TW201810612A - Co-integration of GaN and self-aligned thin body group IV transistors - Google Patents
Co-integration of GaN and self-aligned thin body group IV transistors Download PDFInfo
- Publication number
- TW201810612A TW201810612A TW106116514A TW106116514A TW201810612A TW 201810612 A TW201810612 A TW 201810612A TW 106116514 A TW106116514 A TW 106116514A TW 106116514 A TW106116514 A TW 106116514A TW 201810612 A TW201810612 A TW 201810612A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- gate
- transistor
- transistors
- iii
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 83
- 239000000758 substrate Substances 0.000 claims abstract description 75
- 239000012212 insulator Substances 0.000 claims abstract description 53
- 239000004065 semiconductor Substances 0.000 claims description 133
- 239000000463 material Substances 0.000 claims description 98
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 78
- 229910002601 GaN Inorganic materials 0.000 claims description 70
- 230000012010 growth Effects 0.000 claims description 61
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 58
- 229910052732 germanium Inorganic materials 0.000 claims description 57
- 239000013078 crystal Substances 0.000 claims description 38
- 125000006850 spacer group Chemical group 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 20
- 239000003989 dielectric material Substances 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 238000002955 isolation Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 11
- 230000006911 nucleation Effects 0.000 claims description 11
- 238000010899 nucleation Methods 0.000 claims description 11
- 230000010287 polarization Effects 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 238000012545 processing Methods 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 230000008569 process Effects 0.000 description 41
- 108091006146 Channels Proteins 0.000 description 34
- 238000004891 communication Methods 0.000 description 22
- 235000012431 wafers Nutrition 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000000956 alloy Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 8
- 229910000420 cerium oxide Inorganic materials 0.000 description 8
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 8
- 229910052707 ruthenium Inorganic materials 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 6
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- AJZRPMVVFWWBIW-UHFFFAOYSA-N [Au].[Bi] Chemical compound [Au].[Bi] AJZRPMVVFWWBIW-UHFFFAOYSA-N 0.000 description 2
- GZRQIDVFTAQASP-UHFFFAOYSA-N [Ce+3].[O-2].[Ti+4] Chemical compound [Ce+3].[O-2].[Ti+4] GZRQIDVFTAQASP-UHFFFAOYSA-N 0.000 description 2
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000007773 growth pattern Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum (Al) Chemical class 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- IWTIUUVUEKAHRM-UHFFFAOYSA-N germanium tin Chemical compound [Ge].[Sn] IWTIUUVUEKAHRM-UHFFFAOYSA-N 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000005527 interface trap Effects 0.000 description 1
- 238000013152 interventional procedure Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- ACNRWWUEFJNUDD-UHFFFAOYSA-N lead(2+);distiborate Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-][Sb]([O-])([O-])=O.[O-][Sb]([O-])([O-])=O ACNRWWUEFJNUDD-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- SOLUNJPVPZJLOM-UHFFFAOYSA-N trizinc;distiborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-][Sb]([O-])([O-])=O.[O-][Sb]([O-])([O-])=O SOLUNJPVPZJLOM-UHFFFAOYSA-N 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
- H01L27/1207—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76248—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using lateral overgrowth techniques, i.e. ELO techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/8258—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
本揭示係有關於氮化鎵及自對齊薄體第IV族電晶體之共整合技術。The present disclosure relates to a co-integration technique for gallium nitride and self-aligned thin body Group IV transistors.
發明背景 在無線通訊及功率管理之領域中,各種部件可使用諸如電晶體之半導體裝置來實行。舉例而言,在射頻(RF)通訊中,RF前端可包括多個基於電晶體之部件,諸如開關及功率放大器,該RF前端係天線與數位基頻系統之間之電路的通用術語。部分地歸因於其較大帶隙及高遷移率,氮化鎵(GaN)及其他第III族-N半導體材料適合於用於諸如高頻及高功率之應用的積體電路。相比之下,矽及其他第IV族半導體材料適合於用於諸如低功率之應用的積體電路。BACKGROUND OF THE INVENTION In the field of wireless communication and power management, various components can be implemented using semiconductor devices such as transistors. For example, in radio frequency (RF) communications, the RF front end can include a plurality of transistor-based components, such as switches and power amplifiers, which are generic terms for circuits between antennas and digital baseband systems. In part due to its large band gap and high mobility, gallium nitride (GaN) and other Group III-N semiconductor materials are suitable for use in integrated circuits such as high frequency and high power applications. In contrast, germanium and other Group IV semiconductor materials are suitable for use in integrated circuits such as low power applications.
於本揭示的一個態樣中,係特地提出一種積體電路,其包含:一絕緣體上半導體基板,該基板包括夾在第IV族材料之上部與下部半導體層之間的一包埋絕緣體層;及在兩個相鄰第二電晶體之間之一第一電晶體,其中該第一電晶體具有包括在該上部半導體層中之一通道區域,並且該等第二電晶體包含一第III族-N半導體結構,該半導體結構係以下情況中之一者:在該上部半導體層上,或穿過該上部半導體層及該包埋絕緣體層並且在該下部半導體層上。In one aspect of the present disclosure, an integrated circuit is specifically provided, comprising: a semiconductor-on-insulator substrate comprising an embedded insulator layer sandwiched between an upper portion and a lower semiconductor layer of a Group IV material; And a first transistor between two adjacent second transistors, wherein the first transistor has a channel region included in the upper semiconductor layer, and the second transistors comprise a third group A semiconductor structure which is one of the following: on or over the upper semiconductor layer and the buried insulator layer.
較佳實施例之詳細說明 揭示用於形成使用共整合第III-V族電晶體及第IV族電晶體來組配之積體電路的技術。不同電晶體可在共同基板上以相鄰方式或以其他方式彼此鄰近地形成。基板係絕緣體上半導體組態(例如,絕緣體上矽)。根據一實施例,在製造過程期間使用相鄰III-V電晶體之結構特徵來界定介入第IV族電晶體之結構特徵。因此,在一些實施例中,III-V電晶體結構之特徵最初用作圖案化介入第IV族電晶體結構之遮罩,隨後稍後用作III-V電晶體結構之部分。在其他實施例中,最初用作圖案化介入第IV族電晶體結構之遮罩之III-V電晶體結構在性質上係耗蝕性的,因為其在形成第IV族電晶體特徵之後的某個時間予以移除。應瞭解,共置自對齊技術可用於顯著減少在共同基板上形成混合電晶體技術所需要的整合處理。一般概述 The detailed description of the preferred embodiment discloses techniques for forming an integrated circuit that is assembled using a co-integrated III-V transistor and a Group IV transistor. Different transistors may be formed adjacent to each other on a common substrate in an adjacent manner or otherwise. The substrate is a semiconductor-on-insulator configuration (eg, on-insulator). According to an embodiment, structural features of adjacent III-V transistors are used during the fabrication process to define structural features of the intervening Group IV transistors. Thus, in some embodiments, the features of the III-V transistor structure are initially used as a mask for patterning intervening Group IV transistor structures, which are then later used as part of the III-V transistor structure. In other embodiments, the III-V transistor structure originally used as a mask for patterning intervening Group IV transistor structures is erosive in nature because of its formation after formation of a Group IV transistor feature. Removed from time. It will be appreciated that co-located self-alignment techniques can be used to significantly reduce the integration process required to form hybrid transistor technology on a common substrate. General overview
當前,GaN PMOS具有低效能。因此,矽PMOS係結合GaN NMOS來實行CMOS操作的更合適選擇。然而,歸因於GaN及矽之不同性質,基於III-N材料之裝置(諸如GaN NMOS電晶體)與矽基板之共整合係顯著難題。例如,GaN具有與矽之較大晶格錯配。具體而言,沿著<111>結晶定向的GaN材料與矽晶圓之間之晶格錯配為約17%。此較大晶格錯配通常在矽上生長之III-N材料中導致較高缺陷密度。另外,亦存在較大熱膨脹係數錯配。舉例而言,GaN與矽之間之熱膨脹係數之錯配為約116%,並且此通常在矽上生長之III-N材料上導致表面裂縫。此等缺陷顯著減少III-N材料中之載流子(例如,電子、電洞或兩者)之遷移率並且亦可導致不佳產率及可靠性問題。為此目的,現有技術不提供第III族-N電晶體與第IV族電晶體在CMOS電路中之共整合的有效途徑。在一些情況下,共整合藉由使用兩個不同基板及獨立執行之形成過程來處理,然後後續結合過程將單獨形成之基板連接。因此,對於諸如RF前端、電壓調節器電路之應用,及具有不同材料系統整合之需要的其他應用,需要使得第III族-N及第IV族部件能夠在共同基板上共整合的整合方案。Currently, GaN PMOS has low performance. Therefore, 矽 PMOS is a more suitable choice for CMOS operation in combination with GaN NMOS. However, due to the different properties of GaN and germanium, co-integration of III-N material-based devices, such as GaN NMOS transistors, with germanium substrates is a significant problem. For example, GaN has a larger lattice mismatch with germanium. Specifically, the lattice mismatch between the GaN material oriented along the <111> crystal and the germanium wafer is about 17%. This larger lattice mismatch typically results in a higher defect density in the III-N material grown on the crucible. In addition, there is also a large thermal expansion coefficient mismatch. For example, the mismatch in thermal expansion coefficient between GaN and germanium is about 116%, and this typically results in surface cracks on the III-N material grown on the crucible. These defects significantly reduce the mobility of carriers (eg, electrons, holes, or both) in the III-N material and can also cause poor yield and reliability issues. To this end, the prior art does not provide an efficient way of co-integration of Group III-N transistors with Group IV transistors in CMOS circuits. In some cases, co-integration is processed by using two different substrates and independently performing the formation process, and then the subsequent bonding process connects the separately formed substrates. Therefore, for applications such as RF front ends, voltage regulator circuits, and other applications requiring different material system integration, there is a need for an integrated solution that enables Group III-N and Group IV components to be co-integrated on a common substrate.
揭示用於形成使用共整合第III-V族電晶體及第IV族電晶體來組配之積體電路的技術。不同電晶體可在共同基板上以相鄰方式或以其他方式彼此鄰近地形成。根據一些實施例,基板係絕緣體上半導體組態。基板可為例如包埋氧化物上之相對薄矽層,該包埋氧化物進而在矽處理晶圓或其他合適矽平臺上提供。絕緣體上之頂部半導體層或下伏半導體層(例如,處理晶圓)可用於形成第III-V族及第IV族電晶體中之任一者。因此,例如,兩種電晶體類型可使用頂部半導體層來形成,或III-V電晶體可使用底部半導體層來形成並且IV電晶體可使用頂部半導體層來形成。根據一實施例來組配之示例性積體電路具有針對高功率及/或高頻率(例如,RF放大器、RF開關、RF濾波器)來組配之第III族-N電晶體及針對相對較低功率應用(例如,記憶體元件、邏輯)來組配之第IV族電晶體,但是應瞭解,許多應用可受益於該等技術。第III族-N電晶體可為例如n型金屬氧化物半導體(NMOS)並且第IV族電晶體可為p型金屬氧化物半導體(PMOS),從而提供互補金屬氧化物半導體(CMOS)積體電路。Techniques for forming integrated circuits using co-integration of Group III-V transistors and Group IV transistors are disclosed. Different transistors may be formed adjacent to each other on a common substrate in an adjacent manner or otherwise. According to some embodiments, the substrate is a semiconductor-on-insulator configuration. The substrate can be, for example, a relatively thin layer of tantalum oxide that is in turn provided on a tantalum processing wafer or other suitable crucible platform. A top semiconductor layer or an underlying semiconductor layer (eg, a handle wafer) on the insulator can be used to form any of the Group III-V and Group IV transistors. Thus, for example, two types of transistors can be formed using a top semiconductor layer, or a III-V transistor can be formed using a bottom semiconductor layer and an IV transistor can be formed using a top semiconductor layer. An exemplary integrated circuit assembled in accordance with an embodiment has a Group III-N transistor for high power and/or high frequency (eg, RF amplifier, RF switch, RF filter) and for relatively high Low power applications (eg, memory components, logic) are used to assemble Group IV transistors, although it should be appreciated that many applications may benefit from such techniques. The Group III-N transistor can be, for example, an n-type metal oxide semiconductor (NMOS) and the Group IV transistor can be a p-type metal oxide semiconductor (PMOS) to provide a complementary metal oxide semiconductor (CMOS) integrated circuit. .
根據一實施例,在製造過程期間使用相鄰III-N(或III-V)電晶體之結構特徵來界定介入第IV族電晶體之結構特徵。在一個此類示例性情況中,GaN橫向磊晶生長技術用於提供GaN島,GaN電晶體通道可在該等島中形成。此等島具有較好控制之尺寸,取決於所使用之生長過程以及其他因素諸如GaN在其上生長之下伏晶體表面之定向。在任何情況下,相鄰GaN島之間之間隔可嚴密地控制(例如,在100 nm或更小,甚至直至10 nm或更小之範圍內)。因此,兩個相鄰GaN島可根據界定例如將要在其之間形成之第IV族電晶體之閘極長度的需要來彼此間隔開。然後,以此方式間隔開之島事實上用作蝕刻第IV族電晶體閘極渠溝之遮罩。注意渠溝自比齊至相鄰GaN島而無需任何進一步遮罩或對齊過程。因此,在一些實施例中,GaN島最初用作圖案化介入第IV族電晶體結構之遮罩,隨後稍後用作III-N電晶體結構之部分。在其他實施例中,GaN島在性質上係耗蝕性的,因為其在形成第IV族電晶體特徵之後的某個時間予以移除。許多其他示例性實施例係顯而易知的。According to an embodiment, structural features of adjacent III-N (or III-V) transistors are used during the fabrication process to define structural features of the intervening Group IV transistors. In one such exemplary case, a GaN lateral epitaxial growth technique is used to provide GaN islands in which GaN transistor channels can be formed. These islands have a well-controlled size depending on the growth process used and other factors such as the orientation of the crystal surface on which GaN grows. In any case, the spacing between adjacent GaN islands can be tightly controlled (eg, in the range of 100 nm or less, even up to 10 nm or less). Thus, two adjacent GaN islands can be spaced apart from one another in accordance with the need to define, for example, the gate length of the Group IV transistor to be formed therebetween. The islands thus spaced apart in this manner are in fact used as a mask for etching the Group IV transistor gate trenches. Note that the trenches are self-aligned to adjacent GaN islands without any further masking or alignment processes. Thus, in some embodiments, the GaN island is initially used as a mask for patterning intervening of the Group IV transistor structure, which is then later used as part of the III-N transistor structure. In other embodiments, the GaN island is degrading in nature because it is removed some time after the formation of the Group IV transistor features. Many other exemplary embodiments are obvious.
如鑒於本揭示案進一步瞭解,如本文提供之自對齊共置技術可用於顯著減少在共同基板上形成混合電晶體技術所需要的整合處理。又,在一些實施例中,第IV族電晶體結構,尤其閘極長度之尺寸可變得極小(例如,10 nm或更小),以致於很難使用當前過程及技術在給定基板上一致地產生。相比之下,形成島之GaN生長係高度可預測的及可控制的。因此,圖案化步驟得以減少,遮罩及額外對齊及平坦化步驟之需要亦得以減少,從而極大地簡化全部過程,減少成本及處理時間。As further appreciated in light of the present disclosure, the self-aligned co-location techniques as provided herein can be used to significantly reduce the integration process required to form hybrid transistor technology on a common substrate. Also, in some embodiments, the size of the Group IV transistor structure, particularly the gate length, can be made extremely small (e.g., 10 nm or less) such that it is difficult to consistent on a given substrate using current processes and techniques. Generated. In contrast, the island-forming GaN growth system is highly predictable and controllable. As a result, the patterning step is reduced, and the need for masking and additional alignment and planarization steps is reduced, greatly simplifying the overall process, reducing cost and processing time.
