TW201810709A - Interposer structure of mirco-light emitting diode unit and fabricating method thereof, mirco-light emitting diode unit and fabricating method thereof and mirco-light emitting diode apparatus - Google Patents

Interposer structure of mirco-light emitting diode unit and fabricating method thereof, mirco-light emitting diode unit and fabricating method thereof and mirco-light emitting diode apparatus Download PDF

Info

Publication number
TW201810709A
TW201810709A TW105128988A TW105128988A TW201810709A TW 201810709 A TW201810709 A TW 201810709A TW 105128988 A TW105128988 A TW 105128988A TW 105128988 A TW105128988 A TW 105128988A TW 201810709 A TW201810709 A TW 201810709A
Authority
TW
Taiwan
Prior art keywords
type semiconductor
emitting diode
micro
layer
pattern
Prior art date
Application number
TW105128988A
Other languages
Chinese (zh)
Other versions
TWI618266B (en
Inventor
吳宗典
張正杰
羅國隆
林炳昌
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW105128988A priority Critical patent/TWI618266B/en
Priority to CN201710036074.4A priority patent/CN106816408B/en
Application granted granted Critical
Publication of TWI618266B publication Critical patent/TWI618266B/en
Publication of TW201810709A publication Critical patent/TW201810709A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

A fabricating method of an interposer structure of a mirco light emitting diode unit is provided. After mirco-light emitting diode is formed on a growing substrate, a transfer substrate is provided and a sacrificial layer is formed on the transfer substrate. A portion of the sacrificial layer of the transfer substrate is removed to form a gap between the micro-light emitting diode and the transfer substrate. The micro-light emitting diode is fixed to the transfer substrate provisionally by a portion of the sacrificial layer which is not be removed.

Description

微型發光二極體單元之中介結構及其製造方法、微型發光二極體單元及其製造方法與微型發光二極體裝置Intermediate structure of micro light emitting diode unit and manufacturing method thereof, micro light emitting diode unit and manufacturing method thereof, and micro light emitting diode device

本發明是有關於一種光電元件及其製造方法,且特別是有關於一種微型發光二極體單元之中介結構及其製造方法與微型發光二極體單元及其製造方法與微型發光二極體裝置。The invention relates to a photovoltaic element and a manufacturing method thereof, and in particular to a micro-light-emitting diode unit intermediary structure and a manufacturing method thereof, a micro-light-emitting diode unit, a manufacturing method thereof, and a micro-light-emitting diode device. .

習知的微型發光二極體中介結構製造的過程中,往往需要使用精密度極高且昂貴的轉置吸頭,造成量產不易且製作成本過高。而且一般的微型發光二極體中介結構製造方法更需要多次的轉置動作。多次轉置動作耗工耗時,且不利於微型發光二極體單元的製造良率。In the manufacturing process of the conventional micro-light-emitting diode intermediary structure, it is often necessary to use a highly precise and expensive transposed tip, which makes mass production difficult and the manufacturing cost too high. In addition, the general manufacturing method of the micro-light-emitting diode intermediary structure further requires multiple transpositions. The multiple transposition operations are time-consuming and are not conducive to the manufacturing yield of the micro-light-emitting diode unit.

本發明提供一種微型發光二極體裝置、微型發光二極體單元及其製造方法以及微型發光二極體單元之中介結構及其製造方法,其製程精簡。The invention provides a micro-light-emitting diode device, a micro-light-emitting diode unit and a manufacturing method thereof, and a micro-light-emitting diode unit intermediary structure and a manufacturing method thereof.

本發明提供一種微型發光二極體單元及其製造方法以及微型發光二極體單元之中介結構及其製造方法,其良率高。The invention provides a micro light emitting diode unit and a manufacturing method thereof, and a micro light emitting diode unit intermediary structure and a manufacturing method thereof, which have high yields.

本發明的微型發光二極體之中介結構的製造方法,包括下列步驟。提供半導體結構,半導體結構包括依序堆疊於生長基板內表面上之多層半導體層以及第一犧牲層,其中,多層半導體層包括第一型半導體層、與第一型半導體層極性相反之第二型半導體層。提供承載結構,承載結構包括傳遞基板以及覆蓋傳遞基板內表面上的第二犧牲層。接合半導體結構的第一犧牲層與承載結構的第二犧牲層,其中,在第一犧牲層與第二犧牲層接合後,第一犧牲層位於多層半導體層與第二犧牲層之間。移除半導體結構的生長基板。分別圖案化第一型半導體層與第二型半導體層,以形成多個第一型半導體圖案與多個第二型半導體圖案。形成彼此分離的多個絕緣圖案,絕緣圖案覆蓋對應的第二型半導體圖案。形成多個第一電極以及多個第二電極,其中,第一電極位於對應的第一型半導體圖案上,第二電極位於對應的第二型半導體圖案上,第二型半導體圖案、對應的第一型半導體圖案、對應的第一電極以及對應的第二電極構成多個微型發光二極體。移除至少部份的第一犧牲層、至少部份的第二犧牲層或至少部份前述二者之堆疊層,以使每一微型發光二極體與傳遞基板之間存在間隙,而微型發光二極體透過絕緣圖案的多個連接部與傳遞基板連接。The method for manufacturing a micro-light-emitting diode intermediate structure of the present invention includes the following steps. A semiconductor structure is provided. The semiconductor structure includes a plurality of semiconductor layers and a first sacrificial layer sequentially stacked on an inner surface of a growth substrate, wherein the multilayer semiconductor layer includes a first type semiconductor layer and a second type having a polarity opposite to that of the first type semiconductor layer. Semiconductor layer. A supporting structure is provided. The supporting structure includes a transfer substrate and a second sacrificial layer covering an inner surface of the transfer substrate. The first sacrificial layer of the semiconductor structure is bonded to the second sacrificial layer of the carrier structure, wherein after the first sacrificial layer is bonded to the second sacrificial layer, the first sacrificial layer is located between the multilayer semiconductor layer and the second sacrificial layer. The growth substrate of the semiconductor structure is removed. The first type semiconductor layer and the second type semiconductor layer are patterned separately to form a plurality of first type semiconductor patterns and a plurality of second type semiconductor patterns. A plurality of insulation patterns separated from each other are formed, and the insulation patterns cover the corresponding second-type semiconductor patterns. Forming a plurality of first electrodes and a plurality of second electrodes, wherein the first electrode is located on the corresponding first type semiconductor pattern, the second electrode is located on the corresponding second type semiconductor pattern, and the second type semiconductor pattern and the corresponding first The one-type semiconductor pattern, the corresponding first electrode, and the corresponding second electrode constitute a plurality of miniature light emitting diodes. Remove at least part of the first sacrificial layer, at least part of the second sacrificial layer, or at least part of the stacked layers of the foregoing, so that there is a gap between each micro-light emitting diode and the transfer substrate, and the micro-light The diode is connected to the transfer substrate through a plurality of connection portions of the insulation pattern.

本發明的微型發光二極體單元之中介結構包括傳遞基板、多個微型發光二極體及多個絕緣圖案。多個微型發光二極體陣列排列於傳遞基板之內表面上。各微型發光二極體包括多層半導體圖案、第一電極以及第二電極。多層半導體圖案至少包含第一型半導體圖案以及與第一型半導圖案極性相反之第二型半導圖案,其中,第一型半導體圖案在傳遞基板上的垂直投影面積超出第二型半導體圖案在傳遞基板上的垂直投影面積。第一電極位於第一型半導體圖案上。第二電極位於第二型半導體圖案上。多個絕緣圖案覆蓋對應的微型發光二極體。絕緣圖案具有多個連接部。微型發光二極體透過連接部與傳遞基板連接。各微型發光二極體與傳遞基板之間存在間隙。多個絕緣圖案相互分隔。The intermediary structure of the micro-light-emitting diode unit of the present invention includes a transmission substrate, a plurality of micro-light-emitting diodes, and a plurality of insulation patterns. A plurality of micro light emitting diode arrays are arranged on the inner surface of the transfer substrate. Each micro-light emitting diode includes a multilayer semiconductor pattern, a first electrode, and a second electrode. The multilayer semiconductor pattern includes at least a first-type semiconductor pattern and a second-type semiconductor pattern having a polarity opposite to that of the first-type semiconductor pattern, wherein the vertical projection area of the first-type semiconductor pattern on the transfer substrate exceeds Transfer the vertical projection area on the substrate. The first electrode is located on the first type semiconductor pattern. The second electrode is located on the second type semiconductor pattern. A plurality of insulation patterns cover the corresponding micro light-emitting diodes. The insulation pattern has a plurality of connection portions. The micro light-emitting diode is connected to the transfer substrate through a connection portion. There is a gap between each micro light-emitting diode and the transfer substrate. Multiple insulation patterns are separated from each other.

本發明的微型發光二極體單元包括多層半導體圖案、絕緣圖案、第一電極與第二電極。多層半導體圖案至少包含第一型半導體圖案以及與第一型半導圖案極性相反之第二型半導體。第一型半導體圖案在第二型半導體圖案上的垂直投影面積超出第二型半導體圖案的面積。絕緣圖案覆蓋第一型半導體圖案以及第二型半導體圖案,且絕緣圖案具有多個開口。第一電極與一第二電極分別經由開口與第一型半導體圖案及第二型半導體圖案連接。The miniature light emitting diode unit of the present invention includes a multilayer semiconductor pattern, an insulation pattern, a first electrode, and a second electrode. The multilayer semiconductor pattern includes at least a first type semiconductor pattern and a second type semiconductor having a polarity opposite to that of the first type semiconductor pattern. The vertical projection area of the first type semiconductor pattern on the second type semiconductor pattern exceeds the area of the second type semiconductor pattern. The insulation pattern covers the first type semiconductor pattern and the second type semiconductor pattern, and the insulation pattern has a plurality of openings. The first electrode and a second electrode are connected to the first type semiconductor pattern and the second type semiconductor pattern through the openings, respectively.

本發明的微型發光二極體裝置包括陣列基板、黏著層以及前述至少一微型發光二極體單元。陣列基板包含接收基板以及配置於接收基板內表面上的畫素陣列層。畫素陣列層包含至少一個子畫素。黏著層設置於子畫素上,且部份覆蓋位於子畫素之畫素陣列層。微型發光二極體單元設置於子畫素之黏著層上。The miniature light emitting diode device of the present invention includes an array substrate, an adhesive layer, and the at least one miniature light emitting diode unit. The array substrate includes a receiving substrate and a pixel array layer disposed on an inner surface of the receiving substrate. The pixel array layer includes at least one sub-pixel. The adhesive layer is disposed on the sub-pixel and partially covers the pixel array layer located on the sub-pixel. The micro light-emitting diode unit is disposed on the adhesive layer of the sub-pixel.

一種微型發光二極體單元之中介結構的製造方法包括下列步驟。於生長基板上依序形成多層半導體層,且多層半導體層至少包含第一型半導體層以及與第一型半導層極性相反之第二型半導體。分別形成多個電極於第一型半導體層與第二型半導體層上。多個電極相互分隔。多層半導體層以及多個電極構成微型發光二極體。形成承載結構,承載結構包括傳遞基板、覆蓋傳遞基板的犧牲層以及位於犧牲層上的多個線路結構,且線路結構相互分隔。接合微型發光二極體的電極與承載結構的線路結構,使得生長基板上之微型發光二極體的電極朝向承載結構的線路結構。在微型發光二極體的電極與承載結構的線路結構接合後,移除生長基板。移除微型發光二極體正下方的部份犧牲層,並保留微型發光二極體遮蔽面積外的另一部份的犧牲層。A method for manufacturing a micro-light-emitting diode unit intermediary structure includes the following steps. A multilayer semiconductor layer is sequentially formed on the growth substrate, and the multilayer semiconductor layer includes at least a first-type semiconductor layer and a second-type semiconductor having a polarity opposite to that of the first-type semiconductor layer. A plurality of electrodes are formed on the first type semiconductor layer and the second type semiconductor layer, respectively. Multiple electrodes are separated from each other. The multilayer semiconductor layer and the plurality of electrodes constitute a micro-light emitting diode. A bearing structure is formed. The bearing structure includes a transfer substrate, a sacrificial layer covering the transfer substrate, and a plurality of circuit structures on the sacrificial layer, and the circuit structures are separated from each other. The electrode of the micro-light-emitting diode is bonded to the circuit structure of the carrier structure, so that the electrode of the micro-light-emitting diode on the growth substrate faces the circuit structure of the carrier structure. After the electrodes of the micro light-emitting diode are bonded to the circuit structure of the carrier structure, the growth substrate is removed. Remove a part of the sacrificial layer directly under the micro-light-emitting diode, and retain another part of the sacrificial layer outside the shielding area of the micro-light-emitting diode.

一種微型發光二極體單元的製造方法包括下列步驟。提供前述之微型發光二極體單元之中介結構。提供彈性轉置頭提取微型發光二極體、部分線路結構與部分支撐層。提供彈性轉置頭提取微型發光二極體、部分線路結構與部分支撐層。轉置微型發光二極體、部分線路結構與部分支撐層於接收基板上。A method for manufacturing a miniature light emitting diode unit includes the following steps. The aforementioned micro-light-emitting diode unit intermediary structure is provided. Provide elastic transposition head to extract micro light-emitting diode, part of circuit structure and part of support layer. Provide elastic transposition head to extract micro light-emitting diode, part of circuit structure and part of support layer. The micro light emitting diode, part of the circuit structure and part of the supporting layer are transposed on the receiving substrate.

本發明的微型發光二極體裝置包括接收基板、畫素陣列層、黏著層以及至少一微型發光二極體單元。畫素陣列層配置於接收基板內表面上畫素陣列層包含至少一個子畫素。黏著層設置於子畫素上,且部份覆蓋位於子畫素之畫素陣列層。至少一微型發光二極體單元設置於子畫素之黏著層上。微型發光二極體單元至少包含支撐層、多個線路結構以及微型發光二極體。支撐層的外表面與黏著層連接。多個線路結構配置於支撐層內表面上。多個線路結構相互分隔。微型發光二極體配置於線路結構上。微型發光二極體包括多層半導體圖案以及多個電極。多層半導體圖案至少包含第一型半導體圖案以及與第一型半導圖案極性相反之第二型半導圖案。多個電極分別配置於第一型半導體圖案及第二型半導體圖案上。多個電極相互分隔,且各電極分別與所對應之各線路結構連接。The miniature light emitting diode device of the present invention includes a receiving substrate, a pixel array layer, an adhesive layer, and at least one miniature light emitting diode unit. The pixel array layer is disposed on the inner surface of the receiving substrate. The pixel array layer includes at least one sub-pixel. The adhesive layer is disposed on the sub-pixel and partially covers the pixel array layer located on the sub-pixel. At least one miniature light emitting diode unit is disposed on the adhesive layer of the sub-pixel. The micro light emitting diode unit includes at least a supporting layer, a plurality of circuit structures, and a micro light emitting diode. The outer surface of the support layer is connected to the adhesive layer. A plurality of circuit structures are disposed on the inner surface of the support layer. Multiple circuit structures are separated from each other. The micro light emitting diode is arranged on the circuit structure. The micro light emitting diode includes a multilayer semiconductor pattern and a plurality of electrodes. The multilayer semiconductor pattern includes at least a first type semiconductor pattern and a second type semiconductor pattern having a polarity opposite to that of the first type semiconductor pattern. The plurality of electrodes are respectively disposed on the first type semiconductor pattern and the second type semiconductor pattern. A plurality of electrodes are separated from each other, and each electrode is respectively connected to a corresponding circuit structure.

基於上述,本發明一實施例之微型發光二極體單元的中介結構的製造方法包括:提供半導體結構,半導體結構包括依序堆疊於生長基板內表面上之多層半導體層以及第一犧牲層,其中,多層半導體層包括第一型半導體層、與第一型半導體層極性相反之第二型半導體層。提供承載結構,承載結構包括傳遞基板以及覆蓋傳遞基板內表面上的第二犧牲層。接合半導體結構的第一犧牲層與承載結構的第二犧牲層,其中,在第一犧牲層與第二犧牲層接合後,第一犧牲層位於多層半導體層與第二犧牲層之間。移除半導體結構的生長基板。分別圖案化第一型半導體層與第二型半導體層,以形成多個第一型半導體圖案與多個第二型半導體圖案。形成彼此分離的多個絕緣圖案,絕緣圖案覆蓋對應的第二型半導體圖案。形成多個第一電極以及多個第二電極,其中,第一電極位於對應的第一型半導體圖案上,第二電極位於對應的第二型半導體圖案上,第二型半導體圖案、對應的第一型半導體圖案、對應的第一電極以及對應的第二電極構成多個微型發光二極體。移除至少部份的第一犧牲層、至少部份的第二犧牲層或至少部份前述二者之堆疊層,以使每一微型發光二極體與該傳遞基板之間存在間隙,而微型發光二極體透過絕緣圖案的多個連接部與傳遞基板連接。藉此,微型發光二極體單元之中介結構及微型發光二極體單元的製造方法可省略至少一次的轉置動作,進而達到簡化製程的效果。Based on the above, a method for manufacturing an intermediary structure of a micro-light emitting diode unit according to an embodiment of the present invention includes: providing a semiconductor structure, the semiconductor structure including a plurality of semiconductor layers and a first sacrificial layer sequentially stacked on an inner surface of a growth substrate, wherein The multilayer semiconductor layer includes a first-type semiconductor layer and a second-type semiconductor layer of opposite polarity to the first-type semiconductor layer. A supporting structure is provided. The supporting structure includes a transfer substrate and a second sacrificial layer covering an inner surface of the transfer substrate. The first sacrificial layer of the semiconductor structure is bonded to the second sacrificial layer of the carrier structure, wherein after the first sacrificial layer is bonded to the second sacrificial layer, the first sacrificial layer is located between the multilayer semiconductor layer and the second sacrificial layer. The growth substrate of the semiconductor structure is removed. The first type semiconductor layer and the second type semiconductor layer are patterned separately to form a plurality of first type semiconductor patterns and a plurality of second type semiconductor patterns. A plurality of insulation patterns separated from each other are formed, and the insulation patterns cover the corresponding second-type semiconductor patterns. Forming a plurality of first electrodes and a plurality of second electrodes, wherein the first electrode is located on the corresponding first type semiconductor pattern, the second electrode is located on the corresponding second type semiconductor pattern, and the second type semiconductor pattern and the corresponding first The one-type semiconductor pattern, the corresponding first electrode, and the corresponding second electrode constitute a plurality of miniature light emitting diodes. Removing at least part of the first sacrificial layer, at least part of the second sacrificial layer, or at least part of the stacked layers of the foregoing, so that there is a gap between each micro-light emitting diode and the transfer substrate, and the micro The light emitting diode is connected to the transfer substrate through a plurality of connection portions of the insulation pattern. Thereby, the intermediate structure of the micro-light-emitting diode unit and the manufacturing method of the micro-light-emitting diode unit can omit at least one transposition operation, thereby achieving the effect of simplifying the manufacturing process.

此外,在本發明另一實施例之微型發光二極體單元之中介結構的製造方法中,微型發光二極體是以覆晶方式先固定在傳遞基板上的線路結構,因此當彈性轉置頭提取微型發光二極體時,彈性轉置頭是接觸平整的微型發光二極體表面。也就是說,在提取微型發光二極體的過程中,彈性轉置頭與微型發光二極體的接觸面積大,進而使彈性轉置頭提取微型發光二極體的成功率與效率大幅提升。In addition, in the method for manufacturing a micro-light-emitting diode unit interposer according to another embodiment of the present invention, the micro-light-emitting diode is a circuit structure that is first fixed on a transmission substrate by a flip-chip method. When extracting the micro-light-emitting diode, the elastic transposition head is in contact with the flat surface of the micro-light-emitting diode. That is to say, in the process of extracting the micro-light-emitting diode, the contact area between the elastic transposition head and the micro-light-emitting diode is large, so that the success rate and efficiency of the micro-light-emitting diode by the elastic transposition head are greatly improved.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

圖1A至圖1J為本發明一實施例之微型發光二極體裝置之製造方法的剖面示意圖。圖1A至圖1H為微型發光二極體中介結構之製造方法的剖面示意圖。請參照圖1A,首先,提供半導體結構10。半導體結構10包括依序堆疊於生長基板S1內表面上之多層半導體(未標註)以及第一犧牲層140。第一犧牲層140設置於多層半導體上。多層半導體包含第一型半導體層130、一與該第一型半導體層極性相反之第二型半導體層110。第一型與第二型半導體層130、110之極性可分別為N或P型半導體層。於本發明之實施例中,以第一型半導體層130為P型半導體層在生長基板S1內表面上及以第二型半導體層110為N型半導體層在第一型半導體層與生長基板S1之間為範例,但不限於此。於其它實施例中,以第一型半導體層130為N型半導體層在生長基板S1內表面上及第二型半導體層110為P型半導體層在第一型半導體層上。於本發明之實施例中,可選擇的於第一型與第二型半導體層之交界處作為發光處或者第一型與第二型半導體層之交界處可再插入一膜層當作發光層120。本發明之實施例,係以第一型與第二型半導體層之交界處可再插入一膜層當作發光層120為範例,但不限於此。於其它實施例中,第一型與第二型半導體層之交界處沒有插入膜層當作發光層亦可適用。請參照圖1B,接著,提供承載結構20。承載結構20包括傳遞基板S2以及覆蓋傳遞基板S2內表面的第二犧牲層210。在本實施例中,第二犧牲層210例如為光阻層或金屬層,但本發明不以此為限。接著,接合半導體結構10的第一犧牲層140與承載結構20的第二犧牲層210,以使半導體結構10固定在承載結構20上。如圖1B所示,第一犧牲層140與第二犧牲層210接合後,第一犧牲層140位於多層半導體層(例如:第一型半導體層130)與第二犧牲層210之間。更進一步地說,於傳遞基板S2內表面上依續堆疊之第二犧牲層210、第一犧牲層140、多層半導體層及生長基板S1,即第二犧牲層210與第一犧牲層140皆位在多層半導體層及生長基板S1之下。換言之,第二犧牲層210、第一犧牲層140、多層半導體層(例如:第一型半導體層130、第二型半導體層110)及生長基板S1沿著遠離傳遞基板S2的方向d依序堆疊。於其它實施例中,依前面所述,發光層120可選擇性的設置於第一型半導體層130與第二型半導體層110之間。1A to 1J are schematic cross-sectional views illustrating a method for manufacturing a micro-light emitting diode device according to an embodiment of the present invention. FIGS. 1A to 1H are schematic cross-sectional views illustrating a method for manufacturing a micro-light-emitting diode intermediary structure. Referring to FIG. 1A, first, a semiconductor structure 10 is provided. The semiconductor structure 10 includes a multilayer semiconductor (not labeled) and a first sacrificial layer 140 sequentially stacked on the inner surface of the growth substrate S1. The first sacrificial layer 140 is disposed on a multilayer semiconductor. The multilayer semiconductor includes a first-type semiconductor layer 130 and a second-type semiconductor layer 110 having a polarity opposite to the first-type semiconductor layer. The polarities of the first-type and second-type semiconductor layers 130 and 110 may be N-type or P-type semiconductor layers, respectively. In the embodiment of the present invention, the first type semiconductor layer 130 is a P-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 110 is an N-type semiconductor layer on the first type semiconductor layer and the growth substrate S1. Between is an example, but it is not limited to this. In other embodiments, the first type semiconductor layer 130 is an N-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 110 is a P-type semiconductor layer on the first type semiconductor layer. In the embodiment of the present invention, a film layer may be optionally inserted at the interface between the first type semiconductor layer and the second type semiconductor layer or the interface between the first type semiconductor layer and the second type semiconductor layer may be used as the light emitting layer. 120. In the embodiment of the present invention, a film layer can be inserted at the interface between the first type semiconductor layer and the second type semiconductor layer as the light emitting layer 120 as an example, but it is not limited thereto. In other embodiments, a film layer is not inserted as a light emitting layer at the interface between the first type semiconductor layer and the second type semiconductor layer. Please refer to FIG. 1B. Next, a supporting structure 20 is provided. The carrier structure 20 includes a transfer substrate S2 and a second sacrificial layer 210 covering the inner surface of the transfer substrate S2. In this embodiment, the second sacrificial layer 210 is, for example, a photoresist layer or a metal layer, but the present invention is not limited thereto. Next, the first sacrificial layer 140 of the semiconductor structure 10 and the second sacrificial layer 210 of the carrier structure 20 are bonded to fix the semiconductor structure 10 on the carrier structure 20. As shown in FIG. 1B, after the first sacrificial layer 140 is bonded to the second sacrificial layer 210, the first sacrificial layer 140 is located between a plurality of semiconductor layers (for example, the first type semiconductor layer 130) and the second sacrificial layer 210. Furthermore, the second sacrificial layer 210, the first sacrificial layer 140, the multilayer semiconductor layer, and the growth substrate S1, which are sequentially stacked on the inner surface of the transfer substrate S2, that is, the second sacrificial layer 210 and the first sacrificial layer 140 are all positioned. Under the multilayer semiconductor layer and the growth substrate S1. In other words, the second sacrificial layer 210, the first sacrificial layer 140, the multilayer semiconductor layer (for example, the first type semiconductor layer 130, the second type semiconductor layer 110), and the growth substrate S1 are sequentially stacked in a direction d away from the transfer substrate S2. . In other embodiments, as described above, the light emitting layer 120 may be selectively disposed between the first type semiconductor layer 130 and the second type semiconductor layer 110.

請參照圖1B及圖1C,接著,移除半導體結構10的生長基板S1。舉例而言,在本實施例中,可採用雷射剝除技術(laser lift-off technology)移除第二型半導體層110上的生長基板S1,但本發明不以此為限,在其他實施例中,也可用其他適當方法移除生長基板S1。Referring to FIGS. 1B and 1C, the growth substrate S1 of the semiconductor structure 10 is removed. For example, in this embodiment, a laser lift-off technology may be used to remove the growth substrate S1 on the second type semiconductor layer 110, but the present invention is not limited thereto, and is implemented in other implementations. In an example, the growth substrate S1 may be removed by other appropriate methods.

請參照圖1C及圖1D,接著,圖案化第二型半導體層110與發光層120,以形成彼此分離的多個第二型半導體圖案112與彼此分離的多個發光圖案122。每一發光圖案122上配置有對應的一個第二型半導體圖案112。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則就不會有圖案化發光層120。請參照圖1D及圖1E,接著,圖案化第一型半導體層130,以形成彼此分離的多個第一型半導體圖案132,第一犧牲層140可保護第一型半導體層130,避免蝕刻第一型半導體層130時破裂。每一第一型半導體圖案132上配置有對應的一個發光圖案122與對應的一個第二型半導體圖案112。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則每一第一型半導體圖案132上配置有對應的一個第二型半導體圖案112。每一第一型半導體圖案132在傳遞基板S2上的垂直投影面積超出對應之第二型半導體圖案112在傳遞基板S2上的垂直投影面積以及對應之發光圖案122在傳遞基板S2上的垂直投影面積。第一型半導體圖案132、發光圖案122與第二型半導體圖案112在遠離傳遞基板S2的方向d上依序排列,即第一型半導體圖案132最靠近傳遞基板S2,第二型半導體圖案112離傳遞基板S2最遠。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132與第二型半導體圖案112在遠離傳遞基板S2的方向d上依序排列,即第一型半導體圖案132最靠近傳遞基板S2,第二型半導體圖案112離傳遞基板S2最遠。Referring to FIGS. 1C and 1D, the second type semiconductor layer 110 and the light emitting layer 120 are patterned to form a plurality of second type semiconductor patterns 112 and a plurality of light emitting patterns 122 separated from each other. A corresponding second type semiconductor pattern 112 is disposed on each light emitting pattern 122. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, there will be no patterned light emitting layer 120. Referring to FIG. 1D and FIG. 1E, the first type semiconductor layer 130 is patterned to form a plurality of first type semiconductor patterns 132 separated from each other. The first sacrificial layer 140 can protect the first type semiconductor layer 130 from being etched. The first-type semiconductor layer 130 is broken. A corresponding light-emitting pattern 122 and a corresponding second-type semiconductor pattern 112 are disposed on each of the first-type semiconductor patterns 132. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, a corresponding second type semiconductor is disposed on each first type semiconductor pattern 132. Pattern 112. The vertical projection area of each first type semiconductor pattern 132 on the transmission substrate S2 exceeds the vertical projection area of the corresponding second type semiconductor pattern 112 on the transmission substrate S2 and the vertical projection area of the corresponding light emitting pattern 122 on the transmission substrate S2. . The first type semiconductor pattern 132, the light emitting pattern 122, and the second type semiconductor pattern 112 are sequentially arranged in a direction d away from the transfer substrate S2, that is, the first type semiconductor pattern 132 is closest to the transfer substrate S2, and the second type semiconductor pattern 112 is away from The transfer substrate S2 is farthest. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 132 and the second type semiconductor pattern 112 are far away from the transfer substrate S2. In the order d, the first type semiconductor pattern 132 is closest to the transfer substrate S2, and the second type semiconductor pattern 112 is farthest from the transfer substrate S2.

請參照圖1F,接著,形成彼此分離的多個絕緣圖案312。絕緣圖案312覆蓋對應的第二型半導體圖案112、發光圖案122以及第一型半導體圖案132。絕緣圖案312未覆蓋部份的第二型半導體圖案112。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則絕緣圖案310覆蓋對應的第二型半導體圖案112以及第一型半導體圖案132。在本實施例中,絕緣圖案310具有連接部312a。舉例而言,絕緣圖案310的連接部312a由對應的第二型半導體圖案112之上表面延伸到第二型半導體圖案112之側面,並覆蓋發光圖案122與第一型半導體圖案132的側面。詳言之,在本實施例中,絕緣圖案310包括第一絕緣圖案312與第二絕緣圖案314。第一絕緣圖案312形成在第二型半導體層112上,且覆蓋第二型半導體圖案112的側壁112a、發光圖案122的側壁122a以及第一型半導體圖案132的側壁132a。第二絕緣圖案314形成在第二型半導體層112上,且覆蓋第二型半導體層112的另一側壁112b以及發光圖案122的另一側壁122b,並暴露出(或稱為未覆蓋)第一型半導體層132的另一側壁132b。第一絕緣圖案312具有延伸到第二型半導體圖案112、發光圖案122與第一型半導體圖案132外的連接部312a。連接部312a由第二型半導體層112、發光圖案122與第一型半導體圖案132上延伸到第一犧牲層140上。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則絕緣圖案310包含第一與第二絕緣圖案312、314之設計與其它元件的連接關係,就會加以改變,例如:第一絕緣圖案312形成在第二型半導體圖案112上,且覆蓋第二型半導體圖案112的側壁112a以及第一型半導體圖案132的側壁132a。第二絕緣圖案314形成在第二型半導體圖案112上,且覆蓋第二型半導體圖案112的另一側壁112b以及暴露出第一型半導體圖案132的另一側壁132b等等。第一絕緣圖案312的連接部312a透過第一犧牲層140連接至傳遞基板S2。Referring to FIG. 1F, a plurality of insulation patterns 312 are formed separately from each other. The insulating pattern 312 covers the corresponding second-type semiconductor pattern 112, the light-emitting pattern 122, and the first-type semiconductor pattern 132. The second pattern semiconductor pattern 112 is not covered by the insulating pattern 312. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first and second type semiconductor layers, the insulating pattern 310 covers the corresponding second type semiconductor pattern 112 and the first type semiconductor pattern. 132. In this embodiment, the insulating pattern 310 has a connection portion 312a. For example, the connection portion 312 a of the insulation pattern 310 extends from the upper surface of the corresponding second-type semiconductor pattern 112 to the side of the second-type semiconductor pattern 112 and covers the sides of the light-emitting pattern 122 and the first-type semiconductor pattern 132. Specifically, in this embodiment, the insulation pattern 310 includes a first insulation pattern 312 and a second insulation pattern 314. The first insulating pattern 312 is formed on the second type semiconductor layer 112 and covers the sidewall 112 a of the second type semiconductor pattern 112, the sidewall 122 a of the light emitting pattern 122, and the sidewall 132 a of the first type semiconductor pattern 132. The second insulating pattern 314 is formed on the second type semiconductor layer 112 and covers the other sidewall 112b of the second type semiconductor layer 112 and the other sidewall 122b of the light emitting pattern 122, and exposes (or is called uncovered) The other side wall 132b of the semiconductor layer 132. The first insulating pattern 312 includes a connection portion 312 a extending outside the second-type semiconductor pattern 112, the light-emitting pattern 122, and the first-type semiconductor pattern 132. The connection portion 312 a extends from the second type semiconductor layer 112, the light emitting pattern 122, and the first type semiconductor pattern 132 to the first sacrificial layer 140. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type and the second type semiconductor layers, the insulation pattern 310 includes the design of the first and second insulation patterns 312 and 314 and other components. The connection relationship will be changed. For example, the first insulation pattern 312 is formed on the second type semiconductor pattern 112 and covers the sidewall 112 a of the second type semiconductor pattern 112 and the sidewall 132 a of the first type semiconductor pattern 132. The second insulation pattern 314 is formed on the second type semiconductor pattern 112 and covers the other sidewall 112 b of the second type semiconductor pattern 112 and the other sidewall 132 b exposing the first type semiconductor pattern 132 and so on. The connection portion 312 a of the first insulation pattern 312 is connected to the transfer substrate S2 through the first sacrificial layer 140.

