TW201808426A - Self-drive microfluidic filtration device, microfluidic filtration device and microfluidic driver enabling screening of blood samples quickly and conveniently without cross-contamination of samples occurred during the separation and screening processes in prior arts - Google Patents

Self-drive microfluidic filtration device, microfluidic filtration device and microfluidic driver enabling screening of blood samples quickly and conveniently without cross-contamination of samples occurred during the separation and screening processes in prior arts Download PDF

Info

Publication number
TW201808426A
TW201808426A TW105130053A TW105130053A TW201808426A TW 201808426 A TW201808426 A TW 201808426A TW 105130053 A TW105130053 A TW 105130053A TW 105130053 A TW105130053 A TW 105130053A TW 201808426 A TW201808426 A TW 201808426A
Authority
TW
Taiwan
Prior art keywords
microfluidic
chamber
self
liquid
fluid
Prior art date
Application number
TW105130053A
Other languages
Chinese (zh)
Other versions
TWI627991B (en
Inventor
簡良如
邱祈翰
陳志仁
林佑穎
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW105130053A priority Critical patent/TWI627991B/en
Publication of TW201808426A publication Critical patent/TW201808426A/en
Application granted granted Critical
Publication of TWI627991B publication Critical patent/TWI627991B/en

Links

Abstract

The present invention discloses a self-drive microfluidic filtration device, a microfluidic filtration device and a microfluidic driver. One embodiment of the self-drive microfluidic filtration device includes a microfluidic filter part, a microfluidic driving part, and a connecting channel. One embodiment of the microfluidic filter part includes a first fluid receiving chamber, a porous filter unit and a second fluid receiving chamber, wherein the first fluid receiving chamber, the porous filter unit and the second fluid receiving chamber are disposed in sequence along a counter-gravity direction. One embodiment of the microfluidic driving part includes a first chamber and a liquid adsorption unit, wherein working fluid is accommodated in the first chamber. In this embodiment, after the liquid is filled into the first fluid receiving chamber, the liquid adsorption unit is used to absorb the working fluid in the first chamber, so that the first chamber generates a negative pressure for driving the liquid in the first fluid receiving chamber to flow toward the direction of the first chamber and pass through the porous filter unit.

Description

自驅式微流體過濾裝置、微流體過濾裝置及微流體驅動裝置Self-driving type microfluidic filtering device, microfluidic filtering device and microfluidic driving device

本發明係關於一種微流體過濾裝置及微流體驅動裝置;特別關於一種自驅式微流體過濾裝置。The invention relates to a microfluidic filtering device and a microfluidic driving device; in particular, it relates to a self-driven microfluidic filtering device.

為了因應現在醫療上注重預防醫學、早期診斷與早期治療的需求,促使對於檢驗環境自動化、定點照護(Point of Care,POC)或近病人端檢驗(Near Patient Testing)與分子診斷之需求提高。In response to the current medical needs for preventive medicine, early diagnosis and early treatment, the demand for automated test environments, Point of Care (POC) or Near Patient Testing and molecular diagnostics has increased.

根據醫藥市場調查機構Kalorama Information的統計,2011年全球整體體外診斷 (In Vitro Diagnostics, IVD)市值約有509億美元,心血管生物標記實驗室免疫分析試驗在2011年的市值約13億美元,預估2016年達14.5億美元,佔免疫分析試驗的10%。心血管專家型定點照護檢測(Professional POCT) 在2011年的市值約5億美金,2016年預估可達6.5億美元。總計2011年心血管免疫分析超過18億美元,其中定點照護檢測(POCT)的成長率高於實驗室分析,顯示出心血管生物標記檢測對於分散式定點照護之需求及發展趨勢。According to statistics from the pharmaceutical market research agency Kalorama Information, the global market value of In Vitro Diagnostics (IVD) in 2011 was approximately US $ 50.9 billion, and the market value of cardiovascular biomarker laboratory immunoassay tests in 2011 was approximately US $ 1.3 billion. It is estimated to reach USD 1.45 billion in 2016, accounting for 10% of immunoassay tests. Cardiovascular specialist-based point-of-care testing (Professional POCT) has a market value of approximately $ 500 million in 2011 and an estimated $ 650 million in 2016. In total, the cardiovascular immune analysis in 2011 exceeded 1.8 billion U.S. dollars, and the growth rate of point-of-care testing (POCT) was higher than that of laboratory analysis.

目前,血液檢體大多仍是在離心機中經過分離,被分離的檢體再另外取出至檢測儀或快篩卡匣進行檢測,由於這樣的處置方式需要個別使用分離裝置和篩檢裝置來進行,無法讓一般的使用者能快速且便利使用,過程中可能會產生檢體交叉污染的問題。At present, most blood samples are still separated in centrifuges, and the separated samples are taken out to the tester or quick-screen cassette for testing. Because this kind of disposal method requires separate separation devices and screening devices for testing , Can not make general users fast and convenient to use, the process may cause cross-contamination of the sample.

本揭露之一實施例提出一種自驅式微流體過濾裝置,其包括一微流體過濾部、一微流體驅動部以及一連通道。其中,微流體過濾部包括一第一流體收納腔、一多孔隙過濾單元以及一第二流體收納腔,且第一流體收納腔、該多孔隙過濾單元及該第二流體收納腔依序沿著一反重力之方向配置。另,微流體驅動部包括一第一腔室以及一液體吸附單元,其中,一工作流體容置於第一腔室中。連通道連通微流體過濾部的第二流體收納腔與微流體驅動部的第一腔室。第一流體收納腔包括一入口,液體由入口填入第一流體收納腔後,液體吸附單元用以吸附第一腔室中的工作流體,以使第一腔室產生一負壓,驅使第一流體收納腔中的液體流往第一腔室的方向,且流經多孔隙過濾單元。An embodiment of the present disclosure provides a self-driven microfluidic filtering device, which includes a microfluidic filtering portion, a microfluidic driving portion, and a connecting channel. The microfluidic filtering unit includes a first fluid containing cavity, a multi-porous filtering unit, and a second fluid containing cavity, and the first fluid containing cavity, the multi-porous filtering unit, and the second fluid containing cavity sequentially follow Disposition against the direction of gravity. In addition, the microfluidic driving part includes a first chamber and a liquid adsorption unit, wherein a working fluid is contained in the first chamber. The communication channel communicates with the second fluid receiving chamber of the microfluidic filtering section and the first chamber of the microfluidic driving section. The first fluid storage chamber includes an inlet. After the liquid is filled into the first fluid storage chamber from the inlet, the liquid adsorption unit is used to adsorb the working fluid in the first chamber to generate a negative pressure in the first chamber to drive the first chamber. The liquid in the fluid storage chamber flows in the direction of the first chamber and flows through the porous filter unit.

