TW201813103A - High voltage semiconductor device - Google Patents

High voltage semiconductor device Download PDF

Info

Publication number
TW201813103A
TW201813103A TW105128604A TW105128604A TW201813103A TW 201813103 A TW201813103 A TW 201813103A TW 105128604 A TW105128604 A TW 105128604A TW 105128604 A TW105128604 A TW 105128604A TW 201813103 A TW201813103 A TW 201813103A
Authority
TW
Taiwan
Prior art keywords
metal
semiconductor device
voltage semiconductor
disposed
layer
Prior art date
Application number
TW105128604A
Other languages
Chinese (zh)
Other versions
TWI597847B (en
Inventor
布 蘇
陳柏安
克 維
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW105128604A priority Critical patent/TWI597847B/en
Priority to CN201710004486.XA priority patent/CN107799595B/en
Application granted granted Critical
Publication of TWI597847B publication Critical patent/TWI597847B/en
Publication of TW201813103A publication Critical patent/TW201813103A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7815Vertical DMOS transistors, i.e. VDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

High voltage semiconductor devices are provided. The high voltage semiconductor device includes a substrate. A source region and a drain region are disposed in the substrate and separated by an isolation structure. A first metal layer is disposed on the substrate, including a first metal body portion electrically connected to the source region and the drain region respectively, and a plurality of first metal blocks disposed directly above the isolation structure. A second metal layer disposed on the first metal layer includes a second metal body region electrically connected to the source region and the drain region respectively, and a plurality of second metal blocks disposed directly above the isolation structure, wherein an overlap portion is between each of the first metal blocks and the second metal blocks corresponding to the first metal block. A via is disposed between the first metal layer and the second layer, wherein the via is disposed in the overlap portion between the first metal block and the second metal block.

Description

高壓半導體裝置    High-voltage semiconductor device   

本發明係有關於半導體裝置,且特別係有關於高壓半導體裝置。 The present invention relates to a semiconductor device, and more particularly, to a high-voltage semiconductor device.

高壓半導體裝置技術適用於高電壓與高功率的積體電路領域。傳統高壓半導體裝置,例如垂直式擴散金氧半導體(vertically diffused metal oxide semiconductor,VDMOS)電晶體及水平擴散金氧半導體(LDMOS)電晶體,主要用於18V以上的元件應用領域。高壓半導體裝置技術的優點在於符合成本效益,且易相容於其它製程,已廣泛應用於顯示器驅動IC元件、電源供應器、電力管理、通訊、車用電子或工業控制等領域中。 High-voltage semiconductor device technology is applicable to the field of integrated circuits with high voltage and high power. Traditional high-voltage semiconductor devices, such as vertically diffused metal oxide semiconductor (VDMOS) transistors and horizontally diffused metal oxide semiconductor (LDMOS) transistors, are mainly used in the field of device applications above 18V. The advantage of high-voltage semiconductor device technology is that it is cost-effective and easily compatible with other processes. It has been widely used in display drive IC components, power supplies, power management, communications, automotive electronics or industrial control.

在傳統的高壓半導體裝置中,隔離結構(例如為場氧化層)會直接曝露在保護層或模塑料下,形成上述材料的過程中可能產生裂縫,而使得游離電荷(mobile charge)會滲透至場氧化層上,造成崩潰電壓下降且使得漏電的機率上升。 In traditional high-voltage semiconductor devices, the isolation structure (such as a field oxide layer) is directly exposed to the protective layer or molding compound. During the process of forming the above materials, cracks may occur, so that the mobile charge will penetrate into the field. On the oxide layer, the breakdown voltage decreases and the probability of leakage increases.

因此,有必要尋求一種新的高壓半導體裝置結構以解決上述的問題。 Therefore, it is necessary to find a new high-voltage semiconductor device structure to solve the above problems.

本揭露的一些實施例係關於高壓半導體裝置,其包含基底,源極區及汲極區各別設置於基底內,且被隔離結構 隔開,第一金屬層設置於基底上,包含:第一金屬層主體部與源極區及汲極區各自電性連接,以及複數個第一金屬阻擋塊,設置在隔離結構的正上方,第二金屬層設置於第一金屬層上,包含:第二金屬層主體部與源極區及汲極區各自電性連接,以及複數個第二金屬阻擋塊設置在隔離結構的正上方,其中每一個第一金屬阻擋塊與對應的第二金屬阻擋塊之間具有重疊部分,以及導通孔設置於第一金屬層與第二金屬層間,其中導通孔設置於第一金屬阻擋塊與第二金屬阻擋塊間的重疊部分。 Some embodiments of the present disclosure relate to a high-voltage semiconductor device, which includes a substrate, and a source region and a drain region are respectively disposed in the substrate and separated by an isolation structure. A first metal layer is disposed on the substrate and includes: a first The body portion of the metal layer is electrically connected to the source region and the drain region, respectively, and a plurality of first metal blocking blocks are disposed directly above the isolation structure. The second metal layer is disposed on the first metal layer and includes: a second The main body portion of the metal layer is electrically connected to the source region and the drain region, respectively, and a plurality of second metal barrier blocks are disposed directly above the isolation structure, wherein each of the first metal barrier blocks and the corresponding second metal barrier block There is an overlapping portion therebetween, and a via hole is disposed between the first metal layer and the second metal layer, wherein the via hole is disposed at the overlapping portion between the first metal barrier block and the second metal barrier block.

100‧‧‧基底 100‧‧‧ substrate

102‧‧‧第一井區 102‧‧‧The first well area

104‧‧‧第二井區 104‧‧‧Second Well District

106‧‧‧第一摻雜區 106‧‧‧ first doped region

108‧‧‧第二摻雜區 108‧‧‧ second doped region

110‧‧‧第三摻雜區 110‧‧‧ third doped region

112‧‧‧第四摻雜區 112‧‧‧ Fourth doped region

114、116、118‧‧‧隔離結構 114, 116, 118‧‧‧ isolated structures

120‧‧‧閘極結構 120‧‧‧Gate structure

120a‧‧‧閘極介電層 120a‧‧‧Gate dielectric layer

120b‧‧‧閘極電極 120b‧‧‧Gate electrode

122‧‧‧絕緣側壁層 122‧‧‧ Insulated sidewall layer

124‧‧‧接觸窗 124‧‧‧contact window

126‧‧‧介電層 126‧‧‧Dielectric layer

130‧‧‧第一金屬層 130‧‧‧first metal layer

132‧‧‧第一金屬主體部 132‧‧‧First metal body

134‧‧‧第一金屬阻擋塊 134‧‧‧The first metal block

140‧‧‧第二金屬層 140‧‧‧Second metal layer

142‧‧‧第二金屬主體部 142‧‧‧Second metal body

144‧‧‧第二金屬阻擋塊 144‧‧‧Second Metal Block

150、152、154‧‧‧導通孔 150, 152, 154‧‧‧vias

160‧‧‧金屬層間介電層 160‧‧‧Metal interlayer dielectric layer

170‧‧‧第一高壓井區 170‧‧‧The first high-pressure well area

180‧‧‧第二高壓井區 180‧‧‧Second high pressure well area

190‧‧‧多晶矽層 190‧‧‧polycrystalline silicon layer

200、300、400‧‧‧高壓半導體裝置 200, 300, 400‧‧‧‧high voltage semiconductor devices

A、B‧‧‧重疊部分 A, B‧‧‧ Overlap

D、D1、D2、D3、D4‧‧‧長度 D, D1, D2, D3, D4‧‧‧ length

為讓本發明之特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the features and advantages of the present invention more comprehensible, preferred embodiments are exemplified below and described in detail with the accompanying drawings.

