TW201805303A - IP-10 antibodies and their uses - Google Patents

IP-10 antibodies and their uses Download PDF

Info

Publication number
TW201805303A
TW201805303A TW106107456A TW106107456A TW201805303A TW 201805303 A TW201805303 A TW 201805303A TW 106107456 A TW106107456 A TW 106107456A TW 106107456 A TW106107456 A TW 106107456A TW 201805303 A TW201805303 A TW 201805303A
Authority
TW
Taiwan
Prior art keywords
seq
antibody
nos
antigen
binding portion
Prior art date
Application number
TW106107456A
Other languages
Chinese (zh)
Inventor
摩漢 史林維桑
史瑞凱特 德許帕德
啟鴻 趙
華東 孫
金傑 雷司托
國棟 陳
理查 黃
史帝芬 薛夫
克利斯丁 羅瑞格茲
約翰P 索普
羅絲A 迪貝拉
Original Assignee
必治妥美雅史谷比公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 必治妥美雅史谷比公司 filed Critical 必治妥美雅史谷比公司
Publication of TW201805303A publication Critical patent/TW201805303A/en

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to IP-10 with high affinity, inhibit the binding of IP-10 to its receptor, inhibit IP-10-induced calcium flux and inhibit IP-10-induced cell migration. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting IP-10 activity using the antibodies of the invention, including methods for treating various inflammatory and autoimmune diseases.

Description

IP-10抗體及其用途IP-10 antibody and use thereof

本發明係有關結合干擾素γ誘導蛋白10 (IP-10)之單株抗體。特定而言,本發明係關於與未修飾抗體相比,展現改良之穩定性及活性之經修飾IP-10抗體。The present invention relates to a monoclonal antibody that binds to interferon gamma-inducible protein 10 (IP-10). In particular, the present invention relates to modified IP-10 antibodies that exhibit improved stability and activity compared to unmodified antibodies.

干擾素γ誘導蛋白10 (IP-10) (亦稱為CXCL10)係最初基於使用干擾素γ (IFN-γ)處理之細胞中之IP-10基因表現所鑑別之10kDa趨化介素(Luster, A.D.等人(1985)Nature 315 :672-676)。IP-10對具有趨化活性之蛋白質(例如血小板因子4及β-凝血球蛋白)及具有分裂原活性之蛋白質(例如結締組織活化肽III)展示同源性(Luster, A.D.等人(1987)Proc. Natl. Acad. Sci. USA 84 :2868-2871)。IP-10係由各種細胞(包含內皮細胞、單核球、纖維母細胞及角質細胞)因應於IFN-γ所分泌(Luster, A.D.及Ravetch, J.V. (1987)J. Exp. Med. 166 :1084-1097)。IP-10亦展示存在於人類皮膚中之延遲型過敏性(DTH)反應之皮膚巨噬球及內皮細胞中(Kaplan, G.等人(1987)J. Exp. Med. 166 :1098-1108)。儘管最初基於IFN-γ誘導來進行鑑別,但IP-10亦可由IFN-α誘導(例如在樹突狀細胞中) (Padovan, E.等人, (2002) J. Leukoc. Biol .71 :669-676)。IP-10表現亦可由刺激(例如IFN-γ、病毒及脂多醣)誘導於中樞神經系統之細胞(例如星形細胞及小神經膠質細胞)中(Vanguri, R.及Farber, J.M. (1994)J. Immunol. 152 :1411-1418; Ren, L.Q.等人 (1998)Brain Res. Mol. Brain Res .59 :256-263)。IP-10之免疫生物學綜述於Neville, L.F等人 (1997)Cytokine Growth Factor Rev. 8 :207-219中。 IP-10之受體已鑑別為CXCR3 (7跨膜受體) (Loetscher, M.等人,(1996)J. Exp. Med. 184 :963-969)。CXCR3已展示表現於經活化T淋巴球上,但並表現於靜止T淋巴球以及B淋巴球、單核球或顆粒球上(Loetscher, M.等人,上文文獻)。已展示,藉由使用TGF-β1進行刺激可上調NK細胞上之CXCR3表現(Inngjerdingen, M.等人 (2001)Blood 97 :367-375)。亦已鑑別CXCR3之以下兩種其他配體:MIG (Loetscher, M.等人,上文文獻)及ITAC (Cole, K.E.等人(1998)J. Exp. Med .187 :2009-2021)。 已展示,IP-10至CXCR3之結合會調介經活化T細胞中之鈣動員及趨化(Loetscher, M.等人,上文文獻)。在經活化NK細胞上,趨化及細胞內鈣動員亦由IP-10至CXCR3之結合誘導(Maghazachi, A.A.等人(1997)FASEB J .11 :765-774)。在胸腺內,IP-10已展示係TCRαβ+ CD8+ T細胞、TCRαβ+ T細胞及NK型細胞之化學吸引劑(Romagnani, P.等人 (2001)Blood 97 :601-607)。 已在各種不同發炎及自體免疫病狀(包含多發性硬化)中鑑別出IP-10或其受體CXCR3(例如參見Sorensen, T.L.等人 (1999)J. Clin. Invest. 103 :807-815)、類風濕性關節炎(例如參見Patel, D.D.等人 (2001)Clin. Immunol. 98 :39-45)、潰瘍性結腸炎(例如參見Uguccioni, M.等人 (1999)Am. J. Pathol .155 :331-336)、肝炎(例如參見Narumi, S.等人 (1997)J. Immunol. 158 :5536-5544)、骨髓損傷(例如參見McTigue, D.M.等人 (1998)J. Neurosci. Res. 53 :368-376;Gonzalez等人, 2003。Exp. Neurol. 184:456-463)、全身性紅斑狼瘡(例如參見Narumi, S.等人 (2000)Cytokine 12 :1561-1565)、移植排斥(例如參見Zhang, Z.等人 (2002)J. Immunol. 168 :3205-3212)、薛格連氏症候群(Sjogren's syndrome) (例如參見Ogawa, N.等人 (2002)Arthritis Rheum .46 :2730-2741)。 業內已知治療該等病狀之結合至IP-10之抗體,例如如WO2005/058815中所闡述。然而,始終需要抑制IP-10活性之經改良治療劑(例如抗體)、尤其適用於人類中之藥劑。Interferon gamma-inducible protein 10 (IP-10) (also known as CXCL10) is a 10 kDa chemokine (Luster, originally identified based on the expression of the IP-10 gene in cells treated with interferon gamma (IFN-γ). AD et al. (1985) Nature 315 : 672-676). IP-10 exhibits homology to chemotactically active proteins (such as platelet factor 4 and beta-clooglobulin) and mitogen-active proteins (such as connective tissue-activating peptide III) (Luster, AD et al. (1987) Proc. Natl. Acad. Sci. USA 84 : 2868-2871). IP-10 is secreted by various cells (including endothelial cells, mononuclear cells, fibroblasts, and keratinocytes) in response to IFN-γ (Luster, AD and Ravetch, JV (1987) J. Exp. Med. 166 :1084 -1097). IP-10 also displays cutaneous hyperphages and endothelial cells present in delayed allergic (DTH) responses in human skin (Kaplan, G. et al. (1987) J. Exp. Med. 166 :1098-1108) . Although initially identified based on IFN-γ induction, IP-10 can also be induced by IFN-α (eg, in dendritic cells) (Padovan, E. et al., (2002 ) J. Leukoc. Biol . 71 :669 -676). IP-10 performance can also be induced by stimuli (eg, IFN-γ, viruses, and lipopolysaccharides) in cells of the central nervous system (eg, astrocytes and microglia) (Vanguri, R. and Farber, JM (1994) J Immunol. 152 : 1411-1418; Ren, LQ et al. (1998) Brain Res. Mol. Brain Res . 59 : 256-263). The immunobiology of IP-10 is reviewed in Neville, LF et al. (1997) Cytokine Growth Factor Rev. 8 : 207-219. The receptor for IP-10 has been identified as CXCR3 (7 transmembrane receptor) (Loetscher, M. et al., (1996) J. Exp. Med. 184 : 963-969). CXCR3 has been shown to be expressed on activated T lymphocytes, but is expressed on resting T lymphocytes as well as B lymphocytes, mononuclear spheres or granules (Loetscher, M. et al., supra). It has been shown that stimulation with TGF-β1 upregulates CXCR3 expression on NK cells (Inngjerdingen, M. et al. (2001) Blood 97 :367-375). Two other ligands for CXCR3 have also been identified: MIG (Loetscher, M. et al., supra) and ITAC (Cole, KE et al. (1998) J. Exp. Med . 187 : 2009-2021). It has been shown that the combination of IP-10 to CXCR3 mediates calcium mobilization and chemotaxis in activated T cells (Loetscher, M. et al., supra). Chemotactic and intracellular calcium mobilization was also induced by binding of IP-10 to CXCR3 on activated NK cells (Maghazachi, AA et al. (1997) FASEB J. 11 : 765-774). Within the thymus, IP-10 has been shown to be a chemoattractant for TCRαβ + CD8 + T cells, TCR αβ + T cells, and NK cells (Romagnani, P. et al. (2001) Blood 97 : 601-607). IP-10 or its receptor CXCR3 has been identified in a variety of different inflammatory and autoimmune conditions, including multiple sclerosis (see, for example, Sorensen, TL et al. (1999) J. Clin. Invest. 103 :807-815 Rheumatoid arthritis (see, eg, Patel, DD et al. (2001) Clin. Immunol. 98 : 39-45), ulcerative colitis (see, for example, Uguccioni, M. et al. (1999) Am. J. Pathol 155 :331-336), hepatitis (see, for example, Narumi, S. et al. (1997) J. Immunol. 158 : 5536-5544), bone marrow damage (see, for example, McTigue, DM et al. (1998) J. Neurosci. Res . 53: 368-376; Gonzalez et al., 2003.Exp Neurol 184:.. 456-463 ), systemic lupus erythematosus (see, for example Narumi, S. et al. (2000) Cytokine 12: 1561-1565) , transplant rejection (See, for example, Zhang, Z. et al. (2002) J. Immunol. 168 : 3205-3212), Sjogren's syndrome (see, for example, Ogawa, N. et al. (2002) Arthritis Rheum . 46 : 2730-2741 ). Antibodies that bind to IP-10 to treat such conditions are known in the art, for example as set forth in WO2005/058815. However, there is a continuing need for improved therapeutic agents (e.g., antibodies) that inhibit IP-10 activity, particularly agents useful in humans.

本發明提供結合干擾素γ誘導蛋白10 (IP-10) (亦稱為CXCL10,例如人類IP-10)且與先前所闡述抗IP-10抗體相比具有最佳化物理穩定性及改良功能特徵之經分離單株抗體(例如人類單株抗體)。特定而言,本發明係關於與未修飾抗體相比展現顯著改良之穩定性及活性之抗體IP10.1 (WO 2005/058815,亦稱為抗體6A5)之經修飾形式。具體而言,已展示,藉由改變抗體IP10.1之重鏈CDR結構域,經修飾抗體展現較高熱穩定性及熱可逆性(例如第一熔融溫度為70.2℃ (IP10.1之TM1為64℃)且73℃下之熱可逆性為41.2 %之較高熱穩定性及熱可逆性)。同時,出人意料地觀察到,與未修飾抗體相比,經修飾抗體展現至人類IP-10之結合親和力改良至少50倍且改良其他功能特徵(包含(例如)在阻斷結合至其靶細胞(例如表現CXCR3之細胞(CXCR3/300.19)及腸上皮細胞(KM12SM))之外源性IP-10方面至少增加5倍,在抑制藉由使用IFNα/γ刺激之hPBMC達成之內源性IP-10調介之IL-6分泌方面至少增加6倍,在抑制藉由使用IFNγ/LPS刺激之hPBMC之內源性IP-10調介之IL-12p40分泌方面增加至少4倍功效,及在藥物動力學/藥效動力學(PK/PD)建模方面增加至少150倍功效)。由本文所闡述之經修飾抗體與其未修飾對應體相比所展現之其他經改良功能特徵包含: (a) 在抑制藉由hPBMC達成之內源性IP-10調介之IL-12p40分泌方面增加(例如改進至少4倍)功效; (b) 增加血液(結腸炎模型)中之IL-6及IL-12p40之抑制; (c) 增加游離IP-10之阻抑,例如最長10天; (d) 減小小鼠脾中之人類CXCR3+ NK細胞頻率; (e) 在抑制CXCR3/300.19細胞中之小鼠IP-10誘導之鈣流動方面增加(例如改進至少8倍)功效; (f) 增加細胞介素之循環濃度之減小;及/或 (g) 增加(例如改進至少2倍)身體血清清除率(CLT)。 另外,經修飾抗體(例如抗體IP10.1)缺乏與人類MIG、人類ITAC或小鼠IP-10之實質性交叉反應性。經修飾抗體之穩定性及結合/生物活性之組合增加尤其在CDR區對抗體功能之關鍵性方面令人吃驚。 因此,與抗體IP10.1相比,本發明抗體展現改良之物理性質(亦即熱及化學穩定性)以及改良之功能特徵(例如對人類IP-10之結合親和力及功效)。 在一特定實施例中,經分離單株抗體(例如人類抗體)或其抗原結合部分包括重鏈及輕鏈可變區,其中重鏈CDR1、CDR2及CDR3區係來自SEQ ID NO: 16、28、40、52、64、76、88、100、112、124、136或148之重鏈可變區,例如來自SEQ ID NO: 16之CDR1、CDR2及CDR3序列(例如分別如SEQ ID NO: 13、14及15中所陳述)。 在另一實施例中,輕鏈CDR1、CDR2及CDR3區係來自SEQ ID NO: 22、34、46、58、70、82、94、106、118、130、142或154之輕鏈可變區,例如來自SEQ ID NO: 22之CDR1、CDR2及CDR3序列(例如分別如SEQ ID NO: 19、20及21中所陳述)。 在又一實施例中,重鏈可變區包括SEQ ID NO: 16、28、40、52、64、76、88、100、112、124、136或148之胺基酸序列,及/或輕鏈可變區包括SEQ ID NO: 22、34、46、58、70、82、94、106、118、130、142或154之胺基酸序列(例如SEQ ID NO: 16及/或22之胺基酸序列),或包括與SEQ ID NO: 16、28、40、52、64、76、88、100、112、124、136或148及/或SEQ ID NO: 22、34、46、58、70、82、94、106、118、130、142或154 具有至少95%胺基酸一致性之序列(例如分別與SEQ ID NO: 16及/或22具有至少95%胺基酸一致性之序列)。或者,重鏈可變區包括如SEQ ID NO: 166、167或168中所陳述之共有胺基酸序列。 在另一實施例中,重鏈及輕鏈CDR1、CDR2及CDR3區分別包括下列胺基酸序列: (a) SEQ ID NO: 13、14及15及SEQ ID NO: 19、20及21; (b) SEQ ID NO: 25、26及27及SEQ ID NO: 31、32及33; (c) SEQ ID NO: 37、38及39及SEQ ID NO: 43、44及45; (d) SEQ ID NO: 49、50及51及SEQ ID NO: 55、56及57; (e) SEQ ID NO: 61、62及63及SEQ ID NO: 67、68及69; (f) SEQ ID NO: 73、74及75及SEQ ID NO: 79、80及81; (g) SEQ ID NO: 85、86及87及SEQ ID NO: 91、92及93; (h) SEQ ID NO: 97、98及99及SEQ ID NO: 103、104及105; (i) SEQ ID NO: 109、110及111及SEQ ID NO: 115、116及117; (j) SEQ ID NO: 121、122及123及SEQ ID NO: 127、128及129; (k) SEQ ID NO: 133、134及135及SEQ ID NO: 139、140及141;或 (l) SEQ ID NO: 145、146及147及SEQ ID NO: 152、152及153。 本文所闡述之抗體(或其抗原結合部分)可用於各種應用,包含抑制由經活化T細胞或NK細胞介導之發炎反應或自體免疫反應、抑制涉及不期望IP-10活性之病毒或細菌感染以及檢測IP-10蛋白。 在特定實施例中,人類IP-10包括具有如SEQ ID NO: 157中所陳述之胺基酸序列之多肽(基因庫登錄號NP_001556);CXCR3包括具有如SEQ ID NO: 158中所陳述之胺基酸序列之多肽(基因庫登錄號NP_001495);恒河猴IP-10包括具有如SEQ ID NO: 159中所陳述之胺基酸序列之多肽(基因庫登錄號AAK95955);小鼠IP-10包括具有如SEQ ID NO: 160中所陳述之胺基酸序列之多肽(基因庫登錄號NP_067249);人類MIG包括具有如SEQ ID NO: 161中所陳述之胺基酸序列之多肽(基因庫登錄號NP_002407);及/或人類ITAC包括具有如SEQ ID NO: 162中所陳述之胺基酸序列之多肽(基因庫登錄號NP_005400)。 在另一實施例中,抗體或其抗原結合部分另外展現下列性質中之至少一者: (a) 抑制IP-10至CXCR3之結合; (b) 抑制IP-10誘導之鈣流動; (c) 抑制IP-10誘導之細胞遷移; (d) 與恒河猴IP-10交叉反應; (e) 不與小鼠IP-10交叉反應; (f) 不與人類MIG交叉反應;及/或 (g) 不與人類ITAC交叉反應。 舉例而言,抗體或其抗原結合部分展現性質(a)、(b)、(c)、(d)、(e)、(f)及(g)中之至少兩者。或者,抗體或其抗原結合部分展現性質(a)、(b)、(c)、(d)、(e)、(f)及(g)中之至少三者,或展現性質(a)、(b)、(c)、(d)、(e)、(f)及(g)中之至少四者、五者、六者或所有七者。 在另一實施例中,抗體或其抗原結合部分以1 × 10-9 M或更小之KD (例如1 × 10-10 M或更小之KD 或1 × 10-11 M或更小之KD )結合至人類IP-10。 在又一實施例中,抗體或其抗原結合部分結合至人類IP-10之SISNQP (SEQ ID NO: 163)、VNPRSLEKL (SEQ ID NO: 164)及/或IIPASQFCPRVEIIA (SEQ ID NO: 165)內之胺基酸殘基。 本發明抗體可為(例如) IgG1、IgG2或IgG4同型(例如IgG1同型)之全長抗體,其視情況在重鏈恆定區鉸鏈區中具有絲胺酸至脯胺酸突變(在對應於位置241之位置,如Angal等人(1993)Mol. Immunol .30 :105-108中所闡述),從而減小或消除重鏈間二硫橋異質性。在一態樣中,恆定區同型係在胺基酸殘基228具有突變(例如S228P)之IgG4。或者,抗體可為抗體片段(例如結合片段,例如Fab、Fab’或Fab’2片段)或單鏈抗體。 在另一態樣中,抗體(或其抗原結合部分)係包含連接至抗體之治療劑(例如細胞毒素或放射性同位素)之免疫偶聯物之一部分。在另一態樣中,抗體係雙特異性分子之一部分,該雙特異性分子包含具有不同於該抗體或其抗原結合部分之結合特異性之第二功能部分(例如第二抗體)。 亦提供包括本發明之抗體或其抗原結合部分、免疫偶聯物或雙特異性分子且視情況調配於醫藥上可接受之載劑中之組合物。 亦提供編碼抗體或其抗原結合部分(例如可變區及/或CDR)之核酸分子以及包括該等核酸之表現載體及包括該等表現載體之宿主細胞。亦提供使用包括該等表現載體之宿主細胞製備抗IP-10抗體之方法,且該等方法可包含(i)在宿主細胞中表現抗體及(ii)自宿主細胞分離抗體之步驟。 在另一態樣中,本發明提供抑制藉由經活化T細胞或NK細胞介導之發炎反應或自體免疫反應之方法,其包括使T細胞或NK細胞與本發明之抗體或其抗原結合部分接觸,從而抑制發炎反應或自體免疫反應。 在又一態樣中,本發明提供治療需要治療之個體之發炎疾病或自體免疫疾病之方法,其包括向個體投與本發明之抗體或其抗原結合部分,從而治療個體之發炎疾病或自體免疫疾病。疾病可為(例如)多發性硬化、類風濕性關節炎、發炎腸病(例如潰瘍性結腸炎、克羅恩氏病(Crohn's disease))、全身性紅斑狼瘡、I型糖尿病、發炎皮膚病症(例如牛皮癬、扁平苔蘚)、自體免疫甲狀腺病(例如格雷夫斯氏病(Graves' disease)、橋本氏甲狀腺炎(Hashimoto’s thyroiditis))、薛格連氏症候群、肺發炎(例如氣喘、慢性阻塞性肺疾病、肺類肉瘤病、淋巴球性肺泡炎)、移植排斥、骨髓損傷、腦損傷(例如中風)、神經退化性疾病(例如阿茲海默氏病(Alzheimer’s disease)、帕金森氏病(Parkinson’s disease))、牙齦炎、基因療法誘導之發炎、血管生成疾病、發炎腎病(例如IgA腎病變、膜增殖性腎小球性腎炎、快速進展性腎小球性腎炎)及動脈粥樣硬化。 在再一態樣中,本發明提供治療需要治療之個體之涉及不期望IP-10活性之病毒或細菌感染的方法,其包括向個體投與本發明之抗體或其抗原結合部分,從而治療個體之病毒或細菌感染。舉例而言,可使用抗體來治療病毒腦膜炎、病毒腦炎或細菌腦膜炎。擬由本發明方法治療之病毒感染可由(例如)人類免疫缺陷病毒(HIV)、C型肝炎病毒(HCV)、I型單純疱疹病毒(HSV-1)或嚴重急性呼吸症候群(SARS)病毒介導。 在一實施例中,該方法包括投與30-450 mg抗IP-10抗體(或其抗原結合部分)之單一劑量,例如在以下劑量下之抗體單一劑量:30 mg、40 mg、50 mg、60 mg、70 mg、80 mg、90 mg、100 mg、110 mg、120 mg、130 mg、140 mg、150 mg、160 mg、170 mg、180 mg、190 mg、200 mg、210 mg、220 mg、230 mg、240 mg、250 mg、260 mg、270 mg、280 mg、290 mg、300 mg、310 mg、320 mg、330 mg、340 mg、350 mg、360 mg、370 mg、380 mg、390 mg、400 mg、450mg之劑量或35 mg、45 mg、55 mg、65 mg、75 mg、85 mg、95 mg、105 mg、115 mg、125 mg、135 mg、145 mg、155 mg、165 mg、175 mg、185 mg、195 mg、205 mg、215 mg、225 mg、235 mg、245 mg、255 mg、265 mg、275 mg、285 mg、295 mg、305 mg、315 mg、325 mg、335 mg、345 mg、355 mg、365 mg、375 mg、385 mg、395 mg、405 mg或445mg之劑量。 在另一實施例中,每週或每兩週投與抗體。在又一實施例中,投與抗體約12週之時段(例如在第1、15、29、43、57及71天)。 可藉由任一適宜方式(例如藉由靜脈內投與或皮下投與)將抗體投與個體。 在一實施例中,該方法係用於治療潰瘍性結腸炎,其包括經約12週之時段每兩週經靜脈內投與約40mg抗體或其抗原結合部分之單一劑量。 在又一實施例中,以一線(「前線」)治療(例如初始或第一治療)形式來投與抗IP-10抗體。在另一實施例中,以二線治療(例如在使用相同或不同治療劑之初始治療之後,包含在復發之後及/或在第一治療已失敗之情形下)來投與抗IP-10抗體。 可使用任一適宜方式來評價本文所提供治療方法之效能。在一實施例中,該治療產生至少一種治療效應,例如完全反應、部分反應及穩定疾病。 亦提供包含含有抗IP-10抗體(例如IP10.44 (BMS-986184))及醫藥上可接受之載劑之醫藥組合物(以適用於本文所闡述之方法中之治療有效量)之套組。在一實施例中,該套組包括: (a) 一定劑量之抗IP-10抗體,其包括具有SEQ ID NO: 16、28、40、52、64、76、88、100、112、124、136或148中所陳述序列之重鏈可變區之CDR1、CDR2及CDR3結構域,例如來自SEQ ID NO: 16之CDR1、CDR2及CDR3序列(例如分別如SEQ ID NO: 13、14及 15中所陳述);及具有SEQ ID NO: 22、34、46、58、70、82、94、106、118、130、142或154中所陳述序列之輕鏈可變區之CDR1、CDR2及CDR3結構域,例如來自SEQ ID NO: 22之CDR1、CDR2及CDR3序列(例如分別如SEQ ID NO: 19、20及21中所陳述);及 (b) 用於在本發明方法中使用抗IP-10抗體之說明書。 在另一實施例中,該等方法包括投與本發明之組合物、雙特異性分子或免疫偶聯物。 在另一態樣中,本發明提供用於前述方法中或用以製造用於前述方法中(例如用於治療)之藥劑之本發明之抗IP-10抗體及組合物 根據下列詳細說明及實例將明瞭本發明之其他特徵及優點,該等實例不應理解為具有限制性。本申請案通篇引用之所有參考文獻、基因庫條目、專利及公開專利申請案之內容皆以引用方式明確併入本文中。The present invention provides for the binding of interferon gamma-inducible protein 10 (IP-10) (also known as CXCL10, such as human IP-10) and has optimized physical stability and improved functional characteristics compared to previously described anti-IP-10 antibodies. Individual antibodies (eg, human monoclonal antibodies) are isolated. In particular, the present invention relates to a modified form of the antibody IP10.1 (WO 2005/058815, also known as antibody 6A5) which exhibits significantly improved stability and activity compared to unmodified antibodies. In particular, it has been shown that by altering the heavy chain CDR domain of antibody IP10.1, the modified antibody exhibits higher thermal stability and thermoreversibility (eg, the first melting temperature is 70.2 ° C (TM1 of IP10.1 is 64) °C) and the thermal reversibility at 73 ° C is 41.2% higher thermal stability and thermal reversibility). At the same time, it has been surprisingly observed that modified antibodies exhibit at least a 50-fold improvement in binding affinity to human IP-10 compared to unmodified antibodies and improve other functional features including, for example, blocking binding to their target cells (eg, Cells expressing CXCR3 (CXCR3/300.19) and intestinal epithelial cells (KM12SM) increased at least 5-fold in exogenous IP-10 and inhibited endogenous IP-10 regulation by hPBMC stimulated with IFNα/γ Increases IL-6 secretion by at least a factor of 6 and increases at least 4-fold efficacy in inhibiting endogenous IP-10-mediated IL-12p40 secretion by hPBMC stimulated with IFNγ/LPS, and in pharmacokinetics/ Increased efficacy of pharmacodynamics (PK/PD) by at least 150 times). Other modified functional features exhibited by the modified antibodies described herein as compared to their unmodified counterparts include: (a) an increase in inhibition of endogenous IP-10-mediated IL-12p40 secretion by hPBMC (eg improved by at least 4 times) efficacy; (b) increased inhibition of IL-6 and IL-12p40 in blood (colitis model); (c) increased inhibition of free IP-10, eg up to 10 days; Decrease the frequency of human CXCR3+ NK cells in mouse spleens; (e) increase (eg improve at least 8-fold) efficacy in inhibiting IP-10-induced calcium flux in mice in CXCR3/300.19 cells; (f) increase cells a decrease in circulating concentration of interleukin; and/or (g) an increase (eg, at least a 2-fold improvement in body serum clearance (CLT)). In addition, modified antibodies (eg, antibody IP10.1) lack substantial cross-reactivity with human MIG, human ITAC, or mouse IP-10. The increased stability of the modified antibodies and the combination of binding/biological activity are surprising in particular in terms of the criticality of the CDR regions for antibody function. Thus, the antibodies of the invention exhibit improved physical properties (i.e., thermal and chemical stability) as well as improved functional characteristics (e.g., binding affinity and efficacy to human IP-10) as compared to antibody IP10.1. In a specific embodiment, the isolated monoclonal antibody (eg, a human antibody) or antigen binding portion thereof comprises a heavy chain and a light chain variable region, wherein the heavy chain CDR1, CDR2 and CDR3 regions are from SEQ ID NO: 16, a heavy chain variable region of 40, 52, 64, 76, 88, 100, 112, 124, 136 or 148, such as the CDR1, CDR2 and CDR3 sequences from SEQ ID NO: 16 (eg, SEQ ID NO: 13 respectively) , as stated in 14 and 15). In another embodiment, the light chain CDR1, CDR2 and CDR3 regions are derived from the light chain variable region of SEQ ID NO: 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142 or 154 For example, the CDR1, CDR2 and CDR3 sequences from SEQ ID NO: 22 (e.g., as set forth in SEQ ID NOs: 19, 20, and 21, respectively). In still another embodiment, the heavy chain variable region comprises an amino acid sequence of SEQ ID NO: 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136 or 148, and/or light The chain variable region comprises the amino acid sequence of SEQ ID NO: 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142 or 154 (e.g., the amine of SEQ ID NO: 16 and/or 22) a base acid sequence), or comprising SEQ ID NO: 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136 or 148 and/or SEQ ID NO: 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142 or 154 sequences having at least 95% amino acid identity (eg, sequences having at least 95% amino acid identity to SEQ ID NO: 16 and/or 22, respectively) ). Alternatively, the heavy chain variable region comprises a consensus amino acid sequence as set forth in SEQ ID NO: 166, 167 or 168. In another embodiment, the heavy and light chain CDR1, CDR2 and CDR3 regions comprise the following amino acid sequences, respectively: (a) SEQ ID NOs: 13, 14 and 15 and SEQ ID NOs: 19, 20 and 21; b) SEQ ID NOs: 25, 26 and 27 and SEQ ID NOs: 31, 32 and 33; (c) SEQ ID NOs: 37, 38 and 39 and SEQ ID NOs: 43, 44 and 45; (d) SEQ ID NO: 49, 50 and 51 and SEQ ID NO: 55, 56 and 57; (e) SEQ ID NO: 61, 62 and 63 and SEQ ID NO: 67, 68 and 69; (f) SEQ ID NO: 73, 74 and 75 and SEQ ID NOs: 79, 80 and 81; (g) SEQ ID NOs: 85, 86 and 87 and SEQ ID NOs: 91, 92 and 93; (h) SEQ ID NOs: 97, 98 and 99 and SEQ ID NOs: 103, 104 and 105; (i) SEQ ID NOs: 109, 110 and 111 and SEQ ID NOs: 115, 116 and 117; (j) SEQ ID NOs: 121, 122 and 123 and SEQ ID NO: 127, 128 and 129; (k) SEQ ID NO: 133, 134 and 135 and SEQ ID NO: 139, 140 and 141; or (l) SEQ ID NO: 145, 146 and 147 and SEQ ID NO: 152, 152 And 153. The antibodies (or antigen binding portions thereof) set forth herein can be used in a variety of applications, including inhibition of inflammatory or autoimmune responses mediated by activated T cells or NK cells, inhibition of viruses or bacteria involved in undesirable IP-10 activity. Infection and detection of IP-10 protein. In a specific embodiment, human IP-10 comprises a polypeptide having the amino acid sequence set forth in SEQ ID NO: 157 (GenBank Accession No. NP_001556); CXCR3 comprises an amine having the amino acid set forth in SEQ ID NO: 158 Polypeptide of the base acid sequence (GenBank Accession No. NP_001495); Rhesus macaque IP-10 includes a polypeptide having the amino acid sequence as set forth in SEQ ID NO: 159 (GenBank Accession No. AAK95955); Mouse IP-10 Included is a polypeptide having the amino acid sequence as set forth in SEQ ID NO: 160 (GenBank Accession No. NP_067249); human MIG comprises a polypeptide having the amino acid sequence as set forth in SEQ ID NO: 161 (Genebank Accession) No. NP_002407); and/or human ITAC includes a polypeptide having the amino acid sequence as set forth in SEQ ID NO: 162 (GenBank Accession No. NP_005400). In another embodiment, the antibody or antigen binding portion thereof additionally exhibits at least one of the following properties: (a) inhibiting binding of IP-10 to CXCR3; (b) inhibiting IP-10 induced calcium flux; (c) Inhibition of IP-10-induced cell migration; (d) Cross-reactivity with rhesus IP-10; (e) No cross-reactivity with mouse IP-10; (f) No cross-reactivity with human MIG; and/or (g Does not cross-react with human ITAC. For example, an antibody or antigen binding portion thereof exhibits at least two of properties (a), (b), (c), (d), (e), (f), and (g). Alternatively, the antibody or antigen-binding portion thereof exhibits at least three of properties (a), (b), (c), (d), (e), (f), and (g), or exhibits properties (a), At least four, five, six or all seven of (b), (c), (d), (e), (f) and (g). In another embodiment, the antibody or antigen-binding portion 1 × 10 -9 M or K D of less (e.g., 1 × 10 -10 M or less, or K D of 1 × 10 -11 M or less K D ) binds to human IP-10. In yet another embodiment, the antibody or antigen binding portion thereof binds to human IP-10 of SISNQP (SEQ ID NO: 163), VNPRSLEKL (SEQ ID NO: 164) and/or IIPASQFCPRVEIIA (SEQ ID NO: 165) Amino acid residue. An antibody of the invention may be a full length antibody of, for example, an IgGl, IgG2 or IgG4 isotype (e.g., IgGl isotype), optionally having a serine to valerine mutation in the hinge region of the heavy chain constant region (corresponding to position 241) Position, as described in Angal et al. (1993) Mol. Immunol . 30 : 105-108), thereby reducing or eliminating inter-heavy chain disulfide bridge heterogeneity. In one aspect, the constant region isotype is IgG4 having a mutation (eg, S228P) at amino acid residue 228. Alternatively, the antibody can be an antibody fragment (eg, a binding fragment, such as a Fab, Fab' or Fab'2 fragment) or a single chain antibody. In another aspect, the antibody (or antigen binding portion thereof) is part of an immunoconjugate comprising a therapeutic agent (eg, a cytotoxin or a radioisotope) linked to the antibody. In another aspect, a portion of an anti-system bispecific molecule comprising a second functional moiety (eg, a second antibody) having a binding specificity different from the antibody or antigen binding portion thereof. Compositions comprising an antibody or antigen binding portion thereof, an immunoconjugate or a bispecific molecule of the invention, and optionally formulated in a pharmaceutically acceptable carrier, are also provided. Nucleic acid molecules encoding antibodies or antigen binding portions thereof (e.g., variable regions and/or CDRs), as well as expression vectors including such nucleic acids, and host cells comprising such expression vectors are also provided. Also provided are methods of making anti-IP-10 antibodies using host cells comprising such expression vectors, and such methods can comprise the steps of (i) displaying the antibody in a host cell and (ii) isolating the antibody from the host cell. In another aspect, the invention provides a method of inhibiting an inflammatory or autoimmune response mediated by activated T cells or NK cells, comprising binding a T cell or NK cell to an antibody of the invention or antigen thereof Partial contact, thereby inhibiting an inflammatory response or an autoimmune response. In still another aspect, the invention provides a method of treating an inflammatory or autoimmune disease in a subject in need thereof, comprising administering to the subject an antibody or antigen binding portion thereof of the invention, thereby treating the inflammatory disease or self of the individual Immune disease. The disease can be, for example, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease (eg, ulcerative colitis, Crohn's disease), systemic lupus erythematosus, type I diabetes, inflammatory skin conditions ( For example, psoriasis, lichen planus, autoimmune thyroid disease (such as Graves' disease, Hashimoto's thyroiditis), Sjogren's syndrome, lung inflammation (such as asthma, chronic obstructive pulmonary disease) , pulmonary sarcoma, lymphocytic alveolitis, transplant rejection, bone marrow damage, brain damage (eg stroke), neurodegenerative diseases (eg Alzheimer's disease, Parkinson's disease) )), gingivitis, gene therapy-induced inflammation, angiogenic diseases, inflammatory nephropathy (eg, IgA nephropathy, membrane proliferative glomerulonephritis, rapidly progressive glomerulonephritis), and atherosclerosis. In still another aspect, the invention provides a method of treating a viral or bacterial infection involving undesired IP-10 activity in an individual in need of treatment comprising administering to the individual an antibody or antigen binding portion thereof of the invention, thereby treating the individual Viral or bacterial infection. For example, antibodies can be used to treat viral meningitis, viral encephalitis, or bacterial meningitis. Viral infections to be treated by the methods of the invention may be mediated by, for example, human immunodeficiency virus (HIV), hepatitis C virus (HCV), herpes simplex virus type 1 (HSV-1) or severe acute respiratory syndrome (SARS) virus. In one embodiment, the method comprises administering a single dose of 30-450 mg of an anti-IP-10 antibody (or antigen binding portion thereof), for example, a single dose of antibody at the following doses: 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 310 mg, 320 mg, 330 mg, 340 mg, 350 mg, 360 mg, 370 mg, 380 mg, 390 Mg, 400 mg, 450 mg or 35 mg, 45 mg, 55 mg, 65 mg, 75 mg, 85 mg, 95 mg, 105 mg, 115 mg, 125 mg, 135 mg, 145 mg, 155 mg, 165 mg , 175 mg, 185 mg, 195 mg, 205 mg, 215 mg, 225 mg, 235 mg, 245 mg, 255 mg, 265 mg, 275 mg, 285 mg, 295 mg, 305 mg, 315 mg, 325 mg, 335 Dosages of mg, 345 mg, 355 mg, 365 mg, 375 mg, 385 mg, 395 mg, 405 mg, or 445 mg. In another embodiment, the antibody is administered weekly or biweekly. In yet another embodiment, the antibody is administered for a period of about 12 weeks (eg, on days 1, 15, 29, 43, 57, and 71). The antibody can be administered to the subject by any suitable means, such as by intravenous administration or subcutaneous administration. In one embodiment, the method is for treating ulcerative colitis comprising administering a single dose of about 40 mg of the antibody or antigen binding portion thereof intravenously every two weeks over a period of about 12 weeks. In yet another embodiment, the anti-IP-10 antibody is administered in a line ("front") treatment (eg, initial or first treatment). In another embodiment, the anti-IP-10 antibody is administered by second-line therapy (eg, after initial treatment with the same or different therapeutic agents, including after relapse and/or where the first treatment has failed). . The efficacy of the methods of treatment provided herein can be evaluated using any suitable means. In one embodiment, the treatment produces at least one therapeutic effect, such as a complete response, a partial response, and a stable disease. Kits comprising a pharmaceutical composition comprising an anti-IP-10 antibody (eg, IP10.44 (BMS-986184)) and a pharmaceutically acceptable carrier (in a therapeutically effective amount suitable for use in the methods described herein) are also provided . In one embodiment, the kit comprises: (a) a dose of an anti-IP-10 antibody comprising SEQ ID NOs: 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, The CDR1, CDR2 and CDR3 domains of the heavy chain variable region of the sequence set forth in 136 or 148, for example, the CDR1, CDR2 and CDR3 sequences from SEQ ID NO: 16 (eg, as set forth in SEQ ID NOs: 13, 14, and 15, respectively) CDR1, CDR2 and CDR3 structures having the light chain variable region of the sequence set forth in SEQ ID NO: 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142 or 154; a domain, such as the CDR1, CDR2 and CDR3 sequences from SEQ ID NO: 22 (eg as set forth in SEQ ID NO: 19, 20 and 21, respectively); and (b) for use in the method of the invention with anti-IP-10 Instructions for antibodies. In another embodiment, the methods comprise administering a composition, a bispecific molecule or an immunoconjugate of the invention. In another aspect, the invention provides an anti-IP-10 antibody and composition of the invention for use in the foregoing methods or for the manufacture of a medicament for use in the foregoing methods (e.g., for use in therapy) . Other features and advantages of the invention will be apparent from the description and appended claims. The contents of all of the references, gene bank entries, patents, and published patent applications, which are hereby incorporated by reference in their entireties in the entire entireties in