本揭露之一實施例提出一種微流體過濾裝置,其包括一第一流體收納腔、一多孔隙過濾單元以及一第二流體收納腔。其中,該第一流體收納腔、該多孔隙過濾單元及該第二流體收納腔依序沿著一反重力之方向配置。第一流體收納腔包括一入口,液體可由入口填入第一流體收納腔,並需沿著反重力之方向流經多孔隙過濾單元至第二流體收納腔。An embodiment of the present disclosure provides a microfluidic filtering device, which includes a first fluid containing cavity, a multi-porous filtering unit, and a second fluid containing cavity. The first fluid storage cavity, the porous filter unit, and the second fluid storage cavity are sequentially arranged along a direction of anti-gravity. The first fluid storage cavity includes an inlet, and the liquid can be filled into the first fluid storage cavity through the inlet and needs to flow through the multi-porous filter unit to the second fluid storage cavity in the direction of anti-gravity.

本揭露之一實施例提出一種微流體驅動裝置,其包括一液體容置腔室、一第一腔室連通於該液體容置腔室以及一液體吸附單元。其中,第一腔室中容置一工作流體。液體吸附單元用以吸附第一腔室中的工作流體,以使第一腔室中產生一負壓,驅使液體容置腔室中的液體往第一腔室的方向流動。An embodiment of the disclosure provides a microfluidic driving device including a liquid containing chamber, a first chamber communicating with the liquid containing chamber, and a liquid adsorption unit. A working fluid is contained in the first chamber. The liquid adsorption unit is used to adsorb the working fluid in the first chamber, so that a negative pressure is generated in the first chamber, and the liquid in the liquid containing chamber is driven to flow in the direction of the first chamber.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

圖1A為本發明之一實施例之微流體過濾裝置100的側剖面示意圖。 圖1B為圖1A實施例之微流體過濾裝置100的局部區域放大示意圖。 請先參照圖1A,本實施例之微流體過濾裝置100包含結構本體100B。在此實施例中,結構本體100B例如為片狀本體,但本發明不以此為限。微流體過濾裝置100的結構本體100B至少可區分出三種結構配置部於其中,所述三種結構配置部分別為微流體過濾部110、微流體驅動部120以及連通道130。FIG. 1A is a schematic side sectional view of a microfluidic filtering device 100 according to an embodiment of the present invention. FIG. 1B is an enlarged schematic view of a partial area of the microfluidic filtering device 100 in the embodiment of FIG. 1A. Please refer to FIG. 1A first. The microfluidic filtering device 100 of this embodiment includes a structure body 100B. In this embodiment, the structural body 100B is, for example, a sheet-shaped body, but the present invention is not limited thereto. The structural body 100B of the microfluidic filtering device 100 can distinguish at least three structural configuration portions therein. The three structural configuration portions are a microfluidic filtering portion 110, a microfluidic driving portion 120, and a connecting channel 130, respectively.

於圖1A之實施例中,微流體樣品例如可為血液樣品101,但本發明不限於此。 血液樣品101由微流體過濾部110的入口1101輸入後,收集於微流體過濾部110中的第一流體收納腔1102。 微流體過濾部110另包括多孔隙過濾單元1103及第二流體收納腔1104。 至少部分區域之第一流體收納腔1102、多孔隙過濾部1103及至少部分區域之第二流體收納腔1104由下往上依序配置於微流體過濾部110,例如圖1B之實施例中第一流體收納腔1102之區域A、多孔隙過濾部1103及第二流體收納腔1104之區域B依序沿著Z方向(即例如為反重力方向)由下往上依序配置分布。In the embodiment of FIG. 1A, the microfluidic sample may be, for example, a blood sample 101, but the present invention is not limited thereto. After the blood sample 101 is input through the inlet 1101 of the microfluidic filter unit 110, the blood sample 101 is collected in the first fluid storage chamber 1102 in the microfluidic filter unit 110. The microfluidic filtering unit 110 further includes a multi-porous filtering unit 1103 and a second fluid storage cavity 1104. The first fluid storage cavity 1102 in at least a part of the region and the multi-porous filter portion 1103 and the second fluid storage cavity 1104 in at least a part of the region are sequentially arranged from the bottom to the top of the microfluidic filter 110, such as the first in the embodiment of FIG. The area A of the fluid storage cavity 1102, the porous filter portion 1103, and the area B of the second fluid storage cavity 1104 are sequentially arranged along the Z direction (that is, the direction of anti-gravity, for example) from bottom to top.

圖1B為圖1A實施例之微流體過濾裝置100的局部區域放大示意圖,特別是微流體過濾部110中第一流體收納腔1102之區域A、多孔隙過濾部1103及第二流體收納腔1104之區域B的局部區域放大圖。 由前所述可知,本實施例之第一流體收納腔1102之區域A、多孔隙過濾部1103及第二流體收納腔1104之區域B沿著反重力之方向由下往上依序配置分布。 參照圖1B之實施例,由於血液中血球101a相較於血漿之比重較大的關係,在經過一小段靜置時間,血球會先沉降在第一流體收納腔1102之較低處,即血液中大部分血球會分布於第一流體收納腔1102之區域A中遠離多孔隙過濾部1103的下方區域。FIG. 1B is an enlarged schematic view of a partial area of the microfluidic filtering device 100 in the embodiment of FIG. 1A, especially the area A of the first fluid receiving cavity 1102, the multi-porous filtering portion 1103 and the second fluid receiving cavity 1104 in the microfluidic filtering portion 110. An enlarged view of a partial region of the region B. It can be known from the foregoing that the region A of the first fluid storage cavity 1102, the porous filter portion 1103, and the region B of the second fluid storage cavity 1104 in this embodiment are sequentially arranged from bottom to top along the direction of antigravity. Referring to the embodiment of FIG. 1B, due to the larger proportion of the blood cells 101a in the blood compared to the plasma, after a short period of standing time, the blood cells will first settle in the lower part of the first fluid storage cavity 1102, that is, in the blood. Most of the blood cells will be distributed in the area A of the first fluid containing cavity 1102 away from the area below the porous filter portion 1103.