第1圖係高壓半導體裝置的剖面圖。 FIG. 1 is a cross-sectional view of a high-voltage semiconductor device.

第2圖係根據本發明的一些實施例之高壓半導體裝置的剖面圖。 FIG. 2 is a cross-sectional view of a high-voltage semiconductor device according to some embodiments of the present invention.

第3圖係根據本發明的一些實施例之高壓半導體裝置的剖面圖。 FIG. 3 is a cross-sectional view of a high-voltage semiconductor device according to some embodiments of the present invention.

第4A-4D圖係根據本發明的一些實施例之第一金屬阻擋塊、第二金屬阻擋塊與導通孔的布局之剖面圖。 4A-4D are cross-sectional views of the layout of the first metal blocking block, the second metal blocking block, and the via hole according to some embodiments of the present invention.

以下針對本揭露之高壓半導體裝置及其製造方法作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式儘為簡單描述本揭露。當然,這些僅用以舉例而非用以限定本揭露之範圍。此外,在不同實施例中可能使用重複的 標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,例如,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。 The high-voltage semiconductor device and the manufacturing method thereof disclosed in this disclosure are described in detail below. It should be understood that the following description provides many different embodiments or examples for implementing different aspects of the present disclosure. The specific components and arrangements described below are simply a description of this disclosure. Of course, these are only examples and are not intended to limit the scope of the disclosure. In addition, repeated reference numerals or designations may be used in different embodiments. These repetitions are merely for the purpose of simply and clearly describing this disclosure, and do not imply any relevance between the different embodiments and / or structures discussed. Furthermore, for example, when referring to a first material layer on or above a second material layer, it includes the case where the first material layer is in direct contact with the second material layer. Alternatively, it is also possible to have one or more other material layers spaced apart, in which case the first material layer and the second material layer may not be in direct contact.

必需了解的是,特別描述之圖示之元件可以此技術人士所熟知之各種形式存在。此外,當某層在其它層或基板「上」時,有可能是指「直接」在其它層或基板上,或指某層在其它層或基板之間夾設其它層。 It must be understood that the specifically described illustrated elements may exist in various forms well known to those skilled in the art. In addition, when a layer is "on" another layer or substrate, it may mean "directly" on the other layer or substrate, or it may mean that another layer is sandwiched between other layers or substrates.

此外,實施例中可能使用相對性的用語,例如「較低」、「下方」或「底部」及「較高」、「上方」或「頂部」,以描述圖示的一個元件對於另一元件的相對關係。能理解的是,如果將圖示的裝置翻轉使其上下顛倒,則所敘述在「較低」側的元件將會成為在「較高」側的元件。 In addition, embodiments may use relative terms, such as "lower", "below" or "bottom" and "higher", "above" or "top" to describe one element shown in the figure to another element Relative relationship. It can be understood that if the illustrated device is turned upside down and turned upside down, the component described on the "lower" side will become the component on the "higher" side.

在此,「約」、「大約」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內。在此給定的數量為大約的數量,意即在沒有特定說明的情況下,仍可隱含「約」、「大約」之含義。 Here, the terms "about" and "approximately" usually indicate within 20% of a given value or range, preferably within 10%, and more preferably within 5%. The quantity given here is an approximate quantity, which means that the meanings of "about" and "approximately" can still be implied without specific instructions.

本發明係揭露高壓半導體裝置之實施例,且上述實施例可被包含於例如微處理器、記憶元件及/或其他元件之積體電路(IC)中。上述積體電路(IC)也可包含不同的被動和主動微電子元件,例如薄膜電阻器(thin-film resistor)、其他類型電容器(例如金屬-絕緣體-金屬電容(metal-insulator-metal capacitor,MIMCAP))、電感、二極體、金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor field-effect transistors,MOSFETs)、互補式MOS電晶體、雙載子接面電晶體(BJTs)、橫向擴散型MOS電晶體(LDMOS)、高功率MOS電晶體或其他類型的電晶體。在本發明所屬技術領域中具有通常知識者可以了解也可將高壓半導體裝置使用於其他類型的半導體元件。 The present invention discloses an embodiment of a high-voltage semiconductor device, and the above-mentioned embodiments may be included in, for example, a integrated circuit (IC) of a microprocessor, a memory element, and / or other elements. The integrated circuit (IC) described above may also include different passive and active microelectronic components, such as thin-film resistors, other types of capacitors (such as metal-insulator-metal capacitors, MIMCAP) )), Inductors, Diodes, Metal-Oxide-Semiconductor field-effect transistors (MOSFETs), Complementary MOS Transistors, BJTs, Lateral Diffusion Type MOS transistor (LDMOS), high power MOS transistor or other type of transistor. Those having ordinary knowledge in the technical field to which the present invention pertains can understand that the high-voltage semiconductor device can also be used for other types of semiconductor elements.

參見第1圖,第1圖係高壓半導體裝置200的剖面圖。首先提供基底100。基底100可為半導體基板,例如矽基板。此外,上述半導體基板亦可為元素半導體,包括鍺(germanium);化合物半導體,包括碳化矽(silicon carbide)、砷化鎵(gallium arsenide)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)及/或銻化銦(indium antimonide);合金半導體,包括矽鍺合金(SiGe)、磷砷鎵合金(GaAsP)、砷鋁銦合金(AlInAs)、砷鋁鎵合金(AlGaAs)、砷銦鎵合金(GaInAs)、磷銦鎵合金(GaInP)及/或磷砷銦鎵合金(GaInAsP)或上述材料之組合。此外,基底100也可以是絕緣層上覆半導體(semiconductor on insulator)。此外,基底100也可包含磊晶層(未繪示)。此磊晶層可包含矽、鍺、矽與鍺、III-V族化合物或上述之組合。此磊晶層可藉由磊晶成長(epitaxial growth)製程形成,例如金屬有機物化學氣相沉積法(metal-organic chemical vapor deposition,MOCVD)、金屬有機物化學氣相磊晶法(metal-organic vapor phase epitaxy,MOVPE)、電漿增強型化學氣相沉積法(plasma-enhanced chemical vapor deposition,PECVD)、遙控電漿化學氣相沉積法 (remote plasma chemical vapor deposition,RP-CVD)、分子束磊晶法(molecular beam epitaxy,MBE)、氫化物氣相磊晶法(hydride vapor phase Epitaxy,HVPE)、液相磊晶法(liquid phase epitaxy,LPE)、氯化物氣相磊晶法(chloride vapor phase epitaxy,Cl-VPE)或類似的方法形成。 Referring to FIG. 1, FIG. 1 is a cross-sectional view of a high-voltage semiconductor device 200. First, a substrate 100 is provided. The substrate 100 may be a semiconductor substrate, such as a silicon substrate. In addition, the above semiconductor substrate may also be an element semiconductor, including germanium; a compound semiconductor, including silicon carbide, gallium arsenide, gallium phosphide, and indium phosphide ), Indium arsenide and / or indium antimonide; alloy semiconductors, including silicon germanium alloy (SiGe), gallium phosphorus arsenide alloy (GaAsP), aluminum indium arsenide (AlInAs), aluminum gallium arsenide Alloy (AlGaAs), indium gallium alloy (GaInAs), indium gallium phosphorus (GaInP) and / or indium gallium phosphorus arsenide (GaInAsP) or a combination of the above materials. In addition, the substrate 100 may be a semiconductor on insulator. In addition, the substrate 100 may also include an epitaxial layer (not shown). The epitaxial layer may include silicon, germanium, silicon and germanium, a III-V compound, or a combination thereof. The epitaxial layer can be formed by an epitaxial growth process, such as metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy (MOVPE), plasma-enhanced chemical vapor deposition (PECVD), remote plasma chemical vapor deposition (RP-CVD), molecular beam epitaxy (molecular beam epitaxy (MBE)), hydride vapor phase epitaxy (HVPE), liquid phase epitaxy (LPE), chloride vapor phase epitaxy, Cl-VPE) or similar methods.