請參照圖1G,接著,形成第一電極410與第二電極420。第一電極410位於第一型半導體圖案132上且與第一型半導體圖案132電性連接。第二電極420位於第二型半導體圖案112上且與第二型半導體圖案112電性連接。第一型半導體圖案132、發光圖案122、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體LED。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體LED。其中,微型發光二極體LED之尺吋大小係為微米或奈米等級。在本實施例中,可在同一道製程中,同時形成第一電極410與第二電極420,但本發明不以此為限。Referring to FIG. 1G, a first electrode 410 and a second electrode 420 are formed. The first electrode 410 is located on the first type semiconductor pattern 132 and is electrically connected to the first type semiconductor pattern 132. The second electrode 420 is located on the second-type semiconductor pattern 112 and is electrically connected to the second-type semiconductor pattern 112. The first type semiconductor pattern 132, the light emitting pattern 122, the second type semiconductor pattern 112, the first electrode 410, and the second electrode 420 may constitute a micro-light emitting diode LED. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first and second type semiconductor layers, the first type semiconductor pattern 132, the second type semiconductor pattern 112, the first electrode 410, and The second electrode 420 may constitute a miniature light emitting diode LED. Among them, the size of the miniature light-emitting diode LED is micrometer or nanometer. In this embodiment, the first electrode 410 and the second electrode 420 can be formed simultaneously in the same process, but the present invention is not limited thereto.

請參照圖1G 及圖1H,接著,移除至少部份的第一犧牲層140、至少部份的第二犧牲層210或至少部份前述二者之堆疊層,以使每一微型發光二極體LED與傳遞基板S2內表面之間存在間隙g,於此便完成了微型發光二極體單元之中介結構1000。舉例而言,在本實施例中,可移除被微型發光二極體LED以及絕緣圖案310(包含第一與第二絕緣圖案312、314)暴露出(或稱為未覆蓋)的部份第一犧牲層140,而保留位於微型發光二極體LED正下方以及連接部312a正下方的部份第一犧牲層(即第一犧牲圖案142);可移除被微型發光二極體LED與絕緣圖案310(包含第一與第二絕緣圖案312、314)暴露(或稱為未覆蓋)及位於微型發光二極體LED正下方之部份的第二犧牲層210,而保留位於連接部312a正下方的部份第二犧牲層(即第二犧牲圖案或稱為被保留的第二犧牲圖案212)。Please refer to FIG. 1G and FIG. 1H. Next, at least part of the first sacrificial layer 140, at least part of the second sacrificial layer 210, or at least part of the foregoing stacked layers are removed, so that each micro-light emitting diode There is a gap g between the body LED and the inner surface of the transfer substrate S2. Thus, the micro-light-emitting diode unit intermediate structure 1000 is completed. For example, in this embodiment, a part of the exposed (or uncovered) portion of the micro-light emitting diode LED and the insulating pattern 310 (including the first and second insulating patterns 312 and 314) may be removed. A sacrificial layer 140, and a portion of the first sacrificial layer (ie, the first sacrificial pattern 142) located directly under the micro-light emitting diode LED and directly under the connection portion 312a is retained; the micro-light emitting diode LED and the insulation can be removed The pattern 310 (including the first and second insulating patterns 312 and 314) is exposed (or uncovered) and the second sacrificial layer 210 is located in a portion directly below the micro-light emitting diode LED, while remaining in the connection portion 312a. The lower part of the second sacrificial layer (ie, the second sacrificial pattern or the retained second sacrificial pattern 212).

如圖1H所示,第一犧牲圖案142堆疊於對應的一個第二犧牲圖案212上,相堆疊的部份第一犧牲圖案142與被保留的第二犧牲圖案212構成一個犧牲結構或稱為連接結構S。與微型發光二極體LED連接的連接部312a透過犧牲結構S暫時固定於傳遞基板S2內表面上。犧牲結構S與傳遞基板S2內表面之間存在間隙g。在本實施例中,第一犧牲圖案142覆蓋微型發光二極體LED的第一型半導體圖案132的底部,即第一型半導體圖案132位於第一犧牲圖案142之頂面,且第一犧牲圖案142位於第一型半導體圖案132下方,而第二犧牲圖案212暴露出(或稱為未覆蓋)第一犧牲圖案142的局部底表面(或稱為下表面)142b。於一個較佳實施例中,第一型半導體圖案132於方向d的厚度小於第二型半導體圖案112。然而,本發明不限於此,在其他實施例中,微型發光二極體LED也可利用其他型態的犧牲結構暫時固定在傳遞基板S2上。以下將於後續段落中配合其他圖式舉例說明之。As shown in FIG. 1H, the first sacrificial pattern 142 is stacked on a corresponding second sacrificial pattern 212, and the stacked first sacrificial pattern 142 and the retained second sacrificial pattern 212 form a sacrificial structure or a connection Structure S. The connection portion 312a connected to the micro light-emitting diode LED is temporarily fixed on the inner surface of the transfer substrate S2 through the sacrificial structure S. There is a gap g between the sacrificial structure S and the inner surface of the transfer substrate S2. In this embodiment, the first sacrificial pattern 142 covers the bottom of the first type semiconductor pattern 132 of the micro light emitting diode LED, that is, the first type semiconductor pattern 132 is located on the top surface of the first sacrificial pattern 142, and the first sacrificial pattern 142 142 is located below the first type semiconductor pattern 132, and the second sacrificial pattern 212 exposes (or is called uncovered) a partial bottom surface (or a lower surface) 142b of the first sacrificial pattern 142. In a preferred embodiment, the thickness of the first type semiconductor pattern 132 in the direction d is smaller than that of the second type semiconductor pattern 112. However, the present invention is not limited to this. In other embodiments, the micro-light emitting diode LED may be temporarily fixed on the transfer substrate S2 by using other types of sacrificial structures. In the following paragraphs, it will be illustrated with other drawings.

請參照圖1G,第一犧牲層140或第二犧牲層210其中至少一者為有機材料層,且第一犧牲層140或第二犧牲層210其中另一者為無機材料層。在本實施例中,第一犧牲層140可為無機材料層(例如:金屬或合金)且第一犧牲層140之材料與絕緣圖案310不相同,而第二犧牲層210可為有機材料層(例如:光阻)為範例,但不限於此。第二犧牲層210具有將微型發光二極體LED暫時黏著於傳遞基板的功能。請參照圖1G及圖1H,在本實施例中,可先去除相鄰兩個微型發光二極體LED之間的部份第一犧牲層140,以圖案化出多個第一犧牲圖案142。接著,可利用一乾式蝕刻工序(例如:含氧電漿製程)去除第一犧牲圖案142正下方的部份第二犧牲層210並保留連接部312a正下方的部份第二犧牲層210,以形成第二犧牲圖案212。由於乾式蝕刻工序不易蝕刻無機材料,例如絕緣圖案310(包含第一與第二絕緣圖案312、314)與第一犧牲圖案142,因此在形成第二犧牲圖案212的過程中,絕緣圖案310(包含第一與第二絕緣圖案312、314)與第一犧牲圖案142可被保留下,進而形成如圖1H所示的犧牲結構S。其中絕緣圖案310材料係為氧化矽、氮化矽、氮氧化矽、其它合適的材料、或上述兩者的組合。然而,本發明不限於此,在其他實施例中,也可用其他適當方法形成用以暫時固定微型發光二極體LED的犧牲結構,例如控制蝕刻秒數,所造成的蝕刻選擇性等。1G, at least one of the first sacrificial layer 140 or the second sacrificial layer 210 is an organic material layer, and the other of the first sacrificial layer 140 or the second sacrificial layer 210 is an inorganic material layer. In this embodiment, the first sacrificial layer 140 may be an inorganic material layer (for example, a metal or an alloy) and the material of the first sacrificial layer 140 is different from the insulating pattern 310, and the second sacrificial layer 210 may be an organic material layer ( For example: photoresist) is an example, but it is not limited to this. The second sacrificial layer 210 has a function of temporarily adhering the micro light emitting diode LED to the transfer substrate. Referring to FIG. 1G and FIG. 1H, in this embodiment, a part of the first sacrificial layer 140 between two adjacent micro-light-emitting diode LEDs may be removed first to pattern a plurality of first sacrificial patterns 142. Next, a dry etching process (eg, an oxygen-containing plasma process) may be used to remove a portion of the second sacrificial layer 210 directly below the first sacrificial pattern 142 and retain a portion of the second sacrificial layer 210 directly below the connection portion 312a. A second sacrificial pattern 212 is formed. Since the dry etching process is not easy to etch inorganic materials, such as the insulating pattern 310 (including the first and second insulating patterns 312 and 314) and the first sacrificial pattern 142, during the process of forming the second sacrificial pattern 212, the insulating pattern 310 (including the The first and second insulating patterns 312, 314) and the first sacrificial pattern 142 can be retained, thereby forming a sacrificial structure S as shown in FIG. 1H. The insulating pattern 310 is made of silicon oxide, silicon nitride, silicon oxynitride, other suitable materials, or a combination of the two. However, the present invention is not limited to this. In other embodiments, other suitable methods may also be used to form a sacrificial structure for temporarily fixing the micro-light-emitting diode LED, such as controlling the number of etching seconds and the resulting etching selectivity.

請參照圖1I,接著,利用一彈性轉置頭P提取(pick-up)傳遞基板S2上的微型發光二極體LED,進而形成微型發光二極體單元100。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,連接部312a一部份會斷裂,即連接部312a一部份會留在微型發光二極體LED上、連接部312a另一部份會留在犧牲結構S上,而使微型發光二極體LED與傳遞基板S2分離,進而形成微型發光二極體單元100。Please refer to FIG. 1I. Next, a flexible light-emitting diode P on the substrate S2 is picked-up by using an elastic transposition head P to form a miniature light-emitting diode unit 100. When the elastic transducing head P extracts the micro-light-emitting diode LED and moves in a direction d away from the transfer substrate S2, a part of the connection portion 312a will be broken, that is, a portion of the connection portion 312a will remain in the micro-light-emitting diode LED. The other part of the upper part and the connection part 312a will remain on the sacrificial structure S, so that the micro-light-emitting diode LED is separated from the transfer substrate S2, thereby forming the micro-light-emitting diode unit 100.

請參照圖1J,接著,將微型發光二極體單元100放置於接收基板710上。圖1J與以下實施例僅繪示一個子畫素具有一個驅動微型發光二極體LED的情形,但本發明並不以此為限,一個子畫素也可具有一個以上的微型發光二極體LED。微型發光二極體裝置10000例如為顯示器或其他具有顯示器之電子裝備。微型發光二極體裝置10000至少包括接收基板710、畫素陣列層720、黏著層730、導線500與微型發光二極體單元100。至少由接收基板710與畫素陣列層720構成陣列基板800。其中畫素陣列層720配置於接收基板710內表面上。畫素陣列層720具有多個子畫素(圖未示)與多個驅動元件(圖未示),每個子畫素具有至少一個驅動元件用以驅動微型發光二極體LED。通常,微型發光二極體LED所在的位置就是子畫素。黏著層730至少部份覆蓋位於子畫素之畫素陣列層720。微型發光二極體LED設置於黏著層上730。詳細而言,微型發光二極體單元100包括第一型半導體圖案132、位於第一型半導體圖案132上的發光圖案122、位於發光圖案122上的第二型半導體圖案112、分別與第一型半導體圖案132以及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310(包含第一與第二絕緣圖案312、314)。第一型半導體圖案132在第二型半導體圖案112上的垂直投影面積超出第二型半導體圖案112的面積。絕緣圖案310(包含第一與第二絕緣圖案312、314)覆蓋第一型半導體圖案132以及第二型半導體圖案112且暴露(或稱為未覆蓋)第一、二電極410、420。第一、二電極410、420位於第一型半導體圖案132的同一側。換言之,微型發光二極體單元100的微型發光二極體LED較佳為水平式發光二極體晶片,但並非用以限制本發明,微型發光二極體LED也可為垂直式發光二極體晶片。在本實施例中,第一型半導體圖案132例如為P型半導體圖案,第二型半導體圖案112例如為N型半導體圖案,但本發明不以此為限。再者,如前所述,若於第一型與第二型半導體層之間不加以插入發光圖案122,則第一型半導體圖案132、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體LED。Referring to FIG. 1J, the micro-light emitting diode unit 100 is placed on the receiving substrate 710. FIG. 1J and the following embodiment only show a case where one sub-pixel has one driving micro-light-emitting diode LED, but the present invention is not limited thereto, and one sub-pixel may also have more than one micro-light-emitting diode. LED. The miniature light emitting diode device 10000 is, for example, a display or other electronic equipment with a display. The micro-light-emitting diode device 10000 includes at least a receiving substrate 710, a pixel array layer 720, an adhesive layer 730, a wire 500, and a micro-light-emitting diode unit 100. An array substrate 800 is constituted by at least the receiving substrate 710 and the pixel array layer 720. The pixel array layer 720 is disposed on the inner surface of the receiving substrate 710. The pixel array layer 720 has a plurality of sub-pixels (not shown) and a plurality of driving elements (not shown), and each of the sub-pixels has at least one driving element for driving the micro-light emitting diode LED. Generally, the position of the micro light-emitting diode LED is the sub-pixel. The adhesive layer 730 at least partially covers the pixel array layer 720 located at the sub-pixel. The micro light emitting diode LED is disposed on the adhesive layer 730. In detail, the micro light emitting diode unit 100 includes a first-type semiconductor pattern 132, a light-emitting pattern 122 on the first-type semiconductor pattern 132, a second-type semiconductor pattern 112 on the light-emitting pattern 122, and a first type semiconductor pattern, respectively. The semiconductor pattern 132 and the second type semiconductor pattern 112 are electrically connected to the first and second electrodes 410 and 420 and the insulating pattern 310 (including the first and second insulating patterns 312 and 314). The vertical projection area of the first type semiconductor pattern 132 on the second type semiconductor pattern 112 exceeds the area of the second type semiconductor pattern 112. The insulating pattern 310 (including the first and second insulating patterns 312 and 314) covers the first type semiconductor pattern 132 and the second type semiconductor pattern 112 and exposes (or is called uncovered) the first and second electrodes 410 and 420. The first and second electrodes 410 and 420 are located on the same side of the first type semiconductor pattern 132. In other words, the micro-light-emitting diode LED of the micro-light-emitting diode unit 100 is preferably a horizontal light-emitting diode chip, but it is not intended to limit the present invention. The micro-light-emitting diode LED may also be a vertical light-emitting diode. Wafer. In this embodiment, the first type semiconductor pattern 132 is, for example, a P type semiconductor pattern, and the second type semiconductor pattern 112 is, for example, an N type semiconductor pattern, but the present invention is not limited thereto. Furthermore, as described above, if the light emitting pattern 122 is not inserted between the first and second type semiconductor layers, the first type semiconductor pattern 132, the second type semiconductor pattern 112, the first electrode 410, and the second type The electrode 420 may constitute a micro light emitting diode LED.

在本實施例中,絕緣圖案310(包含第一與第二絕緣圖案312、314)覆蓋微型發光二極體LED且絕緣圖案310(例如第一絕緣圖案312)具有延伸到微型發光二極體LED外的連接部312a。微型發光二極體單元100更包括第一犧牲圖案142。第一犧牲圖案142覆蓋第一型半導體圖案132的底部,即第一型半導體圖案132位於第一犧牲圖案142上。因此,第一型半導體圖案132位於第二型半導體圖112與第一犧牲圖案142之間。若有存在發光圖案122,則第一型半導體圖案132位於發光圖案122與第一犧牲圖案142之間。更進一步地說,第一犧牲圖案142具有與第一型半導體圖案132接觸的第一表面(或稱為上表面或內表面)142a、相對於第一表面142a的第二表面(或稱為底表面或外表面)142b以及位於第一表面142a與第二表面142b之間的側壁142c,即連接第一表面142a與第二表面142b之側壁142c。絕緣圖案312覆蓋第一犧牲圖案142的第一表面142a而暴露(或稱為未覆蓋)第一犧牲圖案142的側壁142c與第二表面142b。但本發明不限與此,在其他實施例中,微型發光二極體單元也可不包括第一犧牲圖案142。以下將於後續段落中配合其他圖式舉例說明之。In this embodiment, the insulating pattern 310 (including the first and second insulating patterns 312 and 314) covers the micro-light emitting diode LED and the insulating pattern 310 (for example, the first insulating pattern 312) has an extension to the micro-light emitting diode LED.外 连接 部 312a. The micro light emitting diode unit 100 further includes a first sacrificial pattern 142. The first sacrificial pattern 142 covers the bottom of the first type semiconductor pattern 132, that is, the first type semiconductor pattern 132 is located on the first sacrificial pattern 142. Therefore, the first type semiconductor pattern 132 is located between the second type semiconductor pattern 112 and the first sacrificial pattern 142. If there is a light emitting pattern 122, the first type semiconductor pattern 132 is located between the light emitting pattern 122 and the first sacrificial pattern 142. Furthermore, the first sacrificial pattern 142 has a first surface (or referred to as an upper surface or an inner surface) 142a in contact with the first type semiconductor pattern 132, and a second surface (or referred to as a bottom surface) opposite the first surface 142a Surface or outer surface) 142b and a side wall 142c located between the first surface 142a and the second surface 142b, that is, a side wall 142c connecting the first surface 142a and the second surface 142b. The insulating pattern 312 covers the first surface 142 a of the first sacrificial pattern 142 and exposes (or is called uncovered) the sidewall 142 c and the second surface 142 b of the first sacrificial pattern 142. However, the present invention is not limited thereto. In other embodiments, the micro light emitting diode unit may not include the first sacrificial pattern 142. In the following paragraphs, it will be illustrated with other drawings.

在上述微型發光二極體單元之中介結構1000及微型發光二極體單元100的製造方法中,較佳設計第一型半導體圖案132為P型半導體,第二型半導體圖案132為N型半導體,且第一型半導體圖案132於方向d上的厚度是小於第二型半導體圖案112於方向d上的厚度。然為了避免第一型半導體圖案132因厚度較薄而容易破裂,因此於微型發光二極體LED的下表面覆蓋有第一犧牲圖案142,相較於未覆蓋有第一犧牲圖案142的發光二極體,避免於沉積第一、二電極前須再次翻轉,使第一型半導體圖案132位於最上層。本實施例因具有第一犧牲圖案142可省略至少一次轉置動作,進而達到簡化製程的效果。此外,因犧牲結構S的第一犧牲圖案142下表面與傳遞基板S2上表面(或稱為內表面)之間存在間隙g,形成暫時固定結構,而可使用彈性轉置頭P黏附或吸附微型發光二極體單元100,避免對位的動作費工費時,而使轉置微型發光二極體單元100的速度提升。In the manufacturing method of the micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100 described above, it is preferable to design the first type semiconductor pattern 132 as a P-type semiconductor and the second type semiconductor pattern 132 as an N-type semiconductor. The thickness of the first type semiconductor pattern 132 in the direction d is smaller than the thickness of the second type semiconductor pattern 112 in the direction d. However, in order to prevent the first semiconductor pattern 132 from being easily broken due to its thin thickness, the lower surface of the micro-light-emitting diode LED is covered with a first sacrificial pattern 142, as compared with a light-emitting diode that is not covered with the first sacrificial pattern 142. The polar body is prevented from being flipped again before the first and second electrodes are deposited, so that the first type semiconductor pattern 132 is located at the uppermost layer. In this embodiment, since the first sacrificial pattern 142 is provided, at least one transposition action can be omitted, thereby achieving the effect of simplifying the manufacturing process. In addition, because there is a gap g between the lower surface of the first sacrificial pattern 142 of the sacrificial structure S and the upper surface (or called the inner surface) of the transfer substrate S2, a temporary fixed structure is formed. The light-emitting diode unit 100 avoids the labor-consuming and time-consuming operation of alignment, and increases the speed of transposing the micro-light-emitting diode unit 100.

圖2A至圖2B為本發明一實施例之微型發光二極體單元之中介結構的部分製造方法的剖面示意圖。圖2A至圖2B之微型發光二極體單元之中介結構的部分製造方法與圖1H至圖1I的微型發光二極體單元之中介結構的部分製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異在於:圖2A至圖2B之第一、二犧牲圖案142A、212A的結構及形成方法與圖1H至圖1I之第一、二犧牲圖案142、212的結構及形成方法不同。此外,在微型發光二極體單元之中介結構1000A的製造過程中,在圖2A之前的製造流程與圖1A至圖1G所示的製造流程相同,因此關於圖2A以前的製造流程請參考圖1A至圖1G及前述說明,於此便不再重複繪示與說明。FIG. 2A to FIG. 2B are schematic cross-sectional views of a part of a manufacturing method of an intermediary structure of a micro-light-emitting diode unit according to an embodiment of the present invention. The manufacturing method of the intermediate structure of the micro-light-emitting diode unit of FIG. 2A to FIG. 2B is similar to that of the intermediate structure of the micro-light-emitting diode unit of FIG. 1H to FIG. 1I. Therefore, the same or corresponding components are the same. Or the corresponding reference sign. The main difference between the two is that the structures and forming methods of the first and second sacrificial patterns 142A and 212A in FIGS. 2A to 2B are different from the structures and forming methods of the first and second sacrificial patterns 142 and 212 in FIGS. 1H to 1I. In addition, in the manufacturing process of the micro light-emitting diode unit interposer 1000A, the manufacturing process before FIG. 2A is the same as the manufacturing process shown in FIGS. 1A to 1G, so please refer to FIG. 1A for the manufacturing process before FIG. 2A Up to FIG. 1G and the foregoing description, the illustration and description will not be repeated here.

請參照圖1G及圖2A,在形成如圖1G所示的結構後,接著,移除至少部份的第一犧牲層140、至少部份的第二犧牲層210或至少部份前述二者之堆疊層,以使每一微型發光二極體LED與傳遞基板S2內表面之間存在間隙g,以完成微型發光二極體單元之中介結構1000A。與圖1G的微型發光二極體單元之中介結構1000不同的是,在圖2A的實施例中,第一犧牲層140與第二犧牲層210可皆為有機材料或無機材料,而可在同一道製程中同時圖案化出第一、二犧牲圖案142A、212A。詳言之,可同時移除被微型發光二極體LED與絕緣圖案310(包含第一與第二絕緣圖案312、134)暴露(或稱為未覆蓋)以及位於微型發光二極體LED正下方之部份第一犧牲層140與部份第二犧牲層210,而保留位於連接部312a正下方的部份第一犧牲層140(即第一犧牲圖案142A)與部份第二犧牲層210(即第二犧牲圖案212A)。或者,第一犧牲層140可為無機材料層(例如:金屬或合金)且第一犧牲層140之材料與絕緣圖案312不相同,而第二犧牲層210可為有機材料層(例如:光阻),其中第一犧牲層140使用溼式蝕刻的方式移除,第二犧牲層210使用乾式蝕刻工序(例如:含氧電漿製程)分次移除,然本發明並不以此為限。犧牲結構S的第一犧牲圖案142A及第二犧牲圖案212A共同暴露(或稱為未覆蓋)第一型半導體圖案132的底部。犧牲結構S與絕緣圖案310(例如第一絕緣圖案312)的連接部312a連接。Referring to FIG. 1G and FIG. 2A, after forming the structure shown in FIG. 1G, then, at least part of the first sacrificial layer 140, at least part of the second sacrificial layer 210, or at least part of the foregoing two are removed. The layers are stacked so that there is a gap g between each micro light emitting diode LED and the inner surface of the transfer substrate S2 to complete the micro light emitting diode unit interposer 1000A. Different from the micro-emitting diode unit interposer 1000 of FIG. 1G, in the embodiment of FIG. 2A, the first sacrificial layer 140 and the second sacrificial layer 210 may both be organic materials or inorganic materials, and may be the same in the same embodiment. The first and second sacrificial patterns 142A and 212A are patterned at the same time during the process. In detail, the micro light emitting diode LED and the insulation pattern 310 (including the first and second insulation patterns 312 and 134) can be simultaneously removed to be exposed (or not covered) and located directly below the micro light emitting diode LED. Part of the first sacrificial layer 140 and part of the second sacrificial layer 210, while part of the first sacrificial layer 140 (ie, the first sacrificial pattern 142A) and part of the second sacrificial layer 210 (directly under the connection portion 312a) remain. That is, the second sacrificial pattern 212A). Alternatively, the first sacrificial layer 140 may be an inorganic material layer (for example, a metal or an alloy) and the material of the first sacrificial layer 140 is different from the insulating pattern 312, and the second sacrificial layer 210 may be an organic material layer (for example, a photoresist ), Wherein the first sacrificial layer 140 is removed by wet etching, and the second sacrificial layer 210 is removed in stages using a dry etching process (for example, an oxygen-containing plasma process), but the present invention is not limited thereto. The first sacrificial pattern 142A and the second sacrificial pattern 212A of the sacrificial structure S jointly expose (or be referred to as uncovered) the bottom of the first type semiconductor pattern 132. The sacrificial structure S is connected to the connection portion 312 a of the insulating pattern 310 (for example, the first insulating pattern 312).

請參照圖2B,接著,利用一彈性轉置頭P提取傳遞基板S2上的微型發光二極體LED,進而形成微型發光二極體單元100A。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,絕緣圖案310(例如第一絕緣圖案312)的連接部312a會斷裂,即連接部312a一部份會留在微型發光二極體LED上,連接部312a另一部份會留在犧牲結構S上,而使微型發光二極體LED與傳遞基板S2分離,進而形成微型發光二極體單元100A,但本發明並不以此為限定。Please refer to FIG. 2B. Next, an elastic transducing head P is used to extract the micro-light-emitting diode LED on the transfer substrate S2 to form a micro-light-emitting diode unit 100A. When the elastic transducing head P extracts the micro-light emitting diode LED and moves in a direction d away from the transfer substrate S2, the connection portion 312a of the insulation pattern 310 (for example, the first insulation pattern 312) is broken, that is, a part of the connection portion 312a Will remain on the micro-light-emitting diode LED, and the other part of the connection portion 312a will remain on the sacrificial structure S, so that the micro-light-emitting diode LED is separated from the transfer substrate S2, and a micro-light-emitting diode unit 100A is formed, However, the present invention is not limited thereto.

微型發光二極體單元100A包括第一型半導體圖案132、位於第一型半導體圖案132上的第二型半導體圖案112、分別與第一型半導體圖案132以及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310(包含第一與第二絕緣圖案312、314)。於其它實施例中,如前所述,若於第一型與第二型半導體層之間加以插入發光圖案122,則發光圖案122位於第一型半導體圖案132上,且第二型半導體圖案112位於發光圖案122上。第一型半導體圖案132在第二型半導體圖案上112的垂直投影面積超出第二型半導體圖案112的面積。絕緣圖案310(包含第一與第二絕緣圖案312、314)覆蓋第一型半導體圖案132以及第二型半導體圖案112且部份暴露(或稱為未覆蓋)第一、二電極410、420。第一、二電極410、420位於第一型半導體圖案132的同一側。換言之,微型發光二極體單元100A較佳為水平式發光二極體晶片。The micro light-emitting diode unit 100A includes a first-type semiconductor pattern 132, a second-type semiconductor pattern 112 on the first-type semiconductor pattern 132, and electrically connected to the first-type semiconductor pattern 132 and the second-type semiconductor pattern 112, respectively. The first and second electrodes 410 and 420 and the insulation pattern 310 (including the first and second insulation patterns 312 and 314). In other embodiments, as described above, if a light emitting pattern 122 is inserted between the first type semiconductor layer and the second type semiconductor layer, the light emitting pattern 122 is located on the first type semiconductor pattern 132 and the second type semiconductor pattern 112 Located on the light emitting pattern 122. The vertical projection area of the first type semiconductor pattern 132 on the second type semiconductor pattern 112 exceeds the area of the second type semiconductor pattern 112. The insulating pattern 310 (including the first and second insulating patterns 312 and 314) covers the first type semiconductor pattern 132 and the second type semiconductor pattern 112 and partially exposes (or is called uncovered) the first and second electrodes 410 and 420. The first and second electrodes 410 and 420 are located on the same side of the first type semiconductor pattern 132. In other words, the micro light-emitting diode unit 100A is preferably a horizontal light-emitting diode wafer.

與微型發光二極體單元100不同的是,微型發光二極體單元100A不包括覆蓋第一型半導體圖案132的犧牲結構S,而第一型半導體圖案132的底部可被暴露出來,即第一型半導體圖案132的底部(下表面)未被膜層所覆蓋。微型發光二極體單元之中介結構1000A及微型發光二極體單元100A之製造方法具有與前述微型發光二極體單元之中介結構1000及微型發光二極體單元100之製造方法類似的功效與優點,於此便不再重述。Different from the micro light emitting diode unit 100, the micro light emitting diode unit 100A does not include the sacrificial structure S covering the first type semiconductor pattern 132, and the bottom of the first type semiconductor pattern 132 may be exposed, that is, the first The bottom (lower surface) of the semiconductor pattern 132 is not covered by the film layer. The manufacturing method of the micro-light-emitting diode unit intermediary structure 1000A and the micro-light-emitting diode unit 100A has similar effects and advantages to the aforementioned micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100. Will not be repeated here.

圖3A至圖3B為本發明一實施例之微型發光二極體單元之中介結構的部分製造方法的剖面示意圖。圖3A至圖3B之微型發光二極體單元之中介結構的部分製造方法與圖1H至圖1I的微型發光二極體單元之中介結構的部分製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異在於:在圖3A至圖3B的實施例中,可不圖案化第二犧牲層210。此外,在微型發光二極體單元之中介結構1000B的製造過程中,在圖3A之前的製造流程與圖1A至圖1G的製造流程相同,因此關於圖3A以前的製造流程請參考圖1A至圖1G及前述說明,於此便不再重複繪示與說明。FIG. 3A to FIG. 3B are schematic cross-sectional views of a part of a method for manufacturing a micro-light-emitting diode unit interposer structure according to an embodiment of the present invention. The manufacturing method of the intermediate structure of the micro-light-emitting diode unit of FIG. 3A to FIG. 3B is similar to that of the intermediate structure of the micro-light-emitting diode unit of FIG. 1H to FIG. 1I. Therefore, the same or corresponding components are the same. Or the corresponding reference sign. The main difference between the two is that in the embodiment of FIGS. 3A to 3B, the second sacrificial layer 210 may not be patterned. In addition, in the manufacturing process of the micro-light-emitting diode unit interposer 1000B, the manufacturing process before FIG. 3A is the same as the manufacturing process of FIG. 1A to FIG. 1G, so for the manufacturing process before FIG. 3A, please refer to FIG. 1A to FIG. 1G and the foregoing description are not repeated here.

請參照圖1G及圖3A,在形成如圖1G所示的結構後,接著,移除至少部份的第一犧牲層140、至少部份的第二犧牲層210或其組合,以使每一微型發光二極體LED與傳遞基板S2之間存在間隙g,以完成微型發光二極體單元之中介結構1000B。與微型發光二極體單元之中介結構1000之製造方法不同的是,在圖3A的實施例中,除了移除被微型發光二極體LED及絕緣圖案310包含(第一與第二絕緣圖案312、314)暴露出(未被覆蓋)的部份第一犧牲層142外,更可移除位於微型發光二極體LED正下方之部份第一犧牲層142,而保留位於連接部312a正下方的部份第一犧牲層142(即第一犧牲圖案142B)以及完整的第二犧牲層210。第二犧牲層210覆蓋傳遞基板S2。第一犧牲圖案142B配置於第二犧牲層210上。絕緣圖案310 (例如第一絕緣圖案312)的連接部312a透過第一犧牲圖案142B暫時固定在第二犧牲層210上。微型發光二極體LED、絕緣圖案310 (例如第一絕緣圖案312)的連接部312a、第一犧牲圖案142B與第二犧牲層210上表面定義出間隙g。舉例而言,在圖3A的實施例中,第一犧牲層140可為無機材料層(例如:金屬),第二犧牲層210可為有機材料層(例如:光阻),而可利用濕式蝕刻去除部份第一犧牲層140,以圖案化出第一犧牲圖案142B,而保留第二犧牲層210。由於濕式蝕刻序可去除無機材料但不易去除有機材料(例如:第二犧牲層210),因此在圖案化出第一犧牲圖案142B的過程中,第二犧牲層210可被保留。Referring to FIG. 1G and FIG. 3A, after forming the structure as shown in FIG. 1G, then, at least part of the first sacrificial layer 140, at least part of the second sacrificial layer 210, or a combination thereof are removed, so that each A gap g exists between the micro-light-emitting diode LED and the transfer substrate S2 to complete the micro-light-emitting diode unit intermediary structure 1000B. Different from the manufacturing method of the micro-light-emitting diode unit interposer 1000, in the embodiment of FIG. 3A, in addition to removing the micro-light-emitting diode LED and the insulation pattern 310 (the first and second insulation patterns 312) , 314) In addition to the exposed (uncovered) part of the first sacrificial layer 142, a part of the first sacrificial layer 142 located directly under the micro light-emitting diode LED can be removed, while remaining directly under the connection portion 312a. Part of the first sacrificial layer 142 (ie, the first sacrificial pattern 142B) and the complete second sacrificial layer 210. The second sacrificial layer 210 covers the transfer substrate S2. The first sacrificial pattern 142B is disposed on the second sacrificial layer 210. The connection portion 312 a of the insulating pattern 310 (for example, the first insulating pattern 312) is temporarily fixed on the second sacrificial layer 210 through the first sacrificial pattern 142B. The micro-light emitting diode LED, the connection portion 312 a of the insulating pattern 310 (for example, the first insulating pattern 312), the first sacrificial pattern 142B, and the upper surface of the second sacrificial layer 210 define a gap g. For example, in the embodiment of FIG. 3A, the first sacrificial layer 140 may be an inorganic material layer (for example, a metal), and the second sacrificial layer 210 may be an organic material layer (for example, a photoresist). A portion of the first sacrificial layer 140 is removed by etching to pattern the first sacrificial pattern 142B, and the second sacrificial layer 210 remains. Since the wet etching sequence can remove the inorganic material but is not easy to remove the organic material (eg, the second sacrificial layer 210), the second sacrificial layer 210 can be retained during the process of patterning the first sacrificial pattern 142B.