請再參照圖1A之實施例,微流體驅動部120儲存工作流體1201於其中之第一腔室1202,第一腔室1202透過連通道130與微流體過濾部110連通。 微流體驅動部120另包括分隔單元1203及液體吸附單元1204,其中分隔單元1203使工作流體1201分隔於液體吸附單元1204。Referring again to the embodiment of FIG. 1A, the microfluidic driving unit 120 stores a working fluid 1201 in a first chamber 1202 therein, and the first chamber 1202 communicates with the microfluidic filtering unit 110 through the communication channel 130. The microfluidic driving unit 120 further includes a partition unit 1203 and a liquid adsorption unit 1204. The partition unit 1203 partitions the working fluid 1201 from the liquid adsorption unit 1204.

圖1C至圖1D為圖1A實施例之微流體過濾裝置的運作示意圖。在使用圖1A實施例之微流體過濾裝置100時,在血液樣品101靜置於第一流體收納腔1102後,可施力於第一腔室1202,例如圖1C所繪示之施力F,驅使第一腔室1202中的工作流體1201流往液體吸附單元1204。FIG. 1C to FIG. 1D are operation schematic diagrams of the microfluidic filtering device in the embodiment of FIG. 1A. When the microfluidic filtering device 100 of the embodiment of FIG. 1A is used, after the blood sample 101 is statically placed in the first fluid storage chamber 1102, a force can be applied to the first chamber 1202, for example, the force F shown in FIG. 1C, The working fluid 1201 in the first chamber 1202 is driven to the liquid adsorption unit 1204.

請再參照圖1C至圖1E,當第一腔室1202中的工作流體1201被液體吸附單元1204吸附時,第一腔室1202會因此產生負壓。由於第一腔室1202透過連通道130與微流體過濾部110的第二流體收納腔1104連通,第一腔室1202中的負壓進而可驅動微流體過濾部110之第一流體收納腔1102中的血液樣品101流經多孔隙過濾單元1103並流往第二流體收納腔1104。Please refer to FIG. 1C to FIG. 1E again. When the working fluid 1201 in the first chamber 1202 is adsorbed by the liquid adsorption unit 1204, the first chamber 1202 will generate a negative pressure accordingly. Since the first chamber 1202 is in communication with the second fluid receiving chamber 1104 of the microfluidic filtering unit 110 through the communication channel 130, the negative pressure in the first chamber 1202 can further drive the first fluid receiving chamber 1102 of the microfluidic filtering unit 110. The blood sample 101 flows through the porous filter unit 1103 and flows to the second fluid storage cavity 1104.

由前述之圖1B可知,由於本實施例之微流體過濾部110中的第一流體收納腔1102之區域A、多孔隙過濾部1103及第二流體收納腔1104之區域B沿著反重力之方向由下往上依序配置分布,使得血液樣品101中大部分的血球因比重關係而先沉降在第一流體收納腔1102之較低處,故經後端微流體驅動部120的負壓驅動力而向上通過多孔隙過濾單元1103的血液檢體大多是比重較小的血漿。It can be known from the foregoing FIG. 1B that, since the area A of the first fluid storage cavity 1102, the porous filter portion 1103, and the area B of the second fluid storage cavity 1104 in the microfluidic filter portion 110 of this embodiment are in the direction of antigravity. The distribution is sequentially arranged from the bottom to the top, so that most of the blood cells in the blood sample 101 settle to the lower part of the first fluid storage chamber 1102 due to the specific gravity relationship, so the negative pressure driving force through the rear microfluidic driving part 120 Most of the blood samples passing upward through the porous filter unit 1103 are plasma with a small specific gravity.

於此實施例中,多孔隙過濾單元1103 例如為內含多孔隙之過濾膜片,孔隙的孔徑建議小於或等於2微米(mm)。在一實施例中,所述多孔隙過濾膜片更可具有親水非對稱性孔隙材質,例如為血漿分離膜 (Plasma Separation Membrane),但本發明不限於此。 在另一實施例中,所述非對稱性多孔隙過濾膜片中配置靠近前述第一流體收納腔1102的孔隙孔徑較靠近前述第二流體收納腔1104的孔隙孔徑為大,可再進一步過濾出不含或較少血球含量的血漿。在本實施例,微流體過濾部110中反重力配置結構的安排,使血液樣品中大部分的血球沉降在第一流體收納腔1102而非堆積於多孔隙過濾單元1103的孔隙,可以減少或避免經過多孔隙過濾單元1103的血漿中由於血球堆積於孔隙受力破掉而造成的溶血現象。在另一實施例中,可再配合前述非對稱性多孔隙過濾膜片的孔徑配置方式,再進一步達到緩衝過濾的方式,提高過濾後之血漿成分並降低溶血現象。In this embodiment, the multi-porous filter unit 1103 is, for example, a filter membrane containing multiple pores, and the pore diameter of the pores is preferably less than or equal to 2 micrometers (mm). In one embodiment, the porous filter membrane may further have a hydrophilic asymmetric porous material, such as a plasma separation membrane (Plasma Separation Membrane), but the present invention is not limited thereto. In another embodiment, the pore diameter of the pores close to the first fluid storage cavity 1102 in the asymmetric multi-porous filter membrane is larger than the pore diameter of the pores close to the second fluid storage cavity 1104, which can be further filtered out. Plasma without or less blood cells. In this embodiment, the arrangement of the anti-gravity configuration structure in the microfluidic filtering unit 110 allows most of the blood cells in the blood sample to settle in the first fluid storage cavity 1102 instead of being accumulated in the pores of the multi-pore filtering unit 1103, which can reduce or avoid The hemolysis in the plasma passing through the porous filter unit 1103 is caused by the accumulation of blood cells in the pores and the force is broken. In another embodiment, the pore size configuration of the asymmetric multi-porous filter membrane can be further matched to achieve a buffer filtration method to increase the filtered plasma composition and reduce the hemolysis phenomenon.

