸出資料
910‧‧‧控制器
920‧‧‧偏壓配置、3D電荷幫浦區塊
930‧‧‧位址
940‧‧‧SSL/GSL列解碼器
945‧‧‧SSL/GSL線
950‧‧‧偶數/奇數階層解碼器
955‧‧‧偶數/奇數字元線
960‧‧‧3D記憶體區塊與3D電容區塊
965‧‧‧總體位元線
970‧‧‧總體位元線行解碼器
975‧‧‧第一資料線
980‧‧‧感測放大器/程式化緩衝
985‧‧‧第二資料線
990‧‧‧多階層資料緩衝
991‧‧‧輸入/輸出電路
993‧‧‧資料路徑
1101‧‧‧絕緣層
1105-E、1105-O、1106-E、1106-O‧‧‧導電條
1102、1103、1104、1105、1106、1107‧‧‧導電條
1108、1121、1122、1123、1124、1125‧‧‧絕緣條
1110、1111、1112、1113‧‧‧堆疊
1130‧‧‧阻擋層
1131‧‧‧電荷捕捉層
1132‧‧‧穿隧層
1140‧‧‧半導體膜
1140C‧‧‧導電膜
1140-O、1140-E‧‧‧半導體膜之部分
1141‧‧‧堆疊之間的區域
1160‧‧‧填充結構
1161‧‧‧孔洞
2000、2001、2002、2003、2004、2005‧‧‧絕緣結構
2011-O‧‧‧奇數堆疊
2011-E‧‧‧偶數堆疊
2020、2021、2022、2023、2024、2025、2026、2027‧‧‧內層連接體
2030、2031、2034‧‧‧參考線
2032、2033、2035、2036、2037‧‧‧階層間連接體
2041、2042、2043、2045、2046、2047‧‧‧延伸部
2060、2061、2062‧‧‧位元線
2069‧‧‧電路路徑
2070、2071、2073、2074、2075、2077、2078、2079‧‧‧半導體膜的部分
3000、3001、3002‧‧‧溝槽
3010‧‧‧第二絕緣體
3011‧‧‧孔洞
3012、3013‧‧‧著陸墊區域
3014‧‧‧右側的接觸區域
3015‧‧‧右側的接觸區域
3016‧‧‧偶數堆疊
3017‧‧‧奇數堆疊
3020、3021、3022、3023、3024、3025‧‧‧接觸插塞
3026‧‧‧中間連接體
3030、3031‧‧‧內層連接體
3032、3033‧‧‧階層間連接體
3060‧‧‧填充結構
3101、3102、3103‧‧‧開口
3104、3105、3106‧‧‧開口中的區域
3111、3113、3115、3117‧‧‧奇數堆疊
3112、3114、3116‧‧‧偶數堆疊
3160‧‧‧填充結構
3DCAP1、3DCAP2、3DCAP3、3DCAP4‧‧‧3D電容
AG‧‧‧輔助閘極
C1、C2、C3、C4‧‧‧電容
CAP 0、CAP 13D‧‧‧電容
CLK1、CLK2‧‧‧時脈
Cdep‧‧‧寄生電容
Cox‧‧‧電容
D‧‧‧第一極板與第二極板之間的距離
D1、D2、D3、D4‧‧‧二極體
DONO ‧‧‧第一極板與第二極板之間的距離係
GATE‧‧‧閘極
GSL‧‧‧接地選擇線
L‧‧‧導電條的長度
N+‧‧‧N+摻雜的源極/汲極
N-WELL‧‧‧N型井
P-SUB‧‧‧P型基底
R‧‧‧半徑
SSL‧‧‧串列選擇線
Vin‧‧‧輸入電壓
Vout‧‧‧輸出電壓
WL‧‧‧字元線
69‧‧‧First insulator
80, 80a, 80b‧‧‧ conductive film
100‧‧‧ memory device
901‧‧‧Integrated circuit
905‧‧‧Input/output data
910‧‧‧ Controller
920‧‧‧ Bias configuration, 3D charge pump block
930‧‧‧ address
940‧‧‧SSL/GSL column decoder
945‧‧‧SSL/GSL line
950‧‧‧ even/odd level decoder
955‧‧‧ even/odd digital lines
960‧‧‧3D memory block and 3D capacitor block
965‧‧‧ overall bit line
970‧‧‧Overall bit line decoder
975‧‧‧First data line
980‧‧‧Sense Amplifier/Stylized Buffer
985‧‧‧Second data line
990‧‧‧Multi-level data buffer
991‧‧‧Input/Output Circuit
993‧‧‧data path
1101‧‧‧Insulation
1105-E, 1105-O, 1106-E, 1106-O‧‧‧ Conductive strips
1102, 1103, 1104, 1105, 1106, 1107‧‧‧ Conductive strips
1108, 1121, 1122, 1123, 1124, 1125‧‧‧ insulation strips
1110, 1111, 1112, 1113‧‧‧ stacking
1130‧‧‧Block
1131‧‧‧ Charge trapping layer
1132‧‧‧ Tunneling
1140‧‧‧Semiconductor film
1140C‧‧‧Electrical film
1140-O, 1140-E‧‧‧ part of the semiconductor film
1141‧‧‧A region between stacks
1160‧‧‧filled structure
1161‧‧‧ holes
2000, 2001, 2002, 2003, 2004, 2005‧‧‧ ‧ insulation structure
2011-O‧‧‧ odd stacking
2011-E‧‧‧ even stack
2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027‧‧‧ inner layer connectors
2030, 2031, 2034‧‧‧ reference line
2032, 2033, 2035, 2036, 2037‧ ‧ inter-sector connectors
2041, 2042, 2043, 2045, 2046, 2047‧‧‧ extensions
2060, 2061, 2062‧‧‧ bit line
2069‧‧‧Circuit path
2070, 2071, 2073, 2074, 2075, 2077, 2078, 2079‧‧ ‧ part of the semiconductor film
3000, 3001, 3002‧‧‧ trench
3010‧‧‧Second insulator
3011‧‧‧ hole
3012, 3013‧‧‧ Landing pad area
3014‧‧‧Contact area on the right
3015‧‧‧Contact area on the right
3016‧‧‧ even stack
3017‧‧‧ odd stack
3020, 3021, 3022, 3023, 3024, 3025‧‧‧ contact plugs
3026‧‧‧Intermediate connector
3030, 3031‧‧‧ Inner layer connectors
3032, 3033‧‧ ‧ inter-sector connectors
3060‧‧‧filled structure
3121, 3102, 3103‧‧‧ openings
3104, 3105, 3106‧‧‧ areas in the opening
3111, 3113, 3115, 3117‧‧‧ odd stack
3112, 3114, 3116‧‧‧ even stack
3160‧‧‧filled structure
3DCAP1, 3DCAP2, 3DCAP3, 3DCAP4‧‧3D capacitors
AG‧‧‧Auxiliary gate
C1, C2, C3, C4‧‧‧ capacitors
CAP 0, CAP 13D‧‧‧ capacitor
CLK1, CLK2‧‧‧ clock
Cdep‧‧‧ parasitic capacitance
Cox‧‧‧ capacitor
D‧‧‧Distance between the first plate and the second plate
D1, D2, D3, D4‧‧‧ diodes
D ONO ‧‧‧The distance between the first plate and the second plate
GATE‧‧‧ gate
GSL‧‧‧ Grounding selection line
L‧‧‧ Length of conductive strip
N+‧‧‧N+ doped source/drain
N-WELL‧‧‧N well
P-SUB‧‧‧P type substrate
R‧‧‧ Radius
SSL‧‧‧ tandem selection line
Vin‧‧‧Input voltage
Vout‧‧‧ output voltage
WL‧‧‧ character line