如本文使用,第IV族半導體材料包括例如矽、鍺、碳、錫、鉛及其合金諸如矽鍺(SiGe)、碳化矽(SiC)及鍺-錫(Ge-Sn),僅舉幾個例子。另外,第III族-N半導體材料(或III-N材料或簡稱為III-N)包括一或多種第III族元素(例如,鋁、鎵、銦、硼、鉈)與氮之化合物。因此,如本文使用之III-N材料包括但不限於氮化鎵(GaN)、氮化銦(InN)、氮化鋁(AlN)、氮化鋁銦(AlInN)、氮化鋁鎵(AlGaN)、氮化銦鎵(InGaN)及氮化鋁銦鎵(AlInGaN),僅舉III-N材料之幾個例子。在更包括性方式中,注意如本文使用之第III-V族材料包括至少一種第III族元素(例如,鋁、鎵、銦、硼、鉈)及至少一種第V族元素(例如,氮、磷、砷、銻、鉍),諸如氮化鎵(GaN)、砷化鎵(GaAs)、銦氮化鎵(InGaN)及銦砷化鎵(InGaAs),僅舉一些例子。許多第IV及III-V族材料系統可用在本揭示案之各種實施例中。As used herein, Group IV semiconductor materials include, for example, germanium, antimony, carbon, tin, lead, and alloys thereof such as germanium (SiGe), tantalum carbide (SiC), and germanium-tin (Ge-Sn), to name a few. . Additionally, the Group III-N semiconductor material (or III-N material or simply III-N) includes a compound of one or more Group III elements (eg, aluminum, gallium, indium, boron, ruthenium) and nitrogen. Thus, III-N materials as used herein include, but are not limited to, gallium nitride (GaN), indium nitride (InN), aluminum nitride (AlN), aluminum indium nitride (AlInN), aluminum gallium nitride (AlGaN). Indium gallium nitride (InGaN) and aluminum indium gallium nitride (AlInGaN), just to name a few examples of III-N materials. In a more inclusive manner, it is noted that the Group III-V materials as used herein include at least one Group III element (eg, aluminum, gallium, indium, boron, antimony) and at least one Group V element (eg, nitrogen, Phosphorus, arsenic, antimony, antimony, such as gallium nitride (GaN), gallium arsenide (GaAs), indium gallium nitride (InGaN), and indium gallium arsenide (InGaAs), to name a few. Many of the Group IV and III-V material systems can be used in various embodiments of the present disclosure.
本文提供之技術及結構之使用可在積體電路之橫截面中使用諸如掃描電子顯微術(SEM)或透射電子顯微術(TEM)之工具來偵測,該等工具可示出裝置之各個層及結構。其他方法,諸如組成測繪、x射線結晶學或繞射(XRD)、次級離子質譜法(SIMS)、飛行時間SIMS(ToF-SIMS)、原子探針成像、局部電極原子探針(LEAP)技術、3D斷層攝影術、高解析度物理或化學分析,僅舉一些合適示例性分析工具。在一些實施例中,例如,SEM可在橫截面中指示相鄰第IV族結構及III-V結構(例如矽PMOS及GaN NMOS),其中每個第IV族結構具有兩個相鄰第III-V族結構,以使得第IV族結構及III-V結構交替,並且進一步,每個第IV族結構具有包括相鄰閘極間隔物之薄金屬閘極,其中金屬閘極及間隔物均定位在閘極介電質層上。閘極長度可為例如50 nm或更小,或40 nm或更小,或30 nm或更小,或20 nm或更小,或15 nm或更小,或10 nm或更小,或8.5 nm或更小,或7 nm或更小。鑒於本揭示案,許多組態及變化係顯而易知的。架構及方法 The techniques and structures provided herein can be detected in a cross section of an integrated circuit using tools such as scanning electron microscopy (SEM) or transmission electron microscopy (TEM), which can show the device. Various layers and structures. Other methods such as composition mapping, x-ray crystallography or diffraction (XRD), secondary ion mass spectrometry (SIMS), time-of-flight SIMS (ToF-SIMS), atom probe imaging, local electrode atom probe (LEAP) technology , 3D tomography, high-resolution physics or chemical analysis, just to name a few examples of analytical tools. In some embodiments, for example, the SEM can indicate adjacent Group IV structures and III-V structures (eg, 矽PMOS and GaN NMOS) in cross-section, where each Group IV structure has two adjacent III- a V-group structure such that the Group IV structure and the III-V structure alternate, and further, each of the Group IV structures has a thin metal gate including adjacent gate spacers, wherein the metal gates and spacers are both positioned On the gate dielectric layer. The gate length can be, for example, 50 nm or less, or 40 nm or less, or 30 nm or less, or 20 nm or less, or 15 nm or less, or 10 nm or less, or 8.5 nm. Or smaller, or 7 nm or less. Many configurations and variations are apparent from the present disclosure. Architecture and method
圖1係根據本揭示案之一實施例的使用共同基板上之共整合第III-V族NMOS電晶體及第IV族PMOS電晶體來組配之積體電路結構之橫截面視圖。注意該結構在沿著垂直於閘極方向來截取之橫截面視圖中示出,圖2–10示出之對應結構同樣如此。如示出,積體電路100包含絕緣體上半導體(SOI)基板,其具有在其上形成的多個第IV族電晶體(101A,101B)及多個III-N電晶體(102A,102B)。如可進一步發現,電晶體101A在電晶體102A與102B之間,並且電晶體101B在電晶體102B與102C之間。雖然示出四個電晶體,但是應瞭解許多電晶體可以許多交替模式來使用。此外,應注意亦可使用虛設電晶體主體(例如,一或多個虛設第III-V族電晶體之特徵可用於形成介入第IV族電晶體)。為此目的,本文提供之技術可使用功能性及虛設(非功能性)電晶體組態來實行。1 is a cross-sectional view of an integrated circuit structure assembled using a co-integrated III-V NMOS transistor and a Group IV PMOS transistor on a common substrate in accordance with an embodiment of the present disclosure. Note that the structure is shown in a cross-sectional view taken along the direction perpendicular to the gate, as is the corresponding structure shown in Figures 2-10. As shown, the integrated circuit 100 includes a semiconductor-on-insulator (SOI) substrate having a plurality of Group IV transistors (101A, 101B) and a plurality of III-N transistors (102A, 102B) formed thereon. As can be further found, the transistor 101A is between the transistors 102A and 102B, and the transistor 101B is between the transistors 102B and 102C. Although four transistors are shown, it should be understood that many transistors can be used in many alternating modes. In addition, it should be noted that a dummy transistor body can also be used (eg, features of one or more dummy III-V transistors can be used to form an intervening Group IV transistor). To this end, the techniques provided herein can be implemented using functional and dummy (non-functional) transistor configurations.
在圖1示出之特定示例性實施例中,電晶體101A係矽(Si)電晶體(例如,PMOS),其定位在GaN電晶體102A與102B(例如,NMOS)之間。同樣地,電晶體101B係Si電晶體(例如,PMOS),其定位在GaN電晶體102B與102C(例如,NMOS)之間。如進一步示出,GaN電晶體102B亦在Si電晶體101A與101B之間。雖然在某些實施例中,GaN電晶體與Si電晶體交替,但是亦可實行其他組態,如鑒於本揭示案所瞭解。舉例而言,在其他實施例中,積體電路結構100可包含在相鄰第二電晶體之間之第一電晶體的多個分組,諸如與SiGe電晶體交替的InGaN電晶體,或與Ge電晶體交替的AlGaN電晶體,僅舉幾個其他示例性組態。In the particular exemplary embodiment illustrated in FIG. 1, transistor 101A is a germanium (Si) transistor (eg, a PMOS) positioned between GaN transistors 102A and 102B (eg, an NMOS). Likewise, transistor 101B is a Si transistor (eg, PMOS) that is positioned between GaN transistors 102B and 102C (eg, NMOS). As further shown, GaN transistor 102B is also between Si transistors 101A and 101B. Although in some embodiments, the GaN transistor alternates with the Si transistor, other configurations are possible, as will be appreciated in light of the present disclosure. For example, in other embodiments, integrated circuit structure 100 can include multiple groups of first transistors between adjacent second transistors, such as InGaN transistors alternating with SiGe transistors, or with Ge AlGaN transistors with alternating transistors, just to name a few other exemplary configurations.
基板可具有許多絕緣體上半導體(SOI)組態,並且可例如使用預製SOI基板或具有在其上形成之絕緣體及半導體層的整體基板來實行。在此示例性情況中,SOI基板包括絕緣體(例如,二氧化矽或其他矽相容絕緣體)上之薄層Si,該絕緣體進而在Si處理基板(例如,整體矽基板)上提供。在其他實施例中,基板可以不同方式來組配。例如,SOI基板可具有在整體矽晶圓或基板上之二氧化矽層上的薄SiGe半導體層,其中SiGe層之Ge濃度可從約例如5%變化至40%。在具有Ge之更高濃度(40%至90%)的其他此等實施例中,基板可在絕緣體層與頂部SiGe層之間包括分級緩衝層,該緩衝層將Ge濃度從與絕緣體層相容之水準逐漸地增加至目標Ge水準。在其他情況中,注意Ge之目標水準可為100%以便提供Ge/分級Ge-Si緩衝物/Si-相容絕緣體/Si基板之SOI基板組態。在其他情況中,SOI基板組態可為Ge/Ge-相容絕緣體/Ge基板。在更一般意義下,SOI基板可包含諸如Si、Ge、SiGe或SiC之第IV族材料之任何組合。如鑒於本揭示案進一步瞭解,基板可具有特定表面晶體定向,該晶體定向可藉由密勒指數來描述。舉例而言,基板可具有<100>、<110>或<111>晶體定向,取決於所使用之具體材料。The substrate can have many semiconductor-on-insulator (SOI) configurations and can be implemented, for example, using a pre-formed SOI substrate or a monolithic substrate having insulators and semiconductor layers formed thereon. In this exemplary case, the SOI substrate includes a thin layer of Si on an insulator (eg, cerium oxide or other germanium-compatible insulator), which in turn is provided on a Si-treated substrate (eg, a monolithic substrate). In other embodiments, the substrates can be assembled in different ways. For example, the SOI substrate can have a thin SiGe semiconductor layer on the monolithic germanium wafer or the ceria layer on the substrate, wherein the Ge concentration of the SiGe layer can vary from about 5% to about 40%. In other such embodiments having a higher concentration of Ge (40% to 90%), the substrate may include a graded buffer layer between the insulator layer and the top SiGe layer that is compatible with the Ge concentration from the insulator layer The level is gradually increased to the target Ge level. In other cases, it is noted that the target level of Ge can be 100% to provide an SOI substrate configuration for a Ge/graded Ge-Si buffer/Si-compatible insulator/Si substrate. In other cases, the SOI substrate configuration can be a Ge/Ge-compatible insulator/Ge substrate. In a more general sense, the SOI substrate can comprise any combination of Group IV materials such as Si, Ge, SiGe or SiC. As further appreciated in light of the present disclosure, the substrate can have a particular surface crystal orientation that can be described by the Miller Index. For example, the substrate can have a <100>, <110> or <111> crystal orientation, depending on the particular material used.
總體上,在圖1所示之具體實施例中,第III族-N電晶體102A-C各自包括源極S、汲極D及閘極G,與GaN通道層及用於誘導通道中之二維電子氣(2DEG)之極化層P。此外應注意在此示例性情況中,GaN通道層直接在下伏矽基板上生長。源極S、汲極D及閘極G中之每一者可包括多層結構,該多層結構包括源極/汲極區域材料、功函數調節材料、電阻減少材料及金屬觸點材料。另外,提供閘極間隔物以將閘極G與源極S及汲極D分離。第IV族電晶體101A-B亦各自包括源極S、汲極D及閘極G。提供源極及汲極觸點C,該等觸點可包括多層結構,該多層結構包括功函數調節材料、電阻減少材料及金屬觸點材料。在源極S與汲極D之間以及在閘極G下方提供矽(Si)通道區域。在下伏Si通道與閘極G之間提供閘極介電質GD。此外注意在此示例性實施例中,在閘極G及對應相鄰閘極間隔物下方提供閘極介電質GD。因此,在一些實施例中,揭示包含諸如第IV族電晶體之第一電晶體,及諸如III-N電晶體(或其他III-V電晶體)之第二電晶體的積體電路,並且第一電晶體包含閘極及相鄰閘極間隔物,每一者定位在閘極介電質層上方,並且在一些實施例中定位在閘極介電質層上。In general, in the embodiment shown in FIG. 1, the III-N transistors 102A-C each include a source S, a drain D, and a gate G, and the GaN channel layer and the second of the induced channels. Polarized layer P of the Dimensional Electron Gas (2DEG). Furthermore, it should be noted that in this exemplary case, the GaN channel layer is grown directly on the underlying germanium substrate. Each of the source S, the drain D, and the gate G may include a multilayer structure including a source/drain region material, a work function adjusting material, a resistance reducing material, and a metal contact material. In addition, a gate spacer is provided to separate the gate G from the source S and the drain D. The Group IV transistors 101A-B also each include a source S, a drain D, and a gate G. A source and a drain contact C are provided, and the contacts may include a multilayer structure including a work function adjusting material, a resistance reducing material, and a metal contact material. A 矽 (Si) channel region is provided between the source S and the drain D and below the gate G. A gate dielectric GD is provided between the underlying Si channel and the gate G. Also note that in this exemplary embodiment, the gate dielectric GD is provided below the gate G and the corresponding adjacent gate spacer. Thus, in some embodiments, an integrated circuit comprising a first transistor such as a Group IV transistor, and a second transistor such as a III-N transistor (or other III-V transistor) is disclosed, and A transistor includes a gate and adjacent gate spacers, each positioned over the gate dielectric layer and, in some embodiments, on the gate dielectric layer.
如進一步瞭解,閘極電晶體101可以自對齊方式在相鄰電晶體102之間中心定位,如在圖1中進一步示出。在一些此類實施例中,兩個相鄰第IV族電晶體102之間之距離可設定為X之標稱距離(例如,在50 nm至500 nm範圍內)。在給出在形成電晶體102期間所使用的III-N材料之受控生長速率的情況下,如轉而進一步解釋,與相鄰電晶體102中之每一者之距離Y亦可受控制。因此,可使III-N材料生長特定距離Y,然後用作遮罩以便形成電晶體101之特徵。由此進一步得出結論對應於電晶體101之閘極長度的距離W亦可受控制。因此,例如,電晶體101之閘極中心在距任一相鄰電晶體102之距離X的一半處,並且Y等於距離X之一半減去0.5W。在給定製造過程之自對齊性質的情況下,此等空間關係可在整個基板中一致地重複,以使得電晶體101之閘極中心在距任一相鄰電晶體102之距離X的大約一半處。注意閘極中心不一定精確地定位在距相鄰電晶體102之距離X的一半處,而是實際上可在此位置之合理容差內。舉例而言,閘極中心可在此位置之10%,或此位置之7.5%,或此位置之5%,或此位置之3%,或此位置之2%,或此位置之1%,或此位置之0.5%內。在一些具體示例性實施例中,閘極中心定位在距相鄰電晶體102之距離X的一半處,+/-3 nm,或+/-2 nm,或+/-1 nm。此外注意容差可為不對稱的,諸如+2/-1nm。在沒有本文提供之自對齊共置技術的情況下,在給定晶圓上以及在共同基板上之混合電晶體積體電路之情形下之此閘極位置一致性很難達成。As further understood, the gate transistor 101 can be centered between adjacent transistors 102 in a self-aligned manner, as further illustrated in FIG. In some such embodiments, the distance between two adjacent Group IV transistors 102 can be set to a nominal distance of X (eg, in the range of 50 nm to 500 nm). Given the controlled growth rate of the III-N material used during the formation of the transistor 102, as further explained, the distance Y from each of the adjacent transistors 102 can also be controlled. Thus, the III-N material can be grown a specific distance Y and then used as a mask to form features of the transistor 101. It is further concluded that the distance W corresponding to the gate length of the transistor 101 can also be controlled. Thus, for example, the gate center of transistor 101 is at half the distance X from any adjacent transistor 102, and Y is equal to one half of distance X minus 0.5W. Given the self-aligning properties of the fabrication process, such spatial relationships can be consistently repeated throughout the substrate such that the gate center of transistor 101 is about half the distance X from any adjacent transistor 102. At the office. Note that the gate center is not necessarily accurately positioned at half the distance X from the adjacent transistor 102, but may actually be within a reasonable tolerance of this position. For example, the gate center can be 10% of the location, or 7.5% of the location, or 5% of the location, or 3% of the location, or 2% of the location, or 1% of the location, Or within 0.5% of this location. In some specific exemplary embodiments, the gate center is positioned at half the distance X from the adjacent transistor 102, +/- 3 nm, or +/- 2 nm, or +/- 1 nm. Also note that the tolerance can be asymmetrical, such as +2/-1 nm. In the absence of the self-aligned co-location technique provided herein, this gate position uniformity is difficult to achieve in the case of a hybrid electromorphic bulk circuit on a given wafer and on a common substrate.