在一實施例中,液體吸附單元1204例如可為多孔性吸水性纖維材質。根據達西定律(Darcy’s law)與史托克定律(Stroke’s law)流體力學模型分析,如下文之公式(一)及公式(二)所示,由於工作流體1201受到液體吸附單元1204之多孔性材質誘發出孔隙流(porous flow),所述孔隙流產生的負壓(Pcapillary)進一步誘發管道內產生之管道流,根據公式二,當多孔性吸水性材質孔隙(aporous)愈小將可產生更大的流量。因此,藉由選擇液體吸附單元1204為微米等級孔隙之吸水性纖維材質,可以產生千帕(kPa)等級的驅動壓力,相較於習知僅以毛細力原理產生數百帕之驅動壓力為大。公式(一)公式(二)In one embodiment, the liquid adsorption unit 1204 may be made of a porous water-absorbing fiber material, for example. According to Darcy's law and Stroke's law fluid mechanics model analysis, as shown in formula (1) and formula (2) below, the working fluid 1201 is subjected to the porous material of the liquid adsorption unit 1204 Porous flow is induced, which creates a negative pressure ( Pcapillary) further induces the pipe flow generated in the pipe. According to formula 2, the smaller the porosity of the porous water-absorbing material, the larger the flow will be. Therefore, by selecting the liquid adsorption unit 1204 as a micro-sized porous water-absorbing fiber material, a driving pressure of kilopascal (kPa) level can be generated, which is larger than the driving pressure of hundreds of Pascals which is based on the capillary force principle. . Formula (1) Formula (2)

請參照圖1E之實施例,於一些應用實施,需要分離出至少一定量之血漿檢體,以用於後端的試劑檢測。可以根據前述公式(一)設計符合需求的體積流率Qworking,並根據達西定律(Darcy’s law)與楊-拉普拉斯(Young-Laplace)壓力式,如下文公式(三)所示,選擇符合需求之液體吸附單元1204的規格,例如形狀與材料,實現可以持續產生負壓以誘發更多的管道流,產生符合設計需求量之血漿。公式(三)Please refer to the embodiment of FIG. 1E. In some applications, at least a certain amount of plasma samples need to be separated for the reagent detection in the back end. The volumetric flow rate Qworking that meets the requirements can be designed according to the aforementioned formula (1), and according to Darcy's law and Young-Laplace pressure formula, as shown in formula (3) below, select The specifications of the liquid adsorption unit 1204 that meet the requirements, such as the shape and material, realize that it can continuously generate negative pressure to induce more pipeline flow and generate plasma that meets the design requirements. Formula (3)

圖2A及圖2B分別為本發明一實施例之微流體過濾裝置100’的俯視示意圖及爆炸示意圖。請先參照圖2A,本實施例之微流體過濾部110’ 分布在圖2A的下半區,包括流體入口1101’、第一流體收納腔1102’、多孔隙過濾單元1103’及第二流體收納腔1104’。 另,微流體驅動部120’ 分布在圖2A的上半區,包括工作流體1201’、放置工作流體的第一腔室1202’、 分隔單元1203’以及液體吸附單元1204’。 其中,圖2A實施例之上半區中的第一腔室1202’包括放置工作流體1201’的連續彎曲流道,但本發明不限於此,並且第一腔室1202’的一端透過連通道130’與下半區中的第二流體收納腔1104’連通。於此實施例中,第二流體收納腔1104’ 可進一步設置試紙於其中,例如圖2A的登革熱抗原測試條,但本發明不限於此。如此,可進一步滿足快篩的需求。FIG. 2A and FIG. 2B are a schematic plan view and an explosion view of a microfluidic filtering device 100 'according to an embodiment of the present invention, respectively. Please refer to FIG. 2A first. The microfluidic filtering part 110 'of this embodiment is distributed in the lower half of FIG. 2A, and includes a fluid inlet 1101', a first fluid receiving cavity 1102 ', a multi-porous filtering unit 1103', and a second fluid receiving Cavity 1104 '. In addition, the microfluid driving part 120 'is distributed in the upper half of Fig. 2A, and includes a working fluid 1201', a first chamber 1202 'in which the working fluid is placed, a partition unit 1203', and a liquid adsorption unit 1204 '. Wherein, the first chamber 1202 'in the upper half of the embodiment of FIG. 2A includes a continuous curved flow channel in which the working fluid 1201' is placed, but the present invention is not limited thereto, and one end of the first chamber 1202 'passes through the connecting channel 130 'Communicates with the second fluid receiving cavity 1104' in the lower half. In this embodiment, the second fluid storage chamber 1104 'may further be provided with a test paper, such as the dengue antigen test strip in FIG. 2A, but the present invention is not limited thereto. In this way, the needs of fast screening can be further met.

請參見圖2B之實施例,分隔單元1203’係設置於放置工作流體的連續彎曲流道(第一腔室1202’)及液體吸附單元1204’之間並用以分隔工作流體1201’與液體吸附單元1204’,例如圖2B中顯示分隔單元1203’所在的虛線區域。在一實施例中,分隔單元1203’係例如為氣泡隙,該氣泡隙位於連續彎曲流道(第一腔室1202’)中靠近液體吸附單元1204’的區域,用以分隔連續彎曲流道1202’與液體吸附單元1204’,在使用此實施例之微流體過濾裝置時,該氣泡隙受前述施於第一腔室1202’的施力F而推進至液體吸附單元1204’,以進一步使第一腔室1202’與液體吸附單元1204’連通。Referring to the embodiment of FIG. 2B, the partition unit 1203 'is disposed between the continuous curved flow path (the first chamber 1202') where the working fluid is placed and the liquid adsorption unit 1204 'and is used to separate the working fluid 1201' from the liquid adsorption unit. 1204 ', for example, the dotted area where the separation unit 1203' is located is shown in FIG. 2B. In one embodiment, the separation unit 1203 'is, for example, a bubble gap, and the bubble gap is located in the continuous curved flow channel (first chamber 1202') near the liquid adsorption unit 1204 'to separate the continuous curved flow channel 1202. 'With the liquid adsorption unit 1204', when using the microfluidic filtering device of this embodiment, the bubble gap is advanced to the liquid adsorption unit 1204 'by the aforementioned force F applied to the first chamber 1202', so that the first A chamber 1202 'is in communication with the liquid adsorption unit 1204'.