此外,如第1圖所示,基底100亦包含隔離結構114、116、118形成於其中。隔離結構114、116、118可用區域氧化法(local Oxidation of Silicon,LOCOS)而形成。 In addition, as shown in FIG. 1, the substrate 100 also includes isolation structures 114, 116, and 118 formed therein. The isolation structures 114, 116, and 118 can be formed by a local oxidation method (LOCOS).

如第1圖所示,高壓半導體裝置200包含閘極結構120。閘極結構120設置於基底100上,且一部分的閘極結構120延伸至隔離結構116的上方。 As shown in FIG. 1, the high-voltage semiconductor device 200 includes a gate structure 120. The gate structure 120 is disposed on the substrate 100, and a part of the gate structure 120 extends above the isolation structure 116.

閘極結構120包含閘極介電層120a以及設置於其上的閘極電極120b。可先依序毯覆性沈積一介電材料層(用以形成閘極介電層120a)及位於其上之導電材料層(用以形成閘極電極120b)於基底100上,再藉由微影製程與蝕刻製程將介電材料層及導電材料層分別圖案化以形成閘極介電層120a及閘極電極120b。 The gate structure 120 includes a gate dielectric layer 120a and a gate electrode 120b disposed thereon. A dielectric material layer (for forming the gate dielectric layer 120a) and a conductive material layer (for forming the gate electrode 120b) thereon may be blanket-deposited sequentially on the substrate 100. The photolithography process and the etching process pattern the dielectric material layer and the conductive material layer to form a gate dielectric layer 120a and a gate electrode 120b, respectively.

上述介電材料層之材料(亦即閘極介電層120a之材料)可為氧化矽、氮化矽、氮氧化矽、高介電常數(high-k)介電材料、或其它任何適合之介電材料、或上述之組合。此高介電常數(high-k)介電材料之材料可為金屬氧化物、金屬氮化物、金屬矽化物、過渡金屬氧化物、過渡金屬氮化物、過渡金屬矽化物、金屬的氮氧化物、金屬鋁酸鹽、鋯矽酸鹽、鋯鋁酸鹽。例如,此高介電常數(high-k)介電材料可為LaO、AlO、ZrO、 TiO、Ta2O5、Y2O3、SrTiO3(STO)、BaTiO3(BTO)、BaZrO、HfO2、HfO3、HfZrO、HfLaO、HfSiO、HfSiON、LaSiO、AlSiO、HfTaO、HfTiO、HfTaTiO、HfAlON、(Ba,Sr)TiO3(BST)、Al2O3、其它適當材料之其它高介電常數介電材料、或上述組合。此介電材料層可藉由前述化學氣相沉積法(CVD)或旋轉塗佈法形成。 The material of the above-mentioned dielectric material layer (that is, the material of the gate dielectric layer 120a) may be silicon oxide, silicon nitride, silicon oxynitride, high-k dielectric material, or any other suitable material. A dielectric material, or a combination thereof. The material of the high-k dielectric material may be metal oxide, metal nitride, metal silicide, transition metal oxide, transition metal nitride, transition metal silicide, metal oxynitride, Metal aluminate, zirconium silicate, zirconium aluminate. For example, the high-k dielectric material can be LaO, AlO, ZrO, TiO, Ta 2 O 5 , Y 2 O 3 , SrTiO 3 (STO), BaTiO 3 (BTO), BaZrO, HfO 2 , HfO 3 , HfZrO, HfLaO, HfSiO, HfSiON, LaSiO, AlSiO, HfTaO, HfTiO, HfTaTiO, HfAlON, (Ba, Sr) TiO 3 (BST), Al 2 O 3 , other high dielectric constants of other suitable materials A dielectric material, or a combination thereof. This dielectric material layer can be formed by the aforementioned chemical vapor deposition (CVD) method or spin coating method.

前述導電材料層之材料(亦即閘極電極120b之材料)可為非晶矽、多晶矽、一或多種金屬、金屬氮化物、導電金屬氧化物、或上述之組合。上述金屬可包含但不限於鉬(molybdenum)、鎢(tungsten)、鈦(titanium)、鉭(tantalum)、鉑(platinum)或鉿(hafnium)。上述金屬氮化物可包括但不限於氮化鉬(molybdenum nitride)、氮化鎢(tungsten nitride)、氮化鈦(titanium nitride)以及氮化鉭(tantalum nitride)。上述導電金屬氧化物可包含但不限於釕金屬氧化物(ruthenium oxide)以及銦錫金屬氧化物(indium tin oxide)。此導電材料層之材料可藉由前述之化學氣相沉積法(chemical vapor deposition,CVD)、濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積方式形成,可用低壓化學氣相沈積法(low pressure chemical vapor deposition,LPCVD)在525~650℃之間沈積而製得非晶矽導電材料層或多晶矽導電材料層,其厚度範圍可為約1000Å至約10000Å。閘極電極120b可為多晶矽層。 The material of the aforementioned conductive material layer (that is, the material of the gate electrode 120b) may be amorphous silicon, polycrystalline silicon, one or more metals, metal nitrides, conductive metal oxides, or a combination thereof. The above metal may include, but is not limited to, molybdenum, tungsten, titanium, titanium, tantalum, platinum, or hafnium. The metal nitride may include, but is not limited to, molybdenum nitride, tungsten nitride, titanium nitride, and titanium nitride. The conductive metal oxide may include, but is not limited to, ruthenium oxide and indium tin oxide. The material of the conductive material layer can be formed by the aforementioned chemical vapor deposition (CVD) method, sputtering method, resistance heating evaporation method, electron beam evaporation method, or any other suitable deposition method. A low pressure chemical vapor deposition (LPCVD) method is used to deposit an amorphous silicon conductive material layer or a polycrystalline silicon conductive material layer at a temperature between 525 and 650 ° C, and the thickness can range from about 1000 Å to about 10,000 Å. The gate electrode 120b may be a polycrystalline silicon layer.