相關申請案之交叉參考 本申請案主張2015年11月30日提出申請之美國臨時申請案第62/261,210號及2016年8月12日提出申請之第62/374,622號之優先權。本說明書通篇引用之任一專利、專利申請案及參考文獻之全部內容以引用方式併入本文中。 為可更容易地理解本發明,首先定義某些術語。其他定義在整個詳細說明中進行陳述。 術語「6A5」、「抗體6A5」、「抗體IP10.1」、「IP10.1」及「依德魯單抗(Eldelumab)」係指WO2005/058815中所闡述之抗人類IP-10抗體6A5。編碼IP10.1之重鏈可變區之核苷酸序列(SEQ ID NO: 5)及相應胺基酸序列(SEQ ID NO: 4)展示於圖1A中(其中CDR序列分別指定為SEQ ID NO: 1、2及3)。編碼IP10.1之輕鏈可變區之核苷酸序列(SEQ ID NO: 11)及相應胺基酸序列(SEQ ID NO: 10)展示於圖1B中(其中CDR序列分別指定為SEQ ID NO: 7、8及9)。 術語「干擾素γ誘導蛋白10」、「IP-10」及「CXCL10」可互換使用,且包含人類IP-10之變體、同種型及物種同系物。因此,本發明之人類抗體可在某些情形下與來自除人類外之物種之IP-10交叉反應。在其他情形下,抗體可對人類IP-10具有完全特異性且可不展現物種或其他類型之交叉反應性。人類IP-10之完整胺基酸序列具有基因庫登錄號NP_001556 (SEQ ID NO: 157)。恒河猴IP-10之完整胺基酸序列具有基因庫登錄號AAK95955 (SEQ ID NO: 159)。小鼠IP-10之完整胺基酸序列具有基因庫登錄號NP_067249 (SEQ ID NO: 160)。 術語「CXCR3」係指IP-10 (CXCL10)之受體。人類CXCR3之完整胺基酸序列具有基因庫登錄號NP_001495 (SEQ ID NO: 158)。 術語「MIG」係指CXCR3之不同於IP-10之配體(亦稱為由γ干擾素誘導之單核因子)。人類MIG之完整胺基酸序列具有基因庫登錄號NP_002407 (SEQ ID NO: 161)。 術語「ITAC」係指CXCR3之不同於IP-10之配體(亦稱為干擾素誘導性T細胞α化學吸引劑)。人類ITAC之完整胺基酸序列具有基因庫登錄號NP_005400 (SEQ ID NO: 162)。 術語「免疫反應」係指由上述細胞或肝臟產生之(例如)淋巴球、抗原呈遞細胞、吞噬細胞、顆粒球及可溶性大分子(包含抗體、細胞介素及補體)之導致選擇性損害、破壞或自人體消除侵襲性病原體、感染病原體之細胞或組織、癌性細胞或(在自體免疫或病理學發炎之情形下)正常人類細胞或組織的作用。 「信號轉導路徑」係指在信號自細胞之一部分傳遞至細胞之另一部分中發揮作用之多種信號轉導分子之間的生物化學關係。如本文中所使用,片語「細胞表面受體」包含(例如)能夠接收信號且將此一信號傳輸穿過細胞之漿膜之分子及分子複合物。本發明之「細胞表面受體」之一實例係IP-10分子所結合之CXCR3受體。 術語「抗體」在本文中提及時包含全抗體及其任一抗原結合片段(亦即「抗原結合部分」)或單鏈。「抗體」係指包括由二硫鍵互連之至少兩條重(H)鏈及兩條輕(L)鏈之糖蛋白或其抗原結合部分。每一重鏈包括重鏈可變區(在本文中縮寫為VH )及重鏈恆定區。重鏈恆定區包括三個結構域:CH1 、CH2 及CH3 。每一輕鏈包括輕鏈可變區(在本文中縮寫為VL )及輕鏈恆定區。輕鏈恆定區包括一個結構域CL。可將VH 及VL 區進一步細分成超變區(稱為互補決定區(CDR))及更保守之區域(稱為框架區(FR)),此二者係間雜排列。每一VH 及VL 由三個CDR及四個FR構成,其自胺基-末端至羧基-末端按下列順序配置:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重鏈及輕鏈之可變區含有與抗原相互作用之結合結構域。抗體之恆定區可調介免疫球蛋白與宿主組織或因子(包含免疫系統之各種細胞(例如效應細胞)及經典補體系統之第一組份(Clq))的結合。 本文所用之術語抗體之「抗原結合部分」 (或簡稱為「抗體部分」)係指抗體之保留特異性結合至抗原(例如IP-10)之能力的一或多個片段。已展示,抗體之抗原結合功能可由全長抗體之片段來實施。術語抗體之「抗原結合部分」內所涵蓋之結合片段之實例包含(i) Fab片段,亦即由VL 、VH 、CL 及CH1 結構域組成之單價片段;(ii) F(ab’)2 片段,亦即包括兩個在鉸鏈區由二硫橋鍵連接之Fab片段之二價片段;(iii)由VH 及CH1 結構域組成之Fd片段;(iv)由抗體單臂之VL 及VH 結構域組成之Fv片段;(v) dAb片段(Ward等人(1989)Nature 341 :544-546),其係由VH 結構域組成;及(vi)經分離互補決定區(CDR)。另外,儘管Fv片段之兩個結構域(VL 及VH )係由單獨基因編碼,但其可使用重組方法藉由合成連接體接合在一起,該合成連接體使其能夠成為VL 及VH 區配對形成單價分子之單一蛋白鏈(稱為單鏈Fv (scFv));例如參見Bird等人 (1988)Science 242 :423-426;及Huston等人 (1988)Proc. Natl. Acad. Sci. USA 85 :5879-5883)。該等單鏈抗體亦意欲涵蓋於術語抗體之「抗原結合部分」內。該等抗體片段係使用熟習此項技術者已知之習用技術獲得,且以與完整抗體相同之方式針對效用篩選片段。 本文所用之術語「經分離抗體」欲指實質上不含具有不同抗原特異性之其他抗體之抗體(舉例而言,特異性結合至IP-10之經分離抗體實質上不含特異性結合除IP-10外之抗原的抗體)。然而,特異性結合IP-10之經分離抗體可與其他抗原(例如來自其他物種之IP-10分子)具有交叉反應性。此外,經分離抗體實質上可不含其他細胞材料及/或化學物質。 本文所用之術語「單株抗體」或「單株抗體組合物」係指具有單一分子組成之抗體分子製劑。單株抗體組合物展示針對特定表位之單一結合特異性及親和力。 本文所用之術語「人類抗體」意欲包含具有可變區之抗體,其中框架區及CDR區二者皆衍生自人類種系免疫球蛋白序列。另外,若抗體含有恆定區,則恆定區亦係衍生自人類種系免疫球蛋白序列。本發明之人類抗體可包含並非由人類種系免疫球蛋白序列編碼之胺基酸殘基(例如藉由活體外隨機誘變或定點誘變或藉由活體內體細胞突變引入之突變)。然而,本文所用之術語「人類抗體」並不意欲包含衍生自另一哺乳動物物種(例如小鼠)種系之CDR序列已移植至人類框架序列上之抗體。 術語「人類單株抗體」係指展示單一結合特異性之抗體,其具有框架區及CDR區二者皆源自人類種系免疫球蛋白序列之可變區。在一實施例中,人類單株抗體係由包含自轉基因非人類動物(例如轉基因小鼠)獲得之與永生細胞融合之B細胞之雜交瘤產生,該轉基因非人類動物具有包括人類重鏈轉基因及輕鏈轉基因之基因體。 本文所用之術語「重組人類抗體」包含藉由重組方式製備、表現、產生或分離之所有人類抗體,例如(a)自對人類免疫球蛋白基因轉基因或轉染色體之動物(例如小鼠)或自其製備之雜交瘤分離之抗體(進一步闡述於下文中),(b)自經轉變以表現人類抗體之宿主細胞、例如自轉染瘤分離之抗體,(c)自重組、組合人類抗體文庫分離之抗體,及(d)藉由涉及將人類免疫球蛋白基因序列剪接至其他DNA序列之任何其他方式製備、表現、產生或分離之抗體。該等重組人類抗體具有框架區及CDR區衍生自人類種系免疫球蛋白序列之可變區。然而,在某些實施例中,可使該等重組人類抗體經歷活體外誘變(或者,在使用人類Ig序列之轉基因動物時,經歷活體內體細胞誘變),且因此重組抗體之VH 及VL 區之胺基酸序列儘管衍生自人類種系VH 及VL 序列並與其相關,但其係可不天然存在於人類活體內抗體種系譜內的序列。 本文所用之「同型」係指由重鏈恆定區基因編碼之抗體種類(例如IgM或IgGl)。 片語「識別抗原之抗體」及「特異性針對抗原之抗體」在本文中可與術語「特異性結合至抗原之抗體」互換使用。 如本文中所使用,「特異性結合至人類IP-10」之抗體意欲指以5 × 10-9 M或更小、更佳地1 × 10-10 M或更小及甚至更佳地1 × 10-11 M或更小之KD 結合至人類IP-10之抗體。「與恆河猴IP-10交叉反應」之抗體意欲指以1 × 10-9 M或更小、更佳地1 × 10-10 M或更小及甚至更佳地1 × 10-11 M或更小之KD 結合至恆河猴IP-10之抗體。「不與小鼠IP-10交叉反應」或「不與人類MIG交叉反應」或「不與人類ITAC交叉反應」之抗體意欲指以1.5 × 10-8 M或更大之KD 、更佳地5-10 × 10-8 M或更大之KD 及甚至更佳地1 × 10-7 M或更大之KD 結合至小鼠IP-10、人類MIG或人類ITAC之抗體。在某些實施例中,在標準結合分析中,不與小鼠IP-10、人類MIG及/或人類ITAC交叉反應之該等抗體展現針對該等蛋白質基本上不可檢測之結合。 如本文中所使用,「抑制IP-10至CXCR3之結合」之抗體意欲指以1 nM或更小、更佳地0.75 nM或更小、甚至更佳地0.5 nM或更小及甚至更佳地0.25 nM或更小之Ki 抑制IP-10結合至 CXCR3之抗體。 如本文中所使用,「抑制IP-10誘導之鈣流動」之抗體意欲指以10 nM或更小、更佳地7.5 nM或更小、甚至更佳地5 nM或更小及甚至更佳地2.5 nM或更小之IC50 抑制IP-10誘導之鈣流動的抗體。 如本文中所使用,「抑制IP-10誘導之細胞遷移」之抗體意欲指以2 μg/ml或更小、更佳地1 μg/ml或更小、甚至更佳地0.5 μg/ml或更小及甚至更佳地0.25 μg/ml或更小之IC50 抑制人類IP-10誘導之細胞遷移的抗體。 本文所用之術語「K締合 」或「Ka 」意欲指特定抗體-抗原相互作用之締合速率,而本文所用之術語「K解離 」或「Kd 」意欲指特定抗體-抗原相互作用之解離速率。本文所用之術語「KD 」意欲指解離常數,其係獲自Kd 對Ka 之比率(亦即Kd /Ka )且以莫耳濃度(M)表示。可使用業內已確立之方法測定抗體之KD 值。測定抗體之KD 之較佳方法係藉由使用表面電漿共振、較佳地使用生物感測器系統(例如Biacore®系統)。 如本文中所使用,術語IgG抗體之「高親和力」係指抗體對靶抗原具有10-8 M或更小、更佳地10-9 M或更小及甚至更佳地10-10 M或更小之KD 。然而,對於其他抗體同型而言,「高親和力」結合可有所變化。舉例而言,IgM同型之「高親和力」結合係指抗體具有10-7 M或更小、更佳地10-8 M或更小之KD 。 如本文中所使用,術語「個體」包含任何人類或非人類動物。術語「非人類動物」包含所有脊椎動物,例如哺乳動物及非哺乳動物,例如非人類靈長類動物、綿羊、狗、貓、馬、牛、雞、兩棲動物、爬行動物等。 下列子部分中更詳細地闡述本發明之各個態樣。 IP-10 抗體 本發明抗體特異性結合至人類IP-10且其特徵在於如上文所闡述之抗體之特定改良之功能特徵或性質。另外,抗體可與來自一或多種非人類靈長類動物(例如恆河猴)之IP-10交叉反應。較佳地,抗體不與小鼠IP-10交叉反應。此外,儘管MIG及ITAC亦係CXCR3受體之配體,但本發明抗體較佳地不與人類MIG或人類ITAC交叉反應。 較佳地,本發明抗體以高親和力(例如以10-8 M或更小或10-9 M或更小或甚至10-10 M或更小之KD )結合至IP-10。 另外,本發明抗體能夠抑制IP-10之一或多種功能活性。舉例而言,在一實施例中,抗體抑制IP-10至CXCR3之結合。在另一實施例中,抗體抑制IP-10誘導之鈣流動。在又一實施例中,抗體抑制IP-10誘導之細胞遷移(趨化)。 業內已知評估抗體對不同物種之IP-10及/或MIG或ITAC之結合能力之標準分析,例如包含ELISA、西方印漬(Western blot)及RIA。適宜分析詳細闡述於實例中。亦可藉由業內已知之標準分析(例如藉由Biacore分析)評價抗體之結合動力學(例如結合親和力)。評估抗體對IP-10之功能性質(例如受體結合、鈣流動、趨化)之效應之分析進一步詳細闡述於實例中。 因此,應理解,如根據業內已知之方法測定並在本文中闡述之「抑制」該等IP-10功能性質中之一或多者(例如生物化學、免疫化學、細胞、生理學或其他生物活性或諸如此類)之抗體與特定活性相對於在不存在抗體下(或在存在不相關特異性之對照抗體時)觀察到之活性在統計學上顯著降低有關。較佳地,抑制IP-10活性之抗體實現所量測參數之此一統計學顯著降低至少10%、更佳地至少20%、30%、40%、50%、60%、70%、80%或90%,且在某些較佳實施例中,本發明抗體可抑制大於92%、94%、95%、97%、98%或99%之IP-10功能活性。單株抗體 IP10.44 IP10.52 IP10.45 IP10.46 IP10.53 IP10.43 IP10.47 IP10.48 IP10.49 IP10.50 IP10.51 IP10.54 本發明之較佳抗體係人類單株抗體IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54。IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53及IP10.54之VH 胺基酸序列展示於SEQ ID NO: 16、28、40、52、64、76、88、100、112、124、136及148中。IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53及IP10.54之VL 胺基酸序列展示於SEQ ID NO: 22、34、46、58、70、82、94、106、118、130、142及154中。 本發明之一特定抗體係人類單株抗體IP10.44 (亦在本文中稱為BMS-986184),其結構及化學特徵如下文及下文實例中所闡述。IP10.44之VH 胺基酸序列展示於SEQ ID NO: 16 (圖2A)中。IP10.44之VL 胺基酸序列展示於SEQ ID NO: 22 (圖2B)中。 本文所闡述結合人類IP-10之抗體之VH 及VL 序列(或CDR序列)可與其他結合人類IP-10之抗體之VH 及VL 序列(或CDR序列) 「混合且匹配」。較佳地,在混合且匹配VH 及VL 鏈(或該等鏈內之CDR)時,來自特定VH /VL 配對之VH 序列經在結構上類似之VH 序列代替。同樣,較佳地,來自特定VH /VL 配對之VL 序列經在結構上類似之VL 序列代替。 舉例而言,本發明抗體或其抗原結合部分包括: (a) 包括IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54之胺基酸序列(例如SEQ ID NO: 16,亦即IP10.44之VH )之重鏈可變區;及 (b) 包括IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54之胺基酸序列(例如SEQ ID NO: 22,亦即IP10.44之VL )之輕鏈可變區或另一抗IP-10抗體(亦即其不同於IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54)之VL ; 其中抗體特異性結合人類IP-10。 在另一實施例中,本發明抗體或其抗原結合部分包括: (a) IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54之重鏈可變區之CDR1、CDR2及CDR3區,例如包括胺基酸序列 SEQ ID NO: 16之重鏈可變區之CDR1、CDR2及CDR3區(亦即IP10.44之CDR序列,分別係SEQ ID NO: 13、14及15);及 (b) IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54之輕鏈可變區之CDR1、CDR2及CDR3區(例如包括胺基酸序列SEQ ID NO: 22之輕鏈可變區之CDR1、CDR2及CDR3區(亦即IP10.44之CDR序列,分別係SEQ ID NO: 19、20及21))或另一抗IP-10抗體(亦即其不同於IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54)之CDR;其中抗體特異性結合人類IP-10。舉例而言,抗體或其抗原結合部分可包含IP10.44之重鏈可變CDR1、CDR2及CDR3區以及其他結合人類IP-10之抗體之輕鏈CDR1、CDR2及/或CDR3區中之一或多者。 另外,業內已眾所周知,獨立於CDR1及/或CDR2結構域,CDR3結構域可單獨決定抗體對同源抗原之結合特異性且可基於共有CDR3序列可預測地生成多種具有相同結合特異性之抗體。例如參見Klimka等人,British J. of Cancer 83(2) :252-260 (2000);Beiboer等人,J. Mol. Biol. 296 :833-849 (2000);Rader等人,Proc. Natl. Acad. Sci. U.S.A. 95 :8910-8915 (1998);Barbas等人,J. Am. Chem. Soc. 116 :2161-2162 (1994);Barbas等人,Proc. Natl. Acad. Sci. U.S.A. 92 :2529-2533 (1995);Ditzel等人,J. Immunol. 157 :739-749 (1996);Berezov等人,BIAjournal 8 :Scientific Review 8 (2001);Igarashi等人,J. Biochem (Tokyo) 117 :452-7 (1995);Bourgeois等人,J. Virol 72 :807-10 (1998);Levi等人,Proc. Natl. Acad. Sci. U.S.A. 90 :4374-8 (1993);Polymenis及Stoller,J. Immunol. 152 :5218-5329 (1994)以及Xu及Davis,Immunity 13 :37-45 (2000)。亦參見美國專利第6,951,646號、第6,914,128號、第6,090,382號、第6,818,216號、第6,156,313號、第6,827,925號、第5,833,943號、第5,762,905號及第5,760,185號。該等參考文獻中之每一者之全部內容以引用方式併入本文中。 因此,在另一實施例中,本發明抗體包含至少IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54之重鏈可變區之CDR3區及至少IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54之輕鏈可變區之CDR3 (例如SEQ ID NO: 15及 21,亦即IP10.44之重鏈及輕鏈可變區之CDR3)。該等抗體較佳地(a)與衍生CDR3序列之抗體(例如抗體IP10.44)競爭結合;(b)保留其功能特性;(c)與其結合至相同表位;及/或(d)具有類似結合親和力。胺基酸修飾 在另一實施例中,本發明抗體包括CDR1、CDR2及CDR3序列與IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54 (例如IP10.44)中之CDR序列之不同之處在於一或多個保守修飾之重鏈及/或輕鏈可變區序列。然而,在一較佳實施例中,(a) IP10.44之VH CDR1之麩胺酸及酪胺酸殘基(如下列序列EY GMH (SEQ ID NO: 13)加下劃線者)未經修飾,(b) IP10.44之VH CDR2甘胺酸、丙胺酸、白胺酸、異白胺酸、甘胺酸及丙胺酸殘基(如下列序列VIG FA GLI KG YA DSVKG (SEQ ID NO: 14)中加下劃線者)未經修飾,且(c) IP10.44之VH CDR3之丙胺酸及天門冬醯胺殘基(如下列序列EGA GSN IYYYYGMDV (SEQ ID NO: 15)中加下劃線者)未經修飾。業內應理解,可進行並不去除抗原結合之某些保守序列修飾。例如參見Brummell等人 (1993)Biochem 32 :1180-8;de Wildt等人 (1997)Prot. Eng. 10 :835-41;Komissarov等人(1997)J. Biol. Chem. 272 :26864-26870;Hall等人 (1992)J. Immunol. 149 :1605-12;Kelley及O’Connell (1993)Biochem. 32 :6862-35;Adib-Conquy等人 (1998)Int. Immunol. 10 :341-6及Beers等人 (2000)Clin. Can. Res. 6 :2835-43。因此,在一實施例中,抗體包括含有CDR1、CDR2及CDR3序列之重鏈可變區及/或含有CDR1、CDR2及CDR3序列之輕鏈可變區,其中: (a) 重鏈可變區CDR1序列包括SEQ ID NO: 13及/或其保守修飾,只是IP10.44之VH CDR1之麩胺酸及酪胺酸殘基(如下列序列EY GMH (SEQ ID NO: 13)中加下劃線者)未經修飾;及/或 (b) 重鏈可變區CDR2序列包括SEQ ID NO: 14及/或其保守修飾,只是IP10.44之VH CDR2之甘胺酸、丙胺酸、白胺酸、異白胺酸、甘胺酸及丙胺酸殘基(如下列序列VIG FA GLI KG YA DSVKG (SEQ ID NO: 14)中加下劃線者)未經修飾;及/或 (c) 重鏈可變區CDR3序列包括SEQ ID NO: 15及其保守修飾,只是IP10.44之VH CDR3之丙胺酸及天門冬醯胺殘基(如下列序列EGA GSN IYYYYGMDV (SEQ ID NO: 15)中所加下劃線者)未經修飾;及/或 (d) 輕鏈可變區CDR1及/或CDR2及/或CDR3序列包括SEQ ID NO: 19及/或SEQ ID NO: 20及/或SEQ ID NO: 21及/或其保守修飾;且 (e) 抗體特異性結合人類IP-10。 另外或或者,抗體可擁有下列上述功能性質中之一或多者,例如對人類IP-10之高親和力結合;能夠結合至猴(例如食蟹猴、恒河猴) IP-10但、並不實質上結合至小鼠IP-10;能夠不與人類MIG或人類ITAC交叉反應;及能夠抑制(a) IP-10至CXCR3之結合、(b) IP-10誘導之鈣流動及/或(c) IP-10誘導之細胞遷移(趨化)。 在各個實施例中,抗體可為(例如)人類抗體、人類化抗體或嵌合抗體。 如本文中所使用,術語「保守序列修飾」意欲係指不顯著影響或改變含有胺基酸序列之抗體之結合特性之胺基酸修飾。該等保守修飾包含胺基酸取代、添加及缺失。可藉由業內已知之標準技術(例如定點誘變及PCR調介之誘變)將修飾引入本發明抗體中。保守胺基酸取代係胺基酸殘基經具有類似側鏈之胺基酸殘基代替者。業內已定義具有類似側鏈之胺基酸殘基之家族。該等家族包含具有鹼性側鏈之胺基酸(例如離胺酸、精胺酸、組胺酸)、具有酸性側鏈之胺基酸(例如天門冬胺酸、麩胺酸)、具有不帶電極性側鏈之胺基酸(例如甘胺酸、天門冬醯胺、麩胺醯胺、絲胺酸、蘇胺酸、酪胺酸、半胱胺酸、色胺酸)、具有非極性側鏈之胺基酸(例如丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸、甲硫胺酸)、具有β分枝側鏈之胺基酸(例如蘇胺酸、纈胺酸、異白胺酸)及具有芳香族側鏈之胺基酸(例如酪胺酸、苯丙胺酸、色胺酸、組胺酸)。因此,本發明抗體之CDR區內之一或多個胺基酸殘基可經來自相同側鏈家族之其他胺基酸殘基代替,且可使用本文所闡述之功能分析測試經改變抗體之保留功能(亦即上述功能)。經改造及修飾之抗體 可使用具有IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54 (例如抗體IP10.44)之VH 及/或VL 序列中之一或多者之抗體作為起始材料以改造經修飾抗體來製備本發明抗體。抗體可藉由修飾一或兩個可變區(亦即VH 及/或VL )內、例如一或多個CDR區內及/或一或多個框架區內之一或多個殘基來改造。另外或或者,抗體可藉由修飾恆定區內之殘基來改造,例如改變抗體之效應物功能。 在某些實施例中,可使用CDR接枝來改造抗體之可變區。抗體與靶抗原主要經由位於六個重鏈及輕鏈互補決定區(CDR)中之胺基酸殘基進行相互作用。出於此原因,在個別抗體之間CDR內之胺基酸序列比CDR外之序列更不同。因CDR序列負責大部分抗體-抗原相互作用,故可藉由構築包含來自移植至具有不同性質之不同抗體中框架序列之特異性天然抗體之CDR序列之表現載體來表現模擬特異性天然抗體性質的重組抗體(例如參見Riechmann等人(1998)Nature 332 :323-327;Jones等人(1986)Nature 321 :522-525;Queen等人 (1989)Proc. Natl. Acad 。參見U.S.A. 86 :10029-10033;U.S. Pat. No. 5,225,539;5,530,101;5,585,089;5,693,762及6,180,370)。 因此,本發明之另一實施例係關於一種經分離單株抗體或其抗原結合部分,其包括含有IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54之CDR1、CDR2及CDR3序列之重鏈可變區(例如分別係SEQ ID NO: 13、14及15)及/或含有IP10.44、IP10.43、IP10.45、IP10.46、IP10.47、IP10.48、IP10.49、IP10.50、IP10.51、IP10.52、IP10.53或IP10.54之CDR1、CDR2及CDR3序列(例如分別係SEQ ID NO: 19、20及21)之輕鏈可變區。儘管該等抗體含有單株抗體IP10.44或本文所闡述之其他抗體之VH 及VL CDR序列,但其可含有不同框架序列。 該等框架序列可自包含種系抗體基因序列之公開DNA資料庫或公開參考文獻來獲得。舉例而言,人類重鏈及輕鏈可變區基因之種系DNA序列可參見「VBase」人類種系序列資料庫(可在網際網路www.mrc-cpe.cam.ac.uk/vbase上獲得)以及Kabat等人 (1991),引用於上文中;Tomlinson等人 (1992) 「The Repertoire of Human Germline VH Sequences Reveals about Fifty Groups of VH Segments with Different Hypervariable Loops」J. Mol. Biol .227 :776-798;及Cox等人 (1994) 「A Directory of Human Germ-line VH Segments Reveals a Strong Bias in their Usage」Eur. J. Immunol .24 :827-836;每一者之內容皆以引用方式明確併入本文中。作為另一實例,人類重鏈及輕鏈可變區基因之種系DNA序列可發現於基因庫資料庫中。舉例而言,發現於HCo7 HuMAb小鼠中之下列重鏈種系序列可以隨附基因庫登錄號獲得:1-69 (NG_0010109、NT_024637及BC070333)、3-33 (NG_0010109及NT_024637)及3-7 (NG_0010109及NT_024637)。作為另一實例,發現於HCo12 HuMAb小鼠中之下列重鏈種系序列可以隨附基因庫登錄號獲得:1-69 (NG_0010109、NT_024637及BC070333)、5-51 (NG_0010109及NT_024637)、4-34 (NG_0010109及NT_024637)、3-30.3 (CAJ556644)及3-23 (AJ406678)。 使用一種稱為Gapped BLAST (Altschul等人(1997) (上文文獻),其為熟習此項技術者所熟知)之序列類似性搜索方法將抗體蛋白序列與經編譯蛋白序列資料庫進行比較。 用於本發明抗體中之較佳框架序列係在結構上類似於由本發明之所選抗體所使用之框架序列者,例如類似於由IP10.44所使用之VH 3-33框架序列及/或VK A27 框架序列。可將VH CDR1、CDR2及CDR3序列及VK CDR1、CDR2及CDR3序列接枝於與衍生框架序列之種系免疫球蛋白基因中所發現具有相同序列之框架區上,或可將CDR序列接枝於與種系序列相比含有一或多個突變之框架區上。舉例而言,已發現,在某些情況下,有益地突變框架區內之殘基以維持或增強抗體之抗原結合能力(例如參見美國專利第5,530,101號、第5,585,089號、第5,693,762號及第6,180,370號)。 另一類型之可變區修飾係突變VH 及/或VL CDR1、CDR2及/或CDR3區內之胺基酸殘基,藉此改良所關注抗體之一或多種結合性質(例如親和力)。可實施定點誘變或PCR調介之誘變以引入突變,且可在如本文所闡述且於實例中所提供之活體外或活體內分析中評估對抗體結合之效應或所關注之其他功能性質。較佳引入保守修飾(如上文所論述)。突變可為胺基酸取代、添加或缺失,但較佳係取代。此外,通常改變CDR區內之不超過一個、兩個、三個、四個或五個殘基。 因此,在另一實施例中,本發明提供包括本文所闡述之重鏈及/或輕鏈可變區序列之經分離抗IP-10單株抗體或其抗原結合部分,其中該等序列包含一或多個胺基酸取代、缺失或添加。舉例而言,經分離抗IP-10單株抗體或其抗原結合部分包括:重鏈可變區,其包括:(a) VH CDR1區,其包括SEQ ID NO: 13或與SEQ ID NO: 13相比具有一個、兩個或三個胺基酸取代、缺失或添加之胺基酸序列(較佳地,其中IP10.44之VH CDR1之麩胺酸及酪胺酸殘基(如下列序列EY GMH中加下劃線者)與SEQ ID NO:13中相同);(b) VH CDR2區,其包括SEQ ID NO: 14或與SEQ ID NO: 14相比具有一個、兩個、三個、四個或五個胺基酸取代、缺失或添加之胺基酸序列(較佳地,其中IP10.44之VH CDR2之甘胺酸、丙胺酸、白胺酸、異白胺酸、甘胺酸及丙胺酸殘基(如下列序列VIG FA GLI KG YA DSVKG中加下劃線者)與SEQ ID NO:14中相同);(c)VH CDR3區,其包括SEQ ID NO: 15或與SEQ ID NO: 15相比具有一個、兩個、三個、四個或五個胺基酸取代、缺失或添加之胺基酸序列(較佳地,其中IP10.44之VH CDR3之丙胺酸及天門冬醯胺殘基(如下列序列EGA GSN IYYYYGMDV中加下劃線者)與SEQ ID NO:15中相同);(d)VL CDR1區,其包括SEQ ID NO: 19或與SEQ ID NO: 19相比具有一個、兩個、三個、四個或五個胺基酸取代、缺失或添加之胺基酸序列;(e) VL CDR2區,其包括SEQ ID NO: 20或與SEQ ID NO: 20相比具有一個、兩個、三個、四個或五個胺基酸取代、缺失或添加之胺基酸序列;及(f) VL CDR3區,其包括SEQ ID NO: 21或與SEQ ID NO: 21相比具有一個、兩個、三個、四個或五個胺基酸取代、缺失或添加之胺基酸序列。 本發明之經改造抗體包含已對VH 及/或VL 內之框架殘基進行修飾以(例如)改良抗體特性者。通常,該等框架修飾經製造以降低抗體之免疫原性。舉例而言,一種方式係將一或多個框架殘基「回復突變」成相應之種系序列。更具體而言,已經受體細胞突變之抗體可含有與衍生出該抗體之種系序列不同之框架殘基。該等殘基可藉由比較抗體框架序列與衍生出該抗體之種系序列來鑒定。 另一類型之框架修飾涉及突變框架區或甚至一或多個CDR區內之一或多個殘基以去除T細胞表位,由此降低抗體之潛在免疫原性。此方式亦稱為「去免疫化」且進一步詳細闡述於美國專利公開案第20030153043號中 除在框架或CDR區內進行之修飾外或替代地,本發明抗體可經改造以包含Fc區內之修飾,通常改變抗體之一或多種功能性質,例如血清半衰期、補體固定、Fc受體結合及/或抗原依賴性細胞毒性。另外,本發明抗體可經化學修飾(舉例而言,可將一或多個化學部分附接至該抗體)或經修飾以改變其醣基化以亦改變抗體之一或多種功能性質。該等實施例中之每一者進一步詳細闡述於下文中。Fc區中殘基之編號係Kabat之EU索引編號。 在一較佳實施例中,抗體係在對應於重鏈恆定區之鉸鏈區中之位置228之位置包括絲胺酸至脯胺酸突變(S228P;EU索引)的IgG4同型抗體。已報導,此突變會消除鉸鏈區中之重鏈間二硫橋之異質性(Angal等人,上文文獻;位置241係基於Kabat編號系統)。 在一實施例中,CH1之鉸鏈區經修飾以改變(例如增加或減少)鉸鏈區中之半胱胺酸殘基數。此方式進一步闡述於美國專利第5,677,425號中。改變CH1鉸鏈區中之半胱胺酸殘基數以(例如)促進輕鏈及重鏈組裝或增加或降低抗體之穩定性。 在另一實施例中,抗體之Fc鉸鏈區經突變以縮短抗體之生物半衰期。更具體而言,將一或多個胺基酸突變引入Fc-鉸鏈片段之CH2-CH3結構域界面區中,從而該抗體具有相對於天然Fc-鉸鏈結構域SpA結合受損之葡萄球菌蛋白A (SpA)結合。此方式進一步詳細闡述於美國專利第6,165,745號中。 在另一實施例中,抗體經修飾以增加其生物半衰期。多種方式係可能的。舉例而言,可引入下列突變中之一或多者:T252L、T254S、T256F,如美國專利第6,277,375號中所闡述。或者,為增加生物半衰期,可在CH1或CL區內改變抗體以含有自IgG之Fc區中CH2結構域之兩個環獲取之補救受體結合表位,如美國專利第5,869,046號及第6,121,022號中所闡述。 在其他實施例中,藉由使用不同胺基酸殘基代替至少一個胺基酸殘基來改變Fc區以改變抗體之效應物功能。舉例而言,一或多個選自胺基酸殘基234、235、236、237、297、318、320及322之胺基酸可經不同胺基酸殘基代替,從而抗體對效應物配體具有改變之親和力,但保留親代抗體之抗原結合能力。對其親和力改變之效應物配體可為(例如) Fc受體或補體之C1組份。此方法進一步詳細闡述於美國專利第5,624,821號及第5,648,260號中。 在另一實例中,一或多個選自胺基酸殘基329、331及322之胺基酸可經不同胺基酸殘基代替,從而抗體具有經改變之C1q結合及/或降低或消除補體依賴性細胞毒性(CDC)。此方式進一步詳細闡述於美國專利第6,194,551號中。 在另一實例中,改變胺基酸位置231及239內之一或多個胺基酸殘基以藉此改變抗體結合補體之能力。此方式進一步闡述於PCT公開案WO 94/29351中。 在又一實例中,藉由修飾一或多個下列位置之胺基酸來修飾Fc區以增加抗體介導抗體依賴性細胞細胞毒性(ADCC)之能力及/或增加抗體對Fcγ受體之親和力:238、239、248、249、252、254、255、256、258、265、267、268、269、270、272、276、278、280、283、285、286、289、290、292、293、294、295、296、298、301、303、305、307、309、312、315、320、322、324、326、327、329、330、331、333、334、335、337、338、340、360、373、376、378、382、388、389、398、414、416、419、430、434、435、437、438或439。此方式進一步闡述於PCT公開案WO 00/42072中。此外,已定位人類IgG1上用於FcγR1、FcγRII、FcγRIII及FcRn之結合位點且已闡述具有改良之結合之變體(參見Shields等人 (2001)J. Biol. Chem .276 :6591-6604)。位置256、290、298、333、334及339之特異性突變展示可改良至FcγRIII之結合。另外,下列組合突變體展示可改良FcγRIII結合:T256A/S298A、S298A/E333A、S298A/K224A及S298A/E333A/K334A。 在再一實施例中,修飾抗體之醣基化。舉例而言,可製備無醣基化抗體(亦即抗體缺少醣基化)。可改變醣基化以(例如)增加抗體對抗原之親和力。該等碳水化合物修飾可藉由(例如)改變抗體序列內之一或多個醣基化位點來達成。舉例而言,可進行一或多個胺基酸取代以消除一或多個可變區框架醣基化位點,由此消除該位點處之醣基化。該無醣基化可增加抗體對抗原之親和力。例如參見美國專利第5,714,350號及第6,350,861號。 另外或或者,可製備具有經改變類型醣基化之抗體,例如具有降低量之岩藻醣基殘基之低岩藻醣基化抗體或具有增加之二等分GlcNac結構的抗體。已證實,該等經改變醣基化模式增加抗體之ADCC能力。該等碳水化合物修飾可藉由(例如)在具有經改變之醣基化機構之宿主細胞中表現抗體來達成。業內已闡述具有經改變醣基化機構之細胞且其可用作宿主細胞,該等宿主細胞用以表現本發明重組抗體以由此產生具有經改變醣基化之抗體。舉例而言,細胞系Ms704、Ms705及Ms709缺乏岩藻醣基轉移酶基因FUT8 (α (1,6)-岩藻醣基轉移酶),從而Ms704、Ms705及Ms709細胞系中所表現之抗體在其碳水化合物上缺乏岩藻醣。Ms704、Ms705及Ms709 FUT8-/- 細胞系係藉由使用兩個代替載體靶向破壞CHO/DG44細胞中之FUT8基因所產生(參見美國專利公開案第20040110704號及Yamane-Ohnuki等人 (2004)Biotechnol Bioeng 87 :614-22)。作為另一實例,EP 1,176,195闡述具有編碼岩藻醣基轉移酶之功能破壞之FUT8基因之細胞系,從而此一細胞系中所表現之抗體藉由減少或消除α-1,6鍵相關酶而展現低岩藻醣基化。EP 1,176,195亦闡述對於將岩藻醣添加至結合至抗體Fc區之N-乙醯基葡糖胺具有低酶活性或不具有該酶活性之細胞系,例如大鼠骨髓瘤細胞系YB2/0 (ATCC CRL 1662)。PCT公開案WO 03/035835闡述將岩藻醣附接至Asn(297)連接之碳水化合物之能力降低的變體CHO細胞系Lec13細胞,其亦產生在該宿主細胞中表現之抗體之低岩藻醣基化(亦參見Shields等人 (2002)J. Biol. Chem .277 :26733-26740)。亦可在雞蛋中產生具有經修飾醣基化特徵之抗體,如PCT公開案WO 06/089231中所闡述。或者,可在植物細胞(例如浮萍(Lemna ))中產生具有經修飾醣基化特徵之抗體。在植物系統中產生抗體之方法揭示於2006年8月11日提出申請之對應於Alston & Bird LLP代理案號040989/314911之美國專利申請案中。PCT公開案WO 99/54342闡述經改造以表現修飾醣蛋白之醣基轉移酶(例如β(1,4)-N-乙醯基葡萄糖胺基轉移酶III (GnTIII))之細胞系,從而經改造細胞系中所表現之抗體展現增加之產生增加之抗體ADCC活性之二等分GlcNac結構(亦參見Umana等人(1999)Nat. Biotech. 17 :176-180)。或者,可使用岩藻醣苷酶裂解掉抗體之岩藻醣殘基;舉例而言,岩藻醣苷酶α-L-岩藻醣苷酶自抗體去除岩藻醣基殘基(Tarentino等人 (1975)Biochem .14 :5516-23)。 本發明所涵蓋之本文抗體之另一修飾係聚乙二醇化。抗體可經聚乙二醇化以(例如)延長抗體之生物(例如血清)半衰期。為聚乙二醇化抗體,通常在一或多個PEG基團附接至抗體或抗體片段之條件下使抗體或其片段與聚乙二醇(PEG) (例如PEG之反應性酯或醛衍生物)反應。較佳地,聚乙二醇化係藉由與反應性PEG分子(或類似反應性水溶性聚合物)之醯化反應或烷基化反應來實施。如本文中所使用,術語「聚乙二醇」意欲涵蓋PEG之已用於衍生其他蛋白質之任一形式,例如單(C1-C10)烷氧基-或芳氧基-聚乙二醇或聚乙二醇-馬來醯亞胺。在某些實施例中,擬經聚乙二醇化之抗體係無醣基化抗體。聚乙二醇化蛋白質之方法為業內已知且可適用於本發明抗體。例如參見EP 0 154 316及EP 0 401 384。抗體物理性質 可藉由各種物理性質來表徵本發明抗體以檢測及/或區分其不同種類。 舉例而言,抗體可在輕鏈或重鏈可變區中含有一或多個醣基化位點。該等醣基化位點可增加抗體之免疫原性或改變抗體之pK (因改變抗原結合) (Marshall等人(1972)Annu Rev Biochem 41 :673-702;Gala及Morrison (2004)J Immunol 172 :5489-94;Wallick等人(1988)J Exp Med 168 :1099-109;Spiro (2002)Glycobiology 12 :43R-56R;Parekh等人(1985)Nature 316 :452-7;Mimura等人 (2000)Mol Immunol 37 :697-706)。已知醣基化發生於含有N-X-S/T序列之基序處。在一些情況下,較佳具有不含可變區醣基化之抗IP-10抗體。此可藉由選擇不含可變區中之醣基化基序之抗體或藉由突變醣基化區域內之殘基來達成。 在一較佳實施例中,抗體不含天門冬醯胺異構位點。天門冬醯胺之去醯胺可在N-G或D-G序列上發生且引起產生向多肽鏈中引入扭結且降低其穩定性(異天門冬胺酸效應)之異天門冬胺酸殘基。 每一抗體將具有獨特之等電點(pI),其通常在介於6與9.5之間之pH範圍內。IgG1抗體之pI通常在7-9.5之pH範圍內,且IgG4抗體之pI通常在6-8之pH範圍內。推測pI不在正常範圍內之抗體在活體內條件下可具有一定去摺疊及不穩定性。因此,較佳具有含有在正常範圍內之pI值之抗IP-10抗體。此可藉由選擇pI在正常範圍內之抗體或藉由突變帶電表面殘基來達成。編碼本發明抗體之核酸分子 本發明之另一態樣係關於編碼本發明抗體之核酸分子。該等核酸可存在於完整細胞中,存在於細胞溶解物中,或以部分純化或實質上純淨之形式存在。在藉由標準技術實施純化以清除其他細胞組份或其他污染物(例如其他細胞核酸或蛋白質)時,核酸係「經分離」或「使得實質上純的」,該等標準技術包含鹼/SDS處理、CsCl顯帶、管柱層析、瓊脂糖凝膠電泳及業內熟知之其他方法。參見F. Ausubel等人編輯(1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York。本發明核酸可為(例如) DNA或RNA且可含有或不含內含子序列。在一較佳實施例中,核酸係cDNA分子。 本發明核酸可使用標準分子生物學技術獲得。對於由雜交瘤(例如自攜載人類免疫球蛋白基因之轉基因小鼠製備之雜交瘤,如下文進一步闡述)表現之抗體,編碼藉由雜交瘤製造之抗體之輕鏈及重鏈的cDNA可藉由標準PCR擴增或cDNA選殖技術來獲得。對於自免疫球蛋白基因文庫(例如使用噬菌體展示技術)獲得之抗體,可自該文庫回收編碼該抗體之核酸。 本發明之較佳核酸分子係編碼IP10.44單株抗體之VH及VL序列者。編碼IP10.44之VH及VL序列之DNA序列分別展示於SEQ ID NO: 17及23中。 在獲得編碼VH及VL區段之DNA片段後,可立即藉由標準重組DNA技術進一步操縱該等DNA片段以(例如)將可變區基因轉化成全長抗體鏈基因、Fab片段基因或scFv基因。在該等操縱中,編碼VL或VH之DNA片段操作性地連接至編碼另一蛋白質之另一DNA片段,例如抗體恆定區或撓性連接體。如在此上下文中所使用,術語「操作性地連接」欲指接合兩個DNA片段,從而由該兩個DNA片段編碼之胺基酸序列保留在框內。 可藉由將編碼VH之DNA操作性地連接至編碼重鏈恆定區(CH1、CH2及CH3)之另一DNA分子來將編碼VH區之經分離DNA轉換成全長重鏈基因。人類重鏈恆定區基因之序列為業內已知(例如參見Kabat, E. A.等人(1991) Sequences of Proteins of Immunological Interest,第五版,U.S. Department of Health and Human Services, NIH公開案第91-3242號)且涵蓋該等區之DNA片段可藉由標準PCR擴增來獲得。重鏈恆定區可為IgG1、IgG2、IgG3、IgG4、IgA、IgE、IgM或IgD恆定區,但最佳係IgG1或IgG4恆定區。對於Fab片段重鏈基因而言,編碼VH之DNA操作性地連接至僅編碼重鏈CH1恆定區之另一DNA分子。 可藉由將編碼VL之DNA操作性地連接至編碼輕鏈恆定區CL之另一DNA分子來將編碼VL區之經分離DNA轉化成全長輕鏈基因(以及Fab輕鏈基因)。人類輕鏈恆定區基因之序列為業內已知(例如參見Kabat, E. A.等人(1991) Sequences of Proteins of Immunological Interest,第五版,U.S. Department of Health and Human Services, NIH公開案第91-3242號)且涵蓋該等區之DNA片段可藉由標準PCR擴增來獲得。輕鏈恆定區可為κ或λ恆定區,但最佳係κ恆定區。 為產生scFv基因,將編碼VH及VL之DNA片段操作性地連接至編碼撓性連接體(例如編碼胺基酸序列(Gly4 -Ser)3 )之另一片段,從而VH及VL序列可表現為鄰接單鏈蛋白,其中VL及VH區藉由撓性連接體接合(例如參見Bird等人(1988)Science 242 :423-426;Huston等人 (1988)Proc. Natl. Acad. Sci. USA 85 :5879-5883;McCafferty等人(1990)Nature 348 :552-554)。單株本發明抗體之產生 本發明之單株抗體(mAb)可藉由各種技術產生,包含習用單株抗體方法,例如Kohler及 Milstein (1975)Nature 256 : 495中之標準體細胞細胞雜交技術。儘管體細胞細胞雜交程序較佳,但原則上可採用用於產生單株抗體之其他技術,例如B淋巴球之病毒或致癌轉變。 用於製備雜交瘤之較佳動物系統係鼠類系統。小鼠中之雜交瘤產生係已充分確立之程序。業內已知分離融合用免疫脾細胞之免疫方案及技術。亦已知融合配偶體(例如鼠類骨髓瘤細胞)及融合程序。 本發明之嵌合或人類化抗體可基於如上文所闡述製備之鼠類單株抗體之序列製備。編碼重鏈及輕鏈免疫球蛋白之DNA可自所關注鼠類雜交瘤獲得並使用標準分子生物學技術進行改造以含有非鼠類(例如人類)免疫球蛋白序列。舉例而言,為產生嵌合抗體,可使用業內已知方法將鼠類可變區連接至人類恆定區(例如參見頒予Cabilly等人之美國專利第4,816,567號)。為產生人類化抗體,可使用業內已知之方法將鼠類CDR區插入人類框架中(例如參見頒予Winter之美國專利第5,225,539號及頒予Queen等人之美國專利第5,530,101號;第5,585,089號;第5,693,762號及第6,180,370號)。 在一較佳實施例中,本發明抗體係人類單株抗體。可使用攜載人類免疫系統而非小鼠系統之部分之轉基因或轉染色體小鼠來產生該等針對IP-10之人類單株抗體。該等轉基因及轉染色體小鼠包含在本文中分別稱為HuMAb小鼠及KM小鼠之小鼠,且在本文中統稱為「人類Ig小鼠」。 HuMAb小鼠® (Medarex, Inc.)含有編碼非重排人類重鏈(µ及γ)及κ輕鏈免疫球蛋白序列之人類免疫球蛋白基因微小基因座以及使內源性µ及κ鏈基因座鈍化之靶向突變(例如參見Lonberg等人 (1994) Nature 368(6474): 856-859)。因此,小鼠展現小鼠IgM或κ之減小表現,且因應於免疫化,所引入人類重鏈及輕鏈轉基因發生種類切換及體細胞突變以生成高親和力人類IgGκ單株抗體(Lonberg, N.等人 (1994) (上文文獻);綜述於Lonberg, N. (1994)Handbook of Experimental Pharmacology 113 :49-101;Lonberg, N.及Huszar, D. (1995)Intern. Rev. Immunol .13 : 65-93及Harding, F.及Lonberg, N. (1995)Ann. N.Y. Acad. Sci .764 :536-546)中。HuMab小鼠之製備及使用及由該等小鼠攜載之基因體修飾進一步闡述於Taylor, L.等人 (1992)Nucleic Acids Research 20 :6287-6295;Chen, J.等人 (1993)International Immunology 5 : 647-656;Tuaillon等人 (1993)Proc. Natl. Acad. Sci. USA 90 :3720-3724;Choi等人 (1993)Nature Genetics 4 :117-123;Chen, J.等人 (1993)EMBO J .12 : 821-830;Tuaillon等人(1994)J. Immunol .152 :2912-2920;Taylor, L.等人 (1994)International Immunology 6 : 579-591;及Fishwild, D.等人 (1996)Nature Biotechnology 14 : 845-851,其全部內容皆以引用方式具體併入本文中。另外參見美國專利第5,545,806號、第5,569,825號、第5,625,126號、第5,633,425號、第5,789,650號、第5,877,397號、第5,661,016號、第5,814,318號、第5,874,299號及第5,770,429號(皆頒予Lonberg及Kay);頒予Surani等人之美國專利第5,545,807號;PCT公開案第WO 92/03918號、第WO 93/12227號、第WO 94/25585號、第WO 97/13852號、第WO 98/24884號及第WO 99/45962號(皆頒予Lonberg及Kay);及頒予Korman等人之PCT公開案第WO 01/14424號。 在另一實施例中,本發明之人類抗體可使用在轉基因及轉染色體上攜載人類免疫球蛋白序列之小鼠(例如攜載人類重鏈轉基因及人類輕鏈轉染色體之小鼠)產生。在本文中稱為「KM小鼠」之該等小鼠詳細闡述於頒予Ishida等人之PCT公開案WO 02/43478中。 另外,業內可獲得表現人類免疫球蛋白基因之替代轉基因動物系統且可使用其來產生本發明之抗IP-10抗體。舉例而言,可使用稱為Xeno小鼠(Abgenix, Inc.)之替代轉基因系統;該等小鼠闡述於(例如)頒予Kucherlapati等人之美國專利第5,939,598號、第6,075,181號、第6,114,598號、第6,150,584號及第6,162,963號中。 此外,業內可獲得表現人類免疫球蛋白基因之替代轉染色體動物系統且可使用其來產生本發明之抗IP-10抗體。舉例而言,可使用攜載人類重鏈轉染色體及人類輕鏈轉染色體之小鼠,其稱為「TC小鼠」;該等小鼠闡述於Tomizuka等人(2000)Proc. Natl. Acad. Sci. USA 97 :722-727中。此外,攜載人類重鏈及輕鏈轉染色體之牛已在業內加以闡述(Kuroiwa等人(2002)Nature Biotechnology 20 :889-894)且可使用其來產生本發明之抗IP-10抗體。 本發明之人類單株抗體亦可使用噬菌體展示方法篩選人類免疫球蛋白基因文庫來製備。業內已確立用於分離人類抗體之該等噬菌體展示方法。例如參見頒予等人之美國專利第5,223,409號、第5,403,484號及第5,571,698號;頒予Dower等人之美國專利第5,427,908號及第5,580,717號;頒予McCafferty等人之美國專利第5,969,108號及第6,172,197號;及頒予Griffiths等人之美國專利第5,885,793號、第6,521,404號、第6,544,731號、第6,555,313號、第6,582,915號及第6,593,081號。 本發明之人類單株抗體亦可使用SCID小鼠來製備,其中人類免疫細胞已經重構以使得可在實施免疫後生成人類抗體反應。該等小鼠闡述於(例如)頒予Wilson等人之美國專利第5,476,996號及第5,698,767號中。人類 Ig 小鼠之免疫化 在使用人類Ig小鼠產生本發明之人類抗體時,可使用IP-10抗原及/或重組IP-10或IP-10融合蛋白之經純化或經富集製劑對該等小鼠實施免疫,如由以下文獻所闡述:Lonberg, N.等人 (1994)Nature 368 (6474): 856‑859;Fishwild, D.等人 (1996)Nature Biotechnology 14 : 845-851;及PCT公開案WO 98/24884及WO 01/14424。較佳地,小鼠在第一輸注時為6-16週齡。舉例而言,可使用IP-10抗原之經純化或重組製劑(5-50 µg)經腹膜腔內對人類Ig小鼠實施免疫。 生成IP-10之完全人類單株抗體之詳細程序闡述於下文實例1中。已展示使用各種抗原之累積經驗,亦即,在最初使用完全弗氏佐劑(complete Freund's adjuvant)中之抗原經腹膜腔內(IP)實施免疫、隨後使用不完全弗氏佐劑(incomplete Freund's adjuvant)中之抗原每隔一週實施IP免疫(直至總共6次)時,轉基因小鼠具有反應。然而,亦發現除弗氏佐劑外之佐劑係有效的。另外,發現完整細胞在不存在佐劑下具有高度免疫原性。可在免疫方案之進程內監測免疫反應,其中藉由眶後採血獲得血漿試樣。可藉由ELISA (如下文所闡述)篩選血漿,且可使用具有足夠抗IP-10人類免疫球蛋白效價之小鼠進行融合。可在處死及去除脾之前3天將小鼠使用抗原經靜脈內加強免疫。預計對於每次免疫可能需要實施2-3次融合。對於每一抗原通常免疫6至24只小鼠。通常,使用HCo7及HCo12菌株。另外,可使HCo7及HCo12轉基因二者一起育種至具有兩個不同人類重鏈轉基因(HCo7/HCo12)之單一小鼠中。產生本發明之人類單株抗體之雜交瘤之生成 為生成產生本發明之人類單株抗體之雜交瘤,可自免疫小鼠分離脾細胞及/或淋巴結細胞並融合至適當永生細胞系,例如小鼠骨髓瘤細胞系。所得雜交瘤可經篩選用於產生抗原特異性抗體。舉例而言,使用50% PEG將來自經免疫小鼠之脾淋巴球之單細胞懸浮液融合至六分之一數量之P3X63-Ag8.653非分泌小鼠骨髓瘤細胞(ATCC,CRL 1580)。將細胞以約2 × 105 平鋪於平底微量滴定板中,隨後在含有20%胎牛純系血清、18% 「653」條件化培養基、5%奧瑞金(origen,IGEN)、4 mM L-麩醯胺酸、1 mM丙酮酸鈉、5 mM HEPES、0.055 mM 2-巰基乙醇、50單位/ml青黴素(penicillin)、50 mg/ml鏈黴素(streptomycin)、50 mg/ml慶大黴素(gentamycin)及1× HAT (Sigma;HAT係在融合之後24小時添加)之選擇性培養基中培育兩週。在大約兩周之後,可在HAT更換為HT之培養基中培養細胞。然後可藉由ELISA篩選針對人類單株IgM及IgG抗體之個別孔。在出現雜交瘤過度生長後,通常可立即在10-14天之後觀察培養基。可將分泌雜交瘤之抗體再平鋪,再篩選,且若對人類IgG仍呈陽性,則可藉由限制性稀釋將單株抗體亞選殖至少兩次。然後可在活體外培養穩定亞純系以在組織培養基中產生少量抗體用於表徵。 為純化人類單株抗體,可使所選雜交瘤在兩公升旋轉燒瓶中生長用於純化單株抗體。可將上清液過濾並濃縮,然後使用蛋白質A-sepharose (Pharmacia, Piscataway, N.J.)進行親和層析。可藉由凝膠電泳及高效液相層析檢查所洗脫之IgG以確保純度。可將緩衝溶液更換為PBS,且可使用1.43消光係數藉由OD280 來測定濃度。可將單株抗體等分並儲存在-80℃下。產生本發明之單株抗體之轉染瘤之生成 本發明抗體亦可在宿主細胞轉染瘤中使用例如業內所熟知之重組DNA技術及基因轉染方法之組合產生(例如Morrison, S. (1985) Science 229:1202)。 舉例而言,為表現抗體或其抗體片段,可藉由標準分子生物學技術(例如使用表現所關注抗體之雜交瘤之PCR擴增或cDNA選殖)獲得編碼部分或全長輕鏈及重鏈之DNA,且可將該DNA插入表現載體中,從而該等基因操作性地連接至轉錄及轉譯控制序列。在本文中,術語「操作性地連接」意欲指將抗體基因接合至載體中,從而該載體內之轉錄及轉譯控制序列發揮其調節抗體基因之轉錄及轉譯之期望功能。表現載體及表現控制序列係經選擇以與所用表現宿主細胞相容。可將抗體輕鏈基因及抗體重鏈基因插入各別載體中,或更通常將兩種基因插入同一表現載體中。藉由標準方法將抗體基因插入表現載體中(例如將抗體基因片段上之互補限制位點與載體接合,或若不存在限制位點,則利用鈍端接合)。可使用本文所述抗體之輕鏈及重鏈可變區插入編碼期望同型之重鏈恆定區及輕鏈恆定區之表現載體中來產生任何抗體同型之全長抗體基因,從而VH 區段操作性地連接至載體內之CH 區段,且VL 區段操作性地連接至載體內之CL 區段。另外或替代地,重組表現載體可編碼促進宿主細胞分泌抗體鏈之信號肽。可將抗體鏈基因選殖至載體中,從而信號肽框內連接至抗體鏈基因之胺基端。信號肽可為免疫球蛋白信號肽或異源信號肽(亦即來自非免疫球蛋白之信號肽)。 除抗體鏈基因外,本發明之重組表現載體攜載控制抗體鏈基因在宿主細胞中之表現之調控序列。術語「調控序列」意欲包含控制抗體鏈基因轉錄或轉譯之啟動子、增強子及其他表現控制元件(例如多腺苷酸化信號)。該等調控序列闡述於(例如) Goeddel (Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, CA (1990))中。熟習此項技術者應瞭解,表現載體之設計(包含調控序列之選擇)可端視諸如擬轉化宿主細胞之選擇、期望蛋白質之表現程度等要素而定。用於哺乳動物宿主細胞表現之較佳調控序列包含在哺乳動物細胞中引導較高蛋白質表現程度之病毒元件,例如衍生自以下各項之啟動子及/或增強子:巨細胞病毒(CMV)、猿猴病毒40 (SV40)、腺病毒(例如腺病毒主要晚期啟動子(AdMLP))及多瘤病毒。或者,可使用非病毒調控序列,例如泛素啟動子或β-球蛋白啟動子。另外,調控元件係由來自不同來源(例如SRα啟動子系統)之序列構成,該SRα啟動子系統含有來自SV40早期啟動子之序列及人類T細胞1型白血病病毒之長末端重複(Takebe, Y.等人 (1988)Mol. Cell. Biol .8 :466-472)。 除抗體鏈基因及調控序列外,本發明之重組表現載體亦可攜載額外序列,例如調控載體在宿主細胞中複製之序列(例如複製起點)及可選標記物基因。可選標記物基因幫助選擇已引入載體之宿主細胞(例如參見美國專利第4,399,216號、第4,634,665號及第5,179,017號,其皆來自Axel等人)。舉例而言,通常可選標記物基因賦予已引入載體之宿主細胞對藥物(例如G418、潮黴素(hygromycin)或胺甲喋呤(methotrexate))之抗性。較佳可選標記物基因包含二氫葉酸還原酶(DHFR)基因(用於使用胺甲喋呤選擇/擴增之dhfr-宿主細胞中)及neo基因(用於G418選擇)。 為表現輕鏈及重鏈,藉由標準技術將編碼重鏈及輕鏈之表現載體轉染至宿主細胞中。術語「轉染」之各種形式意欲涵蓋常用於將外源DNA引入原核或真核宿主細胞中之多種技術,例如電穿孔、磷酸鈣沈澱、DEAE-葡聚糖轉染及諸如此類。儘管理論上可在原核或真核宿主細胞中表現本發明抗體,但在真核細胞(且最佳地哺乳動物宿主細胞)中表現抗體最佳,此乃因該等真核細胞且尤其哺乳動物細胞較原核細胞更有可能組裝並分泌經適當摺疊且具有免疫活性之抗體。已報導抗體基因之原核表現無法有效地產生高產量之活性抗體(Boss, M. A.及Wood, C. R. (1985)Immunology Today 6 :12-13)。 用於表現本發明之重組抗體之較佳哺乳動物宿主細胞包含中國倉鼠卵巢細胞(CHO細胞) (包含dhfr- CHO細胞,其闡述於Urlaub及Chasin (1980)Proc. Natl. Acad. Sci. USA 77:4216-4220中,其與DHFR可選標記物一起使用,例如如R.J. Kaufman及P.A. Sharp (1982)Mol. Biol. 159:601-621中所闡述)、NSO骨髓瘤細胞、COS細胞及SP2細胞。特定而言,為與NSO骨髓瘤細胞一起使用,另一較佳表現系統係WO 87/04462、WO 89/01036及EP 338,841中所揭示之GS基因表現系統。在將編碼重組表現載體之抗體基因引入哺乳動物宿主細胞中時,藉由將宿主細胞培養一段時間來產生抗體,該段時間足以容許抗體在宿主細胞中表現或更佳地使抗體分泌至使宿主細胞生長之培養基中。可使用標準蛋白質純化方法自培養基回收抗體。免疫偶聯物 在另一態樣中,本發明描述偶聯至治療部分(例如細胞毒素、藥物(例如免疫阻抑劑)或放射性毒素)之抗IP-10抗體或其片段。該等偶聯物在本文中稱為「免疫偶聯物」。包含一或多種細胞毒素之免疫偶聯物稱為「免疫毒素」。細胞毒素或細胞毒性劑包含任一有害於(例如殺死)細胞之藥劑。實例包含紫杉醇(taxol)、細胞鬆弛素B (cytochalasin B)、短桿菌素D (gramicidin D)、溴化乙錠、依米丁(emetine)、絲裂黴素(mitomycin)、依託泊苷(etoposide)、替尼泊苷(tenoposide)、長春新鹼(vincristine)、長春鹼(vinblastine)、秋水仙鹼(colchicin)、多柔比星(doxorubicin)、柔紅黴素(daunorubicin)、二羥基炭疽菌素二酮(dihydroxy anthracin dione)、米托蒽醌(mitoxantrone)、光輝黴素(mithramycin)、放線菌素D (actinomycin D)、1-去氫睪固酮、糖皮質激素、普魯卡因(procaine)、丁卡因(tetracaine)、利多卡因(lidocaine)、普萘洛爾(propranolol)及嘌呤黴素(puromycin)及其類似物或同系物。治療劑亦包含(例如)抗代謝物(例如胺甲喋呤、6-巰基嘌呤、6-硫鳥嘌呤、阿糖胞苷(cytarabine)、5-氟尿嘧啶達卡巴嗪(5-fluorouracil decarbazine))、烷基化劑(例如氮芥(mechloreth胺)、噻替派(thiotepa)、氯芥苯丁酸(chlorambucil)、美法侖(meiphalan)、卡莫司汀(carmustine) (BSNU)及洛莫司汀(lomustine) (CCNU)、環磷醯胺(cyclophosphamide)、白消安(busulfan)、二溴甘露醇(dibromomannitol)、鏈脲黴素(streptozotocin)、絲裂黴素C及順式-二氯二胺鉑(II) (DDP)(順鉑(cisplatin))、蒽環抗生素(例如柔紅黴素(先前為道諾黴素(daunomycin))及多柔比星)、抗生素(例如更生黴素(dactinomycin) (先前為放線菌素)、博來黴素(bleomycin)、光輝黴素及安麯黴素(anthramycin) (AMC))及抗有絲分裂劑(例如長春新鹼及長春花鹼)。 可偶聯至本發明抗體之治療性細胞毒素之其他較佳實例包含多卡米星(duocarmycin)、卡奇黴素(calicheamicin)、美坦辛(maytansine)及奧裡斯他汀(auristatin)及其衍生物。卡奇黴素抗體偶聯物之一實例係市售Mylotarg™ (Wyeth-Ayerst)。 可使用業內可獲得之連接體技術將細胞毒素偶聯至本發明抗體。用於將細胞毒素偶聯至抗體之連接體類型之實例包含(但不限於)腙、硫醚、酯、二硫化物及含肽連接體。可選擇(例如)易於在溶酶體腔室內由低pH裂解或易於由蛋白酶(例如優先表現於腫瘤組織中之蛋白酶,例如細胞自溶酶(例如細胞自溶酶B、C、D))裂解之連接體。 關於細胞毒素類型、連接體及將治療劑偶聯至抗體之方法之其他論述,亦參見Saito, G.等人 (2003)Adv. Drug Deliv. Rev .55 :199-215;Trail, P.A.等人 (2003)Cancer Immunol. Immunother .52 :328-337;Payne, G. (2003)Cancer Cell 3 :207-212;Allen, T.M. (2002)Nat. Rev. Cancer 2 :750-763;Pastan, I.及Kreitman, R. J. (2002)Curr. Opin. Investig. Drugs 3 :1089-1091;Senter, P.D.及Springer, C.J. (2001)Adv. Drug Deliv. Rev .53 :247-264。 本發明抗體亦可偶聯至放射性同位素以生成細胞毒性放射性醫藥,亦稱為放射性免疫偶聯物。可偶聯至抗體以用於診斷或治療之放射性同位素之實例包含(但不限於)碘131 、銦111 、釔90 及鎦177 。業內已確立製備放射性免疫偶聯物之方法。放射性免疫偶聯物之實例市面有售(包含Zevalin™ (IDEC Pharmaceuticals)及Bexxar™ (Corixa Pharmaceuticals)),且可使用類似方法且使用本發明抗體來製備放射性免疫偶聯物。 可使用本發明之抗體偶聯物來改質給定生物反應,且藥物部分不應理解為限於經典化學治療劑。舉例而言,藥物部分可為擁有期望生物活性之蛋白質或多肽。該等蛋白質可包含(例如)酶促活性毒素或其活性片段,例如相思子素、蓖麻毒蛋白A、假單胞菌外毒素(pseudomonas exotoxin)或白喉毒素;蛋白質,例如腫瘤壞死因子或干擾素-g;或生物反應修飾劑,例如淋巴因子、介白素-1 (「IL-1」)、介白素-2 (「IL-2」)、介白素-6 (「IL-6」)、顆粒球巨噬球群落刺激因子(「GM-CSF」)、顆粒球群落刺激因子(「G-CSF」)或其他生長因子。 用於將該治療部分偶聯至抗體之技術已眾所周知,例如參見Arnon等人,「Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy」, Monoclonal Antibodies And Cancer Therapy, Reisfeld等人 (編輯),pp. 243-56 (Alan R. Liss, Inc. 1985);Hellstrom等人,「Antibodies For Drug Delivery」, Controlled Drug Delivery (第2版), Robinson等人 (編輯), pp. 623-53 (Marcel Dekker, Inc. 1987);Thorpe, 「Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review」, Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera等人 (編輯), pp. 475-506 (1985);「Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy」, Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin等人 (編輯), pp. 303-16 (Academic Press 1985)及Thorpe等人,「The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates」, Immunol. Rev., 62:119-58 (1982)。雙特異性分子 在另一態樣中,本發明描述包括本發明之抗IP-10抗體或其片段之雙特異性分子。本發明抗體或其抗原結合部分可衍生或連接至另一功能分子(例如另一肽或蛋白質,例如受體之另一抗體或配體)以生成結合至至少兩個不同結合位點或靶分子之雙特異性分子。本發明抗體事實上可衍生或連接至一個以上之其他功能分子以生成結合至兩個以上不同結合位點及/或靶分子之多特異性分子;該等多特異性分子亦意欲涵蓋於本文所用之術語「雙特異性分子」中。為生成本發明之雙特異性分子,本發明抗體可在功能上連接(例如藉由化學偶合、基因融合、非共價締合或其他方式)至一或多個其他結合分子(例如另一抗體、抗體片段、肽或結合模擬物),從而產生雙特異性分子。 因此,本發明包含含有至少一種針對IP-10之第一結合特異性及針對第二靶表位之第二結合特異性之雙特異性分子。在本發明之一特定實施例中,第二靶表位係Fc受體,例如人類FcγRI (CD64)或人類Fcα受體(CD89)。因此,本發明包含雙特異性分子能夠結合至表現FcγR、FcαR或FceR之效應細胞(例如單核球、巨噬球或多型核細胞(PMN))及表現IP-10之靶細胞。該等雙特異性分子使表現IP-10之細胞靶向效應細胞且觸發Fc受體調介之效應細胞活性(例如表現IP-10之細胞之吞噬作用、抗體依賴性細胞介導之細胞毒性(ADCC)、細胞介素釋放或生成超氧化物陰離子)。 在雙特異性分子係多特異性之本發明實施例中,除抗Fc結合特異性及抗IP-10結合特異性外,該分子可進一步包含第三結合特異性。在一實施例中,第三結合特異性部分係抗增強因子(EF)部分,例如結合至涉及細胞毒性活性之表面蛋白且由此增加針對靶細胞之免疫反應之分子。「抗增強因子部分」可為結合至給定分子(例如抗原或受體)且由此增強結合決定子對Fc受體或靶細胞抗原之效應之抗體、功能抗體片段或配體。「抗增強因子部分」可結合Fc受體或靶細胞抗原。或者,抗增強因子部分可結合至不同於第一及第二結合特異性所結合實體之實體。舉例而言,抗增強因子部分可結合細胞毒性T細胞(例如經由使得增加針對靶細胞之免疫反應之CD2、CD3、CD8、CD28、CD4、CD40、ICAM-1或其他免疫細胞)。 在一實施例中,本發明之雙特異性分子包括至少一種抗體或其抗體片段(例如包含Fab、Fab'、F(ab')2 、Fv或單鏈Fv)作為結合特異性部分。抗體亦可為輕鏈或重鏈二聚體或其任何最小片段,例如Fv或單鏈構築體,如Ladner等人,美國專利第4,946,778號中所闡述,其內容以引用方式明確併入本文中。 在一實施例中,對Fcγ受體之結合特異性係由單株抗體所提供,該結合並不由人類免疫球蛋白G (IgG)阻斷。如本文中所使用,術語「IgG受體」係指位於染色體1上之8種(鏈基因中之任一者。該等基因編碼總共12個跨膜或可溶性受體同種型,該等同種型分成三個Fcγ受體種類:FcγRI (CD64)、FcγRII(CD32)及FcγRIII (CD16)。在一較佳實施例中,Fcγ受體係人類高親和力FcγRI。人類FcγRI係對單體IgG (108 - 109 M-1 )展示高親和力之72 kDa分子。 某些較佳抗Fcγ單株抗體之產生及表徵闡述於Fanger等人之PCT公開案WO 88/00052及美國專利第4,954,617號中,該等文獻之教示內容以引用方式完全併入本文中。該等抗體在不同於受體之Fcγ結合位點之位點處結合至FcγRI、FcγRII或FcγRIII之表位,且由此其結合並不實質上由生理學濃度之IgG阻斷。可用於本發明之具體抗FcγRI抗體係mAb 22、mAb 32、mAb 44、mAb 62及mAb 197。產生mAb 32之雜交瘤可自美國模式培養物保藏所(American Type Culture Collection)以ATCC登錄號HB9469獲得。在其他實施例中,抗Fcγ受體抗體係單株抗體22之人類化形式(H22)。H22抗體之產生及表徵闡述於Graziano, R.F.等人(1995) J. Immunol 155 (10): 4996-5002及PCT公開案WO 94/10332中。產生H22抗體之細胞系以名稱HA022CL1寄存於美國模式培養物保藏所且具有登錄號CRL 11177。 在其他較佳實施例中,對Fc受體之結合特異性係由結合至人類IgA受體(例如Fc-α受體(FcαRI (CD89)))之抗體所提供,該結合較佳地並不由人類免疫球蛋白A (IgA)阻斷。術語「IgA受體」意欲包含一種位於染色體19上之(基因(FcαRI)之基因產物。此基因已知會編碼若干55至110 kDa之交替剪接之跨膜同種型。FcαRI (CD89)組成型表現於單核球/巨噬球、嗜酸性及嗜中性顆粒球上,但不表現於非效應細胞群體上。FcαRI對IgA1及IgA2具有中等親和力(≈ 5 ( 107 M-1 ),且在暴露於諸如G-CSF或GM-CSF等細胞介素時親和力有所增加(Morton, H.C.等人 (1996)Critical Reviews in Immunology 16 :423-440)。已闡述4種結合IgA配體結合結構域外之FcαRI之FcαRI特異性單株抗體(鑑別為A3、A59、A62及A77) (Monteiro, R.C.等人(1992)J. Immunol. 148 :1764)。 FcαRI及FcγRI係用於本發明之雙特異性分子中之較佳觸發受體,此乃因其(1)主要表現於免疫效應細胞(例如單核球、PMN、巨噬球及樹突狀細胞)上;(2)以高程度(例如5,000-100,000個/細胞)表現;(3)係細胞毒性活性(例如ADCC、吞噬作用)之媒介;(4)調介靶向其之抗原(包含自體抗原)之增強之抗原呈遞。 儘管人類單株抗體較佳,但本發明之雙特異性分子中可採用之其他抗體係鼠類嵌合及人類化單株抗體。 可藉由使用業內已知方法偶聯結合特異性(例如抗FcR及抗IP-10結合特異性)組份來製備本發明之雙特異性分子。舉例而言,可單獨生成雙特異性分子之每一結合特異性部分且然後使其彼此偶聯。在結合特異性部分係蛋白質或肽時,可使用多種偶合劑或交聯劑進行共價偶聯。交聯劑之實例包含蛋白質A、碳化二亞胺、N-琥珀醯亞胺基-S-乙醯基-硫代乙酸酯(SATA)、5,5'-二硫基雙(2-硝基苯甲酸) (DTNB)、鄰伸苯基二馬來醯亞胺(oPDM)、丙酸N-琥珀醯亞胺基-3-(2-吡啶基二硫基)酯(SPDP)及4-(N-馬來醯亞胺基甲基)環己烷-1-甲酸磺基琥珀醯亞胺基酯(磺基-SMCC) (例如參見Karpovsky等人, (1984)J. Exp. Med .160 :1686;Liu, MA等人 (1985)Proc. Natl. Acad. Sci. USA 82 :8648)。其他方法包含闡述於Paulus (1985) Behring Ins. Mitt. No. 78, 118-132;Brennan等人 (1985)Science 229 :81-83)及Glennie等人(1987)J. Immunol. 139 :2367-2375)中者。較佳偶聯劑係SATA及磺基-SMCC,二者皆可自Pierce Chemical Co. (Rockford, IL)獲得。 在結合特異性部分係抗體時,其可經由兩條重鏈之C-末端鉸鏈區之巰基鍵結來偶聯。在一尤佳實施例中,鉸鏈區經修飾以在偶聯之前含有奇數個(較佳一個)巰基殘基。 或者,兩種結合特異性部分可在同一載體中編碼且在同一宿主細胞中表現並組裝。此方法尤其可用於雙特異性分子係MAb x MAb、MAb x Fab、Fab x F(ab')2 或配體x Fab融合蛋白時。本發明之雙特異性分子可為包括一種單鏈抗體及結合決定子之單鏈分子或包括兩種結合決定子之單鏈雙特異性分子。雙特異性分子可包括至少兩種單鏈分子。製備雙特異性分子之方法闡述於(例如)以下文獻中:美國專利第5,260,203號;美國專利第5,455,030號;美國專利第4,881,175號;美國專利第5,132,405號;美國專利第5,091,513號;美國專利第5,476,786號;美國專利第5,013,653號;美國專利第5,258,498號;及美國專利第5,482,858號。 雙特異性分子至其特異性靶之結合可藉由(例如)酶聯免疫吸附分析(ELISA)、放射性免疫分析(RIA)、FACS分析、生物分析(例如生長抑制)或西方印漬分析來證實。該等分析中之每一者通常藉由採用特異性針對所關注複合物之經標記試劑(例如抗體)來檢測尤其受關注之蛋白質-抗體複合物之存在。舉例而言,可使用(例如)識別且特異性結合至抗體FcR複合物之酶聯抗體或抗體片段來檢測FcR-抗體複合物。或者,可使用多種其他免疫分析中之任一者來檢測該等複合物。舉例而言,抗體可經放射性標記且用於放射免疫分析(RIA)中(例如參見Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, 1986年3月,該文獻以引用方式併入本文中)。可藉助例如使用γ計數器或閃爍計數器或藉由放射自顯影來檢測放射性同位素。醫藥組合物 在另一態樣中,本發明提供含有一種本發明單株抗體或其組合或其抗原結合部分與醫藥上可接受之載劑調配在一起之組合物,例如醫藥組合物。該等組合物可包含本發明之抗體或免疫偶聯物或雙特異性分子中之一者或組合(例如兩種或更多種不同者)。舉例而言,本發明之醫藥組合物可包括結合至靶抗原上之不同表位或具有互補活性之抗體(或免疫偶聯物或雙特異性分子)之組合。 本發明醫藥組合物亦可以組合療法、亦即與其他藥劑組合投與。舉例而言,組合療法可包含本發明之抗IP-10抗體與至少一種其他抗發炎劑或免疫阻抑劑之組合。可用於組合療法中之治療劑之實例更詳細闡述於下文關於本發明抗體之用途部分中。 如本文中所使用,「醫藥上可接受之載劑」包含任何及所有溶劑、分散介質、包衣、抗細菌及抗真菌劑、等滲劑及吸收延遲劑及生理上相容之類似試劑。較佳地,載劑適於靜脈內、肌內、皮下、非經腸、脊柱或表皮投與(例如藉由注射或輸注)。端視投與途徑,可於材料中對活性化合物(亦即抗體、免疫偶聯物或雙特異性分子)進行包衣以保護化合物免受酸及可使化合物失活之其他天然條件的作用。 本發明醫藥化合物可包含一或多種醫藥上可接受之鹽。「醫藥上可接受之鹽」係指保留母體化合物之期望生物活性且不賦予任何不期望毒理學效應之鹽(例如參見Berge, S.M.等人(1977)J. Pharm. Sci .66 :1-19)。該等鹽之實例包含酸加成鹽及鹼加成鹽。酸加成鹽包含源自無毒無機酸(例如鹽酸、硝酸、磷酸、硫酸、氫溴酸、氫碘酸、亞磷酸及諸如此類)以及源自無毒有機酸(例如脂肪族單-及二羧酸、經苯基取代之烷酸、羥基烷酸、芳香族酸、脂肪族及芳香族磺酸及諸如此類)者。鹼加成鹽包含源自鹼土金屬(例如鈉、鉀、鎂、鈣及諸如此類)以及源自無毒有機胺(例如N,N'-二苄基乙二胺、N-甲基葡萄糖胺、氯普魯卡因(chloroprocaine)、膽鹼、二乙醇胺、乙二胺、普魯卡因(procaine)及諸如此類)者。 本發明之醫藥組合物亦可包含醫藥上可接受之抗氧化劑。醫藥上可接受之抗氧化劑之實例包含:(1)水溶性抗氧化劑,例如抗壞血酸、半胱胺酸鹽酸鹽、硫酸氫鈉、偏亞硫酸氫鈉、亞硫酸鈉及諸如此類;(2)油溶性抗氧化劑,例如棕櫚酸抗壞血酯、丁基化羥基苯甲醚(BHA)、丁基化羥基甲苯(BHT)、卵磷脂、沒食子酸丙酯、α-生育酚及諸如此類;及(3)金屬螯合劑,例如檸檬酸、乙二胺四乙酸(EDTA)、山梨醇、酒石酸、磷酸及諸如此類。 可用於本發明醫藥組合物中之適宜水性及非水性載劑之實例包含水、乙醇、多元醇(例如甘油、丙二醇、聚乙二醇及諸如此類)及其適宜混合物、植物油(例如橄欖油)及可注射有機酯(例如油酸乙酯)。舉例而言,藉由使用諸如卵磷脂等包衣材料、維持所需粒徑(在分散劑之情形下)及使用表面活性劑可維持適當流動性。 該等組合物亦可含有佐劑,例如防腐劑、潤濕劑、乳化劑及分散劑。藉由上述滅菌程序並納入各種抗細菌劑及抗真菌劑(例如對羥基苯甲酸酯、氯丁醇、苯酚、山梨酸及諸如此類)二者可確保阻止微生物之存在。該等組合物中亦可期望包含等滲劑,例如糖、氯化鈉及諸如此類。另外,可藉由納入吸收延遲劑(例如單硬脂酸鋁及明膠)來實現可注射醫藥形式之長效吸收。 醫藥上可接受之載劑包含無菌水溶液或分散液及用於臨時製備無菌可注射溶液或分散液之無菌粉劑。業內已知用於醫藥活性物質之該等介質及藥劑之使用。除任何與活性化合物不相容之習用介質或藥劑外,本發明涵蓋其於醫藥組合物中之用途。該等組合物中亦可納入附加活性化合物。 通常,治療組合物必須無菌且在製造及儲存條件下穩定。可將組合物調配成溶液、微乳液、脂質體或其他適於高藥物濃度之有序結構。載劑可為溶劑或分散介質,其含有(例如)水、乙醇、多元醇(例如甘油、丙二醇及液體聚乙二醇及諸如此類)及其適宜混合物。可(例如)藉由使用塗層(例如卵磷脂)、在分散液情形中藉由維持所需粒徑且藉由使用表面活性劑來維持適當流動性。在許多情形下,較佳地可將等滲劑(例如糖、多元醇(例如甘露醇、山梨醇)或氯化鈉)納入組合物中。可藉由向組合物中納入延遲吸收劑(例如單硬脂酸鹽及明膠)來實現可注射組合物之長效吸收。 無菌可注射溶液可藉由以下步驟來製備:將所需量之活性化合物納入含有上文所列舉成份中之一者或組合(視需要)之適當溶劑中,隨後進行無菌微濾。通常,藉由將活性化合物納入含有基本分散介質及來自上文所列舉者之所需其他成份之無菌媒劑中來製備分散液。在使用無菌媒劑來製備無菌可注射溶液之情形下,較佳製備方法係真空乾燥及冷凍乾燥(凍乾),其可自其預先經無菌過濾之溶液產生由活性成份加上任一所期望額外藥劑構成之媒劑。 可與載劑材料組合產生單一劑型之活性成份之量將端視所治療個體及特定投與模式而變化。可與載劑材料組合產生單一劑型之活性成份之量通常為產生治療效應之組合物之量。通常,以100%計,此量將在活性成份之約0.01%至約99%範圍內,較佳地活性成份與醫藥上可接受之載劑之組合之約0.1%至約70%,最佳地約1%至約30%。 對劑量方案進行調節以提供最佳期望反應(例如治療反應)。舉例而言,可投與單次濃注劑,可隨時間投與若干個分次劑量或可根據治療狀況之緊急程度所指示按比例減少或增加劑量。尤其有利的是,將非經腸組合物調配成劑量單位形式以便於投與及劑量均勻性。如本文所用之劑量單位形式係指適於作為單位劑量供欲治療個體使用之物理離散單元;各單元含有預定量之活性化合物,此預定量經計算與所需醫藥載劑一起產生期望治療效應。本發明單位劑型之規格依賴於且直接取決於下列因素:(a)活性化合物之獨特特徵及擬實現之特定治療效應,及(b)複合此一活性化合物以治療個體敏感性之技術中所固有之限制條件。 對於抗體之投與,劑量在約0.0001 mg/kg至100 mg/kg、且更通常0.01 mg/kg至5 mg/kg宿主體重範圍內。舉例而言,劑量可為0.3 mg/kg體重、1 mg/kg體重、3 mg/kg體重、5 mg/kg體重或10 mg/kg體重或在1-10 mg/kg範圍內。實例性治療方案需要每週一次、每兩週一次、每三週一次、每四週一次、每月一次、每3個月一次或每3至6個月一次來投與抗體。舉例而言,用於抗體之劑量方案包含經由靜脈內投與來給予1 mg/kg體重或3 mg/kg體重,其中使用下列投藥時間表中之一者給予抗體:(i)每四週一次,6個劑量,然後每三個月一次;(ii)每三週一次;(iii) 3 mg/kg體重一次,隨後每三週一次1 mg/kg體重。用於抗體之較佳劑量方案亦包含投與介於30-450 mg之間之抗IP-10抗體(或其抗原結合部分)之單一劑量。舉例而言,抗體之單一劑量係劑量30 mg、40 mg、50 mg、60 mg、70 mg、80 mg、90 mg、100 mg、110 mg、120 mg、130 mg、140 mg、150 mg、160 mg、170 mg、180 mg、190 mg、200 mg、210 mg、220 mg、230 mg、240 mg、250 mg、260 mg、270 mg、280 mg、290 mg、300 mg、310 mg、320 mg、330 mg、340 mg、350 mg、360 mg、370 mg、380 mg、390 mg、400 mg、450mg或劑量35 mg、45 mg、55 mg、65 mg、75 mg、85 mg、95 mg、105 mg、115 mg、125 mg、135 mg、145 mg、155 mg、165 mg、175 mg、185 mg、195 mg、205 mg、215 mg、225 mg、235 mg、245 mg、255 mg、265 mg、275 mg、285 mg、295 mg、305 mg、315 mg、325 mg、335 mg、345 mg、355 mg、365 mg、375 mg、385 mg、395 mg、405 mg或445mg。在一些方法中,每週或每兩週投與抗體。在又一方法中,投與抗體約12週之時段,例如在第1、15、29、43、57及71天。舉例而言,該方法可包含約 40mg抗體或其抗原結合部分之單一劑量(每兩週,約12週之時段)。 在一些方法中,同時投與兩種或更多種具有不同結合特異性之單株抗體,在該情形下所投與每一抗體之劑量在所指示範圍內。抗體通常係在多個情況下來投與。單一劑量之間之間隔可為(例如)每週、每月、每三個月或每年。間隔亦可如藉由量測患者之針對靶抗原之抗體血液濃度所指示而不規則。在一些方法中,對劑量進行調節以達成約1-1000 µg/ml且在一些方法中為約25-300 µg/ml之血漿抗體濃度。 或者,抗體可以持續釋放調配物來投與,在該情形下需要較不頻繁之投與。劑量及頻率端視抗體在患者中之半衰期而變化。一般而言,人類抗體展示最長半衰期,其次為人類化抗體、嵌合抗體及非人類抗體。投與劑量及頻率可端視治療為預防性抑或治療性而變化。在預防性應用中,以相對較不頻繁之間隔經較長時間段投與相對較低之劑量。一些患者在其餘生中持續接受治療。在治療性應用中,有時需要相對較短間隔之相對較高之劑量直至減輕或終止疾病進展為止,且較佳地直至患者展示疾病症狀之部分或完全改善為止。此後,可向患者投與預防性方案。 本發明醫藥組合物中之抗體(及其他活性組份)之實際劑量值可變以獲得在對患者無毒之情況下對於特定患者、組合物及投與模式有效達成期望治療反應的抗體量。所選劑量值將端視多種藥物動力學因素而定,該等參數包含所用本發明特定組合物或其酯、鹽或醯胺之活性、投與途徑、投與時間、所用特定化合物之排泄速率、治療之持續時間、與所用特定組合物組合使用之其他藥物、化合物及/或材料、所治療患者之年齡、性別、體重、身體狀況、一般健康情況及先前病史及已為醫學技術中所熟知之類似因素。 抗IP-10抗體之「治療有效量」較佳可降低疾病症狀之嚴重程度,增加無疾病症狀期之頻率及持續時間或預防因感病性所致之損害或失能。在類風濕性關節炎(RA)之情形下,治療有效劑量較佳地預防與RA有關之物理症狀之進一步退化,該等物理症狀係(例如)疼痛、疲勞、晨僵(持續一小時以上)、瀰漫性肌肉疼痛、食欲不振、虛弱、具有溫覺之關節疼痛、腫脹、壓痛及在不活動之後關節僵硬。治療有效劑量較佳地亦防止或延遲RA發作,例如在存在疾病之早期或初步體徵時可為期望的。同樣,其包含延遲與RA有關之慢性進展。用於診斷RA之實驗室測試包含化學法(包含量測IP-10濃度)、血液學、血清學及放射學。因此,監測上述症狀中之任一者之任何臨床或生物化學分析可用於確定特定治療是否係用於治療RA之治療有效劑量。熟習此項技術者能夠基於諸如以下等因素來測定該等量:個體身材、個體症狀之嚴重程度及特定組合物或所選投與途徑。 本發明中所使用之組合物可使用業內已知之多種方法中之一或多者藉由一或多個投與途徑投與。如熟習此項技術者應瞭解,投藥途徑及/或模式應視所期望結果而變化。抗體之較佳投與途徑包含靜脈內、肌內、皮內、腹膜腔內、皮下、脊柱或其他非經腸投與途徑,例如藉由注射或輸注。本文所用之片語「非經腸投與」意指除經腸及局部投與外之投與模式(通常藉由注射進行),且包含(但不限於)靜脈內、肌內、動脈內、鞘內、囊內、眼窩內、心內、皮內、腹膜腔內、經氣管、皮下、表皮下、關節內、經囊下、蛛網膜下、脊柱內、硬膜外及胸骨內注射及輸注。 或者,抗體可經由經腸途徑來投與,例如局部、表皮或黏膜投與途徑,例如經鼻內、經口、經陰道、經直腸、經舌下或經局部。 活性化合物可利用保護化合物免於快速釋放之載劑製備,例如受控釋放調配物,包含植入物、經皮貼劑及微囊封遞送系統。可使用生物可降解之生物相容聚合物,例如乙烯基乙酸乙烯酯、聚酸酐、聚乙醇酸、膠原、聚原酸酯及聚乳酸。用於製備該等調配物之許多方法已獲得專利權或通常為熟習此項技術者所知。例如參見Sustained and Controlled Release Drug Delivery Systems , J.R. Robinson編輯,Marcel Dekker, Inc., New York, 1978。 可使用業內已知之醫學器件投與治療組合物。舉例而言,在一較佳實施例中,可使用無針皮下注射器件(例如揭示於美國專利第5,399,163號、第5,383,851號、第5,312,335號、第5,064,413號、第4,941,880號、第4,790,824號或第4,596,556號中之器件)投與本發明治療組合物。可用於本發明中之熟知植入物及模組之實例包含:美國專利第4,487,603號,其揭示用於以可控速率分配醫藥之可植入微輸注幫浦;美國專利第4,486,194號,其揭示用於經由皮膚投與醫藥之治療器件;美國專利第4,447,233號,其揭示用於以精確輸注速率遞送醫藥之醫藥輸注幫浦;美國專利第4,447,224號,其揭示用於連續藥物遞送之可變流量可植入輸注裝置;美國專利第4,439,196號,其揭示具有多室隔室之滲透藥物遞送系統;及美國專利第4,475,196號,其揭示滲透藥物遞送系統。該等專利皆以引用方式併入本文中。熟習此項技術者已知許多其他該等植入物、遞送系統及模組。 在某些實施例中,本發明中所採用之抗體可經調配以確保在活體內之合理分佈。舉例而言,血腦障壁(BBB)排斥許多高度親水性化合物。為確保本發明之治療性化合物穿過BBB (若期望),則可將其調配成(例如)脂質體形式。關於製造脂質體之方法,例如參見美國專利4,522,811;5,374,548;及5,399,331。脂質體可包括一或多個選擇性轉運至特定細胞或器官中、由此增強靶向藥物遞送之部分(例如參見V.V. Ranade (1989)J. Clin. Pharmacol . 29:685)。實例性靶向部分包含葉酸鹽或生物素(例如參見頒予Low等人之美國專利5,416,016);甘露醣苷(Umezawa等人(1988)Biochem. Biophys. Res. Commun .153 :1038);抗體(P.G. Bloeman等人 (1995)FEBS Lett .357 :140;M. Owais等人 (1995)Antimicrob. Agents Chemother .39 :180);表面活性劑蛋白質A受體(Briscoe等人 (1995)Am. J. Physiol .1233 :134);p120 (Schreier等人 (1994)J. Biol. Chem. 269 :9090);亦參見K. Keinanen;M.L. Laukkanen (1994)FEBS Lett. 346 :123;J.J. Killion;I.J. Fidler (1994) Immunomethods 4 :273。本發明之用途及方法 本發明之抗體(及免疫偶聯物及雙特異性分子)具有活體外及活體內診斷及治療用途。舉例而言,可向培養物中之細胞中(例如在活體外或離體)投與該等分子,或於個體中(例如在活體內)投與以治療、預防或診斷各種病症。本文所用之術語「個體」意欲包含人類及非人類動物。非人類動物包含所有脊椎動物,例如哺乳動物及非哺乳動物,例如非人類靈長類、綿羊、狗、貓、牛、馬、雞、兩棲動物及爬行動物。該等方法尤其適於治療患有與異常IP-10表現有關之病症之人類患者。在投與IP-10抗體以及另一藥劑時,二者可以任一順序或同時投與。 在一實施例中,可使用本發明之抗體(及免疫偶聯物及雙特異性分子)來檢測IP-10濃度或含有IP-10之細胞之濃度。此可(例如)藉由試樣(例如活體外試樣)及對照試樣與抗IP-10抗體在容許在抗體與IP-10之間形成複合物之條件下接觸來達成。檢測在抗體與IP-10之間形成之任一複合物且在試樣及對照中進行比較。舉例而言,可使用本發明組合物實施業內熟知之標準檢測方法(例如ELISA及流動細胞分析)。 因此,在一態樣中,本發明另外提供檢測試樣中之IP-10 (例如人類IP-10抗原)之存在 或量測IP-10量之方法,其包括使試樣及對照試樣與特異性結合至IP-10之本發明抗體或其抗原結合部分在容許在抗體或其部分與IP-10之間形成複合物之條件下接觸。然後檢測複合物之形成,其中試樣與對照試樣之間複合物形成之差異指示在試樣中存在IP-10。 亦在本發明範圍內者係包括本發明組合物(例如抗體、人類抗體、免疫偶聯物及雙特異性分子)及使用說明書之套組。該套組可進一步含有至少一種額外試劑或一或多種額外本發明抗體(例如具有互補活性且結合至不同於第一抗體之靶抗原上之表位的抗體)。套組通常包含指示套組內容物之預期用途之標記。術語標記包含任一提供於套組上或與套組一起或以其他方式伴隨套組之書面或記錄材料。 IP-10已知對經活化T細胞及NK細胞具有化學吸引效應且將該等細胞募集至發炎及自體免疫反應之位點處。因此,可使用本發明之抗IP-10抗體(及免疫偶聯物及雙特異性分子)來抑制各種臨床適應症中由經活化T細胞及/或NK細胞介導之發炎反應或自體免疫反應。本發明由此提供抑制藉由經活化T細胞及/或NK細胞介導之發炎反應或自體免疫反應之方法,其包括使T細胞或NK細胞與本發明之抗體或其抗原結合部分(或本發明之免疫偶聯物或雙特異性分子)接觸,從而抑制發炎反應或自體免疫反應。可使用本發明抗體之發炎病狀或自體免疫病狀之具體實例包含(但不限於)下列疾病: A.多發性硬化及其他去髓鞘疾病 已展示,IP-10 mRNA之表現在鼠類實驗過敏性腦脊髓炎(EAE) (多發性硬化之小鼠模型)中有所增加(Godiska, R.等人(1995)J. Neuroimmunol. 58 :167-176)。此外,在急性去髓鞘事件期間於MS患者之腦脊髓流體中發現增加之IP-10濃度(Sorensen, T.L.等人 (1999)J. Clin. Invest .103 :807-815;Franciotta等人(2001)J. Neuroimmunol. 115 :192-198)。亦已展示,IP-10表現由MS病灶中之星形細胞表現,但並不表現於未受影響之白質中(Balashov, K.E.等人 (1999)Proc. Natl. Acad. Sci. USA 96 :6873-6878)及由MS斑塊內之巨噬球及周圍實質中之反應性星形細胞表現(Simpson, J.E.等人 (2000)Neuropathol. Appl. Neurobiol. 26 :133-142)。PCT專利公開案WO 02/15932展示,在MS之小鼠肝炎病毒(MHV)模型中投與抗IP-10抗體使得減小T淋巴球及巨噬球侵襲,抑制去髓鞘進展,增加髓鞘再生且改良神經學功能(亦參見Liu, M.T.等人(2001)J. Immunol. 167 :4091-4097)。已展示,投與鼠類抗IP-10抗體會降低鼠類EAE中之臨床及組織學疾病發病率及嚴重程度(Fife, B.T.等人(2001)J. Immunol. 166 :7617-7624)。 鑒於前述內容,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療MS及其他去髓鞘疾病。抗體可單獨使用或與其他抗MS劑(例如干擾素β-1a (例如Avonex®、Rebif®、干擾素β-1b (例如Betaseron®、乙酸格拉替雷(glatiramer acetate) (例如Copaxone®及/或米托蒽醌(例如Novantrone®)組合使用。 B.類風濕性關節炎 已展示,IP-10濃度在類風濕性關節炎(RA)患者之滑液、滑膜組織及血清中顯著升高(Patel, D.D.等人(2001)Clin. Immunol .98 :39-45;Hanaoka, R.等人 (2003)Arthritis Res. and Therapy 5 :R74-R81)。已展示,IP-10受體CXCR3優先表現於來自RA患者之肥大細胞內滑膜組織上(Ruschpler, P.等人 (2003)Arthritis Res. Ther .5 :R241-R252)。在佐劑誘導性關節炎(AA)大鼠模型中,已報導針對自我IP-10之可檢測自體抗體反應(Salomon, I.等人(2002)J. Immunol .169 :2685-2693)。此外,投與編碼IP-10之DNA疫苗會增大大鼠內中和性抗IP-10抗體之產生,且該等IP-10自體抗體可將AA抗性接受性轉移至幼稚大鼠(Salomon, I.等人,上文文獻)。 鑒於前述內容,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療類風濕性關節炎。抗體可單獨使用或與其他抗RA劑組合使用,該等抗RA劑係(例如)非類固醇抗發炎藥(NSAID)、止痛藥、皮質類固醇(例如普賴松(prednisone)、氫化可體松(hydrocortisone))、TNF抑制劑(包含阿達木單抗(adilimumab) (Humira®、依那西普(etanercept) (Enbrel®及英利昔單抗(infliximab) (Remicade®)、疾病緩解抗風濕藥(包含胺甲喋呤、環磷醯胺、環孢素、金諾芬(auranofin)、硫唑嘌呤(azathioprine)、金硫代蘋果酸鈉、硫酸羥基氯喹、來氟米特(leflunomide)、米諾四環素(minocycline)、青黴胺(penicillamine)及磺胺塞拉金(sulfasalazine))、纖維肌痛醫藥、骨質疏鬆症醫藥及痛風醫藥。 C.發炎腸病 已展示,IP-10表現在浸潤自潰瘍性結腸炎患者所獲取結腸生檢之固有層之細胞中顯著增強(Uguccioni, M.等人 (1999)Am. J. Pathol .155 :331-336)。另外,已展示,中和IP-10可保護小鼠免於急性結腸炎中之上皮潰瘍且增強隱窩細胞存活(Sasaki, S.等人 (2002)Eur. J. Immunol .32 :3197-3205)。同樣,在發生類似於人類中之克羅恩氏病之結腸炎之IL-10 -/-小鼠中,使用抗IP-10抗體進行治療使得改良發炎評分(Singh, U.P.等人(2003)J. Immunol. 171 :1401-1406)。 鑒於前述內容,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療發炎腸病(IBD) (包含潰瘍性結腸炎及克羅恩氏病)。抗體可單獨使用或與其他抗IBD劑組合使用,該等抗IBD劑係(例如)含有美沙拉明(mesalamine)之藥物(包含磺胺塞拉金及其他含有5-胺基水楊酸(5-ASA)之藥劑(例如奧沙拉秦(olsalazine)及巴柳氮(balsalazide)))、非類固醇抗發炎藥(NSAID)、止痛藥、皮質類固醇(例如普賴松、氫化可體松)、TNF抑制劑(包含阿達木單抗(Humira®、依那西普(Enbrel®及英利昔單抗(Remicade®)、免疫阻抑劑(例如6-巰基嘌呤、硫唑嘌呤及環孢素A)及抗生素 D.全身性紅斑狼瘡 已展示,血清IP-10濃度在全身性紅斑狼瘡(SLE)患者中顯著增加,且已展示該等濃度與疾病活動性相關(例如參見Narumi, S.等人 (2000)Cytokine 12 :1561-1565)。因此,在另一實施例中,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療SLE。抗體可單獨使用或與其他抗SLE劑組合使用,該等抗SLE劑係(例如)非類固醇抗發炎藥(NSAID)、止痛藥、皮質類固醇(例如普賴松、氫化可體松)、免疫阻抑劑(例如環磷醯胺、硫唑嘌呤及胺甲喋呤)、抗瘧疾藥(例如羥基氯喹)及抑制dsDNA抗體之產生之生物藥物(例如LJP 394)。 E.I 型糖尿病 已展示,血清IP-10濃度在I型糖尿病患者、尤其患有新發作疾病中有所升高,且已展示該等濃度與GAD自體抗體陽性患者中之GAD-反應性之產生γ-干擾素之T細胞中的數量相關(Shimada, A.等人 (2001)Diabetes Care 24 :510-515)。在單獨研究中,發現血清IP-10濃度在新診斷疾病患者及處於高疾病風險下之患者中有所增加,且IP-10濃度與IFN-γ濃度相關(Nicoletti, F.等人 (2002)Diabetologia 45 :1107-1110)。此外,已證實,β細胞分泌IP-10,從而引起T細胞之化學吸引,且已展示,缺少CXCR3之小鼠具有延遲之I型糖尿病發作(Frigerio, S.等人 (2002)Nature Medicine 8:1414-1420)。 因此,在另一實施例中,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療I型糖尿病。抗體可單獨使用或與其他抗糖尿病劑(例如胰島素)組合使用。 F.發炎皮膚病症 已展示,IP-10表現與各種發炎皮膚病症有關。舉例而言,已在角質細胞及來自活性牛皮癬斑塊之皮膚浸潤物中檢測到IP-10 (Gottlieb, A.B.等人(1988) J. Exp. Med. 168:941-948)。此外,CXCR3由皮膚CD3+淋巴球表現,從而表明CXCR3涉及T淋巴球至牛皮癬真皮之運輸(Rottman, J.B.等人 (2001) Lab. Invest. 81:335-347)。因此,在另一實施例中,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療牛皮癬。抗體可單獨使用或與其他藥劑或治療組合使用,該等其他藥劑或治療係(例如)局部治療劑(例如類固醇、煤焦油、卡泊三烯(calcipotriene)、他紮羅汀(tazarotene)、蒽酚、水楊酸)、光療法、全身性醫藥(例如胺甲喋呤、口服類視色素、環孢素、富馬酸酯)及/或生物藥物(例如阿法西普(alefacept)、依法利珠單抗(efalizumab))。 扁平苔癬(皮膚及口腔黏膜之慢性發炎疾病)已展示與表現CXCR3之浸潤CD4+及CD8+ T細胞有關,且此外,CD8+浸潤溶細胞性T細胞已展示在其溶細胞性粒子中具有IP-10且病灶角質細胞已展示過度表現IP-10 (Iijima, W.等人 (2003)Am. J. Pathol .163 :261-268)。因此,在另一實施例中,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療扁平苔蘚。抗體可單獨使用或與其他藥劑或治療(例如抗發炎劑、抗組胺、皮質類固醇及光療法)組合使用。 已展示,IP-10表現在其他發炎皮膚病症(例如慢性盤形紅斑狼瘡及耶斯納皮膚淋巴球性浸潤(Jessner’s lymphocytic infiltration of the skin))中有所升高 (Flier, J.等人(2001)J. Pathol. 194 :398-405)。因此,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療該等發炎皮膚病症。抗體可單獨使用或與如上文所闡述之其他藥劑或治療組合使用。 G.自體免疫甲狀腺病 已展示,IP-10及CXCR3皆表現於患有格雷夫斯氏病(GD)之患者之甲狀腺中,但並不表現(或較差表現)於正常甲狀腺組織中,且在新發作GD患者中之表現最高(Romagnani, P.等人(Am. J. Pathol. 161:195-206)。亦已展示,IP-10表現於患有橋本氏甲狀腺炎之患者之甲狀腺組織中(Kemp, E.H.等人 (2003) Clin. Endocrinol. 59:207-213)。因此,在另一實施例中,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療自體免疫甲狀腺病(包含格雷夫斯氏病及橋本氏甲狀腺炎)。抗體可單獨使用或與其他藥劑或治療(例如抗甲狀腺藥、放射性碘及甲狀腺次全切除術)組合使用。 H.薛格連氏症候群 已展示, IP-10 mRNA之表現在薛格連氏症候群(SS)患者之唾液腺中顯著上調,其中在毗鄰淋巴樣浸潤物之管上皮中之表現最為突出(例如參見Ogawa, N.等人 (2002)Arthritis Rheum .46 :2730-2741)。因此,在另一實施例中,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療薛格連氏症候群。抗體可單獨使用或與其他抗SS劑組合使用,該等抗SS劑係(例如)人工潤滑劑(例如無防腐劑人工淚液、人工唾液、無香味皮膚洗劑、鹽水鼻噴劑及陰道潤滑劑)、用於治療乾眼之Lacriserts®、毛果芸香鹼鹽酸鹽(Salagen®)及用於治療口腔乾燥之賽義梅林(ceyimeline) (Eyoxac®)、非類固醇抗發炎藥(NSAID)、類固醇及免疫阻抑藥。 I.肺發炎 已在過敏性氣喘之小鼠模型中檢驗IP-10表現,結果顯示,IP-10在過敏原攻擊之後之肺中有所上調且IP-10之過度表現與增加之氣道活動過度、嗜伊紅球增多症、增加之IL-4濃度及CD8+淋巴球募集有關(Medoff, B.D.等人(2002)J. Immunol. 168 :5278-5286)。此外,發生慢性阻塞性肺疾病(COPD)之吸煙者已展示在其支氣管上皮中表現IP-10 (Saetta, M.等人 (2002)Am. J. Respir. Crit. Care Med .165 :1404-1409)。另外,在肺類肉瘤病及淋巴球性肺泡炎患者之支氣管肺泡灌洗液中顯示高IP-10濃度(Agostini, C.等人(1998)J. Immunol. 161 :6413-6420)。 因此,在另一實施例中,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療特徵在於肺發炎之疾病(例如氣喘、COPD、肺類肉瘤病或淋巴球性肺泡炎)。抗體可單獨使用或與其他用於減小肺發炎之藥劑組合使用,該等其他藥劑係(例如)色甘酸鈉(cromolyn sodium)、奈多羅米鈉(nedocromil sodium)、吸入之皮質類固醇、全身性(例如口服)皮質類固醇、短效β拮抗劑、短效支氣管擴張劑、長效β拮抗劑或激動劑(口服或吸入)、白三烯改質劑、茶鹼(theophylline)及氧療法。 J.移植排斥 已展示,IP-10在移植組織之排斥中發揮一定作用。舉例而言,使用中和性抗IP-10抗體治療小鼠會增加小腸同種移植物之存活且減小宿主T細胞及NK細胞在固有層中之累積(Zhang, Z.等人(2002)J. Immunol. 168 :3205-3212)。另外,在接受胰島同種移植物之小鼠中,抗IP-10抗體治療亦使得增加同種移植物存活且降低淋巴球性移植物浸潤(Baker, M.S.等人 (2003)Surgery 134 :126-133)。另外,心臟同種移植物(而非正常心臟)展示可表現IP-10及CXCR3,且升高之IP-10濃度與心臟同種移植物血管病變有關(Zhao, D.X.等人(2002)J. Immunol .169 :1556-1560)。亦已展示,CXCR3及IP-10由發炎細胞浸潤肺同種移植物表現(Agostini, C.等人 (2001)Am J. Pathol. 158 :1703-1711)。已展示,在活體內中和CXCR3或IP-10可減弱鼠類肺移植模型中之阻塞性細支氣管炎症候群(BOS),該症候群係對於肺移植接受者之存活之主要限制(Belperio, J.A.等人(2002)J. Immunol. 169 :1037-1049)。 鑒於前述內容,本發明亦提供藉由向需要治療之移植接受者投與抗IP-10本發明抗體來抑制移植排斥之方法。可治療之組織移植物之實例包含(但不限於)肝、肺(例如治療BOS)、腎、心臟、小腸及胰島細胞。抗體可單獨使用或與用於抑制移植排斥之其他藥劑組合使用,該等其他藥劑係(例如)免疫阻抑劑(例如環孢素、硫唑嘌呤、甲基普賴蘇濃(methylprednisolone)、普賴蘇濃(prednisolone)、普賴松、嗎替麥考酚酯(mycophenolate mofetil)、西力莫司(sirilimus)、雷帕黴素(rapamycin)、他克莫司(tacrolimus))、抗感染劑(例如阿昔洛韋(acyclovir)、克黴唑(clotrimazole)、更昔洛韋(ganciclovir)、製黴素(nystatin)、甲氧苄啶磺胺甲噁唑(trimethoprimsulfarnethoxazole))、利尿劑(例如布美他尼(bumetanide)、呋塞米(furosemide)、美托拉宗(metolazone))及潰瘍醫藥(例如希美替定(cimetidine)、法莫替丁(farnotidine)、蘭索拉唑(lansoprazole)、奧美拉唑(omeprazole)、雷尼替丁(ranitidine)、硫糖鋁(sucralfate))。 K.骨髓損傷 骨髓之創傷性損傷會引起發炎細胞浸潤。已展示,IP-10在骨髓損傷後之繼發性退化中發揮主要作用(Gonzalez等人 (2003)Exp. Neurol .184 :456-463;亦參見PCT專利公開案WO 03/06045)。已展示, IP-10在損傷後6及12小時於挫傷之大鼠骨髓中(McTigue, D.M.等人(1998)J. Neurosci. Res. 53 :368-376)及在損傷後6小時於損傷之小鼠骨髓中(Gonzalez等人(2003),上文文獻)顯著升高。因此,已展示,在骨髓損傷之後抑制IP-10活性可用於減小發炎細胞之浸潤且由此減小發炎之繼發性組織損害。抑制亦可減小發炎細胞之浸潤,降低繼發性退化且改良創傷性腦損傷及中風後之恢復。因此,本發明亦提供治療需要治療之個體之骨髓損傷及腦損傷(例如中風)之方法,其包括向個體投與本發明之抗IP-10抗體。抗體可單獨使用或與其他藥劑(例如其他抗發炎劑)組合使用。 L.神經退化性疾病 已發現,中樞神經系統內之IP-10及CXCR3表現有所上調且伴有與阿茲海默氏病(AD)有關之病理學變化(Xia, M.Q.及Hyman, D.T. (1999)J. Neurovirol .5 :32-41)。在AD腦內,CXCR3展示組成型表現於各個皮質及皮質下區域中之神經元及神經元過程中,而IP-10已展示表現於星形細胞中且其濃度與正常腦相比顯著升高(Xia, M.Q.等人(2000)J. Neuroimmunol .108 :227-235)。因此,可使用本發明抗體藉由向需要治療之個體投與抗IP-10抗體(單獨或與其他治療劑組合)來治療神經退化性疾病(例如阿茲海默氏病及帕金森氏病)。抗IP-10抗體可與其組合用於阿茲海默氏病治療之藥劑之實例包含膽鹼酯酶抑制劑(多奈派齊(donepezil)、利凡斯的明(rivastigmine)、加蘭他敏(galantamine)、塔克寧(tacrine))及維他命E。抗IP-10抗體可與其組合用於帕金森氏病治療之藥劑之一實例係左旋多巴(levodopa)。 M.牙齦炎 邊緣性牙周炎與發炎牙齦組織有關。已在發炎人類牙齦組織中發現產生IP-10之細胞以及表現CXCR3受體之細胞(Kabashima, H.等人 (2002)Cytokine 20 :70-77)。因此,在另一實施例中,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療牙齦炎。抗體可單獨使用或與其他藥劑或治療(例如抗牙齦漱口劑(例如抗生素漱口劑)、牙周刮治及牙根整平術及牙周手術)組合使用。 N.基因療法相關發炎 複製缺陷型腺病毒(用作基因療法中所使用之腺病毒載體)可在感染病毒載體之組織中引起急性損傷及發炎。已展示,該等腺病毒載體經由NFkB之衣殼依賴性活化來誘導IP-10表現(Borgland, S.L.等人(2000) J. Virol. 74:3941-3947)。因此,在利用刺激IP-10之不期望產生之病毒載體(例如腺病毒載體)之基因療法治療期間,可使用本發明之抗IP-10抗體來抑制IP-10誘導之損傷及/或發炎。O. 血管生成疾病 已展示,IP-10在活體外及在活體內抑制血管生成(Strieter等人 (1995)Biochem. Biophys. Res. Commun .210 :51-57;Angiolillo等人(1995) J. Exp. Med .182 :155-162;Luster等人(1995)J. Exp. Med .182 :219-231)。血管生成在許多疾病過程(例如創傷癒合反應)中發揮關鍵作用。舉例而言,損傷骨髓內之血管系統保持活性重塑狀態直至損傷後至少28天(Popovich等人 (1997)J. Comp. Neurol .377 :443-464)。 據信,IP-10經由抑制內皮細胞生長及趨化來施加其血管抑制效應。其經由其肝素結合基序以及經由受體調介機制來達成此功能。經由肝素結合基序,其防止血管生成因子FGF-2及VEFG165結合至其受體。其亦經由受體調介過程來施加其效應。IP-10受體CXCR3發生交替剪接以產生兩種已知變化形式CXCR3A及CXCR3B。結合至CXCR3A受體之IP-10引起靶細胞之增殖及趨化,而結合至CXCR3B受體之IP-10對生長及趨化具有相反抑制效應。IP-10經由CXCR3B受體來用作血管抑制因子(Lasagni等人(2003)J. Exp. Med. 197 :1537-1549)。 鑒於前述內容,可使用本發明之抗IP-10抗體來治療需要血管生成之疾病,例如在IP-10之血管抑制行為延遲或妨礙癒合且加重疾病過程之情形下。該等疾病包含:1)異常生理學新血管形成,其可影響傷口癒合、雌性動情週期、懷孕、運動誘導之肥大及諸如此類;2)可需要刺激新血管形成之適應症,包含誘導側副管形成(包含心肌缺血、周邊缺血、腦缺血)、冠狀動脈疾病、周邊血管疾病、中風、傷口癒合、器官移植(例如胰島細胞移植)之後續植入、破裂及腱修復、重構手術、組織改造、再狹窄、脫髮、褥瘡及鬱滯性潰瘍、胃腸道潰瘍、胎盤功能不全、無菌性壞死、肺高血壓及全身性高血壓、血管型失智症、阿茲海默氏病、伴皮質下梗死及白質腦病之常染色體顯性腦動脈病(CADASIL);甲狀腺假包囊及淋巴水腫;及3)可需要血管重塑之適應症,包含血管畸形、牛皮癬及子癇前症。本發明抗體可單獨使用或與其他血管生成誘導劑組合使用。 P.發炎腎病 已報導,CXCR3受體藉由IgA腎病變、膜增殖性腎小球性腎炎或快速進展性腎小球性腎炎患者之系膜細胞予以表現(Romagnani, P.等人 (1999)J. Am. Soc. Nephrol. 10 :2518-2526)。另外,在腎中毒腎炎之小鼠模型中,在誘導腎炎之後7天,腎炎腎之皮質中之IP-10 mRNA濃度增加6倍(Schadde, E. 等人 (2000)Nephrol. Dial. Transplant .15 :1046-1053)。另外,與正常腎相比,在患有腎小球性腎炎之人類患者之腎生檢樣品中觀察到高IP-10表現程度(Romagnani, P.等人 (2002)J. Am. Soc. Nephrol .13 :53-64)。因此,可使用本發明之抗IP-10抗體來治療發炎腎病,包含IgA腎病變、膜增殖性腎小球性腎炎及快速進展性腎小球性腎炎。本發明抗體可單獨或與其他藥劑或治療(例如抗生素、利尿劑、高血壓醫藥及透析)組合用於治療腎小球性腎炎。 Q.動脈粥樣硬化 已展示,IP-10係用於血管平滑肌之有絲分裂及趨化因子,其因對動脈粥樣硬化之發病機制之貢獻而係平滑肌細胞之重要特徵(Wang, X.等人 (1996)J. Biol. Chem. 271 :24286-24293)。亦已展示,IP-10在使用LPS或干擾素γ治療之後誘導於平滑肌細胞中,且亦在氣囊血管成形術之後誘導於大鼠頸動脈中(Wang, X.等人 (1996),上文文獻)。此外,IP-10已顯示表現於粥樣斑相關之內皮細胞、平滑肌細胞及巨噬球中,從而表明IP-10可用於募集及保留在動脈粥樣硬化形成期間於血管壁病灶內所觀察之經活化T細胞(Mach, F.等人(1999)J. Clin. Invest .104 :1041-1050)。因此,可使用本發明之抗IP-10抗體來治療或預防動脈粥樣硬化。抗體可單獨或與其他藥劑或治療(例如高血壓醫藥及膽固醇降低藥物)組合用於治療動脈粥樣硬化。 R.病毒感染 IP-10可在各種病毒感染中上調且可在募集經活化T細胞以對抗病毒感染方面發揮有益作用。然而,在某些情況下,在病毒感染期間產生IP-10可引起有害效應且由此IP-10活性可為不期望的,且可期望使用本發明之抗IP-10抗體來抑制該等病毒感染中之IP-10活性。 舉例而言,已展示,IP-10刺激人類免疫缺陷病毒(HIV)在單核球源巨噬球及末梢血淋巴球中之複製(Lane, B.R.等人 (2003)Virology 307 :122-134)。另外,在HIV感染患者之腦脊髓液及腦中及HIV gp120-轉基因小鼠之中樞神經系統中之IP-10濃度有所升高(Asensio, V.C.等人(2001)J. Virol. 75 :7067-7077)。 亦已展示,慢性持續性C型肝炎病毒(HCV)患者及慢性活動性肝炎患者中之IP-10濃度有所升高(Narumi, S.等人(1997)J. Immunol. 158 :5536-5544)。在HCV感染肝中,已展示,IP-10由肝細胞表現,但並不由肝內之其他細胞類型表現,且與血液相比在肝中發現顯著較高比例之CXCR3陽性T細胞(Harvey, C.E.等人 (2003)J. Leukoc. Biol .74 :360-369)。 已展示,增加之IP-10分泌與小鼠中急性眼部I型單純疱疹病毒(HSV-1)感染之發炎反應有關,且展示使用抗IP-10抗體治療HSV-1感染小鼠會減小角膜基質中之單核細胞浸潤,減小角膜病況,且抑制在急性感染期間病毒自角膜基質至視網膜之進展(Carr, D.J.等人(2003)J. Virol. 77 :10037-10046)。 亦已展示,IP-10表現表現於病毒腦膜炎中。IP-10顯示存在於病毒腦膜炎患者之CSF中且負責嗜中性球、末梢血單核細胞及經活化T細胞上之趨化活性(Lahrtz, F.等人 (1997)Eur. J. Immunol. 27 :2484-2489;Lahrtz, F.等人(1998)J. Neuroimmunol. 85 :33-43)。 鑒於前述內容,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療涉及不期望IP-10活性之病毒感染。可治療之病毒感染之非限制性實例包含HIV (例如HIV誘導之腦炎)、HCV、HSV-1、病毒腦膜炎及嚴重急性呼吸症候群(SARS)。抗體可單獨使用或與其他抗病毒劑組合使用,該等抗病毒劑係(例如)如下:對於HIV感染而言,核苷/核苷酸逆轉錄酶抑制劑、非核苷逆轉錄酶抑制劑及/或蛋白酶抑制劑(及其組合);對於HCV感染而言,干擾素α 2a、聚乙二醇化干擾素α 2a及/或利巴韋林(ribavirin);且對於HSV-1感染而言,阿昔洛韋、伐昔洛韋(valacyclovir)及/或泛昔洛韋(famciclovir)。S. 細菌感染 . 細菌感染在受影響細胞中誘導IP-10產生(參見Gasper, N.A.等人 (2002)Infect Immun. 70 :4075-82。) 細菌腦膜炎亦已知特異性引發IP-10表現(Lapinet, J.A.等人 (2000)Infect Immun. 68 :6917-23)。在細菌感染模型中,IP-10亦由曲細精管之睪丸體細胞中產生,此強烈指示該等趨化介素在睪丸發炎(其通常在細菌感染之發病中觀察到)期間累積嗜中性球及T淋巴球中之可能作用(Aubry, F.等人 (2000)Eur Cytokine Netw. 11 :690-8)。 鑒於前述內容,可使用本發明之抗IP-10抗體藉由將抗體投與需要治療之個體來治療涉及不期望IP-10活性之細菌感染。細菌感染之實例包含(但不限於)細菌腦膜炎及細菌肺炎。抗體可單獨使用或與其他抗細菌劑(例如抗生素)組合使用。 藉由下列實例進一步闡釋本發明,但其不應視為進一步限制本發明。本申請案通篇引用之所有圖及所有參考文獻、專利及公開專利申請案之內容皆以引用方式明確併入本文中。材料及方法實例 1 :抗體IP10.1之變體之設計 先前在若干臨床試驗中於患有RA、克羅恩氏病及潰瘍性結腸炎之患者中評估依德魯單抗(亦稱為IP10.1)。在該等試驗中觀察到臨床反應信號。然而,依德魯單抗之進一步研發遭遇一些難題,例如(1)需要用於IV及SC遞送之高劑量及用於SC遞送之高投藥頻率之亞最佳(單位數) nM親和力/功效;(2)來自較高量蛋白質投與之顯著IV輸注反應;及(3)使用2年之儲放壽命所觀察之最高30%異構化。 考慮到上述依德魯單抗問題,生成具有改良之親和力且並無異構化可能之次世代抗體。首先將抗體IP10.1構築成scFv分子且在最佳化之前證實活性。使用IP10.1之HCDR區中隨機化(NNS)及摻雜寡核苷酸(70%親代,30%所有其他者)之組合生成scFv最佳化文庫。使用PROfusion® mRNA展示系統,經由數輪轉錄且使用兔網織紅細胞裂解物進行轉譯來獲取此DNA文庫。經由嘌呤黴素(puromycin)鏈接將編碼 mRNA融合至其自有scFv。在選擇期間,藉由磁鏈黴抗生物素蛋白(streptavidin)珠粒捕獲任一結合生物素標記之IP-10之scFv且藉由PCR擴增以進入下一輪。繼續循環PROfusion mRNA展示系統直至藉由定量聚合酶鏈反應(qPCR®)觀察到顯著靶結合信號為止。隨後藉由降低靶濃度且藉由在解離速率選擇期間偏向具有較緊密親和力之純系來選擇增加之嚴格度。選殖結合群體且測序。經由高通量哺乳動物表現系統(HMEP)來表現在HCDR區中不具有化學傾向之獨特純系且使用SPR (Biacore)測試對IP-10之親和力之改良。總而言之,藉由靶向隨機化重鏈可變區中之CDR1、CDR2及CDR3殘基來生成50種以上變體且針對至人類IP-10之結合進行篩選。將顯示解離速率在37℃下顯著改良之變體重新格式化為IgG (IgG1)且實施進一步選擇製程。IP10.1及其變體(重新格式化為IgG1全長抗體)之CDR序列之對比展示於表1中。表2展示該等變體與IP10.1相比在37℃下之結合親和力。進一步分析該等變體與食蟹猴IP10、小鼠IP10或MIG之交叉反應性(數據未展示)及與IP10.1之交叉競爭、物理穩定性、構象穩定性、疏水性相互作用及聚集(數據未展示)。 兩種純系(IP10.44及IP10.52)展示其親和力顯著高於IP10.1,與IP10.1競爭結合至IP-10,且與IP10.1相比具有改良之生物物理特徵。因此,選擇IP10.44及IP10.52進一步其他研究。 因此,對純系IP10.44及IP10.52實施強制穩定性研究(氧化及去醯胺化)以進一步區分其特性。儘管二種抗體皆在強制穩定性條件下展示類似行為,但與IP10.44相比,IP10.52展示略微增加之VH區去醯胺化及較快解離速率。因此,選擇IP10.44用於進一步之表徵。 1 用於IgG1f 重新格式化之變體之選擇 2 具有改良之結合親和力之變體對IP10.1實例 2 :IP10.44之表徵A. IP10.44 之生物物理及生物化學表徵 1. 結合 在基於Biacore®之結合研究中,IP10.1具有大約5 nM之KD且IP10.44展現10 pM之KD (Biacore之檢測限值為90 pM),從而指示至少改良50倍。如同IP10.1,IP10.44在猴及人類中具有類似KD,且不與小鼠交叉反應。 表32. 表位定位 a. / 氘交換質譜 (HDX-MS) HDX-MS方法藉由監測主鏈醯胺氫原子之氘交換速率及程度來探測蛋白質構象及溶液中構象動力學。HDX之程度取決於主鏈醯胺氫原子及蛋白質氫鍵之溶劑可及性。可藉由MS精確地量測HDX時蛋白質之質量增加。在此技術與酶促消解配對時,可拆分肽層面下之結構特徵,從而使得能夠區分表面暴露之肽與內部摺疊者。通常,實施氘標記及後續驟冷實驗,隨後實施在線胃蛋白酶消解、肽分離及MS分析。 使用抗IP10 mAb IP10.44及IP10.1對IP-10實施表位定位。在表位定位實驗之前,實施非氘化實驗以生成用於重組全長人類IP-10之公用胃蛋白酶解肽(20 µM)及重組IP-10與抗IP-10 mAb之蛋白質複合物(1:1莫耳比率)之列表,從而達成IP10之100%序列覆蓋率。在HDX-MS實驗中,將5 µL每一試樣(IP-10或IP-10 mAb)稀釋至55 µL D2 O緩衝液(10 mM磷酸鹽緩衝液,D2 O, pD 7.0)中以開始標記反應。實施反應如下不同時間段:20秒;1分鐘;10分鐘;及240分鐘。在每一標記反應時段結束時,藉由添加驟冷緩衝液(100 mM磷酸鹽緩衝液,含有4M GdnCl及0.4M TCEP, pH 2.5, 1:1, v/v)來終止反應且將50 µL驟冷試樣注射至Waters® HDX-MS系統中用於分析。在抗IP10 mAb不存在/存在下監測常見胃蛋白酶解肽之氘攝取量。 IP-10中之IP10.44之HDX-MS量測展示,其具有包括與IP10.1相同之如下肽區之表位: 肽區1 (13-18):SISNQP (SEQ ID NO: 163) 肽區2 (19-27):VNPRSLEKL (SEQ ID NO: 164) 肽區3 (29-43):IIPASQFCPRVEIIA (SEQ ID NO: 165) 該等肽區之氘攝取變化可分級為區域3 > 1 ≈ 2,其中區域3具有最顯著之氘攝取變化,且區域1及2具有最不顯著之氘攝取變化。 競爭實驗證實,IP10.44與IP10.1競爭結合至IP-10,從而表明其與IP10.1結合至相同表位且(如同IP10.1)不與人類MIG或人類ITAC (如本文所定義)交叉反應。b. 結晶學 方法 自IP10及IP10.44 Fab之預形成複合物生長晶體。50 mM pH 8 Tris-HCl、150 mM NaCl中之蛋白質濃度大約為6 mg/ml。將此部分與由100 mM pH 5.0 Tris-馬來酸、18%(w:v) PEG 3350組成之孔溶液以比率1:2混合且藉由懸掛-下降蒸氣擴散來生長晶體。將晶體在75%孔溶液及25%甘油之溶液中低溫保護。 在Chicago, IL外之Advanced Photon Source使用Pilatus 6M檢測器在光束線17-ID (IMCA-CAT)下來收集數據。將晶體溫度維持於100 K。以0.2°光楔針對180°數據掃略將數據收集為900個影像。使用autoPROC處理數據(其使用XDS (Kabsch, 2010a,b)進行積分且使用AIMLESS (Evans & Murshudov, 2013)進行標定)且得到下列統計學: 4 空間群:P21 ;單位晶胞:a = 53.6 Å;b = 86.8 Å;c = 133.5 Å;β = 98.8°。 馬賽克性:0.29-0.41。 分子置換使用程式PHASER及源自IP10/Fab結構之模型,該等模型係由以下三部分組成:不含CDR且含有突變成Gly或Ala之殘基之Fv (VL及VH結構域)、CL:CH1結構域二聚體及IP10二聚體(如表5中所展示),該等部分在每一步驟下皆符合PHASER之準則以成功地佈置組份,該準則為對於第一組份在空間群P21 中TFZ評分至少為6,且對於其他組份至少為8。 5 所得電子密度圖展示自模型失去之殘基及側鏈之電子密度。使用COOT分子圖形程式(Emsley等人,2010)及BUSTER精修(Blanc等人,2004及GlobalPhasing, Ltd.)完成結構。結果 在2.23 Å解析度下測定IP10 / IP10.44 Fab複合物之結構。IP10表面上之最明顯特徵係由側鏈Ile 12、Ser 13及Ile 14組成之突出(數據未展示)。此突出插入由長CDR-H3產生之孔口中及其與CDR-H1及H2之間。IP10上至殘基12-14突出右側之相對凹陷係延伸之CDR-H3所結合之處(數據未展示)。 IP10上如藉由接觸(S. Sheriff等人1987;Sheriff, 1993)所定義涉及IP10.1及IP10.44之表位之殘基係:Val 7、Cys 9、Thr 10、Cys 11、Ile 12、Ser 13、Ile 14、Ser 15、Asn 16、Pro 37、Arg 38、Lys 47、Gly 49、Glu 50、Lys 51、Arg 52、Cys 53。3. 穩定性 IP10.44展示第一熔融溫度為70.2℃ (IP10.1之TM1為64℃)且73℃下之熱可逆性為41.2 %之高熱穩定性及熱可逆性。 使用表現IP10.44之穩定CHO池來產生8批IP10.44 (大約20 L規模)。細胞培養物在此階段之表現程度大約為50 mg/L且使用單步驟蛋白質-A純化方法之純化產率為60-70%。將抗體調配於緩衝液(20 mM組胺酸及10% pH6蔗糖)中且藉由各種方法測試一致性、純度、異質性及醣基化。結果證實抗體一致性且純度為單體部分>97%,如藉由粒徑篩析層析可見。異質性及醣基化係人類IgG1抗體所預期之典型情形。 6 B. 基於細胞之 IP10.44 活性 基於Biacore®之動力學分析顯示IP10.44相對於IP10.1之優良KD,此主要係由解離常數(k解離 )之改良所促進。IP10.1之估計t1/2 (IP-10締合之半衰期)大約為3小時,而IP10.44為>100 hr。因此,持續時間<兩小時且需要外源性IP-10之濃度(≥ 10 nM)顯著高於任一抗體之KD之現有分析(鈣流動、趨化)預計不能區分該兩種抗體。為容許該區分,研發新細胞分析,其持續時間≥ 24小時,且具有可在類似於或低於任一抗體之KD且較接近類似於IBD患者中之IP-10濃度(大約2位數pM)之IP-10濃度下誘導之穩健信噪比。該等分析係藉由採用雙管齊下方式所研發:1)最佳化如下現有分析:其中將抗IP-10 Ab及IP-10預培育≥ 24小時,然後添加至細胞中,且添加低濃度(<100 pM) IP-10 (外源性)會提供穩健信噪比;2)鑑別藉由由發炎刺激誘導至少24小時之大約2位數pM內源性IP-10來調介細胞功能之新分析。對於第一方式而言,使用兩種分析:I125-IP-10 (20 pM)至全細胞(表現CXCR3之B細胞系及腸上皮細胞系)之結合之抑制。對於第二方式而言,使用兩種其他分析:量測由使用IFNγ/α或IFNγ/α/IL-1β/LPS處理24小時之hPBMC所達成之IL-6分泌,及量測由首先藉由IFNγ刺激24小時且然後藉由LPS再刺激24小時依序刺激之hPBMC所達成之IL-12p40分泌。 在該等新確立之基於細胞之分析中,IP10.44顯示對IP10.1之優良活性。舉例而言,在全細胞結合分析中,IP10.44展現至少大於IP10.1 5倍之阻斷外源性IP-10至其靶細胞(包含CXCR3表現細胞(CXCR3/300.19)及腸上皮細胞(KM12SM))之結合之功效。 另外,IP10.44展示大於IP10.1大約6倍之抑制由使用IFNα/γ刺激之hPBMC所達成內源性IP-10調介之IL-6分泌的功效。類似地,IP10.44抑制由使用IFNγ/LPS刺激之hPBMC所達成之內源性IP-10調介之IL-12p40分泌且其功效大於IP10.1 4倍,且展示顯著較佳之最大抑制(使用IP10.44之大約100%對使用IP10.1之大約75%),如表7中所展示。 7 使用基於hPBMC之分析之機械性研究證實,單核球係IP-10、IL-6及IL-12p40之主要細胞來源。重要的是,作為該等活體外分析中之IP10.44之所觀察優良細胞活性之支持,在SCID中由CD40誘導之先天免疫結腸炎中,IP10.44之高親和力抗IP-10小鼠代用品展示血液中IL-6及IL-12p40之抑制優於IP10.1之低親和力鼠類代用品(缺少T/B細胞)小鼠(參見下文)。C. 活體內活性 1. 靶咬合 (TE) 測試IP10.44在食蟹猴中提供游離IP-10之長期阻抑之能力。確立兩種基於LC-MS之敏感分析以特異性量測食蟹猴血清中之游離IP-10濃度,且另外使用經IP10.44及IP10.1刺激之試樣進行量化。使用該等分析,量測分別以10 mg/kg投用該兩種抗體之食蟹猴之血清中相對於投用媒劑者之游離IP-10濃度之時間依賴性變化。IP10.1在投藥之後6小時短暫性減少游離IP-10且然後在10天之持續時間中增加最高6倍,而與之顯著相反,IP10.44完全阻抑游離IP-10長達10天(圖14)。該等數據顯示,IP10.44在循環中之靶咬合方面優於IP10.1。2. PK/PD ( 藥物動力學及藥效動力學參數 ) 基於使用CXCR3 KO小鼠之研究已報導,天然環境中NK細胞上之CXCR3信號傳導之不存在可減小其在循環及淋巴樣器官中之頻率。內部研究已展示,高親和力抗IP-10小鼠代用品(而非低親和力者)顯著減小幼稚小鼠中之血液及脾中之CXCR3+ NK細胞頻率,由此將NK細胞子組鑑別為抑制CXCR3處藉由IP-10達成之信號傳導之潛在PD生物標記物。利用此發現且考慮到IP10.44及IP10.1皆不與小鼠IP-10交叉反應,測試該兩種抗體對NSG/HSC小鼠之血液及脾中之人類CXCR3+ NK頻率之效應(天然缺少小鼠T/B/NK細胞且可藉由使用人類造血幹細胞(HSC)進行重構來補充人類T/B/NK細胞以產生具有「人類化」免疫系統之小鼠之小鼠品系)。IP10.44 (而非IP10.1)顯著減小該等以50 mg/kg (基於兩種人類抗體在NSG小鼠中之亞最佳PK經選擇以最大化靶覆蓋率之劑量)投用之小鼠之脾中之人類CXCR3+ NK細胞頻率(圖15)。在此研究中觀察到,任一抗體對血液中之CXCR3+ NK細胞並無顯著效應,此可能係由於此細胞群體在循環中因衰老(>重構後6個月)引起之低頻率所致。3. IBD 模型 測試IBD模型中之效能。IP10.44及IP10.1皆不與小鼠IP-10交叉反應,從而致使小鼠並不適用於在實驗結腸炎模型中直接測試該等分子。因此,鑑別兩種抗小鼠IP-10代用抗體,亦即抗體18G2及6A1,其親和力分別與IP10.44及IP10.1相當。在基於細胞之分析中,18G2展示其抑制CXCR3/300.19細胞系中之小鼠IP-10誘導之鈣流動之功效優於6A1大約8倍。活體內PD研究展示,18G2在減小幼稚小鼠之血液中之CXCR3+ NK細胞頻率及數量方面優於6A1。 在兩種不同結腸炎模型中測試兩種代用品,一種結腸炎係由野生型小鼠(其發病機制涉及先天性及適應性免疫性)中之TNBS誘導,且另一結腸炎係由SCID (缺少T/B)小鼠(其發病機制僅涉及先天性免疫性)中之CD40誘導。在兩種模型中,抗p40抗體已展示可有效減輕疾病,由此用作陽性對照。重要的是,高親和力代用品18G2所展現之效能顯著優於IP10.1代用品6A1 (圖16A及16B)。此優良性並非源於PK/暴露之差異,其中6A1在終末波谷下之暴露高於18G 2倍以上。因此,此數據表明,使用IP10.44所觀察相對於IP10.1之增加之親和力可轉變為由先天性及適應性免疫性所促進腸發炎之背景中的較大效能。 因CD40誘導之小鼠結腸炎係涉及顯著全身性發炎之較穩健模型,故亦評估高親和力18G2與低親和力6A1對循環促發炎細胞介素之濃度之效應。與相對於6A1之優良效能一致,18G2較穩健地減小若干細胞介素(包含IFNγ、IL-12p40、IL-6、TNFα、MCP-1及RANTES)之循環濃度(圖17A-D)。在此模型中使用高親和力代用品18G2之單獨研究展示血液與發炎腸之間細胞介素子組(包含IFNγ、IL-12p40、IL-6及TNFα)之減少的關聯。 為測定是否可在作用機制方面區分靶向IP-10與靶向TNFα (代表標準IBD護理),使用CD40誘導之結腸炎之SCID小鼠模型。選擇此模型係由於在循環中及腸中IP-10及TNFα之大量存在及抗IP-10及抗TNFα抗體之所顯示效能。在關於高親和力抗IP-10小鼠代用品(18G2)與抗TNFα代用品在此模型中之對比研究中,兩種抗體皆展示顯著效能(圖22)。 重要的是,多細胞介素分析揭示,該兩種幹預之間在減少血清及發炎腸中之促發炎細胞介素方面具有明顯差異,從而表明達成其效能之機制可不同。相對於抗TNFα代用品,18G2顯著減小IFNγ、IL-12p40、IL-6、RANTES及MIP1β之血清濃度及INFγ、IL-12p40、IL-6、IL-17及IL-22之結腸濃度,如藉由基於luminex之多細胞介素分析所量測(圖18A-F)。 總而言之,該等數據指示,可在實驗結腸炎中之全身性及局部發炎環境中於機制上區分靶向IP-10與靶向TNFα。另外,18G2穩健地減少循環及發炎腸中之TNFα,而抗TNFα對任一腔室中之IP-10濃度具有較小效應,由此提供另一組關於區分實驗結腸炎中之兩種幹預之證據。D. 免疫原性 使用活體外T細胞增殖分析評價IP10.44之免疫原性且與同一分析中之IP10.1之免疫原性進行比較。IP10.44展示20-25%之免疫原性,與之相比,IP10.1展示7-10%之免疫原性。E. 食蟹猴中之藥物動力學及藥效動力學 IP10.44在食蟹猴中展現非線性PK (數據未展示)。針對IP10.44及IP10.1使用游離藥物分析。隨著劑量自0.5 mg/kg增加至10 mg/kg,IP10.44之總身體血清清除率(CLT)降低約4倍,但穩態下分佈體積(Vss)保留類似。因此,T-1/2增加約5倍。此與猴及人類中之IP10.1之PK一致。在0.5 mg/kg下,IP10.44之CLT高於IP10.1 2倍。可假設,非線性PK係由靶調介之藥物處置(TMDD)所引起且IP10.44之較高結合親和力在靶不飽和時於較低劑量下引起較高清除。然而,IP10.44及IP10.1在較高劑量下之PK對比展示衝突結果:兩種抗體在10 mg/kg下之CLT值類似,但在20 mg/kg下IP10.44之CLT高於IP10.1 2.7倍。 IP10.44顯示在阻抑游離血清IP-10濃度方面優於IP10.1 (圖19A及 19B)。在靜脈內濃注劑量後,IP10.44展示游離血清IP-10之劑量依賴性阻抑,且完全阻抑(藉由將游離IP-10自基線濃度(大約40 pM)阻抑至低於LLOQ (1 pM)所定義)之持續時間為大約3天(對於0.5 mg/kg)及大約10天(在10 mg/kg下)。游離血清IP-10之快速反彈(在第17天返回基線)可能係由源於ADA之加速藥物衰退所引起。另一方面,在高達20 mg/kg之劑量下,IP10.1不會阻抑游離血清IP-10,而將游離血清IP-10升高至高於基線濃度(最多增加7倍)且此與在臨床中所觀察一致。游離血清IP-10阻抑與IP10.44之游離藥物濃度之簡單回歸可揭示223 ± 88 pM之IC50 (圖20)。另外,對猴中之游離藥物PK、游離及總血清IP-10數據在PK/PD建模可估計 IP10.44之活體內Kd為43 ± 6 pM,此強於IP10.1在猴中之值大約150倍(活體內Kd為6.5 ± 1.1 nM) (圖21A至21F)。 另外,在IP10.44或IP10.1之靜脈內劑量後,觀察到總血清IP-10快速增加且Tmax為4至30小時。總IP-10之增加程度係劑量依賴性且最大增加為最多5 nM (對於IP10.44)及最多12 nM (對於IP10.1),此代表相對於基線濃度(大約40 pM)增加100倍以上。 總而言之,在阻抑食蟹猴中之游離血清IP-10方面IP10.44顯示其活體內KD優於(大約150倍) IP10.1 (活體內KD為43 ± 6 pM對6.5 ± 1.1 nM)。IP10.1在猴及人類中將游離血清IP-10濃度增加(>5倍)至高於基線,而IP10.44 (在經靜脈內投與猴後)展示持續且完全(<1 pM之LLOQ)阻抑游離血清IP-10大約3天(在0.5 mg/kg下)及大約10天(在10 mg/kg下)。使用游離藥物分析來表徵猴中之IP10.44之PK。IP10.44在猴中展現非線性PK,此很可能係源自靶調介之藥物處置。此類似於在猴及人類中所觀察之IP10.1之非線性PK。與IP10.1相比,IP10.44相對於IP-10之較高親和力在猴中引起相對較短半衰期(T-1/2)。可預測,IP10.44在1 mg/kg及10 mg/kg下之人類T-1/2分別為大約2及大約6天。在相同劑量下,IP10.1之相應人類T-1/2分別為大約4及大約8天。IP10.44在人類中之皮下生物可用性(70%)可假設為與IP10.1相同。基於臨床前PK/PD資訊,IP10.44之人類劑量(每兩週經皮下投與)預計為120 mg/70 kg。在此劑量下,對應於UC患者群體之第90百分位之游離血清IP-10濃度減小80%至健康個體之第10百分位。 在食蟹猴PK/PD研究中於最高20 mg/kg之單一靜脈內濃注劑量下未觀察到不良效應。總而言之,IP10.44顯示可接受之PK/PD性質及安全性特徵。實例 3 (A)健康個體中關於BMS-986184 (IP10.44)之安全性、耐受性、藥物動力學及靶咬合之單一遞增劑量研究(SAD)及多劑量研究(MAD)及 (B)中等至嚴重潰瘍性結腸炎(UC)患者中BMS-986184之安全性、效能、藥物動力學、靶咬合及藥效動力學之評估導論 部分A係用以評價BMS-986184在健康雄性及雌性參與者中之安全性、耐受性、藥物動力學(PK)、及靶咬合(TE)之隨機化、安慰劑對照、雙盲、單一遞增(SAD)及多劑量(MAD)研究。在部分A1 (SAD)中,存在最多5個依序靜脈內(IV)劑量組且指定為組S1、S2、S3、S4及S5。另外,可存在最多2個皮下劑量組且指定為組S6及S7。選擇用於SC劑量組(S6及S7)之預期劑量不超過在靜脈內劑量組S1- S4期間所觀察到之平均暴露劑量。可視需要增加其他劑量組,其劑量低於或高於先前各組。在部分A2 (MAD)中,可存在最多2個靜脈內(IV)或皮下(SC)組且指定為組M1及M2。部分B係用以評估BMS-986184在雄性及雌性UC患者中之安全性、效能、藥物動力學、靶定咬合及藥效動力學之隨機化、安慰劑對照、雙盲、機制驗證(POM)研究。部分B將始於部分A之安全性、耐受性、PK及TE評估之後。研究設計示意圖呈現於表8中。 8 :研究設計示意圖