圖1'示出具有一個變化的與圖1所示實施例類似之另一個示例性實施例。具體而言,積體電路100'包括積體電路100之所有特徵,但是進一步包括基板與GaN通道層之間之成核層。成核層可用於輔助開始GaN電晶體102之生長。在一個此類實施例中,例如,成核層可包括例如氮化鋁(AlN)層,或其他合適啟始材料。在其他實施例中,除了成核作用以外,此層可進一步被組配成具有緩衝性質。Figure 1 'shows another exemplary embodiment having a variation similar to the embodiment shown in Figure 1. Specifically, the integrated circuit 100' includes all of the features of the integrated circuit 100, but further includes a nucleation layer between the substrate and the GaN channel layer. A nucleation layer can be used to assist in the initiation of growth of the GaN transistor 102. In one such embodiment, for example, the nucleation layer can comprise, for example, an aluminum nitride (AlN) layer, or other suitable starting material. In other embodiments, this layer may be further formulated to have buffering properties in addition to nucleation.
圖2至9示出形成根據本發明之各種實施例之示例性積體電路的方法,與其各種所得結構。如可發現,積體電路之基板200具有絕緣體上半導體結構(SOI)組態,其總體上包括處理基板或晶圓205、絕緣體層210及半導體層215。在一個具體示例性實施例中,基板200包含整體矽基板205、二氧化矽層210(有時亦被稱為包埋氧化物層或BOX層)及薄矽層215。SOI 200可為預製的或經製備的。舉例而言,整體矽晶圓可使用氧離子植入過程處理來形成植入氧層,並且隨後退火以形成包埋氧化物層,該包埋氧化物層將薄頂部矽層與較厚底部整體矽層分離。對於此過程,薄矽層215及矽基板205具有相同晶體定向。因此,在具體實施例中,矽基板205及薄矽層215具有相同晶體定向,例如像,<100>定向。在另一個示例性實施例中,整體矽晶圓經表面氧化並且用氫離子植入過程透過氧化表面來處理以形成嵌入氫層。諸如第二矽基板之處理基板可連接至氧化表面,並且將複合結構加熱以導致沿著氫層之剝離,從而留下連接至處理矽基板205之薄矽層215及氧化層210。在此過程中,矽基板(處理)205可具有與頂部薄矽層215不同的晶體定向,從而可在各種部件建造過程,諸如本文所述之部件建造過程中以不同方式來利用。舉例而言,在具體實施例中,矽基板205具有一種晶體定向,諸如<111>定向,而薄矽層215具有第二不同晶體定向,諸如<100>定向。如瞭解,絕緣層210可為安置在薄矽層215與矽基板205之間的氧化物或氮化物層。在其他實施例中,層210、215、220及230中之每一者可使用覆蓋層沉積過程來提供以形成多層堆疊。另外,注意半導體層215不一定限於矽,而是亦可為其他第IV族半導體,諸如Ge、SiGe及SiC。在任何此等實施例中,絕緣體層210具有例如10 nm至2微米(例如,200 nm至1微米)範圍內之厚度,或任何其他合適厚度。如鑒於本揭示案所瞭解,絕緣體層210之厚度可用於將在半導體層215中形成之電晶體與下伏基板205電氣分離。此隔離在例如減少亞通道(或亞翼片)洩漏中係有用的。半導體層215之厚度亦可在各個實施例之間變化,但是在一些情況下在5 nm至500 nm(例如,10 nm至200 nm)範圍內。半導體層215之厚度可基於其中形成之電晶體裝置組態來設定,尤其基於所需通道層厚度及可能源極/汲極區域厚度。2 through 9 illustrate a method of forming an exemplary integrated circuit in accordance with various embodiments of the present invention, along with various resulting structures. As can be seen, the substrate 200 of the integrated circuit has a semiconductor-on-insulator (SOI) configuration that generally includes a handle substrate or wafer 205, an insulator layer 210, and a semiconductor layer 215. In one particular exemplary embodiment, substrate 200 includes an integral germanium substrate 205, a hafnium oxide layer 210 (sometimes also referred to as an embedding oxide layer or BOX layer), and a thin germanium layer 215. The SOI 200 can be pre-formed or prepared. For example, the monolithic wafer can be processed using an oxygen ion implantation process to form an implanted oxygen layer and subsequently annealed to form an embedded oxide layer that integrates the thin top layer with the thicker bottom Separation of the layer. For this process, the thin layer 215 and the germanium substrate 205 have the same crystal orientation. Thus, in a particular embodiment, the germanium substrate 205 and the thin germanium layer 215 have the same crystal orientation, such as, for example, <100> orientation. In another exemplary embodiment, the monolithic wafer is surface oxidized and processed through an oxidized surface with a hydrogen ion implantation process to form an intercalating hydrogen layer. A processing substrate, such as a second germanium substrate, can be attached to the oxidized surface and the composite structure is heated to cause stripping along the hydrogen layer, leaving a thin tantalum layer 215 and an oxide layer 210 that are attached to the processing germanium substrate 205. In this process, the tantalum substrate (process) 205 can have a different crystal orientation than the top thin layer 215 so that it can be utilized in various ways during various component construction processes, such as the component construction processes described herein. For example, in a particular embodiment, the germanium substrate 205 has a crystal orientation, such as a <111> orientation, while the thin germanium layer 215 has a second, different crystal orientation, such as a <100> orientation. As can be appreciated, the insulating layer 210 can be an oxide or nitride layer disposed between the thin layer 215 and the germanium substrate 205. In other embodiments, each of layers 210, 215, 220, and 230 can be provided using a blanket deposition process to form a multilayer stack. In addition, it is noted that the semiconductor layer 215 is not necessarily limited to germanium, but may be other group IV semiconductors such as Ge, SiGe, and SiC. In any such embodiment, the insulator layer 210 has a thickness, for example, in the range of 10 nm to 2 microns (eg, 200 nm to 1 micron), or any other suitable thickness. As is apparent in light of the present disclosure, the thickness of the insulator layer 210 can be used to electrically separate the transistor formed in the semiconductor layer 215 from the underlying substrate 205. This isolation is useful, for example, in reducing sub-channel (or sub-flap) leakage. The thickness of the semiconductor layer 215 can also vary between various embodiments, but in some cases is in the range of 5 nm to 500 nm (eg, 10 nm to 200 nm). The thickness of the semiconductor layer 215 can be set based on the configuration of the transistor device formed therein, particularly based on the desired channel layer thickness and possible source/drain region thickness.
如圖2進一步示出,介電質層220亦在SOI 200之半導體層215上提供,此外淺渠溝隔離(STI)層230在介電質層220上提供。在一些實施例中,此層220及230中之一者或兩者可包括多個材料層或堆疊組態。另外,亦可在一些實施例中提供一或多個介入層,如鑒於本揭示案所瞭解。介電質層220可具有任何合適介電常數,但是在一些實施例中為高-k介電材料,諸如適合於第IV族電晶體組態之高-k閘極介電質的高-k介電材料。通常,高-k介電材料包括具有大於二氧化矽之介電常數的介電常數(大於3.9之k-值)的材料。示例性高k介電材料包括例如氧化鉿、氧化鉿矽、氧化鑭、氧化鑭鋁、氧化鋯、氧化鋯矽、氧化鉭、氧化鉭矽、氧化鈦、氧化鋇鍶鈦、氧化鋇鈦 、氧化鍶鈦、氧化釔、氧化鋁、氧化矽、氧化鉛鈧鉭及鈮酸鉛鋅,僅舉一些例子。在一些實施例中,可對於介電質層220執行退火過程來改良其品質。介電質層220之厚度可在各個實施例之間變化,但是在一些情況下在1 nm至20 nm(例如,5 nm至10 nm)範圍內,取決於最終使用或目標應用。As further shown in FIG. 2, dielectric layer 220 is also provided over semiconductor layer 215 of SOI 200, and shallow trench isolation (STI) layer 230 is provided over dielectric layer 220. In some embodiments, one or both of layers 220 and 230 can include multiple material layers or stacked configurations. Additionally, one or more intervening layers may also be provided in some embodiments, as will be appreciated in light of this disclosure. Dielectric layer 220 can have any suitable dielectric constant, but in some embodiments is a high-k dielectric material, such as a high-k gate dielectric suitable for a Group IV transistor configuration. Dielectric material. Typically, high-k dielectric materials include materials having a dielectric constant greater than the dielectric constant of cerium oxide (a k-value greater than 3.9). Exemplary high-k dielectric materials include, for example, cerium oxide, cerium oxide, cerium oxide, cerium oxide, zirconia, zirconia cerium, cerium oxide, cerium oxide, titanium oxide, titanium cerium oxide, titanium cerium oxide, oxidation. Niobium, niobium oxide, aluminum oxide, antimony oxide, lead oxide antimony and lead and zinc antimonate, to name a few. In some embodiments, an annealing process can be performed on the dielectric layer 220 to improve its quality. The thickness of the dielectric layer 220 can vary from embodiment to embodiment, but in some cases from 1 nm to 20 nm (eg, 5 nm to 10 nm), depending on the end use or target application.
STI層230可包括任何合適絕緣體或隔離材料,諸如氧化物(例如,二氧化矽或氧化鋁)及/或氮化物(例如,氮化矽或氧氮化矽),僅舉幾個例子。在一些實施例中,STI層230可包括多個材料層或堆疊組態。STI層230可具有任何合適介電常數,但是在一些實施例中係低-k介電材料,諸如適合於提供相鄰電晶體之間之電隔離的低-k介電材料。通常,低-k介電材料包括具有小於二氧化矽之介電常數的介電常數(小於3.9之k)的材料。示例性低-k介電材料包括,例如,多孔二氧化矽、多孔氮化矽、碳或氟摻雜二氧化矽、多孔碳摻雜二氧化矽、旋塗聚合物介電質,僅舉一些例子。厚度STI層230可在各個實施例之間變化,但是在一些情況下在50 nm至2微米(例如,200 nm至1微米)範圍內,取決於最終使用或目標應用並且如瞭解。STI layer 230 can comprise any suitable insulator or isolation material, such as an oxide (eg, ceria or alumina) and/or a nitride (eg, tantalum nitride or hafnium oxynitride), to name a few. In some embodiments, STI layer 230 can include multiple material layers or stacked configurations. STI layer 230 can have any suitable dielectric constant, but in some embodiments is a low-k dielectric material, such as a low-k dielectric material suitable for providing electrical isolation between adjacent transistors. Typically, low-k dielectric materials include materials having a dielectric constant (less than 3.9 k) that is less than the dielectric constant of ceria. Exemplary low-k dielectric materials include, for example, porous ceria, porous tantalum nitride, carbon or fluorine doped ceria, porous carbon doped ceria, spin-on polymer dielectric, to name a few example. The thickness STI layer 230 can vary between various embodiments, but in some cases is in the range of 50 nm to 2 microns (eg, 200 nm to 1 micron), depending on the end use or target application and as understood.
如鑒於本揭示案進一步瞭解,此等層205、210、215、220及230中之每一者可用於形成積體電路100之各種特徵及部件,如依次描述。此外注意,在一些實施例中,此等層210、215、220及230中之每一者可使用標準處理以覆蓋層方式依序在基板205上提供,該標準處理諸如化學氣相沉積(CVD)、原子層沉積(ALD)、物理氣相沉積(PVD)、氧化及植入過程,僅舉幾個例子。形成圖2一個多層結構之後,該方法可繼續形成各種裝置。注意在一些實施例中,該結構可預先完成或另外獲得以便隨後相對於圖3至10示出之方法來使用。As further appreciated in light of this disclosure, each of these layers 205, 210, 215, 220, and 230 can be used to form various features and components of integrated circuit 100, as described in turn. It is further noted that in some embodiments, each of the layers 210, 215, 220, and 230 can be provided sequentially on the substrate 205 in a blanket manner using standard processing, such as chemical vapor deposition (CVD). ), atomic layer deposition (ALD), physical vapor deposition (PVD), oxidation, and implantation processes, to name a few. After forming a multilayer structure of Figure 2, the method can continue to form various devices. Note that in some embodiments, the structure may be pre-finished or otherwise obtained for subsequent use with respect to the methods illustrated in Figures 3-10.
圖3示出根據一實施例的在為了第III-V族電晶體生長而形成渠溝之後的所得結構。如在此示例性情況中可發現,STI層230、介電質層220、半導體層215及絕緣體層210之部分得以移除,從而在下伏基板205上形成渠溝335並且暴露下伏基板205。在一個此類情況中,基板205可具有相對於渠溝方向之晶體定向111。此111定向完全適合於諸如GaN之III-N材料之生長。在其他實施例中,渠溝335可終止於該結構之不同層上,諸如半導體層215,從而亦可提供適合於生長電晶體材料之特定定向。雖然多種蝕刻方案可用於形成渠溝,但是一個實施例使用濕式及/或乾式蝕刻過程之組合。舉例而言,若STI層230係氮化矽並且介電質層220係二氧化矽,則包括熱磷酸之濕式蝕刻過程可用於蝕刻貫穿STI層230以便暴露下伏介電質層220。然後,在此濕式蝕刻之後可進行稀氫氟(HF)酸或三元混合氣體酸浸漬以便圖案化蝕刻介電質層220,從而暴露下伏半導體層215。若渠溝335終止於下部基板205上,則進一步蝕刻可用於移除半導體層215及絕緣體層210。此層之蝕刻劑可例如基於其對於晶體定向之選擇性來選擇,從而提供各向異性蝕刻。例如,若半導體層215係矽並且渠溝以100晶體方向來定向,則諸如氫氧化鉀(KOH)或氫氧化四甲基銨(TMAH)之蝕刻劑可用於比在111方向上快得多地在100晶體方向上蝕刻該層215。亦可使用其他此類選擇性或所謂各向異性蝕刻方案,取決於諸如層215之組成及渠溝335相對於晶體定向之定向的因素。亦可使用定向乾式蝕刻。渠溝335之尺寸可在各個實施例之間變化,但是在一些情況下,每個渠溝335具有50 nm至約50 µm範圍內之橫截面開口。Figure 3 illustrates the resulting structure after forming a trench for the growth of a Group III-V transistor, in accordance with an embodiment. As can be seen in this exemplary case, portions of STI layer 230, dielectric layer 220, semiconductor layer 215, and insulator layer 210 are removed, thereby forming trenches 335 on underlying substrate 205 and exposing underlying substrate 205. In one such case, the substrate 205 can have a crystal orientation 111 relative to the direction of the trench. This 111 orientation is well suited for the growth of III-N materials such as GaN. In other embodiments, the trenches 335 may terminate on different layers of the structure, such as the semiconductor layer 215, thereby also providing a particular orientation suitable for growing the transistor material. While various etching schemes can be used to form the trenches, one embodiment uses a combination of wet and/or dry etching processes. For example, if the STI layer 230 is tantalum nitride and the dielectric layer 220 is germanium dioxide, a wet etch process including hot phosphoric acid can be used to etch through the STI layer 230 to expose the underlying dielectric layer 220. Then, a dilute hydrofluoric (HF) acid or a ternary mixed gas acid immersion may be performed after this wet etching to pattern the etch dielectric layer 220, thereby exposing the underlying semiconductor layer 215. If the trench 335 terminates on the lower substrate 205, further etching can be used to remove the semiconductor layer 215 and the insulator layer 210. The etchant of this layer can be selected, for example, based on its selectivity for crystal orientation to provide an anisotropic etch. For example, if the semiconductor layer 215 is tied and the trench is oriented in the 100 crystal orientation, an etchant such as potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) can be used much faster than in the 111 direction. This layer 215 is etched in the 100 crystal direction. Other such selective or so-called anisotropic etching schemes may also be used, depending on factors such as the composition of layer 215 and the orientation of trench 335 relative to crystal orientation. Directional dry etching can also be used. The size of the trench 335 can vary between various embodiments, but in some cases, each trench 335 has a cross-sectional opening in the range of 50 nm to about 50 μm.