此外,高壓半導體裝置200亦包含絕緣側壁層122設置於閘極結構120的兩側側壁。可以低壓化學氣相沉積(LPCVD)或電漿增強型化學氣相沉積在350~850℃下沈積一層厚度約200~2000Å的絕緣層,例如氧化矽或氮化矽;又,若是 製作複合式(composite)側壁層,則可沈積一層以上的絕緣層。沈積完畢後,使用SF6、CF4、CHF3、或C2F6當作蝕刻源,以反應性離子蝕刻程序進行非等向性的蝕刻,便可在閘極結構120的側壁形成絕緣側壁層122。 In addition, the high-voltage semiconductor device 200 also includes insulating sidewall layers 122 disposed on both sidewalls of the gate structure 120. Low-pressure chemical vapor deposition (LPCVD) or plasma-enhanced chemical vapor deposition can be used to deposit an insulating layer with a thickness of about 200 to 2000 Å at 350 to 850 ° C, such as silicon oxide or silicon nitride; composite) sidewall layer, more than one insulating layer can be deposited. After deposition, using SF 6 , CF 4 , CHF 3 , or C 2 F 6 as an etching source and performing anisotropic etching using a reactive ion etching process, an insulating sidewall can be formed on the sidewall of the gate structure 120. Layer 122.

如第1圖所示,高壓半導體裝置200亦包含第一井區102、第二井區104,第一井區102與第二井區104設置於隔離結構116的兩側。其中,第一井區102具有第一導電型態,第二井區104具有不同於第一導電型態的第二導電型態。第一導電型態可為P型,第二導電型態可為N型,第一井區102可摻雜例如硼(B)、鋁(Al)、鎵(Ga)、銦(In)或上述組合,摻雜濃度可例如為1015cm3-1017cm3,第二井區104可摻雜例如磷,摻雜濃度可例如為1015cm3-1017cm3。高壓半導體裝置200包含第一高壓井區170及第二高壓井區180,第一高壓井區170具有第二導電型態,第二高壓井區180具有第一導電型態,其中第一高壓井區170的摻雜濃度可例如為1014cm3-1017cm3,第二高壓井區180的摻雜濃度可例如為1014cm3-1017cm3As shown in FIG. 1, the high-voltage semiconductor device 200 also includes a first well region 102 and a second well region 104. The first well region 102 and the second well region 104 are disposed on both sides of the isolation structure 116. The first well region 102 has a first conductivity type, and the second well region 104 has a second conductivity type different from the first conductivity type. The first conductivity type may be a P type, the second conductivity type may be an N type, and the first well region 102 may be doped with, for example, boron (B), aluminum (Al), gallium (Ga), indium (In), or the above. composition, doping concentration may be, for example, 10 15 cm 3 -10 17 cm 3 , the second well region 104 may be doped with phosphorus, for example, the doping concentration may be, for example, 10 15 cm 3 -10 17 cm 3 . The high-voltage semiconductor device 200 includes a first high-pressure well region 170 and a second high-pressure well region 180. The first high-pressure well region 170 has a second conductivity type, and the second high-pressure well region 180 has a first conductivity type. The doping concentration of the region 170 may be, for example, 10 14 cm 3 -10 17 cm 3 , and the doping concentration of the second high-pressure well region 180 may be, for example, 10 14 cm 3 -10 17 cm 3 .

如第1圖所示,高壓半導體裝置200包含第一摻雜區106、第二摻雜區108、第三摻雜區110及第四摻雜區112設置於基底100內。第一摻雜區106、第二摻雜區108位於隔離結構114與隔離結構116之間,亦位於隔離結構114與閘極結構120之間。且位於第一井區102內。其中,第一摻雜區106具有第一導電型態,第二摻雜區108具有第二導電型態,第一摻雜區106與第二摻雜區108的摻雜濃度可例如為1018/cm3-1020/cm3,第一摻雜區106與第二摻雜區108可作為高壓半導體裝置200的源極 區。第三摻雜區110設置於隔離結構116與隔離結構118之間,且位於第二井區104內,第三摻雜區110具有第二導電型態,第三摻雜區110的摻雜濃度可例如為1018/cm3-1020/cm3,第三摻雜區110可作為高壓半導體裝置200的汲極區。第四摻雜區112設置在隔離結構114之相對於第一摻雜區106的另一側,第四摻雜區112具有第一導電型態,第四摻雜區112的摻雜濃度可例如為1018/cm3-1020/cm3As shown in FIG. 1, the high-voltage semiconductor device 200 includes a first doped region 106, a second doped region 108, a third doped region 110, and a fourth doped region 112 and is disposed in the substrate 100. The first doped region 106 and the second doped region 108 are located between the isolation structure 114 and the isolation structure 116, and also between the isolation structure 114 and the gate structure 120. It is located in the first well area 102. The first doped region 106 has a first conductivity type, and the second doped region 108 has a second conductivity type. The doping concentration of the first doped region 106 and the second doped region 108 may be, for example, 10 18 / cm 3 -10 20 / cm 3 , the first doped region 106 and the second doped region 108 may serve as a source region of the high-voltage semiconductor device 200. The third doped region 110 is disposed between the isolation structure 116 and the isolation structure 118 and is located in the second well region 104. The third doped region 110 has a second conductivity type and the doping concentration of the third doped region 110. It may be, for example, 10 18 / cm 3 -10 20 / cm 3 , and the third doped region 110 may serve as a drain region of the high-voltage semiconductor device 200. The fourth doped region 112 is disposed on the other side of the isolation structure 114 opposite to the first doped region 106. The fourth doped region 112 has a first conductivity type. The doping concentration of the fourth doped region 112 may be, for example, of 10 18 / cm 3 -10 20 / cm 3.

如第1圖所示,高壓半導體裝置200包含設置在基底100上的介電層126。介電層126可包含由多個介電材料形成的多層結構,如氧化矽、氮化矽、氮氧化矽、磷矽酸鹽玻璃(phosphosilicate glass,PSG)、硼磷矽玻璃(borophosphosilicate glass,BPSG)、低介電常數(low-k)介電材料或其他適合的介電材料。低介電常數介電材料包含氟化石英玻璃(fluorinated silica glass,FSG)、碳摻雜氧化矽(carbon doped silicon oxide)、無定形氟化碳(amorphous fluorinated carbon)、聚對二甲苯(parylene)、對苯並環丁烯(bis-benzocyclobutenes,BCB)、聚亞醯胺(polyimide),但並不限於此。 As shown in FIG. 1, the high-voltage semiconductor device 200 includes a dielectric layer 126 provided on a substrate 100. The dielectric layer 126 may include a multilayer structure formed of a plurality of dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG) ), Low-k dielectric materials or other suitable dielectric materials. Low dielectric constant dielectric materials include fluorinated silica glass (FSG), carbon doped silicon oxide, amorphous fluorinated carbon, and parylene , Bis-benzocyclobutenes (BCB), polyimide, but it is not limited to this.