Figure TW201805303AD00001
縮寫:IV =靜脈內;MAD =多遞增劑量;POM =機制驗證;SAD =單一遞增劑量; SC =皮下;Q2W =每隔一週 * 自劑量組S3及上文,所有劑量值皆係藉由自前一組獲得之實時PK及PD (無血清IP-10)分析所測定。每一劑量組存在AUC及Cmax帽,其不超過來自NOAEL下AUC之預定安全係數。 **在完成組S3並分析之後選擇用於組M1之MAD劑量且可包含劑量S3或更低劑量。在完成組S4並分析之後選擇用於組M2之MAD劑量且可包含劑量S4或更低劑量(除M1中所用之劑量外)。 ***若TE數據支持MAD中之SC投藥可能,則實施SC組。部分 A 用於健康參與者中之 SAD/MAD 之研究設計 ( 部分 A) 在部分A中,健康參與者經受篩選評估以測定合格性。參與者必須在自第1天之21天內完成篩選程序。可使用±2天窗口訪視來調節單位及參與者之時間表。允許參與者在第-1天早晨進入臨床設施中。健康參與者中之 SAD 之研究設計 ( 部分 A1) 每一依序SAD劑量組(S1-S7)存在8名健康雄性或雌性參與者。使每一組雙盲及隨機化。對於第一劑量組(S1)而言,投用前哨組。一名健康雄性或雌性參與者接受單一劑量之BMS-986184且1名健康雄性或雌性參與者接受匹配安慰劑。在治療第一劑量組(S1)之剩餘參與者之前24小時內由探究者及發起者評估來自該2名參與者之可用安全性數據(包含任一所報告不良事件、來自體檢之發現、任一臨床實驗室結果、生命體徵及ECG)。在第1天,使第一劑量組(S1)中之剩餘6名健康雄性或雌性參與者隨機以5:1之比率接受單一劑量之BMS-986184或匹配安慰劑。對於每一依序劑量組(S2-S7)而言,在第1天,使8名健康雄性或雌性參與者在第1天以3:1之比率隨機接受單一劑量之BMS-986184或匹配安慰劑。劑量選擇準則闡述於下文中。健康參與者中之 SAD/MAD 之研究設計 ( 部分 A) 在部分A中,健康參與者經受篩選評估以測定合格性。參與者必須在自第1天之21天內完成篩選程序。可使用±2天窗口訪視來調節單位及參與者之時間表。允許參與者在第-1天早晨進入臨床設施中。健康參與者中之 SAD 之研究設計 ( 部分 A1) 每一依序SAD劑量組(S1-S7)存在8名健康雄性或雌性參與者。使每一組雙盲及隨機化。對於第一劑量組(S1)而言,投用前哨組。一名健康雄性或雌性參與者接受單一劑量之BMS-986184且1名健康雄性或雌性參與者接受匹配安慰劑。在治療第一劑量組(S1)之剩餘參與者之前24小時內由探究者及發起者評估來自該2名參與者之可用安全性數據(包含任一所報告不良事件、來自體檢之發現、任一臨床實驗室結果、生命體徵及ECG)。在第1天,使第一劑量組(S1)中之剩餘6名健康雄性或雌性參與者隨機以5:1之比率接受單一劑量之BMS-986184或匹配安慰劑。對於每一依序劑量組(S2-S7)而言,在第1天,使8名健康雄性或雌性參與者在第1天以3:1之比率隨機接受單一劑量之BMS-986184或匹配安慰劑。劑量選擇準則闡述於表9中。 9 :健康參與者中之SAD研究之研究訪視示意圖(部分A1)
Figure TW201805303AD00002
縮寫:CPU =臨床藥理單位; D =天; SAD =單一遞增劑量 *在D15具有任一進行中之AE/SAE之參與者應保留在室內直至解決或在臨床上並不視為顯著為止。
Figure TW201805303AD00003
=研究藥物投與
Figure TW201805303AD00004
=訪視天數 健康參與者中之MAD之研究設計(部分A2) 每一依序MAD劑量組(M1-M2)存在8名健康雄性或雌性參與者。在第1天,使該相同之8名健康雄性或雌性參與者在第1天以3:1之比率隨機接受BMS-986184或匹配安慰劑。使每一組雙盲及隨機化。劑量選擇準則闡述於下文中。使MAD組(M1及M2)中之參與者保持侷限於臨床設施中直至在第50天休假為止。在第50天具有任一進行中之AE或SAE之參與者應保留於研究場所直至探究者測得該等事件已解決或已視為在臨床上不顯著為止。參與者預計會返回臨床單位以用於第57、64、71、85及99天之隨訪評價。可使用±2天窗口訪視來調節單位及參與者之時間表。部分A2 MAD參與者之近似研究持續時間為最多120天。早期自研究退出之參與者需要完成預計開始於第99天之研究出院評估。可替換出於除AE外之原因而中斷之參與者。最多16名參與者計劃完成SAD研究之部分A2。在整個投藥間隔中於所選時間下實施體檢、生命體徵量測、眼部評估、12導程ECG及臨床實驗室評估。在整個研究中密切監測參與者之AE。在所選時間點下收集血樣以用於安全性及PK分析。在研究之部分A2期間自每一參與者抽取大約495 mL血液。部分A2之研究訪視示意圖呈現於表10中。 10 健康參與者中之MAD研究之研究訪視示意性(部分A2)
Figure TW201805303AD00005
縮寫:CPU =臨床藥理單位; D =天;MAD =多遞增劑量
Figure TW201805303AD00006
=研究藥物投與
Figure TW201805303AD00007
=訪視天數 UC患者中之POM之研究設計(部分B) 在部分B中存在最多36名患有中等至嚴重UC之參與者。部分B包含3個時段:篩選期、治療期及安全性隨訪期。若期中分析在預期治療劑量下展示不充分靶咬合或若發生不耐受安全性事件,則可增加36名參與者(24名活性劑:12名安慰劑)之額外較高劑量組,若預測PK暴露遠低於與安全性發現有關之暴露範圍,則可增加36名參與者(24名活性:12名安慰劑)之較低劑量組。在PK及PD數據變得可自健康個體中之SAD/MAD研究獲得後,立即對患有UC之個體在PoM研究期間(部分B)之劑量體積及投與實施最終測定。此時修改方案以包含用於UC參與者中之PoM研究之最終劑量選擇。使參與者經受篩選評估以測定合格性。部分B中之參與者必須在自第1天之28天內完成篩選程序(隨機化)。在篩選期期間,使參與者經受體檢及醫學史、吸煙史、篩選測試程序、篩選內視鏡檢法及實驗室評估以證實由UC所致且並不由其他病因所致之活動性腸黏膜發炎。治療期 : 在第1天,使最多36名患有UC之參與者在12週時段內每隔一週(在第1、15、29、43、57及71天)以2:1之比率隨機接受單一劑量之BMS-986184或匹配安慰劑。使部分B雙盲及隨機化。在第85天,使參與者經受內視鏡檢法。 對於在治療期期間經歷UC發作之參與者而言,應儘可能符合研究方案。若根據探究者之建議參與者接受根據研究方案不容許之療法及/或需要住院,則參與者應根據探究者之判斷進行治療且中斷研究。強烈鼓勵探究者接觸實施醫學監測以論述任何在研究期期間經歷UC發作之參與者。安全性隨訪期: 在57天內每隔一週(在第99、113及127天)進行隨訪訪視。部分B參與者之近似研究持續時間為最多177天。可替換出於除AE外之原因而中斷之參與者 。計劃使用最多72名參與者。在整個投藥間隔中在所選時間下實施體檢、生命體徵量測、12導程ECG及臨床實驗室評估。在整個研究中密切監測參與者之AE。在所選時間點下收集血樣以用於安全性及PK分析。在研究之部分B期間自每一參與者抽取大約300 mL血液。部分B之研究訪視示意圖呈現於表11中。 11 :UC患者中之POM研究之研究訪視示意圖(部分B)
Figure TW201805303AD00008
縮寫:D =天;POM=機制驗證 * D8 ±1天
Figure TW201805303AD00009
=研究藥物投與(±3天)
Figure TW201805303AD00010
=訪視天數(±2天,D8 ±1天除外)
Figure TW201805303AD00011
=內視鏡檢法參與者數量 在部分A中將最多72名參與者隨機化至9組中(7個SAD組及2個MAD組)。在部分A1 (SAD)中,每一組由8名參與者(6名活性: 2名安慰劑)組成。在部分 A1 (SAD)中總共治療56名參與者。若開始MAD,則在部分A2 (MAD)中治療其他16名參與者(每組6名活性: 2名安慰劑)。儘管參與者數量並非基於統計檢定力考慮,但向每一組中之6名參與者投與BMS-986184使得有80%之機率觀察到任一AE發生至少一次,該AE會在抽取試樣之群體中以24%之發病率發生。若AE之發病率為32%,則使用6名BMS-986184治療之參與者之試樣大小觀察到任一AE發生至少一次之機率為90%。在研究之部分B (POM)中,使總共36參與者隨機(24名活性: 12名安慰劑)接受自部分A2攜載之靶定治療劑量。若期中分析在預期治療劑量下展示不充分靶咬合或若發生不耐受安全性事件,則可增加36名參與者(24名活性劑:12名安慰劑)之額外較高劑量組,若預測PK暴露遠低於與安全性發現有關之暴露範圍,則可增加36名參與者(24名活性:12名安慰劑)之較低劑量組。若期中分析在預期治療劑量下展示不充分靶咬合或若發生不耐受安全性事件,則可增加36名參與者(24名活性劑:12名安慰劑)之額外較高劑量組,若預測PK暴露遠低於與安全性發現有關之暴露範圍,則可增加36名參與者(24名活性:12名安慰劑)之較低劑量組。 研究終點定義 將第一參與者簽署研究特定性知情同意書之日期定義為研究起點。在簽署研究特定性知情同意書(ICF)時,可考慮招募參與者。將最後參與者完成出院程序或最後隨訪訪視之日期定義為研究終點。研究設計之科學原理 存在若干原因以經由FIH研究在NHV中來開始研發BMS-986184。在用於患有UC之參與者之前,其容許使用增量及逐漸劑量遞增之較安全研發路徑。其將精確確立治療窗口,且評價寬範圍之劑量(30 mg至最高大約450 mg,靜脈內及可能皮下)以更佳地告知治療指數。在單一劑量之後於健康參與者中在不存在疾病效應下及不影響經活化免疫系統下評估免疫阻抑及感染。在健康參與者中完成SAD及MAD之後,使用患有UC之參與者實施重複投藥。劑量論證 並無先前臨床經歷可用,選擇用於FIH研究之劑量係基於預測之PK暴露、自非臨床研究確立之PK/TE (亦即血清中之游離IP-10)關係及自動物毒理學研究確立之安全邊際。簡言之,使用PK模型來估計人類PK參數,從而解決猴中之非線性PK且隨後外延至人類。使用預測之人類PK參數來估計Cmax及AUC以計算在FIH研究中所測試劑量範圍中之安全邊際。使用PK/PD模型估計相應PD反應,從而探究在FIH中所測試劑量範圍中BMS-986184濃度與血清中游離IP-10之間之關係。使用所預測PD反應來提供各別劑量值下之預期靶咬合,從而測定適當劑量範圍以完全探究PK與靶咬合之間之關係。 為解決自非線性數據外推至人類之轉變不確定性,可基於安全性、耐受性及實時PK/PD分析來連續調節各組之劑量值及數量。固定SAD中之前2個劑量值(30 mg及75 mg)。可基於PK/PD分析來調節部分A中之剩餘劑量值及部分B中之整個劑量範圍以達到各別劑量組之預期PK暴露及游離IP-10。另外,所選SAD劑量組中之預期PK暴露將不超過在NOAEL下自Cmax及AUC估計之預定安全係數以確保研究參與者之安全性。 健康參與者中之SAD之劑量選擇論證(部分A1) 在部分A1中,使用安全性、PK及TE數據作出劑量遞增決定。在測定後續劑量組之劑量遞增之前由探究者及發起者評估來自當前劑量組之可用安全性數據(包含任一所報告不良事件、來自體檢之發現、眼部檢查、任一臨床實驗室結果、生命體徵及ECG)。並不將參與者隨機化至後續劑量組中,直至所有參與者中直至第15天來自當前劑量值之安全性數據由探究者及發起者加以評審且測得顯示安全性及耐受性為止。分別固定部分A1中之第一及第二劑量組(S1及S2) (30 mg及75 mg)。對於除SAD組2外之剩餘劑量組(S3-S5)而言,藉由在先前劑量組中基於實時PK/PD分析使用累積數據(除安全性評價外)所確立之PK/PD關係來引導劑量選擇。部分A1 SAD中之預期預留劑量範圍為30 mg至最高大約450 mg。 在部分A1 (研究之SAD部分)中,考慮源於靶調介之藥物處置之潛在非線性PK,選擇覆蓋寬範圍暴露之劑量範圍以描述PK與靶咬合(亦即血清中自基線之游離IP-10減少)之間之定量關係,且確立人類中之充分安全邊際以使得能夠進行患者研究。因在猴模型中觀察到TMDD,故選擇靜脈內投與途徑在FIH之單一劑量條件下進行研究以試圖更佳地描述劑量範圍下端(其中非線性最為明顯)之PK。因出於靶患者群體中之最佳順從性及便利性而期望皮下投與,故亦在研究之SAD部分中經皮下投與BMS-986184以測定皮下投與之可行性且研發擬在研究之後續部分中所測試的適當投藥方案。 在考慮來自臨床前研究之毒理學發現下來選擇擬藉由靜脈內途徑投與之起始劑量之大小。使用猴中之NOAEL劑量來計算最大推薦起始劑量(MRSD)。猴(其可視為最敏感物種)中之NOAEL為30 mg/kg/週。基於體表面積方法且考慮到NOAEL劑量之10倍安全邊際之MRSD大約為58 mg。因來自PK/PD模型之預測值指示大於此劑量下之最小藥理學活性,故MRSD並不適於測試為人類中之起始劑量。因此,將SAD中之起始劑量降至30 mg,從而血清中自基線之所預測游離IP-10減少預計為37% (表12)。自NOAEL下暴露估計之Cmax及30 mg下AUC之預期安全邊際分別為59倍及322倍。所提出劑量遞增方案預計會包括所預測有效劑量周圍之暴露。假設需要中和(如減小≥90%所定義)穩態波谷下之游離IP-10以促進患者中之預期效能,則期望達成游離IP-10在穩態波谷下之90%及95%減少之投藥方案預計分別為180 mg及300 mg,且每2週(Q2W)進行投與。因此,研究藥物之最高300 mg之單一劑量遞增應足以描述PK/PD特徵曲線之陡峭部分且可捕獲所預測有效劑量範圍。在300 mg下,自NOAEL下暴露估計之Cmax及AUC之預期安全邊際分別為6.4及13倍(表13)。 考慮到UC患者可展現較大PK以及PD可變性(因與健康個體相比之靶載量差異),故可需要在SAD中測試大於300之劑量以提供充分安全性資訊,從而使得能夠將此化合物在UC患者中進行較長效臨床研究。為此,研究之SAD部分之最高提出劑量大約為450 mg。應注意,450 mg投與係可選的且取決於自先前SAD組所獲得之安全性、PK及TE數據。若所觀察PK及TE數據表明可在較低劑量值下達成游離IP-10在波谷下之最大阻抑,則不在SAD研究中探究所提出最高劑量。自NOAEL下暴露估計之此劑量值之Cmax及AUC之預期安全邊際分別為4倍及8倍(表12)。 30 mg至450 mg之提出劑量可確保充分描述PK/PD,同時誘發寬暴露範圍以提供充分安全性資訊,從而告知用於後續患者研究之劑量選擇。表13匯總人類中之預期暴露及基於NOAEL及LOAEL下之暴露之後續安全邊際。表12匯總在單一劑量投與之後第14天人類中之預期靶咬合。 12 在第14天(靜脈內投與) SAD中之游離IP-10之平均減少(部分A1) *在第一劑量組之後,所有剩餘劑量值皆係預留劑量且可基於實時PK/PD分析加以修改。 13 SAD中之劑量範圍及安全邊際(靜脈內投與) (部分A1) *在前2個劑量組之後,所有剩餘劑量值皆係預留劑量且可基於實時PK/PD分析利用可用所觀察PK及PD數據來加以修改。所選劑量組中之預期平均AUC將不超過預定AUC值。 在向前2組投用30 mg及75 mg之後,剩餘劑量組之選擇將取決於健康個體中之所觀察PK/PD特徵。為確保劑量遞增提供預期暴露範圍以維持適當安全邊際,在對後續劑量遞增作出決定之前考慮下列因素。預測劑量值之預測平均Cmax及AUC將不超過表13中之預定值。增加連續SAD組之間之預測劑量值將不超過大約3倍增量。後續劑量組中之預測平均PK暴露(AUC(INF))將自先前劑量組中之平均 AUC(INF)增加不超過大約4倍。來自NOAEL暴露之Cmax及AUC(INF)之最小安全暴露邊際將分別維持於4倍及8倍。 SC中之劑量選擇論證 在SAD中經靜脈內投與至少2個劑量組後,實施可行性評價以決定是否經皮下投與BMS-986184。皮下投與之調配物可利用40 mg/mL之濃度。若在靜脈內投與後達成預期TE (表13)且可視為無需投與過多皮下注射即可達成,則在皮下投與後進一步測試BMS-986184 。 因BMS-986184之預期非線性PK及後續劑量依賴性生物可用性,需要適當評估匹配劑量值之絕對生物可用性。若實施,則經由皮下途徑之劑量值將與相應靜脈內劑量匹配。組S6之皮下劑量值可類似於靜脈內劑量組S2或S3,且組S7之皮下劑量值可類似於靜脈內劑量組S3或S4。基於SAD中之可用PK、TE、安全性數據且考慮部分B中所測試之潛在劑量值來選擇劑量。皮下組之預測平均Cmax及AUC將不超過在靜脈內投與後之相應劑量值下之平均Cmax及AUC。 健康參與者中之MAD之劑量選擇論證(部分A2) 在部分A2 (研究之MAD部分)中,可研究兩個劑量值以描述在多個BMS-986184投藥之後之安全性、耐受性及持續TE。在部分A2中,基於PK/PD建模利用自研究之部分A1 SAD獲得之可用安全性、PK及TE數據及部分B中之所測試潛在治療劑量值來決定MAD組(M1及M2)中之所測試劑量值以及投與途徑(靜脈內及/或皮下)。研究之MAD部分之目標在於選擇在投藥間隔中達成且維持大約50%或更大之游離IP-10減少之劑量值,同時確保來自NOAEL暴露之Cmax及AUC(INF)之安全暴露邊際分別至少為5倍及10倍。投藥間隔之選擇將取決於所觀察PK (亦即T-HALF)及PD (IP-10阻抑隨時間之維持)。當前,2週投藥間隔可視為期望的,然而,可基於所觀察PK/PD及安全性特徵來考慮1週。 對於第一劑量組(M1)而言,在評審來自前3個SAD組(S1-S3)之PK、TE及安全性數據且該數據視為可安全進行之後選擇劑量。考慮多個投藥之後之所觀察PK、TE、安全性及預期穩態PK及TE,劑量值可類似於組S2或S3。對於第二劑量組(M2)而言,在評審來自前4個SAD組(S1-S4)之PK、TE及安全性數據且該數據視為可安全進行之後選擇劑量值。表14 -表5.5.1-3圖解說明可在MAD中測試之潛在劑量值及具有安全邊際之相應PK暴露。 14 :MAD中之潛在劑量值及安全邊際(部分A2) *投藥方案及投與途徑意欲具有闡釋目的以提供暴露範圍及相應安全邊際。基於來自SAD中之累積數據之PK/PD建模來確定實際投藥方案及投與途徑。 UC患者中之POM之劑量選擇論證(部分B) 在PK及PD數據變得自健康參與者中之SAD/MAD研究獲得後,立即對UC患者中在POM研究期間(部分B)之劑量體積及投與實施最終測定。此時修改方案以包含用於UC患者中之POM研究之最終劑量選擇。選擇單一投藥方案以在部分B中進行測試。然而,若所觀察PD不足或劑量較低而獲得意外安全性發現,則可增加另一劑量組以包含較高劑量。使用投與途徑(靜脈內或皮下)之相同考慮、達成且維持90%或更大游離IP-10減少之能力、投藥間隔持續時間及安全暴露邊際之維持來作出決定。 治療 將研究治療定義為根據研究隨機化或治療分配意欲投與研究參與者之任一探究治療、市場化產物、安慰劑或醫學器件。 研究治療包含探究產物(IP)及非探究產物(Non-IP)。探究產物(在一些領域中亦稱為探究醫學產物)定義為在臨床研究中所測試或用作參考之活性物質或安慰劑之醫藥形式,包含已具有上市許可但不同於許可形式來使用或組裝 (調配或包裝)或用於未許可適應症或在用於獲得關於許可形式之其他資訊時之產物。用作用於預防、診斷或治療原因之支持或免除醫藥之其他醫藥(如用於給定診斷之標準護理組份)可視為非探究產物。 對於此方案而言,研究藥物包含探究產物BMS-986184-01注射(150 mg/小瓶(40 mg/mL),3.75 mL小瓶)及相似安慰劑。 將BMS-986184-01或相似安慰劑以溶液形式經皮下或經靜脈內(取決於劑量組)投與。 15 :用於IMI012004之研究治療 16 :劑量之選擇及時刻 研究評價及程序 效能評價 僅針對部分B實施效能評價,如藉由患有中等至嚴重UC之參與者中之內視鏡檢法及組織病理學評分之改良所量測。 主要效能評價 修正 Baron 評分 使用經修正Baron來評估經由內視鏡檢法評價之黏膜疾病嚴重程度。修正Baron評分系統係具有0至4量表之內視鏡指數評分,其中較高評分指示較大嚴重程度。修正Baron評分如下:評分0指示具有可見血管圖案且不易破裂之正常平滑、閃耀黏膜;評分1指示粒狀黏膜,血管圖案不可見,不易破裂,充血;評分2指示與1相同之黏膜,但係易破裂黏膜。 內視鏡檢法及內視鏡評價 為確保品質數據及標準化,在整個試驗中於臨床地點根據探究者之判斷由同一內鏡醫師儘可能地局部實施內視鏡檢法。應在基線下(第1天)及第12週(第85天)研究訪視時投用研究藥物之前實施撓性乙狀結腸鏡檢查術或結腸鏡檢查術。基線內視鏡檢法(結腸鏡檢查術或乙狀結腸鏡檢查術)必須在隨機化28天內實施,必須歸檔,且應儘可能接近隨機化地實施。第85天內視鏡檢法(結腸鏡檢查術或乙狀結腸鏡檢查術)應在第85天訪視之前或之後不超過3天來實施。結腸鏡檢查術或乙狀結腸鏡檢查術可在基線下(第1天)及第85天實施。所實施程序(結腸鏡檢查術或乙狀結腸鏡檢查術)無需在所有時間點皆相同。應藉由局部導則所指示來篩選結腸癌且應根據探究者之判斷來實施。藉由局部讀數儀在探究者之判斷下來評估任何經實施用於評估結腸癌之生檢。 另外,藉由局部讀數儀在探究者之判斷下來評估任何經實施以獲得UC診斷之組織學證實之生檢。可使用在篩選時實施之結腸鏡檢查術程序來測定梅奧評分(Mayo Score)之內視鏡檢法子評分分量且代替乙狀結腸鏡檢查術(若實施於隨機化28天內)。 生檢應獲取自結腸直腸之最嚴重影響區域(除在基線內視鏡檢法評估中特定地靶向未受影響區域時)。若結腸及結腸之所有部分同等受影響,則應獲取直腸生檢。對於組織病理學分析而言,應較佳地使用大型鑷子獲取兩種生檢。若存在潰瘍,則生檢應指向潰瘍邊緣。 在每一內視鏡檢法期間(第1及85天)獲得內視鏡檢法影像且發送用於藉由中心內視鏡檢法讀數儀進行獨立內視鏡黏膜評分,並測定梅奧內視鏡檢法評分及修正Baron評分。來自中心讀數實驗室之詳細影像評審圖表儀概述了內視鏡程序、視訊記錄及用於視訊捕獲及傳輸內視鏡記錄之設備。對於每一參與者而言,使用可接受之儲存介質實施整個內視鏡程序之視訊記錄。藉由合格腸胃科醫生根據影像評審圖表儀以盲式整體讀取內視鏡記錄。出於測定參與者之招募合格性之目的,如9.1.2部分中所闡述,藉由探究者及藉由中心內視鏡檢法讀數儀(第3方供應商)來局部測定基線梅奧評分內視鏡子評分。僅藉由中心內視鏡讀數儀(第3方供應商)來實施所有其他內視鏡評分(基線下修正Baron評分及梅奧內視鏡子評分、第85天下之修正Baron評分)。用於試驗中之臨床終點之梅奧評分利用源自中心內視鏡檢法讀數儀之梅奧內視鏡檢法子評分。用於試驗中之臨床終點之修正Baron評分亦源自中心內視鏡檢法讀數儀。 在內視鏡檢法程序期間在投藥之前第1天及85天收集結腸組織。為確保品質數據及標準化,在第1天及第85天主要藉由由中心讀數實驗室簽約之單盲病理學家來讀取結腸組織組織病理學評分(Geboes, Modified Riley, and Robarts Histopathology Index,參見9.1.2部分)。來自中心讀數實驗室之詳細影像評審圖表儀將概述用於固定樣品轉移、處理、載玻片製備及用於組織病理學評分之載玻片數位化之組織病理學程序。由合格病理學家根據影像評審圖表儀主要以盲式來讀取內視鏡記錄。 二級效能評價 內視鏡評價 -修正Baron評分 組織病理學評價 修正 Riley 指數 修正Riley指數係考慮6種特徵[急性發炎細胞浸潤物(固有層中之嗜中性球)、隱窩膿腫、黏蛋白消耗、表面上皮完整性、慢性發炎細胞浸潤物(固有層中之圓形細胞)及隱窩構造不規則性]之組織病理學評分系統,每一特徵評級為量表0-3,其中較高評分指示較嚴重組織病況。Geboes 評分 Geboes評分係利用6點評級系統(0-5)基於構造變化、慢性發炎浸潤物、固有層嗜中性球及嗜酸性球、上皮中之嗜中性球、隱窩破壞及侵蝕或潰瘍來量測疾病活動性之組織病理學評分系統。較高等級指示較嚴重疾病活動性。 Robarts組織病理學指數 Robarts組織病理學指數(RHI)總評分介於0 (無疾病活動性)至33 (嚴重疾病活動性)之間。RHI可計算為: RHI = 1 ×慢性發炎浸潤物等級(4個等級) + 2 ×固有層嗜中性球(4個等級) + 3 ×上皮中之嗜中性球(4個等級) + 5 ×侵蝕或潰瘍(4個等級,在組合Geboes 5.1及5.2之後);其中 慢性發炎浸潤物 0=無增加 1=輕度但明確之增加 2=中等增加 3=顯著增加 固有層嗜中性球 0=無 1=輕度但明確之增加 2=中等增加 3=顯著增加 上皮中之嗜中性球 0=無 1=涉及<5%之隱窩 2=涉及<50%之隱窩 3=涉及>50%之隱窩 侵蝕或潰瘍 0=無侵蝕、潰瘍或肉芽組織 1=恢復上皮+疲勞發炎 1=可能侵蝕—病灶帶 2=明確侵蝕 3=潰瘍或肉芽組織 臨床評價 梅奧評分 使用梅奧評分來評估疾病活動性。梅奧評分系統係由以下4種疾病變量組成之複合指數(每一評分為量表0至3,其中較高評分指示較大頻率或嚴重程度):糞便頻率、直腸出血、內視鏡檢法發現及醫師整體評價(PGA)。使用該三項來計算部分梅奧評分。納入內視鏡梅奧子分量以計算完整梅奧評分。藉由IVRS自動計算部分及總梅奧評分且可由探究者及發起者獲得。 梅奧評分介於0至12點之間且利用所有4種疾病變量,其中較高評分指示較嚴重疾病。內視鏡子評分僅包括0-3之內視鏡量表。除內視鏡子評分外,部分梅奧評分包含所有分量(直腸出血、糞便頻率、醫師整體評價)。 評審梅奧評分系統且與探究員工在探究者會議或其他論壇上一起論述為標準化探究員工之間之評級之方法。 對於糞便頻率分量而言,評分0 =參與者具有正常數量之糞便,1 =一或兩種糞便不正常,2 =三種或四種糞便不正常,3 =五種或更多種糞便不正常。 對於直腸出血分量而言,0 =在糞便中未看到血液,1 =小於一半之日排便之糞便具有血絲,2 =大部分日排便之糞便具有明顯血液,3 =排便時僅排出血液。 將PGA評分為0 =正常,1 =溫和疾病,2 =中等疾病,3 =嚴重疾病兩項式患者相關結果 (PRO) 兩項式PRO係使用來自日記之直腸出血及糞便頻率之分量作為額外效能評價之複合評分。用於梅奧評分之日記時刻 日記時刻取決於實施內視鏡檢法之時間。對於不實施內視鏡檢法之訪視(治療期第8、15、-29、43、57及71天)而言,參與者將在緊鄰每一研究訪視之前至少5天完成日記。 對於在實施基線(治療期第1及85天)內視鏡檢法時之訪視而言,參與者將在緊鄰內視鏡檢法製備之日之前至少連續5天完成日記。內視鏡檢法必須在臨床評價之前及在投藥之前3天內實施(排除腸製備及內視鏡程序天數)。 探索性效能評價 內視鏡及臨床評價 使用修正Baron評分、臨床及組織學評價來評價內視鏡、臨床及組織學緩解。結腸黏膜生檢收集 對於部分B中之所有參與者而言,需要在內視鏡檢法(作為研究之一部分)期間或在第85天之前提前結束時實施生檢。在每一內視鏡檢法時對5至6份試樣(在縮回內視鏡期間遠離30 cm之最嚴重影響結腸位點處)實施生檢。若最受影響區域潰瘍,則應自潰瘍邊緣獲得試樣。在不存在UC之任一可見病灶特性下,應在縮回內視鏡時自10 cm區域收集2份試樣。另外,在基線訪視時,應獲得每一參與者之來自未受影響區域之2份生檢試樣(若在縮回內視鏡期間存在於30 cm內),如下文所闡述。應將1至2份生檢樣品置於提供用於研究之每一容器中。使用10%中性緩衝福爾馬林預填充福爾馬林(formalin)固定之瓶且使用RNA later溶液預填充RNA later瓶。 藥物動力學 自血清濃度對時間數據導出BMS-986184之藥物動力學。在健康參與者中針對SAD及MAD評價下列藥物動力學參數: 在健康參與者中針對部分A1 SAD評價下列藥物動力學參數。 在健康參與者中針對部分A2 MAD評價下列藥物動力學參數。 在UC患者中針對部分 B POMT評價下列藥物動力學參數。 藉由非分室方法且藉由驗證藥物動力學分析程式導出個體參與者之藥物動力學參數值。將實際時間用於分析。 17 :用於BMS-986184 - SAD之藥物動力學採樣時間表(部分A1)a EOI=輸注結束,此試樣應在即將停止輸注之前(較佳地在輸注結束之前2分鐘內)獲取。若輸注結束延遲至超過標稱輸注持續時間,則此試樣之收集應亦相應延遲。 18 :用於BMS-986184 - MAD之藥物動力學採樣時間表(部分A2)a EOI=輸注結束,對於遵循靜脈內投與之參與者而言,此試樣應在即將停止輸注之前(較佳地在輸注結束之前2分鐘內)獲取。若輸注結束延遲至超過標稱輸注持續時間,則此試樣之收集應亦相應延遲。 19 :用於BMS-986184 - POM之藥物動力學採樣時間表(部分B)a EOI=輸注結束,對於遵循靜脈內投與之參與者而言,此試樣應在即將停止輸注之前(較佳地在輸注結束之前2分鐘內)獲取。若輸注結束延遲至超過標稱輸注持續時間,則此試樣之收集應亦相應延遲。b 在隨訪期期間收集該等試樣。c 應收集因不良事件而中斷之參與者之試樣。 針對BMS-986184藉由經驗證配體結合免疫分析來分析血清試樣。除非需要證實安慰劑狀態,否則並不分析自接受安慰劑之參與者收集之藥物動力學試樣。 免疫原性評價 自在計劃時間點下獲得之量測來測定BMS-986184之特異性ADA之出現。使用驗證免疫分析來分析試樣。研究終點係藉由開始藥物治療最多(且包含)最後劑量之隨訪期產生之持續性陽性ADA之發病率。 應用下列定義: 參與者之ADA狀態: ● 基線ADA陽性參與者:具有基線ADA陽性試樣之參與者 ● ADA陽性參與者:相對於基線在開始治療之後於所界定觀察時間段期間之任一時間下具有至少一種ADA陽性試樣之參與者。 ● ADA陰性參與者:在開始治療之後並無ADA陽性試樣之參與者 藥效動力學 糞便鈣衛蛋白 糞便鈣衛蛋白係IBD中之腸發炎之代用標記物,此乃因其與腸顆粒球之排泄相關。可將糞便鈣衛蛋白縱向追蹤為治療反應之標記物。高敏感性 CRP (hsCRP) hsCRP係發炎之非特異性急性期反應物標記物。hsCRP用作安全性標記且可將其縱向追蹤為治療反應之標記物。 生物標記物 靶咬合生物標記物 用於靶咬合之血清 IP-10 濃度 ( 總及游離 )( 部分 A B) 在部分A中,抽取血液以用於量測血清游離及總IP-10濃度,從而評價TE。 20 :用於BMS-986184 - SAD之血清TE生物標記物採樣時間表(部分A1) 21 :BMS-986184 -MAD之TE生物標記物採樣時間表(部分A2) 在部分B中,在表9.8.1.1-3中所指示之時間下抽取血液以用於量測血清游離及總IP-10濃度,從而評價TE。將血液收集及處理之其他細節提供至實驗室程序手冊中之地點。 22 :BMS-986184之TE生物標記物採樣時間表-部分B (POM)組織靶咬合生物標記物 ( 部分 B) 使用結腸生檢來量測游離及總IP-10濃度以評價組織TE。藥物動力學生物標記物 ( 部分 B) 僅在部分B中於投藥前在一定時間下抽取血液以用於評價hsCRP。亦量測糞便鈣衛蛋白。探索性血清 / 血漿生物標記物 ( 部分 B) 僅在部分B中於投藥前抽取血液以用於評價可與IP-10中和或相關路徑相關之探索性血清生物標記物。探索性血清生物標記物可包含(但不限於)其他CXCR3相關趨化介素(CXCL9/MIG、 CXCL11/ITAC)、 IL-1(α、β)、IL-6、IL-10、IL-12、G-CSF、MIP-3β、IFN-γ及可與UC疾病活動性及/或黏膜癒合相關之新穎標記物。亦可進行蛋白組學描述以支持理解BMS-986184在潰瘍性結腸炎中之活性。 免疫細胞表現型分型 ( 部分 B) 僅在部分B中於投藥前抽取血液以用於免疫細胞表現型分型,其可包含(但不限於)下列標記物:CXCR3、CD3、CD4、CD56、CD16、CD45RA、CCR7。使用該等結果來評價可因抗IP-10療法而發生之藥物動力學變化及/或潛在地鑑別反應之基線預測物。 免疫組織化學 ( 部分 B) 根據標準程序,福爾馬林固定試樣之免疫組織化學可包含下列抗原:CD3、CD68、IP-10、Foxp3、細胞角質蛋白18、EpCAM、IL17及CXCR3。 基因表現描述 全血 RNA 表現 ( 部分 B) 僅在部分B中於投藥前抽取血液。該等試樣提供寬RNA描述(微陣列或RNA測序)以鑑別與發炎及/或UC疾病路徑、作用機制及BMS-986184治療反應相關之新穎藥物動力學及效能生物標記物。另外,使用該等試樣來探索在基線下可預測對BMS-986184治療之參與者之效能之基因表現。組織 RNA 表現 ( 部分 B) 處理儲存於RNA later中之結腸生檢以分離RNA。該等試樣提供寬RNA描述(微陣列或RNA測序)以鑑別與發炎及/或UC疾病路徑、作用機制及BMS-986184治療反應相關之新穎藥物動力學及效能生物標記物。另外,使用該等試樣來探索在基線下可預測對BMS-986184治療之參與者之效能之基因表現。序列表之概述 等效內容 熟習此項技術者僅使用常規實驗即可識別或能確定本文所闡述本發明具體實施例之許多等效形式。該等等效內容皆意欲涵蓋於下文申請專利範圍內。 Cross-reference to related applications The present application claims priority to U.S. Provisional Application No. 62/261,210, filed on Nov. 30, 2015, and No. 62/374,622, filed on August 12, 2016. The entire contents of any of the patents, patent applications, and references cited throughout the specification are hereby incorporated by reference. To make the invention easier to understand, certain terms are first defined. Other definitions are set forth throughout the detailed description. The terms "6A5", "antibody 6A5", "antibody IP10.1", "IP10.1" and "Eldelumab" refer to the anti-human IP-10 antibody 6A5 as set forth in WO2005/058815. The nucleotide sequence (SEQ ID NO: 5) encoding the heavy chain variable region of IP10.1 and the corresponding amino acid sequence (SEQ ID NO: 4) are shown in Figure 1A (wherein the CDR sequences are designated as SEQ ID NO, respectively) : 1, 2 and 3). The nucleotide sequence (SEQ ID NO: 11) encoding the light chain variable region of IP10.1 and the corresponding amino acid sequence (SEQ ID NO: 10) are shown in Figure 1B (wherein the CDR sequences are designated as SEQ ID NO, respectively) : 7, 8 and 9). The terms "interferon gamma-inducible protein 10", "IP-10" and "CXCL10" are used interchangeably and include human IP-10 variants, isoforms and species homologs. Therefore, the human antibody of the present invention can be cross-reactive with IP-10 from a species other than human in some cases. In other instances, the antibody may be fully specific to human IP-10 and may not exhibit species or other types of cross-reactivity. The complete amino acid sequence of human IP-10 has the gene bank accession number NP_001556 (SEQ ID NO: 157). The complete amino acid sequence of Rhesus macaque IP-10 has the gene bank accession number AAK95955 (SEQ ID NO: 159). The complete amino acid sequence of mouse IP-10 has the gene bank accession number NP_067249 (SEQ ID NO: 160). The term "CXCR3" refers to the receptor for IP-10 (CXCL10). The complete amino acid sequence of human CXCR3 has the gene bank accession number NP_001495 (SEQ ID NO: 158). The term "MIG" refers to a ligand other than IP-10 of CXCR3 (also known as a mononuclear factor induced by gamma interferon). The complete amino acid sequence of human MIG has the gene bank accession number NP_002407 (SEQ ID NO: 161). The term "ITAC" refers to a ligand other than IP-10 of CXCR3 (also known as interferon-inducible T cell alpha chemoattractant). The complete amino acid sequence of human ITAC has the gene bank accession number NP_005400 (SEQ ID NO: 162). The term "immune response" refers to the selective damage and destruction caused by lymphocytes, antigen presenting cells, phagocytic cells, granules and soluble macromolecules (including antibodies, interleukins and complements) produced by the above-mentioned cells or liver. Or from the human body to eliminate invasive pathogens, cells or tissues infected with pathogens, cancerous cells or (in the case of autoimmune or pathological inflammation) normal human cells or tissues. "Signal transduction pathway" refers to the biochemical relationship between a variety of signal transduction molecules that function in a portion of a cell that is passed from one part of a cell to another. As used herein, the phrase "cell surface receptor" encompasses, for example, molecular and molecular complexes that are capable of receiving a signal and transmitting this signal through the plasma membrane of the cell. An example of a "cell surface receptor" of the present invention is the CXCR3 receptor to which the IP-10 molecule binds. The term "antibody" as used herein, includes whole antibodies and any antigen-binding fragments thereof (ie, "antigen-binding portions") or single strands. "Antibody" refers to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains interconnected by disulfide bonds or an antigen binding portion thereof. Each heavy chain includes a heavy chain variable region (abbreviated herein as V)H And the heavy chain constant region. The heavy chain constant region comprises three domains: CH1 , CH2 And CH3 . Each light chain includes a light chain variable region (abbreviated herein as V)L ) and the light chain constant region. The light chain constant region comprises a domain CL. V can beH And VL The region is further subdivided into hypervariable regions (referred to as complementarity determining regions (CDRs)) and more conserved regions (referred to as framework regions (FR)), which are inter-arranged. Every VH And VL It consists of three CDRs and four FRs, which are arranged from the amino-terminus to the carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain binding domains that interact with the antigen. The constant region of the antibody modulates the binding of the immunoglobulin to host tissues or factors comprising various cells of the immune system (eg, effector cells) and the first component of the classical complement system (Clq). As used herein, the term "antigen-binding portion" of an antibody (or simply "antibody portion") refers to one or more fragments of the antibody that retain the ability to specifically bind to an antigen (eg, IP-10). It has been shown that the antigen binding function of antibodies can be carried out by fragments of full length antibodies. An example of a binding fragment encompassed within the term "antigen-binding portion" of an antibody comprises (i) a Fab fragment, ie by VL VH , CL And CH1 a unitary fragment consisting of a domain; (ii) F(ab’)2 a fragment, that is, a bivalent fragment comprising two Fab fragments joined by a disulfide bridge in the hinge region; (iii) by VH And CH1 a domain consisting of an Fd fragment; (iv) a single arm of the antibodyL And VH Fv fragment consisting of a domain; (v) a dAb fragment (Ward et al. (1989)Nature 341 :544-546), which is made up of VH Domain composition; and (vi) isolated complementarity determining regions (CDRs). In addition, despite the two domains of the Fv fragment (VL And VH ) is encoded by a separate gene, but it can be joined together by a synthetic linker using a recombinant method that enables it to become a VL And VH The regions are paired to form a single protein chain of a monovalent molecule (referred to as single-chain Fv (scFv)); see, for example, Bird et al. (1988)Science 242 :423-426; and Huston et al. (1988)Proc. Natl. Acad. Sci. USA 85 :5879-5883). Such single chain antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody. Such antibody fragments are obtained using conventional techniques known to those skilled in the art and screened for utility in the same manner as intact antibodies. The term "isolated antibody" as used herein is intended to mean an antibody that is substantially free of other antibodies having different antigenic specificities (for example, an isolated antibody that specifically binds to IP-10 is substantially free of specific binding except for IP). -10 antibodies to the antigen). However, an isolated antibody that specifically binds to IP-10 can be cross-reactive with other antigens, such as IP-10 molecules from other species. Furthermore, the isolated antibody may be substantially free of other cellular materials and/or chemicals. The term "monoclonal antibody" or "monoclonal antibody composition" as used herein refers to a preparation of an antibody molecule having a single molecular composition. The monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope. The term "human antibody" as used herein is intended to include antibodies having variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. In addition, if the antibody contains a constant region, the constant region is also derived from a human germline immunoglobulin sequence. Human antibodies of the invention may comprise amino acid residues that are not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by in vitro random mutagenesis or site-directed mutagenesis or by somatic mutation in vivo). However, the term "human antibody" as used herein is not intended to encompass an antibody that has been ligated into a human framework sequence from a CDR sequence derived from the germline of another mammalian species (eg, a mouse). The term "human monoclonal antibody" refers to an antibody displaying a single binding specificity having both a framework region and a CDR region derived from the variable region of a human germline immunoglobulin sequence. In one embodiment, the human monoclonal antibody system is produced by a hybridoma comprising B cells fused to immortal cells obtained from a transgenic non-human animal (eg, a transgenic mouse), the transgenic non-human animal having a human heavy chain transgene and Light chain transgenic genomics. The term "recombinant human antibody" as used herein, encompasses all human antibodies which are prepared, expressed, produced or isolated by recombinant means, for example (a) from a human immunoglobulin gene transgenic or transgenic animal (eg mouse) or self. The prepared hybridoma isolated antibody (further described below), (b) from a host cell transformed to express a human antibody, such as an antibody isolated from a transfectoma, (c) isolated from a recombinant, combinatorial human antibody library The antibody, and (d) an antibody produced, expressed, produced or isolated by any other means involving splicing of the human immunoglobulin gene sequence to other DNA sequences. The recombinant human antibodies have a framework region and a CDR region derived from a variable region of a human germline immunoglobulin sequence. However, in certain embodiments, the recombinant human antibodies can be subjected to in vitro mutagenesis (or, when in a transgenic animal using a human Ig sequence, undergo in vivo somatic mutagenesis), and thus the recombinant antibody VH And VL Amino acid sequence of the region, although derived from human germline VH And VL The sequence is associated with it, but it is a sequence that does not naturally occur within the antibody germline profile in humans in vivo. As used herein, "homotype" refers to an antibody species (eg, IgM or IgGl) encoded by a heavy chain constant region gene. The phrase "antibody recognizing an antigen" and "an antibody specific for an antigen" are used interchangeably herein with the term "antibody that specifically binds to an antigen". As used herein, an antibody that specifically binds to human IP-10 is intended to be 5 x 10-9 M or smaller, better 1 × 10-10 M or smaller and even better 1 × 10-11 M or smaller KD An antibody that binds to human IP-10. The antibody "cross-reacting with rhesus IP-10" is intended to be 1 × 10-9 M or smaller, better 1 × 10-10 M or smaller and even better 1 × 10-11 M or smaller KD An antibody that binds to rhesus monkey IP-10. Antibodies that do not cross-react with mouse IP-10 or "cross-react with human MIG" or "cross-react with human ITAC" are intended to be 1.5 × 10-8 M or greater KD More preferably 5-10 × 10-8 M or greater KD And even better 1 × 10-7 M or greater KD An antibody that binds to mouse IP-10, human MIG or human ITAC. In certain embodiments, such antibodies that do not cross-react with mouse IP-10, human MIG, and/or human ITAC exhibit a substantially undetectable binding to such proteins in a standard binding assay. As used herein, an antibody that "inhibits binding of IP-10 to CXCR3" is intended to mean 1 nM or less, more preferably 0.75 nM or less, even more preferably 0.5 nM or less and even more preferably. 0.25 nM or lessi An antibody that inhibits IP-10 binding to CXCR3. As used herein, an antibody that "inhibits IP-10-induced calcium flux" is intended to mean 10 nM or less, more preferably 7.5 nM or less, even more preferably 5 nM or less and even more preferably 2.5 nM or smaller IC50 An antibody that inhibits IP-10 induced calcium flux. As used herein, an antibody that "inhibits IP-10-induced cell migration" is intended to mean 2 μg/ml or less, more preferably 1 μg/ml or less, or even more preferably 0.5 μg/ml or more. Small and even better ICs of 0.25 μg/ml or less50 An antibody that inhibits human IP-10 induced cell migration. The term "K" as used hereinAssociation Or "Ka "Intended to refer to the association rate of a particular antibody-antigen interaction," and the term "K" as used herein.Dissociation Or "Kd It is intended to mean the rate of dissociation of a particular antibody-antigen interaction. The term "K" as used hereinD Desirable to refer to the dissociation constant, which is obtained from Kd For Ka Ratio (ie Kd /Ka And expressed in terms of molar concentration (M). K can be determined using established methods in the industryD value. Determination of antibody KD The preferred method is by using surface plasmon resonance, preferably using a biosensor system (such as the Biacore® system). As used herein, the term "high affinity" of an IgG antibody means that the antibody has 10 against the target antigen.-8 M or smaller, better 10-9 M or smaller and even better 10-10 M or smaller KD . However, for other antibody isotypes, the "high affinity" binding can vary. For example, a "high affinity" binding of IgM isotype means that the antibody has 10-7 M or smaller, better 10-8 M or smaller KD . As used herein, the term "individual" encompasses any human or non-human animal. The term "non-human animal" encompasses all vertebrates, such as mammals and non-mammals, such as non-human primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, and the like. Various aspects of the invention are set forth in more detail in the following subsections.anti- IP-10 antibody An antibody of the invention specifically binds to human IP-10 and is characterized by a particular improved functional feature or property of the antibody as set forth above. Alternatively, the antibody can be cross-reactive with IP-10 from one or more non-human primates, such as rhesus monkeys. Preferably, the antibody does not cross-react with mouse IP-10. Furthermore, although MIG and ITAC are also ligands for the CXCR3 receptor, the antibodies of the invention preferably do not cross-react with human MIG or human ITAC. Preferably, the antibody of the invention has a high affinity (for example, 10-8 M or less or 10-9 M or less or even 10-10 M or smaller KD ) combined to IP-10. In addition, the antibodies of the invention are capable of inhibiting one or more of the functional activities of IP-10. For example, in one embodiment, the antibody inhibits binding of IP-10 to CXCR3. In another embodiment, the antibody inhibits IP-10 induced calcium flux. In yet another embodiment, the antibody inhibits IP-10 induced cell migration (chemotaxis). Standard assays for assessing the binding capacity of antibodies to IP-10 and/or MIG or ITAC of different species are known in the art, including, for example, ELISA, Western blot, and RIA. Suitable analyses are detailed in the examples. The binding kinetics (e.g., binding affinity) of the antibodies can also be assessed by standard assays known in the art (e.g., by Biacore analysis). Analysis of the effect of antibodies on the functional properties of IP-10 (e.g., receptor binding, calcium flux, chemotaxis) is further elaborated in the Examples. Thus, it is to be understood that "suppressing" one or more of the IP-10 functional properties (eg, biochemical, immunochemical, cellular, physiological, or other biological activity as determined by methods known in the art and as set forth herein). The antibody or the like is associated with a specific activity relative to a statistically significant decrease in activity observed in the absence of antibody (or in the presence of a control antibody of irrelevant specificity). Preferably, the antibody that inhibits IP-10 activity achieves a statistically significant reduction in the measured parameter of at least 10%, more preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80. % or 90%, and in certain preferred embodiments, the antibodies of the invention inhibit greater than 92%, 94%, 95%, 97%, 98% or 99% of IP-10 functional activity.Monoclonal antibody IP10.44 , IP10.52 , IP10.45 , IP10.46 , IP10.53 , IP10.43 , IP10.47 , IP10.48 , IP10.49 , IP10.50 , IP10.51 and IP10.54 The preferred anti-system human monoclonal antibody IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, IP10.51, IP10.52 , IP10.53 or IP10.54. IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, IP10.51, IP10.52, IP10.53 and IP10.54H Amino acid sequences are shown in SEQ ID NOs: 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136 and 148. IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, IP10.51, IP10.52, IP10.53 and IP10.54L The amino acid sequence is shown in SEQ ID NOs: 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142 and 154. One of the specific anti-system human monoclonal antibodies IP10.44 (also referred to herein as BMS-986184), the structural and chemical characteristics of which are set forth below and in the examples below. IP10.44 VH The amino acid sequence is shown in SEQ ID NO: 16 (Fig. 2A). IP10.44 VL The amino acid sequence is shown in SEQ ID NO: 22 (Fig. 2B). V of an antibody that binds to human IP-10 as described hereinH And VL The sequence (or CDR sequence) can be combined with other antibodies that bind to human IP-10.H And VL The sequence (or CDR sequence) is "mixed and matched". Preferably, mixing and matching VH And VL Chains (or CDRs within such chains) from a specific VH /VL Paired VH The sequence is structurally similar to VH Sequence instead. Again, preferably, from a specific VH /VL Paired VL The sequence is structurally similar to VL Sequence instead. For example, the antibody of the present invention or antigen-binding portion thereof comprises: (a) including IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, Amino acid sequence of IP10.51, IP10.52, IP10.53 or IP10.54 (eg SEQ ID NO: 16, ie IP of 10.44)H Heavy chain variable region; and (b) including IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, IP10.51, IP10 .52, IP10.53 or IP10.54 amino acid sequence (eg SEQ ID NO: 22, also known as IP10.44 VL a light chain variable region or another anti-IP-10 antibody (ie, different from IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10) V of .50, IP10.51, IP10.52, IP10.53 or IP10.54)L ; wherein the antibody specifically binds to human IP-10. In another embodiment, the antibody of the present invention or antigen-binding portion thereof comprises: (a) IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10. 50. The CDR1, CDR2 and CDR3 regions of the heavy chain variable region of IP10.51, IP10.52, IP10.53 or IP10.54, for example, the CDR1 comprising the heavy chain variable region of the amino acid sequence SEQ ID NO: , CDR2 and CDR3 regions (ie, CDR sequences of IP10.44, respectively, SEQ ID NOs: 13, 14 and 15); and (b) IP10.44, IP10.43, IP10.45, IP10.46, IP10. 47. CDR1, CDR2 and CDR3 regions of the light chain variable region of IP10.48, IP10.49, IP10.50, IP10.51, IP10.52, IP10.53 or IP10.54 (for example comprising an amino acid sequence SEQ ID NO: CDR1, CDR2 and CDR3 regions of the light chain variable region of 22 (ie, the CDR sequences of IP10.44, respectively, SEQ ID NOs: 19, 20 and 21) or another anti-IP-10 antibody (also That is, it is different from IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, IP10.51, IP10.52, IP10.53 or IP10. 54) CDR; wherein the antibody specifically binds to human IP-10. For example, an antibody or antigen binding portion thereof can comprise one of the heavy chain variable CDR1, CDR2 and CDR3 regions of IP10.44 and other light chain CDR1, CDR2 and/or CDR3 regions of an antibody that binds human IP-10 or More. In addition, it is well known in the art that, independently of the CDR1 and/or CDR2 domains, the CDR3 domain alone can determine the binding specificity of an antibody for a homologous antigen and can predictably produce a plurality of antibodies having the same binding specificity based on consensus CDR3 sequences. See, for example, Klimka et al.British J. of Cancer 83(2) :252-260 (2000); Beiboer et al.J. Mol. Biol. 296 :833-849 (2000); Rader et al.Proc. Natl. Acad. Sci. USA 95 :8910-8915 (1998); Barbas et al.J. Am. Chem. Soc. 116 :2161-2162 (1994); Barbas et al.Proc. Natl. Acad. Sci. USA 92 :2529-2533 (1995); Ditzel et al.J. Immunol. 157 :739-749 (1996); Berezov et al.BIAjournal 8 :Scientific Review 8 (2001); Igarashi et al.J. Biochem (Tokyo) 117 : 452-7 (1995); Bourgeois et al,J. Virol 72 :807-10 (1998); Levi et al.Proc. Natl. Acad. Sci. USA 90 :4374-8 (1993); Polymenis and Stoller,J. Immunol. 152 :5218-5329 (1994) and Xu and Davis,Immunity 13 :37-45 (2000). See also U.S. Patent Nos. 6,951,646, 6,914,128, 6,090,382, 6,818,216, 6,156,313, 6,827,925, 5,833,943, 5,762,905, and 5,760,185. The entire contents of each of these references are hereby incorporated by reference. Therefore, in another embodiment, the antibody of the present invention comprises at least IP 10.44, IP 10.43, IP 10.45, IP 10.46, IP 10.47, IP 10.48, IP 10.49, IP 10.50, IP 10.51, CDR3 area of heavy chain variable area of IP10.52, IP10.53 or IP10.54 and at least IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, CDR3 of the light chain variable region of IP10.50, IP10.51, IP10.52, IP10.53 or IP10.54 (eg SEQ ID NO: 15 and 21, ie the heavy and light chain of IP10.44 is variable District CDR3). Preferably, the antibodies (a) compete for binding to an antibody that derives a CDR3 sequence (eg, antibody IP10.44); (b) retain its functional properties; (c) bind to the same epitope; and/or (d) have Similar to binding affinity.Amino acid modification In another embodiment, the antibody of the invention comprises CDR1, CDR2 and CDR3 sequences and IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, The CDR sequences in IP10.51, IP10.52, IP10.53 or IP10.54 (e.g., IP 10.44) differ in one or more conservatively modified heavy and/or light chain variable region sequences. However, in a preferred embodiment, (a) V of IP 10.44H The glutamic acid and tyrosine residues of CDR1 (such as the following sequenceEY GMH (SEQ ID NO: 13) underlined) unmodified, (b) IP10.44 VH CDR2 glycine, alanine, leucine, isoleucine, glycine and alanine residues (eg sequence VI below)G FA GLI KG YA DSVKG (SEQ ID NO: 14) underlined) unmodified, and (c) IP10.44 VH Alanine and aspartate residues of CDR3 (eg the following sequence EG)A GSN The underlined in IYYYYGMDV (SEQ ID NO: 15) was unmodified. It is understood in the art that certain conservative sequence modifications that do not remove antigen binding can be performed. See, for example, Brummell et al. (1993)Biochem 32 :1180-8; de Wildt et al. (1997)Prot. Eng. 10 :835-41; Komissarov et al. (1997)J. Biol. Chem. 272 :26864-26870; Hall et al. (1992)J. Immunol. 149 :1605-12; Kelley and O’Connell (1993)Biochem. 32 :6862-35;Adib-Conquy et al. (1998)Int. Immunol. 10 :341-6 and Beers et al. (2000)Clin. Can. Res. 6 : 2835-43. Thus, in one embodiment, the antibody comprises a heavy chain variable region comprising a CDR1, CDR2 and CDR3 sequence and/or a light chain variable region comprising a CDR1, CDR2 and CDR3 sequence, wherein: (a) a heavy chain variable region The CDR1 sequence includes SEQ ID NO: 13 and/or its conservative modifications, except for IP10.44.H The glutamic acid and tyrosine residues of CDR1 (such as the following sequenceEY The underlined GMH (SEQ ID NO: 13) is unmodified; and/or (b) the heavy chain variable region CDR2 sequence includes SEQ ID NO: 14 and/or its conservative modifications, except for IP10.44.H CDR2 glycine, alanine, leucine, isoleucine, glycine and alanine residues (eg sequence VI below)G FA GLI KG YA The underlined in DSVKG (SEQ ID NO: 14) is unmodified; and/or (c) the heavy chain variable region CDR3 sequence includes SEQ ID NO: 15 and its conservative modifications, except for IP10.44.H Alanine and aspartate residues of CDR3 (eg the following sequence EG)A GSN The underlined in IYYYYGMDV (SEQ ID NO: 15) is unmodified; and/or (d) the light chain variable region CDR1 and/or CDR2 and/or CDR3 sequences include SEQ ID NO: 19 and/or SEQ ID NO: 20 and/or SEQ ID NO: 21 and/or conservative modifications thereof; and (e) the antibody specifically binds to human IP-10. Additionally or alternatively, the antibody may possess one or more of the following functional properties, such as high affinity binding to human IP-10; capable of binding to monkeys (eg, cynomolgus monkey, rhesus monkey) IP-10 but not Substantially binds to mouse IP-10; is capable of not cross-reacting with human MIG or human ITAC; and is capable of inhibiting (a) binding of IP-10 to CXCR3, (b) IP-10 induced calcium flux and/or (c IP-10 induced cell migration (chemotaxis). In various embodiments, the antibody can be, for example, a human antibody, a humanized antibody, or a chimeric antibody. As used herein, the term "conservative sequence modification" is intended to mean an amino acid modification that does not significantly affect or alter the binding properties of an antibody containing an amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into the antibodies of the invention by standard techniques known in the art, such as site-directed mutagenesis and mutagenesis by PCR. The conservative amino acid-substituted amino acid residue is replaced by an amino acid residue having a similar side chain. A family of amino acid residues with similar side chains has been defined in the industry. Such families include amino acids with basic side chains (eg, lysine, arginine, histidine), amino acids with acidic side chains (eg, aspartic acid, glutamic acid), with Amino acid with an electrode side chain (eg, glycine, aspartame, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), non-polar Side chain amino acids (eg, alanine, valine, leucine, isoleucine, valine, phenylalanine, methionine), amino acids with beta-branched side chains (eg, sul Aminic acid, valine acid, isoleucine) and an amino acid having an aromatic side chain (for example, tyrosine, phenylalanine, tryptophan, histidine). Thus, one or more amino acid residues in the CDR regions of an antibody of the invention can be replaced by other amino acid residues from the same side chain family, and the retention of the altered antibody can be tested using the functional assays set forth herein. Function (also known as the above function).Modified and modified antibody Can be used with IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, IP10.51, IP10.52, IP10.53 or IP10.54 V (eg antibody IP10.44)H And / or VL An antibody of one or more of the sequences is used as a starting material to engineer a modified antibody to prepare an antibody of the invention. Antibodies can be modified by modifying one or two variable regions (ie, VH And / or VL Remodeling within one or more residues, for example, within one or more CDR regions and/or one or more framework regions. Additionally or alternatively, the antibody can be engineered by modifying residues within the constant region, such as altering the effector function of the antibody. In certain embodiments, CDR grafting can be used to engineer the variable regions of an antibody. The antibody interacts with the target antigen primarily via amino acid residues located in the six heavy and light chain complementarity determining regions (CDRs). For this reason, the amino acid sequence within the CDRs between individual antibodies is more distinct than the sequences outside the CDRs. Since the CDR sequences are responsible for most of the antibody-antigen interactions, the expression of a specific natural antibody can be expressed by constructing a expression vector comprising CDR sequences derived from a specific natural antibody that has been grafted into a framework sequence of a different antibody. Recombinant antibodies (see, for example, Riechmann et al. (1998)Nature 332 :323-327; Jones et al. (1986)Nature 321 :522-525;Queen et al. (1989)Proc. Natl. Acad . SeeUSA 86 : 10029-10033; U.S. Pat. No. 5,225,539; 5,530,101; 5,585,089; 5,693,762 and 6,180,370). Accordingly, another embodiment of the present invention relates to an isolated monoclonal antibody or antigen-binding portion thereof comprising IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, Heavy chain variable regions of CDR1, CDR2 and CDR3 sequences of IP10.49, IP10.50, IP10.51, IP10.52, IP10.53 or IP10.54 (eg SEQ ID NOs: 13, 14 and 15 respectively) And / or contain IP10.44, IP10.43, IP10.45, IP10.46, IP10.47, IP10.48, IP10.49, IP10.50, IP10.51, IP10.52, IP10.53 or IP10. The light chain variable region of the CDR1, CDR2 and CDR3 sequences of 54 (e.g., SEQ ID NOS: 19, 20 and 21, respectively). Although these antibodies contain monoclonal antibody IP10.44 or other antibodies as described herein.H And VL CDR sequences, but they may contain different framework sequences. Such framework sequences can be obtained from published DNA libraries containing published germline antibody gene sequences or published references. For example, the germline DNA sequences of human heavy and light chain variable region genes can be found in the "VBase" human germline sequence database (available on the Internet at www.mrc-cpe.cam.ac.uk/vbase) Obtained) and Kabat et al. (1991), cited above; Tomlinson et al. (1992) "The Repertoire of Human Germline VH Sequences Reveals about Fifty Groups of VH Segments with Different Hypervariable Loops"J. Mol. Biol .227 :776-798; and Cox et al. (1994) "A Directory of Human Germ-line VH Segments Reveals a Strong Bias in their Usage"Eur. J. Immunol .twenty four : 827-836; the contents of each are expressly incorporated herein by reference. As another example, germline DNA sequences of human heavy and light chain variable region genes can be found in a gene bank database. For example, the following heavy chain germline sequences found in HCo7 HuMAb mice can be obtained with the accession number: 1-69 (NG_0010109, NT_024637, and BC070333), 3-33 (NG_0010109 and NT_024637), and 3-7 (NG_0010109 and NT_024637). As another example, the following heavy chain germline sequences found in HCo12 HuMAb mice can be obtained with the accession number: 1-69 (NG_0010109, NT_024637, and BC070333), 5-51 (NG_0010109, and NT_024637), 4- 34 (NG_0010109 and NT_024637), 3-30.3 (CAJ556644) and 3-23 (AJ406678). The antibody protein sequence was compared to a compiled protein sequence library using a sequence similarity search method known as Gapped BLAST (Altschul et al. (1997) (published above), which is well known to those skilled in the art). Preferred framework sequences for use in the antibodies of the invention are structurally similar to those used by the selected antibodies of the invention, for example, similar to those used by IP 10.44.H 3-33 frame sequence and / or VK A27 frame sequence. V can beH CDR1, CDR2 and CDR3 sequences and VK The CDR1, CDR2 and CDR3 sequences are grafted onto a framework region having the same sequence as found in the germline immunoglobulin gene of the derived framework sequence, or the CDR sequence can be grafted to contain one or more compared to the germline sequence On the frame of the mutation. For example, it has been found that, in certain instances, residues in the framework regions are beneficially mutated to maintain or enhance the antigen binding ability of the antibody (see, for example, U.S. Patent Nos. 5,530,101, 5,585,089, 5,693,762, and 6,180,370). number). Another type of variable region modification system mutation VH And / or VL Amino acid residues within the CDR1, CDR2 and/or CDR3 regions, thereby improving one or more binding properties (e.g., affinity) of the antibody of interest. Site-directed mutagenesis or PCR-mediated mutagenesis can be performed to introduce mutations, and the effects on antibody binding or other functional properties of interest can be assessed in in vitro or in vivo assays as set forth herein and provided in the Examples. . Conservative modifications are preferably introduced (as discussed above). The mutation may be an amino acid substitution, addition or deletion, but is preferably substituted. In addition, no more than one, two, three, four or five residues in the CDR regions are typically altered. Accordingly, in another embodiment, the invention provides an isolated anti-IP-10 monoclonal antibody or antigen binding portion thereof comprising the heavy chain and/or light chain variable region sequences set forth herein, wherein the sequences comprise a Or multiple amino acid substitutions, deletions or additions. For example, an isolated anti-IP-10 monoclonal antibody or antigen binding portion thereof comprises: a heavy chain variable region comprising: (a) VH a CDR1 region comprising SEQ ID NO: 13 or an amino acid sequence having one, two or three amino acid substitutions, deletions or additions compared to SEQ ID NO: 13 (preferably, wherein IP10.44 VH The glutamic acid and tyrosine residues of CDR1 (such as the following sequenceEY The underlined in GMH) is the same as in SEQ ID NO: 13; (b) VH a CDR2 region comprising SEQ ID NO: 14 or an amino acid sequence having one, two, three, four or five amino acid substitutions, deletions or additions compared to SEQ ID NO: 14 (preferably , where IP10.44 is VH CDR2 glycine, alanine, leucine, isoleucine, glycine and alanine residues (eg sequence VI below)G FA GLI KG YA The underlined in DSVKG) is the same as in SEQ ID NO: 14; (c)VH a CDR3 region comprising SEQ ID NO: 15 or an amino acid sequence having one, two, three, four or five amino acid substitutions, deletions or additions compared to SEQ ID NO: 15 (preferably , where IP10.44 is VH Alanine and aspartate residues of CDR3 (eg the following sequence EG)A GSN The underlined in IYYYYGMDV) is the same as in SEQ ID NO: 15; (d)VL a CDR1 region comprising SEQ ID NO: 19 or an amino acid sequence having one, two, three, four or five amino acid substitutions, deletions or additions compared to SEQ ID NO: 19; VL a CDR2 region comprising SEQ ID NO: 20 or an amino acid sequence having one, two, three, four or five amino acid substitutions, deletions or additions compared to SEQ ID NO: 20; ) VL A CDR3 region comprising SEQ ID NO: 21 or an amino acid sequence having one, two, three, four or five amino acid substitutions, deletions or additions compared to SEQ ID NO:21. The engineered antibody of the invention comprises a pair of VH And / or VL The framework residues within are modified, for example, to improve antibody properties. Typically, such framework modifications are made to reduce the immunogenicity of the antibody. For example, one way is to "backmutate" one or more framework residues into the corresponding germline sequence. More specifically, an antibody that has been mutated by a receptor cell may contain a framework residue that is different from the germline sequence from which the antibody is derived. Such residues can be identified by comparing the antibody framework sequences to the germline sequences from which the antibodies are derived. Another type of framework modification involves mutating the framework region or even one or more residues in one or more CDR regions to remove T cell epitopes, thereby reducing the potential immunogenicity of the antibody. This method is also referred to as "de-immunization" and is further described in detail in U.S. Patent Publication No. 20030153043. In addition to or in lieu of modifications made in the framework or CDR regions, the antibodies of the invention can be engineered to include modifications in the Fc region, typically altering one or more of the functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding And/or antigen-dependent cytotoxicity. Additionally, an antibody of the invention may be chemically modified (for example, one or more chemical moieties may be attached to the antibody) or modified to alter its glycosylation to also alter one or more of the functional properties of the antibody. Each of these embodiments is described in further detail below. The numbering of the residues in the Fc region is the EU index number of Kabat. In a preferred embodiment, the anti-system comprises an IgG4 isotype antibody of a serine to valerine mutation (S228P; EU index) at a position corresponding to position 228 in the hinge region of the heavy chain constant region. It has been reported that this mutation will eliminate the heterogeneity of the heavy chain disulfide bridge in the hinge region (Angal et al., supra; position 241 is based on the Kabat numbering system). In one embodiment, the hinge region of CH1 is modified to alter (eg, increase or decrease) the number of cysteine residues in the hinge region. This approach is further described in U.S. Patent No. 5,677,425. The number of cysteine residues in the CH1 hinge region is altered to, for example, facilitate light chain and heavy chain assembly or increase or decrease the stability of the antibody. In another embodiment, the Fc hinge region of the antibody is mutated to shorten the biological half life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has staphylococcal protein A that is impaired in binding to the native Fc-hinge domain SpA. (SpA) combination. This approach is further described in detail in U.S. Patent No. 6,165,745. In another embodiment, the antibody is modified to increase its biological half life. A variety of ways are possible. For example, one or more of the following mutations can be introduced: T252L, T254S, T256F, as set forth in U.S. Patent No. 6,277,375. Alternatively, to increase the biological half-life, the antibody can be altered in the CH1 or CL region to contain a salvage receptor binding epitope derived from two loops of the CH2 domain in the Fc region of IgG, such as U.S. Patent Nos. 5,869,046 and 6,121,022. As stated in the article. In other embodiments, the Fc region is altered to alter the effector function of the antibody by replacing the at least one amino acid residue with a different amino acid residue. For example, one or more amino acids selected from the group consisting of amino acid residues 234, 235, 236, 237, 297, 318, 320, and 322 can be replaced with different amino acid residues, such that the antibody is paired with an effector. The body has altered affinity but retains the antigen binding ability of the parent antibody. The effector ligand whose affinity is altered can be, for example, the Fc receptor or the C1 component of complement. This method is further described in detail in U.S. Patent Nos. 5,624,821 and 5,648,260. In another example, one or more amino acids selected from amino acid residues 329, 331 and 322 can be replaced with different amino acid residues such that the antibody has altered C1q binding and/or reduces or eliminates Complement dependent cytotoxicity (CDC). This approach is further described in detail in U.S. Patent No. 6,194,551. In another example, one or more amino acid residues within amino acid positions 231 and 239 are altered to thereby alter the ability of the antibody to bind to complement. This approach is further described in PCT Publication WO 94/29351. In yet another example, the Fc region is modified by modification of one or more amino acids at the following positions to increase antibody-mediated antibody-dependent cellular cytotoxicity (ADCC) and/or increase antibody affinity for Fc gamma receptors :238,239,248,249,252,254,255,256,258,265,267,268,269,270,272,276,278,280,280,280 294,295,296,298,301,303,305,307,309,312,315,320,322,324,326,327,329,330,331,333,334,335,337 , 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439. This approach is further described in PCT Publication WO 00/42072. In addition, variants on human IgG1 for binding sites for FcγR1, FcγRII, FcγRIII and FcRn have been mapped and modified combinations have been described (see Shields et al. (2001)J. Biol. Chem .276 :6591-6604). Specific mutational display at positions 256, 290, 298, 333, 334 and 339 can be modified to the binding of FcyRIII. In addition, the following combinatorial mutants display improved FcyRIII binding: T256A/S298A, S298A/E333A, S298A/K224A, and S298A/E333A/K334A. In yet another embodiment, the glycosylation of the antibody is modified. For example, aglycosylated antibodies can be prepared (ie, the antibody lacks glycosylation). Glycosylation can be altered to, for example, increase the affinity of an antibody for an antigen. Such carbohydrate modifications can be achieved, for example, by altering one or more glycosylation sites within the antibody sequence. For example, one or more amino acid substitutions can be made to eliminate one or more variable region framework glycosylation sites, thereby eliminating glycosylation at that site. This aglycosylation increases the affinity of the antibody for the antigen. See, for example, U.S. Patent Nos. 5,714,350 and 6,350,861. Additionally or alternatively, an antibody having a modified type of glycosylation, such as a low fucosylated antibody having a reduced amount of fucosyl residues or an antibody having an increased halved GlcNac structure, can be prepared. These altered glycosylation patterns have been shown to increase the ADCC ability of antibodies. Such carbohydrate modifications can be achieved, for example, by expressing antibodies in host cells having altered glycosylation machinery. Cells having altered glycosylation machinery have been described in the art and can be used as host cells for the expression of recombinant antibodies of the invention to thereby produce antibodies with altered glycosylation. For example, the cell lines Ms704, Ms705, and Ms709 lack the fucosyltransferase gene FUT8 (α(1,6)-fucosyltransferase), and thus the antibodies expressed in the Ms704, Ms705, and Ms709 cell lines are It lacks fucose on its carbohydrates. Ms704, Ms705 and Ms709 FUT8-/- Cell lines are produced by targeting the destruction of the FUT8 gene in CHO/DG44 cells using two alternative vectors (see U.S. Patent Publication No. 20040110704 and Yamane-Ohnuki et al. (2004).Biotechnol Bioeng 87 :614-22). As a further example, EP 1,176,195 describes a cell line having a FUT8 gene encoding a functional disruption of a fucosyltransferase such that the antibody expressed in this cell line reduces or eliminates the alpha-1,6 bond-associated enzyme. Demonstrates low fucosylation. EP 1,176,195 also teaches cell lines which have low or no enzymatic activity for the addition of fucose to N-acetyl glucosamine bound to the Fc region of the antibody, such as the rat myeloma cell line YB2/0 ( ATCC CRL 1662). PCT Publication WO 03/035835 describes a variant CHO cell line Lec13 cell that has reduced ability to attach fucose to Asn (297) linked carbohydrates, which also produces low algae of antibodies expressed in the host cell Glycosylation (see also Shields et al. (2002)J. Biol. Chem .277 :26733-26740). Antibodies having modified glycosylation characteristics can also be produced in eggs, as set forth in PCT Publication WO 06/089231. Or, can be in plant cells (such as duckweed (Lemna An antibody having a modified glycosylation profile is produced in )). A method of producing antibodies in a plant system is disclosed in U.S. Patent Application Serial No. 040,989, filed to Aal. PCT Publication WO 99/54342 describes cell lines engineered to express glycosyltransferases of modified glycoproteins, such as β(1,4)-N-ethylglucosyltransferase III (GnTIII), thereby The antibodies expressed in the engineered cell lines exhibit an increased ectopic GlcNac structure that produces increased ADCC activity of the antibody (see also Umana et al. (1999)Nat. Biotech. 17 :176-180). Alternatively, the fucose residue of the antibody can be cleaved using a fucosidase; for example, the fucosidase α-L-fucosidase removes fucosyl residues from the antibody (Tarentino et al. (1975)Biochem .14 :5516-23). Another modification of the antibodies herein encompassed by the present invention is pegylation. The antibody can be PEGylated to, for example, extend the biological (e.g., serum) half-life of the antibody. A PEGylated antibody, typically one or more PEG groups attached to an antibody or antibody fragment, such that the antibody or fragment thereof is reacted with polyethylene glycol (PEG) (eg, a reactive ester or aldehyde derivative of PEG) )reaction. Preferably, pegylation is carried out by a deuteration reaction or an alkylation reaction with a reactive PEG molecule (or a similar reactive water-soluble polymer). As used herein, the term "polyethylene glycol" is intended to encompass any form of PEG that has been used to derive other proteins, such as mono(C1-C10) alkoxy- or aryloxy-polyethylene glycol or poly. Ethylene glycol-maleimide. In certain embodiments, the anti-glycosylated antibody is intended to be PEGylated. Methods for PEGylating proteins are known in the art and are applicable to the antibodies of the invention. See, for example, EP 0 154 316 and EP 0 401 384.Antibody physical properties The antibodies of the invention can be characterized by various physical properties to detect and/or distinguish between different species. For example, an antibody can contain one or more glycosylation sites in the light or heavy chain variable region. Such glycosylation sites may increase the immunogenicity of the antibody or alter the pK of the antibody (by altering antigen binding) (Marshall et al. (1972)Annu Rev Biochem 41 :673-702; Gala and Morrison (2004)J Immunol 172 :5489-94; Wallick et al. (1988)J Exp Med 168 :1099-109;Spiro (2002)Glycobiology 12 :43R-56R; Parekh et al. (1985)Nature 316 : 452-7; Mimura et al. (2000)Mol Immunol 37 :697-706). Glycosylation is known to occur at the motif containing the N-X-S/T sequence. In some cases, it is preferred to have an anti-IP-10 antibody that does not contain variable region glycosylation. This can be achieved by selecting an antibody that does not contain a glycosylation motif in the variable region or by mutating residues within the glycosylation region. In a preferred embodiment, the antibody does not contain an aspartic acid isomeric site. The deamidamine of aspartame can occur on the N-G or D-G sequence and causes the production of an isoaspartic acid residue that introduces a kink into the polypeptide chain and reduces its stability (isoaspartic acid effect). Each antibody will have a unique isoelectric point (pI), which is typically in the pH range between 6 and 9.5. The pi of the IgGl antibody is typically in the pH range of 7-9.5, and the pi of the IgG4 antibody is typically in the pH range of 6-8. It is speculated that antibodies with pI not in the normal range may have certain unfolding and instability under in vivo conditions. Therefore, it is preferred to have an anti-IP-10 antibody having a pI value within a normal range. This can be achieved by selecting antibodies with pI in the normal range or by mutating charged surface residues.Nucleic acid molecule encoding an antibody of the invention Another aspect of the invention pertains to nucleic acid molecules encoding the antibodies of the invention. The nucleic acids may be present in intact cells, in cell lysates, or in partially purified or substantially pure form. Nucleic acids are "isolated" or "substantially pure" when purified by standard techniques to remove other cellular components or other contaminants (eg, other cellular nucleic acids or proteins), which include alkali/SDS Treatment, CsCl banding, column chromatography, agarose gel electrophoresis, and other methods well known in the art. See F. Ausubel et al., eds. (1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York. The nucleic acid of the invention may be, for example, DNA or RNA and may or may not contain intron sequences. In a preferred embodiment, the nucleic acid is a cDNA molecule. The nucleic acids of the invention can be obtained using standard molecular biology techniques. For antibodies expressed by hybridomas (eg, hybridomas prepared from transgenic mice carrying human immunoglobulin genes, as further described below), cDNA encoding the light and heavy chains of antibodies produced by hybridomas can be borrowed Obtained by standard PCR amplification or cDNA selection techniques. For antibodies obtained from a library of immunoglobulin genes (eg, using phage display technology), the nucleic acid encoding the antibody can be recovered from the library. Preferred nucleic acid molecules of the invention are those which encode the VH and VL sequences of the IP10.44 monoclonal antibody. The DNA sequences encoding the VH and VL sequences of IP10.44 are shown in SEQ ID NOs: 17 and 23, respectively. After obtaining the DNA fragments encoding the VH and VL segments, the DNA fragments can be further manipulated by standard recombinant DNA techniques to, for example, convert the variable region genes into full length antibody chain genes, Fab fragment genes or scFv genes. In such manipulations, a DNA fragment encoding VL or VH is operably linked to another DNA fragment encoding another protein, such as an antibody constant region or a flexible linker. As used in this context, the term "operatively linked" is intended to mean joining two DNA fragments such that the amino acid sequence encoded by the two DNA fragments remains in frame. The isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the DNA encoding VH to another DNA molecule encoding the heavy chain constant regions (CH1, CH2, and CH3). The sequence of the human heavy chain constant region gene is known in the art (see, for example, Kabat, EA et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, US Department of Health and Human Services, NIH Publication No. 91-3242 And DNA fragments encompassing such regions can be obtained by standard PCR amplification. The heavy chain constant region can be an IgGl, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region, but is preferably an IgGl or IgG4 constant region. For a Fab fragment heavy chain gene, the DNA encoding VH is operably linked to another DNA molecule encoding only the heavy chain CH1 constant region. The isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as a Fab light chain gene) by operatively linking the DNA encoding VL to another DNA molecule encoding the light chain constant region CL. The sequence of the human light chain constant region gene is known in the art (see, for example, Kabat, EA et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, US Department of Health and Human Services, NIH Publication No. 91-3242 And DNA fragments encompassing such regions can be obtained by standard PCR amplification. The light chain constant region can be a kappa or lambda constant region, but is preferably a kappa constant region. To generate the scFv gene, a DNA fragment encoding VH and VL is operably linked to a coding flexible linker (eg, encoding an amino acid sequence (Gly)4 -Ser)3 Another fragment, such that the VH and VL sequences can be represented as contiguous single-chain proteins in which the VL and VH regions are joined by a flexible linker (see, for example, Bird et al. (1988)Science 242 :423-426; Huston et al. (1988)Proc. Natl. Acad. Sci. USA 85 :5879-5883; McCafferty et al. (1990)Nature 348 :552-554).Single antibody production of the present invention The monoclonal antibodies (mAbs) of the present invention can be produced by various techniques, including conventional monoclonal antibody methods, such as Kohler and Milstein (1975).Nature 256 : Standard somatic cell hybridization technique in 495. Although somatic cell hybridization procedures are preferred, other techniques for producing monoclonal antibodies, such as B lymphocyte viruses or carcinogenic transformations, can in principle be employed. A preferred animal system for preparing hybridomas is a murine system. Hybridoma production in mice is a well established procedure. Immune protocols and techniques for isolating immune spleen cells for fusion are known in the art. Fusion partners (such as murine myeloma cells) and fusion procedures are also known. Chimeric or humanized antibodies of the invention can be prepared based on the sequence of a murine monoclonal antibody prepared as set forth above. DNA encoding heavy and light chain immunoglobulins can be obtained from murine hybridomas of interest and engineered using standard molecular biology techniques to contain non-murine (eg, human) immunoglobulin sequences. For example, to generate a chimeric antibody, the murine variable region can be ligated to a human constant region using methods known in the art (see, for example, U.S. Patent No. 4,816,567 issued to Cabilly et al.). For the production of a humanized antibody, the murine CDR regions can be inserted into a human framework using methods known in the art (see, for example, U.S. Patent No. 5, 225, 539 to the U.S. Patent No. 5, 530, 001; Nos. 5,693,762 and 6,180,370). In a preferred embodiment, the invention is directed against a human monoclonal antibody. Transgenic or transchromosomic mice that carry part of the human immune system rather than the mouse system can be used to generate such human monoclonal antibodies against IP-10. Such transgenic and transchromosomic mice are comprised of mice referred to herein as HuMAb mice and KM mice, respectively, and are collectively referred to herein as "human Ig mice." HuMAb Mouse® (Medarex, Inc.) contains human immunoglobulin gene mini-locus encoding non-rearranged human heavy chain (μ and γ) and kappa light chain immunoglobulin sequences and enables endogenous μ and kappa chain genes Targeted mutations in passivation (see, for example, Lonberg et al. (1994) Nature 368 (6474): 856-859). Therefore, mice exhibit reduced expression of mouse IgM or κ, and in response to immunization, species switching and somatic mutation of human heavy and light chain transgenes are introduced to generate high-affinity human IgGκ monoclonal antibodies (Lonberg, N Et al. (1994) (literature above); reviewed in Lonberg, N. (1994)Handbook of Experimental Pharmacology 113 :49-101; Lonberg, N. and Huszar, D. (1995)Intern. Rev. Immunol .13 : 65-93 and Harding, F. and Lonberg, N. (1995)Ann. NY Acad. Sci .764 :536-546). The preparation and use of HuMab mice and the genomic modification carried by these mice are further described in Taylor, L. et al. (1992)Nucleic Acids Research 20 :6287-6295; Chen, J. et al. (1993)International Immunology 5 : 647-656; Tuaillon et al. (1993)Proc. Natl. Acad. Sci. USA 90 :3720-3724; Choi et al. (1993)Nature Genetics 4 :117-123; Chen, J. et al. (1993)EMBO J .12 : 821-830; Tuaillon et al. (1994)J. Immunol .152 :2912-2920;Taylor, L. et al. (1994)International Immunology 6 : 579-591; and Fishwild, D. et al. (1996)Nature Biotechnology 14 : 845-851, the entire contents of which are incorporated herein by reference. See also U.S. Patent Nos. 5,545,806, 5,569,825, 5,625,126, 5,633,425, 5,789,650, 5,877,397, 5,661,016, 5,814,318, 5,874,299, and 5,770,429 (both to Lonberg and Kay) U.S. Patent No. 5,545,807 issued to Surani et al.; PCT Publication No. WO 92/03918, WO 93/12227, WO 94/25585, WO 97/13852, WO 98/24884 No. WO 99/45962 (issued to Lonberg and Kay); and PCT Publication No. WO 01/14424 to Korman et al. In another embodiment, a human antibody of the invention can be produced using a mouse that carries a human immunoglobulin sequence on a transgene and a transchromosome (eg, a mouse carrying a human heavy chain transgene and a human light chain transchromosome). The mice referred to herein as "KM mice" are described in detail in PCT Publication WO 02/43478, issued to Ishida et al. In addition, alternative transgenic animal systems displaying human immunoglobulin genes are available in the art and can be used to produce the anti-IP-10 antibodies of the invention. For example, alternative transgenic systems known as Xeno mice (Abgenix, Inc.) can be used; such as those disclosed in U.S. Patent Nos. 5,939,598, 6,075,181, 6,114,598 issued to Kucherlapati et al. , Nos. 6,150,584 and 6,162,963. In addition, alternative transchromosomal animal systems that exhibit human immunoglobulin genes are available in the art and can be used to produce the anti-IP-10 antibodies of the invention. For example, mice carrying human heavy chain transchromosomes and human light chain transchromosomes can be used, which are referred to as "TC mice"; these mice are described in Tomizuka et al. (2000)Proc. Natl. Acad. Sci. USA 97 : 722-727. In addition, cattle carrying human heavy and light chain transchromosomes have been described in the industry (Kuroiwa et al. (2002)Nature Biotechnology 20 : 889-894) and can be used to produce the anti-IP-10 antibodies of the invention. The human monoclonal antibodies of the present invention can also be prepared by screening a human immunoglobulin gene library using a phage display method. Such phage display methods for isolating human antibodies have been established in the industry. U.S. Patent Nos. 5,427, 908 and 5, 571, 698 to Dower et al., and U.S. Patent No. 5,969,108, issued to McCafferty et al. And U.S. Patent Nos. 5,885,793, 6,521,404, 6,544,731, 6,555,313, 6,582,915 and 6,593,081 to Griffiths et al. The human monoclonal antibodies of the present invention can also be prepared using SCID mice in which human immune cells have been reconstituted such that a human antibody response can be produced following immunization. The mice are described in, for example, U.S. Patent Nos. 5,476,996 and 5,698,767, issued toW.Humanity Ig Immunization of mice When a human Ig mouse is used to produce a human antibody of the present invention, the mouse can be immunized with a purified or enriched preparation of IP-10 antigen and/or recombinant IP-10 or IP-10 fusion protein, such as As explained in the following literature: Lonberg, N. et al. (1994)Nature 368 (6474): 856‐859; Fishwild, D. et al. (1996)Nature Biotechnology 14 : 845-851; and PCT Publication WO 98/24884 and WO 01/14424. Preferably, the mouse is 6-16 weeks of age at the time of the first infusion. For example, human Ig mice can be immunized intraperitoneally using a purified or recombinant preparation of IP-10 antigen (5-50 μg). Detailed procedures for generating fully human monoclonal antibodies to IP-10 are set forth in Example 1 below. The cumulative experience of using various antigens has been demonstrated, i.e., immunization with an antigen initially in complete Freund's adjuvant via intraperitoneal (IP) followed by incomplete Freund's adjuvant (incomplete Freund's adjuvant) Transgenic mice responded by performing IP immunization every other week (up to a total of 6 times). However, adjuvants other than Freund's adjuvant have also been found to be effective. In addition, intact cells were found to be highly immunogenic in the absence of adjuvant. The immune response can be monitored within the course of the immunization protocol, wherein plasma samples are obtained by post-mortem blood sampling. Plasma can be screened by ELISA (as set forth below) and can be fused using mice with sufficient anti-IP-10 human immunoglobulin titers. Mice can be boosted intravenously with antigen 3 days prior to sacrifice and removal of the spleen. It is expected that 2-3 fusions may be required for each immunization. Normally 6 to 24 mice are immunized for each antigen. Usually, HCo7 and HCo12 strains are used. In addition, both HCo7 and HCo12 transgenes can be bred together into a single mouse with two different human heavy chain transgenes (HCo7/HCo12).Generation of hybridoma producing the human monoclonal antibody of the present invention To generate a hybridoma producing a human monoclonal antibody of the invention, spleen cells and/or lymph node cells can be isolated from the immunized mouse and fused to a suitable immortalized cell line, such as a mouse myeloma cell line. The resulting hybridomas can be screened for the production of antigen-specific antibodies. For example, a single cell suspension of spleen lymphocytes from immunized mice is fused to one-sixth of P3X63-Ag8.653 non-secreting mouse myeloma cells (ATCC, CRL 1580) using 50% PEG. Put the cells at about 2 × 105 Tiled in flat-bottomed microtiter plates, followed by 20% fetal bovine serum, 18% "653" conditioned medium, 5% Origen (IGEN), 4 mM L-glutamic acid, 1 mM acetone Sodium, 5 mM HEPES, 0.055 mM 2-mercaptoethanol, 50 units/ml penicillin (penicillin), 50 mg/ml streptomycin, 50 mg/ml gentamycin and 1× HAT ( Sigma; HAT was incubated in selective medium supplemented 24 hours after fusion for two weeks. After about two weeks, the cells can be cultured in a medium in which HAT is replaced with HT. Individual wells for human IgM and IgG antibodies can then be screened by ELISA. After the emergence of hybridoma overgrowth, the medium can usually be observed immediately after 10-14 days. The antibody secreting the hybridoma can be re-plated and screened, and if it is still positive for human IgG, the monoclonal antibody can be subcloned at least twice by limiting dilution. Stable melons can then be cultured in vitro to produce small amounts of antibody in tissue culture medium for characterization. To purify human monoclonal antibodies, selected hybridomas can be grown in two liter spinner flasks for purification of monoclonal antibodies. The supernatant was filtered and concentrated, and then subjected to affinity chromatography using Protein A-sepharose (Pharmacia, Piscataway, N.J.). The eluted IgG can be checked by gel electrophoresis and high performance liquid chromatography to ensure purity. The buffer solution can be replaced with PBS and the extinction coefficient of 1.43 can be used by OD280 To determine the concentration. Individual antibodies can be aliquoted and stored at -80 °C.Generation of transfectoma producing monoclonal antibodies of the present invention Antibodies of the invention can also be produced in host cell transfectomas using, for example, a combination of recombinant DNA techniques and gene transfection methods well known in the art (e.g., Morrison, S. (1985) Science 229: 1202). For example, to express an antibody or antibody fragment thereof, a coding portion or full length light chain and heavy chain can be obtained by standard molecular biology techniques (eg, PCR amplification or cDNA selection using hybridomas expressing antibodies of interest). DNA, and the DNA can be inserted into a expression vector such that the genes are operably linked to transcriptional and translational control sequences. As used herein, the term "operatively linked" is intended to mean the ligation of an antibody gene into a vector such that the transcriptional and translational control sequences within the vector function as desired to regulate transcription and translation of the antibody gene. The performance vector and expression control sequences are selected to be compatible with the expression host cell used. The antibody light chain gene and the antibody heavy chain gene can be inserted into separate vectors, or more typically the two genes are inserted into the same expression vector. The antibody gene is inserted into the expression vector by standard methods (e.g., binding the complementary restriction site on the antibody gene fragment to the vector, or blunt-end ligation if no restriction site is present). The light chain and heavy chain variable regions of the antibodies described herein can be inserted into a expression vector encoding a heavy chain constant region and a light chain constant region of a desired isoform to produce a full length antibody gene of any antibody isotype, such that VH The segment is operatively connected to the C in the carrierH Section, and VL The segment is operatively connected to the C in the carrierL Section. Additionally or alternatively, the recombinant expression vector can encode a signal peptide that facilitates secretion of the antibody chain by the host cell. The antibody chain gene can be ligated into a vector such that the signal peptide is ligated in-frame to the amino terminus of the antibody chain gene. The signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (ie, a signal peptide from a non-immunoglobulin). In addition to the antibody chain gene, the recombinant expression vector of the present invention carries a regulatory sequence that controls the expression of the antibody chain gene in a host cell. The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes. Such regulatory sequences are described, for example, in Goeddel (Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, CA (1990)). Those skilled in the art will appreciate that the design of the expression vector (including the choice of regulatory sequences) may depend on factors such as the choice of host cell to be transformed, the degree of expression of the desired protein, and the like. Preferred regulatory sequences for mammalian host cell expression include viral elements that direct a higher degree of protein expression in mammalian cells, such as promoters and/or enhancers derived from: cytomegalovirus (CMV), Simian virus 40 (SV40), adenovirus (eg adenovirus major late promoter (AdMLP)) and polyomavirus. Alternatively, non-viral regulatory sequences can be used, such as the ubiquitin promoter or the beta-globin promoter. In addition, the regulatory elements are composed of sequences from different sources (eg, the SRα promoter system) containing sequences from the SV40 early promoter and long terminal repeats of human T cell type 1 leukemia virus (Takebe, Y. Et al. (1988)Mol. Cell. Biol .8 :466-472). In addition to the antibody chain genes and regulatory sequences, the recombinant expression vectors of the invention may also carry additional sequences, such as sequences that regulate the replication of the vector in a host cell (e.g., an origin of replication) and a selectable marker gene. The selectable marker gene facilitates selection of a host cell into which the vector has been introduced (see, for example, U.S. Patent Nos. 4,399,216, 4,634,665, and 5,179,017, all from Axel et al.). For example, a selectable marker gene typically confers resistance to a drug (eg, G418, hygromycin, or methotrexate) to a host cell into which the vector has been introduced. Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr- host cells selected/amplified with amine formazan) and the neo gene (for G418 selection). To express light and heavy chains, expression vectors encoding heavy and light chains are transfected into host cells by standard techniques. The various forms of the term "transfection" are intended to encompass a variety of techniques commonly used to introduce foreign DNA into prokaryotic or eukaryotic host cells, such as electroporation, calcium phosphate precipitation, DEAE-dextran transfection, and the like. Although it is theoretically possible to express an antibody of the invention in a prokaryotic or eukaryotic host cell, the antibody is best expressed in eukaryotic cells (and optimally mammalian host cells) due to the eukaryotic cells and especially mammals Cells are more likely than prokaryotic cells to assemble and secrete appropriately folded and immunologically active antibodies. Prokaryotic expression of antibody genes has been reported to be ineffective in producing high yields of active antibodies (Boss, M. A. and Wood, C. R. (1985)Immunology Today 6 :12-13). Preferred mammalian host cells for use in representing recombinant antibodies of the invention comprise Chinese hamster ovary cells (CHO cells) comprising dhfr-CHO cells as described in Urlaub and Chasin (1980)Proc. Natl. Acad. Sci. USA 77:4216-4220, which is used with DHFR selectable markers, such as, for example, R.J. Kaufman and P.A. Sharp (1982)Mol. Biol. 159: 601-621), NSO myeloma cells, COS cells, and SP2 cells. In particular, for use with NSO myeloma cells, another preferred expression system is the GS gene expression system disclosed in WO 87/04462, WO 89/01036 and EP 338,841. When introducing an antibody gene encoding a recombinant expression vector into a mammalian host cell, the antibody is produced by culturing the host cell for a period of time sufficient to allow the antibody to behave in the host cell or to secrete the antibody to the host. The medium in which the cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.Immunoconjugate In another aspect, the invention features an anti-IP-10 antibody or fragment thereof conjugated to a therapeutic moiety, such as a cytotoxin, a drug (eg, an immunosuppressive agent) or a radiotoxin. Such conjugates are referred to herein as "immunoconjugates." An immunoconjugate comprising one or more cytotoxins is referred to as an "immunotoxin." A cytotoxin or cytotoxic agent comprises any agent that is detrimental to (eg, kills) cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide ), tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxycarbonate Dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoid, procaine , tetracaine, lidocaine, propranolol, and puromycin, and analogs or homologs thereof. Therapeutic agents also include, for example, antimetabolites (eg, methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), Alkylating agents (eg, mechlorethamine, thiotepa, chlorambucil, mephalan, carmustine (BSNU), and lomoviz) Lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichloro Diamine platinum (II) (DDP) (cisplatin), anthracycline antibiotics (eg daunorubicin (previously daunomycin) and doxorubicin), antibiotics (eg dactinomycin) (dactinomycin) (previously actinomycin), bleomycin, glocomycin, and anthramycin (AMC) and anti-mitotic agents (eg, vincristine and vinblastine). Other preferred examples of therapeutic cytotoxins linked to antibodies of the invention include duocarmycin, calicheamicin, maytans Ine) and auristatin and its derivatives. One example of a calicheamicin antibody conjugate is commercially available MylotargTM (Wyeth-Ayerst). Cytotoxin can be coupled using linker technology available in the industry. Examples of the type of linker used to couple a cytotoxin to an antibody include, but are not limited to, hydrazine, thioether, ester, disulfide, and peptide-containing linkers. Alternatively, for example, it is readily soluble. A cleavage of a low pH by an enzyme in a liposomal chamber or a cleavage of a protease, such as a protease that preferentially expresses in a tumor tissue, such as a cell autolysozyme (eg, cell autolysing enzymes B, C, D). For additional discussion of linkers and methods of coupling therapeutic agents to antibodies, see also Saito, G. et al. (2003)Adv. Drug Deliv. Rev .55 :199-215; Trail, P.A. et al. (2003)Cancer Immunol. Immunother .52 :328-337; Payne, G. (2003)Cancer Cell 3 :207-212;Allen, T.M. (2002)Nat. Rev. Cancer 2 :750-763; Pastan, I. and Kreitman, R. J. (2002)Curr. Opin. Investig. Drugs 3 :1089-1091; Senter, P.D. and Springer, C.J. (2001)Adv. Drug Deliv. Rev .53 :247-264. The antibodies of the invention may also be coupled to a radioisotope to produce a cytotoxic radiopharmaceutical, also known as a radioimmunoconjugate. Examples of radioisotopes that can be coupled to an antibody for diagnosis or treatment include, but are not limited to, iodine131 ,indium111 ,yttrium90 And177 . Methods for preparing radioimmunoconjugates have been established in the art. Examples of radioactive immunoconjugates are commercially available (including ZevalinTM (IDEC Pharmaceuticals) and BexxarTM (Corixa Pharmaceuticals)), and similar methods can be used and antibodies of the invention can be used to prepare radioimmunoconjugates. Antibody conjugates of the invention can be used to modify a given biological response, and the drug moiety should not be construed as being limited to classical chemotherapeutic agents. For example, a drug moiety can be a protein or polypeptide that possesses a desired biological activity. Such proteins may comprise, for example, enzymatically active toxins or active fragments thereof, such as aconite, ricin A, pseudomonas exotoxin or diphtheria toxin; proteins such as tumor necrosis factor or interference - g; or biological response modifiers, such as lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6 ") granule ball macrophage community stimulating factor ("GM-CSF"), granule globule community stimulating factor ("G-CSF") or other growth factors. Techniques for coupling the therapeutic moiety to an antibody are well known, for example, see Arnon et al, "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243- 56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", Controlled Drug Delivery (2nd Edition), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985) and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982).Bispecific molecule In another aspect, the invention features a bispecific molecule comprising an anti-IP-10 antibody or fragment thereof of the invention. An antibody or antigen binding portion thereof of the invention may be derivatized or linked to another functional molecule (eg, another peptide or protein, such as another antibody or ligand of a receptor) to generate binding to at least two different binding sites or target molecules Bispecific molecule. An antibody of the invention may in fact be derivatized or linked to more than one other functional molecule to generate a multispecific molecule that binds to two or more different binding sites and/or target molecules; such multispecific molecules are also intended to be encompassed herein. In the term "bispecific molecule". To generate a bispecific molecule of the invention, an antibody of the invention may be functionally linked (eg, by chemical coupling, gene fusion, non-covalent association, or other means) to one or more additional binding molecules (eg, another antibody) , antibody fragments, peptides or binding mimics) to produce bispecific molecules. Thus, the invention encompasses bispecific molecules comprising at least one first binding specificity for IP-10 and a second binding specificity for a second target epitope. In a particular embodiment of the invention, the second target epitope is an Fc receptor, such as human Fc[gamma]RI (CD64) or human Fc[alpha] receptor (CD89). Thus, the invention encompasses the ability of a bispecific molecule to bind to an effector cell (eg, a mononuclear sphere, a macrophage or a polymorphonuclear cell (PMN)) that expresses FcγR, FcαR, or FceR, and a target cell that exhibits IP-10. These bispecific molecules allow cells expressing IP-10 to target effector cells and trigger Fc receptor-mediated effector cell activity (eg, phagocytosis of cells exhibiting IP-10, antibody-dependent cell-mediated cytotoxicity) ADCC), interleukin release or formation of superoxide anion). In embodiments of the invention in which the bispecific molecule is multispecific, the molecule may further comprise a third binding specificity in addition to anti-Fc binding specificity and anti-IP-10 binding specificity. In one embodiment, the third binding-specific portion is an anti-enhancement factor (EF) moiety, eg, a molecule that binds to a surface protein involved in cytotoxic activity and thereby increases the immune response against the target cell. An "anti-enhancement factor moiety" can be an antibody, a functional antibody fragment or a ligand that binds to a given molecule (eg, an antigen or receptor) and thereby enhances the effect of the binding determinant on the Fc receptor or target cell antigen. The "anti-enhancement factor moiety" can bind to an Fc receptor or a target cell antigen. Alternatively, the anti-enhancement factor moiety can bind to an entity that is different from the entity to which the first and second binding specificities bind. For example, an anti-enhancement factor moiety can bind to a cytotoxic T cell (eg, via CD2, CD3, CD8, CD28, CD4, CD40, ICAM-1, or other immune cells that increase the immune response against the target cell). In one embodiment, the bispecific molecule of the invention comprises at least one antibody or antibody fragment thereof (eg, comprising Fab, Fab', F(ab')2 , Fv or single-chain Fv) as a binding specific part. The antibody may also be a light chain or heavy chain dimer or any minimal fragment thereof, such as an Fv or a single-stranded construct, as set forth in Ladner et al., U.S. Patent No. 4,946,778, the disclosure of which is expressly incorporated herein . In one embodiment, the binding specificity for an Fc gamma receptor is provided by a monoclonal antibody that is not blocked by human immunoglobulin G (IgG). As used herein, the term "IgG receptor" refers to any of the 8 genes (sequence genes) located on chromosome 1. These genes encode a total of 12 transmembrane or soluble receptor isoforms, which are equivalent Divided into three Fc gamma receptor species: FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16). In a preferred embodiment, Fcγ is regulated by the system human high-affinity FcyRI. Human FcγRI is a monomeric IgG (10)8 - 109 M-1 ) show high affinity 72 kDa molecules. The production and characterization of certain preferred anti-Fcγ monoclonal antibodies are described in PCT Publication No. WO 88/00052, the disclosure of which is incorporated herein by reference. The antibodies bind to an epitope of FcyRI, FcyRII or FcyRIII at a site other than the Fcy binding site of the receptor, and thus the binding thereof is not substantially blocked by physiological concentrations of IgG. The specific anti-FcyRI anti-systems mAb 22, mAb 32, mAb 44, mAb 62 and mAb 197 are useful in the present invention. Hybridomas producing mAb 32 are available from the American Type Culture Collection under ATCC Accession No. HB9469. In other embodiments, the anti-Fcy receptor anti-system monoclonal antibody 22 is in a humanized form (H22). The production and characterization of H22 antibodies are described in Graziano, R.F. et al. (1995).J. Immunol 155 (10): 4996-5002 and PCT Publication WO 94/10332. The cell line producing the H22 antibody was deposited in the American Type Culture Collection under the name HA022CL1 and has accession number CRL 11177. In other preferred embodiments, the binding specificity for the Fc receptor is provided by an antibody that binds to a human IgA receptor (eg, an Fc-alpha receptor (Fc[alpha]RI (CD89))), preferably without Human immunoglobulin A (IgA) blockade. The term "IgA receptor" is intended to include a gene product of the gene (FcαRI) located on chromosome 19. This gene is known to encode several 55 to 110 kDa alternatively spliced transmembrane isoforms. The FcαRI (CD89) phenotype is expressed in Mononuclear/macrophage, eosinophilic, and neutrophil pellets, but not on non-effector cell populations. FcαRI has moderate affinity for IgA1 and IgA2 (≈ 5 ( 107 M-1 ) and increased affinity when exposed to interleukins such as G-CSF or GM-CSF (Morton, H. C. et al. (1996)Critical Reviews in Immunology 16 :423-440). Four FcaRI-specific monoclonal antibodies (identified as A3, A59, A62 and A77) that bind to FcaRI outside the IgA ligand binding domain have been described (Monteiro, R.C. et al. (1992)J. Immunol. 148 :1764). FcαRI and FcγRI are preferred trigger receptors for use in the bispecific molecule of the present invention because (1) are mainly expressed in immune effector cells (eg, mononuclear spheres, PMN, macrophages, and dendritic cells). (2) to a high degree (eg, 5,000-100,000 cells/cell); (3) to mediators of cytotoxic activity (eg, ADCC, phagocytosis); (4) to mediate antigens targeted to them (including Enhanced antigen presentation by the body antigen). Although human monoclonal antibodies are preferred, other anti-systemic murine chimeric and humanized monoclonal antibodies can be employed in the bispecific molecules of the invention. The bispecific molecules of the invention can be prepared by coupling binding specificity (e.g., anti-FcR and anti-IP-10 binding specificity) components using methods known in the art. For example, each of the binding-specific portions of the bispecific molecule can be separately produced and then coupled to each other. Covalent coupling can be carried out using a variety of coupling agents or crosslinkers when binding specific moiety proteins or peptides. Examples of the crosslinking agent include protein A, carbodiimide, N-succinimide-S-ethylidene-thioacetate (SATA), 5,5'-dithiobis(2-nitrate Benzoic acid) (DTNB), o-phenyl bis-maleimide (oPDM), N-succinimide-3-(2-pyridyldithio) propionate (SPDP) and 4- (N-maleimidomethyl)cyclohexane-1-carboxylic acid sulfoaluminum imino ester (sulfo-SMCC) (see, for example, Karpovsky et al., (1984)J. Exp. Med .160 :1686;Liu, MA et al. (1985)Proc. Natl. Acad. Sci. USA 82 :8648). Other methods are described in Paulus (1985) Behring Ins. Mitt. No. 78, 118-132; Brennan et al. (1985)Science 229 :81-83) and Glennie et al. (1987)J. Immunol. 139 :2367-2375). Preferred coupling agents are SATA and sulfo-SMCC, both available from Pierce Chemical Co. (Rockford, IL). Where a specific portion of the antibody is bound, it can be coupled via a thiol linkage of the C-terminal hinge region of the two heavy chains. In a particularly preferred embodiment, the hinge region is modified to contain an odd number of (preferably one) sulfhydryl residues prior to coupling. Alternatively, the two binding specific portions can be encoded in the same vector and expressed and assembled in the same host cell. This method is especially useful for the bispecific molecular system MAb x MAb, MAb x Fab, Fab x F(ab')2 Or when the ligand x Fab fusion protein. The bispecific molecule of the invention may be a single chain molecule comprising a single chain antibody and a binding determinant or a single chain bispecific molecule comprising two binding determinants. A bispecific molecule can include at least two single chain molecules. Methods of preparing bispecific molecules are described, for example, in U.S. Patent No. 5, 260, 203; U.S. Patent No. 5, 455, 030; U.S. Patent No. 4, 881, 175; U.S. Patent No. 5,132, 405; U.S. Patent No. 5,091,513; U.S. Patent No. 5,476,786 No. 5, 013, 653; U.S. Patent No. 5,258,498; and U.S. Patent No. 5,482,858. Binding of a bispecific molecule to its specific target can be confirmed by, for example, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), FACS analysis, biological analysis (eg, growth inhibition), or Western blot analysis. . Each of these assays typically detects the presence of a protein-antibody complex of particular interest by employing a labeled reagent (e.g., an antibody) that specifically targets the complex of interest. For example, an FcR-antibody complex can be detected using, for example, an enzyme-linked antibody or antibody fragment that recognizes and specifically binds to an antibody FcR complex. Alternatively, any of a variety of other immunoassays can be used to detect such complexes. For example, antibodies can be radiolabeled and used in radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March 1986, Incorporated herein by reference). The radioisotope can be detected by, for example, using a gamma counter or a scintillation counter or by autoradiography.Pharmaceutical composition In another aspect, the invention provides a composition, such as a pharmaceutical composition, comprising a monoclonal antibody of the invention, or a combination thereof, or an antigen binding portion thereof, in association with a pharmaceutically acceptable carrier. Such compositions may comprise one or a combination (e.g., two or more different ones) of the antibodies or immunoconjugates or bispecific molecules of the invention. For example, a pharmaceutical composition of the invention can include a combination of antibodies (or immunoconjugates or bispecific molecules) that bind to different epitopes on a target antigen or have complementary activities. The pharmaceutical compositions of the invention may also be administered in combination, i.e., in combination with other agents. For example, a combination therapy can comprise a combination of an anti-IP-10 antibody of the invention and at least one other anti-inflammatory or immunosuppressive agent. Examples of therapeutic agents useful in combination therapies are set forth in more detail below in the section on the use of the antibodies of the invention. As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and physiologically compatible similar agents. Preferably, the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). The administration of the active compound (i.e., antibody, immunoconjugate or bispecific molecule) can be applied to the material to protect the compound from the acid and other natural conditions that can inactivate the compound. The pharmaceutical compounds of the invention may comprise one or more pharmaceutically acceptable salts. "Pharmaceutically acceptable salt" means a salt which retains the desired biological activity of the parent compound and does not impart any undesirable toxicological effects (see, for example, Berge, S.M. et al. (1977)J. Pharm. Sci .66 :1-19). Examples of such salts include acid addition salts and base addition salts. Acid addition salts comprise derived from non-toxic inorganic acids (eg, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, phosphorous acid, and the like) and derived from non-toxic organic acids (eg, aliphatic mono- and dicarboxylic acids, Alkanoic acid substituted with phenyl, hydroxyalkanoic acid, aromatic acid, aliphatic and aromatic sulfonic acid, and the like. Base addition salts include those derived from alkaline earth metals (eg, sodium, potassium, magnesium, calcium, and the like) and from non-toxic organic amines (eg, N,N'-dibenzylethylenediamine, N-methylglucamine, chloroprene) Those with chloroprocaine, choline, diethanolamine, ethylenediamine, procaine, and the like. The pharmaceutical compositions of the present invention may also comprise a pharmaceutically acceptable antioxidant. Examples of pharmaceutically acceptable antioxidants include: (1) water-soluble antioxidants such as ascorbic acid, cysteamine hydrochloride, sodium hydrogen sulfate, sodium metabisulfite, sodium sulfite, and the like; (2) oil-soluble antibiotics An oxidizing agent such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) Metal chelators such as citric acid, ethylenediaminetetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like. Examples of suitable aqueous and non-aqueous vehicles which may be used in the pharmaceutical compositions of the present invention include water, ethanol, polyols (e.g., glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils (e.g., olive oil), and Injectable organic esters such as ethyl oleate. For example, proper fluidity can be maintained by using a coating material such as lecithin, maintaining the desired particle size (in the case of a dispersing agent), and using a surfactant. These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the presence of microorganisms is ensured by the above sterilization procedure and by incorporating various antibacterial and antifungal agents (e.g., parabens, chlorobutanol, phenol, sorbic acid, and the like). It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like, in such compositions. In addition, long-acting absorption of injectable pharmaceutical forms can be brought about by incorporating absorption delaying agents (for example, aluminum monostearate and gelatin). The pharmaceutically acceptable carrier comprises a sterile aqueous solution or dispersion and a sterile powder for the preparation of a sterile injectable solution or dispersion. The use of such media and pharmaceutical agents for pharmaceutically active substances is known in the art. The present invention encompasses its use in pharmaceutical compositions in addition to any conventional media or agents that are incompatible with the active compound. Additional active compounds may also be included in such compositions. Generally, the therapeutic compositions must be sterile and stable under the conditions of manufacture and storage. The compositions can be formulated as solutions, microemulsions, liposomes or other ordered structures suitable for high drug concentrations. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. In many cases, it will be preferred to include isotonic agents (e.g., sugars, polyols (e.g., mannitol, sorbitol) or sodium chloride) into the compositions. Long-acting absorption of the injectable compositions can be brought about by the inclusion of delaying compositions (such as monostearate and gelatin) in the compositions. Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in one or a combination of any of the ingredients listed above, as appropriate, followed by sterile microfiltration. In general, dispersions are prepared by incorporating the active compound into a sterile vehicle containing the base dispersion medium and the other ingredients required from the above. In the case of the use of sterile vehicles for the preparation of sterile injectable solutions, the preferred preparation methods are vacuum drying and lyophilization (lyophilized), which may be prepared from the previously sterile solution of the active ingredient plus any desired additional A vehicle composed of a medicament. The amount of active ingredient that can be combined with the carrier materials to produce a single dosage form will vary depending upon the individual being treated and the particular mode of administration. The amount of active ingredient which can be combined with the carrier materials to produce a single dosage form is usually the amount of the composition which produces a therapeutic effect. Typically, the amount will range from about 0.01% to about 99% of the active ingredient, preferably from about 0.1% to about 70%, of the active ingredient in combination with a pharmaceutically acceptable carrier, preferably at 100%. The ground is about 1% to about 30%. The dosage regimen is adjusted to provide the optimal desired response (eg, a therapeutic response). For example, a single bolus can be administered, several divided doses can be administered over time or the dose can be proportionally reduced or increased as indicated by the urgency of the condition being treated. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to a physically discrete unit suitable for use as a unit dosage for the individual to be treated; each unit contains a predetermined amount of active compound, which is calculated to produce the desired therapeutic effect with the desired pharmaceutical carrier. The specification of the unit dosage form of the invention depends on and directly on the following factors: (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the inherent incorporation of the active compound in the art of treating individual sensitivities Restrictions. For administration of the antibody, the dosage is in the range of from about 0.0001 mg/kg to 100 mg/kg, and more typically from 0.01 mg/kg to 5 mg/kg of host body weight. For example, the dose can be 0.3 mg/kg body weight, 1 mg/kg body weight, 3 mg/kg body weight, 5 mg/kg body weight or 10 mg/kg body weight or in the range of 1-10 mg/kg. An exemplary treatment regimen requires administration of the antibody once a week, once every two weeks, once every three weeks, once every four weeks, once a month, once every three months, or once every three to six months. For example, a dosage regimen for an antibody comprises administering 1 mg/kg body weight or 3 mg/kg body weight via intravenous administration, wherein the antibody is administered using one of the following dosing schedules: (i) once every four weeks, 6 doses, then every 3 months; (ii) every 3 weeks; (iii) 3 mg/kg body weight, followed by 1 mg/kg body weight every three weeks. A preferred dosage regimen for the antibody also comprises administering a single dose of between 30-450 mg of the anti-IP-10 antibody (or antigen binding portion thereof). For example, a single dose of antibody is 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 Mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 310 mg, 320 mg, 330 mg, 340 mg, 350 mg, 360 mg, 370 mg, 380 mg, 390 mg, 400 mg, 450 mg or doses of 35 mg, 45 mg, 55 mg, 65 mg, 75 mg, 85 mg, 95 mg, 105 mg , 115 mg, 125 mg, 135 mg, 145 mg, 155 mg, 165 mg, 175 mg, 185 mg, 195 mg, 205 mg, 215 mg, 225 mg, 235 mg, 245 mg, 255 mg, 265 mg, 275 Mg, 285 mg, 295 mg, 305 mg, 315 mg, 325 mg, 335 mg, 345 mg, 355 mg, 365 mg, 375 mg, 385 mg, 395 mg, 405 mg or 445 mg. In some methods, antibodies are administered weekly or biweekly. In yet another method, the antibody is administered for a period of about 12 weeks, such as on days 1, 15, 29, 43, 57, and 71. For example, the method can comprise a single dose of about 40 mg of the antibody or antigen binding portion thereof (every two weeks, a period of about 12 weeks). In some methods, two or more monoclonal antibodies having different binding specificities are administered simultaneously, in which case the dosage of each antibody administered is within the indicated range. Antibodies are usually administered in a number of situations. The interval between single doses can be, for example, weekly, monthly, every three months, or yearly. The interval can also be irregular as indicated by measuring the blood concentration of the antibody against the target antigen of the patient. In some methods, the dosage is adjusted to achieve a plasma antibody concentration of about 1-1000 μg/ml and in some methods about 25-300 μg/ml. Alternatively, the antibody can be administered by sustained release of the formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. In general, human antibodies display the longest half-life, followed by humanized antibodies, chimeric antibodies, and non-human antibodies. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, relatively low doses are administered over relatively long periods of time at relatively infrequent intervals. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, relatively high doses of relatively short intervals are sometimes required until the disease progression is alleviated or terminated, and preferably until the patient exhibits partial or complete improvement in disease symptoms. Thereafter, a prophylactic regimen can be administered to the patient. The actual dose values of the antibodies (and other active ingredients) in the pharmaceutical compositions of the invention can be varied to achieve an amount of antibody effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration without toxicity to the patient. The selected dosage value will depend on a number of pharmacokinetic factors, including the activity of the particular composition of the invention or its ester, salt or guanamine, the route of administration, the time of administration, and the excretion rate of the particular compound employed. , duration of treatment, other drugs, compounds and/or materials used in combination with the particular compositions used, age, sex, weight, physical condition, general health and prior medical history of the patient being treated and are well known in the medical arts Similar factors. The "therapeutically effective amount" of the anti-IP-10 antibody preferably reduces the severity of the symptoms of the disease, increases the frequency and duration of the disease-free period, or prevents damage or disability due to susceptibility. In the case of rheumatoid arthritis (RA), a therapeutically effective dose preferably prevents further deterioration of physical symptoms associated with RA, such as pain, fatigue, morning stiffness (lasting more than an hour) Diffuse muscle pain, loss of appetite, weakness, joint pain with temperature, swelling, tenderness, and joint stiffness after inactivity. The therapeutically effective dose preferably also prevents or delays the onset of RA, for example, in the presence of early or preliminary signs of the disease. Again, it involves delaying the chronic progression associated with RA. Laboratory tests for the diagnosis of RA include chemical methods (including measurement of IP-10 concentration), hematology, serology, and radiology. Thus, any clinical or biochemical analysis monitoring any of the above symptoms can be used to determine if a particular treatment is a therapeutically effective dose for the treatment of RA. Those skilled in the art will be able to determine such amounts based on factors such as the individual's size, the severity of the individual's symptoms, and the particular composition or route of administration selected. The compositions used in the present invention can be administered by one or more administration routes using one or more of a variety of methods known in the art. Those skilled in the art will appreciate that the route and/or mode of administration will vary depending on the desired result. Preferred routes of administration for antibodies include intravenous, intramuscular, intradermal, intraperitoneal, subcutaneous, spinal or other parenteral routes of administration, for example by injection or infusion. As used herein, the phrase "parenteral administration" means a mode of administration other than enteral and topical administration (usually by injection) and includes, but is not limited to, intravenous, intramuscular, intraarterial, Intrathecal, intracapsular, intraocular, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subepidermal, intraarticular, subcapsular, subarachnoid, intraspinal, epidural, and intrasternal injections and infusions . Alternatively, the antibody can be administered via the enteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically. The active compounds can be prepared using carriers that protect the compound from rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable biocompatible polymers can be used, such as vinyl vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many of the methods used to prepare such formulations are patented or generally known to those skilled in the art. See for exampleSustained and Controlled Release Drug Delivery Systems , edited by J.R. Robinson, Marcel Dekker, Inc., New York, 1978. Therapeutic compositions can be administered using medical devices known in the art. For example, in a preferred embodiment, a needleless hypodermic injection device can be used (for example, as disclosed in U.S. Patent Nos. 5,399,163, 5,383,851, 5,312,335, 5,064,413, 4,941,880, 4,790,824 or The device of the invention is administered by the device of No. 4,596,556. Examples of well-known implants and modules that can be used in the present invention include: U.S. Patent No. 4,487, 603, the disclosure of which is incorporated herein by reference in its entirety in its entirety the entire entire entire entire entire entire entire disclosure A therapeutic device for the administration of a drug via the skin; U.S. Patent No. 4,447,233, the disclosure of which is incorporated herein by reference in its entirety in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all An invasive drug delivery system is disclosed in U.S. Patent No. 4,439,196, the disclosure of which is incorporated herein by reference. These patents are incorporated herein by reference. Many other such implants, delivery systems and modules are known to those skilled in the art. In certain embodiments, the antibodies employed in the invention can be formulated to ensure a reasonable distribution in vivo. For example, the blood brain barrier (BBB) rejects many highly hydrophilic compounds. To ensure that the therapeutic compounds of the invention cross the BBB (if desired), they can be formulated, for example, in liposome form. For a method of making liposomes, see, for example, U.S. Patent Nos. 4,522,811; 5,374,548; and 5,399,331. Liposomes can include one or more moieties that are selectively transported into a particular cell or organ, thereby enhancing targeted drug delivery (see, for example, V.V. Ranade (1989).J. Clin. Pharmacol 29:685). Exemplary targeting moieties comprise folate or biotin (see, e.g., U.S. Patent No. 5,416,016 to Low et al.); Mannose (Umezawa et al. (1988)Biochem. Biophys. Res. Commun .153 :1038); Antibodies (P.G. Bloeman et al. (1995)FEBS Lett .357 :140;M. Owais et al. (1995)Antimicrob. Agents Chemother .39 :180); Surfactant Protein A Receptor (Briscoe et al. (1995)Am. J. Physiol .1233 :134);p120 (Schreier et al. (1994)J. Biol. Chem. 269 :9090); see also K. Keinanen; M.L. Laukkanen (1994)FEBS Lett. 346 :123;J.J. Killion;I.J. Fidler (1994Immunomethods 4 :273.Use and method of the present invention The antibodies (and immunoconjugates and bispecific molecules) of the invention have diagnostic and therapeutic uses in vitro and in vivo. For example, the molecules can be administered to cells in culture (eg, ex vivo or ex vivo), or administered in an individual (eg, in vivo) to treat, prevent, or diagnose various conditions. The term "individual" as used herein is intended to encompass both human and non-human animals. Non-human animals include all vertebrates, such as mammals and non-mammals, such as non-human primates, sheep, dogs, cats, cows, horses, chickens, amphibians, and reptiles. These methods are particularly suitable for treating human patients suffering from conditions associated with abnormal IP-10 performance. When administering an IP-10 antibody and another agent, the two can be administered in either order or simultaneously. In one embodiment, the antibodies (and immunoconjugates and bispecific molecules) of the invention can be used to detect IP-10 concentrations or concentrations of cells containing IP-10. This can be achieved, for example, by contacting a sample (e.g., an in vitro sample) and a control sample with an anti-IP-10 antibody under conditions that permit formation of a complex between the antibody and IP-10. Any complex formed between the antibody and IP-10 was detected and compared in the sample and control. For example, standard assays well known in the art (e.g., ELISA and flow cytometry) can be performed using the compositions of the invention. Thus, in one aspect, the invention further provides a method of detecting the presence of IP-10 (e.g., human IP-10 antigen) in a sample or measuring the amount of IP-10, which comprises subjecting the sample to a control sample An antibody of the invention or an antigen binding portion thereof that specifically binds to IP-10 is contacted under conditions that permit formation of a complex between the antibody or portion thereof and IP-10. The formation of the complex is then detected, wherein the difference in complex formation between the sample and the control sample indicates the presence of IP-10 in the sample. Also within the scope of the invention are kits comprising compositions of the invention (e.g., antibodies, human antibodies, immunoconjugates, and bispecific molecules) and instructions for use. The kit may further comprise at least one additional reagent or one or more additional antibodies of the invention (eg, an antibody having complementary activity and binding to an epitope on a target antigen different from the first antibody). The set typically contains a flag indicating the intended use of the contents of the set. The term mark includes any written or recorded material that is provided on or in conjunction with the set or otherwise. IP-10 is known to have a chemoattractive effect on activated T cells and NK cells and recruit these cells to sites of inflammation and autoimmune responses. Thus, the anti-IP-10 antibodies (and immunoconjugates and bispecific molecules) of the invention can be used to inhibit inflammatory or autoimmune mediated by activated T cells and/or NK cells in various clinical indications. reaction. The invention thus provides a method of inhibiting an inflammatory or autoimmune response mediated by activated T cells and/or NK cells, comprising administering a T cell or NK cell to an antibody or antigen binding portion thereof of the invention (or The immunoconjugate or bispecific molecule of the invention is contacted to inhibit an inflammatory response or an autoimmune response. Specific examples of inflammatory or autoimmune conditions in which an antibody of the present invention can be used include, but are not limited to, the following diseases: A.Multiple sclerosis and other demyelinating diseases It has been shown that the expression of IP-10 mRNA is increased in murine experimental allergic encephalomyelitis (EAE) (a mouse model of multiple sclerosis) (Godiska, R. et al. (1995)J. Neuroimmunol. 58 :167-176). In addition, increased IP-10 concentrations were found in cerebrospinal fluids of MS patients during acute demyelinating events (Sorensen, T.L. et al. (1999)J. Clin. Invest .103 :807-815; Franciotta et al. (2001)J. Neuroimmunol. 115 :192-198). It has also been shown that IP-10 is expressed by astrocytes in MS lesions but not in unaffected white matter (Balashov, K.E. et al. (1999)Proc. Natl. Acad. Sci. USA 96 :6873-6878) and the expression of reactive astrocytes in macrophages and surrounding parenchyma in MS plaques (Simpson, J.E. et al. (2000)Neuropathol. Appl. Neurobiol. 26 :133-142). PCT Patent Publication WO 02/15932 shows that administration of an anti-IP-10 antibody in a mouse hepatitis virus (MHV) model of MS reduces T lymphocyte and macrophage invasion, inhibits demyelination progression, and increases myelin Regeneration and improved neurological function (see also Liu, MT et al. (2001)J. Immunol. 167 :4091-4097). It has been shown that administration of murine anti-IP-10 antibodies reduces the incidence and severity of clinical and histological diseases in murine EAE (Fife, B.T. et al. (2001)J. Immunol. 166 :7617-7624). In view of the foregoing, MS and other demyelinating diseases can be treated using the anti-IP-10 antibodies of the invention by administering the antibodies to an individual in need of treatment. Antibodies can be used alone or in combination with other anti-MS agents (eg, interferon beta-1a (eg Avonex®, Rebif®, interferon beta-1b (eg Betaseron®, glatiramer acetate) (eg Copaxone® and/or Mitoxantrone (eg Novantrone®) is used in combination.Rheumatoid arthritis It has been shown that IP-10 concentrations are significantly elevated in synovial fluid, synovial tissue and serum in patients with rheumatoid arthritis (RA) (Patel, D.D. et al. (2001)Clin. Immunol .98 :39-45; Hanaoka, R. et al. (2003)Arthritis Res. and Therapy 5 :R74-R81). It has been shown that the IP-10 receptor CXCR3 is preferentially expressed in the synovial tissue of mast cells from RA patients (Ruschpler, P. et al. (2003)Arthritis Res. Ther .5 :R241-R252). In the rat model of adjuvant-induced arthritis (AA), a detectable autoantibody response against self-IP-10 has been reported (Salomon, I. et al. (2002)J. Immunol .169 :2685-2693). In addition, administration of a DNA vaccine encoding IP-10 increases the production of neutralizing anti-IP-10 antibodies in rats, and these IP-10 autoantibodies can accept AA resistance to naive rats (Salomon) , I. et al., above). In view of the foregoing, the anti-IP-10 antibody of the present invention can be used to treat rheumatoid arthritis by administering the antibody to an individual in need of treatment. The antibodies may be used alone or in combination with other anti-RA agents, such as non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, corticosteroids (eg, prednisone, hydrocortisone) (eg, prednisone) Hydrocortisone)), TNF inhibitor (including adalimumab (Humira®, etanercept) (Enbrel® and infliximab (Remicade®), disease-relieving anti-rheumatic drugs (including Aminoguanidine, cyclophosphamide, cyclosporine, auranofin, azathioprine, sodium thiomalate, hydroxychloroquine sulfate, leflunomide, minocycline (minocycline), penicillamine (penicillamine) and sulfasalazine, fibromyalgia medicine, osteoporosis medicine and gout medicine.Inflammatory bowel disease It has been shown that IP-10 expression is significantly enhanced in cells infiltrating the lamina propria of colonic biopsy from patients with ulcerative colitis (Uguccioni, M. et al. (1999)Am. J. Pathol .155 :331-336). In addition, it has been shown that neutralizing IP-10 protects mice from epithelial ulcers in acute colitis and enhances crypt cell survival (Sasaki, S. et al. (2002)Eur. J. Immunol .32 :3197-3205). Similarly, treatment with anti-IP-10 antibodies resulted in improved inflammatory scores in IL-10 −/− mice that developed colitis similar to Crohn's disease in humans (Singh, U.P. et al. (2003)J. Immunol. 171 :1401-1406). In view of the foregoing, the anti-IP-10 antibody of the present invention can be used to treat inflammatory bowel disease (IBD) (including ulcerative colitis and Crohn's disease) by administering the antibody to an individual in need of treatment. The antibodies may be used alone or in combination with other anti-IBD agents, for example, those containing mesalamine (including sulfamethamine and others containing 5-aminosalicylic acid (5- ASA) agents (eg olsalazine and balsalazide), non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, corticosteroids (eg, prednisone, hydrocortisone), TNF inhibition Agent (including adalimumab (Humira®, enalapril (Enbrel® and Remicade®), immunosuppressive agents (eg 6-mercaptopurine, azathioprine and cyclosporin A) and antibiotics D.Systemic lupus erythematosus It has been shown that serum IP-10 concentrations are significantly increased in patients with systemic lupus erythematosus (SLE) and have been shown to be associated with disease activity (see, for example, Narumi, S. et al. (2000).Cytokine 12 :1561-1565). Thus, in another embodiment, an anti-IP-10 antibody of the invention can be used to treat SLE by administering the antibody to an individual in need of treatment. Antibodies can be used alone or in combination with other anti-SLE agents, such as non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, corticosteroids (eg, prednisone, hydrocortisone), immunosuppression Inhibitors (eg, cyclophosphamide, azathioprine, and methotrexate), antimalarial drugs (eg, hydroxychloroquine), and biopharmaceuticals that inhibit the production of dsDNA antibodies (eg, LJP 394). E.I Type diabetes It has been shown that serum IP-10 levels are elevated in patients with type 1 diabetes, especially in newly attacked diseases, and that GAD-reactivity in these concentrations and GAD autoantibody-positive patients has been shown to produce gamma-interference. The number of T cells in the prime (Shimada, A. et al. (2001)Diabetes Care twenty four :510-515). In a separate study, serum IP-10 concentrations were found to increase in patients with newly diagnosed disease and at high risk of disease, and IP-10 concentrations were associated with IFN-γ concentrations (Nicoletti, F. et al. (2002)Diabetologia 45 :1107-1110). Furthermore, beta cells have been shown to secrete IP-10, causing chemical attraction of T cells, and it has been shown that mice lacking CXCR3 have delayed type I diabetes episodes (Frigerio, S. et al. (2002)Nature Medicine 8:1414-1420). Thus, in another embodiment, an anti-IP-10 antibody of the invention can be used to treat Type I diabetes by administering the antibody to an individual in need of treatment. The antibodies can be used alone or in combination with other anti-diabetic agents such as insulin. F.Inflammatory skin disorder It has been shown that IP-10 performance is associated with a variety of inflammatory skin conditions. For example, IP-10 has been detected in keratinocytes and skin infiltrates from active psoriasis plaques (Gottlieb, A. B. et al. (1988) J. Exp. Med. 168:941-948). Furthermore, CXCR3 is expressed by dermal CD3+ lymphocytes, indicating that CXCR3 is involved in the transport of T lymphocytes to psoriasis dermis (Rottman, J. B. et al. (2001) Lab. Invest. 81: 335-347). Thus, in another embodiment, the anti-IP-10 antibody of the invention can be used to treat psoriasis by administering the antibody to an individual in need of treatment. The antibodies may be used alone or in combination with other agents or treatments, for example, topical therapeutics (eg, steroids, coal tar, calcipotriene, tazarotene, guanidine) Phenol, salicylic acid), phototherapy, systemic medicine (eg, methotrexate, oral retinoids, cyclosporine, fumarate) and/or biopharmaceuticals (eg alfacept, alefacept) Eleizumab). Lichen planus (chronic inflammatory disease of the skin and oral mucosa) has been shown to be associated with infiltrating CD4+ and CD8+ T cells expressing CXCR3, and in addition, CD8+ infiltrating cytolytic T cells have been shown to have IP-10 in their cytolytic particles. And the lesion keratinocytes have been shown to overexpress IP-10 (Iijima, W. et al. (2003)Am. J. Pathol .163 :261-268). Thus, in another embodiment, the anti-IP-10 antibody of the invention can be used to treat lichen planus by administering the antibody to an individual in need of treatment. The antibodies can be used alone or in combination with other agents or treatments (eg, anti-inflammatory agents, antihistamines, corticosteroids, and phototherapy). It has been shown that IP-10 is elevated in other inflammatory skin conditions such as chronic discoid lupus erythematosus and Jessner's lymphocytic infiltration of the skin (Flier, J. et al. 2001)J. Pathol. 194 :398-405). Thus, the anti-IP-10 antibodies of the invention can be used to treat such inflammatory skin conditions by administering the antibodies to the individual in need of treatment. The antibodies can be used alone or in combination with other agents or therapies as set forth above. G.Autoimmune thyroid disease It has been shown that both IP-10 and CXCR3 are present in the thyroid gland of patients with Graves' disease (GD), but do not show (or worse) in normal thyroid tissue, and in new-onset GD patients The highest performance (Romagnani, P. et al. (Am. J. Pathol. 161: 195-206). It has also been shown that IP-10 is present in thyroid tissue in patients with Hashimoto's thyroiditis (Kemp, EH, etc.) (2003) Clin. Endocrinol. 59: 207-213). Thus, in another embodiment, an anti-IP-10 antibody of the invention can be used to treat autoimmune thyroid disease by administering the antibody to an individual in need of treatment. (Including Graves' disease and Hashimoto's thyroiditis. Antibodies may be used alone or in combination with other agents or treatments (eg antithyroid drugs, radioactive iodine and subtotal thyroidectomy).Scheler's syndrome It has been shown that the expression of IP-10 mRNA is significantly up-regulated in the salivary glands of patients with Sjogren's syndrome (SS), with the most prominent in the epithelium adjacent to the lymphoid infiltrate (see, for example, Ogawa, N. et al. (2002)Arthritis Rheum .46 :2730-2741). Thus, in another embodiment, the anti-IP-10 antibody of the invention can be used to treat Sjogren's syndrome by administering the antibody to an individual in need of treatment. The antibodies may be used alone or in combination with other anti-SS agents, such as artificial lubricants (eg, preservative-free artificial tears, artificial saliva, fragrance-free skin lotion, saline nasal spray, and vaginal lubricants). Lacriserts®, pilocarpine hydrochloride (Salagen®) for the treatment of dry eye, and ceyimeline (Eyoxac®), non-steroidal anti-inflammatory drugs (NSAID), steroids and immunological resistance for the treatment of dry mouth Antibiotics. I.Pulmonary inflammation IP-10 has been tested in a mouse model of allergic asthma, and the results show that IP-10 is up-regulated in the lungs after allergen challenge and IP-10 overexpression and increased airway hyperactivity, eosinophilia Balloon hyperplasia, increased IL-4 concentration, and CD8+ lymphocyte recruitment (Medoff, BD et al. (2002)J. Immunol. 168 :5278-5286). In addition, smokers with chronic obstructive pulmonary disease (COPD) have demonstrated IP-10 in their bronchial epithelium (Saetta, M. et al. (2002)Am. J. Respir. Crit. Care Med .165 :1404-1409). In addition, high IP-10 concentrations were shown in bronchoalveolar lavage fluid in patients with pulmonary sarcoma and lymphocytic alveolitis (Agostini, C. et al. (1998)J. Immunol. 161 :6413-6420). Thus, in another embodiment, an anti-IP-10 antibody of the invention can be used to treat a disease characterized by pulmonary inflammation (eg, asthma, COPD, pulmonary sarcoma, or lymphocytes by administering the antibody to an individual in need of treatment). Alveolar inflammation). The antibodies may be used alone or in combination with other agents for reducing lung inflammation, such as cromolyn sodium, nedocromil sodium, inhaled corticosteroids, systemic (eg oral) corticosteroids, short-acting beta antagonists, short-acting bronchodilators, long-acting beta antagonists or agonists (oral or inhalation), leukotriene modifiers, theophylline and oxygen therapy. J.Transplant rejection It has been shown that IP-10 plays a role in the exclusion of transplant organizations. For example, treatment of mice with neutralizing anti-IP-10 antibodies increases survival of intestinal allografts and reduces accumulation of host T cells and NK cells in the lamina propria (Zhang, Z. et al. (2002)J. Immunol. 168 :3205-3212). In addition, anti-IP-10 antibody treatment also increased the survival of allografts and reduced lymphocyte graft infiltration in mice receiving islet allografts (Baker, M.S. et al. (2003)Surgery 134 :126-133). In addition, cardiac allografts (rather than normal hearts) display IP-10 and CXCR3, and elevated IP-10 concentrations are associated with cardiac allograft vasculopathy (Zhao, D.X. et al. (2002)J. Immunol .169 :1556-1560). It has also been shown that CXCR3 and IP-10 are expressed by infiltrating lung allografts by inflammatory cells (Agostini, C. et al. (2001)Am J. Pathol. 158 :1703-1711). It has been shown that neutralizing CXCR3 or IP-10 in vivo attenuates obstructive bronchiolitis syndrome (BOS) in a murine lung transplant model, which is a major limitation on the survival of lung transplant recipients (Belperio, JA, etc.) People (2002)J. Immunol. 169 :1037-1049). In view of the foregoing, the present invention also provides a method of inhibiting transplant rejection by administering an anti-IP-10 antibody of the present invention to a transplant recipient in need of treatment. Examples of treatable tissue grafts include, but are not limited to, liver, lung (e.g., therapeutic BOS), kidney, heart, small intestine, and islet cells. The antibodies may be used alone or in combination with other agents for inhibiting transplant rejection, such as immunosuppressive agents (e.g., cyclosporine, azathioprine, methylprednisolone, pu Prednisolone, prednisone, mycophenolate mofetil, sirilimus, rapamycin, tacrolimus, anti-infectives (eg, acyclovir, clatumrimazole, ganciclovir, nystatin, trimethoprimsulfarnethoxazole), diuretics (eg cloth) Bumetanide, furosemide, metolazone, and ulcer medicines (eg, cimetidine, farnotidine, lansoprazole, Omeprazole, ranitidine, sucralfate. K.Bone marrow injury Invasive damage to the bone marrow can cause inflammatory cell infiltration. IP-10 has been shown to play a major role in secondary degeneration after bone marrow injury (Gonzalez et al. (2003)Exp. Neurol .184 : 456-463; see also PCT Patent Publication WO 03/06045). IP-10 has been shown to be in contused rat bone marrow 6 and 12 hours after injury (McTigue, D.M. et al. (1998)J. Neurosci. Res. 53 : 368-376) and in the bone marrow of injured mice 6 hours after injury (Gonzalez et al. (2003), supra). Thus, it has been shown that inhibition of IP-10 activity following bone marrow injury can be used to reduce infiltration of inflammatory cells and thereby reduce secondary tissue damage of inflammation. Inhibition also reduces infiltration of inflammatory cells, reduces secondary degeneration, and improves traumatic brain injury and recovery after stroke. Accordingly, the present invention also provides a method of treating bone marrow damage and brain damage (e.g., stroke) in an individual in need of treatment comprising administering to the subject an anti-IP-10 antibody of the invention. The antibodies can be used alone or in combination with other agents such as other anti-inflammatory agents. L.Neurodegenerative disease It has been found that IP-10 and CXCR3 in the central nervous system are up-regulated and associated with pathological changes associated with Alzheimer's disease (AD) (Xia, M.Q. and Hyman, D.T. (1999)J. Neurovirol .5 :32-41). In AD brain, CXCR3 displays constitutively expressed neurons and neurons in various cortical and subcortical regions, while IP-10 has been shown to be expressed in astrocytes and its concentration is significantly elevated compared to normal brain ( Xia, MQ et al. (2000)J. Neuroimmunol .108 :227-235). Thus, antibodies to the invention can be used to treat neurodegenerative diseases (eg, Alzheimer's disease and Parkinson's disease) by administering an anti-IP-10 antibody (alone or in combination with other therapeutic agents) to an individual in need of treatment. . Examples of anti-IP-10 antibodies that can be used in combination with Alzheimer's disease include cholinesterase inhibitors (donepezil, rivastigmine, galantamine) (galantamine, tacrine) and vitamin E. An example of an agent against which an anti-IP-10 antibody can be used in the treatment of Parkinson's disease is levodopa. M.Gingivitis Peripheral periodontitis is associated with inflamed gingival tissue. Cells producing IP-10 and cells expressing CXCR3 receptor have been found in inflamed human gingival tissues (Kabashima, H. et al. (2002)Cytokine 20 :70-77). Thus, in another embodiment, the anti-IP-10 antibody of the invention can be used to treat gingivitis by administering the antibody to an individual in need of treatment. The antibodies can be used alone or in combination with other agents or treatments (eg, anti-mouth mouthwashes (eg, antibiotic mouthwashes), periodontal scaling, and root planing and periodontal surgery). N.Gene therapy related inflammation Replication-deficient adenovirus (used as an adenoviral vector used in gene therapy) can cause acute damage and inflammation in tissues infected with viral vectors. These adenoviral vectors have been shown to induce IP-10 expression via capsid-dependent activation of NFkB (Borgland, S. L. et al. (2000) J. Virol. 74:3941-3947). Thus, the anti-IP-10 antibodies of the invention can be used to inhibit IP-10 induced damage and/or inflammation during treatment with a gene therapy that stimulates an undesired viral vector (e.g., an adenoviral vector).O. Angiogenic disease It has been shown that IP-10 inhibits angiogenesis both in vitro and in vivo (Strieter et al. (1995)Biochem. Biophys. Res. Commun .210 : 51-57; Angiolillo et al. (1995J. Exp. Med .182 :155-162; Luster et al. (1995)J. Exp. Med .182 :219-231). Angiogenesis plays a key role in many disease processes, such as wound healing reactions. For example, the vascular system in the injured bone marrow remains active and remodeled until at least 28 days after injury (Popovich et al. (1997)J. Comp. Neurol .377 :443-464). It is believed that IP-10 exerts its vasopressor effect by inhibiting endothelial cell growth and chemotaxis. It achieves this function via its heparin binding motif as well as via receptor mediation mechanisms. Via the heparin binding motif, it prevents the binding of the angiogenic factors FGF-2 and VEFG165 to their receptors. It also exerts its effects via a receptor mediation process. The IP-10 receptor CXCR3 undergoes alternate splicing to produce two known variants, CXCR3A and CXCR3B. IP-10 binding to the CXCR3A receptor causes proliferation and chemotaxis of target cells, whereas IP-10 binding to the CXCR3B receptor has an opposite inhibitory effect on growth and chemotaxis. IP-10 is used as an angiogenesis inhibitor via the CXCR3B receptor (Lasagni et al. (2003)J. Exp. Med. 197 :1537-1549). In view of the foregoing, the anti-IP-10 antibodies of the present invention can be used to treat diseases requiring angiogenesis, for example, in the case where the vasopressor behavior of IP-10 is delayed or hinders healing and aggravates the disease process. Such diseases include: 1) abnormal physiological neovascularization, which may affect wound healing, female estrous cycle, pregnancy, exercise-induced hypertrophy, and the like; 2) indications that may require stimulation of new blood vessels, including inducing lateral accessory tubes Formation (including myocardial ischemia, peripheral ischemia, cerebral ischemia), coronary artery disease, peripheral vascular disease, stroke, wound healing, subsequent implantation of organ transplantation (eg islet cell transplantation), rupture and hernia repair, reconstruction surgery , tissue modification, restenosis, hair loss, hemorrhoids and stagnation ulcers, gastrointestinal ulcers, placental insufficiency, aseptic necrosis, pulmonary hypertension and systemic hypertension, vascular dementia, Alzheimer's disease, Autosomal dominant cerebral arterial disease (CADASIL) with cerebral infarction and leukoencephalopathy; thyroid pseudocyst and lymphedema; and 3) indications for vascular remodeling, including vascular malformations, psoriasis and pre-eclampsia. The antibodies of the invention may be used alone or in combination with other angiogenesis inducing agents. P.Inflammatory nephropathy It has been reported that CXCR3 receptors are expressed by mesangial cells in patients with IgA nephropathy, membrane proliferative glomerulonephritis, or rapidly progressive glomerulonephritis (Romagnani, P. et al. (1999)J. Am. Soc. Nephrol. 10 :2518-2526). In addition, in the mouse model of nephrotoxic nephritis, the IP-10 mRNA concentration in the cortex of the nephritis kidney increased 6-fold 7 days after the induction of nephritis (Schadde, E. Etc. (2000)Nephrol. Dial. Transplant .15 :1046-1053). In addition, high IP-10 performance was observed in kidney biopsy samples from human patients with glomerulonephritis compared to normal kidneys (Romagnani, P. et al. (2002)J. Am. Soc. Nephrol .13 :53-64). Thus, the anti-IP-10 antibodies of the invention can be used to treat inflammatory nephropathy, including IgA nephropathy, membrane proliferative glomerulonephritis, and rapidly progressive glomerulonephritis. The antibodies of the invention may be used alone or in combination with other agents or treatments (e.g., antibiotics, diuretics, hypertensive drugs, and dialysis) for the treatment of glomerulonephritis. Q.Atherosclerosis It has been shown that IP-10 is used for mitosis and chemokines in vascular smooth muscle, which is an important feature of smooth muscle cells due to its contribution to the pathogenesis of atherosclerosis (Wang, X. et al. (1996)J. Biol. Chem. 271 :24286-24293). It has also been shown that IP-10 is induced in smooth muscle cells after treatment with LPS or interferon gamma and is also induced in the rat carotid artery after balloon angioplasty (Wang, X. et al. (1996), supra literature). In addition, IP-10 has been shown to be expressed in atheroma-associated endothelial cells, smooth muscle cells, and macrophages, suggesting that IP-10 can be used to recruit and preserve the observations in vascular wall lesions during atherosclerotic formation. Activated T cells (Mach, F. et al. (1999)J. Clin. Invest .104 :1041-1050). Therefore, the anti-IP-10 antibody of the present invention can be used to treat or prevent atherosclerosis. The antibody can be used alone or in combination with other agents or treatments (eg, hypertension drugs and cholesterol lowering drugs) for the treatment of atherosclerosis. R.Viral infection IP-10 can be upregulated in a variety of viral infections and can play a beneficial role in recruiting activated T cells to combat viral infection. However, in some cases, the production of IP-10 during viral infection may cause deleterious effects and thus IP-10 activity may be undesirable, and it may be desirable to inhibit the viruses using the anti-IP-10 antibodies of the invention. IP-10 activity in infection. For example, IP-10 has been shown to stimulate replication of human immunodeficiency virus (HIV) in mononuclear bulbar macrophages and peripheral hemolymphs (Lane, B.R. et al. (2003)Virology 307 :122-134). In addition, IP-10 concentrations in the cerebrospinal fluid and brain of HIV-infected patients and in the central nervous system of HIV gp120-transgenic mice have increased (Asensio, V.C. et al. (2001)J. Virol. 75 :7067-7077). It has also been shown that IP-10 concentrations are elevated in patients with chronic persistent hepatitis C virus (HCV) and chronic active hepatitis (Narumi, S. et al. (1997)J. Immunol. 158 :5536-5544). In HCV-infected livers, it has been shown that IP-10 is expressed by hepatocytes, but not by other cell types in the liver, and a significantly higher proportion of CXCR3-positive T cells are found in the liver compared to blood (Harvey, CE). Et al. (2003)J. Leukoc. Biol .74 :360-369). It has been shown that increased IP-10 secretion is associated with an inflammatory response to acute ocular type I herpes simplex virus (HSV-1) infection in mice, and that the use of anti-IP-10 antibodies to treat HSV-1 infected mice is reduced. Monocyte infiltration in the corneal stroma reduces corneal conditions and inhibits the progression of the virus from the corneal stroma to the retina during acute infection (Carr, DJ et al. (2003)J. Virol. 77 :10037-10046). It has also been shown that IP-10 performance is manifested in viral meningitis. IP-10 is shown to be present in CSF in patients with viral meningitis and is responsible for chemotactic activity on neutrophils, peripheral blood mononuclear cells, and activated T cells (Lahrtz, F. et al. (1997)Eur. J. Immunol. 