請參照圖3B,接著,利用一彈性轉置頭P提取傳遞基板S2上的微型發光二極體LED,進而形成微型發光二極體單元100B。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,絕緣圖案310 (例如第一絕緣圖案312)的連接部312a會斷裂,即連接部312a一部份會留在微型發光二極體LED上,連接部312a另一部份會留在犧牲結構S上,而使微型發光二極體LED與傳遞基板S2分離,進而形成微型發光二極體單元100B。Referring to FIG. 3B, the elastic light-emitting head P is used to extract the micro-light-emitting diode LED on the transfer substrate S2 to form a micro-light-emitting diode unit 100B. When the elastic transducing head P extracts the micro-light emitting diode LED and moves in a direction d away from the transfer substrate S2, the connection portion 312a of the insulation pattern 310 (for example, the first insulation pattern 312) is broken, that is, a part of the connection portion 312a Will remain on the micro-light-emitting diode LED, and the other part of the connection portion 312a will remain on the sacrificial structure S, so that the micro-light-emitting diode LED is separated from the transfer substrate S2, thereby forming a micro-light-emitting diode unit 100B.

微型發光二極體單元100B包括第一型半導體圖案132、位於第一型半導體圖案132上的發光圖案122、位於發光圖案122上的第二型半導體圖案112、分別與第一型半導體圖案132以及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310(包含第一與第二絕緣圖案312、314)。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第二型半導體圖案112位於第一型半導體圖案132上。第一型半導體圖案132在第二型半導體圖案上112的垂直投影面積超出第二型半導體圖案112的面積。絕緣圖案310(包含第一與第二絕緣圖案312、314)覆蓋第一型半導體圖案132以及第二型半導體圖案112且部份暴露(或稱為未覆蓋)第一、二電極410、420。第一、二電極410、420位於第一型半導體圖案132的同一側。換言之,微型發光二極體單元100B較佳為水平式發光二極體晶片。The micro light emitting diode unit 100B includes a first type semiconductor pattern 132, a light emitting pattern 122 on the first type semiconductor pattern 132, a second type semiconductor pattern 112 on the light emitting pattern 122, and the first type semiconductor pattern 132 and The first and second electrodes 410 and 420 and the insulating pattern 310 (including the first and second insulating patterns 312 and 314) electrically connected to the second type semiconductor pattern 112. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the second type semiconductor pattern 112 is located on the first type semiconductor pattern 132. The vertical projection area of the first type semiconductor pattern 132 on the second type semiconductor pattern 112 exceeds the area of the second type semiconductor pattern 112. The insulating pattern 310 (including the first and second insulating patterns 312 and 314) covers the first type semiconductor pattern 132 and the second type semiconductor pattern 112 and partially exposes (or is called uncovered) the first and second electrodes 410 and 420. The first and second electrodes 410 and 420 are located on the same side of the first type semiconductor pattern 132. In other words, the micro light emitting diode unit 100B is preferably a horizontal light emitting diode wafer.

與微型發光二極體單元100不同的是,微型發光二極體單元100B不包括覆蓋第一型半導體圖案132的犧牲圖案,而第一型半導體圖案132的底部(或稱為下表面)可被暴露(或稱為不被覆蓋)。微型發光二極體單元之中介結構1000B及微型發光二極體單元100B之製造方法具有與前述微型發光二極體單元之中介結構1000及微型發光二極體單元100之製造方法類似的功效與優點,於此便不再重述。Different from the micro light emitting diode unit 100, the micro light emitting diode unit 100B does not include a sacrificial pattern covering the first type semiconductor pattern 132, and the bottom (or lower surface) of the first type semiconductor pattern 132 may be Exposed (or called uncovered). The manufacturing method of the micro-light-emitting diode unit intermediary structure 1000B and the micro-light-emitting diode unit 100B has similar effects and advantages as the aforementioned micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100 Will not be repeated here.

圖4A至圖4H為本發明一實施例之微型發光二極體單元之中介結構的製造方法的剖面示意圖。圖4A至圖4H之微型發光二極體單元之中介結構的製造方法與圖1A至圖1I之微型發光二極體單元之中介結構的製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異在於:在圖4A至圖4H的實施例中,是先形成絕緣圖案310C與第一、二電極410、420後,才形成第一型半導體圖案132C,而不像在圖1A至圖1I的實施例中,是先圖案化出第一型半導體圖案132後,才形成絕緣圖案310與第一、二電極410、420。以下主要就此差異處做說明,兩者相同處還請參照前述說明,於此便不再重述。4A to 4H are schematic cross-sectional views of a method for manufacturing a micro-light-emitting diode unit interposer according to an embodiment of the present invention. The manufacturing method of the intermediary structure of the micro-light-emitting diode unit of FIGS. 4A to 4H is similar to the manufacturing method of the intermediary structure of the micro-light-emitting diode unit of FIGS. 1A to 1I, and therefore the same or corresponding components are the same or related The corresponding reference sign indicates. The main difference between the two is that in the embodiment of FIGS. 4A to 4H, the first type semiconductor pattern 132C is formed after the insulating pattern 310C and the first and second electrodes 410 and 420 are formed, unlike in FIG. 1A. In the embodiment shown in FIG. 1I, the insulating pattern 310 and the first and second electrodes 410 and 420 are formed after the first type semiconductor pattern 132 is patterned. The following mainly explains the differences. Please refer to the previous description for the same points, and will not repeat them here.

請參照圖4A,首先,提供半導體結構10。半導體結構10包括依序堆疊於生長基板S1內表面上之多層半導體(未標註)以及第一犧牲層140。第一犧牲層140設置於多層半導體上。多層半導體包含第一型半導體層130、一與該第一型半導體層110極性相反之第二型半導體層。第一型與第二型半導體層130、110之極性可分別為N或P型半導體層。於本發明之實施例中,以第一型半導體層130為P型半導體層在生長基板S1內表面上及以第二型半導體層110為N型半導體層在第一型半導體層與生長基板S1之間為範例,但不限於此。於其它實施例中,以第一型半導體層130為N型半導體層在生長基板S1內表面上及第二型半導體層110為P型半導體層在第一型半導體層上。於本發明之實施例中,可選擇的於第一型與第二型半導體層之交界處作為發光處或者第一型與第二型半導體層之交界處可再插入一膜層當作發光層120。本發明之實施例,係以第一型與第二型半導體層之交界處可再插入一膜層當作發光層120為範例,但不限於此。於其它實施例中,第一型與第二型半導體層之交界處沒有插入膜層當作發光層亦可適用。請參照圖4B,接著,提供承載結構20。承載結構20包括傳遞基板S2以及覆蓋傳遞基板S2內表面的第二犧牲層210。接著,如圖4B所示,接合半導體結構10的第一犧牲層140與承載結構20的第二犧牲層210,以使半導體結構10固定在承載結構20上。請參照圖4B及圖4C,接著,移除半導體結構10的生長基板S1。請參照圖4C及圖4D,接著,圖案化第二型半導體層110與發光層120,以形成彼此分離的多個第二型半導體圖案112與彼此分離的多個發光圖案122。每一發光圖案122上配置有對應的一個第二型半導體圖案112。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,就不會圖案化發光層120,則每一第一型半導體圖案132C上配置有對應的一個第二型半導體圖案112。Referring to FIG. 4A, first, a semiconductor structure 10 is provided. The semiconductor structure 10 includes a multilayer semiconductor (not labeled) and a first sacrificial layer 140 sequentially stacked on the inner surface of the growth substrate S1. The first sacrificial layer 140 is disposed on a multilayer semiconductor. The multilayer semiconductor includes a first-type semiconductor layer 130 and a second-type semiconductor layer of opposite polarity to the first-type semiconductor layer 110. The polarities of the first-type and second-type semiconductor layers 130 and 110 may be N-type or P-type semiconductor layers, respectively. In the embodiment of the present invention, the first type semiconductor layer 130 is a P-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 110 is an N-type semiconductor layer on the first type semiconductor layer and the growth substrate S1. Between is an example, but it is not limited to this. In other embodiments, the first type semiconductor layer 130 is an N-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 110 is a P-type semiconductor layer on the first type semiconductor layer. In the embodiment of the present invention, a film layer may be optionally inserted at the interface between the first type semiconductor layer and the second type semiconductor layer or the interface between the first type semiconductor layer and the second type semiconductor layer may be used as the light emitting layer. 120. In the embodiment of the present invention, a film layer can be inserted at the interface between the first type semiconductor layer and the second type semiconductor layer as the light emitting layer 120 as an example, but it is not limited thereto. In other embodiments, a film layer is not inserted as a light emitting layer at the interface between the first type semiconductor layer and the second type semiconductor layer. Please refer to FIG. 4B. Next, a supporting structure 20 is provided. The carrier structure 20 includes a transfer substrate S2 and a second sacrificial layer 210 covering the inner surface of the transfer substrate S2. Next, as shown in FIG. 4B, the first sacrificial layer 140 of the semiconductor structure 10 and the second sacrificial layer 210 of the carrier structure 20 are bonded to fix the semiconductor structure 10 on the carrier structure 20. Please refer to FIGS. 4B and 4C. Next, the growth substrate S1 of the semiconductor structure 10 is removed. Referring to FIGS. 4C and 4D, the second type semiconductor layer 110 and the light emitting layer 120 are patterned to form a plurality of second type semiconductor patterns 112 and a plurality of light emitting patterns 122 separated from each other. A corresponding second type semiconductor pattern 112 is disposed on each light emitting pattern 122. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the light emitting layer 120 will not be patterned. A corresponding second type semiconductor pattern 112 is arranged.

與圖1A至圖1I之實施例不同的是,如圖4D及圖4E所示,在本實施例中,是在圖案化出第二型半導體圖案112與發光圖案122之後、圖案化第一型半導體層130之前,於第二型半導體圖案112、發光圖案122及第一型半導體層130上形成絕緣圖案310C。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則絕緣圖案310C覆蓋對應的第二型半導體圖案112以及第一型半導體圖案132C。絕緣圖案310C覆蓋第二型半導體圖案112的側壁112a、112b及發光圖案122的側壁122a、122b。絕緣圖案310C具有延伸至第二型半導體圖案112與發光圖案122外的連接部312aC。連接部312aC延伸並固定在第一型半導體層130上。接著,在於絕緣圖案310C上形成第一、二電極410、420。第一電極410與第一型半導體層130電性連接。第二電極420與第二型半導體圖案112電性連接。The difference from the embodiment of FIGS. 1A to 1I is that, as shown in FIGS. 4D and 4E, in this embodiment, the first type is patterned after the second type semiconductor pattern 112 and the light emitting pattern 122 are patterned. Before the semiconductor layer 130, an insulating pattern 310C is formed on the second type semiconductor pattern 112, the light emitting pattern 122, and the first type semiconductor layer 130. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the insulating pattern 310C covers the corresponding second type semiconductor pattern 112 and the first type semiconductor pattern. 132C. The insulating pattern 310C covers the sidewalls 112 a and 112 b of the second-type semiconductor pattern 112 and the sidewalls 122 a and 122 b of the light emitting pattern 122. The insulation pattern 310C has a connection portion 312 aC extending outside the second-type semiconductor pattern 112 and the light-emitting pattern 122. The connection portion 312aC is extended and fixed on the first type semiconductor layer 130. Next, first and second electrodes 410 and 420 are formed on the insulating pattern 310C. The first electrode 410 is electrically connected to the first type semiconductor layer 130. The second electrode 420 is electrically connected to the second-type semiconductor pattern 112.

請參照圖4E及圖4F,接著,移除被第二型半導體圖案112、絕緣圖案310C及第一、二電極410、420暴露出(或稱為未覆蓋)的部份第一型半導體層130,以形成多個第一型半導體圖案132C。每一第一型半導體圖案132C上配置有對應的一個發光圖案122與對應的一個第二型半導體圖案112。相對應的一個第一型半導體圖案132C、一個發光圖案122、一個第二型半導體圖案與第一、二電極410、420構成一個微型發光二極體LED。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132C、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體LED。其中,微型發光二極體LED之尺吋大小係為微米或奈米等級。多個微型發光二極體LED陣列排列在傳遞基板S2上。每一微型發光二極體LED之第一型半導體圖案132C在傳遞基板S2上的垂直投影面積較佳地超出對應之第二型半導體圖案112在傳遞基板S2上的垂直投影面積以及對應之發光圖案122在傳遞基板S2上的垂直投影面積。每一微型發光二極體LED的第一型半導體圖案132C、發光圖案122與第二型半導體圖案112在遠離傳遞基板S2的方向d上依序排列。與圖1A至圖1I之實施例不同的是,如圖4F所示,在本實施例中,絕緣圖案310C(例如第一絕緣圖案312C)未覆蓋第一型半導體圖案132C的側壁132a。Please refer to FIG. 4E and FIG. 4F. Next, a part of the first-type semiconductor layer 130 exposed (or called uncovered) by the second-type semiconductor pattern 112, the insulating pattern 310C, and the first and second electrodes 410 and 420 is removed. To form a plurality of first-type semiconductor patterns 132C. A corresponding light-emitting pattern 122 and a corresponding second-type semiconductor pattern 112 are disposed on each of the first-type semiconductor patterns 132C. Correspondingly, a first type semiconductor pattern 132C, a light emitting pattern 122, a second type semiconductor pattern and the first and second electrodes 410, 420 constitute a micro light emitting diode LED. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 132C, the second type semiconductor pattern 112, the first electrode 410, and The second electrode 420 may constitute a micro light emitting diode LED. Among them, the size of the miniature light-emitting diode LED is micrometer or nanometer. A plurality of micro light emitting diode LED arrays are arranged on the transfer substrate S2. The vertical projection area of the first type semiconductor pattern 132C of each miniature light-emitting diode LED on the transfer substrate S2 preferably exceeds the vertical projection area of the corresponding second type semiconductor pattern 112 on the transfer substrate S2 and the corresponding light emitting pattern. The vertical projection area of 122 on the transfer substrate S2. The first type semiconductor pattern 132C, the light emitting pattern 122, and the second type semiconductor pattern 112 of each miniature light emitting diode LED are sequentially arranged in a direction d away from the transfer substrate S2. Different from the embodiment of FIGS. 1A to 1I, as shown in FIG. 4F, in this embodiment, the insulating pattern 310C (for example, the first insulating pattern 312C) does not cover the sidewall 132 a of the first type semiconductor pattern 132C.

請參照圖4F及圖4G,接著,移除至少部份的第一犧牲層140、至少部份的第二犧牲層210或至少部份前述二者之堆疊層,以使每一微型發光二極體LED與傳遞基板S2內表面之間存在間隙g,例如:每一微型發光二極體LED下方的第一第一犧牲層140之外表面(底表面)與傳遞基板S2內表面之間存在間隙g,於此便完成了微型發光二極體單元之中介結構1000C。舉例而言,在本實施例中,可移除被微型發光二極體LED以及絕緣圖案310C暴露出(或稱為未覆蓋)的部份第一犧牲層140,而保留位於微型發光二極體LED正下方以及位於連接部312aC正下方的部份第一犧牲層(即第一犧牲圖案142);可移除被微型發光二極體LED與絕緣圖案310C暴露(或稱為未覆蓋)及位於微型發光二極體LED正下方之部份的第二犧牲層210,而保留位於連接部312aC正下方的部份第二犧牲層(即第二犧牲圖案212)。如圖4G所示,部份第一犧牲圖案142堆疊於對應的一個第二犧牲圖案212上,相堆疊的一個第一犧牲圖案142與一個第二犧牲圖案212構成一個犧牲結構或稱為連接結構S。與微型發光二極體LED連接的連接部312aC透過犧牲結構S暫時固定於傳遞基板S2上。犧牲結構S與傳遞基板內表面S2之間存在間隙g。在本實施例中,第一犧牲圖案142覆蓋微型發光二極體LED之第一型半導體圖案132C的底部,而第二犧牲圖案212暴露出(或稱為未覆蓋)第一犧牲圖案142與第一型半導體圖案132C重疊的一部份。Please refer to FIG. 4F and FIG. 4G. Then, at least part of the first sacrificial layer 140, at least part of the second sacrificial layer 210, or at least part of the stacked layers of the foregoing are removed, so that each micro-light emitting diode There is a gap g between the body LED and the inner surface of the transfer substrate S2. For example, there is a gap between the outer surface (bottom surface) of the first first sacrificial layer 140 under each micro-light emitting diode LED and the inner surface of the transfer substrate S2. g, thus completing the micro-light-emitting diode unit intermediate structure 1000C. For example, in this embodiment, a portion of the first sacrificial layer 140 exposed (or called uncovered) by the micro-light emitting diode LED and the insulating pattern 310C may be removed, while remaining on the micro-light emitting diode. A portion of the first sacrificial layer (ie, the first sacrificial pattern 142) directly under the LED and directly under the connection portion 312aC; it can be removed (or called uncovered) and located by the micro-light emitting diode LED and the insulating pattern 310C and located The second sacrificial layer 210 of the portion directly below the miniature light-emitting diode LED remains a portion of the second sacrificial layer (ie, the second sacrificial pattern 212) located directly below the connection portion 312aC. As shown in FIG. 4G, a portion of the first sacrificial pattern 142 is stacked on the corresponding second sacrificial pattern 212. The stacked first sacrificial pattern 142 and the second sacrificial pattern 212 form a sacrificial structure or a connection structure. S. The connection portion 312aC connected to the micro light-emitting diode LED is temporarily fixed to the transfer substrate S2 through the sacrificial structure S. There is a gap g between the sacrificial structure S and the inner surface S2 of the transfer substrate. In this embodiment, the first sacrificial pattern 142 covers the bottom of the first type semiconductor pattern 132C of the micro light-emitting diode LED, and the second sacrificial pattern 212 exposes (or is called uncovered) the first sacrificial pattern 142 and the first The one-type semiconductor pattern 132C overlaps a part.

請參照圖4H,接著,利用彈性轉置頭P提取傳遞基板S2上的微型發光二極體LED。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,至少部份的犧牲結構S與傳遞基板S2分離,進而使微型發光二極體LED離開傳遞基板S2,並形成微型發光二極體單元100C。詳言之,若第二犧牲圖案212的尺寸極小(例如:數個平方微米),在本實施例中,第二犧牲圖案212可從第一犧牲圖案142上剝離而留於傳遞基板S2。然而,本發明不限於此,在其他實施例中,當彈性轉置頭P提取微型發光二極體LED時,也有可能發生其他情況,例如:(1)第二犧牲圖案212可能部份殘留於第一犧牲圖案142、(2)第二犧牲圖案212可能部分殘留於傳遞基板S2或(3)第二犧牲圖案212可能從傳遞基板S2上剝離而離開。Referring to FIG. 4H, the elastic light-emitting head P is used to extract the micro-light-emitting diode LED on the transfer substrate S2. When the elastic transducing head P extracts the micro-light-emitting diode LED and moves in a direction d away from the transfer substrate S2, at least part of the sacrificial structure S is separated from the transfer substrate S2, so that the micro-light-emitting diode LED leaves the transfer substrate S2. And form a micro light emitting diode unit 100C. In detail, if the size of the second sacrificial pattern 212 is extremely small (eg, several square micrometers), in this embodiment, the second sacrificial pattern 212 may be peeled from the first sacrificial pattern 142 and left on the transfer substrate S2. However, the present invention is not limited to this. In other embodiments, when the flexible transducing head P extracts the micro-light-emitting diode LED, other situations may occur, for example: (1) the second sacrificial pattern 212 may partially remain in The first sacrificial pattern 142, (2) the second sacrificial pattern 212 may partially remain on the transfer substrate S2, or (3) the second sacrificial pattern 212 may be peeled off from the transfer substrate S2 and leave.

請參照圖4H,微型發光二極體單元100C包括第一型半導體圖案132C、位於第一型半導體圖案132C上的發光圖案122、位於發光圖案122上的第二型半導體圖案112、分別與第一型半導體圖案132C以及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310C。第一型半導體圖案132C在第二型半導體圖案上112的垂直投影面積超出第二型半導體圖案112的面積。絕緣圖案310C覆蓋第一型半導體圖案132C以及第二型半導體圖案112且暴露第一、二電極410、420。Referring to FIG. 4H, the micro-light emitting diode unit 100C includes a first-type semiconductor pattern 132C, a light-emitting pattern 122 on the first-type semiconductor pattern 132C, a second-type semiconductor pattern 112 on the light-emitting pattern 122, and the first and second semiconductor patterns 112, respectively. The first and second electrodes 410 and 420 and the insulating pattern 310C which are electrically connected to the first semiconductor pattern 132C and the second semiconductor pattern 112 are electrically connected. The vertical projection area of the first type semiconductor pattern 132C on the second type semiconductor pattern 112 exceeds the area of the second type semiconductor pattern 112. The insulating pattern 310C covers the first type semiconductor pattern 132C and the second type semiconductor pattern 112 and exposes the first and second electrodes 410 and 420.

在本實施例中,絕緣圖案310C覆蓋微型發光二極體LED且具有延伸到發光圖案122與第二型半導體圖案112外側的連接部312aC。詳言之,絕緣圖案310C包括第一絕緣圖案312C與第二絕緣圖案314C。第一絕緣圖案312C形成在第二型半導體圖案112上,且覆蓋第二型半導體圖案112的側壁112a以及發光圖案122的側壁122a。第一絕緣圖案312C暴露出(或稱為未覆蓋)第一型半導體圖案132C的側壁132a。第二絕緣圖案314C形成在第二型半導體圖案112上,且覆蓋第二型半導體圖案112的側壁112b以及發光圖案122的側壁122b。第二絕緣圖案314C暴露出(或稱為未覆蓋)第一型半導體圖案132C的側壁132b。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則絕緣圖案310C包含第一與第二絕緣圖案312C、314C之設計與其它元件的連接關係,就會如前所述加以改變。絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)未超出第一型半導體圖案132C。在本實施例中,微型發光二極體單元100C更包括第一犧牲圖案142。第一犧牲圖案142覆蓋第一型半導體圖案132的底部。第一型半導體圖案132C位於發光圖案122與第一犧牲圖案142之間。然而,本發明不限與此,在其他實施例中,微型發光二極體單元也可不包括第一犧牲圖案142。微型發光二極體單元之中介結構1000C及微型發光二極體單元100C之製造方法具有與前述微型發光二極體單元之中介結構1000及微型發光二極體單元100之製造方法類似的功效與優點,於此便不再重述。In this embodiment, the insulating pattern 310C covers the micro light-emitting diode LED and has a connection portion 312 aC extending to the outside of the light-emitting pattern 122 and the second-type semiconductor pattern 112. Specifically, the insulating pattern 310C includes a first insulating pattern 312C and a second insulating pattern 314C. The first insulating pattern 312C is formed on the second-type semiconductor pattern 112 and covers a sidewall 112 a of the second-type semiconductor pattern 112 and a sidewall 122 a of the light-emitting pattern 122. The first insulating pattern 312C exposes (or is called uncovered) the sidewall 132a of the first type semiconductor pattern 132C. The second insulation pattern 314C is formed on the second type semiconductor pattern 112 and covers the sidewall 112 b of the second type semiconductor pattern 112 and the sidewall 122 b of the light emitting pattern 122. The second insulation pattern 314C exposes (or is called uncovered) the sidewall 132b of the first type semiconductor pattern 132C. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first and second type semiconductor layers, the insulating pattern 310C includes the design of the first and second insulating patterns 312C and 314C and other components Connection will be changed as described above. The insulating pattern 310C (including the first and second insulating patterns 312C and 314C) does not exceed the first type semiconductor pattern 132C. In this embodiment, the micro light emitting diode unit 100C further includes a first sacrificial pattern 142. The first sacrificial pattern 142 covers the bottom of the first type semiconductor pattern 132. The first type semiconductor pattern 132C is located between the light emitting pattern 122 and the first sacrificial pattern 142. However, the present invention is not limited thereto. In other embodiments, the micro light emitting diode unit may not include the first sacrificial pattern 142. The manufacturing method of the micro-light-emitting diode unit intermediary structure 1000C and the micro-light-emitting diode unit 100C has similar effects and advantages as the aforementioned micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100 Will not be repeated here.

圖5A至圖5B為本發明一實施例之微型發光二極體單元之中介結構的部分製造方法的剖面示意圖。圖5A至圖5B之微型發光二極體單元之中介結構的部分製造方法與圖4G至圖4H的微型發光二極體單元之中介結構的部分製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異在於:圖5A至圖5B之第一、二犧牲圖案142D、212D的結構及形成方法與圖4G至圖4H之第一、二犧牲圖案142、212的結構及形成方法不同。此外,在微型發光二極體單元之中介結構1000D的製造過程中,在圖5A之前的製造流程與圖4A至圖4F所示的製造流程相同,因此關於圖5A以前的製造流程請參考圖4A至圖4F及前述說明,於此便不再重複繪示與說明。FIG. 5A to FIG. 5B are schematic cross-sectional views of a method for manufacturing a part of an intermediary structure of a micro-light-emitting diode unit according to an embodiment of the present invention. The manufacturing method of the intermediate structure of the micro-light-emitting diode unit of FIGS. 5A to 5B is similar to the manufacturing method of the intermediate structure of the micro-light-emitting diode unit of FIGS. 4G to 4H. Therefore, the same or corresponding components are the same. Or the corresponding reference sign. The main difference between the two is that the structures and formation methods of the first and second sacrificial patterns 142D and 212D in FIGS. 5A to 5B are different from those of the first and second sacrificial patterns 142 and 212 in FIGS. 4G to 4H. In addition, in the manufacturing process of the micro-light emitting diode unit interposer 1000D, the manufacturing process before FIG. 5A is the same as the manufacturing process shown in FIGS. 4A to 4F, so please refer to FIG. 4A for the manufacturing process before FIG. 5A. Up to FIG. 4F and the foregoing description, the illustration and description will not be repeated here.

請參照圖4F及圖5A,在形成如圖4F所示的結構後,接著,移除至少部份的第一犧牲層140、至少部份的第二犧牲層210或至少部份前述二者之堆疊層,以使每一微型發光二極體LED與傳遞基板S2之間存在間隙g,例如:每一微型發光二極體LED的第一型半導體圖案132C之外表面(底表面)與傳遞基板S2內表面之間存在間隙g,進而完成微型發光二極體單元之中介結構1000D。與微型發光二極體單元之中介結構1000不同的是,在圖5A的實施例中,第一犧牲層140與第二犧牲層210可皆為有機材料或無機材料,而可在同一道製程中同時圖案化出第一、二犧牲圖案142D、212D。詳言之,可移除被微型發光二極體LED與絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)暴露(或稱為未覆蓋)以及位於微型發光二極體LED正下方之部份第一犧牲層140與部份第二犧牲層210,而保留位於連接部312aC正下方的部份第一犧牲層140(即第一犧牲圖案142D)與部份第二犧牲層210(即第二犧牲圖案212D)。犧牲結構(或稱為連接結構)S的第一犧牲圖案142D及第二犧牲圖案212D共同暴露(或稱為未覆蓋)發第一型半導體圖案132C的底部。犧牲結構S與絕緣圖案310C(例如:第一絕緣圖案312C)的連接部312aC連接。Please refer to FIG. 4F and FIG. 5A. After forming the structure shown in FIG. 4F, then, at least part of the first sacrificial layer 140, at least part of the second sacrificial layer 210 or at least part of the foregoing Stack the layers so that there is a gap g between each micro-light-emitting diode LED and the transfer substrate S2, for example: the outer surface (bottom surface) of the first type semiconductor pattern 132C of each micro-light-emitting diode LED and the transfer substrate A gap g exists between the inner surfaces of S2, thereby completing the micro-light-emitting diode unit intermediary structure 1000D. Different from the micro light-emitting diode unit interposer 1000, in the embodiment of FIG. 5A, the first sacrificial layer 140 and the second sacrificial layer 210 may both be organic materials or inorganic materials, and may be in the same process. At the same time, the first and second sacrificial patterns 142D and 212D are patterned. In detail, the light-emitting diode LED and the insulating pattern 310C (including the first and second insulating patterns 312C and 314C) can be removed (or uncovered) and located directly below the micro-light emitting diode LED. A portion of the first sacrificial layer 140 and a portion of the second sacrificial layer 210, while a portion of the first sacrificial layer 140 (ie, the first sacrificial pattern 142D) and a portion of the second sacrificial layer 210 (ie, directly below the connection portion 312aC) remain. The second sacrificial pattern 212D). The first sacrificial pattern 142D and the second sacrificial pattern 212D of the sacrificial structure (or connection structure) S are collectively exposed (or called uncovered) the bottom of the first type semiconductor pattern 132C. The sacrificial structure S is connected to the connection portion 312 aC of the insulating pattern 310C (for example, the first insulating pattern 312C).

請參照圖5B,接著,利用彈性轉置頭P提取傳遞基板S2上的微型發光二極體LED,進而形成微型發光二極體單元100D。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,第一型半導體圖案132C與犧牲結構S分離,例如犧牲結構S會留在傳遞基板S2內表面上,進而形成微型發光二極體單元100D。Referring to FIG. 5B, the elastic light-emitting head P is used to extract the micro-light-emitting diode LED on the transfer substrate S2 to form a micro-light-emitting diode unit 100D. When the elastic transposition head P extracts the micro-light emitting diode LED and moves in a direction d away from the transfer substrate S2, the first type semiconductor pattern 132C is separated from the sacrificial structure S, for example, the sacrificial structure S will remain on the inner surface of the transfer substrate S2. , Further forming a micro light emitting diode unit 100D.

微型發光二極體單元100D包括第一型半導體圖案132C、位於第一型半導體圖案132C上的發光圖案122、位於發光圖案122上的第二型半導體圖案112、分別與第一型半導體圖案132C以及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132C、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體單元LED。其中,微型發光二極體單元LED之尺吋大小係為微米或奈米等級。第一型半導體圖案132C在第二型半導體圖案上112的垂直投影面積超出第二型半導體圖案112的面積。絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)覆蓋第一型半導體圖案132C以及第二型半導體圖案112且部份暴露(或稱為未覆蓋)第一、二電極410、420。第一、二電極410、420位於第一型半導體圖案132C的同一側。換言之,微型發光二極體單元100D為水平式發光二極體晶片。絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)覆蓋微型發光二極體LED且絕緣圖案310C(例如第一絕緣圖案312C)具有延伸到發光圖案122與第二型半導體圖案112外的連接部312aC。The micro light emitting diode unit 100D includes a first type semiconductor pattern 132C, a light emitting pattern 122 on the first type semiconductor pattern 132C, a second type semiconductor pattern 112 on the light emitting pattern 122, and the first type semiconductor pattern 132C and The second type semiconductor pattern 112 is electrically connected to the first and second electrodes 410 and 420 and the insulating pattern 310C (including the first and second insulating patterns 312C and 314C). In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 132C, the second type semiconductor pattern 112, the first electrode 410, and The second electrode 420 may constitute a micro light emitting diode unit LED. Among them, the size of the miniature light-emitting diode unit LED is micron or nanometer. The vertical projection area of the first type semiconductor pattern 132C on the second type semiconductor pattern 112 exceeds the area of the second type semiconductor pattern 112. The insulating pattern 310C (including the first and second insulating patterns 312C and 314C) covers the first type semiconductor pattern 132C and the second type semiconductor pattern 112 and partially exposes (or is called uncovered) the first and second electrodes 410 and 420. The first and second electrodes 410 and 420 are located on the same side of the first type semiconductor pattern 132C. In other words, the micro light emitting diode unit 100D is a horizontal light emitting diode wafer. The insulating pattern 310C (including the first and second insulating patterns 312C and 314C) covers the micro-light-emitting diode LED, and the insulating pattern 310C (for example, the first insulating pattern 312C) has a light emitting pattern 122 and a second type semiconductor pattern 112 Connection portion 312aC.

與微型發光二極體單元100C不同的是,微型發光二極體單元100D不包括覆蓋第一型半導體圖案132C的犧牲圖案,而第一型半導體圖案132C的底部可被暴露出(或稱為未被覆蓋)。微型發光二極體單元之中介結構1000D及微型發光二極體單元100D之製造方法具有與前述微型發光二極體單元之中介結構1000及微型發光二極體單元100之製造方法類似的功效與優點,於此便不再重述。Different from the micro light emitting diode unit 100C, the micro light emitting diode unit 100D does not include a sacrificial pattern covering the first type semiconductor pattern 132C, and the bottom of the first type semiconductor pattern 132C may be exposed (or Is covered). The manufacturing method of the micro-light-emitting diode unit intermediary structure 1000D and the micro-light-emitting diode unit 100D has similar effects and advantages as the aforementioned micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100 Will not be repeated here.

圖6A至圖6B為本發明一實施例之微型發光二極體單元之中介結構的部分製造方法的剖面示意圖。圖6A至圖6B之微型發光二極體單元之中介結構的部分製造方法與圖4G至圖4H的微型發光二極體單元之中介結構的部分製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異在於:在圖6A至圖6B的實施例中,第二犧牲層210可未被圖案化。此外,在微型發光二極體單元之中介結構1000E的製造過程中,在圖6A之前的製造流程與圖4A至圖4F的製造流程相同,因此關於圖6A以前的製造流程請參考圖4A至圖4F及前述說明,於此便不再重複繪示與說明。FIG. 6A to FIG. 6B are schematic cross-sectional views of a part of a manufacturing method of an intermediary structure of a micro-light emitting diode unit according to an embodiment of the present invention. The manufacturing method of the intermediate structure of the micro-light-emitting diode unit of FIG. 6A to FIG. 6B is similar to that of the intermediate structure of the micro-light-emitting diode unit of FIGS. 4G to 4H. Therefore, the same or corresponding components are the same. Or the corresponding reference sign. The main difference between the two is that in the embodiment of FIGS. 6A to 6B, the second sacrificial layer 210 may not be patterned. In addition, during the manufacturing process of the micro-light-emitting diode unit interposer 1000E, the manufacturing process before FIG. 6A is the same as the manufacturing process of FIGS. 4A to 4F, so for the manufacturing process before FIG. 6A, please refer to FIG. 4A to FIG. 4F and the foregoing description are not repeated here.