在形成渠溝335之後,該方法繼續用III-V材料來填充渠溝,從而導致形成電路之第III-V族電晶體。示例性實施例在圖4A、圖4B及圖4C中示出。如可發現,此示例性實施例之結構總體上包括III-V半導體主體440、在半導體主體440之通道中誘導2DEG之III-V極化層445,及III-V半導體材料450之生長(450A、450B或450C,在圖4A-C示出之相應實施例中)。其他實施例可包括其他層,因為存在第III-V族電晶體之許多組態,並且任何此等組態可根據本揭示案之實施例來實行,如瞭解。例如,並且如先前參照圖1'來解釋,在渠溝335中形成之第一層可選擇性地為成核層,例如,具有約10 nm至400 nm範圍內(例如,~50 nm)之厚度之AlN層。在一個示例性實施例中,III-V半導體主體440係III-N材料諸如GaN或InGaN,該等III-N材料尤其完全適合於高功率應用,此部分地歸因於其較寬帶隙、較高臨界擊穿電場及較高電子飽和。極化層445可為例如AlN、AlInN、AlGaN或AlInGaN。生長之III-V半導體材料445可為GaN,例如,或可以可預測或在其他方面一致方式來生長之其他III-V材料,如鑒於本揭示案所瞭解。如鑒於本揭示案進一步瞭解,給定此可預測之生長模式,相鄰第III-V族電晶體之生長區域之間之距離W可得以可靠地判定。此外注意生長之III-V半導體材料可具有不同形狀。After forming the trench 335, the method continues to fill the trench with the III-V material, resulting in the formation of a circuit III-V transistor. An exemplary embodiment is illustrated in Figures 4A, 4B, and 4C. As can be seen, the structure of this exemplary embodiment generally includes a III-V semiconductor body 440, a III-V polarization layer 445 that induces 2DEG in the channel of the semiconductor body 440, and a growth of the III-V semiconductor material 450 (450A). , 450B or 450C, in the respective embodiment shown in Figures 4A-C). Other embodiments may include other layers because of the many configurations of the III-V family of transistors, and any such configuration may be practiced in accordance with embodiments of the present disclosure, as appreciated. For example, and as previously explained with reference to FIG. 1 ', the first layer formed in trench 335 can be selectively a nucleation layer, for example, having a range of about 10 nm to 400 nm (eg, ~50 nm). AlN layer of thickness. In an exemplary embodiment, the III-V semiconductor body 440 is a III-N material such as GaN or InGaN, which are particularly well suited for high power applications, due in part to their wider bandwidth, High critical breakdown electric field and high electron saturation. The polarization layer 445 can be, for example, AlN, AlInN, AlGaN, or AlInGaN. The grown III-V semiconductor material 445 can be GaN, for example, or other III-V materials that can be predicted or otherwise grown in a consistent manner, as understood in light of the present disclosure. As further understood in light of the present disclosure, given this predictable growth pattern, the distance W between the growth regions of adjacent III-V transistors can be reliably determined. It is further noted that the grown III-V semiconductor material can have different shapes.
III-N特徵440、445及450(及任何其他層,諸如成核層)之形成可使用許多沉積技術來執行,該等沉積技術包括例如金屬有機化學氣相沉積(MOCVD)、分子束磊晶(MBE)化學氣相沉積(CVD)、原子層沉積(ALD)、物理氣相沉積(PVD)。如以上論述,GaN具有與Si之較大晶格錯配及熱膨脹係數之較大錯配,通常導致在Si上生長之GaN材料中之較高缺陷密度。因此,在一些實施例中,Si上之高品質GaN使用橫向磊晶生長(LEO)條件來生長。此LEO處理可包括,例如,在圖案化渠溝335內在Si基板205上使GaN主體440生長,隨後允許材料長滿渠溝335,從而形成橫向生長區域450A、450B或450C。以此方式,當材料在STI層230上形成時,可存在於生長材料中之缺陷能夠彎曲或以其他方式減少,從而留下適合於電晶體通道使用之GaN材料440的其餘部分。The formation of III-N features 440, 445, and 450 (and any other layers, such as nucleation layers) can be performed using a number of deposition techniques including, for example, metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy. (MBE) chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD). As discussed above, GaN has a large lattice mismatch with Si and a large mismatch in thermal expansion coefficient, typically resulting in higher defect densities in GaN materials grown on Si. Thus, in some embodiments, high quality GaN on Si is grown using lateral epitaxial growth (LEO) conditions. This LEO process can include, for example, growing the GaN body 440 on the Si substrate 205 within the patterned trench 335, then allowing the material to fill the trench 335, thereby forming a lateral growth region 450A, 450B or 450C. In this manner, when a material is formed on the STI layer 230, defects that may be present in the growth material can be bent or otherwise reduced, leaving the remainder of the GaN material 440 suitable for use with the transistor channel.
在一個示例性製程流中,諸如GaN之III-V半導體主體440之生長可加以中斷或修改以形成極化層445。舉例而言,在一些此類示例性實施例中,GaN主體440恰好生長至STI層230之表面下方,然後將沉積過程參數修改以便從生長GaN轉變至生長極化層445材料。在形成相對薄極化層445之後,沉積過程參數可再一次修改以便從生長極化層445轉變至生長GaN,從而允許GaN 450之持續橫向磊晶生長。極化層445可包括任何合適材料,諸如一或多種III-V材料,並且更具體而言在一些實施例中,例如一或多種III-N材料。在具有GaN主體440之一些實施例中,極化層445包括鋁,以使得該層包括AlN、AlGaN、InAlN及InAlGaN中之至少一者。極化層445有效地增加GaN主體440中之電晶體通道區域中之載流子遷移率以便誘導2DEG。在此等情況下,極化層445總體上包括具有比III-N主體440之材料更高帶隙的材料以便形成2DEG。舉例而言,在一些實施例中,半導體主體440係GaN並且極化層445係AlN及/或AlGaN。在一些實施例中,極化層445可具有包括多種III-V材料之多層結構,其中多層結構中之一個層可存在以便進一步增加電晶體通道區域中之載流子遷移率及/或改良極化層445與上覆層之間之相容性(例如,介面陷阱之密度)。在一些實施例中,極化層445可包括或可不包括將該層之至少一部分中之一或多種材料之含量分級(例如,遞增及/或遞減)。注意極化層445之厚度亦可在各個實施例之間變化,並且可例如在1 nm至20 nm(例如,5 nm至10 nm)範圍內。In an exemplary process flow, growth of the III-V semiconductor body 440, such as GaN, can be interrupted or modified to form a polarized layer 445. For example, in some such exemplary embodiments, GaN body 440 is just grown below the surface of STI layer 230 and then the deposition process parameters are modified to transition from growing GaN to growing polarization layer 445 material. After forming the relatively thin polarized layer 445, the deposition process parameters can be modified again to transition from the grown polarization layer 445 to the grown GaN, allowing for continued lateral epitaxial growth of the GaN 450. Polarization layer 445 can comprise any suitable material, such as one or more III-V materials, and more specifically, in some embodiments, such as one or more III-N materials. In some embodiments having a GaN body 440, the polarizing layer 445 includes aluminum such that the layer includes at least one of AlN, AlGaN, InAlN, and InAlGaN. The polarizing layer 445 effectively increases the carrier mobility in the transistor channel region in the GaN body 440 to induce 2DEG. In such cases, the polarizing layer 445 generally includes a material having a higher band gap than the material of the III-N body 440 to form a 2DEG. For example, in some embodiments, semiconductor body 440 is GaN and polarized layer 445 is AlN and/or AlGaN. In some embodiments, the polarizing layer 445 can have a multilayer structure comprising a plurality of III-V materials, wherein one of the layers can exist to further increase carrier mobility and/or improved poles in the transistor channel region. The compatibility between the layer 445 and the overlying layer (eg, the density of interface traps). In some embodiments, the polarizing layer 445 may or may not include grading (eg, increasing and/or decreasing) the content of one or more materials in at least a portion of the layer. Note that the thickness of the polarizing layer 445 can also vary between various embodiments and can range, for example, from 1 nm to 20 nm (eg, 5 nm to 10 nm).
生長III-V半導體材料450之條件可用於改變所得磊晶生長結構之性質。在一些實施例中,III-V生長區域之刻面或蓋罩藉由例如用於沉積材料之V/III比率以及生長溫度及壓力來控制。通常,增加V/III比率有利於長方形端面形成,諸如圖4B示出之蓋罩450B及圖4C示出之蓋罩450C,增加沉積溫度及降低壓力亦如此。又通常,較低V/III比率、較低溫度及較高壓力有利於三角形端面形成,諸如圖4A示出之蓋罩450A。另外,用於III-V主體440生長之渠溝335之定向可導致所得生長區域450A-C之不同端面。在一個具體實施例中,例如,對於<100>Si基板205及GaN 450,沿著<110>方向之渠溝335定向有利於三角形端面(圖4A)。在另一個示例性實施例中,對於<100>Si基板205及GaN 450,沿著<100>方向之渠溝335定向有利於長方形端面(圖4B或4C)。在另一個示例性實施例中,對於<111>Si基板205及GaN 450,沿著<112>方向之渠溝335定向有利於三角形端面(圖4A)。The conditions for growing the III-V semiconductor material 450 can be used to modify the properties of the resulting epitaxial growth structure. In some embodiments, the facets or caps of the III-V growth region are controlled by, for example, a V/III ratio for deposition material and growth temperature and pressure. In general, increasing the V/III ratio facilitates the formation of a rectangular end face, such as the cover 450B shown in FIG. 4B and the cover 450C shown in FIG. 4C, as well as increasing the deposition temperature and lowering the pressure. Again, generally, a lower V/III ratio, lower temperature, and higher pressure facilitate triangular end face formation, such as cover 450A shown in Figure 4A. Additionally, the orientation of the trenches 335 for the growth of the III-V body 440 can result in different end faces of the resulting growth regions 450A-C. In one embodiment, for example, for <100> Si substrate 205 and GaN 450, the trench 335 along the <110> direction is oriented to favor the triangular end face (Fig. 4A). In another exemplary embodiment, for the <100> Si substrate 205 and the GaN 450, the trenches 335 along the <100> direction are oriented to favor the rectangular end faces (Fig. 4B or 4C). In another exemplary embodiment, for the <111> Si substrate 205 and the GaN 450, the trenches 335 along the <112> direction are oriented to favor the triangular end faces (Fig. 4A).
如鑒於本揭示案瞭解,橫向磊晶生長技術可用於形成III-V電晶體特徵,該等特徵可用於精確判定在彼等III-V電晶體之間定位之電晶體之各種特徵,諸如閘極長度,Lg。舉例而言,如圖4A-C示出,在STI層230上形成橫向生長區域450A、450B及450C導致在相鄰蓋罩之間形成具有寬度W之間隙460。橫向生長可根據需要來繼續,增加蓋罩450之大小,由此相應地減少在其之間之間隙460之寬度,直到達成指定或目標間隙寬度為止。然後可停止生長,諸如藉由結束持續生長所需要的試劑之供應,或另外調整過程以停止生長,諸如藉由減少溫度或增加壓力超過給定生長臨界值。以此方式,間隙之寬度可以相對精確方式來控制,並且在本揭示案之一些實施例中,可藉由控制橫向磊晶生長之處理條件來一致地產生極小間隙460。舉例而言,可使用本文描述之方法來達成具有小於約100 nm,諸如小於約75 nm,或小於約50 nm,或小於25 nm,或小於15 nm,或小於10 nm之寬度之間隙(例如,1 nm至9 nm間隙)。As is apparent in light of the present disclosure, lateral epitaxial growth techniques can be used to form III-V transistor features that can be used to accurately determine various features of a transistor positioned between its III-V transistors, such as a gate. Length, Lg. For example, as shown in Figures 4A-C, forming lateral growth regions 450A, 450B, and 450C on STI layer 230 results in the formation of a gap 460 having a width W between adjacent covers. Lateral growth can continue as needed, increasing the size of the cover 450, thereby correspondingly reducing the width of the gap 460 therebetween until a specified or target gap width is achieved. Growth can then be stopped, such as by ending the supply of reagents required for continued growth, or otherwise adjusting the process to stop growth, such as by decreasing the temperature or increasing the pressure beyond a given growth threshold. In this manner, the width of the gap can be controlled in a relatively precise manner, and in some embodiments of the present disclosure, the minimal gap 460 can be consistently produced by controlling the processing conditions of lateral epitaxial growth. For example, a method described herein can be used to achieve a gap having a width of less than about 100 nm, such as less than about 75 nm, or less than about 50 nm, or less than 25 nm, or less than 15 nm, or less than 10 nm (eg, , 1 nm to 9 nm gap).
然後,間隙460可用於形成介入電晶體,諸如Si PMOS或其他第IV族電晶體之閘極。因此,若第一電晶體,諸如Si電晶體之閘極在相鄰第二電晶體之間定位,並且在一些實施例中在中心定位,則該閘極在第二電晶體之間實質上為等距離的。在形成閘極之後,可移除III-V生長區域450,並且下伏主體440及極化層445可用於形成III-V電晶體,諸如GaN NMOS電晶體。因此,事實上,橫向磊晶生長區域450在形成在其之間定位之電晶體之閘極或其他特徵的過程中用作臨時遮罩。所得積體電路包含兩個第二材料系統相鄰裝置之間之第一材料系統裝置,並且第二相鄰裝置事實上界定第一裝置之至少一個特徵之位置及尺寸。The gap 460 can then be used to form an interposer transistor, such as a gate of a Si PMOS or other Group IV transistor. Thus, if a first transistor, such as a gate of a Si transistor, is positioned between adjacent second transistors, and in some embodiments is centered, the gate is substantially between the second transistors Isometric. After the gate is formed, the III-V growth region 450 can be removed, and the underlying body 440 and the polarization layer 445 can be used to form a III-V transistor, such as a GaN NMOS transistor. Thus, in fact, the lateral epitaxial growth region 450 acts as a temporary mask in the process of forming the gate or other features of the transistor positioned therebetween. The resulting integrated circuit includes a first material system device between two adjacent devices of the second material system, and the second adjacent device in fact defines the location and size of at least one feature of the first device.
示例性實施例之進一步細節在圖5-7中示出。如圖5示出,相鄰蓋罩450係在III-V半導體主體440上之極化層445上形成之橫向磊晶生長區域並且在STI層230上延伸,形成具有寬度W之間隙。雖然示出蓋罩450A,但是相同方法可用於蓋罩450B及450C,如鑒於本揭示案所瞭解。因此,以下提及蓋罩或區域450A、450B或450C簡稱為蓋罩或區域450。STI層230之暴露部分可藉由各種蝕刻過程來移除以形成閘極渠溝570,其在此實施例中係暴露介電質層220之一部分的STI層230中之腔穴。因此,在一些實施例中,蝕刻貫穿STI層發生並且在介電質層220處停止。許多蝕刻過程可用於選擇性移除STI層230而不移除介電質層220或區域450,包括各種選擇性濕式或乾燥各向同性蝕刻(提供貫穿STI層之各向異性或定向蝕刻)。在蝕刻期間,對於給定蝕刻化學,III-V蓋罩450保持或另外具有實質上小於STI 230材料之蝕刻速率的蝕刻速率。因此,橫向磊晶生長區域基本上充當形成閘極特徵之遮罩。舉例而言,根據一實施例,若STI層230係氮化矽,生長區域450係GaN,並且介電質層220係二氧化矽或高-k介電質諸如氧化鉿,則包括熱磷酸之濕式蝕刻過程可用於蝕刻STI層230,暴露下伏介電質層220,並且相對最小程度地移除GaN區域450及介電質層220。Further details of the exemplary embodiments are illustrated in Figures 5-7. As shown in FIG. 5, adjacent cover 450 is a lateral epitaxial growth region formed on polarizing layer 445 on III-V semiconductor body 440 and extends over STI layer 230 to form a gap having a width W. Although cover 450A is shown, the same method can be used for covers 450B and 450C, as will be appreciated in light of this disclosure. Therefore, the following reference to the cover or region 450A, 450B or 450C is simply referred to as a cover or region 450. The exposed portion of the STI layer 230 can be removed by various etching processes to form a gate trench 570, which in this embodiment exposes a cavity in the STI layer 230 of a portion of the dielectric layer 220. Thus, in some embodiments, etching occurs across the STI layer and stops at the dielectric layer 220. A number of etching processes can be used to selectively remove the STI layer 230 without removing the dielectric layer 220 or region 450, including various selective wet or dry isotropic etches (providing anisotropic or directional etch through the STI layer) . During etching, the III-V cap 450 maintains or otherwise has an etch rate that is substantially less than the etch rate of the STI 230 material for a given etch chemistry. Thus, the lateral epitaxial growth region acts essentially as a mask that forms the gate features. For example, according to an embodiment, if the STI layer 230 is tantalum nitride, the growth region 450 is GaN, and the dielectric layer 220 is ruthenium dioxide or a high-k dielectric such as ruthenium oxide, including hot phosphoric acid. The wet etch process can be used to etch STI layer 230, expose underlying dielectric layer 220, and remove GaN region 450 and dielectric layer 220 relatively minimally.