第1圖繪示先前技術之電荷幫浦之簡單示意圖。 第2圖繪示先前技術之具有寄生電容的一般MOS電容。 第3圖係包括所述3D記憶體區塊與電容的3D NAND記憶裝置100的區塊圖。 第4圖繪示3D記憶體區塊的立體圖。 第5至5A圖繪示根據第一實施例之3D電容的立體圖。 第6至6A圖繪示根據第二實施例之3D電容的立體圖。 第7至7A圖繪示根據第三實施例之3D電容的立體圖。 第8圖係使用所述3D電容之電荷幫浦的簡單示意圖。 第9至17圖繪示3D記憶體區塊之製造流程期間之結構的立體圖。 第18至21圖係伴隨發生在3D記憶體區塊製程中,第一實施例中之3D電容製造步驟期間的額外結構立體圖。 第22至25圖係伴隨發生在3D記憶體區塊製程中,第二實施例中之3D電容製造步驟期間的額外結構立體圖。 第26圖繪示第二實施例中之3D電容的變化例。 第27至31圖係伴隨發生在3D記憶體區塊製程中,第三實施例中之3D電容製造步驟期間的額外結構立體圖。。 第32圖繪示第三實施例中之3D電容的變化例。 第33圖係包含所述3D記憶體區塊與3D電容之積體電路的方塊圖。Figure 1 is a simplified schematic diagram of a prior art charge pump. Figure 2 illustrates a prior art MOS capacitor with parasitic capacitance. Figure 3 is a block diagram of a 3D NAND memory device 100 including the 3D memory block and capacitor. Figure 4 is a perspective view of a 3D memory block. 5 to 5A are perspective views of the 3D capacitor according to the first embodiment. 6 to 6A are perspective views of the 3D capacitor according to the second embodiment. 7 to 7A are perspective views of the 3D capacitor according to the third embodiment. Figure 8 is a simplified schematic diagram of the charge pump using the 3D capacitor. Figures 9 through 17 illustrate perspective views of the structure during the manufacturing process of the 3D memory block. Figures 18 through 21 are additional structural perspective views of the 3D capacitor fabrication step in the first embodiment, which is accompanied by a 3D memory block process. Figures 22 through 25 are additional structural perspective views of the 3D capacitor fabrication step in the second embodiment, which is accompanied by a 3D memory block process. Fig. 26 is a diagram showing a variation of the 3D capacitance in the second embodiment. Figures 27 to 31 are additional structural perspective views during the 3D capacitor fabrication step in the third embodiment, which is accompanied by a 3D memory block process. . Fig. 32 is a diagram showing a variation of the 3D capacitance in the third embodiment. Figure 33 is a block diagram of an integrated circuit including the 3D memory block and the 3D capacitor.