請參照圖4F及圖6A,在形成如圖4F所示的結構後,接著,移除至少部份的第一犧牲層140、至少部份的第二犧牲層210或至少部份前述二者之堆疊層,以使每一微型發光二極體LED與傳遞基板S2之間存在間隙g,進而完成微型發光二極體單元之中介結構1000E。與微型發光二極體單元之中介結構1000C不同的是,在圖6A的實施例中,除了移除被微型發光二極體LED及絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)暴露出(或稱為未覆蓋)的部份第一犧牲層142外,更可移除位於微型發光二極體LED正下方之部份第一犧牲層142,而保留位於連接部312aC正下方的部份第一犧牲層142(即第一犧牲圖案142E)以及完整的第二犧牲層210。第二犧牲層210覆蓋傳遞基板S2內表面。第一犧牲圖案142E配置於第二犧牲層210上。絕緣圖案310C(例如第一絕緣圖案312C)的連接部312aC透過第一犧牲圖案142E暫時固定在第二犧牲層210上。微型發光二極體LED底面(或稱為下表面或外表面),即第一型半導體圖案132C底面(或稱為下表面或外表面)、第一犧牲圖案142E與第二犧牲層210內表面(或稱為上表面)定義出間隙g。Please refer to FIG. 4F and FIG. 6A. After forming the structure shown in FIG. 4F, then, at least part of the first sacrificial layer 140, at least part of the second sacrificial layer 210, or at least part of the foregoing two are removed. The layers are stacked so that a gap g exists between each micro-light-emitting diode LED and the transfer substrate S2, thereby completing the micro-light-emitting diode unit intermediary structure 1000E. Different from the micro-light-emitting diode unit intermediate structure 1000C, in the embodiment of FIG. 6A, in addition to removing the micro-light-emitting diode LED and the insulating pattern 310C (including the first and second insulating patterns 312C and 314C) The part of the first sacrificial layer 142 that is exposed (or called uncovered) can be removed, and the part of the first sacrificial layer 142 located directly under the micro-light-emitting diode LED can be removed, and the part directly under the connection portion 312aC can be retained. A portion of the first sacrificial layer 142 (ie, the first sacrificial pattern 142E) and a complete second sacrificial layer 210. The second sacrificial layer 210 covers the inner surface of the transfer substrate S2. The first sacrificial pattern 142E is disposed on the second sacrificial layer 210. The connection portion 312aC of the insulating pattern 310C (for example, the first insulating pattern 312C) is temporarily fixed on the second sacrificial layer 210 through the first sacrificial pattern 142E. The bottom surface (or lower surface or outer surface) of the miniature light-emitting diode LED, that is, the bottom surface (or lower surface or outer surface) of the first type semiconductor pattern 132C, the first sacrificial pattern 142E, and the inner surface of the second sacrificial layer 210 (Also called the upper surface) defines the gap g.

請參照圖6B,接著,利用彈性轉置頭P提取傳遞基板S2上的微型發光二極體LED,進而形成微型發光二極體單元100E。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,第一型半導體圖案132C與第一犧牲圖案142E分離,例如第一犧牲圖案142E留在第二犧牲層210內表面(或稱為上表面)上,進而形成微型發光二極體單元100E。Referring to FIG. 6B, the elastic light emitting head P is used to extract the micro light emitting diode LED on the transfer substrate S2 to form a micro light emitting diode unit 100E. When the elastic transposition head P extracts the micro light-emitting diode LED and moves in a direction d away from the transfer substrate S2, the first type semiconductor pattern 132C is separated from the first sacrificial pattern 142E, for example, the first sacrificial pattern 142E is left at the second sacrificial pattern. On the inner surface (or referred to as the upper surface) of the layer 210, a micro light emitting diode unit 100E is further formed.

微型發光二極體單元100E包括第一型半導體圖案132C、位於第一型半導體圖案132C上的發光圖案122、位於發光圖案122上的第二型半導體圖案112、分別與第一型半導體圖案132C及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)。於其它實施例,如前所述,若於第一型與第二型半導體層132C、112之間不加以插入發光層120,則第一型半導體圖案132C、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體單元LED。其中,微型發光二極體單元LED之尺吋大小係為微米或奈米等級。第一型半導體圖案132C在第二型半導體圖案上112的垂直投影面積超出第二型半導體圖案112的面積。絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)覆蓋第一型半導體圖案132C以及第二型半導體圖案112且暴露(或稱為未覆蓋)第一、二電極410、420。第一、二電極410、420位於第一型半導體圖案132C的同一側。換言之,微型發光二極體單元100E為水平式發光二極體晶片。絕緣圖案310C(包含第一與第二絕緣圖案312C、314C)覆蓋微型發光二極體LED且絕緣圖案310C(例如第一絕緣圖案312C)具有延伸到發光圖案122與第二型半導體圖案112外的連接部312aC。與微型發光二極體單元100C不同的是,微型發光二極體單元100E不包括覆蓋第一型半導體圖案132C的犧牲圖案,而第一型半導體圖案132C的底部可被暴露(或稱為未被覆蓋)。微型發光二極體單元之中介結構1000E及微型發光二極體單元100E之製造方法具有與前述微型發光二極體單元之中介結構1000及微型發光二極體單元100之製造方法類似的功效與優點,於此便不再重述。The micro light-emitting diode unit 100E includes a first-type semiconductor pattern 132C, a light-emitting pattern 122 on the first-type semiconductor pattern 132C, a second-type semiconductor pattern 112 on the light-emitting pattern 122, and the first-type semiconductor pattern 132C and The second type semiconductor pattern 112 is electrically connected to the first and second electrodes 410 and 420 and the insulating pattern 310C (including the first and second insulating patterns 312C and 314C). In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first and second type semiconductor layers 132C and 112, the first type semiconductor pattern 132C, the second type semiconductor pattern 112, the first type The electrode 410 and the second electrode 420 may constitute a micro light-emitting diode unit LED. Among them, the size of the miniature light-emitting diode unit LED is micron or nanometer. The vertical projection area of the first type semiconductor pattern 132C on the second type semiconductor pattern 112 exceeds the area of the second type semiconductor pattern 112. The insulating pattern 310C (including the first and second insulating patterns 312C and 314C) covers the first type semiconductor pattern 132C and the second type semiconductor pattern 112 and exposes (or is called uncovered) the first and second electrodes 410 and 420. The first and second electrodes 410 and 420 are located on the same side of the first type semiconductor pattern 132C. In other words, the micro light emitting diode unit 100E is a horizontal light emitting diode wafer. The insulating pattern 310C (including the first and second insulating patterns 312C and 314C) covers the micro-light-emitting diode LED, and the insulating pattern 310C (for example, the first insulating pattern 312C) has a light emitting pattern 122 and a second type semiconductor pattern 112 Connection portion 312aC. Different from the micro light emitting diode unit 100C, the micro light emitting diode unit 100E does not include a sacrificial pattern covering the first type semiconductor pattern 132C, and the bottom of the first type semiconductor pattern 132C may be exposed (or cover). The manufacturing method of the micro-light-emitting diode unit intermediary structure 1000E and the micro-light-emitting diode unit 100E has similar effects and advantages to the aforementioned micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100. Will not be repeated here.

圖7A至圖7I為本發明一實施例之微型發光二極體單元之中介結構的製造方法的剖面示意圖。圖7A至圖7I之發光二極體中介結構的製造方法與圖1A至圖1I之微型發光二極體之中介結構的製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異在於:在圖7A至圖7I的實施例中,是先形成第一、二犧牲圖案142F、212F後,才形成絕緣圖案310F(包含第一與第二絕緣圖案312F、314F),而不像在圖1A至圖1I的實施例中,是先形成絕緣圖案310(包含第一與第二絕緣圖案312、314)後,才形成第一、二犧牲圖案142、212。以下主要就此差異處做說明,兩者相同處還請參照前述說明,於此便不再重述。7A to 7I are schematic cross-sectional views of a method for manufacturing a micro-light-emitting diode unit interposer structure according to an embodiment of the present invention. The manufacturing method of the light-emitting diode intermediary structure of FIGS. 7A to 7I is similar to the manufacturing method of the micro-light-emitting diode intermediary structure of FIGS. 1A to 1I, and therefore the same or corresponding components are represented by the same or corresponding reference numerals. . The main difference between the two is that in the embodiment of FIGS. 7A to 7I, the first and second sacrificial patterns 142F and 212F are formed before the insulating pattern 310F is formed (including the first and second insulating patterns 312F and 314F). Unlike in the embodiment of FIGS. 1A to 1I, the first and second sacrificial patterns 142 and 212 are formed after the insulating pattern 310 (including the first and second insulating patterns 312 and 314) is formed first. The following mainly explains the differences. Please refer to the previous description for the same points, and will not repeat them here.

請參照圖7A,首先,提供半導體結構10。半導體結構10包括依序堆疊於生長基板S1內表面上之多層半導體(未標註)以及第一犧牲層140。第一犧牲層140設置於多層半導體上。多層半導體包含第一型半導體層130、一與該第一型半導體層極性相反之第二型半導體層110。第一型與第二型半導體層130、110之極性可分別為N或P型半導體層。於本發明之實施例中,以第一型半導體層130為P型半導體層在生長基板S1內表面上及以第二型半導體層110為N型半導體層在第一型半導體層與生長基板S1之間為範例,但不限於此。於其它實施例中,以第一型半導體層130為N型半導體層在生長基板S1內表面上及第二型半導體層110為P型半導體層在第一型半導體層上。於本發明之實施例中,可選擇的於第一型與第二型半導體層之交界處作為發光處或者第一型與第二型半導體層之交界處可再插入一膜層當作發光層120。本發明之實施例,係以第一型與第二型半導體層之交界處可再插入一膜層當作發光層120為範例,但不限於此。於其它實施例中,第一型與第二型半導體層之交界處沒有插入膜層當作發光層亦可適用。請參照圖7B,接著,提供承載結構20。承載結構20包括傳遞基板S2以及覆蓋傳遞基板S2內表面的第二犧牲層210。接著,如圖7B所示,接合半導體結構10的第一犧牲層140與承載結構20的第二犧牲層210,以使半導體結構10固定在承載結構20上。請參照圖7B及圖7C,接著,移除半導體結構10的生長基板S1。請參照圖7C及圖7D,接著,圖案化第二型半導體層110、發光層120與第一型半導體層130,以形成彼此分離的多個第二型半導體圖案112、彼此分離的多個發光圖案122以及彼此分離的多個第一型半導體圖案132C。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則每一第一型半導體圖案132C上配置有對應的一個第二型半導體圖案112。相對應的一個第一型半導體圖案132C、一個發光圖案122與一個第二型半導體圖案在遠離傳遞基板S2的方向d上依序堆疊,即第一型半導體圖案132C最靠近傳遞基板S2,第二型半導體圖案112離傳遞基板S2最遠。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132C與第二型半導體圖案112在遠離傳遞基板S2的方向d上依序排列,即第一型半導體圖案132C最靠近傳遞基板S2,第二型半導體圖案112離傳遞基板S2最遠。Referring to FIG. 7A, first, a semiconductor structure 10 is provided. The semiconductor structure 10 includes a multilayer semiconductor (not labeled) and a first sacrificial layer 140 sequentially stacked on the inner surface of the growth substrate S1. The first sacrificial layer 140 is disposed on a multilayer semiconductor. The multilayer semiconductor includes a first-type semiconductor layer 130 and a second-type semiconductor layer 110 having a polarity opposite to the first-type semiconductor layer. The polarities of the first-type and second-type semiconductor layers 130 and 110 may be N-type or P-type semiconductor layers, respectively. In the embodiment of the present invention, the first type semiconductor layer 130 is a P-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 110 is an N-type semiconductor layer on the first type semiconductor layer and the growth substrate S1. Between is an example, but it is not limited to this. In other embodiments, the first type semiconductor layer 130 is an N-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 110 is a P-type semiconductor layer on the first type semiconductor layer. In the embodiment of the present invention, a film layer may be optionally inserted at the interface between the first type semiconductor layer and the second type semiconductor layer or the interface between the first type semiconductor layer and the second type semiconductor layer may be used as the light emitting layer. 120. In the embodiment of the present invention, a film layer can be inserted at the interface between the first type semiconductor layer and the second type semiconductor layer as the light emitting layer 120 as an example, but it is not limited thereto. In other embodiments, a film layer is not inserted as a light emitting layer at the interface between the first type semiconductor layer and the second type semiconductor layer. Please refer to FIG. 7B. Next, a supporting structure 20 is provided. The carrier structure 20 includes a transfer substrate S2 and a second sacrificial layer 210 covering the inner surface of the transfer substrate S2. Next, as shown in FIG. 7B, the first sacrificial layer 140 of the semiconductor structure 10 and the second sacrificial layer 210 of the carrier structure 20 are bonded to fix the semiconductor structure 10 on the carrier structure 20. Referring to FIGS. 7B and 7C, the growth substrate S1 of the semiconductor structure 10 is removed. Please refer to FIG. 7C and FIG. 7D. Next, the second type semiconductor layer 110, the light emitting layer 120, and the first type semiconductor layer 130 are patterned to form a plurality of second type semiconductor patterns 112 separated from each other and a plurality of light emission separated from each other. The pattern 122 and a plurality of first-type semiconductor patterns 132C separated from each other. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, a corresponding second type semiconductor is disposed on each first type semiconductor pattern 132C. Pattern 112. The corresponding one-type semiconductor pattern 132C, one light-emitting pattern 122, and one second-type semiconductor pattern are sequentially stacked in a direction d away from the transfer substrate S2, that is, the first-type semiconductor pattern 132C is closest to the transfer substrate S2, and the second The semiconductor pattern 112 is farthest from the transfer substrate S2. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 132C and the second type semiconductor pattern 112 are far away from the transfer substrate S2. They are arranged in order in the direction d, that is, the first type semiconductor pattern 132C is closest to the transfer substrate S2, and the second type semiconductor pattern 112 is farthest from the transfer substrate S2.

請參照圖7D及圖7E,接著,移除被第一型半導體圖案132C暴露(或稱為未覆蓋)的部份第一犧牲層140以及部份第二犧牲層210,以形成多個第一犧牲圖案142F與多個第二犧牲圖案212F。每一第一犧牲圖案142F與對應的一個第二犧牲圖案212F堆疊成一個犧牲結構或稱為連接結構S。第一型半導體圖案132C、發光圖案122與第二型半導體圖案配置在犧牲結構S上。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132C與第二型半導體圖案112配置在犧牲結構S上。請參照圖7F,接著,形成絕緣圖案310F包含第一絕緣圖案312F以及第二絕緣圖案314F。第一絕緣圖案312F形成於第二型半導體圖案112上,並覆蓋第二型半導體圖案112的側壁112a、發光圖案122的側壁122a以及第一型半導體圖案132C的側壁132a。第一絕緣圖案312F更可覆蓋犧牲結構S的側壁。第二絕緣圖案314F形成於第二型半導體層112上,並覆蓋第二型半導體層112的另一側壁112b、發光圖案122的另一側壁122b且暴露出(或稱為未覆蓋)第一型半導體圖案132C的另一側壁132b。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則絕緣圖案310F包含第一與第二絕緣圖案312F、314F之設計與其它元件的連接關係,就會加以改變,例如:第一絕緣圖案312F形成在第二型半導體圖案112上,且覆蓋第二型半導體圖案112的側壁112a以及第一型半導體圖案132C的側壁132a。第二絕緣圖案314形成在第二型半導體圖案112上,且覆蓋第二型半導體圖案112的另一側壁112b以及暴露出(或稱為未覆蓋)第一型半導體圖案132C的另一側壁132b等等。第一絕緣圖案312F具有連接部312aF。連接部312aF延伸至微型發光二極體LED外且與犧牲結構S連接。更進一步地說,在本實施例中,連接部312aF可直接連接/直接接觸至傳遞基板S2內表面,而與傳遞基板S2內表面接觸。Please refer to FIG. 7D and FIG. 7E. Next, a part of the first sacrificial layer 140 and a part of the second sacrificial layer 210 exposed (or called uncovered) by the first type semiconductor pattern 132C are removed to form a plurality of first sacrificial layers. The sacrificial pattern 142F and the plurality of second sacrificial patterns 212F. Each first sacrificial pattern 142F and a corresponding second sacrificial pattern 212F are stacked into a sacrificial structure or a connection structure S. The first type semiconductor pattern 132C, the light emitting pattern 122, and the second type semiconductor pattern are disposed on the sacrificial structure S. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 132C and the second type semiconductor pattern 112 are disposed in the sacrificial structure S. on. Please refer to FIG. 7F. Next, the insulating pattern 310F includes a first insulating pattern 312F and a second insulating pattern 314F. The first insulating pattern 312F is formed on the second type semiconductor pattern 112 and covers the sidewall 112 a of the second type semiconductor pattern 112, the sidewall 122 a of the light emitting pattern 122, and the sidewall 132 a of the first type semiconductor pattern 132C. The first insulation pattern 312F can further cover the sidewall of the sacrificial structure S. A second insulating pattern 314F is formed on the second type semiconductor layer 112 and covers the other side wall 112b of the second type semiconductor layer 112 and the other side wall 122b of the light emitting pattern 122 and exposes (or is called uncovered) the first type The other sidewall 132b of the semiconductor pattern 132C. In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first and second type semiconductor layers, the insulating pattern 310F includes the design of the first and second insulating patterns 312F and 314F and other components. The connection relationship will be changed. For example, the first insulating pattern 312F is formed on the second type semiconductor pattern 112 and covers the sidewall 112a of the second type semiconductor pattern 112 and the sidewall 132a of the first type semiconductor pattern 132C. The second insulation pattern 314 is formed on the second type semiconductor pattern 112 and covers the other side wall 112b of the second type semiconductor pattern 112 and the other side wall 132b of the first type semiconductor pattern 132C exposed (or not covered). Wait. The first insulation pattern 312F has a connection portion 312aF. The connecting portion 312aF extends outside the micro-light emitting diode LED and is connected to the sacrificial structure S. Furthermore, in this embodiment, the connection portion 312aF may be directly connected / directly contacted to the inner surface of the transfer substrate S2, and may be in contact with the inner surface of the transfer substrate S2.

請參照圖7G,接著,於微型發光二極體LED上形成第一電極410與第二電極420。第一電極410位於第一型半導體圖案132C上且與第一型半導體圖案132C電性連接。第二電極420位於第二型半導體圖案112上且與第二型半導體圖案112電性連接。請參照圖7G 及圖7H,接著,移除第一犧牲圖案142F、第二犧牲圖案212F或至少部份前述二者之堆疊層,以使每一微型發光二極體LED底表面(例如:第一犧牲圖案142F底表面)、絕緣圖案310F(例如:第一絕緣圖案312F)的連接部312aF與傳遞基板S2內表面之間存在間隙g,於此便完成了微型發光二極體單元之中介結構1000F。舉例而言,在本實施例中,可移除位於微型發光二極體LED正下方的第二犧牲圖案212F,而保留位於微型發光二極體LED正下方的第一犧牲圖案142F。第一犧牲圖案142F位於微型發光二極體LED底表面(或稱為下表面或外表面)與傳遞基板S2內表面之間。第一犧牲圖案142F覆蓋第一型半導體圖案132C的底部且與連接部312aF連接。連接部312aF、第一犧牲圖案142F底表面以及傳遞基板S內表面定義出間隙g。Referring to FIG. 7G, a first electrode 410 and a second electrode 420 are formed on the micro light-emitting diode LED. The first electrode 410 is located on the first-type semiconductor pattern 132C and is electrically connected to the first-type semiconductor pattern 132C. The second electrode 420 is located on the second-type semiconductor pattern 112 and is electrically connected to the second-type semiconductor pattern 112. Please refer to FIG. 7G and FIG. 7H. Next, the first sacrificial pattern 142F, the second sacrificial pattern 212F, or at least part of the stacked layers of the foregoing are removed, so that the bottom surface of each micro-light emitting diode LED (for example: the first A sacrificial pattern 142F bottom surface), an insulating pattern 310F (for example, the first insulating pattern 312F) has a gap g between the connecting portion 312aF and the inner surface of the transfer substrate S2, and thus the intermediary structure of the micro-light emitting diode unit is completed 1000F. For example, in this embodiment, the second sacrificial pattern 212F located directly under the micro light emitting diode LED may be removed, while the first sacrificial pattern 142F located directly under the micro light emitting diode LED may be removed. The first sacrificial pattern 142F is located between the bottom surface (or called the lower surface or the outer surface) of the micro-light emitting diode LED and the inner surface of the transfer substrate S2. The first sacrificial pattern 142F covers the bottom of the first type semiconductor pattern 132C and is connected to the connection portion 312aF. The connection portion 312aF, the bottom surface of the first sacrificial pattern 142F, and the inner surface of the transfer substrate S define a gap g.

請參照圖7I,接著,利用彈性轉置頭P提取傳遞基板S2上的微型發光二極體LED,進而形成微型發光二極體單元100F。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,連接部312aF一部份會斷開,即連接部312aF一部份會留在微型發光二極體LED上、連接部312aF另一部份會留在傳遞基板S2內表面上,而使微型發光二極體LED與傳遞基板S2分離,進而形成微型發光二極體單元100F。Referring to FIG. 7I, the micro-light-emitting diode LED on the transfer substrate S2 is extracted by the elastic transposition head P, and then the micro-light-emitting diode unit 100F is formed. When the flexible transducing head P extracts the micro-light-emitting diode LED and moves in a direction d away from the transfer substrate S2, a part of the connection portion 312aF is disconnected, that is, a portion of the connection portion 312aF remains in the micro-light-emitting diode. On the LED, another part of the connection portion 312aF will remain on the inner surface of the transfer substrate S2, so that the micro-light-emitting diode LED is separated from the transfer substrate S2, thereby forming a micro-light-emitting diode unit 100F.

微型發光二極體單元100F包括第一型半導體圖案132C、位於第一型半導體圖案132C上的發光圖案122、位於發光圖案122上的第二型半導體圖案112、分別與第一型半導體圖案132C以及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310F(包含第一與第二絕緣圖案312F、314F)。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132C、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體單元LED。其中,微型發光二極體單元LED之尺吋大小係為微米或奈米等級。第一型半導體圖案132C在第二型半導體圖案上112的垂直投影面積較佳地超出第二型半導體圖案112的面積。絕緣圖案310F(包含第一與第二絕緣圖案312F、314F)覆蓋第一型半導體圖案132C以及第二型半導體圖案112且暴露(或稱為未覆蓋)第一電極410與第二電極420。第一電極410與第二電極420位於第一型半導體圖案132C的同一側。意即,微型發光二極體單元100F較佳地為水平式發光二極體晶片。The micro light emitting diode unit 100F includes a first type semiconductor pattern 132C, a light emitting pattern 122 on the first type semiconductor pattern 132C, a second type semiconductor pattern 112 on the light emitting pattern 122, and the first type semiconductor pattern 132C and The second type semiconductor pattern 112 is electrically connected to the first and second electrodes 410 and 420 and the insulating pattern 310F (including the first and second insulating patterns 312F and 314F). In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 132C, the second type semiconductor pattern 112, the first electrode 410, and The second electrode 420 may constitute a micro light emitting diode unit LED. Among them, the size of the miniature light-emitting diode unit LED is micron or nanometer. The vertical projection area of the first type semiconductor pattern 132C on the second type semiconductor pattern 112 preferably exceeds the area of the second type semiconductor pattern 112. The insulating pattern 310F (including the first and second insulating patterns 312F and 314F) covers the first type semiconductor pattern 132C and the second type semiconductor pattern 112 and exposes (or is called uncovered) the first electrode 410 and the second electrode 420. The first electrode 410 and the second electrode 420 are located on the same side of the first type semiconductor pattern 132C. In other words, the micro-light-emitting diode unit 100F is preferably a horizontal light-emitting diode wafer.

絕緣圖案310F(包含第一與第二絕緣圖案312F、314F)覆蓋微型發光二極體LED且絕緣圖案310F(例如第一絕緣圖案312F)具有延伸到微型發光二極體LED外的連接部312aF。在本實施例中,微型發光二極體單元100F更包括第一犧牲圖案142F。第一犧牲圖案142F覆蓋第一型半導體圖案132C的底部。第一型半導體圖案132C位於發光圖案122與第一犧牲圖案142F之間。與圖1I之微型發光二極體單元100不同的是,第一絕緣圖案312F除了覆蓋第二型半導體圖案112、發光層122及第一型半導體圖案132C的側壁112a、122a、132a外更覆蓋第一犧牲圖案142F的側壁142c。微型發光二極體單元之中介結構1000F及微型發光二極體單元100F之製造方法具有與前述微型發光二極體單元之中介結構1000及微型發光二極體單元100之製造方法類似的功效與優點,於此便不再重述。The insulating pattern 310F (including the first and second insulating patterns 312F and 314F) covers the micro light emitting diode LED, and the insulating pattern 310F (for example, the first insulating pattern 312F) has a connection portion 312 aF extending outside the micro light emitting diode LED. In this embodiment, the micro light emitting diode unit 100F further includes a first sacrificial pattern 142F. The first sacrificial pattern 142F covers the bottom of the first type semiconductor pattern 132C. The first type semiconductor pattern 132C is located between the light emitting pattern 122 and the first sacrificial pattern 142F. Different from the micro light emitting diode unit 100 of FIG. 1I, the first insulating pattern 312F covers the second type semiconductor pattern 112, the light emitting layer 122, and the sidewalls 112a, 122a, and 132a of the first type semiconductor pattern 132C in addition to the first insulating pattern 312F. A sidewall 142c of a sacrificial pattern 142F. The manufacturing method of the micro-light-emitting diode unit intermediary structure 1000F and the micro-light-emitting diode unit 100F has similar effects and advantages to the aforementioned micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100. Will not be repeated here.

圖8A至圖8B為本發明一實施例之微型發光二極體之中介結構的部分製造方法的剖面示意圖。圖8A至圖8B之微型發光二極體之中介結構的部分製造方法與圖7H至圖7I的微型發光二極體單元之中介結構的部分製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異在於:在圖8A至圖8B的實施例中,是移除第一犧牲圖案142F而保留第二犧牲圖案212F。此外,在微型發光二極體單元之中介結構1000G的製造過程中,在圖8A之前的製造流程與圖7A至圖7G所示的製造流程相同,因此關於之圖8A以前的製造流程請參考圖7A至圖7G及前述說明,於此便不再重複繪示與說明。FIG. 8A to FIG. 8B are schematic cross-sectional views of a part of a method for manufacturing a micro-light-emitting diode intermediate structure according to an embodiment of the present invention. The manufacturing method of a part of the micro-light-emitting diode intermediary structure of FIGS. 8A to 8B is similar to the manufacturing method of the part of the micro-light-emitting diode unit intermediary structure of FIGS. 7H to 7I. Therefore, the same or corresponding components are the same or The corresponding reference sign indicates. The main difference between the two is that in the embodiment of FIGS. 8A to 8B, the first sacrificial pattern 142F is removed and the second sacrificial pattern 212F is retained. In addition, in the manufacturing process of the micro-light-emitting diode unit interposer 1000G, the manufacturing process before FIG. 8A is the same as the manufacturing process shown in FIGS. 7A to 7G, so please refer to FIG. 8A for the manufacturing process before FIG. 8A. 7A to 7G and the foregoing descriptions are not repeated here.

請參照圖7G及圖8A,在形成如圖7G所示的結構後,接著,移除至少部份的第一犧牲層140、至少部份的第二犧牲層210或其組合,以使每一微型發光二極體LED底表面與傳遞基板S2內表面之間存在間隙g,以完成微型發光二極體單元之中介結構1000G。與微型發光二極體單元之中介結構1000不同的是,在圖8A的實施例中,可移除第一犧牲圖案142F而保留第二犧牲圖案212F。第二犧牲圖案212F位於傳遞基板S內表面上。連接部312aF連接到第二犧牲圖案212F上。每一絕緣圖案310F(例如:第一絕緣圖案312F)的連接部312aF、第二犧牲圖案212F內表面(或稱為頂表面)以及第一型半導體層132C的底部定義出間隙g。Referring to FIG. 7G and FIG. 8A, after forming the structure shown in FIG. 7G, then, at least part of the first sacrificial layer 140, at least part of the second sacrificial layer 210, or a combination thereof are removed, so that each A gap g exists between the bottom surface of the micro-light-emitting diode LED and the inner surface of the transfer substrate S2 to complete the micro-light-emitting diode unit intermediate structure 1000G. Different from the micro light emitting diode unit interposer 1000, in the embodiment of FIG. 8A, the first sacrificial pattern 142F can be removed and the second sacrificial pattern 212F can be retained. The second sacrificial pattern 212F is located on the inner surface of the transfer substrate S. The connection portion 312aF is connected to the second sacrificial pattern 212F. The connection portion 312aF of each insulating pattern 310F (for example, the first insulating pattern 312F), the inner surface (or top surface) of the second sacrificial pattern 212F, and the bottom of the first type semiconductor layer 132C define a gap g.

請參照圖8B,接著,利用彈性轉置頭P提取傳遞基板S2上的微型發光二極體LED,進而形成微型發光二極體單元100G。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,絕緣圖案310F(例如:第一絕緣圖案312F)的連接部312aF一部份會斷開,即連接部312aF一部份會留在微型發光二極體LED上、連接部312aF另一部份會留在傳遞基板S2內表面上,而使微型發光二極體LED與傳遞基板S2內表面分離,進而形成微型發光二極體單元100G。Referring to FIG. 8B, the elastic light-emitting head P is used to extract the micro-light-emitting diode LED on the transfer substrate S2 to form a micro-light-emitting diode unit 100G. When the elastic transducing head P extracts the micro light-emitting diode LED and moves in a direction d away from the transfer substrate S2, a part of the connection portion 312aF of the insulation pattern 310F (for example, the first insulation pattern 312F) is disconnected, that is, connected A part of the portion 312aF will remain on the micro-light-emitting diode LED, and another portion of the connection portion 312aF will remain on the inner surface of the transfer substrate S2, so that the micro-light-emitting diode LED is separated from the inner surface of the transfer substrate S2, and further, A micro light emitting diode unit 100G is formed.

微型發光二極體單元100G包括第一型半導體圖案132C、位於第一型半導體圖案132C上的發光圖案122、位於發光圖案122上的第二型半導體圖案112、分別與第一型半導體圖案132C以及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310F(包含第一與第二絕緣圖案312F、314F)。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132C、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體單元LED。其中,微型發光二極體單元LED之尺吋大小係為微米或奈米等級。第一型半導體圖案132C在第二型半導體圖案上112的垂直投影面積超出第二型半導體圖案112的面積。絕緣圖案312F、314F覆蓋第一型半導體圖案132C以及第二型半導體圖案112且暴露(或稱為未覆蓋)第一、二電極410、420。第一、二電極410、420位於第一型半導體圖案132的同一側。換言之,微型發光二極體單元100G為水平式發光二極體晶片。與微型發光二極體單元100F不同的是,微型發光二極體單元100G不包括犧牲圖案,而第一型半導體層132的底部可被暴露(或稱為未被覆蓋)。微型發光二極體單元之中介結構100G及微型發光二極體單元100G之製造方法具有與前述微型發光二極體單元之中介結構1000及微型發光二極體單元100之製造方法類似的功效與優點,於此便不再重述。The micro light emitting diode unit 100G includes a first type semiconductor pattern 132C, a light emitting pattern 122 on the first type semiconductor pattern 132C, a second type semiconductor pattern 112 on the light emitting pattern 122, and the first type semiconductor pattern 132C and The second type semiconductor pattern 112 is electrically connected to the first and second electrodes 410 and 420 and the insulating pattern 310F (including the first and second insulating patterns 312F and 314F). In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 132C, the second type semiconductor pattern 112, the first electrode 410, and The second electrode 420 may constitute a micro light emitting diode unit LED. Among them, the size of the miniature light-emitting diode unit LED is micron or nanometer. The vertical projection area of the first type semiconductor pattern 132C on the second type semiconductor pattern 112 exceeds the area of the second type semiconductor pattern 112. The insulating patterns 312F and 314F cover the first type semiconductor pattern 132C and the second type semiconductor pattern 112 and expose (or be referred to as uncovered) the first and second electrodes 410 and 420. The first and second electrodes 410 and 420 are located on the same side of the first type semiconductor pattern 132. In other words, the micro light emitting diode unit 100G is a horizontal light emitting diode wafer. Different from the micro-light-emitting diode unit 100F, the micro-light-emitting diode unit 100G does not include a sacrificial pattern, and the bottom of the first type semiconductor layer 132 may be exposed (or called uncovered). The manufacturing method of the micro-light-emitting diode unit intermediary structure 100G and the micro-light-emitting diode unit 100G has similar effects and advantages to the aforementioned micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100 manufacturing method. Will not be repeated here.

圖9A至圖9B為本發明一實施例之微型發光二極體單元之中介結構的部分製造方法的剖面示意圖。圖9A至圖9B之微型發光二極體單元之中介結構的部分製造方法與圖7H至圖7I的微型發光二極體單元之中介結構的部分製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異在於:在圖9A至圖9B的實施例中,第一犧牲圖案142F與第二犧牲圖案212F可皆被移除,移除的方法可參考第2A圖。此外,在微型發光二極體單元之中介結構1000H的製造過程中,在圖9A之前的製造流程與圖7A至圖7G所示的製造流程相同,因此關於圖9A以前的製造流程請參考圖7A至圖7G及前述說明,於此便不再重複繪示與說明。FIG. 9A to FIG. 9B are schematic cross-sectional views of a part of a manufacturing method of an intermediary structure of a micro-light emitting diode unit according to an embodiment of the present invention. The manufacturing method of the intermediate structure of the micro-light-emitting diode unit of FIG. 9A to FIG. 9B is similar to the manufacturing method of the intermediate structure of the micro-light-emitting diode unit of FIG. 7H to FIG. 7I. Therefore, the same or corresponding components are the same. Or the corresponding reference sign. The main difference between the two is that in the embodiment of FIGS. 9A to 9B, both the first sacrificial pattern 142F and the second sacrificial pattern 212F can be removed. For the method of removing, refer to FIG. 2A. In addition, in the manufacturing process of the micro-light-emitting diode unit interposer 1000H, the manufacturing process before FIG. 9A is the same as the manufacturing process shown in FIGS. 7A to 7G, so for the manufacturing process before FIG. 9A, please refer to FIG. 7A. Up to FIG. 7G and the foregoing description, the illustration and description will not be repeated here.