如圖5進一步示出,注意渠溝570相對於相鄰III-V半導體主體440之空間關係。具體而言,每個相鄰III-V半導體主體440之朝向內部之邊緣在彼等邊緣之間界定距離X。每個生長區域450從其對應主體440之邊緣延伸Y之距離。假設相鄰生長區域450之可預測生長模式,此距離Y亦為可預測的,與寬度W一樣。進一步得出結論渠溝570之中心在距相鄰生長區域450之任一邊緣的X/2之距離處。如先前解釋,對於渠溝570相對於相鄰生長區域450之實際中心,可允許合理容差,取決於諸如X之值(值X越大,所允許的容差越大)的因素。例如,在一些情況下,在任一方向上,渠溝570之中心(如在橫截面中所見)可偏離X/2之位置多達X/2之10%,而其他實施例具有5%或更小,或2.5%或更小之更嚴密容差。如鑒於本揭示案所瞭解,尤其對於相對窄渠溝570(例如,<20 nm)之此一致渠溝佈局很難使用標準過程來實現。As further shown in FIG. 5, attention is paid to the spatial relationship of the trenches 570 relative to the adjacent III-V semiconductor body 440. In particular, the inwardly facing edges of each adjacent III-V semiconductor body 440 define a distance X between their edges. Each growth zone 450 extends a distance Y from the edge of its corresponding body 440. Assuming a predictable growth pattern of adjacent growth regions 450, this distance Y is also predictable, as is the width W. It is further concluded that the center of the trench 570 is at a distance of X/2 from either edge of the adjacent growth region 450. As previously explained, for the actual center of the trench 570 relative to the adjacent growth region 450, a reasonable tolerance may be tolerated, depending on factors such as the value of X (the larger the value X, the greater the tolerance allowed). For example, in some cases, the center of the channel 570 (as seen in cross-section) may deviate from the position of X/2 by as much as 10% of X/2 in either direction, while other embodiments have 5% or less. , or a tighter tolerance of 2.5% or less. As understood in light of the present disclosure, this uniform trench layout, particularly for relatively narrow trenches 570 (eg, < 20 nm), is difficult to achieve using standard processes.
如在圖6示出之示例性實施例中展示,在STI層230中形成之渠溝570可用金屬填充以在相鄰蓋罩450之間形成閘極680。在一些實施例中,可使用任何合適閘極金屬沉積過程(例如,CVD、PVD、MBE),然後可進行各種蝕刻、拋光、平坦化及清潔過程。閘極680可為例如多晶矽,或各種合適金屬或金屬合金,諸如鋁(Al)、鎢(W)、鈦(Ti)、銅(Cu)、釕(Ru)、鎳(Ni)、鈀(Pd)、鉑(Pt)及氮化鈦(TiN),僅舉幾個例子。在此示例性實施例中,注意蓋罩450界定在STI層230中形成之閘極680之閘極長度,Lg。因此,根據一些實施例,如本文描述,蓋罩450在STI層230上延伸之程度可根據需要來控制以提供具有介入電晶體之閘極之目標Lg值所需要之寬度的間隙。As shown in the exemplary embodiment illustrated in FIG. 6, trenches 570 formed in STI layer 230 may be filled with metal to form gate 680 between adjacent caps 450. In some embodiments, any suitable gate metal deposition process (eg, CVD, PVD, MBE) can be used, and then various etching, polishing, planarization, and cleaning processes can be performed. Gate 680 can be, for example, polysilicon, or various suitable metals or metal alloys such as aluminum (Al), tungsten (W), titanium (Ti), copper (Cu), ruthenium (Ru), nickel (Ni), palladium (Pd) ), platinum (Pt) and titanium nitride (TiN), to name a few. In this exemplary embodiment, it is noted that the cover 450 defines the gate length, Lg, of the gate 680 formed in the STI layer 230. Thus, in accordance with some embodiments, as described herein, the extent to which the cover 450 extends over the STI layer 230 can be controlled as needed to provide a gap having the width required to intervene the target Lg value of the gate of the transistor.
根據一實施例,如圖7示出,一旦形成基於渠溝之特徵(電晶體閘極,在示出之示例性實施例中),該過程可繼續移除生長區域450。生長區域450可使用許多合適過程來移除,例如像平坦化繼之以拋光,或對於區域450材料具有選擇性之蝕刻。亦可包括各種介入過程。在其他實施例中,注意生長區域450可不移除,或可僅部分移除或另外進一步成形及定製以便隨後用於III-V裝置中。According to an embodiment, as shown in FIG. 7, once a trench-based feature (a transistor gate, in the illustrated exemplary embodiment) is formed, the process may continue to remove the growth region 450. Growth region 450 can be removed using a number of suitable processes, such as, for example, planarization followed by polishing, or selective etching of region 450 material. Various interventional procedures can also be included. In other embodiments, it is noted that the growth zone 450 may not be removed, or may only be partially removed or otherwise further shaped and customized for subsequent use in a III-V device.
根據一些實施例,在移除生長區域450之後,可提供各種其他特徵及/或層。舉例而言,如圖8A示出,STI層230及介電質層220之定向蝕刻可用於形成或另外成形在閘極680旁邊之閘極間隔物891以及在極化層445及III-V主體440旁邊之剩餘STI材料892。注意891及892可為與STI 230相同之材料。可使用許多蝕刻過程,例如像在CF4 、CF4 /O2 /Ar、Cl2 /O2 或HBr/CF3 中之乾式蝕刻,其尤其適用於STI層之高度定向蝕刻移除,從而在一些實施例中提供平行或幾乎平行側壁及閘極間隔物。另外,在一些實施例中,避免蝕刻極化層445及GaN主體440(或其他合適III-V主體440)。遮罩可用於根據需要來促進間隔物蝕刻過程之選擇性。According to some embodiments, various other features and/or layers may be provided after the growth region 450 is removed. For example, as shown in FIG. 8A, directional etching of STI layer 230 and dielectric layer 220 can be used to form or otherwise form gate spacers 891 alongside gate 680 and to polarized layers 445 and III-V bodies. The remaining STI material 892 next to 440. Note that 891 and 892 can be the same material as STI 230. Many etching processes can be used, such as dry etching in CF 4 , CF 4 /O 2 /Ar, Cl 2 /O 2 or HBr/CF 3 , which are especially suitable for highly directional etch removal of STI layers, thereby Parallel or nearly parallel sidewalls and gate spacers are provided in some embodiments. Additionally, in some embodiments, etching of polarized layer 445 and GaN body 440 (or other suitable III-V body 440) is avoided. The mask can be used to promote the selectivity of the spacer etch process as needed.
間隔物蝕刻之深度可在各個實施例之間變化,取決於源極/汲極組態。在圖8A示出之示例性情況中,蝕刻終止於半導體層215。在此情況中,該方法可進一步包括離子植入來摻雜層215以便在閘極680任一側形成源極及汲極區域。舉例而言,在其中層215係矽的一個此類實施例中,層215之暴露部分可藉由植入來p-摻雜(例如,硼、鎵、鋁)。在圖8B示出之示例性情況中,蝕刻止擋物繼續貫穿半導體層215(例如,使用標準各向異性或定向蝕刻)並且終止於下伏絕緣體層210。在此等情況下,該方法可進一步包括源極及汲極區域之磊晶再生長。舉例而言,磊晶矽或SiGe或鍺,或一些其他替代源極/汲極材料可在源極汲極區域中生長。在此等實施例中,注意替代S/D材料可例如從暴露半導體層215之側壁生長(例如,根據一些實施例,矽或SiGe可從Si層215生長,或鍺或SiGe可從Ge層215生長)。摻雜磊晶材料可原位(在沉積期間)進行或後來藉由植入來進行。在一些實施例中,源極/汲極區域可包括額外層,諸如轉變至給定組分之所需濃度的(諸如鍺之半導體材料之濃度,或摻雜物濃度)的分級緩衝層及/或接觸電阻減少層及/或功函數調節層。The depth of the spacer etch can vary between various embodiments depending on the source/drain configuration. In the exemplary case illustrated in FIG. 8A, the etch terminates at the semiconductor layer 215. In this case, the method can further include ion implantation to dope layer 215 to form source and drain regions on either side of gate 680. For example, in one such embodiment in which layer 215 is defective, the exposed portion of layer 215 can be p-doped (eg, boron, gallium, aluminum) by implantation. In the exemplary case illustrated in FIG. 8B, the etch stop continues through the semiconductor layer 215 (eg, using standard anisotropic or directional etch) and terminates in the underlying insulator layer 210. In such cases, the method can further include epitaxial regrowth of the source and drain regions. For example, epitaxial germanium or SiGe or germanium, or some other alternative source/drain material, can be grown in the source drain region. In such embodiments, it is noted that alternative S/D materials may be grown, for example, from sidewalls of exposed semiconductor layer 215 (eg, germanium or SiGe may be grown from Si layer 215, or germanium or SiGe may be from Ge layer 215, in accordance with some embodiments). Growing). The doped epitaxial material can be performed in situ (during deposition) or later by implantation. In some embodiments, the source/drain regions may include additional layers, such as a graded buffer layer that transitions to a desired concentration of a given component (such as the concentration of semiconductor material of germanium, or dopant concentration) and/or Or contact the resistance reduction layer and / or the work function adjustment layer.
因此,根據一些實施例,STI層230可用於提供閘極間隔物891及側壁間隔物892,並且介電質層220用於提供閘極介電質層220。注意閘極介電質220如何在閘極間隔物891下方定位。在典型第IV族電晶體組態中,閘極介電質材料不在閘極間隔物下方,而是實際上僅在閘極間隔物之間。因此,根據本揭示案之一些實施例來形成之結構的說明性指示物係閘極介電質上之閘極間隔物,其可進一步與在兩個相鄰電晶體之間中心定位之閘極組合,其可進一步與相對較窄之閘極組合。Thus, in accordance with some embodiments, STI layer 230 can be used to provide gate spacers 891 and sidewall spacers 892, and dielectric layer 220 is used to provide gate dielectric layer 220. Note how the gate dielectric 220 is positioned below the gate spacer 891. In a typical Group IV transistor configuration, the gate dielectric material is not under the gate spacer, but is actually only between the gate spacers. Thus, an illustrative indicator of a structure formed in accordance with some embodiments of the present disclosure is a gate dielectric gate spacer that can further be centered with a gate between two adjacent transistors. In combination, it can be further combined with a relatively narrow gate.
繼續該方法,根據一實施例,一旦與先前解釋的達到所需深度之所得源極/汲極渠溝一起,形成閘極間隔物891,則可形成源極/汲極區域及觸點。在圖9示出之示例性實施例中,源極/汲極區域995(進一步標示為S及D)在絕緣體層210上或在其上方提供,該提供過程係藉由將絕緣體層210上之半導體層215進行植入物摻雜(如相對於圖8A解釋),或在絕緣體層210上或上方之替代源極/汲極材料之磊晶生長(如相對於圖8B解釋)。其他實施例可使用其他源極/汲極區域995形成技術,如瞭解。如進一步瞭解,源極/汲極區域995可包括許多材料(例如,矽、鍺、SiGe)及摻雜方案(例如,未摻雜、n型摻雜或p型摻雜)。舉例而言,在其中該結構包含氧化層210上之矽層215並且電晶體裝置被組配成PMOS裝置的一實施例中,源極/汲極區域995可包括例如硼摻雜Si或SiGe。在其中電晶體裝置被組配成NMOS裝置的另一個示例性實施例中,源極/汲極區域995可包括例如磷摻雜Si。摻雜濃度可根據需要來設定(例如,每立方公分約2E20之摻雜量)。如先前解釋,S/D區域995可具有包括多個材料層之多層結構。例如,在一些實施例中,在沉積主要S/D材料之前,可沉積鈍化材料以有助於S/D材料與下方層材料之間之介面的品質。此外,,在一些實施例中,可在S/D區域之頂部形成觸點改良材料以有助於例如與S/D觸點進行接觸,如以下描述。在一些實施例中,S/D區域可包括將該等區域之至少一部分中之一或多種材料之含量分級(例如,遞增及/或遞減)。Continuing with the method, according to an embodiment, the source/drain regions and contacts can be formed once the gate spacers 891 are formed along with the previously obtained source/drain trenches that achieve the desired depth. In the exemplary embodiment illustrated in FIG. 9, source/drain regions 995 (further labeled S and D) are provided on or over insulator layer 210 by providing insulator layer 210 thereon. The semiconductor layer 215 is implant doped (as explained with respect to FIG. 8A), or epitaxial growth of the alternative source/drain material on or above the insulator layer 210 (as explained with respect to FIG. 8B). Other embodiments may use other source/drain regions 995 to form the technique, as appreciated. As further understood, the source/drain regions 995 can include a number of materials (eg, germanium, germanium, SiGe) and doping schemes (eg, undoped, n-doped, or p-doped). For example, in an embodiment where the structure includes a germanium layer 215 on the oxide layer 210 and the transistor device is assembled into a PMOS device, the source/drain regions 995 can include, for example, boron doped Si or SiGe. In another exemplary embodiment in which the transistor device is assembled into an NMOS device, the source/drain region 995 can include, for example, phosphorus doped Si. The doping concentration can be set as desired (for example, a doping amount of about 2E20 per cubic centimeter). As previously explained, the S/D region 995 can have a multilayer structure that includes multiple layers of material. For example, in some embodiments, a passivation material may be deposited to aid in the quality of the interface between the S/D material and the underlying layer material prior to deposition of the primary S/D material. Moreover, in some embodiments, a contact improving material can be formed on top of the S/D region to facilitate, for example, contact with the S/D contact, as described below. In some embodiments, the S/D region can include grading (eg, increasing and/or decreasing) the content of one or more of the materials in at least a portion of the regions.
如可在圖9中進一步發現,該方法繼續在S/D區域995上提供S/D觸點996並且可包括任何合適材料,諸如導電金屬或合金(例如,鋁、鎢、銀、鎳-鉑或鎳-鋁)。在一些實施例中,S/D觸點996可包括電阻減少金屬及接觸插塞金屬,或僅接觸插塞,取決於最終使用或目標應用。示例性接觸電阻減少金屬可包括銀、鎳、鋁、鈦、金、金-鍺、鎳-鉑或鎳鋁,及/或其他此類電阻減少金屬或合金。接觸插塞金屬可包括例如鋁、銀、鎳、鉑、鈦,或鎢,或其合金,但是可使用任何合適導電觸點金屬或合金,取決於最終使用或目標應用。在一些實施例中,若需要,可在S/D觸點區域中存在額外層,諸如黏附層(例如,氮化鈦)及/或襯墊或屏障層(例如,氮化鉭)。在一些實施例中,可執行S/D觸點996之金屬化,例如,使用矽化或鍺化過程(例如,總體上,將觸點金屬沉積在含有矽或鍺之S/D區域995上,繼之以退火)。鑒於本揭示案,許多S/D組態係顯而易知的。As further found in FIG. 9, the method continues to provide S/D contacts 996 on S/D region 995 and may comprise any suitable material, such as a conductive metal or alloy (eg, aluminum, tungsten, silver, nickel-platinum). Or nickel-aluminum). In some embodiments, the S/D contact 996 can include a resistance reducing metal and a contact plug metal, or only a contact plug, depending on the end use or target application. Exemplary contact resistance reducing metals can include silver, nickel, aluminum, titanium, gold, gold-bismuth, nickel-platinum or nickel aluminum, and/or other such electrical resistance reducing metals or alloys. The contact plug metal can include, for example, aluminum, silver, nickel, platinum, titanium, or tungsten, or alloys thereof, although any suitable conductive contact metal or alloy can be used, depending on the end use or intended application. In some embodiments, additional layers may be present in the S/D contact region, such as an adhesion layer (eg, titanium nitride) and/or a liner or barrier layer (eg, tantalum nitride), if desired. In some embodiments, metallization of the S/D contact 996 can be performed, for example, using a deuteration or deuteration process (eg, generally, depositing a contact metal on the S/D region 995 containing germanium or germanium, Followed by annealing). In view of this disclosure, many S/D configurations are readily apparent.