27 : 2484-2489; Lahrtz, F. et al. (1998)J. Neuroimmunol. 85 :33-43). In view of the foregoing, an anti-IP-10 antibody of the invention can be used to treat a viral infection involving undesired IP-10 activity by administering the antibody to an individual in need of treatment. Non-limiting examples of treatable viral infections include HIV (eg, HIV-induced encephalitis), HCV, HSV-1, viral meningitis, and severe acute respiratory syndrome (SARS). The antibodies may be used alone or in combination with other antiviral agents, for example, as follows: for HIV infection, nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors and / or protease inhibitors (and combinations thereof); for HCV infection, interferon alpha 2a, pegylated interferon alpha 2a and / or ribavirin; and for HSV-1 infection, Acyclovir, valacyclovir and/or famciclovir.S. Bacterial infections . Bacterial infection induces IP-10 production in affected cells (see Gasper, N.A. et al. (2002)Infect Immun. 70 :4075-82. Bacterial meningitis is also known to specifically elicit IP-10 performance (Lapinet, J.A. et al. (2000)Infect Immun. 68 :6917-23). In the bacterial infection model, IP-10 is also produced in the somatic cells of the seminiferous tubules, which strongly indicates that these chemokines accumulate during the inflammation of the testicles, which are usually observed in the pathogenesis of bacterial infections. Possible roles in sexual and T lymphocytes (Aubry, F. et al. (2000)Eur Cytokine Netw. 11 :690-8). In view of the foregoing, an anti-IP-10 antibody of the invention can be used to treat bacterial infections involving undesired IP-10 activity by administering the antibody to an individual in need of treatment. Examples of bacterial infections include, but are not limited to, bacterial meningitis and bacterial pneumonia. The antibodies can be used alone or in combination with other antibacterial agents such as antibiotics. The invention is further illustrated by the following examples, which are not to be construed as limiting the invention. The disclosure of all of the figures and all of the references, patents and published patent applications in this application are hereby expressly incorporated by reference.Materials and methods :Instance 1 : Design of variants of antibody IP10.1 Idruzumab (also known as IP10.1) was previously evaluated in patients with RA, Crohn's disease and ulcerative colitis in several clinical trials. Clinical response signals were observed in these trials. However, further development of Iduzumab has encountered difficulties such as (1) high doses required for IV and SC delivery and suboptimal (units) nM affinity/efficacy for high drug delivery frequencies for SC delivery; (2) Significant IV infusion reactions from higher amounts of protein administration; and (3) up to 30% isomerization observed using a 2-year shelf life. In view of the above-described problem of idruzumab, a next generation antibody having improved affinity and no isomerization potential is produced. Antibody IP10.1 was first constructed into scFv molecules and activity was confirmed prior to optimization. A scFv optimized library was generated using a combination of randomization (NNS) and doped oligonucleotides (70% parental, 30% all others) in the HCDR region of IP10.1. This DNA library was acquired using a PROfusion® mRNA display system via several rounds of transcription and translation using rabbit reticulocyte lysates. The encoded mRNA is fused to its own scFv via a puromycin linkage. During selection, any of the biotin-labeled IP-10 scFvs were captured by streptavidin beads and amplified by PCR to proceed to the next round. The PROfusion mRNA display system was continued until a significant target binding signal was observed by quantitative polymerase chain reaction (qPCR®). The increased stringency is then selected by lowering the target concentration and by biasing the pure line with closer affinity during the dissociation rate selection. The binding population was selected and sequenced. A unique line of non-chemically dominant lines in the HCDR region was expressed via the High Through Mammalian Expression System (HMEP) and the affinity for IP-10 was tested using the SPR (Biacore) test. In summary, more than 50 variants were generated by targeting the CDR1, CDR2 and CDR3 residues in the variable region of the heavy chain and screened for binding to human IP-10. Variants showing a significant improvement in dissociation rate at 37 °C were reformatted to IgG (IgG1) and a further selection process was performed. A comparison of the CDR sequences of IP10.1 and its variants (reformatted to IgGl full length antibodies) is shown in Table 1. Table 2 shows the binding affinities of these variants at 37 °C compared to IP10.1. Further analysis of the cross-reactivity of these variants with cynomolgus IP10, mouse IP10 or MIG (data not shown) and cross-competition, physical stability, conformational stability, hydrophobic interactions and aggregation with IP10.1 ( The data is not shown). Both pure lines (IP10.44 and IP10.52) showed significantly higher affinity than IP10.1, competed with IP10.1 for binding to IP-10, and had improved biophysical characteristics compared to IP10.1. Therefore, IP10.44 and IP10.52 were selected for further research. Therefore, mandatory stability studies (oxidation and deamination) were performed on pure IP10.44 and IP10.52 to further distinguish their properties. Although both antibodies exhibited similar behavior under conditions of forced stability, IP 10.52 showed a slightly increased deamination and faster dissociation rate in the VH region compared to IP 10.44. Therefore, IP10.44 was chosen for further characterization.table 1 Selection of variants for IgG1f reformattingtable 2 Variant with improved binding affinity for IP10.1Instance 2 : Characterization of IP10.44A. IP10.44 Biophysical and biochemical characterization 1. Combine In a Biacore®-based binding study, IP10.1 has a KD of approximately 5 nM and IP10.44 exhibits a KD of 10 pM (Biacore has a detection limit of 90 pM), indicating at least a 50-fold improvement. Like IP10.1, IP10.44 has a similar KD in monkeys and humans and does not cross-react with mice. table 32. Epitope mapping a. hydrogen / Helium exchange mass spectrometry (HDX-MS) The HDX-MS method detects protein conformation and conformational kinetics in solution by monitoring the exchange rate and extent of the indole hydrogen atom in the main chain. The extent of HDX depends on the solvent accessibility of the main chain hydrogenamine atom and protein hydrogen bonds. The quality of the protein can be increased by accurately measuring the HDX by MS. When this technique is paired with enzymatic digestion, the structural features under the peptide level can be resolved, thereby enabling the distinction between surface exposed peptides and internal folders. Typically, sputum labeling and subsequent quenching experiments are performed followed by on-line pepsin digestion, peptide separation, and MS analysis. Epitope mapping was performed on IP-10 using anti-IP10 mAb IP10.44 and IP10.1. Prior to the epitope mapping experiment, a non-deuteration experiment was performed to generate a common pepsin peptide (20 μM) for recombinant human IP-10 and a protein complex of recombinant IP-10 and anti-IP-10 mAb (1: A list of 1 molar ratios to achieve 100% sequence coverage of IP10. In the HDX-MS experiment, 5 μL of each sample (IP-10 or IP-10 mAb) was diluted to 55 μL D2 O buffer (10 mM phosphate buffer, D2 In O, pD 7.0), the labeling reaction was started. The reaction was carried out as follows for different time periods: 20 seconds; 1 minute; 10 minutes; and 240 minutes. At the end of each labeled reaction period, the reaction was terminated by the addition of quench buffer (100 mM phosphate buffer containing 4 M GdnCl and 0.4 M TCEP, pH 2.5, 1:1, v/v) and 50 μL The quenched sample was injected into a Waters® HDX-MS system for analysis. The uptake of common pepsin peptides was monitored in the absence/presence of anti-IP10 mAb. HDX-MS measurement of IP10.44 in IP-10, which has an epitope including the same peptide region as IP10.1: Peptide region 1 (13-18): SISNQP (SEQ ID NO: 163) peptide Region 2 (19-27): VNPRSLEKL (SEQ ID NO: 164) Peptide Region 3 (29-43): IIPASQFCPRVEIIA (SEQ ID NO: 165) The uptake changes in these peptide regions can be graded into regions 3 > 1 ≈ 2 Where region 3 has the most significant uptake change, and regions 1 and 2 have the least significant uptake changes. Competition experiments confirmed that IP10.44 competes with IP10.1 for binding to IP-10, indicating that it binds to the same epitope as IP10.1 and (as IP10.1) does not interact with human MIG or human ITAC (as defined herein) Cross reaction.b. Crystallography method Crystals were grown from pre-formed composites of IP10 and IP10.44 Fab. The protein concentration in 50 mM pH 8 Tris-HCl, 150 mM NaCl is approximately 6 mg/ml. This fraction was mixed with a well solution consisting of 100 mM pH 5.0 Tris-maleic acid, 18% (w:v) PEG 3350 at a ratio of 1:2 and crystals were grown by suspension-descent vapor diffusion. The crystals were cryoprotected in a solution of 75% pore solution and 25% glycerol. Advanced Photon Source outside Chicago, IL uses the Pilatus 6M detector to collect data at beamline 17-ID (IMCA-CAT). The crystal temperature was maintained at 100 K. The data was collected into 900 images for a 180° data sweep with a 0.2° wedge. Data was processed using autoPROC (which was integrated using XDS (Kabsch, 2010a, b) and calibrated using AIMLESS (Evans & Murshudov, 2013)) and the following statistics were obtained:table 4 Space group: P21 Unit cell: a = 53.6 Å; b = 86.8 Å; c = 133.5 Å; β = 98.8°. Mosaic: 0.29-0.41. Molecular replacement uses the program PHASER and a model derived from the IP10/Fab structure, which consists of three parts: Fv (VL and VH domains) containing no CDRs and containing residues mutated to Gly or Ala, CL: CH1 domain dimers and IP10 dimers (as shown in Table 5), which meet the PHASER criteria at each step to successfully lay out the components, the criterion being for the first component in space Group P21 The medium TFZ score is at least 6, and the other components are at least 8.table 5 The resulting electron density map shows the electron density of the residues and side chains lost from the model. The structure was completed using a COOT molecular graphics program (Emsley et al., 2010) and BUSTER refinement (Blanc et al., 2004 and Global Phasing, Ltd.).result The structure of the IP10 / IP 10.44 Fab complex was determined at a resolution of 2.23 Å. The most obvious feature on the surface of IP10 is the protrusion of the side chains Ile 12, Ser 13 and Ile 14 (data not shown). This overhang is inserted between the pores produced by the long CDR-H3 and between it and CDR-H1 and H2. The IP10 up to residues 12-14 highlight where the opposite CDR-H3 of the opposite recess extends (data not shown). Residues involving epitopes of IP10.1 and IP10.44 as defined by exposure (S. Sheriff et al. 1987; Sheriff, 1993) on IP10: Val 7, Cys 9, Thr 10, Cys 11, Ile 12 Ser 13, Ile 14, Ser 15, Asn 16, Pro 37, Arg 38, Lys 47, Gly 49, Glu 50, Lys 51, Arg 52, Cys 53.3. stability IP 10.44 shows a high thermal stability and thermal reversibility of a first melting temperature of 70.2 ° C (TM1 of IP10.1 is 64 ° C) and a thermal reversibility of 73 ° C of 41.2 %. A stable CHO pool representing IP10.44 was used to generate 8 batches of IP 10.44 (approximately 20 L scale). The cell culture exhibited a degree of expression of approximately 50 mg/L at this stage and a purified yield of 60-70% using the one-step protein-A purification method. The antibodies were formulated in buffer (20 mM histidine and 10% pH 6 sucrose) and tested for consistency, purity, heterogeneity and glycosylation by various methods. The results confirmed that the antibody was consistent and the purity was >97% of the monomer fraction, as can be seen by particle size exclusion chromatography. Heterogeneity and glycosylation are typical scenarios expected for human IgG1 antibodies.table 6 B. Cell-based IP10.44 active The kinetic analysis based on Biacore® shows the excellent KD of IP10.44 relative to IP10.1, which is mainly due to the dissociation constant (k).Dissociation ) The improvement is promoted. The estimated t1/2 of IP10.1 (the half-life of IP-10 association) is approximately 3 hours, while IP10.44 is >100 hr. Thus, existing assays (calcium flow, chemotaxis) with a duration of < two hours and requiring a concentration of exogenous IP-10 (≥ 10 nM) that is significantly higher than the KD of either antibody are not expected to distinguish between the two antibodies. To allow for this distinction, a new cell analysis was developed with a duration of ≥ 24 hours and with an IP-10 concentration that is comparable to or lower than the KD of any antibody and closer to IBD patients (approximately 2-digit pM) A robust signal-to-noise ratio induced at IP-10 concentration. These analyses were developed by a two-pronged approach: 1) Optimization of the following analysis: where anti-IP-10 Ab and IP-10 were pre-incubated for ≥ 24 hours, then added to the cells and added at low concentrations (< 100 pM) IP-10 (exogenous) provides a robust signal-to-noise ratio; 2) identifies new analysis of cellular function by inducing at least 24 hours of approximately 2-digit pM endogenous IP-10 induced by inflammatory stimuli . For the first approach, two assays were used: inhibition of the binding of I125-IP-10 (20 pM) to whole cells (B cell line expressing CXCR3 and intestinal epithelial cell line). For the second approach, two other assays were used: measuring IL-6 secretion by hPBMC treated with IFNγ/α or IFNγ/α/IL-1β/LPS for 24 hours, and the measurement was first performed by IL-12p40 secretion by hPBMC stimulated by IFNy for 24 hours and then stimulated by LPS for 24 hours. In these newly established cell-based assays, IP10.44 showed excellent activity against IP10.1. For example, in a whole cell binding assay, IP10.44 exhibits at least 5 fold greater than IP10.1 blocking exogenous IP-10 to its target cells (including CXCR3 expressing cells (CXCR3/300.19) and intestinal epithelial cells ( The combination of KM12SM)). In addition, IP10.44 exhibited approximately 6-fold greater inhibition of the efficacy of endogenous IP-10-mediated IL-6 secretion by hPBMC stimulated with IFNα/γ, approximately 6-fold greater than IP10.1. Similarly, IP10.44 inhibits endogenous IP-10-mediated IL-12p40 secretion achieved by IFNγ/LPS-stimulated hPBMC and its efficacy is 4 times greater than IP10.1, and exhibits significantly better maximal inhibition (using Approximately 100% of the IP 10.44 pairs use approximately 75% of IP 10.1, as shown in Table 7.table 7 Mechanical studies using hPBMC-based assays confirmed the primary cellular source of mononuclear spheroids IP-10, IL-6 and IL-12p40. Importantly, as a support for the excellent cellular activity observed in IP10.44 in these in vitro assays, a high affinity IP-10 mouse generation of IP10.44 in CD40-induced congenital immune colitis in SCID The display showed that the inhibition of IL-6 and IL-12p40 in the blood was superior to that of the low affinity mouse substitute (lack of T/B cells) of IP10.1 (see below).C. In vivo activity 1. Target occlusion (TE) Test IP10.44 provides the ability to block the long-term repression of IP-10 in cynomolgus monkeys. Two LC-MS-based sensitive assays were established to specifically measure free IP-10 concentrations in cynomolgus monkey serum and additionally quantified using IP10.44 and IP10.1 stimulated samples. Using these analyses, time-dependent changes in the free IP-10 concentration of the cynomolgus monkeys administered with the antibodies at 10 mg/kg relative to the vehicle were measured. IP10.1 transiently reduced free IP-10 6 hours after administration and then increased by up to 6-fold over the 10-day duration, in contrast to IP10.44, which completely blocked free IP-10 for up to 10 days ( Figure 14). These data show that IP10.44 is superior to IP10.1 in target occlusion in the cycle.2. PK/PD ( Pharmacokinetics and pharmacodynamic parameters ) Studies based on the use of CXCR3 KO mice have reported that the absence of CXCR3 signaling on NK cells in the natural environment reduces their frequency in circulating and lymphoid organs. Internal studies have shown that high-affinity anti-IP-10 mouse substitutes (rather than low-affinity) significantly reduce the frequency of CXCR3+ NK cells in blood and spleen in naive mice, thereby identifying NK cell subsets as inhibition A potential PD biomarker at CXCR3 that is signaled by IP-10. Using this finding and considering that neither IP10.44 nor IP10.1 cross-reacted with mouse IP-10, the effects of the two antibodies on the frequency of human CXCR3+ NK in the blood and spleen of NSG/HSC mice were tested (naturally absent Mouse T/B/NK cells can be supplemented with human hematopoietic stem cells (HSCs) to complement human T/B/NK cells to produce mouse strains of mice with a "humanized" immune system). IP10.44 (rather than IP10.1) significantly reduced these doses at 50 mg/kg (based on the selection of two human antibodies in NSG mice, the suboptimal PK was selected to maximize target coverage) Human CXCR3+ NK cell frequency in the spleen of mice (Figure 15). It was observed in this study that either antibody had no significant effect on CXCR3+ NK cells in the blood, which may be due to the low frequency of this cell population due to aging in the circulation (> 6 months after reconstitution).3. IBD model Test the performance in the IBD model. Neither IP10.44 nor IP10.1 cross-reacted with mouse IP-10, rendering mice unsuitable for direct testing of these molecules in an experimental colitis model. Therefore, two anti-mouse IP-10 surrogate antibodies, namely antibodies 18G2 and 6A1, were identified, and their affinities were comparable to IP10.44 and IP10.1, respectively. In cell-based assays, 18G2 demonstrated approximately 8-fold better efficacy in inhibiting IP-10-induced calcium flux in mice in the CXCR3/300.19 cell line than 6A1. In vivo PD studies showed that 18G2 was superior to 6A1 in reducing the frequency and quantity of CXCR3+ NK cells in the blood of naive mice. Two surrogates were tested in two different colitis models, one for colitis induced by TNBS in wild-type mice whose pathogenesis involves congenital and adaptive immunity, and the other colitis system was SCID ( CD40 induction in mice lacking T/B) whose pathogenesis involves only innate immunity. In both models, anti-p40 antibodies have been shown to be effective in reducing disease and thus serve as positive controls. Importantly, the high-affinity surrogate 18G2 demonstrated significantly better performance than the IP10.1 substitute 6A1 (Figures 16A and 16B). This superiority is not due to the difference in PK/exposure, where 6A1 is more than 2 times higher than 18G at the end trough. Thus, this data suggests that the increased affinity observed with IP10.44 relative to IP10.1 can translate into greater potency in the context of intestinal inflammation promoted by innate and adaptive immunity. Since CD40-induced mouse colitis is a more robust model involving significant systemic inflammation, the effect of high affinity 18G2 and low affinity 6A1 on the concentration of circulating proinflammatory cytokines was also assessed. Consistent with the superior efficacy relative to 6A1, 18G2 more robustly reduced circulating concentrations of several interleukins (including IFNγ, IL-12p40, IL-6, TNFα, MCP-1, and RANTES) (Fig. 17A-D). A separate study using high affinity surrogate 18G2 in this model demonstrated a reduced association of interleukin subgroups (including IFNy, IL-12p40, IL-6 and TNFa) between blood and inflamed intestine. To determine whether targeting IP-10 and targeting TNFα (representing standard IBD care) can be distinguished in terms of mechanism of action, a SCID mouse model of CD40-induced colitis was used. This model was selected due to the presence of a large amount of IP-10 and TNFα in the circulation and in the intestine and the efficacy against IP-10 and anti-TNFα antibodies. In a comparative study of high affinity anti-IP-10 mouse substitute (18G2) and anti-TNFa substitutes in this model, both antibodies exhibited significant potency (Figure 22). Importantly, multi-intercellular analysis revealed significant differences between the two interventions in reducing inflammatory mediators in serum and inflamed intestines, suggesting that the mechanisms for achieving their efficacy may vary. Compared with anti-TNFα substitutes, 18G2 significantly reduced the serum concentrations of IFNγ, IL-12p40, IL-6, RANTES and MIP1β and the colon concentrations of INFγ, IL-12p40, IL-6, IL-17 and IL-22, such as Measured by multi-intercellular assay based on luminex (Fig. 18A-F). Taken together, these data indicate that the targeted IP-10 and targeted TNFα can be differentially engineered in a systemic and localized inflammatory environment in experimental colitis. In addition, 18G2 robustly reduces TNFα in circulating and inflamed intestines, while anti-TNFα has a small effect on IP-10 concentrations in either chamber, thereby providing another set of two interventions for distinguishing experimental colitis. evidence.D. Immunogenicity The immunogenicity of IP10.44 was evaluated using an in vitro T cell proliferation assay and compared to the immunogenicity of IP10.1 in the same assay. IP10.44 exhibits 20-25% immunogenicity, compared to IP10.1 showing 7-10% immunogenicity.E. Pharmacokinetics and pharmacodynamics in cynomolgus monkeys IP10.44 exhibited a non-linear PK in cynomolgus monkeys (data not shown). Free drug analysis was performed for IP10.44 and IP10.1. As the dose was increased from 0.5 mg/kg to 10 mg/kg, the total body serum clearance (CLT) of IP10.44 was reduced by a factor of about 4, but the volume of distribution (Vss) remained similar at steady state. Therefore, T-1/2 is increased by about 5 times. This is consistent with the PK of IP10.1 in monkeys and humans. At 0.5 mg/kg, the CLT of IP10.44 is 2 times higher than IP10.1. It can be assumed that the non-linear PK is caused by target-mediated drug treatment (TMDD) and that the higher binding affinity of IP10.44 causes higher clearance at lower doses when the target is not saturated. However, the PK comparison of IP10.44 and IP10.1 at higher doses showed conflicting results: the CLT values of the two antibodies were similar at 10 mg/kg, but the CLT of IP10.44 was higher than IP10 at 20 mg/kg. .1 2.7 times. IP10.44 showed better than IP10.1 in suppressing free serum IP-10 concentration (Figures 19A and 19B). After intravenous bolus dose, IP10.44 demonstrated dose-dependent repression of free serum IP-10 and was completely repressed (by suppressing free IP-10 from baseline concentration (approximately 40 pM) to below LLOQ The duration of (1 pM) is approximately 3 days (for 0.5 mg/kg) and approximately 10 days (at 10 mg/kg). The rapid rebound of free serum IP-10 (returning to baseline on day 17) may be caused by accelerated drug decline from ADA. On the other hand, at doses up to 20 mg/kg, IP10.1 does not block free serum IP-10, but free serum IP-10 is raised above baseline (up to a 7-fold increase) and this Consistent observations in the clinic. A simple regression of free serum IP-10 repression with the free drug concentration of IP10.44 revealed an IC50 of 223 ± 88 pM (Figure 20). In addition, the PK/PD model for free drug PK, free and total serum IP in monkeys can be estimated to have an in vivo Kd of 43 ± 6 pM for IP10.44, which is stronger than the value of IP10.1 in monkeys. It is about 150 times (Kd is 6.5 ± 1.1 nM in vivo) (Figs. 21A to 21F). In addition, after an intravenous dose of IP 10.44 or IP 10.1, a rapid increase in total serum IP-10 was observed with a Tmax of 4 to 30 hours. The increase in total IP-10 was dose-dependent and the maximum increase was up to 5 nM (for IP 10.44) and up to 12 nM (for IP10.1), which represents a 100-fold increase over the baseline concentration (approximately 40 pM) . In conclusion, IP10.44 showed an in vivo KD superior (about 150-fold) IP10.1 (in vivo KD of 43 ± 6 pM vs. 6.5 ± 1.1 nM) in suppressing free serum IP-10 in cynomolgus monkeys. IP10.1 increased (>5-fold) free serum IP-10 levels in monkeys and humans above baseline, while IP10.44 (after intravenous administration to monkeys) showed sustained and complete (<1 pM LLOQ) Free serum IP-10 was suppressed for approximately 3 days (at 0.5 mg/kg) and approximately 10 days (at 10 mg/kg). Free drug analysis was used to characterize the PK of IP10.44 in monkeys. IP10.44 exhibits a non-linear PK in monkeys, which is most likely due to drug delivery from target mediation. This is similar to the non-linear PK of IP10.1 observed in monkeys and humans. The higher affinity of IP10.44 relative to IP-10 resulted in a relatively shorter half-life (T-1/2) in monkeys compared to IP10.1. It is predicted that the human T-1/2 of IP10.44 at 1 mg/kg and 10 mg/kg is about 2 and about 6 days, respectively. At the same dose, the corresponding human T-1/2 of IP10.1 was approximately 4 and approximately 8 days, respectively. The subcutaneous bioavailability (70%) of IP10.44 in humans can be assumed to be the same as IP10.1. Based on preclinical PK/PD information, the human dose of IP10.44 (subcutaneously administered every two weeks) is expected to be 120 mg/70 kg. At this dose, the 90% percent free serum IP-10 concentration corresponding to the UC patient population was reduced by 80% to the 10th percentile of healthy individuals. No adverse effects were observed in a single intravenous bolus dose of up to 20 mg/kg in the cynomolgus PK/PD study. In summary, IP10.44 shows acceptable PK/PD properties and security characteristics.Instance 3 : (A) Single incremental dose study (SAD) and multi-dose studies (MAD) and (B) moderate to the safety, tolerability, pharmacokinetics and target occlusion of BMS-986184 (IP 10.44) in healthy individuals Evaluation of safety, efficacy, pharmacokinetics, target occlusion and pharmacodynamics of BMS-986184 in patients with severe ulcerative colitis (UC)introduction Part A was used to evaluate the safety, tolerability, pharmacokinetics (PK), and target occlusion (TE) randomization, placebo-controlled, double-blind, single BMS-986184 in healthy male and female participants. Progressive (SAD) and multiple dose (MAD) studies. In Part A1 (SAD), there are up to 5 sequential intravenous (IV) dose groups and designated as groups S1, S2, S3, S4 and S5. Additionally, there may be up to 2 subcutaneous dose groups and designated as groups S6 and S7. The expected dose selected for the SC dose group (S6 and S7) did not exceed the average exposure dose observed during the intravenous dose group S1-S4. Other dose groups may be added as needed, at doses lower or higher than the previous groups. In Part A2 (MAD), there may be up to 2 intravenous (IV) or subcutaneous (SC) groups and designated as groups M1 and M2. Part B was used to assess the safety, efficacy, pharmacokinetics, targeted occlusion, and pharmacodynamics of BMS-986184 in male and female UC patients, placebo-controlled, double-blind, and mechanism-verified (POM) the study. Part B will begin after Part A's safety, tolerability, PK and TE evaluation. A schematic of the study design is presented in Table 8.table 8 : Research design schematic
Figure TW201805303AD00001
Abbreviations: IV = intravenous; MAD = multiple incremental doses; POM = mechanism validation; SAD = single incremental dose; SC = subcutaneous; Q2W = every other week * Self-dose group S3 and above, all dose values are from the previous A set of real-time PK and PD (serum-free IP-10) assays were obtained. There is an AUC and Cmax cap for each dose group that does not exceed the predetermined safety factor from the AUC under NOAEL. ** The MAD dose for group M1 is selected after group S3 is completed and analyzed and may include dose S3 or lower. The MAD dose for group M2 is selected after completion of group S4 and analysis and may include dose S4 or lower (except for the dose used in Ml). *** If the TE data supports the possibility of SC administration in the MAD, the SC group is implemented.section A For healthy participants SAD/MAD Research design ( section A) In Part A, healthy participants were subjected to screening assessments to determine eligibility. Participants must complete the screening process within 21 days of the first day. The schedule of units and participants can be adjusted using a ±2 day window visit. Participants were allowed to enter the clinical facility on the morning of Day-1.Among healthy participants SAD Research design ( section A1) There were 8 healthy male or female participants in each sequential SAD dose group (S1-S7). Make each group double-blind and randomized. For the first dose group (S1), the outpost group was administered. One healthy male or female participant received a single dose of BMS-986184 and one healthy male or female participant received a matching placebo. The available safety data from the two participants (including any reported adverse events, findings from the physical examination, etc.) were evaluated by the inquirer and the sponsor within 24 hours prior to treatment of the remaining participants in the first dose group (S1). A clinical laboratory result, vital signs and ECG). On day 1, the remaining 6 healthy male or female participants in the first dose group (S1) were randomized to receive a single dose of BMS-986184 or matched placebo at a ratio of 5:1. For each sequential dose group (S2-S7), on day 1, 8 healthy male or female participants were randomized to receive a single dose of BMS-986184 or matched comfort on day 1 at a 3:1 ratio. Agent. The dose selection criteria are set forth below.Among healthy participants SAD/MAD Research design ( section A) In Part A, healthy participants were subjected to screening assessments to determine eligibility. Participants must complete the screening process within 21 days of the first day. The schedule of units and participants can be adjusted using a ±2 day window visit. Participants were allowed to enter the clinical facility on the morning of Day-1.Among healthy participants SAD Research design ( section A1) There were 8 healthy male or female participants in each sequential SAD dose group (S1-S7). Make each group double-blind and randomized. For the first dose group (S1), the outpost group was administered. One healthy male or female participant received a single dose of BMS-986184 and one healthy male or female participant received a matching placebo. The available safety data from the two participants (including any reported adverse events, findings from the physical examination, etc.) were evaluated by the inquirer and the sponsor within 24 hours prior to treatment of the remaining participants in the first dose group (S1). A clinical laboratory result, vital signs and ECG). On day 1, the remaining 6 healthy male or female participants in the first dose group (S1) were randomized to receive a single dose of BMS-986184 or matched placebo at a ratio of 5:1. For each sequential dose group (S2-S7), on day 1, 8 healthy male or female participants were randomized to receive a single dose of BMS-986184 or matched comfort on day 1 at a 3:1 ratio. Agent. The dose selection criteria are set forth in Table 9.table 9 : Schematic of a study visit to a SAD study in a health participant (Part A1)
Figure TW201805303AD00002
Abbreviations: CPU = clinical pharmacology unit; D = day; SAD = single incremental dose * Participants with any ongoing AE/SAE at D15 should remain indoors until resolved or not clinically considered significant.
Figure TW201805303AD00003
= research drug investment
Figure TW201805303AD00004
= Visiting days MAD study design in healthy participants (Part A2) There are 8 healthy male or female participants in each sequential MAD dose group (M1-M2). On day 1, the same 8 healthy male or female participants were randomized to receive BMS-986184 or matched placebo on day 1 at a 3:1 ratio. Make each group double-blind and randomized. The dose selection criteria are set forth below. Participants in the MAD group (M1 and M2) were kept confined to the clinical facility until the 50th day of vacation. Participants with any ongoing AE or SAE on day 50 should remain at the study site until the explorer determines that the event has been resolved or is deemed clinically insignificant. Participants are expected to return to the clinical unit for follow-up evaluation on days 57, 64, 71, 85 and 99. The schedule of units and participants can be adjusted using a ±2 day window visit. The approximate study duration of some A2 MAD participants was up to 120 days. Participants who quit early in the study need to complete a study discharge assessment that is expected to begin on day 99. Participants who are interrupted for reasons other than AE can be replaced. Up to 16 participants plan to complete Part A2 of the SAD study. Physical examination, vital sign measurement, eye assessment, 12-lead ECG, and clinical laboratory evaluation were performed at selected times throughout the dosing interval. Participants' AEs were closely monitored throughout the study. Blood samples were collected at selected time points for safety and PK analysis. Approximately 495 mL of blood was drawn from each participant during Part A2 of the study. A schematic view of the study visit of Part A2 is presented in Table 10.table 10 : Visit to the MAD study in healthy participants is schematic (Part A2)
Figure TW201805303AD00005
Abbreviations: CPU = clinical pharmacology unit; D = day; MAD = multiple incremental doses
Figure TW201805303AD00006
= research drug investment
Figure TW201805303AD00007
= Visiting days The study design of POM in UC patients (Part B) There are up to 36 participants with moderate to severe UC in Part B. Part B contains 3 time periods: screening period, treatment period, and safety follow-up period. If the interim analysis shows an inadequate target occlusion at the expected therapeutic dose or if an intolerance safety event occurs, an additional higher dose group of 36 participants (24 active agents: 12 placebo) may be added, if predicted PK exposure is much lower than the exposure range associated with safety findings, and a lower dose group of 36 participants (24 active: 12 placebo) can be added. The final determination was made on the dose volume and administration of the individuals with UC during the PoM study (Part B) immediately after the PK and PD data became available from the SAD/MAD study in healthy individuals. The protocol was modified at this time to include the final dose selection for the PoM study in the UC participants. Participants were subjected to screening assessments to determine eligibility. Participants in Part B must complete the screening process (randomization) within 28 days of Day 1. During the screening period, participants were subjected to receptor testing and medical history, smoking history, screening test procedures, screening endoscopy, and laboratory evaluation to confirm active intestinal mucosal inflammation caused by UC and not caused by other causes. .Treatment period : On Day 1, a maximum of 36 participants with UC were randomized to receive a single dose at a ratio of 2:1 every other week (on Days 1, 15, 29, 43, 57 and 71) over a 12-week period. BMS-986184 or match the placebo. Part B is double-blind and randomized. On day 85, participants were subjected to endoscopic examination. For participants who experience UC episodes during the treatment period, they should be as close as possible to the study protocol. If the participant accepts a therapy that is not permissible according to the study protocol and/or requires hospitalization based on the investigator's recommendations, the participant should be treated according to the interrogator's judgment and discontinue the study. Investigator access is strongly encouraged to implement medical monitoring to discuss any participant who experiences a UC episode during the study period.Safety follow-up period: Follow-up visits were performed every other week (on days 99, 113, and 127) within 57 days. The approximate study duration of Part B participants was a maximum of 177 days. Can be replaced by participants who are interrupted for reasons other than AE. Plan to use up to 72 participants. Physical examination, vital sign measurements, 12-lead ECG, and clinical laboratory evaluation were performed at selected times throughout the dosing interval. Participants' AEs were closely monitored throughout the study. Blood samples were collected at selected time points for safety and PK analysis. Approximately 300 mL of blood was drawn from each participant during Part B of the study. A schematic of the study visit of Part B is presented in Table 11.table 11 : Visit to the POM study in UC patients (Part B)
Figure TW201805303AD00008
Abbreviations: D = days; POM = mechanism verification * D8 ± 1 day
Figure TW201805303AD00009
= study drug administration (±3 days)
Figure TW201805303AD00010
= number of days of visit (± 2 days, except for D8 ± 1 day)
Figure TW201805303AD00011
= endoscopyNumber of participants A maximum of 72 participants were randomized into 9 groups (7 SAD groups and 2 MAD groups) in Part A. In Part A1 (SAD), each group consisted of 8 participants (6 active: 2 placebo). A total of 56 participants were treated in Part A1 (SAD). If MAD was initiated, the other 16 participants (6 actives per group: 2 placebos) were treated in Part A2 (MAD). Although the number of participants was not based on statistical verification, the application of BMS-986184 to 6 participants in each group resulted in an 80% chance of observing at least one occurrence of any AE, which would be taking samples. The incidence occurred in the group at 24%. If the incidence of AE was 32%, the sample size of the participants treated with 6 BMS-986184 observed that the probability of any AE occurring at least once was 90%. In Part B (POM) of the study, a total of 36 participants were randomized (24 active: 12 placebo) to receive a targeted therapeutic dose from a portion of A2. If the interim analysis shows an inadequate target occlusion at the expected therapeutic dose or if an intolerance safety event occurs, an additional higher dose group of 36 participants (24 active agents: 12 placebo) may be added, if predicted PK exposure is much lower than the exposure range associated with safety findings, and a lower dose group of 36 participants (24 active: 12 placebo) can be added. If the interim analysis shows an inadequate target occlusion at the expected therapeutic dose or if an intolerance safety event occurs, an additional higher dose group of 36 participants (24 active agents: 12 placebo) may be added, if predicted PK exposure is much lower than the exposure range associated with safety findings, and a lower dose group of 36 participants (24 active: 12 placebo) can be added. Study endpoint definition The date on which the first participant signed the study-specific informed consent was defined as the starting point for the study. Participants may be considered for recruitment when signing a study-specific informed consent form (ICF). The date on which the last participant completed the discharge procedure or the last follow-up visit was defined as the study endpoint.Scientific principles of research design There are several reasons to begin the development of BMS-986184 in the NHV via FIH research. It is a safer development path for incremental and gradual dose escalation before being used for participants with UC. It will accurately establish a therapeutic window and evaluate a wide range of doses (30 mg up to about 450 mg, intravenously and possibly subcutaneously) to better inform the therapeutic index. Immune repression and infection were assessed in healthy participants in the absence of disease effects and without affecting the activated immune system after a single dose. Repeated dosing with participants with UC after completion of SAD and MAD in healthy participants.Dose demonstration No prior clinical experience was available, and the doses selected for FIH studies were based on predicted PK exposure, PK/TE (ie, free IP-10 in serum) relationships established from non-clinical studies, and established in animal toxicology studies. The margin of safety. In short, the PK model is used to estimate human PK parameters, thereby solving the nonlinear PK in monkeys and then extending to humans. The predicted human PK parameters were used to estimate Cmax and AUC to calculate the safety margin in the dose range tested in the FIH study. The corresponding PD response was estimated using the PK/PD model to investigate the relationship between the concentration of BMS-986184 in the dose range tested in FIH and free IP-10 in serum. The predicted PD response is used to provide the expected target occlusion at the respective dose values, thereby determining the appropriate dose range to fully explore the relationship between PK and target occlusion. To address the uncertainty of the transition from non-linear data to humans, the dose values and quantities of each group can be continuously adjusted based on safety, tolerability, and real-time PK/PD analysis. The first two dose values (30 mg and 75 mg) in the SAD were fixed. The remaining dose values in Part A and the entire dose range in Part B can be adjusted based on PK/PD analysis to achieve the expected PK exposure and free IP-10 for each dose group. In addition, the expected PK exposure in the selected SAD dose group will not exceed the predetermined safety factor estimated from Cmax and AUC under NOAEL to ensure the safety of the study participants. Dose selection argument for SAD in healthy participants (Part A1) In Section A1, dose escalation decisions were made using safety, PK and TE data. The available safety data from the current dose group (including any reported adverse events, findings from a physical examination, eye examination, any clinical laboratory results, etc.) are evaluated by the inquirer and the sponsor prior to determining the dose escalation of the subsequent dose group. Vital signs and ECG). Participants were not randomized to subsequent dose groups until safety data from the current dose values up to day 15 in all participants were reviewed by the investigator and sponsor and measured for safety and tolerability. The first and second dose groups (S1 and S2) (30 mg and 75 mg) in Part A1 were separately fixed. For the remaining dose group (S3-S5) except for SAD group 2, the PK/PD relationship established using cumulative data (except for safety evaluation) based on real-time PK/PD analysis in the previous dose group is used to guide Dose selection. The expected reserve dose in some A1 SAD ranges from 30 mg up to approximately 450 mg. In Section A1 (SAD section of the study), consider the potential non-linear PK derived from drug delivery from the target, and choose to cover a wide range of exposures to describe PK and target occlusion (ie, free IP from baseline in serum). -10 reduces the quantitative relationship between and establishes a sufficient margin of safety in humans to enable patient research. Since TMDD was observed in the monkey model, the intravenous administration route was chosen to study under the single dose condition of FIH in an attempt to better describe the PK at the lower end of the dose range (where the nonlinearity is most pronounced). Because subcutaneous administration is expected due to optimal compliance and convenience in the target patient population, BMS-986184 was also administered subcutaneously in the SAD section of the study to determine the feasibility of subcutaneous administration and the study was intended to be studied. The appropriate dosing regimen tested in the subsequent sections. The size of the starting dose to be administered by the intravenous route is selected taking into account the toxicological findings from preclinical studies. The maximum recommended starting dose (MRSD) was calculated using the NOAEL dose in monkeys. The NOAEL in monkeys, which can be considered as the most sensitive species, was 30 mg/kg/week. The MRSD based on the body surface area method and taking into account the 10-fold safety margin of the NOAEL dose is approximately 58 mg. Since the predicted value from the PK/PD model indicates greater than the minimum pharmacological activity at this dose, the MRSD is not suitable for testing as the starting dose in humans. Therefore, the initial dose in SAD was reduced to 30 mg, and the predicted free IP-10 reduction from baseline in serum was estimated to be 37% (Table 12). The expected safety margins for the estimated Cmax from NOAEL exposure and AUC at 30 mg were 59 and 322, respectively. The proposed dose escalation protocol is expected to include exposure around the predicted effective dose. Assuming a neutralization (eg, as defined by ≥90% reduction) of free IP-10 under steady-state troughs to promote expected performance in patients, it is desirable to achieve 90% and 95% reduction in free IP-10 under steady-state troughs. The dosing regimen is expected to be 180 mg and 300 mg, respectively, and is administered every 2 weeks (Q2W). Therefore, a single dose escalation of up to 300 mg of the study drug should be sufficient to describe the steep portion of the PK/PD signature and capture the predicted effective dose range. At 300 mg, the expected safety margins for estimated Cmax and AUC from NOAEL exposure were 6.4 and 13 times, respectively (Table 13). Considering that UC patients can exhibit greater PK and PD variability (due to differences in target load compared to healthy individuals), it may be necessary to test doses greater than 300 in SAD to provide adequate safety information, thereby enabling this Compounds perform long-term clinical studies in patients with UC. To this end, the highest proposed dose for the SAD portion of the study was approximately 450 mg. It should be noted that the 450 mg administration is optional and depends on the safety, PK and TE data obtained from the previous SAD group. If the observed PK and TE data indicate that the maximum inhibition of free IP-10 under the trough can be achieved at lower dose values, the highest dose proposed is not explored in the SAD study. The expected safety margins for Cmax and AUC for this dose value estimated from NOAEL exposure were 4 and 8 times, respectively (Table 12). A proposed dose of 30 mg to 450 mg ensures adequate description of PK/PD while inducing a broad exposure range to provide adequate safety information to inform dose selection for subsequent patient studies. Table 13 summarizes the expected exposures in humans and the subsequent safety margins based on exposures under NOAEL and LOAEL. Table 12 summarizes the expected target occlusions in humans on day 14 after single dose administration.table 12 : Average reduction in free IP-10 in SAD on day 14 (intravenous administration) (partial A1) * After the first dose group, all remaining dose values are reserved and can be modified based on real-time PK/PD analysis.table 13 : Dose range and safety margin in SAD (intravenous administration) (Part A1) * After the first 2 dose groups, all remaining dose values are reserved and can be modified based on real-time PK/PD analysis using available PK and PD data. The expected average AUC in the selected dose group will not exceed the predetermined AUC value. After 30 mg and 75 mg were administered to the first two groups, the choice of the remaining dose group will depend on the observed PK/PD characteristics in healthy individuals. To ensure that the expected exposure range is increased to ensure an appropriate margin of safety, consider the following factors before making a decision on subsequent dose escalation. The predicted average Cmax and AUC for the predicted dose values will not exceed the predetermined values in Table 13. Increasing the predicted dose value between consecutive SAD groups will not exceed approximately 3 fold increments. The predicted mean PK exposure (AUC(INF)) in the subsequent dose group will increase by no more than about 4 fold from the mean AUC (INF) in the previous dose group. The minimum safe exposure margins for Cmax and AUC (INF) from NOAEL exposure will be maintained at 4 and 8 times, respectively. Dose selection argument in SC After a minimum of 2 dose groups were administered intravenously in the SAD, a feasibility assessment was performed to determine whether BMS-986184 was administered subcutaneously. Subcutaneous administration of the formulation can be carried out at a concentration of 40 mg/mL. BMS-986184 was further tested after subcutaneous administration if the expected TE was achieved after intravenous administration (Table 13) and could be considered to be achieved without the administration of excessive subcutaneous injection. Due to the expected nonlinear PK of BMS-986184 and subsequent dose-dependent bioavailability, the absolute bioavailability of matched dose values needs to be properly assessed. If implemented, the dose value via the subcutaneous route will be matched to the corresponding intravenous dose. The subcutaneous dose value of group S6 can be similar to the intravenous dose group S2 or S3, and the subcutaneous dose value of group S7 can be similar to the intravenous dose group S3 or S4. The dose is selected based on the available PK, TE, safety data in the SAD and considering the potential dose values tested in Part B. The predicted mean Cmax and AUC of the subcutaneous group will not exceed the mean Cmax and AUC at the corresponding dose values after intravenous administration. Dose selection demonstration of MAD in healthy participants (Part A2) In Part A2 (MAD part of the study), two dose values can be studied to describe the safety, tolerability and persistence after administration of multiple BMS-986184 TE. In Part A2, based on PK/PD modeling, the available safety, PK and TE data obtained from the partial A1 SAD of the study and the potential therapeutic dose values tested in Part B are used to determine the MAD group (M1 and M2). The dose values tested and the route of administration (intravenous and/or subcutaneous). The goal of the MAD portion of the study was to select a dose value that was achieved at the dosing interval and maintained a free IP-10 reduction of approximately 50% or greater, while ensuring that the safety exposure margins for Cmax and AUC (INF) from NOAEL exposure were at least 5 times and 10 times. The choice of dosing interval will depend on the observed PK (ie T-HALF) and PD (IP-10 inhibition over time). Currently, a 2-week dosing interval can be considered desirable, however, one week can be considered based on the observed PK/PD and safety characteristics. For the first dose group (M1), the dose was selected after reviewing the PK, TE and safety data from the first 3 SAD groups (S1-S3) and the data was considered safe to proceed. Considering the observed PK, TE, safety, and expected steady state PK and TE after multiple administrations, the dose values can be similar to group S2 or S3. For the second dose group (M2), the dose values were selected after reviewing the PK, TE and safety data from the first 4 SAD groups (S1-S4) and the data was considered safe to proceed. Table 14 - Table 5.5.1-3 illustrates the potential dose values that can be tested in the MAD and the corresponding PK exposure with a margin of safety.table 14 : Potential dose value and safety margin in MAD (Part A2) * The dosing regimen and the route of administration are intended to be interpreted to provide an exposure range and a corresponding margin of safety. The actual dosing regimen and route of administration are determined based on PK/PD modeling from the cumulative data in the SAD. Dose selection demonstration of POM in UC patients (Part B) Immediately after the PK and PD data were obtained from SAD/MAD studies in healthy participants, the dose volume during the POM study (Part B) in UC patients and The final measurement was carried out. The protocol was modified at this time to include the final dose selection for the POM study in UC patients. A single dosing regimen was chosen to be tested in Part B. However, if an unexpected safety finding is obtained if the observed PD is insufficient or the dose is low, another dose group can be added to include the higher dose. The decision is made using the same considerations of the route of administration (intravenous or subcutaneous), the ability to achieve and maintain a 90% or greater reduction in free IP-10, the duration of the dosing interval, and the maintenance of the margin of safety exposure. treatment Study treatment is defined as any inquiry treatment, marketed product, placebo, or medical device that is intended to be administered to a research participant based on the study randomization or treatment assignment. Research treatments include product of exploration (IP) and non-exploratory products (Non-IP). Exploratory products (also referred to as inquiry medical products in some areas) are defined as pharmaceutical forms of active substances or placebos tested or used as reference in clinical studies, including those that have been approved for marketing but are different from the licensed form for use or assembly. (mixed or packaged) or used as an unlicensed indication or as a product for obtaining additional information about the form of the license. Other medicines that are used as support for prevention, diagnosis, or treatment, or that are exempt from medicine (such as a standard care component for a given diagnosis) can be considered a non-exploratory product. For this protocol, the study drug contained the invasive product BMS-986184-01 injection (150 mg/vial (40 mg/mL), 3.75 mL vial) and a similar placebo. BMS-986184-01 or a similar placebo is administered as a solution subcutaneously or intravenously (depending on the dose group).table 15 : Research treatment for IMI012004table 16 : dose selection and time Research evaluation and procedures Performance evaluation Performance evaluations were performed only for Part B, as measured by endoscopic and histopathological scores in participants with moderate to severe UC. Main performance evaluation Correction Baron score The corrected Baron was used to assess the severity of mucosal disease assessed by endoscopy. The modified Baron scoring system has an endoscopic index score with a scale of 0 to 4, with a higher score indicating a greater severity. The corrected Baron score is as follows: a score of 0 indicates a normal smooth, glaring mucosa with a visible vascular pattern and is not easily broken; a score of 1 indicates a granular mucosa, a vascular pattern is invisible, is not easily broken, and is congested; a score of 2 indicates the same mucosa as 1 but Easy to break the mucosa. Endoscopic examination and endoscopic evaluation In order to ensure quality data and standardization, endoscopic examinations were performed as much as possible by the same endoscopic physician at the clinical site throughout the trial according to the investigator's judgment. Flexible sigmoidoscopy or colonoscopy should be performed prior to administration of the study drug at baseline (Day 1) and Week 12 (Day 85) study visits. Baseline endoscopy (colonoscopy or sigmoidoscopy) must be performed within 28 days of randomization, must be documented, and should be implemented as close as possible to randomization. The 85th day of the optometry (colonoscopy or sigmoidoscopy) should be performed no more than 3 days before or after the 85th visit. Colonoscopy or sigmoidoscopy can be performed at baseline (Day 1) and Day 85. The procedure performed (colonoscopy or sigmoidoscopy) does not need to be the same at all points in time. Colon cancer should be screened as indicated by the local guidelines and should be performed at the discretion of the investigator. Any biopsies that were implemented to assess colon cancer were evaluated at the instigator's discretion by a local reader. In addition, any biopsy performed to obtain a histologically confirmed UC diagnosis is evaluated by the local reader at the instigator's discretion. A colonoscopy procedure performed at screening can be used to determine the endoscopic subscore component of the Mayo Score and replace the sigmoidoscopy (if performed within 28 days of randomization). The biopsy should be obtained from the most severely affected area of the colorectum (except when specifically targeting unaffected areas in the baseline endoscopic assessment). If all parts of the colon and colon are equally affected, a rectal biopsy should be obtained. For histopathological analysis, large biopsy should be used to obtain two biopsies. If there is an ulcer, the biopsy should point to the edge of the ulcer. Endoscopic images were acquired during each endoscopic examination (days 1 and 85) and sent for independent endoscopic mucosal scoring by a central endoscopy reader and Meonet was measured The spectroscopy score and the correction of the Baron score. A detailed image review charter from the Central Reading Lab provides an overview of endoscopic procedures, video recording, and equipment for video capture and transmission of endoscope records. For each participant, the video recording of the entire endoscopic procedure is performed using an acceptable storage medium. The endoscope record is read blindly by a qualified gastroenterologist based on an image review charter. For the purpose of determining the eligibility of participants for recruitment, as described in Section 9.1.2, the baseline Mayo score is determined locally by the inquirer and by the central endoscopy reader (3rd party supplier). Endoscopic mirror score. All other endoscopic scores were performed by a central endoscopic reader (3rd party supplier) (Baron score corrected under the baseline and Mayo's mirror score, corrected Baron score on the 85th day). The Mayo score used for the clinical endpoint in the trial was scored using the Mayo endoscopy method derived from the central endoscopy reader. The corrected Baron score for the clinical endpoint in the trial was also derived from the central endoscopy reader. Colon tissue was collected on days 1 and 85 prior to administration during the endoscopic procedure. To ensure quality data and standardization, colonic histopathology scores (Geboes, Modified Riley, and Robarts Histopathology Index, were read primarily on Days 1 and 85 by a single blind pathologist contracted by a central reading laboratory. See section 9.1.2). A detailed image review charter from the Central Reading Laboratory will outline the histopathology procedures for fixed sample transfer, processing, slide preparation, and slide digitization for histopathological scoring. The endoscopic record is read blindly by a qualified pathologist based on the image review charter. Secondary performance evaluation Endoscopy evaluation - Fixed Baron score Histopathological evaluation Correction Riley index The revised Riley index considers six characteristics [acute inflammatory cell infiltrates (neutrophils in the lamina propria), crypt abscesses, mucin consumption, surface epithelial integrity, chronic inflammatory cell infiltrates (circular in the lamina propria) Histopathology scoring system for cells) and crypt structure irregularities, each characteristic rating is scale 0-3, with higher scores indicating more severe tissue conditions.Geboes score The Geboes scoring system uses a 6-rated system (0-5) based on structural changes, chronic inflammatory infiltrates, lamina propria and eosinophils, neutrophils in the epithelium, crypt destruction, and erosion or ulceration. A histopathological scoring system for measuring disease activity. Higher levels indicate more serious disease activity. Robarts Histopathology Index The Robarts Histopathology Index (RHI) total score ranged from 0 (no disease activity) to 33 (severe disease activity). RHI can be calculated as: RHI = 1 × chronic inflammatory infiltrate grade (4 grades) + 2 × lamina propria neutrophil (4 grades) + 3 × neutrophils in the epithelium (4 grades) + 5 × erosion or ulceration (4 grades, after combination Geboes 5.1 and 5.2); where chronic inflammatory infiltrates 0 = no increase 1 = mild but clear increase 2 = moderate increase 3 = significantly increase lamina propria neutrophil = no 1 = mild but clear increase 2 = moderate increase 3 = significantly increase neutrophil in the epithelium 0 = no 1 = crypt involving < 5% 2 = crypt involving < 50% 3 = involved > 50% of crypt erosion or ulceration 0 = no erosion, ulcer or granulation tissue 1 = recovery of epithelium + fatigue inflammation 1 = possible erosion - lesion zone 2 = clear erosion 3 = ulcer or granulation tissue Clinical evaluation Mayo score Meo scores were used to assess disease activity. The Mayo scoring system is a composite index consisting of the following four disease variables (each score is scale 0 to 3, with higher scores indicating greater frequency or severity): fecal frequency, rectal bleeding, endoscopy Discovery and physician general evaluation (PGA). Use these three items to calculate some Mayo scores. The endoscopic Mayo sub-component is included to calculate the complete Mayo score. The partial and total Mayo scores are automatically calculated by the IVRS and are available to the inquirer and the sponsor. The Mayo score is between 0 and 12 points and utilizes all four disease variables, with higher scores indicating more severe disease. The endoscopic mirror score only includes the 0-3 endoscope scale. In addition to the endoscopic mirror score, some Mayo scores included all components (rectal bleeding, fecal frequency, overall physician evaluation). Review the Mayo scoring system and discuss with the inquiry staff at the Inquirer Meeting or other forums the method of standardizing the rating between employees. For fecal frequency components, score 0 = participants have a normal amount of feces, 1 = one or two feces are not normal, 2 = three or four feces are not normal, and 3 = five or more feces are not normal. For rectal bleeding, 0 = no blood was seen in the feces, 1 = less than half of the day, the feces of the defecation had bloodshot, 2 = most of the feces in the daily defecation had significant blood, and 3 = only the blood was discharged during defecation. PGA scores are 0 = normal, 1 = mild disease, 2 = moderate disease, 3 = serious diseaseTwo-type patient related results (PRO) The two-form PRO uses the component of rectal bleeding and fecal frequency from the diary as a composite score for additional efficacy evaluation.Diary moment for Mayo score The diary moment depends on the time when the endoscopic examination is performed. For visits that do not perform endoscopic procedures (Days 8, 15, -29, 43, 57, and 71 days of treatment), participants will complete the diary at least 5 days prior to each study visit. For visits during the endoscopy of the baseline (days 1 and 85 of the treatment period), participants will complete the diary for at least 5 consecutive days prior to the date of preparation of the endoscopic examination. Endoscopic examination must be performed prior to clinical evaluation and within 3 days prior to administration (excluding intestinal preparation and endoscopy procedures). Exploratory effectiveness evaluation Endoscopy and clinical evaluation Endoscopic, clinical, and histological remissions were assessed using modified Baron scores, clinical and histological evaluations.Colonic mucosal biopsy For all participants in Part B, a biopsy is required during endoscopic examination (as part of the study) or early before the 85th day. A biopsy was performed on each of the 5 to 6 samples (the most severely affected colon site away from 30 cm during retraction of the endoscope). If the most affected area is ulcerated, the specimen should be obtained from the edge of the ulcer. In the absence of any visible lesion characteristics of UC, 2 samples should be collected from the 10 cm area when the endoscope is retracted. In addition, at baseline visits, 2 biopsies from each of the participants in the unaffected area should be obtained (if within 30 cm during retraction of the endoscope), as explained below. One to two biopsy samples should be placed in each container provided for study. A formalin-fixed vial was pre-filled with 10% neutral buffered formalin and RNA later flasks were pre-filled with RNA later solution. Pharmacokinetics The pharmacokinetics of BMS-986184 was derived from serum concentration versus time data. The following pharmacokinetic parameters were evaluated for SAD and MAD in healthy participants: The following pharmacokinetic parameters were evaluated for partial A1 SAD in healthy participants. The following pharmacokinetic parameters were evaluated for partial A2 MAD in healthy participants. The following pharmacokinetic parameters were evaluated for partial B POMT in UC patients. The pharmacokinetic parameter values of individual participants were derived by a non-compartmental method and by a validation pharmacokinetic analysis program. The actual time is used for analysis.table 17 : Pharmacokinetic Sampling Schedule for BMS-986184 - SAD (Part A1)a EOI = End of infusion, this sample should be taken just before the infusion is stopped (preferably within 2 minutes before the end of the infusion). If the end of the infusion is delayed beyond the nominal infusion duration, the collection of this sample should be delayed accordingly.table 18 : Pharmacokinetic Sampling Schedule for BMS-986184 - MAD (Part A2)a EOI = end of infusion, for participants who follow intravenous administration, this sample should be taken just before the infusion is stopped (preferably within 2 minutes prior to the end of the infusion). If the end of the infusion is delayed beyond the nominal infusion duration, the collection of this sample should be delayed accordingly.table 19 : Pharmacokinetic Sampling Schedule for BMS-986184 - POM (Part B)a EOI = end of infusion, for participants who follow intravenous administration, this sample should be taken just before the infusion is stopped (preferably within 2 minutes prior to the end of the infusion). If the end of the infusion is delayed beyond the nominal infusion duration, the collection of this sample should be delayed accordingly.b These samples were collected during the follow-up period.c Samples of participants who were interrupted due to adverse events should be collected. Serum samples were analyzed by BMS-986184 by validated ligand binding immunoassays. Pharmacokinetic samples collected from participants receiving placebo were not analyzed unless a placebo status was warranted. Immunogenicity evaluation The appearance of the specific ADA of BMS-986184 was determined from the measurements obtained at the time of the planned time. Validated immunoassays were used to analyze the samples. The study endpoint was the incidence of persistent positive ADA produced by the start of the drug treatment at the most (and including) the final dose. The following definitions apply: Participant's ADA status: • Baseline ADA-positive participant: Participant with baseline ADA-positive sample • ADA-positive participant: Any time during the defined observation period after starting treatment relative to baseline Participants with at least one ADA positive sample. ● ADA negative participants: participants who did not have ADA positive samples after starting treatment Pharmacodynamics Fecal calprotectin Fecal calprotectin is a surrogate marker for intestinal inflammation in IBD because it is associated with excretion of intestinal granules. Fecal calprotectin can be traced longitudinally as a marker of therapeutic response.High sensitivity CRP (hsCRP) hsCRP is an inflamed non-specific acute phase reactant marker. hsCRP is used as a safety marker and can be longitudinally tracked as a marker for therapeutic response. Biomarker Target occlusion biomarker Serum for target occlusion IP-10 concentration ( Total and free ) section A and B) In Part A, blood was drawn for measurement of serum free and total IP-10 concentrations to evaluate TE.table 20 : Sampling schedule for serum TE biomarkers for BMS-986184 - SAD (Part A1)table twenty one :BMS-986184 -MAD TE biomarker sampling schedule (Part A2) In Part B, blood was drawn at the time indicated in Table 9.8.1.1-3 for measurement of serum free and total IP-10 concentrations to evaluate TE. Additional details of blood collection and processing are provided to the location in the laboratory procedure manual.table twenty two : BMS-986184 TE Biomarker Sampling Schedule - Part B (POM)Tissue target occlusion biomarker ( section B) Colonic biopsy was used to measure free and total IP-10 concentrations to assess tissue TE.Pharmacokinetic biomarker ( section B) Blood was drawn for a certain period of time only in Part B prior to administration for evaluation of hsCRP. Fecal calprotectin was also measured.Exploratory serum / Plasma biomarker ( section B) Blood is drawn only in Part B prior to administration for evaluation of exploratory serum biomarkers that may be associated with IP-10 neutralization or related pathways. Exploratory serum biomarkers may include, but are not limited to, other CXCR3-related chemokines (CXCL9/MIG, CXCL11/ITAC), IL-1 (α, β), IL-6, IL-10, IL-12 , G-CSF, MIP-3β, IFN-γ and novel markers that can be associated with UC disease activity and/or mucosal healing. Proteomic descriptions can also be performed to support understanding of the activity of BMS-986184 in ulcerative colitis. Immune cell phenotyping ( section B) Blood is drawn only in Part B prior to administration for immunocyte phenotyping, which may include, but is not limited to, the following markers: CXCR3, CD3, CD4, CD56, CD16, CD45RA, CCR7. These results are used to evaluate baseline predictors of pharmacokinetic changes that may occur due to anti-IP-10 therapy and/or potentially identify responses. immunochemistry ( section B) Immunohistochemistry of formalin-fixed samples can include the following antigens according to standard procedures: CD3, CD68, IP-10, Foxp3, cytokeratin 18, EpCAM, IL17, and CXCR3. Gene expression description Whole blood RNA which performed ( section B) Blood was taken only in Part B before administration. These samples provide broad RNA description (microarray or RNA sequencing) to identify novel pharmacokinetic and potency biomarkers associated with inflammatory and/or UC disease pathways, mechanisms of action, and BMS-986184 therapeutic response. In addition, these samples were used to explore the genetic performance of baseline predictive efficacy against BMS-986184 treated participants.organization RNA which performed ( section B) Colon biopsy stored in RNA later is processed to isolate RNA. These samples provide broad RNA description (microarray or RNA sequencing) to identify novel pharmacokinetic and potency biomarkers associated with inflammatory and/or UC disease pathways, mechanisms of action, and BMS-986184 therapeutic response. In addition, these samples were used to explore the genetic performance of baseline predictive efficacy against BMS-986184 treated participants.Overview of the sequence listing Equivalents Many equivalents of the specific embodiments of the invention described herein may be identified or determined by routine experiment. These equivalents are intended to be included within the scope of the claims below.