Claims (9)

一種三維(3D)電容,包括: 與複數個絕緣條交錯之複數個導電條的複數個堆疊; 一第一終端,連接至該些堆疊中一第一組間隔堆疊中該些堆疊中的複數個導電條;及 一第二終端,連接至該些堆疊中一第二組間隔堆疊中該些堆疊中的複數個導電條。A three-dimensional (3D) capacitor includes: a plurality of stacks of a plurality of conductive strips interleaved with a plurality of insulating strips; a first terminal connected to a plurality of the stacks in a first set of spaced stacks of the stacks a conductive strip; and a second terminal connected to the plurality of conductive strips in the stack of the second set of spaced stacks in the stack. 如申請專利範圍第1項所述之3D電容,其中該第一組間隔堆疊中的該些堆疊係指叉(interdigitated)於該第二組間隔堆疊中的該些堆疊。The 3D capacitor of claim 1, wherein the stacks of the first set of spaced stacks are interdigitated in the stacks of the second set of spaced stacks. 一種3D電容,包括: 與複數個絕緣條交錯之複數個導電條的一或更多個堆疊; 複數個柱體,分別包含一垂直導電膜與一第一絕緣體; 一第一終端,連接至該一或更多個堆疊中的該些導電條;及 一第二終端,連接至該些柱體中的該些垂直導電膜。A 3D capacitor includes: one or more stacks of a plurality of conductive strips interleaved with a plurality of insulating strips; a plurality of pillars respectively including a vertical conductive film and a first insulator; a first terminal connected to the The plurality of conductive strips in the stack; and a second terminal connected to the vertical conductive films in the pillars. 如申請專利範圍第3項所述之3D電容,其中該些柱體具有錯開或蜂巢狀的配置。The 3D capacitor of claim 3, wherein the pillars have a staggered or honeycomb configuration. 一種3D電容,包括: 數個導電條與數個絕緣條相交錯的數個堆疊; 一第一終端,連接至該些堆疊中一或更多個堆疊中之連續階層的數個導電條;及 一第二終端,絕緣於該第一終端。A 3D capacitor comprising: a plurality of stacks of a plurality of conductive strips interleaved with a plurality of insulating strips; a first terminal connected to a plurality of conductive strips of a continuous layer of the one or more stacks of the stacks; A second terminal is insulated from the first terminal. 一種3D電容的製造方法,包括: 形成與複數個絕緣條交錯之複數個導電條的複數個堆疊; 形成該3D電容的一第一終端,該第一終端連接至該些堆疊中一或更多個堆疊中之連續階層的數個導電條;及 形成該該3D電容的一第二終端,該第二終端絕緣於該第一終端。A method of manufacturing a 3D capacitor, comprising: forming a plurality of stacks of a plurality of conductive strips interleaved with a plurality of insulating strips; forming a first terminal of the 3D capacitor, the first terminal being connected to one or more of the stacks a plurality of conductive strips of a continuous layer in the stack; and a second terminal forming the 3D capacitor, the second terminal being insulated from the first terminal. 如申請專利範圍第6項所述之3D電容的製造方法,其中該形成該第二終端包括連接數個堆疊中之連續階層的數個導電條。The method of manufacturing a 3D capacitor according to claim 6, wherein the forming the second terminal comprises connecting a plurality of conductive strips of successive layers in the plurality of stacks. 如申請專利範圍第7項所述之3D電容的製造方法,其中該第二終端所連接連續階層之該些導電條的該些堆疊係指叉於包括該第一終端所連接連續階層之該些導電條的該一或更多個堆疊。The method for manufacturing a 3D capacitor according to claim 7, wherein the stacks of the conductive strips connected to the continuous layer of the second terminal are forked to include the continuous layers connected to the first terminal. The one or more stacks of conductive strips. 如申請專利範圍第6項所述之3D電容的製造方法,其中該形成該第二終端包含形成複數個柱體,該些柱體具有錯開或蜂巢狀的配置。The method of manufacturing a 3D capacitor according to claim 6, wherein the forming the second terminal comprises forming a plurality of cylinders having a staggered or honeycomb configuration.
TW105133248A 2016-10-14 2016-10-14 3d capacitor and manufacturing method for the same TWI602281B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105133248A TWI602281B (en) 2016-10-14 2016-10-14 3d capacitor and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105133248A TWI602281B (en) 2016-10-14 2016-10-14 3d capacitor and manufacturing method for the same