如可在圖10中發現,根據一實施例,一旦第IV族電晶體形成完成,該方法繼續形成第III-V族電晶體之額外特徵。例如,在示出之示例性情況中,與在III-V主體440中藉由極化層445誘導之2DEG通道相鄰地提供源極/汲極區域1097(亦標示為S及D)。另外,閘極1099在通道上提供。在一些實施例中,S/D區域1097可使用任何合適技術來形成,如鑒於本揭示案顯而易知。舉例而言,在一些實施例中,S/D區域1097可藉由任擇圖案化/遮罩/微影術/蝕刻與沉積、生長及再生長S/D區域1097材料之任何組合來形成,然後可進行例如平坦化及/或拋光過程。注意雖然在圖10中,S/D區域1097展示為一個連續部分,但是在一些實施例中,S/D區域1097可包括多個部分,諸如與通道區域(其為III-V層440之頂部部分)相鄰之S/D材料及在S/D材料上方之S/D觸點。然而,在一些實施例中,所描繪裝置層上方之互連層之第一層可被視為S/D區域1097之S/D觸點。不論組態為何,在一些實施例中,S/D材料(其在S/D區域1097之至少一部分中)可包括任何合適材料,諸如III-V材料、III-N材料,及/或任何其他合適材料,如鑒於本揭示案顯而易知。另外,在一些實施例中,S/D區域1097材料可使用任何合適摻雜技術以例如n型或p型方式來摻雜。在示例性實施例中,S/D區域1097可包括銦及氮(例如,InN或InGaN)並且可以n型方式摻雜(例如,使用Si、Se及/或Te,以每立方公分約2E20之摻雜量來摻雜)。在一些實施例中,S/D區域1097中之一者或兩者可具有包括多種材料之多層結構。在一些實施例中,S/D區域140中之一者或兩者可包括或可不包括將該等區域中之一者或兩者之至少一部分中之一或多種材料之含量分級(例如,遞增及/或遞減)。此外在一些實施例中,注意源極-閘極間隔可不同於汲極-閘極間隔,取決於III-V裝置之所需擊穿電壓。As can be seen in Figure 10, in accordance with an embodiment, once the formation of the Group IV transistor is complete, the method continues to form additional features of the Group III-V transistor. For example, in the illustrated exemplary case, source/drain regions 1097 (also labeled S and D) are provided adjacent to the 2DEG channel induced by polarization layer 445 in III-V body 440. Additionally, gate 1099 is provided on the channel. In some embodiments, S/D region 1097 can be formed using any suitable technique, as will be apparent from the present disclosure. For example, in some embodiments, the S/D region 1097 can be formed by any combination of optional patterning/masking/lithography/etching and deposition, growth, and regrowth of the long S/D region 1097 material, A planarization and/or polishing process can then be performed, for example. Note that although in FIG. 10, S/D region 1097 is shown as a contiguous portion, in some embodiments, S/D region 1097 can include multiple portions, such as with a channel region (which is the top of III-V layer 440) Partially adjacent S/D material and S/D contacts above the S/D material. However, in some embodiments, the first layer of the interconnect layer above the depicted device layer can be considered an S/D contact of the S/D region 1097. Regardless of the configuration, in some embodiments, the S/D material (which is in at least a portion of the S/D region 1097) can comprise any suitable material, such as a III-V material, a III-N material, and/or any other. Suitable materials are apparent as they are apparent from the present disclosure. Additionally, in some embodiments, the S/D region 1097 material can be doped, for example, in an n-type or p-type manner using any suitable doping technique. In an exemplary embodiment, the S/D region 1097 may include indium and nitrogen (eg, InN or InGaN) and may be doped in an n-type manner (eg, using Si, Se, and/or Te, at about 2E20 per cubic centimeter) Doping amount to doping). In some embodiments, one or both of the S/D regions 1097 can have a multilayer structure comprising a plurality of materials. In some embodiments, one or both of the S/D regions 140 may or may not include grading (eg, incrementing) the content of one or more of the materials in one or both of the regions. And / or decrement). Further in some embodiments, it is noted that the source-gate spacing can be different than the drain-gate spacing, depending on the desired breakdown voltage of the III-V device.
如先前解釋,在一些實施例中,S/D區域1097可包括S/D觸點。在一些此類實施例中,S/D觸點可包括任何合適材料,諸如導電金屬或合金(例如,鋁、鎢、銀、鎳-鉑或鎳-鋁)。在一些實施例中,S/D觸點可包括電阻減少金屬及接觸插塞金屬,或僅接觸插塞,取決於最終使用或目標應用。示例性接觸電阻減少金屬包括銀、鎳、鋁、鈦、金、金-鍺、鎳-鉑或鎳鋁,及/或其他此類電阻減少金屬或合金。接觸插塞金屬可包括例如鋁、銀、鎳、鉑、鈦,或鎢,或其合金,但是可使用任何合適導電觸點金屬或合金,取決於最終使用或目標應用。在一些實施例中,若需要,可在S/D觸點區域1097中存在額外層,諸如黏附層(例如,氮化鈦)及/或襯墊或屏障層(例如,氮化鉭)。注意,在一些實施例中,閘極堆疊處理可在形成S/D區域1097之前執行,而在其他實施例中,閘極堆疊處理可例如在形成S/D區域1097之後執行。閘極堆疊可根據需要來定製。示例性系統 As previously explained, in some embodiments, the S/D region 1097 can include S/D contacts. In some such embodiments, the S/D contacts can comprise any suitable material, such as a conductive metal or alloy (eg, aluminum, tungsten, silver, nickel-platinum, or nickel-aluminum). In some embodiments, the S/D contacts may include a resistance reducing metal and a contact plug metal, or only a contact plug, depending on the end use or target application. Exemplary contact resistance reducing metals include silver, nickel, aluminum, titanium, gold, gold-bismuth, nickel-platinum or nickel aluminum, and/or other such electrical resistance reducing metals or alloys. The contact plug metal can include, for example, aluminum, silver, nickel, platinum, titanium, or tungsten, or alloys thereof, although any suitable conductive contact metal or alloy can be used, depending on the end use or intended application. In some embodiments, additional layers may be present in the S/D contact region 1097, such as an adhesion layer (eg, titanium nitride) and/or a liner or barrier layer (eg, tantalum nitride), if desired. Note that in some embodiments, the gate stacking process can be performed prior to forming the S/D regions 1097, while in other embodiments, the gate stacking process can be performed, for example, after forming the S/D regions 1097. The gate stack can be customized as needed. Exemplary system
圖11示出根據一示例性實施例的用如本文揭示之積體電路結構或裝置來實行之運算系統1000。如可發現,運算系統1000容納母板1002。母板1002可包括多個部件,包括但不限於,處理器1004及至少一個通訊晶片1006,其中之每一者可實體上及電氣地耦接至母板1002,或以其他方式整合在其中。如瞭解,母板1002可為例如任何印刷電路板,不論母板、安裝在母板上之子板,或系統1000之唯一板等。FIG. 11 illustrates an computing system 1000 implemented with an integrated circuit structure or apparatus as disclosed herein, in accordance with an exemplary embodiment. As can be seen, the computing system 1000 houses the motherboard 1002. The motherboard 1002 can include a plurality of components including, but not limited to, a processor 1004 and at least one communication chip 1006, each of which can be physically and electrically coupled to the motherboard 1002, or otherwise integrated therein. As can be appreciated, the motherboard 1002 can be, for example, any printed circuit board, regardless of the motherboard, the daughterboard mounted on the motherboard, or the only board of the system 1000, and the like.
取決於運算裝置之應用,運算裝置1000可包括可為或可並非實體上且電氣地耦接至母板1002的一或多個其他部件。此等其他部件可包括但不限於依電性記憶體(例如,DRAM)、非依電性記憶體(例如,ROM)、圖形處理器、數位信號處理器、加密處理器、晶片組、天線、顯示器、觸控螢幕顯示器、觸控螢幕控制器、電池、音訊編解碼器、視訊編解碼器、功率放大器、全球定位系統(GPS)裝置、羅盤、加速計、迴轉儀、揚聲器、攝影機及大容量儲存裝置(諸如硬碟片驅動機、光碟片(CD)、數位通用碟片(DVD)等)。包括在運算系統1000中之部件中之任一者可包括根據示例性實施例來組配之一或多個積體電路結構或裝置(例如,在共同基板上之混合III-V及IV電晶體,其具有自對齊性質)。在一些實施例中,多個功能可整合至一或多個晶片中(例如,注意通訊晶片1006可為處理器1004之一部分或另外整合至處理器1004中)。Depending on the application of the computing device, computing device 1000 can include one or more other components that may or may not be physically and electrically coupled to motherboard 1002. Such other components may include, but are not limited to, electrical memory (eg, DRAM), non-electrical memory (eg, ROM), graphics processors, digital signal processors, cryptographic processors, chipsets, antennas, Display, touch screen display, touch screen controller, battery, audio codec, video codec, power amplifier, global positioning system (GPS) device, compass, accelerometer, gyroscope, speaker, camera and large capacity Storage device (such as a hard disk drive, a compact disc (CD), a digital versatile disc (DVD), etc.). Any of the components included in computing system 1000 can include one or more integrated circuit structures or devices in accordance with an exemplary embodiment (eg, mixed III-V and IV transistors on a common substrate) , which has a self-aligning property). In some embodiments, multiple functions may be integrated into one or more of the wafers (eg, note that communication chip 1006 may be part of processor 1004 or otherwise integrated into processor 1004).
通訊晶片1006賦能於用於資料至運算裝置1000及自該運算裝置之傳遞之無線通訊。「無線」一詞及其派生詞可用以描述可經由非固體媒體藉由調變電磁輻射之使用來通訊資料的電路、裝置、系統、方法、技術、通訊通道等。該術語並非暗示相關聯裝置不含有任何引線,但是在一些實施例中該等相關聯裝置可不含有任何引線。通訊晶片1006可實行若干無線標準或協定中任何無線標準或協定,包括但不限於Wi-Fi(IEEE 802.11族)、WiMAX(IEEE 802.16族)、IEEE 802.20、長期演進(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、藍牙、上述各者之衍生物,以及指定為3G、4G、5G及其他的任何其他無線協定。運算裝置1000可包括多個通訊晶片1006。例如,第一通訊晶片1006可專用於較短範圍之無線通訊,諸如Wi-Fi及藍牙,且第二通訊晶片1006可專用於較長範圍之無線通訊,諸如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO等等。在一些實施例中,通訊晶片1006可包括共同基板上之一或多個混合電晶體結構,如本文個別地描述。The communication chip 1006 is capable of wireless communication for data transfer to and from the computing device 1000. The term "wireless" and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communication channels, etc. that can communicate data through the use of modulated electromagnetic radiation via non-solid media. The term does not imply that the associated device does not contain any leads, but in some embodiments the associated devices may not contain any leads. The communication chip 1006 can implement any wireless standard or protocol in a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, Long Term Evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives of each of these, and any other wireless protocols designated as 3G, 4G, 5G, and others. The computing device 1000 can include a plurality of communication chips 1006. For example, the first communication chip 1006 can be dedicated to a shorter range of wireless communications, such as Wi-Fi and Bluetooth, and the second communication chip 1006 can be dedicated to a longer range of wireless communications, such as GPS, EDGE, GPRS, CDMA, WiMAX. , LTE, Ev-DO, etc. In some embodiments, the communication wafer 1006 can include one or more hybrid transistor structures on a common substrate, as described individually herein.
運算裝置1000之處理器1004包括處理器1004內之積體電路晶粒封裝。在一些實施例中,處理器之積體電路晶粒包括用如本文個別地描述之一或多個積體電路結構或裝置來實行的機上電路。「處理器」一詞可指代處理例如來自暫存器及/或記憶體的電子資料以將該電子資料變換成可儲存在暫存器及/或記憶體中的其他電子資料的任何裝置或裝置之部分。The processor 1004 of the computing device 1000 includes an integrated circuit die package within the processor 1004. In some embodiments, the integrated circuit die of the processor includes an on-board circuit implemented with one or more integrated circuit structures or devices as described individually herein. The term "processor" may refer to any device that processes, for example, electronic data from a register and/or memory to transform the electronic data into other electronic material that can be stored in a register and/or memory or Part of the device.
通訊晶片1006亦包括封裝在通訊晶片1006內的積體電路晶粒。根據一些此類示例性實施例,通訊晶片之積體電路晶粒包括如本文個別地描述之一或多個積體電路結構或裝置。如鑒於本揭示案所瞭解,注意多標準無線能力可直接整合至處理器1004中(例如,其中任何晶片1006之功能整合至處理器1004中,而非具有獨立通訊晶片)。此外注意處理器1004可為具有此無線能力之晶片組。在一個示例性實施例中,處理器1004及通訊晶片1006整合至單一晶片或晶片組中,諸如系統單晶片(如總體上藉由圍繞彼等部件之虛線來指示)。在一個此類情況中,使用本文提供之各種混合電晶體技術,處理器1004之邏輯電路可例如在矽或SiGe中實行,並且通訊晶片1006之RF電路可在GaN中實行,並且用於RF及混合信號處理之邏輯可在GaN NMOS及矽PMOS中實行。總之,可使用許多處理器1004及/或通訊晶片1006。同樣地,任何一個晶片或晶片組可具有整合其中之多個功能。The communication chip 1006 also includes integrated circuit dies that are packaged within the communication chip 1006. In accordance with some such exemplary embodiments, an integrated circuit die of a communication chip includes one or more integrated circuit structures or devices as individually described herein. As understood in light of this disclosure, it is noted that multi-standard wireless capabilities can be directly integrated into processor 1004 (eg, where the functionality of any of the wafers 1006 is integrated into processor 1004, rather than having a separate communication chip). Also note that processor 1004 can be a chipset having this wireless capability. In one exemplary embodiment, processor 1004 and communication chip 1006 are integrated into a single wafer or wafer set, such as a system single wafer (as indicated generally by dashed lines surrounding their components). In one such case, using the various hybrid transistor techniques provided herein, the logic of processor 1004 can be implemented, for example, in germanium or SiGe, and the RF circuitry of communication chip 1006 can be implemented in GaN and used for RF and The logic of mixed signal processing can be implemented in GaN NMOS and 矽 PMOS. In summary, a number of processors 1004 and/or communication chips 1006 can be used. Likewise, any one wafer or wafer set can have multiple functions integrated therein.
在各種實行方案中,運算系統1000可為膝上型電腦、隨身型易網機、筆記型電腦、智能電話、平板電腦、個人數位助理(PDA)、超行動PC、行動電話、桌上型電腦、伺服器、列印機、掃描儀、監視器、機上盒、娛樂控制單元、數位攝影機、可攜音樂播放機、數位錄影機,或處理資料或使用如本文個別地描述來組配之一或多個積體電路結構或裝置的任何其他電子裝置。其他示例性實施例 In various implementations, the computing system 1000 can be a laptop, a portable Internet device, a notebook computer, a smart phone, a tablet computer, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer. , server, printer, scanner, monitor, set-top box, entertainment control unit, digital camera, portable music player, digital video recorder, or processing data or using one of the individual descriptions as described herein Or any other electronic device that has a plurality of integrated circuit structures or devices. Other exemplary embodiments
以下實例涉及其他實施例,該等實施例之許多排列及組態係顯而易知的。The following examples are directed to other embodiments, many of which are well known.
實例1係一積體電路,其包含:一絕緣體上半導體基板,該基板包括安置在第IV族材料之上部與下部半導體層之間的一包埋絕緣體層;及兩個相鄰第二電晶體之間之一第一電晶體,其中該第一電晶體具有包括在該上部半導體層中之一通道區域,並且該等第二電晶體中之每一者包含一第III族-N半導體結構,該半導體結構在該上部半導體層上,或替代地,穿過該上部半導體層及該包埋絕緣體層並且在該下部半導體層上。Example 1 is an integrated circuit comprising: a semiconductor-on-insulator substrate comprising an embedded insulator layer disposed between the upper portion and the lower semiconductor layer of the Group IV material; and two adjacent second transistors a first transistor, wherein the first transistor has a channel region included in the upper semiconductor layer, and each of the second transistors includes a III-N semiconductor structure, The semiconductor structure is on the upper semiconductor layer, or alternatively, through the upper semiconductor layer and the buried insulator layer and on the lower semiconductor layer.
實例2包括實例1之標的,其中每個第二電晶體之該III-N半導體結構在一渠溝中,該渠溝具有在該上部半導體層上之一底部。Example 2 includes the subject matter of Example 1, wherein the III-N semiconductor structure of each of the second transistors is in a trench having a bottom on the upper semiconductor layer.