圖1A展示IP10.1 (6A5)人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO: 5)及胺基酸序列(SEQ ID NO: 4)。描繪CDR1 (SEQ ID NO: 1)、CDR2 (SEQ ID NO: 2)及CDR3 (SEQ ID NO: 3)區且指示V、D及J種系來源。 圖1B展示IP10.1人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:11)及胺基酸序列(SEQ ID NO: 10)。描繪CDR1 (SEQ ID NO:7)、CDR2 (SEQ ID NO:8)及CDR3 (SEQ ID NO:9)區且指示V及J種系來源。 圖2A展示IP10.44人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:17)及胺基酸序列(SEQ ID NO:16)。描繪CDR1 (SEQ ID NO: 13)、CDR2 (SEQ ID NO: 14)及CDR3 (SEQ ID NO: 15)區且指示V、D及J種系來源。 圖2B展示IP10.44人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:23)及胺基酸序列(SEQ ID NO: 22)。描繪CDR1 (SEQ ID NO:19)、CDR2 (SEQ ID NO:20)及CDR3 (SEQ ID NO:21)區且指示V及J種系來源。 圖3A展示IP10.45人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:29)及胺基酸序列(SEQ ID NO:28)。描繪CDR1 (SEQ ID NO: 25)、CDR2 (SEQ ID NO: 26)及CDR3 (SEQ ID NO: 27)區且指示V、D及J種系來源。 圖3B展示IP10.45人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:35)及胺基酸序列(SEQ ID NO: 34)。描繪CDR1 (SEQ ID NO:31)、CDR2 (SEQ ID NO:32)及CDR3 (SEQ ID NO:33)區且指示V及J種系來源。 圖4A展示IP10.46人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:41)及胺基酸序列(SEQ ID NO:40)。描繪CDR1 (SEQ ID NO: 37)、CDR2 (SEQ ID NO: 38)及CDR3 (SEQ ID NO: 39)區且指示V、D及J種系來源。 圖4B展示IP10.46人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:47)及胺基酸序列(SEQ ID NO: 46)。描繪CDR1 (SEQ ID NO:43)、CDR2 (SEQ ID NO:44)及CDR3 (SEQ ID NO:45)區且指示V及J種系來源。 圖5A展示IP10.52人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:53)及胺基酸序列(SEQ ID NO:52)。描繪CDR1 (SEQ ID NO: 49)、CDR2 (SEQ ID NO: 50)及CDR3 (SEQ ID NO: 51)區且指示V、D及J種系來源。 圖5B展示IP10.52人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:59)及胺基酸序列(SEQ ID NO: 58)。描繪CDR1 (SEQ ID NO:55)、CDR2 (SEQ ID NO:56)及CDR3 (SEQ ID NO:57)區且指示V及J種系來源。 圖6A展示IP10.53人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:65)及胺基酸序列(SEQ ID NO:64)。描繪CDR1 (SEQ ID NO: 61)、CDR2 (SEQ ID NO: 62)及CDR3 (SEQ ID NO: 63)區且指示V、D及J種系來源。 圖6B展示IP10.53人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:71)及胺基酸序列(SEQ ID NO: 70)。描繪CDR1 (SEQ ID NO:67)、CDR2 (SEQ ID NO:68)及CDR3 (SEQ ID NO:69)區且指示V及J種系來源。 圖7A展示IP10.43人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:77)及胺基酸序列(SEQ ID NO:76)。描繪CDR1 (SEQ ID NO: 73)、CDR2 (SEQ ID NO: 74)及CDR3 (SEQ ID NO: 75)區且指示V、D及J種系來源。 圖7B展示IP10.43人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:83)及胺基酸序列(SEQ ID NO: 82)。描繪CDR1 (SEQ ID NO:79)、CDR2 (SEQ ID NO:80)及CDR3 (SEQ ID NO:81)區且指示V及J種系來源。 圖8A展示IP10.47人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:89)及胺基酸序列(SEQ ID NO:88)。描繪CDR1 (SEQ ID NO: 85)、CDR2 (SEQ ID NO: 86)及CDR3 (SEQ ID NO: 87)區且指示V、D及J種系來源。 圖8B展示IP10.47人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:95)及胺基酸序列(SEQ ID NO: 94)。描繪CDR1 (SEQ ID NO:91)、CDR2 (SEQ ID NO:92)及CDR3 (SEQ ID NO:93)區且指示V及J種系來源。 圖9A展示IP10.48人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:101)及胺基酸序列(SEQ ID NO:100)。描繪CDR1 (SEQ ID NO: 97)、CDR2 (SEQ ID NO: 98)及CDR3 (SEQ ID NO: 99)區且指示V、D及J種系來源。 圖9B展示IP10.48人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:107)及胺基酸序列(SEQ ID NO: 106)。描繪CDR1 (SEQ ID NO:103)、CDR2 (SEQ ID NO:104)及CDR3 (SEQ ID NO:105)區且指示V及J種系來源。 圖10A展示IP10.49人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:113)及胺基酸序列(SEQ ID NO:112)。描繪CDR1 (SEQ ID NO: 109)、CDR2 (SEQ ID NO: 110)及CDR3 (SEQ ID NO: 111)區且指示V、D及J種系來源。 圖10B展示IP10.49人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:119)及胺基酸序列(SEQ ID NO: 118)。描繪CDR1 (SEQ ID NO:115)、CDR2 (SEQ ID NO:116)及CDR3 (SEQ ID NO:117)區且指示V及J種系來源。 圖11A展示IP10.50人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:125)及胺基酸序列(SEQ ID NO:124)。描繪CDR1 (SEQ ID NO: 121)、CDR2 (SEQ ID NO: 122)及CDR3 (SEQ ID NO: 123)區且指示V、D及J種系來源。 圖11B展示IP10.50人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:131)及胺基酸序列(SEQ ID NO: 130)。描繪CDR1 (SEQ ID NO:127)、CDR2 (SEQ ID NO:128)及CDR3 (SEQ ID NO:129)區且指示V及J種系來源。 圖12A展示IP10.51人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:137)及胺基酸序列(SEQ ID NO:136)。描繪CDR1 (SEQ ID NO: 133)、CDR2 (SEQ ID NO: 134)及CDR3 (SEQ ID NO: 135)區且指示V、D及J種系來源。 圖12B展示IP10.51人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:143)及胺基酸序列(SEQ ID NO: 142)。描繪CDR1 (SEQ ID NO:139)、CDR2 (SEQ ID NO:140)及CDR3 (SEQ ID NO:141)區且指示V及J種系來源。 圖13A展示IP10.54人類單株抗體之重鏈可變區之核苷酸序列(SEQ ID NO:149)及胺基酸序列(SEQ ID NO:148)。描繪CDR1 (SEQ ID NO: 145)、CDR2 (SEQ ID NO: 146)及CDR3 (SEQ ID NO: 147)區且指示V、D及J種系來源。 圖13B展示IP10.54人類單株抗體之輕鏈可變區之核苷酸序列(SEQ ID NO:155)及胺基酸序列(SEQ ID NO: 154)。描繪CDR1 (SEQ ID NO:151)、CDR2 (SEQ ID NO:152)及CDR3 (SEQ ID NO:153)區且指示V及J種系來源。 圖14係展示抗體IP10.1及IP10.44阻抑游離血清IP-10之活性之圖形。 圖15係展示抗體IP10.1及IP10.44減小NK細胞頻率之活性之圖形。 圖16A (TNBS結腸炎)及16B (CD40誘導之結腸炎)係展示IP10.1 (6A1)及IP10.44 (18G2)之抗體代用品在兩種不同結腸炎模型中之效能之圖形。 圖17A (IFNγ)、17B (TNFα)、17C (IL-12p40)及17D (IL-6)係展示IP10.1 (6A1)及IP10.44 (18G2)之抗體代用品減小CD40誘導之結腸炎模型中細胞介素之循環濃度之活性的圖形。 圖18A及18B (IL-6)、18C及18D (IFNγ)及18E及18F (IL-12p40)係展示使用CD40誘導之結腸炎模型IP10.44 (18G2)及抗TNFα抗體之抗體代用品減小血清及發炎腸中細胞介素之循環濃度之活性的圖形。 圖19A (IP10.44)及19B (IP10.1)係展示在IP10.44及IP10.1之靜脈內劑量後游離血清IP-10之時間特徵之圖形。 圖20係展示與食蟹猴中之血清IP10.44相比之游離血清IP-10阻抑(基線%)之圖形。 圖21A至21F係藉由PK/PD建模展示觀察與預測之游離及總血清IP-10之圖形(游離血清IP-10之LLOQ為1 pM;若值低於LLOQ,則使用LLOQ進行繪圖)。 圖22係比較抗IP-10小鼠代用品(18G2)與抗TNFα代用品之高親和力之圖形。Figure 1A shows the nucleotide sequence (SEQ ID NO: 5) and the amino acid sequence (SEQ ID NO: 4) of the heavy chain variable region of the IP10.1 (6A5) human monoclonal antibody. The CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2) and CDR3 (SEQ ID NO: 3) regions are depicted and indicate V, D, and J germline sources. Figure 1B shows the nucleotide sequence (SEQ ID NO: 11) and the amino acid sequence (SEQ ID NO: 10) of the light chain variable region of the IP10.1 human monoclonal antibody. The CDR1 (SEQ ID NO: 7), CDR2 (SEQ ID NO: 8) and CDR3 (SEQ ID NO: 9) regions are depicted and indicate V and J germline sources. Figure 2A shows the nucleotide sequence (SEQ ID NO: 17) and the amino acid sequence (SEQ ID NO: 16) of the heavy chain variable region of the IP10.44 human monoclonal antibody. The CDR1 (SEQ ID NO: 13), CDR2 (SEQ ID NO: 14) and CDR3 (SEQ ID NO: 15) regions are depicted and indicate V, D, and J germline sources. Figure 2B shows the nucleotide sequence (SEQ ID NO: 23) and the amino acid sequence (SEQ ID NO: 22) of the light chain variable region of the IP10.44 human monoclonal antibody. The CDR1 (SEQ ID NO: 19), CDR2 (SEQ ID NO: 20) and CDR3 (SEQ ID NO: 21) regions are depicted and indicate V and J germline sources. Figure 3A shows the nucleotide sequence (SEQ ID NO: 29) and the amino acid sequence (SEQ ID NO: 28) of the heavy chain variable region of the IP10.45 human monoclonal antibody. The CDR1 (SEQ ID NO: 25), CDR2 (SEQ ID NO: 26) and CDR3 (SEQ ID NO: 27) regions are depicted and indicate V, D, and J germline sources. Figure 3B shows the nucleotide sequence (SEQ ID NO: 35) and the amino acid sequence (SEQ ID NO: 34) of the light chain variable region of the IP10.45 human monoclonal antibody. The CDR1 (SEQ ID NO: 31), CDR2 (SEQ ID NO: 32) and CDR3 (SEQ ID NO: 33) regions are depicted and indicate V and J germline sources. Figure 4A shows the nucleotide sequence (SEQ ID NO: 41) and the amino acid sequence (SEQ ID NO: 40) of the heavy chain variable region of the IP10.46 human monoclonal antibody. The CDR1 (SEQ ID NO: 37), CDR2 (SEQ ID NO: 38) and CDR3 (SEQ ID NO: 39) regions are depicted and indicate V, D, and J germline sources. Figure 4B shows the nucleotide sequence (SEQ ID NO: 47) and the amino acid sequence (SEQ ID NO: 46) of the light chain variable region of the IP10.46 human monoclonal antibody. The CDR1 (SEQ ID NO: 43), CDR2 (SEQ ID NO: 44) and CDR3 (SEQ ID NO: 45) regions are depicted and indicate V and J germline sources. Figure 5A shows the nucleotide sequence (SEQ ID NO: 53) and the amino acid sequence (SEQ ID NO: 52) of the heavy chain variable region of the IP 10.52 human monoclonal antibody. The CDR1 (SEQ ID NO: 49), CDR2 (SEQ ID NO: 50) and CDR3 (SEQ ID NO: 51) regions are depicted and indicate V, D, and J germline sources. Figure 5B shows the nucleotide sequence (SEQ ID NO: 59) and the amino acid sequence (SEQ ID NO: 58) of the light chain variable region of the IP 10.52 human monoclonal antibody. The CDR1 (SEQ ID NO: 55), CDR2 (SEQ ID NO: 56) and CDR3 (SEQ ID NO: 57) regions are depicted and indicate V and J germline sources. Figure 6A shows the nucleotide sequence (SEQ ID NO: 65) and the amino acid sequence (SEQ ID NO: 64) of the heavy chain variable region of the IP10.53 human monoclonal antibody. The CDR1 (SEQ ID NO: 61), CDR2 (SEQ ID NO: 62) and CDR3 (SEQ ID NO: 63) regions are depicted and indicate V, D and J germline sources. Figure 6B shows the nucleotide sequence (SEQ ID NO: 71) and the amino acid sequence (SEQ ID NO: 70) of the light chain variable region of the IP10.53 human monoclonal antibody. The CDR1 (SEQ ID NO: 67), CDR2 (SEQ ID NO: 68) and CDR3 (SEQ ID NO: 69) regions are depicted and indicate V and J germline sources. Figure 7A shows the nucleotide sequence (SEQ ID NO: 77) and the amino acid sequence (SEQ ID NO: 76) of the heavy chain variable region of the IP 10.43 human monoclonal antibody. The CDR1 (SEQ ID NO: 73), CDR2 (SEQ ID NO: 74) and CDR3 (SEQ ID NO: 75) regions are depicted and indicate V, D and J germline sources. Figure 7B shows the nucleotide sequence (SEQ ID NO: 83) and the amino acid sequence (SEQ ID NO: 82) of the light chain variable region of the IP10.43 human monoclonal antibody. The CDR1 (SEQ ID NO: 79), CDR2 (SEQ ID NO: 80) and CDR3 (SEQ ID NO: 81) regions are depicted and indicate V and J germline sources. Figure 8A shows the nucleotide sequence (SEQ ID NO: 89) and the amino acid sequence (SEQ ID NO: 88) of the heavy chain variable region of the IP10.47 human monoclonal antibody. The CDR1 (SEQ ID NO: 85), CDR2 (SEQ ID NO: 86) and CDR3 (SEQ ID NO: 87) regions are depicted and indicate V, D, and J germline sources. Figure 8B shows the nucleotide sequence (SEQ ID NO: 95) and the amino acid sequence (SEQ ID NO: 94) of the light chain variable region of the IP10.47 human monoclonal antibody. The CDR1 (SEQ ID NO: 91), CDR2 (SEQ ID NO: 92) and CDR3 (SEQ ID NO: 93) regions are depicted and indicate V and J germline sources. Figure 9A shows the nucleotide sequence (SEQ ID NO: 101) and the amino acid sequence (SEQ ID NO: 100) of the heavy chain variable region of the IP10.48 human monoclonal antibody. The CDR1 (SEQ ID NO: 97), CDR2 (SEQ ID NO: 98) and CDR3 (SEQ ID NO: 99) regions are depicted and indicate V, D, and J germline sources. Figure 9B shows the nucleotide sequence (SEQ ID NO: 107) and the amino acid sequence (SEQ ID NO: 106) of the light chain variable region of the IP10.48 human monoclonal antibody. The CDR1 (SEQ ID NO: 103), CDR2 (SEQ ID NO: 104) and CDR3 (SEQ ID NO: 105) regions are depicted and indicate V and J germline sources. Figure 10A shows the nucleotide sequence (SEQ ID NO: 113) and the amino acid sequence (SEQ ID NO: 112) of the heavy chain variable region of the IP10.49 human monoclonal antibody. The CDR1 (SEQ ID NO: 109), CDR2 (SEQ ID NO: 110) and CDR3 (SEQ ID NO: 111) regions are depicted and indicate V, D, and J germline sources. Figure 10B shows the nucleotide sequence (SEQ ID NO: 119) and the amino acid sequence (SEQ ID NO: 118) of the light chain variable region of the IP10.49 human monoclonal antibody. The CDR1 (SEQ ID NO: 115), CDR2 (SEQ ID NO: 116) and CDR3 (SEQ ID NO: 117) regions are depicted and indicate V and J germline sources. Figure 11A shows the nucleotide sequence (SEQ ID NO: 125) and the amino acid sequence (SEQ ID NO: 124) of the heavy chain variable region of the IP10.50 human monoclonal antibody. The CDR1 (SEQ ID NO: 121), CDR2 (SEQ ID NO: 122) and CDR3 (SEQ ID NO: 123) regions are depicted and indicate V, D, and J germline sources. Figure 11B shows the nucleotide sequence (SEQ ID NO: 131) and the amino acid sequence (SEQ ID NO: 130) of the light chain variable region of the IP10.50 human monoclonal antibody. The CDR1 (SEQ ID NO: 127), CDR2 (SEQ ID NO: 128) and CDR3 (SEQ ID NO: 129) regions are depicted and indicate V and J germline sources. Figure 12A shows the nucleotide sequence (SEQ ID NO: 137) and the amino acid sequence (SEQ ID NO: 136) of the heavy chain variable region of the IP 10.51 human monoclonal antibody. The CDR1 (SEQ ID NO: 133), CDR2 (SEQ ID NO: 134) and CDR3 (SEQ ID NO: 135) regions are depicted and indicate V, D, and J germline sources. Figure 12B shows the nucleotide sequence (SEQ ID NO: 143) and the amino acid sequence (SEQ ID NO: 142) of the light chain variable region of the IP 10.51 human monoclonal antibody. The CDR1 (SEQ ID NO: 139), CDR2 (SEQ ID NO: 140) and CDR3 (SEQ ID NO: 141) regions are depicted and indicate V and J germline sources. Figure 13A shows the nucleotide sequence (SEQ ID NO: 149) and the amino acid sequence (SEQ ID NO: 148) of the heavy chain variable region of the IP 10.54 human monoclonal antibody. The CDR1 (SEQ ID NO: 145), CDR2 (SEQ ID NO: 146) and CDR3 (SEQ ID NO: 147) regions are depicted and indicate V, D, and J germline sources. Figure 13B shows the nucleotide sequence (SEQ ID NO: 155) and the amino acid sequence (SEQ ID NO: 154) of the light chain variable region of the IP 10.54 human monoclonal antibody. The CDR1 (SEQ ID NO: 151), CDR2 (SEQ ID NO: 152) and CDR3 (SEQ ID NO: 153) regions are depicted and indicate V and J germline sources. Figure 14 is a graph showing the activity of antibodies IP10.1 and IP10.44 to suppress free serum IP-10. Figure 15 is a graph showing the activity of antibodies IP10.1 and IP10.44 to reduce NK cell frequency. Figure 16A (TNBS colitis) and 16B (CD40-induced colitis) are graphs showing the efficacy of antibody surrogates for IP10.1 (6A1) and IP10.44 (18G2) in two different colitis models. Figure 17A (IFNγ), 17B (TNFα), 17C (IL-12p40) and 17D (IL-6) show antibody replacements for IP10.1 (6A1) and IP10.44 (18G2) to reduce CD40-induced colitis A graph of the activity of circulating concentrations of interleukins in the model. Figures 18A and 18B (IL-6), 18C and 18D (IFNγ) and 18E and 18F (IL-12p40) show reduction of antibody substitutes using the CD40-induced colitis model IP10.44 (18G2) and anti-TNFα antibodies A graph of the activity of circulating concentrations of interleukins in serum and inflamed intestines. Figures 19A (IP 10.44) and 19B (IP 10.1) are graphs showing the temporal characteristics of free serum IP-10 after an intravenous dose of IP 10.44 and IP 10.1. Figure 20 is a graph showing free serum IP-10 repression (% of baseline) compared to serum IP10.44 in cynomolgus monkeys. 21A to 21F are graphs showing the observed and predicted free and total serum IP-10 by PK/PD modeling (LLOQ of free serum IP-10 is 1 pM; if the value is lower than LLOQ, LLOQ is used for mapping) . Figure 22 is a graph comparing the high affinity of anti-IP-10 mouse substitute (18G2) with anti-TNFa substitute.