請參照圖7G及圖9A,在形成如圖7G所示的結構後,接著,移除至少部份的第一犧牲圖案142F、至少部份的第二犧牲圖案212F或其組合,以使微型發光二極體LED底面與傳遞基板S2內表面之間存在間隙g,以完成微型發光二極體單元之中介結構1000H。與微型發光二極體單元之中介結構1000不同的是,在圖9A的實施例中,可移除第一犧牲圖案142F及第二犧牲圖案212F。絕緣圖案312F的連接部312aF、第一型半導體層132的底部(或稱為外表面)以及傳遞基板S2內表面定義出間隙g。Referring to FIG. 7G and FIG. 9A, after forming the structure shown in FIG. 7G, then, at least part of the first sacrificial pattern 142F, at least part of the second sacrificial pattern 212F, or a combination thereof are removed to make the micro-light emission A gap g exists between the bottom surface of the diode LED and the inner surface of the transfer substrate S2 to complete the micro-light-emitting diode unit interposer 1000H. Different from the micro light emitting diode unit interposer 1000, in the embodiment of FIG. 9A, the first sacrificial pattern 142F and the second sacrificial pattern 212F can be removed. The connection portion 312aF of the insulating pattern 312F, the bottom (or outer surface) of the first type semiconductor layer 132, and the inner surface of the transfer substrate S2 define a gap g.

請參照圖9B,接著,利用彈性轉置頭P提取傳遞基板S2上的微型發光二極體LED,進而形成微型發光二極體單元100H。當彈性轉置頭P提取微型發光二極體LED並朝遠離傳遞基板S2的方向d移動時,絕緣圖案310F(例如:第一絕緣圖案312F)的連接部312aF一部份會斷裂,即連接部312aF一部份會留在微型發光二極體LED上、連接部312aF另一部份會留在傳遞基板S2內表面上,而使微型發光二極體LED與傳遞基板S2內表面分離,進而形成微型發光二極體單元100H。Referring to FIG. 9B, the elastic light emitting head P is used to extract the micro light emitting diode LED on the transfer substrate S2 to form a micro light emitting diode unit 100H. When the elastic transducing head P extracts the micro-light-emitting diode LED and moves in a direction d away from the transfer substrate S2, a part of the connection portion 312aF of the insulation pattern 310F (for example, the first insulation pattern 312F) is broken, that is, the connection portion A part of 312aF will remain on the micro-light-emitting diode LED, and another part of the connection portion 312aF will remain on the inner surface of the transfer substrate S2, so that the micro-light-emitting diode LED is separated from the inner surface of the transfer substrate S2, thereby forming Miniature light emitting diode unit 100H.

微型發光二極體單元100G包括第一型半導體圖案132C、位於第一型半導體圖案132C上的發光圖案122、位於發光圖案122上的第二型半導體圖案112、分別與第一型半導體圖案132C以及第二型半導體圖案112電性連接的第一、二電極410、420以及絕緣圖案310F(包含第一與第二絕緣圖案312F、314F)。於其它實施例,如前所述,若於第一型與第二型半導體層之間不加以插入發光層120,則第一型半導體圖案132C、第二型半導體圖案112、第一電極410與第二電極420可構成微型發光二極體單元LED。其中,微型發光二極體單元LED之尺吋大小係為微米或奈米等級。第一型半導體圖案132C在第二型半導體圖案上112的垂直投影面積超出第二型半導體圖案112的面積。絕緣圖案310F(包含第一與第二絕緣圖案312F、314F)覆蓋第一型半導體圖案132C以及第二型半導體圖案112且暴露(或稱為未覆蓋)第一、二電極410、420。第一、二電極410、420位於第一型半導體圖案132C的同一側。換言之,微型發光二極體單元100H為水平式發光二極體晶片。與微型發光二極體單元100F不同的是,微型發光二極體單元100H不包括犧牲圖案,而第一型半導體層132C的底部可被暴露(或稱為未被覆蓋)。微型發光二極體單元之中介結構1000H及微型發光二極體單元100H之製造方法具有與前述微型發光二極體單元之中介結構1000及微型發光二極體單元100之製造方法類似的功效與優點,於此便不再重述。The micro light emitting diode unit 100G includes a first type semiconductor pattern 132C, a light emitting pattern 122 on the first type semiconductor pattern 132C, a second type semiconductor pattern 112 on the light emitting pattern 122, and the first type semiconductor pattern 132C and The second type semiconductor pattern 112 is electrically connected to the first and second electrodes 410 and 420 and the insulating pattern 310F (including the first and second insulating patterns 312F and 314F). In other embodiments, as described above, if the light emitting layer 120 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 132C, the second type semiconductor pattern 112, the first electrode 410, and The second electrode 420 may constitute a micro light emitting diode unit LED. Among them, the size of the miniature light-emitting diode unit LED is micron or nanometer. The vertical projection area of the first type semiconductor pattern 132C on the second type semiconductor pattern 112 exceeds the area of the second type semiconductor pattern 112. The insulating pattern 310F (including the first and second insulating patterns 312F and 314F) covers the first type semiconductor pattern 132C and the second type semiconductor pattern 112 and exposes (or is called uncovered) the first and second electrodes 410 and 420. The first and second electrodes 410 and 420 are located on the same side of the first type semiconductor pattern 132C. In other words, the micro light emitting diode unit 100H is a horizontal light emitting diode wafer. Different from the micro light emitting diode unit 100F, the micro light emitting diode unit 100H does not include a sacrificial pattern, and the bottom of the first type semiconductor layer 132C may be exposed (or referred to as uncovered). The manufacturing method of the micro-light-emitting diode unit intermediary structure 1000H and the micro-light-emitting diode unit 100H has the same effects and advantages as the aforementioned micro-light-emitting diode unit intermediary structure 1000 and the micro-light-emitting diode unit 100. Will not be repeated here.

圖10A至圖10G為本發明一實施例之微型發光二極體裝置製造方法的剖面示意圖。請參照圖10A,首先,依序於生長基板510內表面上形成多層半導體(未標註)多層半導體包含第一型半導體層520、一與該第一型半導體層極性相反之第二型半導體層540。第一型與第二型半導體層520、540之極性可分別為N或P型半導體層。於本發明之實施例中,以第一型半導體層520為P型半導體層在生長基板S1內表面上及以第二型半導體層540為N型半導體層在第一型半導體層與生長基板S1之間為範例,但不限於此。於其它實施例中,以第一型半導體層520為N型半導體層在生長基板S1內表面上及第二型半導體層540為P型半導體層在第一型半導體層上。於本發明之實施例中,可選擇的於第一型與第二型半導體層之交界處作為發光處或者第一型與第二型半導體層之交界處可再插入一膜層當作發光層530。本發明之實施例,係以第一型與第二型半導體層之交界處可再插入一膜層當作發光層530為範例,但不限於此。於其它實施例中,第一型與第二型半導體層之交界處沒有插入膜層當作發光層亦可適用。並分別於第一型半導體層520及第二型半導體層540上形成多個電極550。第一型半導體層520、可選擇性的發光層530及第二型半導體層540朝遠離生長基板510的方向d1依序排列。多個電極550分別與第一型半導體層520及第二型半導體層540電性連接。第一型半導體層520、發光層530、第二型半導體層540以及多個電極550構成微型發光二極體LED。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層530,則第一型半導體圖案520、第二型半導體圖案540、多個電極550可構成微型發光二極體LED。其中,微型發光二極體LED之尺吋大小係為微米或奈米等級。微型發光二極體LED的多個電極550均位於第一型半導體層520的同一側。換言之,微型發光二極體LED較佳為為水平式發光二極體晶片。在本實施例中,生長基板510例如為藍寶石基板。但本發明不以此為限,在其他實施例中,生長基板510、第一型半導體層520及第二型半導體層540的材料也可為其他適合的材料。10A to 10G are schematic cross-sectional views of a method for manufacturing a micro-light emitting diode device according to an embodiment of the present invention. Please refer to FIG. 10A. First, a multilayer semiconductor (not labeled) is sequentially formed on an inner surface of a growth substrate 510. The multilayer semiconductor includes a first type semiconductor layer 520 and a second type semiconductor layer 540 of opposite polarity to the first type semiconductor layer. . The polarities of the first-type and second-type semiconductor layers 520 and 540 may be N-type or P-type semiconductor layers, respectively. In the embodiment of the present invention, the first type semiconductor layer 520 is a P-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 540 is an N-type semiconductor layer on the first type semiconductor layer and the growth substrate S1. Between is an example, but it is not limited to this. In other embodiments, the first type semiconductor layer 520 is an N-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 540 is a P-type semiconductor layer on the first type semiconductor layer. In the embodiment of the present invention, a film layer may be optionally inserted at the interface between the first type semiconductor layer and the second type semiconductor layer or the interface between the first type semiconductor layer and the second type semiconductor layer may be used as the light emitting layer. 530. In the embodiment of the present invention, a film layer can be inserted at the interface between the first type semiconductor layer and the second type semiconductor layer as the light emitting layer 530 as an example, but it is not limited thereto. In other embodiments, a film layer is not inserted as a light emitting layer at the interface between the first type semiconductor layer and the second type semiconductor layer. A plurality of electrodes 550 are formed on the first type semiconductor layer 520 and the second type semiconductor layer 540, respectively. The first type semiconductor layer 520, the selective light emitting layer 530, and the second type semiconductor layer 540 are sequentially arranged in a direction d1 away from the growth substrate 510. The plurality of electrodes 550 are electrically connected to the first type semiconductor layer 520 and the second type semiconductor layer 540, respectively. The first type semiconductor layer 520, the light emitting layer 530, the second type semiconductor layer 540, and the plurality of electrodes 550 constitute a micro light emitting diode LED. In other embodiments, as described above, if the light emitting layer 530 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 520, the second type semiconductor pattern 540, and a plurality of electrodes 550 Can form a miniature light-emitting diode LED. Among them, the size of the miniature light-emitting diode LED is micrometer or nanometer. The plurality of electrodes 550 of the micro light emitting diode LED are all located on the same side of the first type semiconductor layer 520. In other words, the micro light emitting diode LED is preferably a horizontal light emitting diode chip. In this embodiment, the growth substrate 510 is, for example, a sapphire substrate. However, the present invention is not limited to this. In other embodiments, the materials of the growth substrate 510, the first-type semiconductor layer 520, and the second-type semiconductor layer 540 may be other suitable materials.

圖11為對應圖10B之微型發光二極體裝置製造方法的上視示意圖。請參照圖10B及圖11,接著,提供承載結構600。承載結構600包括傳遞基板610、覆蓋傳遞基板610內表面的犧牲層620以及位於犧牲層620上的線路結構640。在本實施例中,承載結構600可選擇性地包括支撐層630,支撐層630包括第一支撐部632與第二支撐部634。支撐層630位於犧牲層620上。線路結構640位於支撐層630上。為使製程簡便,傳遞基板610、犧牲層620與支撐層630可取自於一種絕緣層覆矽晶圓(Silicon on insulator,SOI)。舉例而言,所述絕緣層覆矽晶圓可包括兩層矽與一層氧化矽,其中絕緣層(例如氧化矽)夾設在兩層矽之間。例如:傳遞基板610為矽晶圓所組成,犧牲層620為絕緣層所組成,支撐層630為矽晶圓所組成,其中本絕緣層為電性絕緣物質,電性絕緣物質例如為二氧化矽或藍寶石(Sapphire)所組成,但本發明並不以此為限。FIG. 11 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 10B. Please refer to FIGS. 10B and 11. Next, a supporting structure 600 is provided. The carrier structure 600 includes a transfer substrate 610, a sacrificial layer 620 covering the inner surface of the transfer substrate 610, and a circuit structure 640 on the sacrificial layer 620. In this embodiment, the supporting structure 600 may optionally include a support layer 630, and the support layer 630 includes a first support portion 632 and a second support portion 634. The support layer 630 is located on the sacrificial layer 620. The circuit structure 640 is located on the support layer 630. To simplify the manufacturing process, the transfer substrate 610, the sacrificial layer 620, and the support layer 630 may be taken from a silicon-on-insulator (SOI) wafer. For example, the insulating silicon-coated wafer may include two layers of silicon and one layer of silicon oxide, wherein an insulating layer (such as silicon oxide) is sandwiched between the two layers of silicon. For example, the transfer substrate 610 is composed of a silicon wafer, the sacrificial layer 620 is composed of an insulating layer, and the support layer 630 is composed of a silicon wafer. The insulating layer is an electrically insulating substance, and the electrically insulating substance is, for example, silicon dioxide. Or sapphire, but the invention is not limited to this.

支撐層630定義出二個開口632a,介於第一支撐部632與第二支撐部634之間。在本實施例中,第二支撐部634位於二個開口632a之間,而第一支撐部632位於二個開口632a之外,且不位於二個開口632a之間。在本實施例中,第一支撐部632與第二支撐部634可選擇性地斷開,也就是說支撐層630可以僅具有一個開口632a。線路結構640包括主體部642以及由主體部642向外延伸的窄部(或稱為連接部)644。主體部642的寬度W1大於窄部644的寬度W2。主體部642配置於第二支撐部634上。窄部644填入第一支撐部632與第二支撐部634之間的至少部份開口632a中,以跨接第一支撐部632與第二支撐部634。The support layer 630 defines two openings 632a between the first support portion 632 and the second support portion 634. In this embodiment, the second support portion 634 is located between the two openings 632a, and the first support portion 632 is located outside the two openings 632a and not between the two openings 632a. In this embodiment, the first support portion 632 and the second support portion 634 can be selectively disconnected, that is, the support layer 630 can have only one opening 632a. The circuit structure 640 includes a main body portion 642 and a narrow portion (or a connecting portion) 644 extending outward from the main body portion 642. The width W1 of the main body portion 642 is larger than the width W2 of the narrow portion 644. The main body portion 642 is disposed on the second support portion 634. The narrow portion 644 is filled in at least a part of the opening 632 a between the first support portion 632 and the second support portion 634 to bridge the first support portion 632 and the second support portion 634.

請參照圖10C,接著,接合微型發光二極體LED的電極550與承載結構600的線路結構640,以使微型發光二極體LED的電極550朝向線路結構640並與線路結構640電性連接。簡言之,微型發光二極體LED是以覆晶(flip chip)的方式以焊料(solder,圖未示)接合固接在線路結構640上。舉例而言,於接合步驟前,焊料位於承載結構600上。在本實施例中,微型發光二極體 LED在傳遞基板610上的垂直投影位於第一支撐部632之開口632a在傳遞基板610的垂直投影內。第二支撐部634與微型發光二極體LED重疊。於本實施例中,對應於微型發光二極體LED其中一個電極550的主體部642部份,較佳地,會呈現一個突起部,來讓微型發光二極體LED與承載結構600接合後,第一型半導體圖案520表面能夠實質上呈現於一水平線上,以利於後序的吸取與轉移流程,並使得微型發光二極體LED與承載結構600接合良率增加,但本發明不以此為限,在其他實施例中,也可使用其他適當的設計。請參照圖10C及圖10D,接著,移除微型發光二極體LED上的生長基板510。舉例而言,在本實施例中,可採用雷射剝除技術(laser lift-off technology)移除生長基板510,但本發明不以此為限,在其他實施例中,也可使用其他適當方法移除生長基板510。Referring to FIG. 10C, the electrode 550 of the micro-light-emitting diode LED and the circuit structure 640 of the carrier structure 600 are bonded, so that the electrode 550 of the micro-light-emitting diode LED faces the circuit structure 640 and is electrically connected to the circuit structure 640. In short, the miniature light-emitting diode LED is bonded to the circuit structure 640 by solder (solder (not shown)) in a flip chip manner. For example, before the bonding step, solder is located on the carrier structure 600. In this embodiment, the vertical projection of the micro-light emitting diode LED on the transmission substrate 610 is located in the opening 632a of the first support portion 632 within the vertical projection of the transmission substrate 610. The second support portion 634 overlaps the micro light emitting diode LED. In this embodiment, a portion of the main body 642 corresponding to one of the electrodes 550 of the micro-light-emitting diode LED, preferably, a protrusion is provided to allow the micro-light-emitting diode LED to be bonded to the carrier structure 600. The surface of the first type semiconductor pattern 520 can be substantially displayed on a horizontal line to facilitate the subsequent absorption and transfer processes, and to increase the joint yield of the micro-light-emitting diode LED and the carrier structure 600. However, the present invention does not take this as an example. However, in other embodiments, other suitable designs may be used. Referring to FIG. 10C and FIG. 10D, the growth substrate 510 on the micro-light emitting diode LED is removed. For example, in this embodiment, the laser lift-off technology can be used to remove the growth substrate 510, but the present invention is not limited to this. In other embodiments, other suitable The method removes the growth substrate 510.

圖12為對應圖10E之微型發光二極體裝置製造方法的上視示意圖。圖10E對應於圖12的剖線A-A’。請參照圖10D、圖10E及圖12,接著,移除微型發光二極體LED正下方的部份犧牲層620,如區域622,並保留微型發光二極體LED遮蔽面積外的另一部份的犧牲層620,如區域624,形成圖10E的間隙G。舉例而言,第二支撐部634底面(或稱為外表面)、位於各開口632a中的窄部(或稱為連接部)644底面(或稱為外表面)、另一部份的犧牲層620(例如區域624)與傳遞基板610內表面之間存在間隙G。於其它實施例中,第二支撐部634底面(或稱為外表面)、位於各開口632a中的窄部(或稱為連接部)644底面(或稱為外表面)、其中至少一個第一支撐部632底面(或稱為外表面)、另一部份的犧牲層620(例如區域624)與傳遞基板610內表面之間存在間隙G。詳言之,在本實施例中,可移除第二支撐部634正下方以及線路結構640之窄部644正下方的部份犧牲層620,如區域622,而保留第一支撐部632正下方的部份犧牲層620,如區域624。換言之,可將第一支撐部632之開口632a內的部份犧牲層620,如區域622去除,而保留被第一支撐部632覆蓋的部份犧牲層620,如區域624。在線路結構640之窄部644及第二支撐部634下方的部份犧牲層620,如區域622被掏空後,微型發光二極體LED是透過線路結構640的窄部644與未被移除的第一支撐部632暫時固定在傳遞基板610上。換言之,在本實施例中,是以線路結構640的窄部644做為繫鏈(tether)做為微型發光二極體LED的暫時固定結構,暫時固定結構具有足夠支撐微型發光二極體LED的功能,同時利於後續轉置頭P提取,而形成較移除第二支撐部634前較弱黏附傳遞基板610的接觸力。FIG. 12 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 10E. Fig. 10E corresponds to the section line A-A 'of Fig. 12. Please refer to FIG. 10D, FIG. 10E, and FIG. 12, then, remove a part of the sacrificial layer 620, such as the area 622, directly under the micro-light-emitting diode LED, and reserve another part outside the shielding area of the micro-light-emitting diode LED. The sacrificial layer 620, such as the region 624, forms a gap G in FIG. 10E. For example, the bottom surface (or outer surface) of the second support portion 634, the bottom surface (or outer surface) of the narrow portion (or connection portion) 644 located in each opening 632a, and the sacrificial layer of another portion A gap G exists between 620 (eg, region 624) and the inner surface of the transfer substrate 610. In other embodiments, at least one of the bottom surface (or outer surface) of the second support portion 634, the bottom surface (or outer surface) of the narrow portion (or connection portion) 644 in each opening 632a, There is a gap G between the bottom surface (or outer surface) of the support portion 632, another portion of the sacrificial layer 620 (for example, the region 624), and the inner surface of the transfer substrate 610. Specifically, in this embodiment, a portion of the sacrificial layer 620, such as the area 622, may be removed directly below the second support portion 634 and directly below the narrow portion 644 of the circuit structure 640, and the first support portion 632 may be retained directly below A portion of the sacrificial layer 620, such as region 624. In other words, a part of the sacrificial layer 620, such as the region 622, in the opening 632a of the first supporting part 632 may be removed, while a part of the sacrificial layer 620, such as the region 624, covered by the first supporting part 632 may be removed. After the narrow portion 644 of the circuit structure 640 and a portion of the sacrificial layer 620 below the second support portion 634, such as the region 622 being hollowed out, the micro-light emitting diode LED passes through the narrow portion 644 of the circuit structure 640 and is not removed. The first support portion 632 is temporarily fixed on the transfer substrate 610. In other words, in this embodiment, the narrow portion 644 of the line structure 640 is used as a tether as a temporary fixing structure of the micro-light-emitting diode LED. The temporary fixing structure is sufficient to support the micro-light-emitting diode LED. Function, at the same time, it facilitates the subsequent extraction of the transposition head P, and forms a contact force that is weaker than the adhesive transmission substrate 610 before the second support portion 634 is removed.

請參照圖12,在本實施例中,繫鏈(例如:窄部644)的數量可為多個,多個繫鏈(例如:窄部644)可配置在微型發光二極體LED的左右兩側(投影於傳遞基板610上),且每一個繫鏈(例如:窄部644)的寬度W2可一致。然而,本發明不限於此,繫鏈的數量、繫鏈的位置以及繫鏈的寬度均可做其他適當設計,以下配合其他圖示舉例說明之。Please refer to FIG. 12. In this embodiment, the number of the tethers (for example, the narrow part 644) may be multiple, and the multiple tethers (for example, the narrow part 644) may be disposed on the left and right sides of the micro-light emitting diode LED. Side (projected on the transfer substrate 610), and the width W2 of each tether (for example, the narrow portion 644) may be the same. However, the present invention is not limited to this. The number of tethers, the position of the tethers, and the width of the tethers can be made other appropriate designs, which will be illustrated below with reference to other figures.

圖13為本發明另一實施例之微型發光二極體裝置製造方法的上視示意圖。在圖13的實施例中,繫鏈(例如:窄部644)的數量也可僅為一個,繫鏈(例如:窄部644)可配置在包括第一型半導體層520之微型發光二極體的單側,例如,左側、右側、上側或下側。圖14為本發明又一實施例之微型發光二極體裝置製造方法的上視示意圖。在圖14的實施例中,繫鏈(例如:窄部644)的數量可為多個,而多個繫鏈(例如:窄部644)也可分別配置在包括第一型半導體層520之微型發光二極體的上下兩側。圖15為本發明再一實施例之微型發光二極體裝置製造方法的上視示意圖。在圖15的實施例中,繫鏈(例如:窄部644)的數量可為多個,而多個繫鏈(例如:窄部644)也可皆配置在包括第一型半導體層520之微型發光二極體的同一側,例如:以上側為範例,但不限於此。於其它實施例中,多個繫鏈(例如:窄部644)也可皆配置在包括第一型半導體層520之微型發光二極體的下側。圖16為本發明一實施例之微型發光二極體裝置製造方法的上視示意圖。在圖16的實施例中,繫鏈(例如:窄部644)的寬度W2可由第二支撐部634的邊緣向第一支撐部632的邊緣漸縮。漸縮寬度W2的設計可使在後續提取包括第一型半導體層520的微型發光二極體LED時,線路結構640的窄部644在距離微型發光二極體較遠處(即窄部644寬度W2最小處)斷開,而保留較長的部份窄部644與微型發光二極體的電極550連接。較長且超出微型發光二極體遮蔽面積外的窄部644有助於微型發光二極體在後續製程中與其他導電元件電性連接,增大接觸面積。FIG. 13 is a schematic top view of a method for manufacturing a micro light emitting diode device according to another embodiment of the present invention. In the embodiment of FIG. 13, the number of tethers (eg, the narrow portion 644) may be only one, and the tethers (eg, the narrow portion 644) may be configured in a micro-light emitting diode including the first type semiconductor layer 520. On one side, for example, left, right, top, or bottom. FIG. 14 is a schematic top view of a method for manufacturing a micro light emitting diode device according to another embodiment of the present invention. In the embodiment of FIG. 14, the number of tethers (eg, the narrow portion 644) may be multiple, and multiple tethers (eg, the narrow portion 644) may also be respectively disposed in a micro-type including the first type semiconductor layer 520 The upper and lower sides of the light emitting diode. FIG. 15 is a schematic top view of a method for manufacturing a micro light emitting diode device according to another embodiment of the present invention. In the embodiment of FIG. 15, the number of the tethers (for example, the narrow portion 644) may be multiple, and the multiple tethers (for example, the narrow portion 644) may be all disposed in the micro-type including the first type semiconductor layer 520 The same side of the light emitting diode, for example, the above side is an example, but it is not limited thereto. In other embodiments, a plurality of tethers (for example, the narrow portion 644) may also be disposed on the lower side of the micro-light emitting diode including the first type semiconductor layer 520. FIG. 16 is a schematic top view of a method for manufacturing a micro-light emitting diode device according to an embodiment of the present invention. In the embodiment of FIG. 16, the width W2 of the tether (for example, the narrow portion 644) may be tapered from the edge of the second support portion 634 to the edge of the first support portion 632. The design of the tapered width W2 enables the narrow portion 644 of the circuit structure 640 to be further away from the micro light emitting diode (ie, the width of the narrow portion 644) when the micro light emitting diode LED including the first type semiconductor layer 520 is subsequently extracted. W2 is the smallest), and the long narrow portion 644 remains connected to the electrode 550 of the micro-light emitting diode. The long narrow portion 644 beyond the shielding area of the micro-light-emitting diode helps the micro-light-emitting diode to be electrically connected with other conductive elements in the subsequent process, and increases the contact area.

請再參照圖10E,在移除第二支撐部634正下方以及線路結構640之窄部644正下方的部份犧牲層620(如區域622)後,如圖10F所示,接著,令彈性轉置頭P提取微型發光二極體LED、與電極550接合的線路結構640以及第二支撐部634。當彈性轉置頭P提取微型發光二極體LED、與電極550接合的線路結構640以及第二支撐部634時,線路結構640的窄部644一部份會斷開,即窄部644一部份會留在微型發光二極體LED上、窄部644另一部份會留在犧牲結構S上,以使微型發光二極體LED與傳遞基板610內表面分離。Please refer to FIG. 10E again. After removing a part of the sacrificial layer 620 (such as the area 622) directly below the second support portion 634 and the narrow portion 644 of the circuit structure 640, as shown in FIG. 10F, then, the elasticity is changed. The head P extracts the micro-light-emitting diode LED, the wiring structure 640 connected to the electrode 550, and the second support portion 634. When the elastic transposition head P extracts the micro-light-emitting diode LED, the wiring structure 640 joined with the electrode 550, and the second supporting portion 634, a part of the narrow portion 644 of the wiring structure 640 is broken, that is, the narrow portion 644 The portion will remain on the micro-light-emitting diode LED, and the other portion of the narrow portion 644 will remain on the sacrificial structure S, so that the micro-light-emitting diode LED is separated from the inner surface of the transfer substrate 610.

值得一提的是,如圖10F所示,由於微型發光二極體LED是以覆晶方式先固定在傳遞基板610上的線路結構640,因此當彈性轉置頭P提取微型發光二極體LED時,彈性轉置頭P是接觸較平整的微型發光二極體LED外表面520a(即第一半導體層520之背向電極550的表面520a)。也就是說,在提取微型發光二極體LED的過程中,彈性轉置頭P與微型發光二極體LED的接觸面積大,進而使彈性轉置頭P提取微型發光二極體LED的成功率大幅提升。It is worth mentioning that, as shown in FIG. 10F, since the micro-light-emitting diode LED is a circuit structure 640 fixed on the transfer substrate 610 in a flip-chip manner, the micro-light-emitting diode LED is extracted when the elastic transposition head P is used. At this time, the elastic transposition head P is in contact with the flatter outer surface 520a of the micro-light emitting diode LED (ie, the surface 520a of the first semiconductor layer 520 facing away from the electrode 550). That is to say, in the process of extracting the micro-light-emitting diode LED, the contact area of the elastic transposition head P and the micro-light-emitting diode LED is large, so that the success rate of extracting the micro-light-emitting diode LED by the elastic transposition head P is large. Greatly improved.

請參照圖10G,接著,令彈性轉置頭P將微型發光二極體LED、部份線路結構640及第二支撐部634轉置於接收基板710上,進而形成微型發光二極體裝置2000。請參照圖10G,微型發光二極體裝置2000至少包括接收基板710、畫素陣列層720、黏著層730、第二支撐部634、線路結構640以及微型發光二極體LED。至少由接收基板710與畫素陣列層720構成陣列基板800。畫素陣列層720配置於接收基板710內表面上,畫素陣列層720具有多個子畫素(圖未示)與多個驅動元件(圖未示),每個子畫素具有至少一個驅動元件用以驅動微型發光二極體LED。通常,微型發光二極體LED所在的位置就是子畫素。黏著層730覆蓋畫素陣列層720。第二支撐部634配置於黏著層730上。線路結構640配置於第二支撐部634上。第二支撐部634夾設於線路結構640與黏著層730之間。更進一步地說,第二支撐部634具有與黏著層730接觸的下表面634a、相對於下表面634a的上表面634b以及連接上表面634b與下表面634a的側壁634c。在本實施例中,線路結構640(例如:主體部642)可覆蓋第二支撐部634的部份上表面634b以及線路結構640(例如:窄部644)可覆蓋第二支撐部634的側壁634c,且延伸到黏著層730上。在本實施例中,支撐層632、634的材質可包括矽、氧化矽或上述兩種之組合。Referring to FIG. 10G, the elastic transducing head P is configured to transfer the micro-light-emitting diode LED, part of the circuit structure 640 and the second support portion 634 onto the receiving substrate 710 to form a micro-light-emitting diode device 2000. Referring to FIG. 10G, the micro light emitting diode device 2000 includes at least a receiving substrate 710, a pixel array layer 720, an adhesive layer 730, a second support portion 634, a circuit structure 640, and a micro light emitting diode LED. An array substrate 800 is constituted by at least the receiving substrate 710 and the pixel array layer 720. The pixel array layer 720 is disposed on the inner surface of the receiving substrate 710. The pixel array layer 720 has a plurality of sub pixels (not shown) and a plurality of driving elements (not shown). Each sub pixel has at least one driving element. To drive miniature light-emitting diode LEDs. Generally, the position of the micro light-emitting diode LED is the sub-pixel. The adhesive layer 730 covers the pixel array layer 720. The second support portion 634 is disposed on the adhesive layer 730. The circuit structure 640 is disposed on the second support portion 634. The second supporting portion 634 is sandwiched between the circuit structure 640 and the adhesive layer 730. Furthermore, the second support portion 634 has a lower surface 634a in contact with the adhesive layer 730, an upper surface 634b opposite the lower surface 634a, and a side wall 634c connecting the upper surface 634b and the lower surface 634a. In this embodiment, the circuit structure 640 (eg, the main body portion 642) may cover a part of the upper surface 634b of the second support portion 634 and the circuit structure 640 (eg, the narrow portion 644) may cover the side wall 634c of the second support portion 634. And extends to the adhesive layer 730. In this embodiment, the material of the support layers 632 and 634 may include silicon, silicon oxide, or a combination of the two.

微型發光二極體LED配置於線路結構640上。微型發光二極體LED包括第一型半導體層520、配置於第一型半導體層520上的發光層530,配置於發光層530上的第二型半導體層540以及多個電極550。多個電極550分別配置於第一型半導體層520及第二型半導體層540上且線路結構640電性連接。再者,如前所述,若於第一型與第二型半導體層之間不加以插入發光層530,則第一型半導體圖案520、第二型半導體圖案540與多個電極550可構成微型發光二極體LED。其中一個電極550、第二型半導體層540、發光層(可選擇性的)530以及第一型半導體層520沿著遠離接收基板710的方向d2依序排列。The micro light emitting diode LED is disposed on the circuit structure 640. The micro light emitting diode LED includes a first type semiconductor layer 520, a light emitting layer 530 disposed on the first type semiconductor layer 520, a second type semiconductor layer 540 disposed on the light emitting layer 530, and a plurality of electrodes 550. The plurality of electrodes 550 are respectively disposed on the first-type semiconductor layer 520 and the second-type semiconductor layer 540 and the circuit structure 640 is electrically connected. In addition, as described above, if the light emitting layer 530 is not interposed between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 520, the second type semiconductor pattern 540, and the plurality of electrodes 550 may form a micro Light-emitting diode LED. One of the electrodes 550, the second-type semiconductor layer 540, the light-emitting layer (optionally) 530, and the first-type semiconductor layer 520 are sequentially arranged along a direction d2 away from the receiving substrate 710.

線路結構640與畫素陣列層720電性連接。詳言之,在彈性轉置頭P將微型發光二極體LED、第二支撐部634以及部份線路結構640轉置於接收基板710上後,可在線路結構640上形成導電結構740。導電結構740覆蓋線路結構640且填入黏著層730的開口730a,以與畫素陣列層720電性連接。線路結構640可透過導電結構740與畫素陣列層720電性連接。舉例而言,微型發光二極體LED之其中一個電極550經由其對應的其中一個線路結構640、其對應的其中一個導電結構740與其中一個開口730a電性連接畫素陣列層720,而微型發光二極體LED之其中另一個電極550經由其對應的其中另一個線路結構640、其對應的其中另一個導電結構740與其中另一個開口730a電性連接畫素陣列層720。值得一提的是,在本實施例中,由於線路結構640在接收基板710上的垂直投影超出第二支撐部634在接收基板710上的垂直投影以及微型發光二極體LED在接收基板710上的垂直投影。換言之,部份線路結構640延伸至第二支撐部634及微型發光二極體LED的遮蔽面積外。藉此,導電層740可容易地與線路結構640搭接,進而提升微型發光二極體LED與畫素陣列層720電性連接的良率。The circuit structure 640 is electrically connected to the pixel array layer 720. In detail, the conductive structure 740 can be formed on the circuit structure 640 after the micro-light-emitting diode LED, the second supporting portion 634 and a part of the circuit structure 640 are transferred onto the receiving substrate 710 by the elastic transposition head P. The conductive structure 740 covers the circuit structure 640 and fills the opening 730 a of the adhesive layer 730 to be electrically connected to the pixel array layer 720. The circuit structure 640 can be electrically connected to the pixel array layer 720 through the conductive structure 740. For example, one of the electrodes 550 of the micro-light-emitting diode LED is electrically connected to the pixel array layer 720 through one of the corresponding circuit structures 640, one of the corresponding conductive structures 740, and one of the openings 730a, and the micro-light-emission The other electrode 550 of the diode LED is electrically connected to the pixel array layer 720 via its corresponding other circuit structure 640, its corresponding another conductive structure 740 and the other opening 730a. It is worth mentioning that, in this embodiment, since the vertical projection of the circuit structure 640 on the receiving substrate 710 exceeds the vertical projection of the second support portion 634 on the receiving substrate 710 and the micro-light emitting diode LED on the receiving substrate 710 Vertical projection. In other words, part of the circuit structure 640 extends beyond the shielding area of the second support portion 634 and the micro-light emitting diode LED. Thereby, the conductive layer 740 can be easily overlapped with the circuit structure 640, thereby improving the yield of the electrical connection between the micro light emitting diode LED and the pixel array layer 720.