實例3包括實例1之標的,其中每個第二電晶體之該III-N半導體結構在一渠溝中,該渠溝穿過該上部半導體層及該包埋絕緣體層,並且具有在該下部半導體層上之一底部。Example 3 includes the subject matter of Example 1, wherein the III-N semiconductor structure of each of the second transistors is in a trench, the trench passes through the upper semiconductor layer and the buried insulator layer, and has a lower semiconductor One of the bottoms of the layer.
實例4包括實例3之標的,其中該等下部及上部半導體層中之每一者具有相對於該渠溝方向之一晶體定向,並且該下部半導體層之晶體定向與該上部半導體層之晶體定向相同。Example 4 includes the subject matter of Example 3, wherein each of the lower and upper semiconductor layers has a crystal orientation with respect to one of the trench directions, and the crystal orientation of the lower semiconductor layer is the same as the crystal orientation of the upper semiconductor layer .
實例5包括實例3之標的,其中該等下部及上部半導體層中之每一者具有相對於該渠溝方向之一晶體定向,並且該下部半導體層之晶體定向不同於該上部半導體層之晶體定向。Example 5 includes the subject matter of Example 3, wherein each of the lower and upper semiconductor layers has a crystal orientation with respect to one of the trench directions, and a crystal orientation of the lower semiconductor layer is different from a crystal orientation of the upper semiconductor layer .
實例6包括前述實例中之任一者之標的,其中該第一電晶體具有一閘極,該閘極在該等第二電晶體之間中心定位,以使得該等第二電晶體分隔一距離X,並且該閘極之中心在該等第二電晶體之間之一位置處,並且該位置在X之距離之一半加上或減去1 nm之內。Example 6 includes the subject matter of any of the preceding examples, wherein the first transistor has a gate centered between the second transistors such that the second transistors are separated by a distance X, and the center of the gate is at a position between the second transistors, and the position is plus or minus 1 nm within one-half of the distance of X.
實例7包括實例6之標的,其中兩個相鄰第二電晶體之間之一第一電晶體之組態重複多次,並且每個此組態之對應閘極位置在X之對應距離之一半加上或減去1 nm之內。在其他實例中,此容差可更大(例如,+/-5 nm)或更小(+/-0.5 nm),取決於諸如該等第二電晶體之相反側之間之距離的因素。Example 7 includes the subject matter of Example 6, wherein the configuration of one of the first transistors between two adjacent second transistors is repeated a plurality of times, and the corresponding gate position of each of the configurations is one-half of the corresponding distance of X Add or subtract 1 nm. In other examples, this tolerance may be greater (eg, +/- 5 nm) or less (+/- 0.5 nm) depending on factors such as the distance between opposite sides of the second transistor.
實例8包括前述實例中之任一者之標的,其中第一電晶體具有一閘極,該閘極在該第二電晶體之間係實質上等距離的。因此,例如,閘極結構之質心定位在第二電晶體之間實質上等距離的假想垂直線上。該假想垂直線之位置不一定精確等距離,但是實情為在其容差之內,諸如在該位置之X nm之內,其中X係第二電晶體之相反邊緣之間之總距離之10%,其中X係第二電晶體之相反邊緣之間之總距離之5%,或其中X係第二電晶體之相反邊緣之間之總距離之2.5%,或其中X係第二電晶體之相反邊緣之間之總距離之1%。此外注意量測相反邊緣之間之距離之相應邊緣點在共同水平面中,並且可在沿著彼等相反邊緣之任何位置處。Example 8 includes the subject matter of any of the preceding examples, wherein the first transistor has a gate that is substantially equidistant between the second transistors. Thus, for example, the center of mass of the gate structure is positioned on an imaginary vertical line that is substantially equidistant between the second transistors. The position of the imaginary vertical line is not necessarily exactly equidistant, but the truth is within its tolerance, such as within X nm of the position, where 10% of the total distance between the opposite edges of the X-system second transistor , wherein 5% of the total distance between opposite edges of the X-system second transistor, or 2.5% of the total distance between opposite edges of the X-system second transistor, or the opposite of the X-type second transistor 1% of the total distance between the edges. Also note that the respective edge points of the distance between the opposite edges are measured in a common horizontal plane and may be anywhere along their opposite edges.
實例9包括前述實例中之任一者之標的,其中該等下部及上部半導體層係矽。Example 9 includes the subject matter of any of the preceding examples, wherein the lower and upper semiconductor layers are germanium.
實例10包括實例1至8中之任一者之標的,其中該上部半導體層係矽、鍺或矽鍺(SiGe),並且該下部半導體層係矽、鍺或矽鍺(SiGe)。Example 10 includes the subject matter of any of Examples 1-8, wherein the upper semiconductor layer is germanium, germanium or germanium (SiGe) and the lower semiconductor layer is germanium, germanium or germanium (SiGe).
實例11包括實例10之標的,其中該上部半導體層不同於該下部半導體層。Example 11 includes the subject matter of Example 10, wherein the upper semiconductor layer is different from the lower semiconductor layer.
實例12包括前述實例中之任一者之標的,其中該第一電晶體進一步包含:在該通道上之一閘極介電質;在該閘極介電質上之一閘極金屬;在該通道之任一側之源極及汲極區域;及在該閘極與該源極區域之間之一閘極間隔物,及在該閘極與該汲極區域之間之一閘極間隔物,其中該閘極介電質在該通道區域與該等閘極間隔物之間。Embodiment 12 includes the subject matter of any of the preceding examples, wherein the first transistor further comprises: a gate dielectric on the channel; a gate metal on the gate dielectric; a source and a drain region on either side of the channel; and a gate spacer between the gate and the source region, and a gate spacer between the gate and the drain region Wherein the gate dielectric is between the channel region and the gate spacers.
實例13包括前述實例中之任一者之標的,其中該第一電晶體包含在一高-k閘極介電質層上之一閘極金屬及相鄰閘極間隔物。Example 13 includes the subject matter of any of the preceding examples, wherein the first transistor comprises a gate metal and an adjacent gate spacer on a high-k gate dielectric layer.
實例14包括前述實例中之任一者之標的,其中該第一電晶體係一PMOS電晶體並且該第二電晶體係NMOS電晶體。Example 14 includes the subject matter of any of the preceding examples, wherein the first electro-crystalline system is a PMOS transistor and the second electro-crystalline system is an NMOS transistor.
實例15包括前述實例中之任一者之標的,其中該III-N半導體結構包含GaN。Example 15 includes the subject matter of any of the preceding examples, wherein the III-N semiconductor structure comprises GaN.
實例16包括前述實例中之任一者之標的,其中該III-N半導體結構包含一成核層及一通道層。Example 16 includes the subject matter of any of the preceding examples, wherein the III-N semiconductor structure comprises a nucleation layer and a channel layer.
實例17包括實例16之標的,其中該成核層包含氮化鋁(AlN)並且該通道層包含GaN。Example 17 includes the subject matter of Example 16, wherein the nucleation layer comprises aluminum nitride (AlN) and the channel layer comprises GaN.
實例18包括前述實例中之任一者之標的,其中該第一電晶體包含具有20 nm或更小之一閘極長度。Example 18 includes the subject matter of any of the preceding examples, wherein the first transistor comprises a gate length of one of 20 nm or less.
實例19包括前述實例中之任一者之標的,其中該第一電晶體包含具有10 nm或更小之一閘極長度。Example 19 includes the subject matter of any of the preceding examples, wherein the first transistor comprises a gate length of 10 nm or less.
實例20包括前述實例中之任一者之標的,其中該等第二電晶體中之至少一者包含在該III-N半導體結構內或在該III-N半導體結構上之一極化層。Example 20 includes the subject matter of any of the preceding examples, wherein at least one of the second transistors comprises a polarized layer within the III-N semiconductor structure or over the III-N semiconductor structure.
實例21包括實例20之標的,其中該極化層包括鋁及氮。Example 21 includes the subject matter of Example 20, wherein the polarizing layer comprises aluminum and nitrogen.
實例22係一系統單晶片(SOC),其包含實例1至21中之任一者之積體電路。Example 22 is a system single wafer (SOC) comprising the integrated circuit of any of Examples 1-21.
實例23係一射頻(RF)電路,其包含實例1至21中之任一者之積體電路。Example 23 is a radio frequency (RF) circuit comprising the integrated circuit of any of Examples 1-21.
實例24係一行動運算系統,其包含實例1至21中之任一者之積體電路。Example 24 is a mobile computing system comprising the integrated circuit of any of Examples 1-21.
實例25係一積體電路,其包含:一絕緣體上矽基板,該基板包括安置在上部與下部矽層之間的一包埋絕緣體層;及在兩個相鄰第二電晶體之間之一第一電晶體。該第一電晶體包括:包括在該上部矽層中之一通道區域;在該通道區域上之一高-k閘極介電質;在該閘極介電質上之一閘極金屬;在該通道區域之任一側之源極及汲極區域;及在該閘極與該源極區域之間之一閘極間隔物,及在該閘極與該汲極區域之間之一閘極間隔物,其中該閘極介電質在該通道區域與該等閘極間隔物之間。該等第二電晶體各自包括:具有一通道區域之一氮化鎵(GaN)主體,該GaN主體係以下情況中之一者:在該上部矽層上,或穿過該上部矽層及該包埋絕緣體層並且在該下部矽層上;在該GaN主體上之一極化層;及在該通道區域之任一側之源極及汲極區域。Example 25 is an integrated circuit comprising: an insulator upper substrate comprising an embedded insulator layer disposed between the upper and lower germanium layers; and one of two adjacent second transistors The first transistor. The first transistor includes: a channel region included in the upper germanium layer; a high-k gate dielectric on the channel region; a gate metal on the gate dielectric; a source and a drain region on either side of the channel region; and a gate spacer between the gate and the source region, and a gate between the gate and the drain region a spacer, wherein the gate dielectric is between the channel region and the gate spacers. Each of the second transistors includes: a gallium nitride (GaN) body having a channel region, wherein the GaN host system is one of: on the upper layer, or through the upper layer and Embedding an insulator layer and on the lower germanium layer; a polarizing layer on the GaN body; and source and drain regions on either side of the channel region.
實例26包括實例25之標的,其中每個第二電晶體之該III-N半導體在一渠溝中,該渠溝具有在該上部矽層上之一底部。Example 26 includes the subject matter of Example 25, wherein the III-N semiconductor of each second transistor is in a trench having a bottom on one of the upper germanium layers.
實例27包括實例25之標的,其中每個第二電晶體之該III-N半導體在一渠溝中,該渠溝穿過該上部矽層及該包埋絕緣體層,並且具有在該下部矽層上之一底部。Example 27 includes the subject matter of Example 25, wherein the III-N semiconductor of each second transistor is in a trench that passes through the upper germanium layer and the buried insulator layer and has a lower germanium layer On one of the bottoms.
實例28包括實例27之標的,其中該等下部及上部矽層中之每一者具有相對於該渠溝方向之一晶體定向,並且該下部矽層之晶體定向與該上部矽層之晶體定向相同。Example 28 includes the subject matter of Example 27, wherein each of the lower and upper ruthenium layers has a crystal orientation relative to one of the channel directions, and the crystal orientation of the lower ruthenium layer is the same as the crystal orientation of the upper ruthenium layer .
實例29包括實例27之標的,其中該等下部及上部矽層中之每一者具有相對於該渠溝方向之一晶體定向,並且該下部矽層之晶體定向不同於該上部矽層之晶體定向。Example 29 includes the subject matter of Example 27, wherein each of the lower and upper ruthenium layers has a crystal orientation relative to one of the channel directions, and the crystal orientation of the lower ruthenium layer is different from the crystal orientation of the upper ruthenium layer .
實例30包括實例25至29中之任一者之標的,其中該第一電晶體閘極在該等第二電晶體之間中心定位,以使得該等第二電晶體之GaN主體分隔一距離X,並且該第一電晶體閘極之中心在該等第二電晶體之間之一位置處,並且該位置在X之距離之一半加上或減去1 nm之內。應瞭解其他容差。Example 30 includes the subject matter of any one of examples 25 to 29, wherein the first transistor gate is centrally positioned between the second transistors such that the GaN bodies of the second transistors are separated by a distance X And the center of the first transistor gate is at a position between the second transistors, and the position is plus or minus 1 nm within one-half of the distance of X. Other tolerances should be understood.
實例31包括實例30之標的,其中兩個相鄰第二電晶體之間之一第一電晶體之組態重複多次,並且每個此組態之對應第一電晶體閘極位置在X之對應距離之一半加上或減去1 nm之內。Example 31 includes the subject matter of Example 30, wherein the configuration of one of the first transistors between two adjacent second transistors is repeated a plurality of times, and the corresponding first transistor gate position of each of the configurations is at X One or a half of the corresponding distance plus or minus 1 nm.
實例32包括實例25至31中之任一者之標的,其中第一電晶體閘極在該等第二電晶體之該等GaN主體之間係實質上等距離的。Example 32 includes the subject matter of any of Examples 25 to 31, wherein the first transistor gate is substantially equidistant between the GaN bodies of the second transistors.
實例33包括實例25至32中之任一者之標的,其中該第一電晶體之該等源極及汲極區域係矽、鍺或矽鍺(SiGe)。Example 33 includes the subject matter of any one of Examples 25 to 32, wherein the source and drain regions of the first transistor are germanium, germanium or germanium (SiGe).
實例34包括實例25至33中之任一者之標的,其中該第一電晶體係一PMOS電晶體並且該第二電晶體係NMOS電晶體。Example 34 includes the subject matter of any one of Examples 25 to 33, wherein the first electro-crystalline system is a PMOS transistor and the second electro-crystalline system is an NMOS transistor.
實例35包括實例25至34中之任一者之標的,其中該第一電晶體包含具有20 nm或更小之一閘極長度。Example 35 includes the subject matter of any one of Examples 25 to 34, wherein the first transistor comprises one of gate lengths of 20 nm or less.
實例36包括實例25至35中之任一者之標的,其中該第一電晶體包含具有10 nm或更小之一閘極長度。Example 36 includes the subject matter of any one of Examples 25 to 35, wherein the first transistor comprises a gate length of 10 nm or less.
實例37包括實例25至36中之任一者之標的,其中該極化層包括鋁及氮。Example 37 includes the subject matter of any one of Examples 25 to 36, wherein the polarizing layer comprises aluminum and nitrogen.
實例38包括一系統單晶片(SOC),其包含實例25至37中之任一者之積體電路。Example 38 includes a system single wafer (SOC) comprising the integrated circuit of any of examples 25-37.
實例39包括一射頻(RF)電路,其包含實例25至37中之任一者之積體電路。Example 39 includes a radio frequency (RF) circuit comprising the integrated circuit of any of examples 25-37.
實例40包括一行動運算系統,其包含實例25至37中之任一者之積體電路。The example 40 includes a mobile computing system that includes the integrated circuits of any of the examples 25 through 37.
實例41係一種形成一積體電路之方法,該方法包含:在一絕緣體上半導體基板上沉積高-k閘極介電質材料之一覆蓋層,該基板包括安置在第IV族材料之上部與下部半導體層之間的一包埋絕緣體層;在該閘極介電質材料上沉積隔離材料之一覆蓋層;藉由蝕刻穿過該等隔離及閘極介電質材料來形成渠溝;從該等渠溝選擇性地生長一第III族-N半導體以便在該隔離材料上形成橫向磊晶生長區域,從而在相鄰渠溝之橫向磊晶生長區域之間界定具有一寬度W之一間隙;並且使用該等橫向磊晶生長區域作為一遮罩,在該等橫向磊晶生長區域之間並且在該隔離材料中形成一電路特徵。Example 41 is a method of forming an integrated circuit, the method comprising: depositing a cap layer of a high-k gate dielectric material on a semiconductor-on-insulator substrate, the substrate comprising a portion disposed on the material of the group IV material a buried insulator layer between the lower semiconductor layers; depositing a cover layer of the isolation material on the gate dielectric material; forming a trench by etching through the isolation and gate dielectric materials; The trenches selectively grow a Group III-N semiconductor to form a lateral epitaxial growth region on the isolation material to define a gap having a width W between lateral epitaxial growth regions of adjacent trenches And using the lateral epitaxial growth regions as a mask to form a circuit feature between the lateral epitaxial growth regions and in the isolation material.
實例42包括實例41之標的,其中藉由蝕刻穿過該等隔離及閘極介電質材料來形成渠溝進一步包括蝕刻穿過該上部半導體層及該包埋絕緣體層以便暴露該下部半導體層。Example 42 includes the subject matter of Example 41, wherein forming the trench by etching through the isolation and gate dielectric materials further comprises etching through the upper semiconductor layer and the buried insulator layer to expose the lower semiconductor layer.