Figure TW201805303AD00012
Figure TW201805303AD00013
Figure TW201805303AD00014
Figure TW201805303AD00015
Figure TW201805303AD00016
Figure TW201805303AD00017
Figure TW201805303AD00018
Figure TW201805303AD00019
Figure TW201805303AD00020
Figure TW201805303AD00021
Figure TW201805303AD00022
Figure TW201805303AD00023
Figure TW201805303AD00024
Figure TW201805303AD00025
Figure TW201805303AD00026
Figure TW201805303AD00027
Figure TW201805303AD00028
Figure TW201805303AD00029
Figure TW201805303AD00030
Figure TW201805303AD00031
Figure TW201805303AD00032
Figure TW201805303AD00033
Figure TW201805303AD00034
Figure TW201805303AD00035
Figure TW201805303AD00036
Figure TW201805303AD00037
Figure TW201805303AD00038
Figure TW201805303AD00039
Figure TW201805303AD00040
Figure TW201805303AD00041
Figure TW201805303AD00042
Figure TW201805303AD00043
Figure TW201805303AD00044
Figure TW201805303AD00045
Figure TW201805303AD00046
Figure TW201805303AD00047
Figure TW201805303AD00048
Figure TW201805303AD00049
Figure TW201805303AD00050
Figure TW201805303AD00051
Figure TW201805303AD00052
Figure TW201805303AD00053
Figure TW201805303AD00054
Figure TW201805303AD00055
Figure TW201805303AD00056
Figure TW201805303AD00057
Figure TW201805303AD00058
Figure TW201805303AD00059
Figure TW201805303AD00060
Figure TW201805303AD00061
Figure TW201805303AD00062
Figure TW201805303AD00063
Figure TW201805303AD00064
Figure TW201805303AD00065
Figure TW201805303AD00066
Figure TW201805303AD00067
Figure TW201805303AD00068
Figure TW201805303AD00069
Figure TW201805303AD00070
Figure TW201805303AD00071
Figure TW201805303AD00072
Figure TW201805303AD00073
Figure TW201805303AD00074
Figure TW201805303AD00075
Figure TW201805303AD00076
Figure TW201805303AD00077
Figure TW201805303AD00078
Figure TW201805303AD00079
Figure TW201805303AD00080
Figure TW201805303AD00081
Figure TW201805303AD00082
Figure TW201805303AD00083
Figure TW201805303AD00084
Figure TW201805303AD00085
Figure TW201805303AD00086
Figure TW201805303AD00087
Figure TW201805303AD00088
Figure TW201805303AD00089
Figure TW201805303AD00090
Figure TW201805303AD00091
Figure TW201805303AD00092
Figure TW201805303AD00093
Figure TW201805303AD00094
Figure TW201805303AD00095
Figure TW201805303AD00096
Figure TW201805303AD00097
Figure TW201805303AD00098
Figure TW201805303AD00099
Figure TW201805303AD00100
Figure TW201805303AD00012
Figure TW201805303AD00013
Figure TW201805303AD00014
Figure TW201805303AD00015
Figure TW201805303AD00016
Figure TW201805303AD00017
Figure TW201805303AD00018
Figure TW201805303AD00019
Figure TW201805303AD00020
Figure TW201805303AD00021
Figure TW201805303AD00022
Figure TW201805303AD00023
Figure TW201805303AD00024
Figure TW201805303AD00025
Figure TW201805303AD00026
Figure TW201805303AD00027
Figure TW201805303AD00028
Figure TW201805303AD00029
Figure TW201805303AD00030
Figure TW201805303AD00031
Figure TW201805303AD00032
Figure TW201805303AD00033
Figure TW201805303AD00034
Figure TW201805303AD00035
Figure TW201805303AD00036
Figure TW201805303AD00037
Figure TW201805303AD00038
Figure TW201805303AD00039
Figure TW201805303AD00040
Figure TW201805303AD00041
Figure TW201805303AD00042
Figure TW201805303AD00043
Figure TW201805303AD00044
Figure TW201805303AD00045
Figure TW201805303AD00046
Figure TW201805303AD00047
Figure TW201805303AD00048
Figure TW201805303AD00049
Figure TW201805303AD00050
Figure TW201805303AD00051
Figure TW201805303AD00052
Figure TW201805303AD00053
Figure TW201805303AD00054
Figure TW201805303AD00055
Figure TW201805303AD00056
Figure TW201805303AD00057
Figure TW201805303AD00058
Figure TW201805303AD00059
Figure TW201805303AD00060
Figure TW201805303AD00061
Figure TW201805303AD00062
Figure TW201805303AD00063
Figure TW201805303AD00064
Figure TW201805303AD00065
Figure TW201805303AD00066
Figure TW201805303AD00067
Figure TW201805303AD00068
Figure TW201805303AD00069
Figure TW201805303AD00070
Figure TW201805303AD00071
Figure TW201805303AD00072
Figure TW201805303AD00073
Figure TW201805303AD00074
Figure TW201805303AD00075
Figure TW201805303AD00076
Figure TW201805303AD00077
Figure TW201805303AD00078
Figure TW201805303AD00079
Figure TW201805303AD00080
Figure TW201805303AD00081
Figure TW201805303AD00082
Figure TW201805303AD00083
Figure TW201805303AD00084
Figure TW201805303AD00085
Figure TW201805303AD00086
Figure TW201805303AD00087
Figure TW201805303AD00088
Figure TW201805303AD00089
Figure TW201805303AD00090
Figure TW201805303AD00091
Figure TW201805303AD00092
Figure TW201805303AD00093
Figure TW201805303AD00094
Figure TW201805303AD00095
Figure TW201805303AD00096
Figure TW201805303AD00097
Figure TW201805303AD00098
Figure TW201805303AD00099
Figure TW201805303AD00100