圖17A至圖17G為本發明一實施例之微型發光二極體裝置製造方法的剖面示意圖。圖17A至圖17G的微型發光二極體裝置製造方法與圖10A至圖10G的微型發光二極體裝置製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異處在於:圖17A至圖17G之實施例的繫鏈結構與圖10A至圖10G之實施例的繫鏈結構不同。以下主要就此差異處做說明,兩者相同處還請參照前述說明,於此便不再重述。17A to 17G are schematic cross-sectional views of a method for manufacturing a micro-light emitting diode device according to an embodiment of the present invention. The manufacturing method of the micro-light-emitting diode device of FIGS. 17A to 17G is similar to the manufacturing method of the micro-light-emitting diode device of FIGS. 10A to 10G, and therefore the same or corresponding components are represented by the same or corresponding reference numerals. The main difference between the two is that the tether structure of the embodiment of FIGS. 17A to 17G is different from the tether structure of the embodiment of FIGS. 10A to 10G. The following mainly explains the differences. Please refer to the previous description for the same points, and will not repeat them here.

請參照圖17A,首先,依序於生長基板510內表面上形成多層半導體(未標註)包含第一型半導體層520、一與該第一型半導體層極性相反之第二型半導體層540。第一型與第二型半導體層520、540之極性可分別為N或P型半導體層。於本發明之實施例中,以第一型半導體層520為P型半導體層在生長基板S1內表面上及以第二型半導體層540為N型半導體層在第一型半導體層與生長基板S1之間為範例,但不限於此。於其它實施例中,以第一型半導體層520為N型半導體層在生長基板S1內表面上及第二型半導體層540為P型半導體層在第一型半導體層上。於本發明之實施例中,可選擇的於第一型與第二型半導體層之交界處作為發光處或者第一型與第二型半導體層之交界處可再插入一膜層當作發光層530。本發明之實施例,係以第一型與第二型半導體層之交界處可再插入一膜層當作發光層530為範例,但不限於此。於其它實施例中,第一型與第二型半導體層之交界處沒有插入膜層當作發光層亦可適用。並分別於第一型半導體層520及第二型半導體層540上形成多個電極550。第一型半導體層520、可選擇性的發光層530及第二型半導體層540朝遠離生長基板510的方向d1依序排列。多個電極550分別與第一型半導體層520及第二型半導體層540電性連接。第一型半導體層520、發光層530、第二型半導體層540以及多個電極550構成微型發光二極體LED。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層530,則第一型半導體圖案520、第二型半導體圖案540、多個電極550可構成微型發光二極體LED。其中,微型發光二極體LED之尺吋大小係為微米或奈米等級。Referring to FIG. 17A, first, a multilayer semiconductor (not labeled) including a first-type semiconductor layer 520 and a second-type semiconductor layer 540 of opposite polarity to the first-type semiconductor layer is sequentially formed on the inner surface of the growth substrate 510. The polarities of the first-type and second-type semiconductor layers 520 and 540 may be N-type or P-type semiconductor layers, respectively. In the embodiment of the present invention, the first type semiconductor layer 520 is a P-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 540 is an N-type semiconductor layer on the first type semiconductor layer and the growth substrate S1. Between is an example, but it is not limited to this. In other embodiments, the first type semiconductor layer 520 is an N-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 540 is a P-type semiconductor layer on the first type semiconductor layer. In the embodiment of the present invention, a film layer may be optionally inserted at the interface between the first type semiconductor layer and the second type semiconductor layer or the interface between the first type semiconductor layer and the second type semiconductor layer may be used as the light emitting layer. 530. In the embodiment of the present invention, a film layer can be inserted at the interface between the first type semiconductor layer and the second type semiconductor layer as the light emitting layer 530 as an example, but it is not limited thereto. In other embodiments, a film layer is not inserted as a light emitting layer at the interface between the first type semiconductor layer and the second type semiconductor layer. A plurality of electrodes 550 are formed on the first type semiconductor layer 520 and the second type semiconductor layer 540, respectively. The first type semiconductor layer 520, the selective light emitting layer 530, and the second type semiconductor layer 540 are sequentially arranged in a direction d1 away from the growth substrate 510. The plurality of electrodes 550 are electrically connected to the first type semiconductor layer 520 and the second type semiconductor layer 540, respectively. The first type semiconductor layer 520, the light emitting layer 530, the second type semiconductor layer 540, and the plurality of electrodes 550 constitute a micro light emitting diode LED. In other embodiments, as described above, if the light emitting layer 530 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 520, the second type semiconductor pattern 540, and a plurality of electrodes 550 Can form a miniature light-emitting diode LED. Among them, the size of the miniature light-emitting diode LED is micrometer or nanometer.

請參照圖17B及圖18。圖18為對應圖17B之微型發光二極體裝置製造方法的上視示意圖。接著,提供承載結構600A。承載結構600A包括傳遞基板610、覆蓋傳遞基板610的犧牲層620以及位於犧牲層620上的線路結構640A。承載結構600A更包括支撐層630A。支撐層630A位於犧牲層620上。線路結構640A位於支撐層630A上。支撐層630A包括第一支撐部632與第二支撐部634。支撐層630A定義出開口632a。與圖10A至圖10G之實施例不同的是,支撐層630A更包括第三支撐部636。第三支撐部636連接在第一支撐部632A其中一側的第二支撐部634A之間。第三支撐部636呈細條狀,而暴露出(或稱為未覆蓋)第一支撐部632A與第二支撐部634A之間的部份開口632a。舉例而言,開口632a垂直投影於傳遞基板610上之投影形狀類似為C型,而可經由開口632a見到犧牲層620。線路結構640A配置於第二支撐部634A上,而暴露出(或稱為未覆蓋)第一支撐部632A與第三支撐部636。其中,線路結構640A未延伸至開口632a中,則線路結構640A可視為僅有主體部。Please refer to FIG. 17B and FIG. 18. FIG. 18 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 17B. Next, a bearing structure 600A is provided. The carrier structure 600A includes a transfer substrate 610, a sacrificial layer 620 covering the transfer substrate 610, and a circuit structure 640A on the sacrificial layer 620. The supporting structure 600A further includes a supporting layer 630A. The support layer 630A is located on the sacrificial layer 620. The circuit structure 640A is located on the support layer 630A. The support layer 630A includes a first support portion 632 and a second support portion 634. The support layer 630A defines an opening 632a. Different from the embodiment of FIGS. 10A to 10G, the supporting layer 630A further includes a third supporting portion 636. The third support portion 636 is connected between the second support portion 634A on one side of the first support portion 632A. The third support portion 636 is in a thin strip shape, and a part of the opening 632a between the first support portion 632A and the second support portion 634A is exposed (or referred to as uncovered). For example, the projection shape of the opening 632a perpendicularly projected on the transfer substrate 610 is similar to a C shape, and the sacrificial layer 620 can be seen through the opening 632a. The circuit structure 640A is disposed on the second support portion 634A, and the first support portion 632A and the third support portion 636 are exposed (or referred to as uncovered). Wherein, the circuit structure 640A does not extend into the opening 632a, the circuit structure 640A can be regarded as having only a main body portion.

請參照圖17C,接著,接合微型發光二極體LED的電極550與承載結構600A的線路結構640A,以使微型發光二極體LED的電極550朝向線路結構640並與線路結構640電性連接。換言之,微型發光二極體LED是以覆晶(flip chip)的方式固接在線路結構640A上。在本實施例中,微型發光二極體 LED在傳遞基板610上的垂直投影位於第一支撐部632A之開口632a在傳遞基板610的垂直投影內。第二支撐部634A與微型發光二極體LED重疊。於本實施例中,對應於微型發光二極體LED其中一個電極550的主體部642部份,較佳地,會呈現一個突起部,來讓微型發光二極體LED與承載結構600接合後,第一型半導體圖案520表面能夠實質上呈現於一水平線上,以利於後序的吸取與轉移流程,並使得微型發光二極體LED與承載結構600接合良率增加,但本發明不以此為限,在其他實施例中,也可使用其他適當的設計。請參照圖17C及圖17D,接著,移除微型發光二極體LED上的生長基板510。舉例而言,在本實施例中,可採用雷射剝除技術(laser lift-off technology)移除生長基板510,但本發明不以此為限,在其他實施例中,也可使用其他適當方法移除生長基板510。Referring to FIG. 17C, the electrode 550 of the micro-light-emitting diode LED and the circuit structure 640A of the carrier structure 600A are bonded so that the electrode 550 of the micro-light-emitting diode LED faces the circuit structure 640 and is electrically connected to the circuit structure 640. In other words, the micro-light emitting diode LED is fixed on the circuit structure 640A in a flip chip manner. In this embodiment, the vertical projection of the micro-light emitting diode LED on the transmission substrate 610 is located in the opening 632a of the first support portion 632A within the vertical projection of the transmission substrate 610. The second support portion 634A overlaps the micro light emitting diode LED. In this embodiment, a portion of the main body 642 corresponding to one of the electrodes 550 of the micro-light-emitting diode LED, preferably, a protrusion is provided to allow the micro-light-emitting diode LED to be bonded to the carrier structure 600. The surface of the first type semiconductor pattern 520 can be substantially displayed on a horizontal line to facilitate the subsequent absorption and transfer processes, and to increase the joint yield of the micro-light-emitting diode LED and the carrier structure 600. However, the present invention does not take this as an example. However, in other embodiments, other suitable designs may be used. Referring to FIG. 17C and FIG. 17D, the growth substrate 510 on the micro light emitting diode LED is removed. For example, in this embodiment, the laser lift-off technology can be used to remove the growth substrate 510, but the present invention is not limited to this. In other embodiments, other suitable The method removes the growth substrate 510.

圖19為對應圖17E之微型發光二極體裝置製造方法的上視示意圖。特別是,圖17E對應於圖19的剖線A-A’。請參照圖17D、圖17E及圖19,接著,移除微型發光二極體LED正下方的部份犧牲層620,例如區域622,並保留微型發光二極體LED遮蔽面積外的另一部份的犧牲層620,例如區域624,形成圖17E的間隙G。舉例而言,第二支撐部634A底面(或稱為外表面)、其中一個第一支撐部632A部份底面(或稱為外表面)、第三支撐部636底面(或稱為外表面)、另一部份的犧牲層620(例如區域624)與傳遞基板610內表面之間存在間隙G。於其它實施例中,第二支撐部634A底面(或稱為外表面)、第一支撐部632部份底面(或稱為外表面)、第三支撐部636底面(或稱為外表面)、另一部份的犧牲層620(例如區域624)與傳遞基板610內表面之間存在間隙G。在本實施例中,可移除第二支撐部634A正下方以及第三支撐部636正下方的部份犧牲層620,例如區域622,而保留第一支撐部632A正下方的部份犧牲層620,例如區域624。換言之,可將第一支撐部632A之開口632a內的部份犧牲層620,例如區域622去除,而保留被第一支撐部632A覆蓋的部份犧牲層620,例如區域624。在第二支撐部634A正下方以及第三支撐部636正下方的部份犧牲層620,例如區域622被掏空後,微型發光二極體LED是透過細條狀的第三支撐部636暫時固定在傳遞基板610上。換言之,在本實施例中,是以第三支撐部636做為繫鏈(tether)。本實施例相較於圖10A至圖10G之實施例微型發光二極體LED僅具有一個為繫鏈(tether)因此可提高微型發光二極體LED的移轉效率。FIG. 19 is a schematic top view of a method for manufacturing the micro-light emitting diode device corresponding to FIG. 17E. In particular, Fig. 17E corresponds to the section line A-A 'of Fig. 19. Please refer to FIG. 17D, FIG. 17E, and FIG. 19, then, remove a part of the sacrificial layer 620, such as the area 622, directly under the micro-light-emitting diode LED, and reserve another part outside the shielding area of the micro-light-emitting diode LED. The sacrificial layer 620, such as the region 624, forms the gap G of FIG. 17E. For example, the bottom surface (or outer surface) of the second support portion 634A, a portion of the bottom surface (or outer surface) of the first support portion 632A, the bottom surface (or outer surface) of the third support portion 636, A gap G exists between another portion of the sacrificial layer 620 (for example, the region 624) and the inner surface of the transfer substrate 610. In other embodiments, the bottom surface (or outer surface) of the second support portion 634A, a portion of the bottom surface (or outer surface) of the first support portion 632, the bottom surface (or outer surface) of the third support portion 636, A gap G exists between another portion of the sacrificial layer 620 (for example, the region 624) and the inner surface of the transfer substrate 610. In this embodiment, a part of the sacrificial layer 620 directly under the second supporting portion 634A and a place under the third supporting portion 636 may be removed, such as a region 622, while a part of the sacrificial layer 620 directly under the first supporting portion 632A is retained. , Such as area 624. In other words, a part of the sacrificial layer 620, such as the region 622, in the opening 632a of the first supporting portion 632A may be removed, while a part of the sacrificial layer 620, such as the region 624, covered by the first supporting portion 632A may be removed. A portion of the sacrificial layer 620 directly below the second support portion 634A and directly below the third support portion 636, for example, after the region 622 is hollowed out, the micro light-emitting diode LED is temporarily fixed on the thin support portion 636 On the substrate 610. In other words, in this embodiment, the third support portion 636 is used as a tether. Compared with the embodiment of FIG. 10A to FIG. 10G, this embodiment has only one micro-emitting diode LED as a tether, so the transfer efficiency of the micro-emitting diode LED can be improved.

請參照圖19,在本實施例中,繫鏈(例如:第三支撐部636)的數量可為一個,而位於包括第一型半導體層520之微型發光二極體的單側。然而,本發明不限於此,在其他實施例中,繫鏈的數量、繫鏈的位置以及繫鏈的寬度均可做其他適當設計。舉例而言,與圖12之繫鏈(例如:窄部644)類似,繫鏈(例如:第三支撐部636)的數量也可為多個,而可配置在包括第一型半導體層520之微型發光二極體的左右兩側;與圖14之繫鏈(例如:窄部644)類似,繫鏈(例如:第三支撐部636)的數量也可為多個,而繫鏈(例如:第三支撐部636)也可配置在包括第一型半導體層520之微型發光二極體的上下兩側;與圖15之繫鏈(例如:窄部644)類似,繫鏈(例如:第三支撐部636)的數量可為多個,而多個繫鏈(例如:第三支撐部636)也可配置在包括第一型半導體層520之微型發光二極體的同一側;與圖16之繫鏈(例如:窄部644)類似,繫鏈(例如:第三支撐部636)也可具有寬度可由第二支撐部634A邊緣向第一支撐部632A邊緣漸縮的設計。Referring to FIG. 19, in this embodiment, the number of the tether (for example, the third supporting portion 636) may be one, and it is located on one side of the micro light emitting diode including the first type semiconductor layer 520. However, the present invention is not limited to this. In other embodiments, the number of tethers, the position of the tethers, and the width of the tethers can be made other appropriate designs. For example, similar to the tether (eg, the narrow portion 644) of FIG. 12, the number of the tethers (eg, the third support portion 636) may be multiple, and may be disposed in the first type semiconductor layer 520. The left and right sides of the micro light-emitting diode; similar to the tether (for example: the narrow part 644) in FIG. 14, the number of the tether (for example, the third supporting part 636) may be multiple, and the tether (for example: The third supporting portion 636) may also be arranged on the upper and lower sides of the micro light emitting diode including the first type semiconductor layer 520; similar to the tether (eg, the narrow portion 644) of FIG. 15, the tether (eg, the third The number of supporting portions 636) may be multiple, and multiple tethers (for example, the third supporting portion 636) may also be disposed on the same side of the micro-light emitting diode including the first type semiconductor layer 520; The tether (for example, the narrow part 644) is similar, and the tether (for example, the third support part 636) may also have a design in which the width can be tapered from the edge of the second support part 634A to the edge of the first support part 632A.

請再參照圖17E,在移除第二支撐部634A正下方以及第三支撐部636正下方的部份犧牲層622後,如圖17F所示,接著,令彈性轉置頭P提取微型發光二極體單元100,微型發光二極體單元100包括微型發光二極體LED、與電極550接合的線路結構640A以及第二支撐部634A。當彈性轉置頭P提取微型發光二極體LED、與電極550接合的線路結構640A以及第二支撐部634A時,細條狀的第三支撐部636一部份會斷開,即第三支撐部636一部份會留在微型發光二極體LED上、第三支撐部636另一部份會留在犧牲結構S上,以使微型發光二極體LED與傳遞基板610內表面分離。請參照圖17G,接著,令彈性轉置頭P將微型發光二極體LED、線路結構640A及第二支撐部634A轉置於接收基板710上,進而形成微型發光二極體單元2000A。Please refer to FIG. 17E again, after removing a part of the sacrificial layer 622 directly under the second support portion 634A and directly under the third support portion 636, as shown in FIG. 17F, then, the elastic transposition head P is configured to extract the micro-light emitting two. The polar body unit 100 and the micro light emitting diode unit 100 include a micro light emitting diode LED, a circuit structure 640A connected to the electrode 550, and a second support portion 634A. When the elastic transposition head P extracts the micro light-emitting diode LED, the circuit structure 640A and the second support portion 634A joined with the electrode 550, a part of the thin strip-shaped third support portion 636 is broken, that is, the third support portion A part of 636 is left on the micro-light-emitting diode LED, and another part of the third supporting part 636 is left on the sacrificial structure S, so that the micro-light-emitting diode LED is separated from the inner surface of the transfer substrate 610. Referring to FIG. 17G, the elastic transducing head P is further configured to transfer the micro-light-emitting diode LED, the circuit structure 640A, and the second support portion 634A onto the receiving substrate 710 to form a micro-light-emitting diode unit 2000A.

微型發光二極體裝置2000A至少包括接收基板710、畫素陣列層720、黏著層730、第二支撐部634A、線路結構640A以及微型發光二極體LED。至少由接收基板710與畫素陣列層720構成陣列基板800。畫素陣列層720配置於接收基板710內表面上,畫素陣列層720具有多個子畫素(圖未示)與多個驅動元件(圖未示),每個子畫素具有至少一個驅動元件用以驅動微型發光二極體LED。通常,微型發光二極體LED所在的位置就是子畫素。黏著層730覆蓋畫素陣列層720。第二支撐部634A配置於黏著層730上。線路結構640A配置於第二支撐部634A上。第二支撐部634A夾設於線路結構640與黏著層730之間。第二支撐部634A具有與黏著層730接觸的下表面634a、相對於下表面634a的上表面634b以及連接上表面634b與下表面634a的側壁634c。線路結構640A覆蓋第二支撐部634的部份上表面634b。與圖10G之微型發光二極體裝置2000不同的是,線路結構640A未覆蓋第二支撐部634A的側壁634c,線路結構640A也未與黏著層730接觸。在本實施例中,第二支撐部634A的材質可包括矽、氧化矽或其組合。舉例而言,第二支撐部634可包括兩層矽與一層氧化矽,其中氧化矽夾設在兩層矽之間。The micro light emitting diode device 2000A includes at least a receiving substrate 710, a pixel array layer 720, an adhesive layer 730, a second support portion 634A, a circuit structure 640A, and a micro light emitting diode LED. An array substrate 800 is constituted by at least the receiving substrate 710 and the pixel array layer 720. The pixel array layer 720 is disposed on the inner surface of the receiving substrate 710. The pixel array layer 720 has a plurality of sub pixels (not shown) and a plurality of driving elements (not shown). Each sub pixel has at least one driving element. To drive miniature light-emitting diode LEDs. Generally, the position of the micro light-emitting diode LED is the sub-pixel. The adhesive layer 730 covers the pixel array layer 720. The second support portion 634A is disposed on the adhesive layer 730. The circuit structure 640A is disposed on the second support portion 634A. The second support portion 634A is sandwiched between the circuit structure 640 and the adhesive layer 730. The second support portion 634A has a lower surface 634a in contact with the adhesive layer 730, an upper surface 634b opposite to the lower surface 634a, and a side wall 634c connecting the upper surface 634b and the lower surface 634a. The circuit structure 640A covers a part of the upper surface 634b of the second support portion 634. Different from the miniature light emitting diode device 2000 of FIG. 10G, the circuit structure 640A does not cover the side wall 634c of the second support portion 634A, and the circuit structure 640A does not contact the adhesive layer 730. In this embodiment, the material of the second support portion 634A may include silicon, silicon oxide, or a combination thereof. For example, the second support portion 634 may include two layers of silicon and one layer of silicon oxide, wherein the silicon oxide is sandwiched between the two layers of silicon.

線路結構640A與畫素陣列層720電性連接。詳言之,在彈性轉置頭P將微型發光二極體LED、第二支撐部634A及線路結構640A轉置於接收基板710上後,可在線路結構640A上形成導電結構740。導電結構740覆蓋線路結構640A且填入黏著層730的開口730a,以與畫素陣列層720電性連接。舉例而言,微型發光二極體LED之其中一個電極550經由其對應的其中一個線路結構640A、其對應的其中一個導電結構740與其中一個開口730a電性連接畫素陣列層720,而微型發光二極體LED之其中另一個電極550經由其對應的其中另一個線路結構640A、其對應的其中另一個導電結構740與其中另一個開口730a電性連接畫素陣列層720。微型發光二極體LED配置於線路結構640A上。微型發光二極體LED包括第一型半導體層520、配置於第一型半導體層520上的發光層530、配置於發光層530上的第二型半導體層540以及分別配置於第一型半導體層520及第二型半導體層540上且線路結構640A電性連接的多個電極550。再者,如前所述,若於第一型與第二型半導體層之間不加以插入發光層530,則第一型半導體圖案520、第二型半導體圖案540與多個電極550可構成微型發光二極體LED。其中一個電極550、第二型半導體層540、發光層(可選擇性的)530以及第一型半導體層520沿著遠離接收基板710的方向d2依序排列。圖17A至圖17G之微型發光二極體裝置的製造方法及其製得的微型發光二極體裝置2000A具有與圖10A至圖10G之微型發光二極體裝置的製造方法及其製得的微型發光二極體裝置2000類似的功效與優點,於此便不再重述。The circuit structure 640A is electrically connected to the pixel array layer 720. Specifically, the conductive structure 740 can be formed on the circuit structure 640A after the micro-light-emitting diode LED, the second supporting portion 634A, and the circuit structure 640A are transferred onto the receiving substrate 710 by the elastic transposition head P. The conductive structure 740 covers the circuit structure 640A and fills the opening 730 a of the adhesive layer 730 to be electrically connected to the pixel array layer 720. For example, one of the electrodes 550 of the micro-light-emitting diode LED is electrically connected to the pixel array layer 720 via one of its corresponding circuit structures 640A, one of its corresponding conductive structures 740, and one of its openings 730a. The other electrode 550 of the diode LED is electrically connected to the pixel array layer 720 through its corresponding other circuit structure 640A, its corresponding another conductive structure 740 and the other opening 730a. The micro light emitting diode LED is disposed on the circuit structure 640A. The micro light emitting diode LED includes a first type semiconductor layer 520, a light emitting layer 530 disposed on the first type semiconductor layer 520, a second type semiconductor layer 540 disposed on the light emitting layer 530, and a first type semiconductor layer, respectively. 520 and a plurality of electrodes 550 electrically connected to the circuit structure 640A on the second type semiconductor layer 540. In addition, as described above, if the light emitting layer 530 is not interposed between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 520, the second type semiconductor pattern 540, and the plurality of electrodes 550 may form a micro Light-emitting diode LED. One of the electrodes 550, the second-type semiconductor layer 540, the light-emitting layer (optionally) 530, and the first-type semiconductor layer 520 are sequentially arranged along a direction d2 away from the receiving substrate 710. 17A to 17G manufacturing method of micro-light-emitting diode device and the micro-light-emitting diode device 2000A manufactured therefrom are the same as those of the micro-light-emitting diode device of FIGS. 10A to 10G and the micro-light-emitting diode device manufactured therefrom. Similar effects and advantages of the light-emitting diode device 2000 are not repeated here.

圖20A至圖20G為本發明一實施例之微型發光二極體裝置製造方法的剖面示意圖。圖20A至圖20G的微型發光二極體裝置製造方法與圖10A至圖10G的微型發光二極體裝置製造方法類似,因此相同或相對應的構件以相同或相對應的標號表示。兩者主要的差異處在於:圖20A至圖20G之實施例的繫鏈結構與圖10A至圖10G之實施例的繫鏈結構不同。以下主要就此差異處做說明,兩者相同處還請參照前述說明,於此便不再重述。20A to 20G are schematic cross-sectional views illustrating a method for manufacturing a micro light emitting diode device according to an embodiment of the present invention. The manufacturing method of the micro-light-emitting diode device of FIGS. 20A to 20G is similar to the manufacturing method of the micro-light-emitting diode device of FIGS. 10A to 10G, and therefore the same or corresponding components are represented by the same or corresponding reference numerals. The main difference between the two is that the tether structure of the embodiment of FIGS. 20A to 20G is different from the tether structure of the embodiment of FIGS. 10A to 10G. The following mainly explains the differences. Please refer to the previous description for the same points, and will not repeat them here.

請參照圖20A,首先,依序於生長基板510內表面上形成多層半導體(未標註)包含第一型半導體層520、一與該第一型半導體層極性相反之第二型半導體層540。第一型與第二型半導體層520、540之極性可分別為N或P型半導體層。於本發明之實施例中,以第一型半導體層520為P型半導體層在生長基板S1內表面上及以第二型半導體層540為N型半導體層在第一型半導體層與生長基板S1之間為範例,但不限於此。於其它實施例中,以第一型半導體層520為N型半導體層在生長基板S1內表面上及第二型半導體層540為P型半導體層在第一型半導體層上。於本發明之實施例中,可選擇的於第一型與第二型半導體層之交界處作為發光處或者第一型與第二型半導體層之交界處可再插入一膜層當作發光層530。本發明之實施例,係以第一型與第二型半導體層之交界處可再插入一膜層當作發光層530為範例,但不限於此。於其它實施例中,第一型與第二型半導體層之交界處沒有插入膜層當作發光層亦可適用。並分別於第一型半導體層520及第二型半導體層540上形成多個電極550。第一型半導體層520、可選擇性的發光層530及第二型半導體層540朝遠離生長基板510的方向d1依序排列。多個電極550分別與第一型半導體層520及第二型半導體層540電性連接。第一型半導體層520、發光層530、第二型半導體層540以及多個電極550構成微型發光二極體LED。於其它實施例中,如前所述,若於第一型與第二型半導體層之間不加以插入發光層530,則第一型半導體圖案520、第二型半導體圖案540、多個電極550可構成微型發光二極體LED。其中,微型發光二極體LED之尺吋大小係為微米或奈米等級。Referring to FIG. 20A, first, a multilayer semiconductor (not labeled) including a first-type semiconductor layer 520 and a second-type semiconductor layer 540 of opposite polarity to the first-type semiconductor layer is sequentially formed on the inner surface of the growth substrate 510. The polarities of the first-type and second-type semiconductor layers 520 and 540 may be N-type or P-type semiconductor layers, respectively. In the embodiment of the present invention, the first type semiconductor layer 520 is a P-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 540 is an N-type semiconductor layer on the first type semiconductor layer and the growth substrate S1. Between is an example, but it is not limited to this. In other embodiments, the first type semiconductor layer 520 is an N-type semiconductor layer on the inner surface of the growth substrate S1 and the second type semiconductor layer 540 is a P-type semiconductor layer on the first type semiconductor layer. In the embodiment of the present invention, a film layer may be optionally inserted at the interface between the first type semiconductor layer and the second type semiconductor layer or the interface between the first type semiconductor layer and the second type semiconductor layer may be used as the light emitting layer. 530. In the embodiment of the present invention, a film layer can be inserted at the interface between the first type semiconductor layer and the second type semiconductor layer as the light emitting layer 530 as an example, but it is not limited thereto. In other embodiments, a film layer is not inserted as a light emitting layer at the interface between the first type semiconductor layer and the second type semiconductor layer. A plurality of electrodes 550 are formed on the first type semiconductor layer 520 and the second type semiconductor layer 540, respectively. The first type semiconductor layer 520, the selective light emitting layer 530, and the second type semiconductor layer 540 are sequentially arranged in a direction d1 away from the growth substrate 510. The plurality of electrodes 550 are electrically connected to the first type semiconductor layer 520 and the second type semiconductor layer 540, respectively. The first type semiconductor layer 520, the light emitting layer 530, the second type semiconductor layer 540, and the plurality of electrodes 550 constitute a micro light emitting diode LED. In other embodiments, as described above, if the light emitting layer 530 is not inserted between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 520, the second type semiconductor pattern 540, and a plurality of electrodes 550 Can form a miniature light-emitting diode LED. Among them, the size of the miniature light-emitting diode LED is micrometer or nanometer.

圖21為對應圖20B之微型發光二極體裝置製造方法的上視示意圖。請參照圖20B及圖21,接著,提供承載結構600B。承載結構600B包括傳遞基板610、覆蓋傳遞基板610的犧牲層620以及位於犧牲層620上的線路結構640B。承載結構600B更包括支撐層630B。支撐層630B位於犧牲層620上。線路結構640B位於支撐層630B上。支撐層630B包括第一支撐部632B與第二支撐部634B。第一支撐部632B定義出開口632a。第二支撐部634B位於開口632a內。與圖10A至圖10G之實施例不同的是,支撐層630B更包括第三支撐部636。第二支撐部634B具有相對的第一側邊s1與第二側邊s2。第三支撐部636連接在第一支撐部632B與第二支撐部634B的第一側邊s1之間。第三支撐部636呈細條狀,而暴露出(或稱為未覆蓋)第一支撐部632B與第二支撐部634B之間的部份開口632a。舉例而言,開口632a垂直投影於傳遞基板610上之投影形狀類似為C型,而可經由開口632a見到犧牲層620。線路結構640B配置於第二支撐部634B上,而暴露出(或稱為未覆蓋)第一支撐部632B與第三支撐部636。線路結構640B其中一個包括主體部642以及由主體部642向外延伸的窄部644。主體部642的寬度W1大於窄部644的寬度W2。主體部642配置於第二支撐部634B上。窄部644與主體部642連接並填入第一、二絕緣圖案632B、634B之間的部份開口632a,以跨接在第一支撐部632B與第二支撐部634B的第二側邊s2之間。其中,線路結構640A其中另一個配置於第二支撐部634B上,且不延伸至任何的開口,則線路結構640B可視為僅有主體部。FIG. 21 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 20B. Please refer to FIG. 20B and FIG. 21. Next, a supporting structure 600B is provided. The carrier structure 600B includes a transfer substrate 610, a sacrificial layer 620 covering the transfer substrate 610, and a circuit structure 640B on the sacrificial layer 620. The supporting structure 600B further includes a support layer 630B. The support layer 630B is located on the sacrificial layer 620. The circuit structure 640B is located on the support layer 630B. The support layer 630B includes a first support portion 632B and a second support portion 634B. The first support portion 632B defines an opening 632a. The second support portion 634B is located in the opening 632a. Different from the embodiment of FIGS. 10A to 10G, the supporting layer 630B further includes a third supporting portion 636. The second supporting portion 634B has a first side s1 and a second side s2 opposite to each other. The third support portion 636 is connected between the first support portion 632B and the first side s1 of the second support portion 634B. The third support portion 636 is in a thin strip shape, and a part of the opening 632a between the first support portion 632B and the second support portion 634B is exposed (or referred to as uncovered). For example, the projection shape of the opening 632a perpendicularly projected on the transfer substrate 610 is similar to a C shape, and the sacrificial layer 620 can be seen through the opening 632a. The circuit structure 640B is disposed on the second support portion 634B, and the first support portion 632B and the third support portion 636 are exposed (or referred to as uncovered). One of the circuit structures 640B includes a main body portion 642 and a narrow portion 644 extending outward from the main body portion 642. The width W1 of the main body portion 642 is larger than the width W2 of the narrow portion 644. The main body portion 642 is disposed on the second support portion 634B. The narrow portion 644 is connected to the main body portion 642 and fills a part of the opening 632a between the first and second insulating patterns 632B and 634B so as to bridge between the first supporting portion 632B and the second side s2 of the second supporting portion 634B between. Wherein, the other of the circuit structure 640A is disposed on the second supporting portion 634B and does not extend to any opening, the circuit structure 640B can be regarded as having only a main body portion.