實例43包括實例41或42之標的,其中從該等渠溝選擇性地生長一第III族-N半導體包括生長一氮化鎵(GaN)主體,繼之以一極化層,繼之以更多GaN以便形成該等橫向磊晶生長區域。Example 43 includes the subject matter of Example 41 or 42, wherein selectively growing a Group III-N semiconductor from the trenches comprises growing a gallium nitride (GaN) body followed by a polarized layer, followed by Multiple GaN is formed to form the lateral epitaxial growth regions.
實例44包括實例41或42之標的,其中從該等渠溝選擇性地生長一第III族-N半導體包括生長一氮化鋁(AlN)成核層,繼之以生長一氮化鎵(GaN)主體,繼之以一極化層,繼之以生長更多GaN以便形成該等橫向磊晶生長區域。Example 44 includes the subject matter of Example 41 or 42, wherein selectively growing a Group III-N semiconductor from the trenches comprises growing an aluminum nitride (AlN) nucleation layer followed by growth of a gallium nitride (GaN) The body, followed by a polarized layer, is followed by growing more GaN to form the lateral epitaxial growth regions.
實例45包括實例41至44中之任一者之標的,其中使用該等橫向磊晶生長區域作為一遮罩來在該等橫向磊晶生長區域之間形成一電路特徵包括形成一電晶體閘極,該方法進一步包含:形成包括該閘極之一第一電晶體;及形成包括該第III族-N半導體之第二電晶體。Example 45 includes the subject matter of any one of examples 41 to 44, wherein using the lateral epitaxial growth regions as a mask to form a circuit feature between the lateral epitaxial growth regions comprises forming a transistor gate The method further includes: forming a first transistor including the gate; and forming a second transistor including the Group III-N semiconductor.
實例46包括實例45之標的,其中該第一電晶體係一PMOS第IV族電晶體,該電晶體在該上部半導體層中具有其通道,並且該等第二電晶體各自係NMOS第III-V族電晶體。Example 46 includes the subject matter of Example 45, wherein the first electro-crystalline system is a PMOS Group IV transistor, the transistor having its channel in the upper semiconductor layer, and the second transistors are each NMOS III-V Family transistor.
實例47包括實例45之標的,其中該第一電晶體係一PMOS電晶體,該電晶體在該上部半導體層中具有其通道,並且該等第二電晶體各自係NMOSGaN電晶體,其中該上部半導體層係矽、鍺或矽鍺(SiGe)。Example 47 includes the subject matter of Example 45, wherein the first electro-crystalline system is a PMOS transistor having a channel in the upper semiconductor layer, and the second transistors are each an NMOS GaN transistor, wherein the upper semiconductor Layer system 矽, 锗 or 矽锗 (SiGe).
實例48包括實例41至47中之任一者之標的,其中該等渠溝進一步蝕刻以使得其穿過該上部半導體層及該包埋絕緣體層,每個渠溝具有在該下部半導體層上之一底部,並且其中該等下部及上部半導體層中之每一者具有相對於該渠溝之方向的一晶體定向,並且該下部半導體層之晶體定向與該上部半導體層之晶體定向相同。Example 48 includes the subject matter of any one of Examples 41 to 47, wherein the trenches are further etched such that they pass through the upper semiconductor layer and the buried insulator layer, each trench having a lower semiconductor layer a bottom portion, and wherein each of the lower and upper semiconductor layers has a crystal orientation with respect to a direction of the trench, and a crystal orientation of the lower semiconductor layer is the same as a crystal orientation of the upper semiconductor layer.
實例49包括實例41至47中之任一者之標的,其中該等渠溝進一步蝕刻以使得其穿過該上部半導體層及該包埋絕緣體層,每個渠溝具有在該下部半導體層上之一底部,並且其中該等下部及上部半導體層中之每一者具有相對於該渠溝之方向的一晶體定向,並且該下部半導體層之晶體定向不同於該上部半導體層之晶體定向。Example 49 includes the subject matter of any one of Examples 41 to 47, wherein the trenches are further etched such that they pass through the upper semiconductor layer and the buried insulator layer, each trench having a lower semiconductor layer a bottom portion, and wherein each of the lower and upper semiconductor layers has a crystal orientation with respect to a direction of the trench, and a crystal orientation of the lower semiconductor layer is different from a crystal orientation of the upper semiconductor layer.
實例50包括實例41至49中之任一者之標的,並且進一步包括在形成該電路特徵之後,移除該等橫向磊晶生長區域。然而,應注意,在其他實例中,該等橫向磊晶生長區域可保留在最終積體電路結構中。Example 50 includes the subject matter of any of Examples 41 to 49, and further comprising removing the lateral epitaxial growth regions after forming the circuit features. However, it should be noted that in other examples, the lateral epitaxial growth regions may remain in the final integrated circuit structure.
示例性實施例之前述描述出於說明及描述之目的來提供。其不意欲為無遺漏的或限於所公開之精確形式。鑒於本揭示案,許多改進及變化為可能的。規定本揭示案之範圍不藉由此詳細說明來限制,而是實情為藉由隨附之申請專利範圍來限制。主張本申請案之優先權的將來提交之申請案可以不同方式來主張所揭示之標的,並且可總體上包括如本文個別地揭示或另外展示的一或多個限制的任何集合。The foregoing description of the exemplary embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to the precise form disclosed. Many modifications and variations are possible in light of the present disclosure. The scope of the disclosure is not limited by the details of the disclosure, but rather is limited by the scope of the accompanying patent application. The presently-filed application, which claims the priority of the present application, may claim the disclosed subject matter in various ways, and may generally include any collection of one or more limitations as disclosed individually or separately herein.
100‧‧‧積體電路100‧‧‧ integrated circuit
100'‧‧‧積體電路100'‧‧‧ integrated circuit
101‧‧‧閘極電晶體101‧‧‧gate transistor
101A、101B‧‧‧第IV族電晶體101A, 101B‧‧‧Group IV transistor
102‧‧‧電晶體102‧‧‧Optoelectronics
102A、102B、102C‧‧‧III-N電晶體102A, 102B, 102C‧‧‧III-N transistor
200‧‧‧基板200‧‧‧Substrate
205‧‧‧處理基板或晶圓205‧‧‧Processing substrate or wafer
210‧‧‧絕緣體層210‧‧‧Insulator layer
215‧‧‧半導體層215‧‧‧Semiconductor layer
220‧‧‧介電質層220‧‧‧ dielectric layer
230‧‧‧STI層230‧‧‧STI layer
335‧‧‧渠溝335‧‧‧Ditch
440‧‧‧III-V半導體主體440‧‧‧III-V semiconductor body
445‧‧‧III-V極化層445‧‧‧III-V polarization layer
450、450A、450B、450C‧‧‧III-V半導體材料450, 450A, 450B, 450C‧‧‧III-V semiconductor materials
460‧‧‧間隙460‧‧‧ gap
570‧‧‧閘極渠溝570‧‧‧Ganjigou
680、1099、G‧‧‧閘極680, 1099, G‧‧ ‧ gate
891‧‧‧閘極間隔物891‧‧‧ gate spacer
892‧‧‧側壁間隔物892‧‧‧ sidewall spacers
995、1097‧‧‧源極/汲極區域995, 1097‧‧‧ source/bungee area
996‧‧‧S/D觸點996‧‧‧S/D contacts
1000‧‧‧運算系統1000‧‧‧ computing system
1002‧‧‧母板1002‧‧ Motherboard
1004‧‧‧處理器1004‧‧‧ processor
1006‧‧‧通訊晶片1006‧‧‧Communication chip
C‧‧‧觸點C‧‧‧Contact
D‧‧‧汲極D‧‧‧汲
GD‧‧‧閘極介電質GD‧‧‧ gate dielectric
P‧‧‧極化層P‧‧‧ Polarization layer
S‧‧‧源極S‧‧‧ source
SOI‧‧‧絕緣體上半導體結構SOI‧‧‧Semiconductor semiconductor structure
W、Y‧‧‧距離W, Y‧‧‧ distance
X‧‧‧標稱距離X‧‧‧ nominal distance
圖1係根據本揭示案之一實施例的使用共同基板上之共整合第III-V族NMOS電晶體及第IV族PMOS電晶體來組配之積體電路結構之橫截面視圖。1 is a cross-sectional view of an integrated circuit structure assembled using a co-integrated III-V NMOS transistor and a Group IV PMOS transistor on a common substrate in accordance with an embodiment of the present disclosure.
圖1'係根據本揭示案之另一實施例的使用共同基板上之共整合第III-V族NMOS電晶體及第IV族PMOS電晶體來組配之積體電路結構之橫截面視圖。1 ′ is a cross-sectional view of an integrated circuit structure assembled using a co-integrated III-V NMOS transistor and a Group IV PMOS transistor on a common substrate in accordance with another embodiment of the present disclosure.
圖2至10示出根據本揭示案之一實施例的用於製備使用共同基板上之共整合第III-V族NMOS電晶體及第IV族PMOS電晶體來組配之積體電路結構之示例性過程。2 to 10 illustrate an example of an integrated circuit structure for fabricating a co-integrated III-V NMOS transistor and a Group IV PMOS transistor on a common substrate in accordance with an embodiment of the present disclosure. Sexual process.
圖11係根據本揭示案之一些實施例的用如本文揭示之積體電路結構中之一或多者來實行之示例性運算系統。11 is an exemplary computing system implemented with one or more of the integrated circuit structures as disclosed herein in accordance with some embodiments of the present disclosure.
本發明實施例之此等及其他特徵藉由結合本文描述之附圖來閱讀以下詳細說明來更好地理解。在附圖中,各圖中例示的每一相同或幾乎相同部件可藉由類似數字表示。出於清晰性之目的,並未在每一圖中標記每一部件。此外,應瞭解,附圖不一定按比例繪製或意欲將所描述之實施例限於所展示之具體組態。例如,雖然一些圖總體上指示直線、直角及光滑表面,但是在給出製造過程之真實世界限制的情況下,所揭示技術之實際實行方案可具有不夠完美之直線及直角,並且一些特徵可具有表面拓撲或另外不光滑的。總之,附圖僅僅為了示出示例性結構來提供。These and other features of the present invention will be better understood from the following detailed description. In the figures, each identical or nearly identical component that is illustrated in the various figures can be represented by the like. For the sake of clarity, not every component is labeled in every figure. In addition, the drawings are not necessarily to scale unless the For example, while some figures generally indicate straight lines, right angles, and smooth surfaces, the actual implementation of the disclosed technology may have less than perfect straight and right angles, given the real world limitations of the manufacturing process, and some features may have Surface topology or otherwise not smooth. In summary, the drawings are provided merely to illustrate exemplary structures.
Claims (25)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??PCT/US16/40443 | 2016-06-30 | ||
PCT/US2016/040443 WO2018004607A1 (en) | 2016-06-30 | 2016-06-30 | Co-integration of gan and self-aligned thin body group iv transistors |
WOPCT/US16/40443 | 2016-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201810612A true TW201810612A (en) | 2018-03-16 |
TWI749010B TWI749010B (en) | 2021-12-11 |
Family
ID=60787533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106116514A TWI749010B (en) | 2016-06-30 | 2017-05-18 | Co-integration of gan and self-aligned thin body group iv transistors |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI749010B (en) |
WO (1) | WO2018004607A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI717773B (en) * | 2018-06-29 | 2021-02-01 | 台灣積體電路製造股份有限公司 | Semiconductor device and method of forming same |
TWI836384B (en) * | 2021-10-20 | 2024-03-21 | 台灣積體電路製造股份有限公司 | Semiconductor devices and methods of manufacturing thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11804374B2 (en) * | 2020-10-27 | 2023-10-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain relief trenches for epitaxial growth |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6949420B1 (en) * | 2004-03-12 | 2005-09-27 | Sony Corporation | Silicon-on-insulator (SOI) substrate having dual surface crystallographic orientations and method of forming same |
US7592213B2 (en) * | 2005-12-29 | 2009-09-22 | Intel Corporation | Tensile strained NMOS transistor using group III-N source/drain regions |
US20070158739A1 (en) * | 2006-01-06 | 2007-07-12 | International Business Machines Corporation | Higher performance CMOS on (110) wafers |
DE102007046849B4 (en) * | 2007-09-29 | 2014-11-06 | Advanced Micro Devices, Inc. | Method of making large-gate-gate structures after transistor fabrication |
US8835988B2 (en) * | 2011-06-06 | 2014-09-16 | Eta Semiconductor Inc. | Hybrid monolithic integration |
US8575666B2 (en) * | 2011-09-30 | 2013-11-05 | Raytheon Company | Method and structure having monolithic heterogeneous integration of compound semiconductors with elemental semiconductor |
DE112011105970B4 (en) * | 2011-12-19 | 2020-12-03 | Intel Corporation | CMOS implementation from germanium and III-V nanowires and nanobelts in gate all-round architecture |
US9006791B2 (en) * | 2013-03-15 | 2015-04-14 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | III-nitride P-channel field effect transistor with hole carriers in the channel |
US9356045B2 (en) * | 2013-06-10 | 2016-05-31 | Raytheon Company | Semiconductor structure having column III-V isolation regions |
US9660064B2 (en) * | 2013-12-26 | 2017-05-23 | Intel Corporation | Low sheet resistance GaN channel on Si substrates using InAlN and AlGaN bi-layer capping stack |
US9640422B2 (en) * | 2014-01-23 | 2017-05-02 | Intel Corporation | III-N devices in Si trenches |
CN106796952B (en) * | 2014-09-25 | 2020-11-06 | 英特尔公司 | III-N family epitaxial device structure on independent silicon table surface |
-
2016
- 2016-06-30 WO PCT/US2016/040443 patent/WO2018004607A1/en active Application Filing
-
2017
- 2017-05-18 TW TW106116514A patent/TWI749010B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI717773B (en) * | 2018-06-29 | 2021-02-01 | 台灣積體電路製造股份有限公司 | Semiconductor device and method of forming same |
TWI836384B (en) * | 2021-10-20 | 2024-03-21 | 台灣積體電路製造股份有限公司 | Semiconductor devices and methods of manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI749010B (en) | 2021-12-11 |
WO2018004607A1 (en) | 2018-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11444166B2 (en) | Backside source/drain replacement for semiconductor devices with metallization on both sides | |
TWI749010B (en) | Co-integration of gan and self-aligned thin body group iv transistors | |
CN108604601B (en) | Integrated circuit and forming method thereof | |
EP4105977A1 (en) | Integrated circuit structures with backside gate partial cut or trench contact partial cut | |
EP4102554A1 (en) | Integrated circuit structures with backside gate cut or trench contact cut | |
EP4020556A1 (en) | Substrate-less electrostatic discharge (esd) integrated circuit structures | |
US20220199615A1 (en) | Substrate-less vertical diode integrated circuit structures | |
US20230197714A1 (en) | Gate-all-around integrated circuit structures having backside contact self-aligned to epitaxial source | |
US20240332302A1 (en) | Integrated circuit structures with backside conductive source or drain contact having enhanced contact area | |
US20240332166A1 (en) | Integrated circuit structures having air gaps | |
US20230307514A1 (en) | Gate-all-around integrated circuit structures having backside contact with enhanced area relative to epitaxial source | |
US20240178273A1 (en) | Integrated circuit structures with source or drain contacts having enhanced contact area | |
EP4254480A1 (en) | Integrated circuit structures with full-wrap contact structure | |
US20230317595A1 (en) | Integrated circuit structures with pre-epitaxial deep via structure | |
US20230299157A1 (en) | Integrated circuit structures with deep via structure | |
US20240105774A1 (en) | Integrated circuit structures with uniform epitaxial source or drain cut | |
US20240006483A1 (en) | Integrated circuit structures having raised epitaxy on channel transistor | |
US20240105803A1 (en) | Integrated circuit structures with trench contact depopulation structure | |
US20220415925A1 (en) | Substrate-less lateral diode integrated circuit structures | |
US20240105801A1 (en) | Integrated circuit structures with gate volume reduction | |
US20230290844A1 (en) | Integrated circuit structures with backside self-aligned penetrating conductive source or drain contact | |
US20230290825A1 (en) | Integrated circuit structures with backside self-aligned conductive source or drain contact | |
EP4106009A1 (en) | Integrated circuit structures with backside self-aligned conductive via bar | |
US20240105771A1 (en) | Integrated circuit structures with channel cap reduction | |
US20240332077A1 (en) | Integrated circuit structure with backside gate connection |