在另一實施例中,圖2B之實施例中的分隔單元1203’可為易受局部點施力而破孔的膜,例如:鋁箔膜。在又一實施例,分隔單元1203’亦可為一蠟栓,在使用此實施例之微流體過濾裝置時,可對分隔單元1203’的區域施加一熱處理使該蠟栓融化。In another embodiment, the partition unit 1203 'in the embodiment of FIG. 2B may be a film that is susceptible to partial hole force and breaks holes, such as an aluminum foil film. In another embodiment, the partition unit 1203 'may be a wax plug. When the microfluidic filtering device of this embodiment is used, a heat treatment may be applied to the area of the partition unit 1203' to melt the wax plug.

請再參照圖2B之實施例,微流體過濾裝置100’之結構本體100B’可由上板100U、下板100D夾置基板100M而構成,但本發明不以此為限。 於此實施例中,基板100M包含注入孔1202I,前述的工作流體1201’可經由注入孔1202I注入至第一腔室1202’的連續彎曲流道中,但本發明並不限於此。 其中,上板100U或下板100D的材料可包括聚酸甲酯(Polymethylmethacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、壓感膠、環烯烴聚合物(Cyclo olefin polymer,COP)或聚苯乙烯(polystyrene, PS)等高分子塑膠材料。 所述基板100M的材料可包括聚酸甲酯(Polymethylmethacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、壓感膠、環烯烴聚合物(Cyclo olefin polymer,COP)或聚苯乙烯(polystyrene,PS)等高分子塑膠材料。在一實施例中,對應基板100M之注入孔1202I位置的上板100U中更可包含一開孔對應連通該注入孔1202I,工作流體1201’可在上板100U、下板100D及基板100M組合完成後由上板100U中前述的對應開孔注入至第一腔室1202’中。Please refer to the embodiment of FIG. 2B again. The structure body 100B 'of the microfluidic filter device 100' can be composed of an upper plate 100U and a lower plate 100D sandwiching a substrate 100M, but the invention is not limited thereto. In this embodiment, the substrate 100M includes an injection hole 1202I. The aforementioned working fluid 1201 'can be injected into the continuous curved flow channel of the first chamber 1202' through the injection hole 1202I, but the present invention is not limited thereto. Wherein, the material of the upper plate 100U or the lower plate 100D may include polymethylmethacrylate (PMMA), polycarbonate (PC), pressure-sensitive adhesive, Cyclo olefin polymer (COP), or polybenzene High polymer plastic materials such as polystyrene (PS). The material of the substrate 100M may include polymethylmethacrylate (PMMA), polycarbonate (PC), pressure-sensitive adhesive, Cyclo olefin polymer (COP), or polystyrene (PS). ) And other polymer plastic materials. In an embodiment, the upper plate 100U corresponding to the injection hole 1202I of the substrate 100M may further include an opening corresponding to the injection hole 1202I, and the working fluid 1201 ′ may be combined in the upper plate 100U, the lower plate 100D, and the substrate 100M. It is then injected into the first chamber 1202 'from the aforementioned corresponding opening in the upper plate 100U.

圖3為本發明另一實施例之微流體過濾裝置的俯視示意圖。此實施例之微流體過濾裝置與前述圖2A的實施例相似,因此採用與圖2A相同或相似的元件符號表示。請參照圖3之實施例,微流體過濾部110’中的第二流體收納腔1104’可進一步包含磁性液滴控制的流道,流道用以容置一磁性液滴(未繪示)。其中,磁性液滴例如包含有磁珠以及待檢測物。於此實施例,流道係包含被分隔的複數個操控空間1104a。於此實施例,使用者可藉由操控外界磁場來控制待測物在不同的操控空間內的移動,使用者亦可視其需求而在不同的操控空間1104a容置不同的液體,藉此使用者可在不同的操控空間1104a內進行例如前處理、檢測或後處理等操作。FIG. 3 is a schematic top view of a microfluidic filtering device according to another embodiment of the present invention. The microfluidic filtering device of this embodiment is similar to the embodiment of FIG. 2A described above, and therefore is represented by the same or similar component symbols as those of FIG. 2A. Referring to the embodiment of FIG. 3, the second fluid storage cavity 1104 ′ in the microfluidic filtering unit 110 ′ may further include a magnetic droplet controlled flow channel, and the flow channel is used for containing a magnetic liquid droplet (not shown). The magnetic droplet includes, for example, magnetic beads and an object to be detected. In this embodiment, the flow channel includes a plurality of separated control spaces 1104a. In this embodiment, the user can control the movement of the object to be measured in different control spaces by manipulating the external magnetic field. The user can also accommodate different liquids in different control spaces 1104a according to his needs, thereby the user Operations such as pre-processing, detection, or post-processing can be performed in different control spaces 1104a.

圖4A為本發明又一實施例之微流體過濾裝置的俯視示意圖,圖4B為沿著圖4A之A-A’線的剖視示意圖。本實施例之微流體過濾裝置的微流體過濾部與前述圖2A的實施例相似,因此採用與圖2A相同或相似的元件符號表示。 請先參見圖4B,在本實施例中,分隔單元1203’可以使用相同於前述基板100M的塑膠材料, 如此分隔單元1203’可例如為一塑膠薄片且與基板100M一體成型,也就是說分隔單元1203’可一體成形於結構本體100B。在本實施例中,所述一體成形於結構本體100B中的塑膠薄片之厚度係例如不大於0.2 毫米(Millimeter,mm),但本發明並不限於此。Fig. 4A is a schematic top view of a microfluidic filtering device according to another embodiment of the present invention, and Fig. 4B is a schematic cross-sectional view taken along line A-A 'of Fig. 4A. The microfluidic filtering part of the microfluidic filtering device of this embodiment is similar to the embodiment of FIG. 2A described above, and therefore is represented by the same or similar component symbols as those of FIG. 2A. Please refer to FIG. 4B first. In this embodiment, the separation unit 1203 'can use the same plastic material as the aforementioned substrate 100M, so the separation unit 1203' can be, for example, a plastic sheet and integrally formed with the substrate 100M, that is, the separation unit 1203 'can be integrally formed with the structural body 100B. In this embodiment, the thickness of the plastic sheet integrally formed in the structural body 100B is, for example, not more than 0.2 millimeter (mm), but the present invention is not limited thereto.