Publications (2)

Publication Number Publication Date
TWI602281B TWI602281B (en) 2017-10-11
TW201814885A true TW201814885A (en) 2018-04-16

Family

ID=61011329

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133248A TWI602281B (en) 2016-10-14 2016-10-14 3d capacitor and manufacturing method for the same

Country Status (1)

Country Link
TW (1) TWI602281B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798757B (en) * 2020-10-26 2023-04-11 南亞科技股份有限公司 Semiconductor structure with vertical gate transistor and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10515810B2 (en) * 2018-04-10 2019-12-24 Macronix International Co., Ltd. Self-aligned di-silicon silicide bit line and source line landing pads in 3D vertical channel memory

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080091416A (en) * 2008-08-14 2008-10-13 김성동 Three dimensional semiconductor device and methods of fabricating and operating the same
KR101868047B1 (en) * 2011-11-09 2018-06-19 에스케이하이닉스 주식회사 Nonvolatile memory device and method for fabricating the same
US8951859B2 (en) * 2011-11-21 2015-02-10 Sandisk Technologies Inc. Method for fabricating passive devices for 3D non-volatile memory
US9412806B2 (en) * 2014-06-13 2016-08-09 Invensas Corporation Making multilayer 3D capacitors using arrays of upstanding rods or ridges

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798757B (en) * 2020-10-26 2023-04-11 南亞科技股份有限公司 Semiconductor structure with vertical gate transistor and method for manufacturing the same
US11659704B2 (en) 2020-10-26 2023-05-23 Nanya Technology Corporation Method for manufacturing semiconductor structure with vertical gate transistor

Also Published As

Publication number Publication date
TWI602281B (en) 2017-10-11

Similar Documents

Publication Publication Date Title
US9716137B1 (en) 3D capacitor with 3D memory
US20200243500A1 (en) Three-dimensional semiconductor chip containing memory die bonded to both sides of a support die and methods of making the same
CN111742368B (en) Three-dimensional NOR memory arrays with very fine pitch: apparatus and method
CN108630704B (en) Three-dimensional memory device with layered conductors
US10043819B1 (en) Method for manufacturing 3D NAND memory using gate replacement, and resulting structures
TWI582964B (en) A memory device and method for fabricating the same
US9524980B2 (en) U-shaped vertical thin-channel memory
US8951862B2 (en) Damascene word line
TWI550833B (en) High aspect ratio etching method
WO2020139424A1 (en) Three-dimensional memory devices having a multi-stack bonded structure using a logic die and multiple three-dimensional memory dies and method of making the same
US11011209B2 (en) Three-dimensional memory device including contact-level bit-line-connection structures and methods of making the same
US20110303970A1 (en) Vertical semiconductor devices
US11631690B2 (en) Three-dimensional memory device including trench-isolated memory planes and method of making the same
TWI572018B (en) Memory device and fabricating method thereof
TW201603229A (en) Contact structure and forming method, and the circuit using the same
US9741569B2 (en) Forming memory using doped oxide
US11335790B2 (en) Ferroelectric memory devices with dual dielectric confinement and methods of forming the same
TWI602281B (en) 3d capacitor and manufacturing method for the same
US11398497B2 (en) Three-dimensional memory device containing auxiliary support pillar structures and method of making the same
CN114649340A (en) Three-dimensional memory element and manufacturing method thereof
US11812618B2 (en) Nonvolatile memory device including ferroelectric layer having negative capacitance
TWI785804B (en) 3d and flash memory device and method of fabricating the same
CN107958895B (en) Three-dimensional capacitor and manufacturing method thereof
CN115497952A (en) Memory element and flash memory element
JP2009071325A (en) Semiconductor device and method for manufacturing the same