如第1圖所示,高壓半導體裝置200包含設置在基底100上的接觸窗124,其設置於介電層126內,且接觸窗124電性連接至第一摻雜區106、第二摻雜區108、第三摻雜區110及第四摻雜區112。接觸窗124的材料包含導電材料,例如鋁(Al)、銅(Cu)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)、氮化鉭(TaN)、矽化鎳(NiSi)、矽化鈷(CoSi)、碳化鉭(TaC)、矽氮化鉭(TaSiN)、碳氮化鉭(TaCN)、鋁化鈦(TiAl),鋁氮化鈦(TiAlN)、其他適合 的導電材料或前述之組合。 As shown in FIG. 1, the high-voltage semiconductor device 200 includes a contact window 124 disposed on the substrate 100, which is disposed in the dielectric layer 126, and the contact window 124 is electrically connected to the first doped region 106 and the second dopant. The region 108, the third doped region 110, and the fourth doped region 112. The material of the contact window 124 includes a conductive material, such as aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), silicidation Nickel (NiSi), cobalt silicide (CoSi), tantalum carbide (TaC), tantalum silicon nitride (TaSiN), tantalum carbonitride (TaCN), titanium aluminide (TiAl), titanium aluminum nitride (TiAlN), other suitable Conductive material or a combination of the foregoing.

此外,如第1圖所示,高壓半導體裝置200包含第一金屬層130、第二金屬層140、導通孔150設置於位於介電層126上的金屬層間介電層(inter-metal dielectric,IMD)160內。 In addition, as shown in FIG. 1, the high-voltage semiconductor device 200 includes a first metal layer 130, a second metal layer 140, and a via 150 disposed on an inter-metal dielectric (IMD) layer located on the dielectric layer 126. ) Within 160.

如第1圖所示,第一金屬層130包含第一金屬層主體部132及複數個第一金屬阻擋塊134,第一金屬層主體部132藉由接觸窗124各自與第一摻雜區106、第二摻雜區108、第三摻雜區110及第四摻雜區112電性連接,亦即,第一金屬層主體部132各自與源極區和汲極區電性連接。這些第一金屬阻擋塊134設置在隔離結構116的正上方。第二金屬層140設置於第一金屬層上,其包含第二金屬層主體部142及複數個第二金屬阻擋塊144,第二金屬層主體部142藉由導通孔150、第一金屬層主體部132及接觸窗124與第一摻雜區106、第二摻雜區108、第三摻雜區110及第四摻雜區112各自電性連接,亦即,第二金屬層主體部142與源極區和汲極區各自電性連接。這些第二金屬阻擋塊144設置在隔離結構116和第一金屬阻擋塊134的正上方。 As shown in FIG. 1, the first metal layer 130 includes a first metal layer main body portion 132 and a plurality of first metal blocking blocks 134. The first metal layer main body portion 132 and the first doped region 106 are each connected through a contact window 124. The second doped region 108, the third doped region 110, and the fourth doped region 112 are electrically connected, that is, the first metal layer body portion 132 is electrically connected to the source region and the drain region, respectively. These first metal blocking blocks 134 are disposed directly above the isolation structure 116. The second metal layer 140 is disposed on the first metal layer and includes a second metal layer body portion 142 and a plurality of second metal blocking blocks 144. The second metal layer body portion 142 passes through the via 150 and the first metal layer body. The portion 132 and the contact window 124 are electrically connected to the first doped region 106, the second doped region 108, the third doped region 110, and the fourth doped region 112, that is, the second metal layer body portion 142 and The source region and the drain region are each electrically connected. These second metal blocking blocks 144 are disposed directly above the isolation structure 116 and the first metal blocking block 134.

第一金屬層130、第二金屬層140、導通孔150的材料可與接觸窗124相同,金屬層間介電層160的材料可與介電層126相同。 The material of the first metal layer 130, the second metal layer 140, and the via 150 may be the same as that of the contact window 124, and the material of the metal interlayer dielectric layer 160 may be the same as that of the dielectric layer 126.

如第1圖所示,每一個第一金屬阻擋塊134與對應的第二金屬阻擋塊144之間具有重疊部分A,該重疊部分A的寬度並無特別限制。 As shown in FIG. 1, each first metal blocking block 134 and a corresponding second metal blocking block 144 have an overlapping portion A, and the width of the overlapping portion A is not particularly limited.

第一金屬阻擋塊134與第二金屬阻擋塊144的設置 可減低游離電子滲透至隔離結構116的機率,藉此防止高壓半導體裝置200的崩潰電壓下降。 The arrangement of the first metal blocking block 134 and the second metal blocking block 144 can reduce the probability of free electrons penetrating into the isolation structure 116, thereby preventing the breakdown voltage of the high-voltage semiconductor device 200 from falling.

參閱第2圖,第2圖係根據本發明的一些實施例之高壓半導體裝置300的剖面圖。第2圖所示的高壓半導體裝置300與第1圖所示的高壓半導體裝置200的不同處在於:高壓半導體裝置300更包含導通孔152。在一些實施例,導通孔152設置於第一金屬阻擋塊134與第二金屬阻擋塊144間的重疊部分A之中。如第2圖所示,導通孔152設置於隔離結構116的正上方,第一金屬阻擋塊134藉由導通孔152與第二金屬阻擋塊144連接。導通孔152的材料可與導通孔150相同,並且可在同一步驟形成導通孔152及導通孔150。第一金屬阻擋塊134及第二金屬阻擋塊144並未和第一摻雜區106、第二摻雜區108、第三摻雜區110、第四摻雜區112電性連接。 Referring to FIG. 2, FIG. 2 is a cross-sectional view of a high-voltage semiconductor device 300 according to some embodiments of the present invention. The high-voltage semiconductor device 300 shown in FIG. 2 is different from the high-voltage semiconductor device 200 shown in FIG. 1 in that the high-voltage semiconductor device 300 further includes a via 152. In some embodiments, the via hole 152 is disposed in the overlapping portion A between the first metal blocking block 134 and the second metal blocking block 144. As shown in FIG. 2, the via hole 152 is disposed directly above the isolation structure 116, and the first metal blocking block 134 is connected to the second metal blocking block 144 through the via hole 152. The material of the via hole 152 may be the same as that of the via hole 150, and the via hole 152 and the via hole 150 may be formed in the same step. The first metal blocking block 134 and the second metal blocking block 144 are not electrically connected to the first doped region 106, the second doped region 108, the third doped region 110, and the fourth doped region 112.