請再參見圖4A與圖4B之實施例,在本實施例中,液體吸附單元1204'和工作流體1201'分別放置於分隔單元1203'的上下兩側,鄰近液體吸附單元1204'之結構本體100B的部位設有一微透氣孔1204O。在使用此實施例之微流體過濾裝置時,分隔單元1203'(例如:塑膠薄片)因受力而壓破後,液體吸附單元1204'會接觸並吸附工作流體1201',使得第一腔室1202'產生負壓進而驅動第一腔室1202'前端連通液體容置腔室(例如:第一流體收納腔或第二流體收納腔)中的檢體往第一腔室1202'的方向流動。Please refer to the embodiment of FIGS. 4A and 4B again. In this embodiment, the liquid adsorption unit 1204 'and the working fluid 1201' are respectively placed on the upper and lower sides of the partition unit 1203 ', and the structure body 100B adjacent to the liquid adsorption unit 1204' A micro-breathing hole 1204O is provided at the part. When the microfluidic filtering device of this embodiment is used, after the partition unit 1203 '(for example: a plastic sheet) is crushed by a force, the liquid adsorption unit 1204' will contact and adsorb the working fluid 1201 ', so that the first chamber 1202 'Negative pressure is generated to drive the first chamber 1202', and the specimen in the front-end communication liquid containing chamber (for example, the first fluid storage chamber or the second fluid storage chamber) flows in the direction of the first chamber 1202 '.

雖然本提案以前述之較佳實施例揭露如上,然其並非用以限定本提案,任何熟習相像技藝者,在不脫離本提案之精神和範圍內,當可作些許之更動與潤飾,因此本提案之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。Although this proposal is disclosed above with the foregoing preferred embodiments, it is not intended to limit this proposal. Any person skilled in similar arts can make some changes and decorations without departing from the spirit and scope of this proposal. The scope of patent protection proposed shall be determined by the scope of patent application attached to this specification.

100、100’‧‧‧微流體過濾裝置
100B、100B’‧‧‧結構本體
100U‧‧‧上板
100D‧‧‧下板
100M‧‧‧基板
101‧‧‧血液樣品
101a‧‧‧血球
110、110’‧‧‧微流體過濾部
1101、1101’‧‧‧入口
1102、1102’‧‧‧第一流體收納腔
1103、1103’‧‧‧多孔隙過濾單元
1104、1104’‧‧‧第二流體收納腔
1104a‧‧‧操控空間
120、120’‧‧‧微流體驅動部
1201、1201’‧‧‧工作流體
1202、1202’‧‧‧第一腔室
1202I‧‧‧工作流體注入孔
1203、1203’‧‧‧分隔單元
1204、1204’‧‧‧液體吸附單元
1204O‧‧‧微透氣孔
130、130’‧‧‧連通道
100, 100'‧‧‧ microfluidic filter device
100B, 100B'‧‧‧ structure body
100U‧‧‧on board
100D‧‧‧ Lower plate
100M‧‧‧ substrate
101‧‧‧ blood sample
101a‧‧‧ blood cells
110, 110'‧‧‧ microfluidic filtration department
1101, 1101'‧‧‧ entrance
1102, 1102'‧‧‧ first fluid storage cavity
1103, 1103'‧‧‧ multi-porous filter unit
1104, 1104'‧‧‧Second fluid storage cavity
1104a‧‧‧Control Space
120, 120'‧‧‧ microfluidic driver
1201, 1201'‧‧‧ Working fluid
1202, 1202'‧‧‧ First Chamber
1202I‧‧‧Working fluid injection hole
1203, 1203'‧‧‧ partition unit
1204, 1204'‧‧‧ liquid adsorption unit
1204O‧‧‧Micro vent
130, 130'‧‧‧ with access

圖1A為本發明一實施例之微流體過濾裝置的側剖示意圖。 圖1B為圖1A實施例之微流體過濾裝置的局部區域放大示意圖。 圖1C至圖1E為圖1A實施例之微流體過濾裝置的運作示意圖。 圖2A為本發明一實施例之微流體過濾裝置的俯視示意圖。 圖2B為圖2A實施例之微流體過濾裝置的爆炸示意圖。 圖3為本發明一實施例之微流體過濾裝置的俯視示意圖。 圖4A為本發明又一實施例之微流體過濾裝置的俯視示意圖。 圖4B為沿著圖4A之A-A’線的剖視示意圖。FIG. 1A is a schematic side sectional view of a microfluidic filtering device according to an embodiment of the present invention. FIG. 1B is an enlarged schematic view of a partial area of the microfluidic filtering device in the embodiment of FIG. 1A. FIG. 1C to FIG. 1E are operation schematic diagrams of the microfluidic filtering device in the embodiment of FIG. 1A. FIG. 2A is a schematic top view of a microfluidic filtering device according to an embodiment of the present invention. FIG. 2B is an exploded view of the microfluidic filtering device in the embodiment of FIG. 2A. FIG. 3 is a schematic top view of a microfluidic filtering device according to an embodiment of the present invention. FIG. 4A is a schematic top view of a microfluidic filtering device according to another embodiment of the present invention. Fig. 4B is a schematic cross-sectional view taken along line A-A 'of Fig. 4A.