請參照圖20C,接著,接合微型發光二極體LED的電極550與承載結構600B的線路結構640B,以使微型發光二極體LED的電極550朝向線路結構640B並與線路結構640B電性連接。換言之,微型發光二極體LED是以覆晶(flip chip)的方式固接在線路結構640B上。在本實施例中,發光二極體 LED在傳遞基板610上的垂直投影位於第一支撐部632B之開口632a在傳遞基板610的垂直投影內。第二支撐部634B與微型發光二極體LED重疊。於本實施例中,對應於微型發光二極體LED其中一個電極550的主體部642部份(例如配置於第二支撐部634B上,且不延伸至任何的開口之線路結構640B),較佳地,會呈現一個突起部,來讓微型發光二極體LED與承載結構600B接合後,第一型半導體圖案520表面能夠實質上呈現於一水平線上,以利於後序的吸取與轉移流程,並使得微型發光二極體LED與承載結構600B接合良率增加,但本發明不以此為限,在其他實施例中,也可使用其他適當的設計。請參照圖20C及圖20D,接著,移除微型發光二極體LED上的生長基板510。舉例而言,在本實施例中,可採用雷射剝除技術(laser lift-off technology)移除生長基板510,但本發明不以此為限,在其他實施例中,也可使用其他適當方法移除生長基板510。Referring to FIG. 20C, the electrode 550 of the micro-light-emitting diode LED and the circuit structure 640B of the carrier structure 600B are bonded, so that the electrode 550 of the micro-light-emitting diode LED faces the circuit structure 640B and is electrically connected to the circuit structure 640B. In other words, the micro light emitting diode LED is fixed on the circuit structure 640B in a flip chip manner. In this embodiment, the vertical projection of the light-emitting diode LED on the transmission substrate 610 is located in the opening 632a of the first support portion 632B within the vertical projection of the transmission substrate 610. The second support portion 634B overlaps the micro light emitting diode LED. In this embodiment, it corresponds to a main body portion 642 portion of one of the electrodes 550 of the micro-light emitting diode LED (for example, a circuit structure 640B disposed on the second support portion 634B and not extending to any opening), preferably On the ground, a protrusion will be presented to allow the surface of the first type semiconductor pattern 520 to be substantially displayed on a horizontal line after the micro-light-emitting diode LED is bonded to the carrying structure 600B to facilitate the subsequent absorption and transfer processes, and As a result, the bonding yield of the micro-light-emitting diode LED and the carrier structure 600B is increased, but the present invention is not limited thereto. In other embodiments, other suitable designs may be used. Referring to FIG. 20C and FIG. 20D, the growth substrate 510 on the micro light emitting diode LED is removed. For example, in this embodiment, the laser lift-off technology can be used to remove the growth substrate 510, but the present invention is not limited to this. In other embodiments, other suitable The method removes the growth substrate 510.

圖22為對應圖20E之微型發光二極體裝置製造方法的上視示意圖。特別是,圖20E對應於圖22的剖線A-A’。請參照圖20D、圖20E及圖22,接著,移除微型發光二極體LED正下方的部份犧牲層620,例如區域622,並保留微型發光二極體LED遮蔽面積外的另一部份的犧牲層620,例如區域624,形成圖20E的間隙G。舉例而言,第二支撐部634B底面(或稱為外表面)、其中一個第一支撐部632B部份底面(或稱為外表面)、位於開口632a中的窄部(或稱為連接部)644底面(或稱為外表面)、第三支撐部636底面(或稱為外表面)、另一部份的犧牲層620(例如區域624)與傳遞基板610內表面之間存在間隙G。於其它實施例中,第二支撐部634B底面(或稱為外表面)、第一支撐部632B部份底面(或稱為外表面)、位於開口632a中的窄部(或稱為連接部)644底面(或稱為外表面)、第三支撐部636底面(或稱為外表面)、另一部份的犧牲層620(例如區域624)與傳遞基板610內表面之間存在間隙G。在本實施例中,可移除第二支撐部634B正下方、線路結構640B之窄部644正下方以及第三支撐部636正下方的部份犧牲層620,例如區域622,而保留第一支撐部632B正下方的部份犧牲層620,例如區域624。換言之,可將第一支撐部632B之開口632a內的部份犧牲層620,例如區域622去除,而保留被第一支撐部632B覆蓋的部份犧牲層620,例如區域624。在第二支撐部634B正下方、線路結構640B之窄部644正下方以及第三支撐部636正下方的部份犧牲層620,例如區域622被掏空後,而微型發光二極體LED是透過脆弱之線路結構640B的窄部644以及細條狀的第三支撐部636暫時固定在傳遞基板610上。換言之,在本實施例中,是以線路結構640B的窄部644以及細條狀的第三支撐部636做為繫鏈(tether)。請參照圖22,在本實施例中,做為繫鏈之窄部644與做為繫鏈之第三支撐部636的數量可各為一個,窄部644與第三支撐部636可位於微型發光二極體LED的相對兩側,窄部644的寬度W2可一致,第三支撐部636的寬度可一致。然而,本發明不限於此,做為繫鏈之窄部644與第三支撐部636的數量、做為繫鏈之窄部644與第三支撐部636的位置以及做為繫鏈之窄部644與第三支撐部636的寬度均可做其他適當設計。FIG. 22 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 20E. In particular, Fig. 20E corresponds to the section line A-A 'of Fig. 22. Please refer to FIG. 20D, FIG. 20E, and FIG. 22, and then, remove a part of the sacrificial layer 620, such as the area 622, directly under the micro-light-emitting diode LED, and reserve another part outside the shielding area of the micro-light-emitting diode LED. The sacrificial layer 620, such as the region 624, forms the gap G of FIG. 20E. For example, the bottom surface (or outer surface) of the second support portion 634B, a portion of the bottom surface (or outer surface) of one of the first support portions 632B, and a narrow portion (or connection portion) located in the opening 632a. A gap G exists between the bottom surface (or outer surface) of 644, the bottom surface (or outer surface) of the third support portion 636, another portion of the sacrificial layer 620 (eg, region 624), and the inner surface of the transfer substrate 610. In other embodiments, the bottom surface (or outer surface) of the second support portion 634B, a portion of the bottom surface (or outer surface) of the first support portion 632B, and a narrow portion (or connection portion) located in the opening 632a. A gap G exists between the bottom surface (or outer surface) of 644, the bottom surface (or outer surface) of the third support portion 636, another portion of the sacrificial layer 620 (eg, region 624), and the inner surface of the transfer substrate 610. In this embodiment, a portion of the sacrificial layer 620, such as the area 622, may be removed directly below the second support portion 634B, directly below the narrow portion 644 of the circuit structure 640B, and directly below the third support portion 636, while retaining the first support. A portion of the sacrificial layer 620 directly below the portion 632B, such as the region 624. In other words, a portion of the sacrificial layer 620, such as the region 622, in the opening 632a of the first support portion 632B may be removed, while a portion of the sacrificial layer 620, such as the region 624, covered by the first support portion 632B may be removed. A portion of the sacrificial layer 620 directly below the second support portion 634B, directly below the narrow portion 644 of the circuit structure 640B, and directly below the third support portion 636, such as after the area 622 is hollowed out, and the micro-light emitting diode LED is transmitted through The narrow portion 644 and the thin strip-shaped third support portion 636 of the fragile circuit structure 640B are temporarily fixed on the transfer substrate 610. In other words, in this embodiment, the narrow portion 644 of the line structure 640B and the thin strip-shaped third support portion 636 are used as a tether. Please refer to FIG. 22. In this embodiment, the number of the narrow portion 644 serving as a tether and the third supporting portion 636 serving as a tether may be one each, and the narrow portion 644 and the third supporting portion 636 may be located in a micro-light-emitting state. On the opposite sides of the diode LED, the width W2 of the narrow portion 644 may be uniform, and the width of the third support portion 636 may be uniform. However, the present invention is not limited to this, the number of the narrow portions 644 and the third support portions 636 as the tethers, the positions of the narrow portions 644 and the third support portions 636 as the tethers, and the narrow portions 644 as the tethers Other suitable designs can be made with the width of the third support portion 636.

如圖20F所示,接著,令彈性轉置頭P提取微型發光二極體LED、與電極550接合的線路結構640B以及第二支撐部634B。當彈性轉置頭P提取微型發光二極體LED、與電極550接合的線路結構640B以及第二支撐部634B時,脆弱之線路結構640B的窄部644一部份以及細條狀的第三支撐部636一部份會斷開,即第三支撐部636一部份與窄部644一部份皆會留在微型發光二極體LED上、第三支撐部636另一部份與窄部644另一部份皆會留在犧牲結構S上,以使微型發光二極體LED與傳遞基板610內表面分離。請參照圖20G,接著,令彈性轉置頭P將微型發光二極體LED、部份線路結構640B及第二支撐部634B轉置於接收基板710上,進而形成發光二極體裝置2000B。As shown in FIG. 20F, next, the elastic transposition head P is made to extract a micro light-emitting diode LED, a wiring structure 640B connected to the electrode 550, and a second support portion 634B. When the elastic transposition head P extracts the micro-light-emitting diode LED, the circuit structure 640B and the second support portion 634B joined to the electrode 550, a portion of the narrow portion 644 of the fragile circuit structure 640B and the third strip-shaped support portion A portion of 636 will be disconnected, that is, a portion of the third support portion 636 and a portion of the narrow portion 644 will remain on the micro-light emitting diode LED, and another portion of the third support portion 636 and the narrow portion 644 will remain. A part will remain on the sacrificial structure S to separate the micro-light emitting diode LED from the inner surface of the transfer substrate 610. Referring to FIG. 20G, the elastic transducing head P is further configured to transfer the micro-light-emitting diode LED, a part of the circuit structure 640B, and the second support portion 634B onto the receiving substrate 710 to form a light-emitting diode device 2000B.

請參照圖20G,微型發光二極體裝置2000B至少包括接收基板710、畫素陣列層720、黏著層730、第二支撐部634B、線路結構640B以及微型發光二極體LED。至少由接收基板710與畫素陣列層720構成陣列基板800。畫素陣列層720配置於接收基板710內表面上,畫素陣列層720具有多個子畫素(圖未示)與多個驅動元件(圖未示),每個子畫素具有至少一個驅動元件用以驅動微型發光二極體LED。通常,微型發光二極體LED所在的位置就是子畫素。黏著層730覆蓋畫素陣列層720。第二支撐部634B配置於黏著層730上。線路結構640B配置於第二支撐部634B上。第二支撐部634B夾設於線路結構640B與黏著層730之間。更進一步地說,第二支撐部634B具有與黏著層730接觸的下表面634a、相對於下表面634a的上表面634b以及連接上表面634b與下表面634a的側壁634c。線路結構640B其中一個的主體部642與窄部644分別覆蓋第二支撐部634的部份上表面634b以及第二支撐部634的部份側壁634c,且窄部644延伸到黏著層730上。線路結構640B其中另一個(例如:主體部642)僅位於第二支撐部634的部份上表面634b,而不延伸至第二支撐部634的側壁634c。在本實施例中,第二支撐部634B的材質可包括矽、氧化矽或其組合。舉例而言,第二支撐部634可包括兩層矽與一層氧化矽,其中氧化矽夾設在兩層矽之間。Referring to FIG. 20G, the micro light emitting diode device 2000B includes at least a receiving substrate 710, a pixel array layer 720, an adhesive layer 730, a second support portion 634B, a circuit structure 640B, and a micro light emitting diode LED. An array substrate 800 is constituted by at least the receiving substrate 710 and the pixel array layer 720. The pixel array layer 720 is disposed on the inner surface of the receiving substrate 710. The pixel array layer 720 has a plurality of sub pixels (not shown) and a plurality of driving elements (not shown). Each sub pixel has at least one driving element. To drive miniature light-emitting diode LEDs. Generally, the position of the micro light-emitting diode LED is the sub-pixel. The adhesive layer 730 covers the pixel array layer 720. The second supporting portion 634B is disposed on the adhesive layer 730. The circuit structure 640B is disposed on the second support portion 634B. The second supporting portion 634B is sandwiched between the circuit structure 640B and the adhesive layer 730. Furthermore, the second supporting portion 634B has a lower surface 634a in contact with the adhesive layer 730, an upper surface 634b opposite the lower surface 634a, and a side wall 634c connecting the upper surface 634b and the lower surface 634a. The main body portion 642 and the narrow portion 644 of one of the circuit structures 640B respectively cover a portion of the upper surface 634b of the second support portion 634 and a portion of the side wall 634c of the second support portion 634, and the narrow portion 644 extends to the adhesive layer 730. The other of the circuit structures 640B (for example, the main body portion 642) is only located on a part of the upper surface 634b of the second support portion 634, and does not extend to the side wall 634c of the second support portion 634. In this embodiment, the material of the second support portion 634B may include silicon, silicon oxide, or a combination thereof. For example, the second support portion 634 may include two layers of silicon and one layer of silicon oxide, wherein the silicon oxide is sandwiched between the two layers of silicon.

線路結構640B與畫素陣列層720電性連接。詳言之,在彈性轉置頭P將微型發光二極體LED、第二支撐部634B及部份線路結構640B轉置於接收基板710上後,可在線路結構640B上形成導電結構740。導電結構740覆蓋線路結構640B且填入黏著層730的開口730a,以與畫素陣列層720電性連接。舉例而言,微型發光二極體LED之其中一個電極550經由其對應的其中一個線路結構640B、其對應的其中一個導電結構740與其中一個開口730a電性連接畫素陣列層720,而微型發光二極體LED之其中另一個電極550經由其對應的其中另一個線路結構640B、其對應的其中另一個導電結構740與其中另一個開口730a電性連接畫素陣列層720。微型發光二極體LED配置於線路結構640B上。微型發光二極體LED包括第一型半導體層520、配置於第一型半導體層520上的發光層530、配置於發光層530上的第二型半導體層540以及多個電極550。多個電極550分別配置於第一型半導體層520及第二型半導體層540上且與線路結構640B電性連接。再者,如前所述,若於第一型與第二型半導體層之間不加以插入發光層530,則第一型半導體圖案520、第二型半導體圖案540與多個電極550可構成微型發光二極體LED。其中一個電極550、第二型半導體層540、發光層530以及第一型半導體層520沿著遠離接收基板710的方向d2依序排列。圖20A至圖20G之微型發光二極體裝置的製造方法及其製得的微型發光二極體裝置2000B具有與圖10A至圖10G之發光二極體裝置的製造方法及其製得的發光二極體裝置2000類似的功效與優點,於此便不再重述。The circuit structure 640B is electrically connected to the pixel array layer 720. In detail, the conductive structure 740 can be formed on the circuit structure 640B after the micro-light-emitting diode LED, the second supporting portion 634B, and a part of the circuit structure 640B are transferred to the receiving substrate 710 by the elastic transposition head P. The conductive structure 740 covers the circuit structure 640B and fills the opening 730 a of the adhesive layer 730 to be electrically connected to the pixel array layer 720. For example, one of the electrodes 550 of the micro-light-emitting diode LED is electrically connected to the pixel array layer 720 via one of its corresponding circuit structures 640B, one of its corresponding conductive structures 740, and one of its openings 730a, and the micro-light emission The other electrode 550 of the diode LED is electrically connected to the pixel array layer 720 via its corresponding other circuit structure 640B, its corresponding another conductive structure 740 and the other opening 730a. The micro light emitting diode LED is disposed on the circuit structure 640B. The micro light emitting diode LED includes a first type semiconductor layer 520, a light emitting layer 530 disposed on the first type semiconductor layer 520, a second type semiconductor layer 540 disposed on the light emitting layer 530, and a plurality of electrodes 550. The plurality of electrodes 550 are respectively disposed on the first type semiconductor layer 520 and the second type semiconductor layer 540 and are electrically connected to the circuit structure 640B. In addition, as described above, if the light emitting layer 530 is not interposed between the first type semiconductor layer and the second type semiconductor layer, the first type semiconductor pattern 520, the second type semiconductor pattern 540, and the plurality of electrodes 550 may form a micro Light-emitting diode LED. One of the electrodes 550, the second-type semiconductor layer 540, the light-emitting layer 530, and the first-type semiconductor layer 520 are sequentially arranged along a direction d2 away from the receiving substrate 710. 20A to 20G manufacturing method of micro-light-emitting diode device and manufactured micro-light-emitting diode device 2000B have the same manufacturing method of the light-emitting diode device of FIGS. 10A to 10G and light-emitting diode 2 Similar effects and advantages of the polar device 2000 are not repeated here.

綜上所述,本發明一實施例之微型發光二極體單元之中介結構的製造方法包括:接合半導體結構的第一犧牲層與承載結構的第二犧牲層;圖案化半導體結構的第二型半導體層、發光層及第一型半導體層,以形成第二型半導體圖案、發光圖案及第一型半導體圖案;形成絕緣圖案;絕緣圖案覆蓋第二型半導體圖案與發光圖案;形成第一、二電極。第二型半導體圖案、發光圖案、第一型半導體圖案、第一電極與第二電極構成微型發光二極體;移除至少部份的第一犧牲層、至少部份的第二犧牲層或其組合,以使微型發光二極體與傳遞基板之間存在間隙。藉此,微型發光二極體單元之中介結構及微型發光二極體單元的製造方法可省略至少一次的轉置動作,進而達到簡化製程的效果。In summary, a method for manufacturing a micro-light-emitting diode unit interposer according to an embodiment of the present invention includes: joining a first sacrificial layer of a semiconductor structure and a second sacrificial layer of a carrier structure; and a second type of patterned semiconductor structure A semiconductor layer, a light emitting layer, and a first type semiconductor layer to form a second type semiconductor pattern, a light emitting pattern, and a first type semiconductor pattern; forming an insulating pattern; the insulating pattern covering the second type semiconductor pattern and the light emitting pattern; forming the first and second electrode. The second type semiconductor pattern, the light emitting pattern, the first type semiconductor pattern, the first electrode and the second electrode constitute a micro-light emitting diode; at least a part of the first sacrificial layer, at least a part of the second sacrificial layer, or the Combined so that there is a gap between the micro light emitting diode and the transfer substrate. Thereby, the intermediate structure of the micro-light-emitting diode unit and the manufacturing method of the micro-light-emitting diode unit can omit at least one transposition operation, thereby achieving the effect of simplifying the manufacturing process.

此外,在本發明另一實施例之微型發光二極體單元之中介結構的製造方法中,微型發光二極體是以覆晶方式先固定在傳遞基板上的線路結構,因此當彈性轉置頭提取微型發光二極體時,彈性轉置頭是接觸平整的微型發光二極體表面。也就是說,在提取微型發光二極體的過程中,彈性轉置頭與微型發光二極體的接觸面積大,進而使彈性轉置頭提取微型發光二極體的成功率大幅。In addition, in the method for manufacturing a micro-light-emitting diode unit interposer according to another embodiment of the present invention, the micro-light-emitting diode is a circuit structure that is first fixed on a transmission substrate by a flip-chip method. When extracting the micro-light-emitting diode, the elastic transposition head is in contact with the flat surface of the micro-light-emitting diode. In other words, in the process of extracting the micro-light-emitting diode, the contact area between the elastic transposition head and the micro-light-emitting diode is large, so that the success rate of extracting the micro-light-emitting diode by the elastic transposition head is large.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

10‧‧‧半導體結構
20‧‧‧承載結構
100、100A、100B、100C、100D、100E、100F、100G、100H‧‧‧微型發光二極體單元
110‧‧‧第二型半導體層
112‧‧‧第二型半導體圖案
112a、112b、122a、122b、132a、132b、142c、634c‧‧‧側壁
120、530‧‧‧發光層
122‧‧‧發光圖案
130‧‧‧第一型半導體層
132、132C‧‧‧第一型半導體圖案
140‧‧‧第一犧牲層
142、142A、142B、142D、142E、142F‧‧‧第一犧牲圖案
142a、142b、520a、634a、634b‧‧‧表面
210‧‧‧第二犧牲層
212、212A、212D、212F‧‧‧第二犧牲圖案
310、310C、310F‧‧‧絕緣圖案
312、312C、312F‧‧‧第一絕緣圖案
314、314C、314F‧‧‧第二絕緣圖案
312a、312aC、312aF‧‧‧連接部
410‧‧‧第一電極
420‧‧‧第二電極
520‧‧‧第一型半導體層
520a‧‧‧表面
540‧‧‧第二型半導體層
550‧‧‧電極
600、600A、600B‧‧‧承載結構
610‧‧‧傳遞基板
620‧‧‧犧牲層
622、624‧‧‧區域
630、630A、630B‧‧‧支撐層
632、632A、632B‧‧‧第一支撐部
632a‧‧‧開口
634、634A、634B‧‧‧第二支撐部
636‧‧‧第三支撐部
640、640A、640B‧‧‧線路結構
642‧‧‧主體部
644‧‧‧窄部
710‧‧‧接收基板
720‧‧‧畫素陣列層
730‧‧‧黏著層
730a‧‧‧開口
740‧‧‧導電層
800‧‧‧陣列基板
1000、1000A、1000B、1000C、1000D、1000E、1000F、1000G、1000H‧‧‧微型發光二極體單元之中介結構
10000、2000、2000A、2000B‧‧‧微型發光二極體裝置
A-A’‧‧‧剖線
d、d1、d2‧‧‧方向
g、G‧‧‧間隙
LED‧‧‧發光二極體
S‧‧‧犧牲結構
S1、510‧‧‧生長基板
s1‧‧‧第一側邊
S2‧‧‧傳遞基板
s2‧‧‧第二側邊
P‧‧‧彈性轉置頭
W1、W2‧‧‧寬度
10‧‧‧Semiconductor Structure
20‧‧‧ bearing structure
100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, 100H‧‧‧ mini light emitting diode units
110‧‧‧Second type semiconductor layer
112‧‧‧Second type semiconductor pattern
112a, 112b, 122a, 122b, 132a, 132b, 142c, 634c
120, 530‧‧‧ luminescent layer
122‧‧‧ Illuminated Pattern
130‧‧‧The first type semiconductor layer
132, 132C‧‧‧The first type of semiconductor pattern
140‧‧‧First sacrificial layer
142, 142A, 142B, 142D, 142E, 142F‧‧‧First sacrificial pattern
142a, 142b, 520a, 634a, 634b‧‧‧ surface
210‧‧‧Second sacrifice layer
212, 212A, 212D, 212F‧‧‧Second sacrifice pattern
310, 310C, 310F‧‧‧ Insulation pattern
312, 312C, 312F‧‧‧First insulation pattern
314, 314C, 314F‧‧‧Second insulation pattern
312a, 312aC, 312aF‧‧‧ Connection
410‧‧‧first electrode
420‧‧‧Second electrode
520‧‧‧The first type semiconductor layer
520a‧‧‧ surface
540‧‧‧Second type semiconductor layer
550‧‧‧ electrode
600, 600A, 600B‧‧‧bearing structure
610‧‧‧Transfer substrate
620‧‧‧ sacrificial layer
622, 624‧‧‧ area
630, 630A, 630B‧‧‧ support layer
632, 632A, 632B‧‧‧ first support
632a‧‧‧open
634, 634A, 634B‧‧‧Second support
636‧‧‧third support
640, 640A, 640B‧‧‧ Line Structure
642‧‧‧Main body
644‧‧‧Narrow section
710‧‧‧Receiving substrate
720‧‧‧ pixel array layer
730‧‧‧ Adhesive layer
730a‧‧‧ opening
740‧‧‧ conductive layer
800‧‧‧Array substrate
1000, 1000A, 1000B, 1000C, 1000D, 1000E, 1000F, 1000G, 1000H‧‧‧ mini light-emitting diode unit intermediary structure
10000, 2000, 2000A, 2000B ‧‧‧ Mini Light Emitting Diode Device
A-A'‧‧‧ hatch
d, d1, d2‧‧‧ directions
g, G‧‧‧ clearance
LED‧‧‧light-emitting diode
S‧‧‧ sacrificial structure
S1, 510‧‧‧ growth substrate
s1‧‧‧first side
S2‧‧‧Transfer substrate
s2‧‧‧second side
P‧‧‧ Elastic Transpose Head
W1, W2‧‧‧Width

圖1A至圖1J為本發明一實施例之微型發光二極體製造方法的剖面示意圖。 圖2A至圖2B為本發明一實施例之微型發光二極體中介結構的部分製造方法的剖面示意圖。 圖3A至圖3B為本發明一實施例之微型發光二極體中介結構的部分製造方法的剖面示意圖。 圖4A至圖4H為本發明一實施例之微型發光二極體中介結構的製造方法的剖面示意圖。 圖5A至圖5B為本發明一實施例之微型發光二極體中介結構的部分製造方法的剖面示意圖。 圖6A至圖6B為本發明一實施例之微型發光二極體中介結構的部分製造方法的剖面示意圖。 圖7A至圖7I為本發明一實施例之微型發光二極體中介結構的製造方法的剖面示意圖。 圖8A至圖8B為本發明一實施例之微型發光二極體中介結構的部分製造方法的剖面示意圖。 圖9A至圖9B為本發明一實施例之微型發光二極體中介結構的部分製造方法的剖面示意圖。 圖10A至圖10G為本發明一實施例之微型發光二極體裝置製造方法的剖面示意圖。 圖11為對應圖10B之微型發光二極體裝置製造方法的上視示意圖。 圖12為對應圖10E之微型發光二極體裝置製造方法的上視示意圖。 圖13為本發明另一實施例之微型發光二極體裝置製造方法的上視示意圖。 圖14為本發明又一實施例之微型發光二極體裝置製造方法的上視示意圖。 圖15為本發明再一實施例之微型發光二極體裝置製造方法的上視示意圖。 圖16為本發明一實施例之微型發光二極體裝置製造方法的上視示意圖。 圖17A至圖17G為本發明一實施例之微型發光二極體裝置製造方法的剖面示意圖。 圖18為對應圖17B之微型發光二極體裝置製造方法的上視示意圖。 圖19為對應圖17E之微型發光二極體裝置製造方法的上視示意圖。 圖20A至圖20G為本發明一實施例之微型發光二極體裝置製造方法的剖面示意圖。 圖21為對應圖20B之微型發光二極體裝置製造方法的上視示意圖。 圖22為對應圖20E之微型發光二極體裝置製造方法的上視示意圖。1A to 1J are schematic cross-sectional views of a method for manufacturing a micro-light emitting diode according to an embodiment of the present invention. FIG. 2A to FIG. 2B are schematic cross-sectional views of a part of a manufacturing method of a micro-light-emitting diode intermediary structure according to an embodiment of the present invention. 3A to 3B are schematic cross-sectional views of a part of a manufacturing method of a micro-light-emitting diode intermediary structure according to an embodiment of the present invention. 4A to 4H are schematic cross-sectional views illustrating a method for manufacturing a micro-light-emitting diode intermediary structure according to an embodiment of the present invention. 5A to 5B are schematic cross-sectional views of a part of a manufacturing method of a micro-light-emitting diode intermediary structure according to an embodiment of the present invention. 6A to 6B are schematic cross-sectional views of a part of a method for manufacturing a micro-light-emitting diode intermediary structure according to an embodiment of the present invention. 7A to 7I are schematic cross-sectional views illustrating a method for manufacturing a micro-light-emitting diode intermediary structure according to an embodiment of the present invention. 8A to 8B are schematic cross-sectional views of a part of a manufacturing method of a micro-light-emitting diode intermediary structure according to an embodiment of the present invention. 9A to 9B are schematic cross-sectional views of a part of a manufacturing method of a micro-light-emitting diode intermediary structure according to an embodiment of the present invention. 10A to 10G are schematic cross-sectional views of a method for manufacturing a micro-light emitting diode device according to an embodiment of the present invention. FIG. 11 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 10B. FIG. 12 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 10E. FIG. 13 is a schematic top view of a method for manufacturing a micro light emitting diode device according to another embodiment of the present invention. FIG. 14 is a schematic top view of a method for manufacturing a micro light emitting diode device according to another embodiment of the present invention. FIG. 15 is a schematic top view of a method for manufacturing a micro light emitting diode device according to another embodiment of the present invention. FIG. 16 is a schematic top view of a method for manufacturing a micro-light emitting diode device according to an embodiment of the present invention. 17A to 17G are schematic cross-sectional views of a method for manufacturing a micro-light emitting diode device according to an embodiment of the present invention. FIG. 18 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 17B. FIG. 19 is a schematic top view of a method for manufacturing the micro-light emitting diode device corresponding to FIG. 17E. 20A to 20G are schematic cross-sectional views illustrating a method for manufacturing a micro light emitting diode device according to an embodiment of the present invention. FIG. 21 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 20B. FIG. 22 is a schematic top view illustrating a method of manufacturing the micro-light emitting diode device corresponding to FIG. 20E.

112‧‧‧第二型半導體圖案 112‧‧‧Second type semiconductor pattern

112a、112b、122a、122b、132a、132b‧‧‧側壁 112a, 112b, 122a, 122b, 132a, 132b ‧‧‧ side walls

122‧‧‧發光圖案 122‧‧‧ Illuminated Pattern

132‧‧‧第一型半導體圖案 132‧‧‧The first type of semiconductor pattern

142‧‧‧第一犧牲圖案 142‧‧‧First Sacrifice Pattern

142b‧‧‧表面 142b‧‧‧ surface

212‧‧‧第二犧牲圖案 212‧‧‧Second Sacrifice Pattern

310‧‧‧絕緣圖案 310‧‧‧ Insulation Pattern

312、314‧‧‧第一、第二絕緣圖案 312, 314‧‧‧ first and second insulation patterns

312a‧‧‧連接部 312a‧‧‧connection

410‧‧‧第一電極 410‧‧‧first electrode

420‧‧‧第二電極 420‧‧‧Second electrode

1000‧‧‧微型發光二極體單元的中介結構 Intermediate structure of 1000‧‧‧ miniature light emitting diode unit

g‧‧‧間隙 g‧‧‧ clearance

LED‧‧‧微型發光二極體 LED‧‧‧Mini Light Emitting Diode

S‧‧‧犧牲結構 S‧‧‧ sacrificial structure

S2‧‧‧傳遞基板 S2‧‧‧Transfer substrate

Claims (31)