設置在隔離結構116正上方,且位於第一金屬阻擋塊134與第二金屬阻擋塊144間的導通孔152可進一步限制游離電子遷移的路徑,來降低游離電子滲透至隔離結構116的機率。在未設置第一金屬阻擋塊134、第二金屬阻擋塊144和導通孔152的情況下,特別是在高溫(例如溫度大於150℃)的環境時,電子具有較大的動能而更容易滲透至隔離結構116,使得高壓半導體裝置的崩潰電壓降低,並且造成漏電。而第2圖所示的高壓半導體裝置300相較於第1圖所示的高壓半導體裝置200多了導通孔152設置在第一金屬阻擋塊134與第二金屬阻擋塊144之間,此導通孔152的作用與第一金屬阻擋塊134和第二金屬阻擋塊144相同,其係用來作為阻斷游離電子遷移的手 段。在第1圖所示的高壓半導體裝置200,游離電子可以在第一金屬阻擋塊134與第二金屬阻擋塊144之間的區域遷移,例如,游離電子可從最左邊的第二金屬阻擋塊144處遷移到最右邊的第一金屬阻擋塊134處。而第2圖所示的高壓半導體裝置300所設置的導通孔152截斷了上述遷移路徑的可能性,亦即,游離電子遷移僅能從相鄰的兩個第二金屬阻擋塊144間遷移到對應的相鄰的兩個第一金屬阻擋塊134間。藉由導通孔152的設置,游離電子的遷移路徑受到更多的限制。 The via 152 disposed directly above the isolation structure 116 and located between the first metal blocking block 134 and the second metal blocking block 144 can further limit the path of the free electron migration, thereby reducing the probability of the free electrons penetrating into the isolation structure 116. When the first metal blocking block 134, the second metal blocking block 144, and the via 152 are not provided, especially in a high-temperature environment (for example, a temperature greater than 150 ° C), the electrons have a larger kinetic energy and are easier to penetrate into The isolation structure 116 reduces the breakdown voltage of the high-voltage semiconductor device and causes leakage. The high-voltage semiconductor device 300 shown in FIG. 2 has more through-holes 152 than the high-voltage semiconductor device 200 shown in FIG. 1. The through-holes 152 are disposed between the first metal blocking block 134 and the second metal blocking block 144. The function of 152 is the same as that of the first metal blocking block 134 and the second metal blocking block 144, and it is used as a means for blocking the migration of free electrons. In the high-voltage semiconductor device 200 shown in FIG. 1, free electrons can migrate in a region between the first metal blocking block 134 and the second metal blocking block 144. For example, the free electrons can move from the leftmost second metal blocking block 144. To the rightmost first metal blocking block 134. The via hole 152 provided in the high-voltage semiconductor device 300 shown in FIG. 2 cuts off the possibility of the migration path, that is, the free electron migration can only migrate from between the two adjacent second metal barriers 144 to the corresponding ones. Between two adjacent first metal blocking blocks 134. With the arrangement of the vias 152, the migration path of the free electrons is more restricted.

在一些實施例,如第1圖所示的高壓半導體裝置200的崩潰電壓約為789V,而如第2圖所示的高壓半導體裝置300的崩潰電壓約為745V。雖然如第2圖所示的高壓半導體裝置300的崩潰電壓略低於第1圖所示的高壓半導體裝置200,但如第2圖所示的高壓半導體裝置300更能防止游離電子滲透至隔離結構116上,而減低崩潰電壓下降和漏電的機率。在高溫(例如溫度大於150℃)的環境時,游離電子的動能較高,此情況下,如第2圖所示的高壓半導體裝置300之游離電子滲透至隔離結構116的機率會更明顯地低於如第1圖所示的高壓半導體裝置200,因此更能防止漏電流發生。 In some embodiments, the breakdown voltage of the high-voltage semiconductor device 200 as shown in FIG. 1 is about 789V, and the breakdown voltage of the high-voltage semiconductor device 300 as shown in FIG. 2 is about 745V. Although the breakdown voltage of the high-voltage semiconductor device 300 shown in FIG. 2 is slightly lower than that of the high-voltage semiconductor device 200 shown in FIG. 1, the high-voltage semiconductor device 300 shown in FIG. 2 is more capable of preventing free electrons from penetrating into the isolation structure. 116, while reducing the probability of crash voltage drop and leakage. In a high-temperature environment (eg, a temperature greater than 150 ° C), the kinetic energy of the free electrons is high. In this case, the probability of the free electrons of the high-voltage semiconductor device 300 shown in FIG. 2 penetrating into the isolation structure 116 will be significantly lower. In the high-voltage semiconductor device 200 shown in FIG. 1, leakage current can be more prevented.

參閱第3圖,第3圖係根據本發明的一些實施例之高壓半導體裝置400的剖面圖。在一些實施例,高壓半導體裝置400更包含多晶矽層190及導通孔154,多晶矽層190的作用和第一金屬阻擋塊134及第二金屬阻擋塊144類似,用以產生更多的堆疊來限制游離電子的遷移路徑。多晶矽層190位於第一金屬阻擋塊134與隔離結構116之間,且位於隔離結構116的正上 方。此外,導通孔154設置於多晶矽層190與第一金屬阻擋塊134間的重疊部分B。在一些實施例,重疊部分A與重疊部分B可以重疊。在一些實施例,重疊部分A與重疊部分B並未重疊。如第3圖所示,導通孔154的作用與導通孔152相同,其係用來作為阻斷游離電子遷移的手段,導通孔154的材料可與接觸窗124相同,並且可在同一步驟形成導通孔154及接觸窗124。相較於第2圖所示的高壓半導體裝置300,可以更進一步限制游離電子的遷移路徑,因此,在高溫的環境時,更能防止漏電流發生。 Referring to FIG. 3, FIG. 3 is a cross-sectional view of a high-voltage semiconductor device 400 according to some embodiments of the present invention. In some embodiments, the high-voltage semiconductor device 400 further includes a polycrystalline silicon layer 190 and a via 154. The polycrystalline silicon layer 190 functions similarly to the first metal blocking block 134 and the second metal blocking block 144 to generate more stacks to limit the release. Electron migration path. The polycrystalline silicon layer 190 is located between the first metal blocking block 134 and the isolation structure 116, and is directly above the isolation structure 116. In addition, the via hole 154 is provided in the overlapping portion B between the polycrystalline silicon layer 190 and the first metal blocking block 134. In some embodiments, the overlapping portion A and the overlapping portion B may overlap. In some embodiments, the overlapping portion A and the overlapping portion B do not overlap. As shown in FIG. 3, the via hole 154 has the same function as the via hole 152, and is used as a means to block the migration of free electrons. The material of the via hole 154 can be the same as that of the contact window 124, and the conduction can be formed in the same step Hole 154 and contact window 124. Compared with the high-voltage semiconductor device 300 shown in FIG. 2, the migration path of free electrons can be further restricted, and therefore, leakage current can be more prevented in a high-temperature environment.