100‧‧‧微流體過濾裝置 100‧‧‧ microfluidic filter device

100B‧‧‧結構本體 100B‧‧‧ Structure Ontology

101‧‧‧血液樣品 101‧‧‧ blood sample

110‧‧‧微流體過濾部 110‧‧‧Microfluidic filtration department

1101‧‧‧入口 1101‧‧‧ Entrance

1102‧‧‧第一流體收納腔 1102‧‧‧First fluid storage cavity

1103‧‧‧多孔隙過濾單元 1103‧‧‧Porous Filter Unit

1104‧‧‧第二流體收納腔 1104‧‧‧Second fluid storage cavity

120‧‧‧微流體驅動部 120‧‧‧Microfluidic drive unit

1201‧‧‧工作流體 1201‧‧‧working fluid

1202‧‧‧第一腔室 1202‧‧‧First Chamber

1203‧‧‧分隔單元 1203‧‧‧ Divided Unit

1204‧‧‧液體吸附單元 1204‧‧‧Liquid adsorption unit

130‧‧‧連通道 130‧‧‧ with access

Claims (15)

一種自驅式微流體過濾裝置,包含: 一微流體過濾部,包含 一第一流體收納腔,具有一入口,用以輸入及容置一液體; 一多孔隙過濾單元,用以過濾該液體;以及 一第二流體收納腔,用以容置該過濾後之液體,其中,該第一流體收納腔、該多孔隙過濾單元及該第二流體收納腔依序沿著一反重力方向配置; 一微流體驅動部,包含 一第一腔室,用以容置一工作流體;以及 一液體吸附單元,用以吸附該工作流體;以及 一連通道,用以連通該微流體過濾部的該第二流體收納腔與該微流體驅動部的該第一腔室。A self-driven microfluidic filtering device includes: a microfluidic filtering section including a first fluid storage cavity having an inlet for inputting and containing a liquid; a multi-porous filtering unit for filtering the liquid; and A second fluid containing cavity for containing the filtered liquid, wherein the first fluid containing cavity, the multi-porous filter unit and the second fluid containing cavity are sequentially arranged along an anti-gravity direction; a micro The fluid driving part includes a first chamber for containing a working fluid; and a liquid adsorption unit for adsorbing the working fluid; and a connecting channel for communicating the second fluid storage of the microfluidic filtering part. The cavity and the first cavity of the microfluidic driving part. 如申請專利範圍第1項所述的自驅式微流體過濾裝置,其中該微流體過濾部、該微流體驅動部及該連通道設置於一結構本體。The self-driven microfluidic filtering device according to item 1 of the scope of patent application, wherein the microfluidic filtering part, the microfluidic driving part, and the connecting channel are disposed on a structural body. 如申請專利範圍第2項所述的自驅式微流體過濾裝置,其中該結構本體包括片狀本體。The self-driven microfluidic filtering device according to item 2 of the patent application scope, wherein the structural body comprises a sheet-shaped body. 如申請專利範圍第1項所述的自驅式微流體過濾裝置,其中該多孔隙過濾單元包括一過濾膜片,該過濾膜片具有多個孔隙。The self-driving microfluidic filtering device according to item 1 of the patent application scope, wherein the porous filter unit includes a filter membrane, and the filter membrane has a plurality of pores. 如申請專利範圍第4項所述的自驅式微流體過濾裝置,其中該孔隙的孔徑小於或等於2微米。The self-propelled microfluidic filter device according to item 4 of the scope of patent application, wherein the pore has a pore diameter of less than or equal to 2 microns. 如申請專利範圍第4項所述的自驅式微流體過濾裝置,其中該過濾膜片為親水非對稱性孔隙材質。The self-driving microfluidic filtering device according to item 4 of the scope of application for a patent, wherein the filtering membrane is made of hydrophilic asymmetric pore material. 如申請專利範圍第4項所述的自驅式微流體過濾裝置,其中該過濾膜片中配置靠近該第一流體收納腔的該多個孔隙之孔徑大於靠近該第二流體收納腔的該多個孔隙之孔徑。The self-propelled microfluidic filter device according to item 4 of the scope of patent application, wherein the pores of the plurality of pores disposed near the first fluid receiving cavity in the filter membrane are larger than the plurality of pores adjacent to the second fluid receiving cavity. Pore diameter. 如申請專利範圍第3項所述的自驅式微流體過濾裝置,其中該結構本體由一上板、一下板夾置一基板構成。The self-driving microfluidic filter device according to item 3 of the scope of patent application, wherein the structure body is composed of an upper plate and a lower plate sandwiching a substrate. 如申請專利範圍第8項所述的自驅式微流體過濾裝置,其中該上板或該下板的材料包括聚酸甲酯(Polymethylmethacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、壓感膠、環烯烴聚合物(Cyclo olefin polymer,COP)或聚苯乙烯(polystyrene,PS)。The self-driving microfluidic filtering device according to item 8 of the scope of patent application, wherein the material of the upper plate or the lower plate includes polymethylmethacrylate (PMMA), polycarbonate (PC), and pressure-sensitive adhesive Cyclo olefin polymer (COP) or polystyrene (PS). 如申請專利範圍第8項所述的自驅式微流體過濾裝置,其中該基板的材料包括聚酸甲酯(Polymethylmethacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、壓感膠、環烯烴聚合物(Cyclo olefin polymer,COP)或聚苯乙烯(polystyrene,PS)。The self-driving microfluidic filter device according to item 8 of the scope of patent application, wherein the material of the substrate includes polymethylmethacrylate (PMMA), polycarbonate (PC), pressure-sensitive adhesive, and cycloolefin polymer (Cyclo olefin polymer, COP) or polystyrene (PS). 如申請專利範圍第1項所述的自驅式微流體過濾裝置,其中該微流體驅動部更包含一分隔單元,該分隔單元用以使該工作流體分隔於該液體吸附單元,其中該分隔單元包含氣泡隙、鋁箔膜、蠟栓或塑膠薄片。The self-driving microfluidic filtering device according to item 1 of the scope of patent application, wherein the microfluidic driving unit further includes a partition unit for separating the working fluid from the liquid adsorption unit, wherein the partition unit includes Air gap, aluminum foil film, wax plug or plastic sheet. 如申請專利範圍第8項所述的自驅式微流體過濾裝置,其中該微流體驅動部更包含一分隔單元,該分隔單元用以使該工作流體分隔於該液體吸附單元。The self-driving microfluidic filtering device according to item 8 of the scope of patent application, wherein the microfluidic driving unit further includes a partition unit for partitioning the working fluid from the liquid adsorption unit. 如申請專利範圍第12項所述的自驅式微流體過濾裝置,其中該分隔單元為與該基板材質相同之一薄片,該薄片與該基板為一體成形。According to the self-propelled microfluidic filtering device according to item 12 of the scope of the patent application, wherein the partition unit is a sheet of the same material as the substrate, and the sheet is integrally formed with the substrate. 一種微流體過濾裝置,包含: 一第一流體收納腔,具有一入口,用以輸入及容置一液體; 一多孔隙過濾單元,用以過濾該液體;以及 一第二流體收納腔,用以容置經該多孔隙過濾單元過濾後之該液體,其中,該第一流體收納腔、該多孔隙過濾單元及該第二流體收納腔依序沿著一反重力方向配置。A microfluidic filtering device includes: a first fluid containing cavity having an inlet for inputting and containing a liquid; a multi-porous filtering unit for filtering the liquid; and a second fluid containing cavity for The liquid filtered by the porous filter unit is contained, wherein the first fluid storage chamber, the porous filter unit, and the second fluid storage chamber are sequentially arranged along an anti-gravity direction. 一種微流體驅動裝置,包含: 一液體容置腔室,用以容置一液體; 一第一腔室,用以容置一工作流體,其中該第一腔室連通於該液體容置腔室;以及 一液體吸附單元,用以吸附該第一腔室中的該工作流體,以使該第一腔室中產生一負壓,驅使該液體容置腔室中的該液體往該第一腔室的方向流動。A microfluidic driving device includes: a liquid containing chamber for containing a liquid; a first chamber for containing a working fluid, wherein the first chamber communicates with the liquid containing chamber And a liquid adsorption unit for adsorbing the working fluid in the first chamber so that a negative pressure is generated in the first chamber, driving the liquid in the liquid containing chamber to the first chamber The direction of the chamber flows.
TW105130053A 2016-09-14 2016-09-14 Apparatus for self-drive microfluid filtration, microfluid filtration and microfluid driver TWI627991B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105130053A TWI627991B (en) 2016-09-14 2016-09-14 Apparatus for self-drive microfluid filtration, microfluid filtration and microfluid driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105130053A TWI627991B (en) 2016-09-14 2016-09-14 Apparatus for self-drive microfluid filtration, microfluid filtration and microfluid driver