一種微型發光二極體單元之中介結構的製造方法,包括: 提供一半導體結構,該半導體結構包括依序堆疊於一生長基板內表面上之多層半導體層以及一第一犧牲層,其中,該多層半導體層包括一第一型半導體層、一與該第一型半導體層極性相反之一第二型半導體層; 提供一承載結構,該承載結構包括一傳遞基板以及覆蓋該傳遞基板內表面上的一第二犧牲層; 接合該半導體結構的該第一犧牲層與該承載結構的該第二犧牲層,其中,在該第一犧牲層與該第二犧牲層接合後,該第一犧牲層位於該多層半導體層與該第二犧牲層之間; 移除該半導體結構的該生長基板; 分別圖案化該第一型半導體層與該第二型半導體層,以形成多個第一型半導體圖案與多個第二型半導體圖案; 形成彼此分離的多個絕緣圖案,該些絕緣圖案覆蓋對應的該些第二型半導體圖案; 形成多個第一電極以及多個第二電極,其中,該些第一電極位於對應的該些第一型半導體圖案上,該些第二電極位於對應的該些第二型半導體圖案上,該些第二型半導體圖案、對應的該些第一型半導體圖案、對應的該些第一電極以及對應的該些第二電極構成多個微型發光二極體;以及 移除至少部份的該第一犧牲層、至少部份的該第二犧牲層或至少部份前述二者之堆疊層,以使每一該發光二極體與該傳遞基板之間存在一間隙,而該些微型發光二極體透過該些絕緣圖案的多個連接部與該傳遞基板連接。A method for manufacturing a micro-light-emitting diode unit intermediary structure includes: providing a semiconductor structure, the semiconductor structure including a plurality of semiconductor layers and a first sacrificial layer sequentially stacked on an inner surface of a growth substrate, wherein the multilayer The semiconductor layer includes a first-type semiconductor layer and a second-type semiconductor layer of opposite polarity to the first-type semiconductor layer; a carrier structure is provided, and the carrier structure includes a transfer substrate and a substrate covering the inner surface of the transfer substrate. A second sacrificial layer; the first sacrificial layer joining the semiconductor structure and the second sacrificial layer of the carrier structure, wherein after the first sacrificial layer is joined with the second sacrificial layer, the first sacrificial layer is located in the Between the multilayer semiconductor layer and the second sacrificial layer; removing the growth substrate of the semiconductor structure; patterning the first type semiconductor layer and the second type semiconductor layer respectively to form a plurality of first type semiconductor patterns and a plurality of Second type semiconductor patterns; forming a plurality of insulation patterns separated from each other, the insulation patterns covering the corresponding second type semiconductor patterns Forming a plurality of first electrodes and a plurality of second electrodes, wherein the first electrodes are located on the corresponding first type semiconductor patterns, and the second electrodes are located on the corresponding second type semiconductor patterns, the The plurality of second-type semiconductor patterns, the corresponding first-type semiconductor patterns, the corresponding first electrodes, and the corresponding second electrodes constitute a plurality of micro-light-emitting diodes; and removing at least part of the first light-emitting diodes; A sacrificial layer, at least part of the second sacrificial layer, or at least part of the foregoing two stacked layers, so that there is a gap between each of the light emitting diodes and the transfer substrate, and the micro light emitting diodes The body is connected to the transfer substrate through a plurality of connection portions of the insulation patterns. 如申請專利範圍第1項所述的微型發光二極體單元之中介結構的製造方法,其中形成該些絕緣圖案的方法包括: 形成一第一絕緣圖案,於對應的其中之一該第二型半導體層上,並覆蓋對應之其中之一該第二型半導體圖案的側壁以及對應之其中之一該第一型半導體圖案的側壁;以及 形成一第二絕緣圖案,於對應其中之一該第二型半導體層上,並覆蓋對應之其中之一該第二型半導體層的另一側壁,且暴露出對應的其中之一該第一第一型半導體層的另一側壁, 其中,該第一絕緣圖案具有對應之各該連接部,且各該連接部延伸至該第一犧牲層上。The method for manufacturing a micro-light-emitting diode unit interposer according to item 1 of the scope of patent application, wherein the method for forming the insulating patterns includes: forming a first insulating pattern, and corresponding to one of the second type On the semiconductor layer and covering one of the sidewalls of the second type semiconductor pattern and one of the sidewalls of the first type semiconductor pattern; and forming a second insulating pattern corresponding to one of the second And covering one of the other sidewalls of the second type semiconductor layer, and exposing one of the other sidewalls of the first first type semiconductor layer, wherein the first insulation The pattern has a corresponding each of the connection portions, and each of the connection portions extends onto the first sacrificial layer. 如申請專利範圍第2項所述的微型發光二極體單元之中介結構的製造方法,其中該第一犧牲層與該第二犧牲層兩者的其中之一為有機材料層,則另一該第一犧牲層與該第二犧牲層為無機材料層,且該第一犧牲層與該第二犧牲層皆不同於該些絕緣圖案材料,該些絕緣圖案材料選自氮化矽、氧化矽或氮氧化矽。According to the manufacturing method of the micro-light-emitting diode unit interposer described in item 2 of the patent application scope, wherein one of the first sacrificial layer and the second sacrificial layer is an organic material layer, the other one is The first sacrificial layer and the second sacrificial layer are inorganic material layers, and the first sacrificial layer and the second sacrificial layer are different from the insulating pattern materials. The insulating pattern materials are selected from silicon nitride, silicon oxide, or Silicon oxynitride. 如申請專利範圍第3項所述的微型發光二極體單元之中介結構的製造方法,其中移除至少部份的該第一犧牲層與至少部份的該第二犧牲層的其中一者,而保留至少部份的該第一犧牲層與至少部份的該第二犧牲層的另一者的方法包括:利用一乾式蝕刻工序去除該有機材料層,而保留該無機材料層。The method for manufacturing a micro-light-emitting diode unit interposer according to item 3 of the patent application scope, wherein at least one of the first sacrificial layer and at least part of the second sacrificial layer are removed, The other method of retaining at least a portion of the first sacrificial layer and at least a portion of the second sacrificial layer includes: removing the organic material layer using a dry etching process, and retaining the inorganic material layer. 如申請專利範圍第3項所述的微型發光二極體單元之中介結構的製造方法,其中移除至少部份的該第一犧牲層與至少部份的該第二犧牲層的一者,而保留至少部份的該第一犧牲層與至少部份的該第二犧牲層的另一者的方法包括:利用一濕式蝕刻工序去除該無機材料層,而保留該有機材料層。The method for manufacturing a micro-light-emitting diode unit interposer according to item 3 of the scope of patent application, wherein at least one of the first sacrificial layer and at least part of the second sacrificial layer are removed, and A method of retaining at least a portion of the first sacrificial layer and at least a portion of the second sacrificial layer includes: removing the inorganic material layer using a wet etching process, and retaining the organic material layer. 如申請專利範圍第1項所述的微型發光二極體單元之中介結構的製造方法,其中, 在圖案化出該些第二半導體圖案之後,形成該些絕緣圖案;以及 在形成該些絕緣圖案之後,圖案化出該些第一半導體圖案,每一該絕緣圖案覆蓋對應其中之一個該些第二半導體圖案的側壁且暴露出對應其中之一個該些第一半導體圖案的側壁,而各該連接部延伸形成在對應的其中之一該第一半導體圖案上。The method for manufacturing a micro-light-emitting diode unit interposer according to item 1 of the scope of patent application, wherein the insulating patterns are formed after the second semiconductor patterns are patterned; and the insulating patterns are formed After that, the first semiconductor patterns are patterned, each of the insulation patterns covers a sidewall corresponding to one of the second semiconductor patterns and exposes a sidewall corresponding to one of the first semiconductor patterns, and each of the connections A portion is formed on a corresponding one of the first semiconductor patterns. 如申請專利範圍第1項所述的微型發光二極體單元之中介結構的製造方法,其中形成該些絕緣圖案的方法包括: 在圖案化該多層半導體層後,圖案化該第一犧牲層以及該第二犧牲層,以形成多個第一犧牲圖案與多個第二犧牲圖案,各該第一犧牲圖案與對應的各該第二犧牲圖案堆疊成一犧牲結構,各該發光二極體配置於對應的各該犧牲結構上; 在形成該犧牲結構之後,形成一第一絕緣圖案,於對應其中之一的該些第二型半導體圖案上,並覆蓋對應其中之一的該些第二型半導體圖案的側壁以及對應其中之一的該些第一型半導體圖案的側壁; 在形成該犧牲結構之後,形成一第二絕緣圖案,於對應其中之一的該些第二型半導體層上,並覆蓋對應其中之一的該些第二型半導體層的相對另一側壁且暴露出對應其中之一的該些第一第一型半導體圖案的相對另一側壁,其中,該第一絕緣圖案具有對應之各該連接部,且各該連接部延伸至該傳遞基板上。The method for manufacturing a micro-light-emitting diode unit interposer according to item 1 of the scope of patent application, wherein the method for forming the insulating patterns includes: after patterning the multilayer semiconductor layer, patterning the first sacrificial layer and The second sacrificial layer to form a plurality of first sacrificial patterns and a plurality of second sacrificial patterns, each of the first sacrificial pattern and the corresponding second sacrificial pattern are stacked into a sacrificial structure, and each of the light emitting diodes is disposed on On the corresponding sacrificial structures; after forming the sacrificial structure, a first insulating pattern is formed on the second type semiconductor patterns corresponding to one of them and covering the second type semiconductors corresponding to one of them The sidewalls of the pattern and the sidewalls of the first type semiconductor patterns corresponding to one of them; after the sacrificial structure is formed, a second insulating pattern is formed on the second type of semiconductor layers corresponding to one of them and covered Corresponding to the other side wall of the second type semiconductor layers of one of them and exposing the other side of the first first type semiconductor patterns corresponding to one of them A wall, wherein the first insulating pattern has a corresponding each of the connection portions, and each of the connection portions extends onto the transfer substrate. 一種微型發光二極體單元之中介結構,包括: 一傳遞基板; 多個微型發光二極體,陣列排列於該傳遞基板之內表面上,各該發光二極體包括: 多層半導體圖案,至少包含一第一型半導體圖案以及一與該第一型半導圖案極性相反之第二型半導體圖案,其中,該第一型半導體圖案在該傳遞基板上的垂直投影面積超出該第二型半導體圖案在該傳遞基板上的垂直投影面積; 一第一電極,位於該第一型半導體圖案上;以及 一第二電極,位於該第二型半導體圖案上;以及 多個絕緣圖案,該些絕緣圖案覆蓋對應的該些微型發光二極體,該些絕緣圖案具有多個連接部,該些微型發光二極體透過該些連接部與該傳遞基板連接,而各該微型發光二極體與該傳遞基板之間存在一間隙,且該些絕緣圖案相互分隔。An intermediary structure of a miniature light emitting diode unit includes: a transfer substrate; a plurality of miniature light emitting diodes, an array of which is arranged on an inner surface of the transfer substrate, and each of the light emitting diodes includes: a multilayer semiconductor pattern, including at least A first type semiconductor pattern and a second type semiconductor pattern of opposite polarity to the first type semiconductor pattern, wherein the vertical projection area of the first type semiconductor pattern on the transfer substrate exceeds the second type semiconductor pattern in A vertical projection area on the transfer substrate; a first electrode on the first type semiconductor pattern; and a second electrode on the second type semiconductor pattern; and a plurality of insulating patterns covering the corresponding The micro-light-emitting diodes, the insulation patterns have a plurality of connection portions, the micro-light-emitting diodes are connected to the transmission substrate through the connection portions, and each of the micro-light-emitting diodes and the transmission substrate There is a gap between them, and the insulation patterns are separated from each other. 如申請專利範圍第8項所述的微型發光二極體單元之中介結構,更包括: 多個第一犧牲圖案;以及 多個第二犧牲圖案,配置於該傳遞基板上,各該第一犧牲圖案與各該第二犧牲圖案互相對應,且至少一部份的各該第一犧牲圖案與至少一部份的各該第二犧牲圖案互相堆疊構成一犧牲結構,該連接部透過部份該犧牲結構與該傳遞基板連接。The micro-light-emitting diode unit intermediary structure according to item 8 of the scope of patent application, further comprising: a plurality of first sacrificial patterns; and a plurality of second sacrificial patterns disposed on the transfer substrate, each of the first sacrificial patterns. The pattern corresponds to each of the second sacrificial patterns, and at least a portion of each of the first sacrificial patterns and at least a portion of each of the second sacrificial patterns are stacked on each other to form a sacrificial structure, and the connecting portion passes through a portion of the sacrificial structure. The structure is connected to the transfer substrate. 如申請專利範圍第9項所述的微型發光二極體單元之中介結構,其中該些第一犧牲圖案覆蓋對應之多個微型發光二極體之下表面,且該犧牲結構的各該第一犧牲圖案與該傳遞基板之間存在該間隙。The micro-light-emitting diode unit intermediary structure according to item 9 of the scope of patent application, wherein the first sacrificial patterns cover the corresponding lower surfaces of the plurality of micro-light-emitting diodes, and each of the first The gap exists between the sacrificial pattern and the transfer substrate. 如申請專利範圍第9項所述的微型發光二極體單元之中介結構,其中該犧牲結構、該些微型發光二極體之下表面與該傳遞基板之間存在該間隙。The intermediary structure of the micro-light-emitting diode unit described in item 9 of the scope of the patent application, wherein the gap exists between the sacrificial structure, the lower surface of the micro-light-emitting diodes, and the transfer substrate. 如申請專利範圍第8項所述的微型發光二極體單元之中介結構,更包括: 多個第一犧牲圖案,位於對應的該些連接部的正下方;以及 一第二犧牲層,覆蓋該傳遞基板,該些第一犧牲圖案配置於部份該第二犧牲層上,該些連接部透過對應的該些第一犧牲圖案連接至該第二犧牲層上,且該第二犧牲層、各該第一犧牲圖案與該些微型發光二極體之下表面之間存在該間隙。The micro-light-emitting diode unit intermediary structure described in item 8 of the scope of patent application, further comprising: a plurality of first sacrificial patterns, which are located directly below the corresponding connection portions; and a second sacrificial layer covering the The transfer substrate, the first sacrificial patterns are disposed on a part of the second sacrificial layer, the connecting portions are connected to the second sacrificial layer through the corresponding first sacrificial patterns, and the second sacrificial layer, each The gap exists between the first sacrificial pattern and the lower surface of the micro-light emitting diodes. 如申請專利範圍第8項所述的微型發光二極體單元之中介結構,其中該些連接部覆蓋對應的該些發光二極體的側面且直接與該傳遞基板接觸。The micro-light-emitting diode unit intermediary structure according to item 8 of the scope of the patent application, wherein the connection portions cover the side surfaces of the corresponding light-emitting diodes and directly contact the transfer substrate. 如申請專利範圍第13項所述的微型發光二極體單元之中介結構,更包括: 多個第一犧牲圖案,位於該些微型發光二極體與該傳遞基板之間,該些第一犧牲圖案覆蓋對應之該些微型發光二極體下表面且與對應的該些連接部連接,且各該第一犧牲圖案、該些連接部與該些發光二極體之下表面之間存在該間隙。The micro-light-emitting diode unit intermediary structure according to item 13 of the scope of the patent application, further comprising: a plurality of first sacrificial patterns located between the micro-light-emitting diodes and the transfer substrate, the first sacrificial patterns The pattern covers the corresponding lower surfaces of the micro-light-emitting diodes and is connected to the corresponding connection portions, and the gap exists between each of the first sacrificial pattern, the connection portions, and the lower surface of the light-emitting diodes. . 如申請專利範圍第13項所述的微型發光二極體單元之中介結構,更包括: 多個第二犧牲圖案,位於該傳遞基板上,與對應的該些連接部連接,且各該第二犧牲圖案、該些連接部與多個發光二極體之下表面之間存在該間隙。The micro-light-emitting diode unit intermediary structure described in item 13 of the scope of patent application, further comprising: a plurality of second sacrificial patterns, which are located on the transfer substrate, are connected to corresponding connection portions, and each of the second The gap exists between the sacrificial pattern, the connection portions, and the lower surfaces of the plurality of light emitting diodes. 如申請專利範圍第9項所述的微型發光二極體單元之中介結構,其中該些第一犧牲圖案與該些第二犧牲圖案之一為無機材料,該些第一犧牲圖案與該些第二犧牲圖案之另一為有機材料,該些第一犧牲圖案與該些第二犧牲圖案皆不同於該些絕緣圖案材料,且該些絕緣圖案材料選自氮化矽、氧化矽或氮氧化矽。According to the micro-light-emitting diode unit intermediary structure described in item 9 of the patent application scope, wherein one of the first sacrificial patterns and the second sacrificial patterns is an inorganic material, the first sacrificial patterns and the first sacrificial patterns are The other of the two sacrificial patterns is an organic material. The first sacrificial patterns and the second sacrificial patterns are different from the insulating pattern materials, and the insulating pattern materials are selected from silicon nitride, silicon oxide, or silicon oxynitride. . 如申請專利範圍第8項所述的微型發光二極體單元之中介結構,其中該第一型半導體圖案為P型半導體,該第二型半導體圖案為N型半導體,且該第一型半導體圖案之厚度小於該第二型半導體圖案之厚度。The micro-light-emitting diode unit interposer according to item 8 of the scope of the patent application, wherein the first type semiconductor pattern is a P type semiconductor, the second type semiconductor pattern is an N type semiconductor, and the first type semiconductor pattern The thickness is smaller than the thickness of the second type semiconductor pattern. 一種微型發光二極體單元,包括: 多層半導體圖案,至少包含一第一型半導體圖案以及一與該第一型半導圖案極性相反之第二型半導體; 一絕緣圖案,覆蓋該第一型半導體圖案以及該第二型半導體圖案,且該絕緣圖案具有多個開口; 以及 一第一電極與一第二電極,分別經由該些開口與該第一型半導體圖案以及該第二型半導體圖案連接; 以及 一第一犧牲圖案,覆蓋該第一型半導體圖案之外表面,該第一型半導體圖案位於該該第二型半導體與該第一犧牲圖案之間,其中,第一犧牲圖案之材料不同於該絕緣圖案之材料,且該絕緣圖案材料係為氧化矽、氮化矽或氮氧化矽。A miniature light-emitting diode unit includes: a multilayer semiconductor pattern including at least a first-type semiconductor pattern and a second-type semiconductor of opposite polarity to the first-type semiconductor pattern; an insulating pattern covering the first-type semiconductor A pattern and the second type semiconductor pattern, and the insulating pattern has a plurality of openings; and a first electrode and a second electrode, respectively, connected to the first type semiconductor pattern and the second type semiconductor pattern through the openings; And a first sacrificial pattern covering an outer surface of the first type semiconductor pattern, the first type semiconductor pattern being located between the second type semiconductor and the first sacrificial pattern, wherein a material of the first sacrificial pattern is different from The material of the insulating pattern is silicon oxide, silicon nitride, or silicon oxynitride. 如申請專利範圍第18項所述的微型發光二極體單元,其中該第一犧牲圖案具有與該第一型半導體圖案外表面接觸的內表面,該絕緣圖案部分覆蓋該第一犧牲圖案之該內表面。The micro light-emitting diode unit according to item 18 of the application, wherein the first sacrificial pattern has an inner surface that is in contact with the outer surface of the first type semiconductor pattern, and the insulating pattern partially covers the first sacrificial pattern. The inner surface. 一種微型發光二極體裝置,包括: 一陣列基板,其包含: 一接收基板; 一畫素陣列層,配置於該接收基板內表面上,其包含至少一個子畫素; 一黏著層,設置於該子畫素上,且部份覆蓋位於該子畫素之該畫素陣列層;以及 至少一如申請專利範圍第18項所述的微型發光二極體單元,設置於該子畫素之該黏著層上。A miniature light-emitting diode device includes: an array substrate including: a receiving substrate; a pixel array layer disposed on an inner surface of the receiving substrate and including at least one sub-pixel; an adhesive layer disposed on the On the sub-pixel, and partially covering the pixel array layer located on the sub-pixel; and at least one miniature light emitting diode unit as described in item 18 of the scope of patent application, which is disposed on the sub-pixel On the adhesive layer. 一種微型發光二極體單元之中介結構的製造方法,包括: 於一生長基板上依序形成多層半導體層,且該多層半導體層至少包含一第一型半導體層以及一與該第一型半導層極性相反之第二型半導體; 分別形成多個電極於該第一型半導體層與該第二型半導體層上,其中該些電極相互分隔,該多層半導體層以及該些電極構成一微型發光二極體; 形成一承載結構,該承載結構包括一傳遞基板、覆蓋該傳遞基板的一犧牲層以及位於該犧牲層上的多個線路結構,且該些線路結構相互分隔; 接合該微型發光二極體的該些電極與該承載結構的該些線路結構,使得該生長基板上之該微型發光二極體的該些電極朝向該承載結構的該些線路結構; 在該微型發光二極體的該些電極與該承載結構的該些線路結構接合後,移除該生長基板;以及 移除該微型發光二極體正下方的部份該犧牲層,並保留該微型發光二極體遮蔽面積外的另一部份的該犧牲層。A method for manufacturing a micro-light-emitting diode unit intermediary structure includes: sequentially forming a plurality of semiconductor layers on a growth substrate, and the multilayer semiconductor layer includes at least a first-type semiconductor layer and a first-type semiconductor; A second type semiconductor with opposite layer polarity; forming a plurality of electrodes on the first type semiconductor layer and the second type semiconductor layer, respectively, wherein the electrodes are separated from each other, and the multilayer semiconductor layer and the electrodes constitute a micro-emitting diode; A polar body; forming a carrying structure, the carrying structure includes a transfer substrate, a sacrificial layer covering the transfer substrate, and a plurality of circuit structures on the sacrificial layer, and the circuit structures are separated from each other; The electrodes of the body and the circuit structures of the carrier structure, so that the electrodes of the micro-light-emitting diodes on the growth substrate face the circuit structures of the carrier structure; After the electrodes are bonded to the circuit structures of the carrier structure, the growth substrate is removed; and the micro-light emitting diode is removed directly below the growth substrate. Portions of the sacrificial layer, and retention of the micro light-emitting diode to another part of the outer shielding of the area of the sacrificial layer. 如申請專利範圍第21項所述的微型發光二極體單元之中介結構的製造方法,其中該承載結構包括一支撐層,形成該承載結構的步驟包括: 圖案化該支撐層,並於該支撐層形成至少一開口。The method for manufacturing a micro-light-emitting diode unit intermediary structure according to item 21 of the application, wherein the supporting structure includes a supporting layer, and the step of forming the supporting structure includes: patterning the supporting layer and supporting the supporting layer. The layer forms at least one opening. 如申請專利範圍第22項所述的微型發光二極體單元之中介結構的製造方法,其中該些線路結構其中一者填入該至少一開口且覆蓋該支撐層之部分表面。According to the manufacturing method of the micro-light-emitting diode unit intermediary structure described in item 22 of the scope of the patent application, wherein one of the circuit structures is filled in the at least one opening and covers a part of the surface of the support layer. 一種微型發光二極體單元的製造方法,包含: 提供一如申請專利範圍第21項所述之該承載結構與微型發光二極體; 提供一彈性轉置頭提取該微型發光二極體、部分該些線路結構與部分該支撐層;以及 轉置該微型發光二極體、部分該些線路結構與部分該支撐層於一接收基板上。A method for manufacturing a micro-light-emitting diode unit, comprising: providing the carrying structure and the micro-light-emitting diode as described in item 21 of the scope of patent application; providing an elastic transposition head for extracting the micro-light-emitting diode, a part thereof The circuit structures and part of the support layer; and transposing the micro-light emitting diode, part of the circuit structures and part of the support layer on a receiving substrate. 如申請專利範圍第24項所述的微型發光二極體單元的製造方法,其中當該彈性轉置頭提取該微型發光二極體、部分該些線路結構與部分該支撐層時,該些線路結構至少其中一者斷開,以使該微型發光二極體與該傳遞基板分離,且該微型發光二極體、部分該些線路結構與部分該支撐層構成一微型發光二極體單元。The method for manufacturing a micro-light-emitting diode unit according to item 24 of the scope of patent application, wherein when the elastic transposition head extracts the micro-light-emitting diode, part of the circuit structures and part of the support layer, the circuits At least one of the structures is disconnected to separate the micro-light-emitting diode from the transfer substrate, and the micro-light-emitting diode, part of the circuit structures, and part of the support layer constitute a micro-light-emitting diode unit. 一種微型發光二極體之承載結構,包括: 一傳遞基板; 一犧牲層,設置於該傳遞基板上; 一支撐層,設置於該犧牲層上,且該支撐層具有多個開口; 多個線路結構,配置於該支撐層內表面上,且該些線路結構相互分隔,該些並線路結構分別至少填入對應的該些部分開孔中; 一微型發光二極體,包括: 多層半導體圖案,至少包含一第一型半導體圖案以及一與該第一型半導圖案極性相反之第二型半導體; 以及 多個電極於該第一型半導體層與該第二型半導體層上,其中該些電極相互分隔;以及 該微型發光二極體的該些電極與該承載結構的該些線路結構接合,使得該微型發光二極體的該些電極朝向並連接該線路結構。A carrying structure of a miniature light emitting diode includes: a transfer substrate; a sacrificial layer provided on the transfer substrate; a support layer provided on the sacrificial layer, and the support layer having a plurality of openings; a plurality of lines The structure is arranged on the inner surface of the support layer, and the circuit structures are separated from each other. The parallel circuit structures are respectively filled into at least the corresponding openings of a part; a miniature light emitting diode, including: a multilayer semiconductor pattern, At least a first type semiconductor pattern and a second type semiconductor of opposite polarity to the first type semiconductor pattern; and a plurality of electrodes on the first type semiconductor layer and the second type semiconductor layer, wherein the electrodes Are separated from each other; and the electrodes of the micro-light-emitting diode are bonded to the circuit structures of the carrier structure, so that the electrodes of the micro-light-emitting diode face and connect to the circuit structure. 如申請專利範圍第26項所述的微型發光二極體之承載結構,其中該傳遞基板與該支撐層之間具有一間隙。According to the supporting structure of the micro-light emitting diode according to item 26 of the patent application scope, there is a gap between the transmission substrate and the supporting layer. 一種微型發光二極體裝置,包括: 一接收基板; 一畫素陣列層,配置於該接收基板內表面上,其包含至少一個子畫素; 一黏著層,設置於該子畫素上,且部份覆蓋位於該子畫素之該畫素陣列層; 至少一微型發光二極體單元,設置於該子畫素之該黏著層上,其至少包含: 一支撐層,其外表面與該黏著層連接; 多個線路結構,配置於該支撐層內表面上,且該些線路結構相互分隔;以及 一微型發光二極體,配置於該些線路結構上,該微型發光二極體包括: 多層半導體圖案,至少包含一第一型半導體圖案以及一與該第一型半導圖案極性相反之第二型半導圖案;以及 多個電極,分別配置於該第一型半導體圖案及該第二型半導體圖案上,該些電極相互分隔,且各該電極分別與所對應之各該線路結構連接。A miniature light-emitting diode device includes: a receiving substrate; a pixel array layer disposed on an inner surface of the receiving substrate and including at least one sub-pixel; an adhesive layer disposed on the sub-pixel, and Part of the pixel array layer is located on the sub-pixel; at least one micro light-emitting diode unit is disposed on the adhesion layer of the sub-pixel, and it includes at least: a support layer, an outer surface of the sub-pixel and the adhesion Layer connection; a plurality of circuit structures arranged on the inner surface of the support layer, and the circuit structures are separated from each other; and a micro light emitting diode disposed on the circuit structures, the micro light emitting diode includes: a plurality of layers The semiconductor pattern includes at least a first-type semiconductor pattern and a second-type semiconductor pattern having a polarity opposite to that of the first-type semiconductor pattern; and a plurality of electrodes are disposed on the first-type semiconductor pattern and the second type, respectively. On the semiconductor pattern, the electrodes are separated from each other, and each of the electrodes is respectively connected to a corresponding one of the circuit structures. 如申請專利範圍第28項所述的微型發光二極體裝置,其中該些線路結構其中至少一者延伸超出該支撐層之一側邊。The miniature light emitting diode device according to item 28 of the scope of patent application, wherein at least one of the circuit structures extends beyond one side of the supporting layer. 如申請專利範圍第29項所述的微型發光二極體裝置,更包含多個導電層,且該些導電層相互分隔,其中該些線路結構其中至少一者由該支撐層上延伸到該黏著層上,且各該線路結構分別經由所對應之各該導電層與該畫素陣列層電性連接。The micro-light-emitting diode device according to item 29 of the scope of patent application, further includes a plurality of conductive layers, and the conductive layers are separated from each other, wherein at least one of the circuit structures extends from the support layer to the adhesion. Layers, and each of the circuit structures is electrically connected to the pixel array layer through the corresponding conductive layers. 如申請專利範圍第28項所述的微型發光二極體裝置,其中該支撐層的材料為矽或矽與氧化矽的組合。The micro-light emitting diode device according to item 28 of the scope of the patent application, wherein the material of the supporting layer is silicon or a combination of silicon and silicon oxide.
TW105128988A 2016-09-07 2016-09-07 Interposer structure of mirco-light emitting diode unit and fabricating method thereof, mirco-light emitting diode unit and fabricating method thereof and mirco-light emitting diode apparatus TWI618266B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105128988A TWI618266B (en) 2016-09-07 2016-09-07 Interposer structure of mirco-light emitting diode unit and fabricating method thereof, mirco-light emitting diode unit and fabricating method thereof and mirco-light emitting diode apparatus
CN201710036074.4A CN106816408B (en) 2016-09-07 2017-01-17 Intermediate structure of micro light-emitting diode unit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105128988A TWI618266B (en) 2016-09-07 2016-09-07 Interposer structure of mirco-light emitting diode unit and fabricating method thereof, mirco-light emitting diode unit and fabricating method thereof and mirco-light emitting diode apparatus

Publications (2)

Publication Number Publication Date
TWI618266B TWI618266B (en) 2018-03-11
TW201810709A true TW201810709A (en) 2018-03-16

Family

ID=59112137

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105128988A TWI618266B (en) 2016-09-07 2016-09-07 Interposer structure of mirco-light emitting diode unit and fabricating method thereof, mirco-light emitting diode unit and fabricating method thereof and mirco-light emitting diode apparatus

Country Status (2)

Country Link
CN (1) CN106816408B (en)
TW (1) TWI618266B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672466B (en) * 2018-04-11 2019-09-21 台灣愛司帝科技股份有限公司 Micro led display and method of manufacturing the same
TWI682531B (en) * 2019-06-04 2020-01-11 友達光電股份有限公司 Display apparatus and manufacturing method thereof
TWI683465B (en) * 2018-12-11 2020-01-21 友達光電股份有限公司 Manufacturing method of light-emitting device
TWI757018B (en) * 2020-06-05 2022-03-01 友達光電股份有限公司 Display panel and tiled display
US11387394B2 (en) 2019-10-28 2022-07-12 PlayNitride Display Co., Ltd. Micro light-emitting diode device
US11804583B2 (en) 2020-06-12 2023-10-31 Au Optronics Corporation Light emitting device and method for manufacturing the same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613488B (en) * 2017-06-19 2018-02-01 友達光電股份有限公司 Display panel and method for forming tether
CN109860364B (en) * 2017-08-30 2020-09-01 天津三安光电有限公司 Light emitting diode
CN109494287B (en) 2017-09-11 2021-03-26 隆达电子股份有限公司 Micro light-emitting diode structure and manufacturing method of micro light-emitting diode
CN114678453A (en) * 2017-09-15 2022-06-28 厦门市三安光电科技有限公司 Miniature light-emitting diode and manufacturing method thereof
TWI644420B (en) * 2017-11-08 2018-12-11 友達光電股份有限公司 Device substrate and manufacturing method thereof
CN107946415B (en) * 2017-11-15 2019-06-25 上海天马微电子有限公司 A kind of display panel and its manufacturing method
US10797029B2 (en) 2017-12-19 2020-10-06 PlayNitride Inc. Structure with micro device
US10804130B2 (en) 2017-12-19 2020-10-13 PlayNitride Inc. Structure with micro device
CN109935610B (en) 2017-12-19 2023-04-07 英属开曼群岛商錼创科技股份有限公司 Micro-device structure
US11588082B2 (en) 2017-12-19 2023-02-21 PlayNitride Inc. Micro device and micro device display apparatus
US10748804B2 (en) 2017-12-19 2020-08-18 PlayNitride Inc. Structure with micro device having holding structure
CN108336097B (en) * 2018-02-12 2020-07-03 京东方科技集团股份有限公司 Micro light emitting diode transfer method, display device and preparation method thereof
TWI679762B (en) * 2018-03-06 2019-12-11 友達光電股份有限公司 Display device and manufacturing method thereof
CN108417682B (en) * 2018-03-22 2020-03-20 厦门市三安光电科技有限公司 Micro light-emitting element and manufacturing method thereof
TWI686563B (en) * 2018-04-11 2020-03-01 台灣愛司帝科技股份有限公司 Micro led display and method of manufacturing the same
CN111446340B (en) * 2018-05-04 2022-08-02 天津三安光电有限公司 Micro light-emitting element and manufacturing method thereof
CN109103315B (en) * 2018-07-28 2020-09-11 厦门三安光电有限公司 Light emitting assembly, micro light emitting diode and display device thereof
CN109496368A (en) * 2018-10-12 2019-03-19 京东方科技集团股份有限公司 Micro- light-emitting diode assembly and its manufacturing method
CN109300919B (en) * 2018-10-15 2020-09-29 上海天马微电子有限公司 Micro LED display substrate, manufacturing method thereof and display device
TWI690102B (en) * 2019-01-04 2020-04-01 友達光電股份有限公司 Light emitting apparatus and manufacturing method thereof
CN111525013A (en) 2019-02-01 2020-08-11 隆达电子股份有限公司 Light emitting diode and method for manufacturing the same
TWI688139B (en) * 2019-03-05 2020-03-11 友達光電股份有限公司 Manufacturing method and testing method of testing device
CN111725192A (en) * 2019-03-19 2020-09-29 启端光电股份有限公司 Method and structure for bonding light emitting diode and substrate
WO2020186461A1 (en) * 2019-03-19 2020-09-24 厦门市三安光电科技有限公司 Semiconductor light-emitting module
TWI706537B (en) 2019-05-28 2020-10-01 友達光電股份有限公司 Self-emissive element and manufacturing method of light emitting apparatus
US11152540B2 (en) 2019-07-29 2021-10-19 Lextar Electronics Corporation Light emitting diode structure and method of manufacturing thereof
CN110311020B (en) * 2019-07-29 2020-08-11 厦门乾照半导体科技有限公司 Mass transfer printing method and mass transfer printing device
US11038088B2 (en) 2019-10-14 2021-06-15 Lextar Electronics Corporation Light emitting diode package
CN111863692A (en) * 2020-06-29 2020-10-30 南京中电熊猫液晶显示科技有限公司 Transfer method of micro light-emitting diode display back plate
WO2022204879A1 (en) * 2021-03-29 2022-10-06 厦门三安光电有限公司 Micro light-emitting element, and micro light-emitting diode and transfer printing method therefor
TWI789229B (en) * 2022-01-28 2023-01-01 友達光電股份有限公司 Transducer and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222073B (en) * 2010-08-03 2017-03-29 财团法人工业技术研究院 Light-emitting diode chip for backlight unit, package structure for LED and to form above-mentioned method
CN102903804B (en) * 2011-07-25 2015-12-16 财团法人工业技术研究院 Method for transferring light emitting element and light emitting element array
US9318475B2 (en) * 2014-05-15 2016-04-19 LuxVue Technology Corporation Flexible display and method of formation with sacrificial release layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672466B (en) * 2018-04-11 2019-09-21 台灣愛司帝科技股份有限公司 Micro led display and method of manufacturing the same
TWI683465B (en) * 2018-12-11 2020-01-21 友達光電股份有限公司 Manufacturing method of light-emitting device
US10665746B1 (en) 2018-12-11 2020-05-26 Au Optronics Corporation Manufacturing method of light-emitting device
TWI682531B (en) * 2019-06-04 2020-01-11 友達光電股份有限公司 Display apparatus and manufacturing method thereof
US11387394B2 (en) 2019-10-28 2022-07-12 PlayNitride Display Co., Ltd. Micro light-emitting diode device
TWI779242B (en) * 2019-10-28 2022-10-01 錼創顯示科技股份有限公司 Micro light-emitting diode device
TWI757018B (en) * 2020-06-05 2022-03-01 友達光電股份有限公司 Display panel and tiled display
US11804583B2 (en) 2020-06-12 2023-10-31 Au Optronics Corporation Light emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
TWI618266B (en) 2018-03-11
CN106816408A (en) 2017-06-09
CN106816408B (en) 2019-10-18

Similar Documents

Publication Publication Date Title
TWI618266B (en) Interposer structure of mirco-light emitting diode unit and fabricating method thereof, mirco-light emitting diode unit and fabricating method thereof and mirco-light emitting diode apparatus
TWI678000B (en) Printable inorganic semiconductor structures
US10636835B2 (en) Light emitting diode display and fabricating method thereof
TWI611599B (en) Temporary carrier device, display panel, and methods of manufacturing both, and method of testing micro light emitting devices
CN109390437B (en) Micro light-emitting diode device and manufacturing method thereof
US9217541B2 (en) Stabilization structure including shear release posts
US9607907B2 (en) Electric-programmable magnetic module and picking-up and placement process for electronic devices
US9969609B2 (en) MEMS device
TW201620818A (en) Electric-programmable magnetic transfer module and transfer-bonding process for photoelectric devices
US9691948B2 (en) Method for manufacturing light emitting device with preferable alignment precision when transferring substrates
US11404397B2 (en) Display panel
JP2018538554A (en) Illumination face plate and method of manufacturing such an illumination face plate
TWI565382B (en) Picking-up and placing process for electronic devices, electronic module and photo-electronic apparatus
US20120149152A1 (en) Method to prevent metal pad damage in wafer level package
CN110634783B (en) Apparatus and method for transferring chips from a source substrate to a target substrate
US20200303585A1 (en) Micro light emitting diode device and manufacturing method thereof
CN112864287B (en) Transfer method, micro device array and preparation method thereof
US11881475B2 (en) Modules with integrated circuits and devices
CN102544101A (en) Chip package and manufacturing method thereof
WO2021049211A1 (en) Method for manufacturing display device, and display device
JP2022548434A (en) Method for manufacturing multicolor light-emitting pixel units
TW202101731A (en) Microdevice cartridge structure
KR20230057739A (en) Light emitting device and display apparatus including the same
TWI663724B (en) Light emitting diode display and fabricating method thereof
TWI837993B (en) Display device