參閱第4A-4D圖,第4A-4D圖係根據本發明的一些實施例之第一金屬阻擋塊134、第二金屬阻擋塊144與導通孔152的布局之剖面圖。在一些實施例,如第4A圖所示,每一個第一金屬阻擋塊134的長度D與每一個第二金屬阻擋塊144的長度D相同,且每一個第一金屬阻擋塊134與對應的第二金屬阻擋塊144在基底100上的投影完全重疊。在一些實施例,如第4B圖所示,每一個第一金屬阻擋塊134的長度D與每一個第二金屬阻擋塊144的長度D相同,且每一個第一金屬阻擋塊134與對應的第二金屬阻擋塊144在基底100上的投影未完全重疊,亦即,一部分的第一金屬阻擋塊134與一部分的第二金屬阻擋塊144在基底100上的投影重疊,而導通孔152設置在此重疊部分之中。在一些實施例,如第4C圖所示,這些第一金屬阻擋塊134具有第一長度D1及不同於第一長度D1的第二長度D2,這些第二金屬阻擋塊144具有第一長度D1及第二長度D2,且第一金屬阻擋塊134與相應的第二金屬阻擋塊144的長度相同,例如相對應的第一金屬阻擋塊134和第二金屬阻擋塊144皆為第一長度 D1或皆為第二長度D2。在一些實施例,如第4D圖所示,這些第一金屬阻擋塊134具有第一長度D1、第二長度D2、第三長度D3及第四長度D4,這些第二金屬阻擋塊144具有第一長度D1、第二長度D2、第三長度D3及第四長度D4,且第一金屬阻擋塊134與相應的第二金屬阻擋塊144的長度相同。在此實施例,第一長度D1、第二長度D2、第三長度D3及第四長度D4之間的關係可為線性遞減,例如第一長度D1>第二長度D2>第三長度D3>第四長度D4。在一些實施例,第一長度D1、第二長度D2、第三長度D3及第四長度D4之間的關係可為線性遞增,例如第一長度D1<第二長度D2<第三長度D3<第四長度D4。 Referring to FIGS. 4A-4D, FIGS. 4A-4D are cross-sectional views of the layout of the first metal blocking block 134, the second metal blocking block 144, and the via 152 according to some embodiments of the present invention. In some embodiments, as shown in FIG. 4A, the length D of each first metal blocking block 134 is the same as the length D of each second metal blocking block 144, and each first metal blocking block 134 is corresponding to a corresponding first The projections of the two metal blocking blocks 144 on the substrate 100 completely overlap. In some embodiments, as shown in FIG. 4B, the length D of each first metal blocking block 134 is the same as the length D of each second metal blocking block 144, and each first metal blocking block 134 is corresponding to a corresponding first The projections of the two metal barriers 144 on the substrate 100 do not completely overlap, that is, the projections of a portion of the first metal barriers 134 and a portion of the second metal barriers 144 on the substrate 100 overlap, and the vias 152 are provided there. In the overlap. In some embodiments, as shown in FIG. 4C, the first metal blocking blocks 134 have a first length D1 and a second length D2 different from the first length D1. The second metal blocking blocks 144 have a first length D1 and The second length D2, and the length of the first metal blocking block 134 and the corresponding second metal blocking block 144 are the same. For example, the corresponding first metal blocking block 134 and the second metal blocking block 144 are both the first length D1 or both. Is the second length D2. In some embodiments, as shown in FIG. 4D, the first metal blocking blocks 134 have a first length D1, a second length D2, a third length D3, and a fourth length D4, and the second metal blocking blocks 144 have a first length The length D1, the second length D2, the third length D3, and the fourth length D4, and the lengths of the first metal blocking block 134 and the corresponding second metal blocking block 144 are the same. In this embodiment, the relationship between the first length D1, the second length D2, the third length D3, and the fourth length D4 may be linearly decreasing, for example, the first length D1> the second length D2> the third length D3> the first Four lengths D4. In some embodiments, the relationship between the first length D1, the second length D2, the third length D3, and the fourth length D4 may be linearly increasing, for example, the first length D1 <the second length D2 <the third length D3 <the Four lengths D4.

雖然在本發明的實施例僅揭示高壓半導體裝置包含第一金屬層及第二金屬層,但在其他實施例,高壓半導體裝置更包含第三金屬層、第四金屬層或更多的金屬層,本發明並不以此為限。此外,第一金屬阻擋塊的長度與對應的第二金屬阻擋塊的長度可相同,亦可不同,本發明並不以此為限。 Although it is disclosed in the embodiments of the present invention that the high-voltage semiconductor device includes a first metal layer and a second metal layer, in other embodiments, the high-voltage semiconductor device further includes a third metal layer, a fourth metal layer, or more metal layers. The invention is not limited to this. In addition, the length of the first metal blocking block and the corresponding second metal blocking block may be the same or different, and the present invention is not limited thereto.

雖然本揭露的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露使用。因此,本揭露之保護範圍 包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。 Although the embodiments and advantages of this disclosure have been disclosed as above, it should be understood that anyone with ordinary knowledge in the technical field can make changes, substitutions, and decorations without departing from the spirit and scope of this disclosure. In addition, the scope of protection of this disclosure is not limited to the processes, machines, manufacturing, material composition, devices, methods and steps in the specific embodiments described in the description. Any person with ordinary knowledge in the technical field to which this disclosure pertains may disclose content from this disclosure To understand the current or future development of processes, machines, manufacturing, material composition, devices, methods and steps, as long as they can implement substantially the same functions or achieve approximately the same results in the embodiments described herein, they can be used according to this disclosure. Therefore, the protection scope of this disclosure includes the above-mentioned processes, machines, manufacturing, material composition, devices, methods and steps. In addition, each patent application scope constitutes a separate embodiment, and the protection scope of this disclosure also includes a combination of each patent application scope and embodiment.

Claims (10)