Publications (2)

Publication Number Publication Date
TW201808426A true TW201808426A (en) 2018-03-16
TWI627991B TWI627991B (en) 2018-07-01

Family

ID=62189745

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105130053A TWI627991B (en) 2016-09-14 2016-09-14 Apparatus for self-drive microfluid filtration, microfluid filtration and microfluid driver

Country Status (1)

Country Link
TW (1) TWI627991B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715998B (en) 2019-01-28 2021-01-11 笙特科技股份有限公司 Filter material and manufacturing method thereof
TWI721555B (en) * 2019-09-09 2021-03-11 國立雲林科技大學 Micro-fluid structure generating device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20030076A1 (en) * 2003-04-16 2003-07-15 Federico Nalesso PLASMA MACHINE COMBINED PLASMA PURIFICATION ADSORPTION-PERFUSION BY USING A THREE-COMPARTMENTAL DIALIZER
ES2628782T3 (en) * 2009-10-29 2017-08-03 The Charles Stark Draper Laboratory, Inc Microfluidic device for blood dialysis
JP5749123B2 (en) * 2010-09-01 2015-07-15 旭化成メディカル株式会社 Blood processing filter, blood processing system, and method for producing blood product
TWI571276B (en) * 2014-12-26 2017-02-21 國立高雄大學 Blood isolation and extraction method and device thereof

Also Published As

Publication number Publication date
TWI627991B (en) 2018-07-01

Similar Documents

Publication Publication Date Title
JP7453653B2 (en) Particle separation systems and methods
Cho et al. Microfluidic technologies for circulating tumor cell isolation
US20200070167A1 (en) Processing systems for isolating and enumerating cells or particles
WO2014182844A1 (en) Microfluidic devices and methods for performing serum separation and blood cross-matching
Maria et al. Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices
EP2970847A1 (en) Aspiration-free well plate apparatus and methods
CN105873680A (en) Microfluidic device, system, and method
JP6611223B2 (en) Fine particle separation chip, fine particle separation system using the fine particle separation chip, fine particle separation method and fine particle extraction method using the partial particle separation system
JP6308525B2 (en) Particle separation chip, particle separation system and particle separation method using the particle separation chip
WO2013158045A1 (en) Microfilter and apparatus for separating a biological entity from a sample volume
JP6326582B2 (en) Microchannel chip for particle separation, particle separation system using the chip, and particle separation method
JP6371857B2 (en) Particle filtration apparatus and particle filtration method
CN108291907A (en) The system and method detached with hematocrit value is preserved for blood sample
TW201808426A (en) Self-drive microfluidic filtration device, microfluidic filtration device and microfluidic driver enabling screening of blood samples quickly and conveniently without cross-contamination of samples occurred during the separation and screening processes in prior arts
EP3048163B1 (en) Particle filtering device and particle filtering method
JP2016514965A (en) Apparatus for classifying cells in a sample and method of using the apparatus
Chang et al. A tunable microfluidic-based filter modulated by pneumatic pressure for separation of blood cells
US8728312B2 (en) Method and device for filtering blood using magnetic force
JP6363093B2 (en) Fluid system with fluid stop
TW202126261A (en) Medium with hydrophobic patterns and break lines defining a blood collection volume
JPWO2019163688A1 (en) Fluid handling device
KR102626812B1 (en) System and method for automatically separating target object designed not to be exposed to the outside
WO2012127433A1 (en) A microfluidic system for automating pathological test procedures
US20100240119A1 (en) Microseparation structure and devices formed therewith
KR101748565B1 (en) Apparatus for separating circulating tumor cells in blood and method of separating circulating tumor cells in blood using the same