一種高壓半導體裝置,包括:一基底;一源極區及一汲極區,設置於該基底內,且被一隔離結構隔開;一第一金屬層,設置於該基底上,包括:第一金屬層主體部,與該源極區及該汲極區各自電性連接;以及複數個第一金屬阻擋塊,設置在該隔離結構的正上方;一第二金屬層,設置於該第一金屬層上,包括:第二金屬層主體部,與該源極區及該汲極區各自電性連接;以及複數個第二金屬阻擋塊,設置在該隔離結構的正上方,其中每一個該第一金屬阻擋塊與對應的該第二金屬阻擋塊之間具有一第一重疊部分;以及一第一導通孔,設置於該些第一金屬層與該些第二金屬層間,其中該第一導通孔設置於該第一金屬阻擋塊與該第二金屬阻擋塊間的該第一重疊部分。     A high-voltage semiconductor device includes: a substrate; a source region and a drain region disposed in the substrate and separated by an isolation structure; a first metal layer disposed on the substrate including: a first The main body of the metal layer is electrically connected to each of the source region and the drain region; and a plurality of first metal blocking blocks are disposed directly above the isolation structure; a second metal layer is disposed on the first metal The layer includes: a second metal layer main body electrically connected to the source region and the drain region respectively; and a plurality of second metal barrier blocks disposed directly above the isolation structure, each of which There is a first overlapping portion between a metal blocking block and the corresponding second metal blocking block; and a first via hole is provided between the first metal layers and the second metal layers, wherein the first conduction A hole is provided in the first overlapping portion between the first metal blocking block and the second metal blocking block.     如申請專利範圍第1項所述之高壓半導體裝置,其中該第一導通孔設置在該隔離結構的正上方。     The high-voltage semiconductor device according to item 1 of the scope of patent application, wherein the first via hole is disposed directly above the isolation structure.     如申請專利範圍第1項所述之高壓半導體裝置,其中每一個該第一金屬阻擋塊的長度相同,每一個該第二金屬阻擋塊的長度相同。     The high-voltage semiconductor device according to item 1 of the scope of the patent application, wherein each of the first metal barrier blocks has the same length, and each of the second metal barrier blocks has the same length.     如申請專利範圍第1項所述之高壓半導體裝置,其中該些第 一金屬阻擋塊具有一第一長度及一不同於該第一長度的第二長度。     The high-voltage semiconductor device according to item 1 of the scope of patent application, wherein the first metal blocking blocks have a first length and a second length different from the first length.     如申請專利範圍第4項所述之高壓半導體裝置,其中該些第二金屬阻擋塊具有該第一長度及該第二長度,且每一個該第一金屬阻擋塊與對應的該第二金屬阻擋塊的長度相同。     The high-voltage semiconductor device according to item 4 of the scope of patent application, wherein the second metal barrier blocks have the first length and the second length, and each of the first metal barrier blocks and the corresponding second metal barrier block The blocks are the same length.     如申請專利範圍第1項所述之高壓半導體裝置,其中每一個該第一金屬阻擋塊與對應的該第二金屬阻擋塊完全重疊。     The high-voltage semiconductor device according to item 1 of the scope of patent application, wherein each of the first metal barrier blocks completely overlaps the corresponding second metal barrier block.     如申請專利範圍第1項所述之高壓半導體裝置,其中每一個該第一金屬阻擋塊與對應的該第二金屬阻擋塊未完全重疊。     The high-voltage semiconductor device according to item 1 of the scope of patent application, wherein each of the first metal barrier blocks does not completely overlap with the corresponding second metal barrier block.     如申請專利範圍第1項所述之高壓半導體裝置,更包括:一閘極結構,設置於該基底上,其中該閘極結構延伸至該隔離結構上。     The high-voltage semiconductor device according to item 1 of the patent application scope further includes: a gate structure disposed on the substrate, wherein the gate structure extends to the isolation structure.     如申請專利範圍第1項所述之高壓半導體裝置,其中每一個該第一金屬阻擋塊的長度不同,且該些第一金屬阻擋塊的長度呈線性遞減或遞增。     The high-voltage semiconductor device according to item 1 of the scope of patent application, wherein the length of each of the first metal blocking blocks is different, and the lengths of the first metal blocking blocks decrease or increase linearly.     如申請專利範圍第1項所述之高壓半導體裝置,更包括:一多晶矽層,設置於該些第一金屬阻擋塊與該隔離結構之間,該多晶矽層具有複數個部分,每一個該多晶矽層的該部分與對應的該第一金屬阻擋塊之間具有一第二重疊部分;以及一第二導通孔,設置於該些第一金屬層與該多晶矽層間,其中該第二導通孔設置於該第一金屬阻擋塊與該多晶矽層間的該第二重疊部分。     The high-voltage semiconductor device described in item 1 of the patent application scope further includes: a polycrystalline silicon layer disposed between the first metal barriers and the isolation structure, the polycrystalline silicon layer having a plurality of sections, each of the polycrystalline silicon layer There is a second overlapping portion between the portion and the corresponding first metal blocking block; and a second via hole is disposed between the first metal layers and the polycrystalline silicon layer, wherein the second via hole is disposed on the The second overlapping portion between the first metal blocking block and the polycrystalline silicon layer.    
TW105128604A 2016-09-05 2016-09-05 High voltage semiconductor device TWI597847B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105128604A TWI597847B (en) 2016-09-05 2016-09-05 High voltage semiconductor device
CN201710004486.XA CN107799595B (en) 2016-09-05 2017-01-04 High voltage semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105128604A TWI597847B (en) 2016-09-05 2016-09-05 High voltage semiconductor device

Publications (2)

Publication Number Publication Date
TWI597847B TWI597847B (en) 2017-09-01
TW201813103A true TW201813103A (en) 2018-04-01

Family

ID=60719554

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105128604A TWI597847B (en) 2016-09-05 2016-09-05 High voltage semiconductor device

Country Status (2)

Country Link
CN (1) CN107799595B (en)
TW (1) TWI597847B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693686B (en) * 2018-08-09 2020-05-11 新唐科技股份有限公司 Semiconductor package structure and method for forming the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154748A (en) * 1997-08-04 1999-02-26 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
WO2007017803A2 (en) * 2005-08-10 2007-02-15 Nxp B.V. Ldmos transistor
TWI429075B (en) * 2008-10-27 2014-03-01 Vanguard Int Semiconduct Corp Lateral double-diffused metal oxide semiconductor
CN102456578B (en) * 2010-11-03 2013-09-04 凹凸电子(武汉)有限公司 High-voltage transistor and manufacturing method thereof
TWI440183B (en) * 2011-03-24 2014-06-01 Macronix Int Co Ltd Ultra-high voltage n-type-metal-oxide-semiconductor (uhv nmos) device and methods of manufacturing the same
JP5703105B2 (en) * 2011-04-15 2015-04-15 株式会社東芝 Semiconductor device and manufacturing method thereof
JP5714413B2 (en) * 2011-05-23 2015-05-07 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
US9443754B2 (en) * 2014-08-07 2016-09-13 Macronix International Co., Ltd. Semiconductor device including high-voltage diode
US9590053B2 (en) * 2014-11-25 2017-03-07 Taiwan Semiconductor Manufacturing Co., Ltd. Methodology and structure for field plate design

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693686B (en) * 2018-08-09 2020-05-11 新唐科技股份有限公司 Semiconductor package structure and method for forming the same

Also Published As

Publication number Publication date
TWI597847B (en) 2017-09-01
CN107799595B (en) 2020-05-26
CN107799595A (en) 2018-03-13

Similar Documents

Publication Publication Date Title
US9111906B2 (en) Method for fabricating semiconductor device having spacer elements
CN102222610B (en) Method for fabricating a semiconductor device
US10629726B2 (en) High-voltage semiconductor device and method for manufacturing the same
US10424504B2 (en) Method for forming improved liner layer and semiconductor device including the same
TWI683437B (en) High voltage semiconductor device
CN105789280B (en) High voltage semiconductor device and its manufacturing method
US9343572B1 (en) High-voltage semiconductor device and method for manufacturing the same
US11271102B2 (en) Semiconductor structure
TWI618241B (en) High voltage semiconductor device and method of manufacturing the same
TWI658501B (en) High-voltage semiconductor devices and methods for manufacturing the same
TWI597847B (en) High voltage semiconductor device
TWI716865B (en) Semiconductor device structures
CN105529362B (en) High voltage semiconductor device and its manufacturing method
TWI658590B (en) High-voltage semiconductor devices and methods for manufacturing the same
TWI570931B (en) High voltage semiconductor device and method of manufacturing the same
TWI544639B (en) High voltage semiconductor device and method of manufacturing the same
US20240006467A1 (en) Co-integration of gate-all-around nanosheet logic device and precision mol resistor
US20220359275A1 (en) Semiconductor device
US9853145B1 (en) High-voltage semiconductor device and method of manufacturing the same
TWI587507B (en) Semiconductor device and method of manufacturing the same
TWI587505B (en) High voltage semiconductor structure
CN111987090A (en) Semiconductor device structure