Claims (58)

一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括重鏈及輕鏈可變區,其中該重鏈可變區包括來自SEQ ID NO: 16、28、40、52、64、76、88、100、112、124、136或148之重鏈可變區之CDR1、CDR2及CDR3區。An isolated monoclonal antibody or antigen binding portion thereof that binds to human IP-10 and includes heavy and light chain variable regions, wherein the heavy chain variable region comprises from SEQ ID NOs: 16, 28, 40, 52 CDR1, CDR2 and CDR3 regions of the heavy chain variable region of 64, 76, 88, 100, 112, 124, 136 or 148. 一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括重鏈及輕鏈可變區,其中該重鏈可變區包括來自SEQ ID NO: 16之重鏈可變區之CDR1、CDR2及CDR3區。An isolated monoclonal antibody or antigen binding portion thereof that binds to human IP-10 and includes a heavy chain and a light chain variable region, wherein the heavy chain variable region comprises a heavy chain variable region from SEQ ID NO: CDR1, CDR2 and CDR3 regions. 如請求項1之抗體或其抗原結合部分,其中該等重鏈CDR1、CDR2及CDR3區分別包括以下胺基酸序列: (a) SEQ ID NO: 13、14及15; (b) SEQ ID NO: 25、26及27; (c) SEQ ID NO: 37、38及39; (d) SEQ ID NO: 49、50及51; (e) SEQ ID NO: 61、62及63; (f) SEQ ID NO: 73、74及75; (g) SEQ ID NO: 85、86及87; (h) SEQ ID NO: 97、98及99; (i) SEQ ID NO: 109、110及111; (j) SEQ ID NO: 121、122及123; (k) SEQ ID NO: 133、134及135;或 (l) SEQ ID NO: 145、146及147。The antibody or antigen-binding portion thereof of claim 1, wherein the heavy chain CDR1, CDR2 and CDR3 regions comprise the following amino acid sequences, respectively: (a) SEQ ID NOs: 13, 14 and 15; (b) SEQ ID NO : 25, 26 and 27; (c) SEQ ID NOs: 37, 38 and 39; (d) SEQ ID NOs: 49, 50 and 51; (e) SEQ ID NOs: 61, 62 and 63; (f) SEQ ID NO: 73, 74 and 75; (g) SEQ ID NOs: 85, 86 and 87; (h) SEQ ID NOs: 97, 98 and 99; (i) SEQ ID NOs: 109, 110 and 111; SEQ ID NOs: 121, 122 and 123; (k) SEQ ID NOs: 133, 134 and 135; or (l) SEQ ID NOs: 145, 146 and 147. 如請求項1之抗體或其抗原結合部分,其中該等重鏈CDR1、CDR2及CDR3區分別包括SEQ ID NO: 13、14及15之胺基酸序列。The antibody of claim 1, or an antigen binding portion thereof, wherein the heavy chain CDR1, CDR2 and CDR3 regions comprise the amino acid sequences of SEQ ID NOS: 13, 14, and 15, respectively. 如請求項1或3之抗體或其抗原結合部分,其中該輕鏈可變區包括來自SEQ ID NO: 22、34、46、58、70、82、94、106、118、130、142或154之輕鏈可變區之CDR1、CDR2及CDR3區。The antibody or antigen-binding portion thereof of claim 1 or 3, wherein the light chain variable region comprises SEQ ID NO: 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142 or 154 The CDR1, CDR2 and CDR3 regions of the light chain variable region. 如請求項1或3之抗體或其抗原結合部分,其中該輕鏈可變區包括來自SEQ ID NO: 22之輕鏈可變區之CDR1、CDR2及CDR3區。The antibody or antigen binding portion thereof of claim 1 or 3, wherein the light chain variable region comprises the CDR1, CDR2 and CDR3 regions from the light chain variable region of SEQ ID NO: 22. 如前述請求項中任一項之抗體或其抗原結合部分,其中該等輕鏈CDR1、CDR2及CDR3區分別包括以下胺基酸序列: (a) SEQ ID NO: 19、20及21; (b) SEQ ID NO: 31、32及33; (c) SEQ ID NO: 43、44及45; (d) SEQ ID NO: 55、56及57; (e) SEQ ID NO: 67、68及69; (f) SEQ ID NO: 79、80及81; (g) SEQ ID NO: 91、92及93; (h) SEQ ID NO: 103、104及105; (i) SEQ ID NO: 115、116及117; (j) SEQ ID NO: 127、128及129; (k) SEQ ID NO: 139、140及141;或 (l) SEQ ID NO: 151、152及153。The antibody or antigen-binding portion thereof according to any of the preceding claims, wherein the light chain CDR1, CDR2 and CDR3 regions comprise the following amino acid sequences, respectively: (a) SEQ ID NOs: 19, 20 and 21; SEQ ID NOs: 31, 32 and 33; (c) SEQ ID NOs: 43, 44 and 45; (d) SEQ ID NOs: 55, 56 and 57; (e) SEQ ID NOs: 67, 68 and 69; (f) SEQ ID NOs: 79, 80 and 81; (g) SEQ ID NOs: 91, 92 and 93; (h) SEQ ID NOs: 103, 104 and 105; (i) SEQ ID NOs: 115, 116 and 171; (j) SEQ ID NO: 127, 128 and 129; (k) SEQ ID NO: 139, 140 and 141; or (l) SEQ ID NO: 151, 152 and 153. 如前述請求項中任一項之抗體或其抗原結合部分,其中該等輕鏈CDR1、CDR2及CDR3區分別包括SEQ ID NO: 19、20及21之胺基酸序列。The antibody or antigen-binding portion thereof according to any of the preceding claims, wherein the light chain CDR1, CDR2 and CDR3 regions comprise the amino acid sequences of SEQ ID NOs: 19, 20 and 21, respectively. 如前述請求項中任一項之抗體或其抗原結合部分,其中該重鏈可變區包括SEQ ID NO: 18、30、42、54、66、78、90、102、114、126、138或150之胺基酸序列。The antibody or antigen-binding portion thereof according to any of the preceding claims, wherein the heavy chain variable region comprises SEQ ID NO: 18, 30, 42, 54, 66, 78, 90, 102, 114, 126, 138 or 150 amino acid sequence. 如前述請求項中任一項之抗體或其抗原結合部分,其中該重鏈可變區包括SEQ ID NO: 18之胺基酸序列。The antibody or antigen-binding portion thereof according to any of the preceding claims, wherein the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 18. 如前述請求項中任一項之抗體或其抗原結合部分,其中該輕鏈可變區包括SEQ ID NO: 24、36、48、60、72、84、96、108、120、132、144或156之胺基酸序列。The antibody or antigen-binding portion thereof according to any of the preceding claims, wherein the light chain variable region comprises SEQ ID NO: 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144 or Amino acid sequence of 156. 如前述請求項中任一項之抗體或其抗原結合部分,其中該輕鏈可變區包括SEQ ID NO: 24之胺基酸序列。The antibody or antigen-binding portion thereof according to any of the preceding claims, wherein the light chain variable region comprises the amino acid sequence of SEQ ID NO: 24. 一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括包含以下胺基酸序列之重鏈及輕鏈CDR1、CDR2及CDR3區: (a) 分別為SEQ ID NO: 13、14及15與SEQ ID NO: 19、20及21; (b) 分別為SEQ ID NO: 25、26及27與SEQ ID NO: 31、32及33; (c) 分別為SEQ ID NO: 37、38及39與SEQ ID NO: 43、44及45; (d) 分別為SEQ ID NO: 49、50及51與SEQ ID NO: 55、56及57; (e) 分別為SEQ ID NO: 61、62及63與SEQ ID NO: 67、68及69; (f) 分別為SEQ ID NO: 73、74及75與SEQ ID NO: 79、80及81; (g) 分別為SEQ ID NO: 85、86及87與SEQ ID NO: 91、92及93; (h) 分別為SEQ ID NO: 97、98及99與SEQ ID NO: 103、104及105; (i) 分別為SEQ ID NO: 109、110及111與SEQ ID NO: 115、116及117; (j) 分別為SEQ ID NO: 121、122及123與SEQ ID NO: 127、128及129; (k) 分別為SEQ ID NO: 133、134及135與SEQ ID NO: 139、140及141;或 (l) 分別為SEQ ID NO: 145、146及147與SEQ ID NO: 151、152及153。An isolated monoclonal antibody or antigen binding portion thereof that binds to human IP-10 and comprises the heavy and light chain CDR1, CDR2 and CDR3 regions comprising the following amino acid sequences: (a) SEQ ID NO: 13 , 14 and 15 and SEQ ID NOs: 19, 20 and 21; (b) SEQ ID NOS: 25, 26 and 27 and SEQ ID NOS: 31, 32 and 33, respectively; (c) SEQ ID NO: 37, respectively , 38 and 39 and SEQ ID NO: 43, 44 and 45; (d) SEQ ID NO: 49, 50 and 51 and SEQ ID NO: 55, 56 and 57, respectively; (e) SEQ ID NO: 61, respectively , 62 and 63 and SEQ ID NO: 67, 68 and 69; (f) SEQ ID NO: 73, 74 and 75 and SEQ ID NO: 79, 80 and 81, respectively; (g) SEQ ID NO: 85, respectively , 86 and 87 and SEQ ID NO: 91, 92 and 93; (h) SEQ ID NO: 97, 98 and 99 and SEQ ID NO: 103, 104 and 105, respectively; (i) SEQ ID NO: 109, respectively , 110 and 111 and SEQ ID NO: 115, 116 and 117; (j) are SEQ ID NO: 121, 122 and 123 and SEQ ID NO: 127, 128 and 129, respectively; (k) are SEQ ID NO: 133, respectively , 134 and 135 and SEQ ID NO: 139, 140 and 141; or (l) are SEQ ID NOs: 145, 146 and 147 and SEQ ID NOs: 151, 152 and 153, respectively. 一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括分別包括SEQ ID NO: 13、14及15及SEQ ID NO: 19、20及21之胺基酸序列之重鏈及輕鏈CDR1、CDR2及CDR3區。An isolated monoclonal antibody or antigen binding portion thereof which binds to human IP-10 and comprises a heavy chain comprising the amino acid sequences of SEQ ID NOS: 13, 14 and 15 and SEQ ID NOS: 19, 20 and 21, respectively. And light chain CDR1, CDR2 and CDR3 regions. 一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括分別與SEQ ID NO: 16及22具有至少95%胺基酸一致性之重鏈及輕鏈可變區序列。An isolated monoclonal antibody or antigen binding portion thereof that binds to human IP-10 and comprises heavy and light chain variable region sequences having at least 95% amino acid identity to SEQ ID NOS: 16 and 22, respectively. 一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括分別包括以下胺基酸序列之重鏈及輕鏈可變區: (a) SEQ ID NO: 16及22; (b) SEQ ID NO: 28及34; (c)SEQ ID NO: 40及46; (d) SEQ ID NO: 52及58; (e) SEQ ID NO: 64及70; (f) SEQ ID NO: 76及82; (g) SEQ ID NO: 88及94; (h) SEQ ID NO: 100及106; (i) SEQ ID NO: 112及118; (j) SEQ ID NO: 124及130; (k) SEQ ID NO: 136及142;或 (l) SEQ ID NO: 148及154。An isolated monoclonal antibody or antigen binding portion thereof that binds to human IP-10 and comprises a heavy chain and a light chain variable region comprising the following amino acid sequences, respectively: (a) SEQ ID NOs: 16 and 22; b) SEQ ID NOs: 28 and 34; (c) SEQ ID NOs: 40 and 46; (d) SEQ ID NOs: 52 and 58; (e) SEQ ID NOs: 64 and 70; (f) SEQ ID NO: 76 and 82; (g) SEQ ID NOS: 88 and 94; (h) SEQ ID NOS: 100 and 106; (i) SEQ ID NO: 112 and 118; (j) SEQ ID NO: 124 and 130; SEQ ID NOs: 136 and 142; or (l) SEQ ID NOs: 148 and 154. 一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括分別包括SEQ ID NO: 16及 22之胺基酸序列之重鏈及輕鏈可變區。An isolated monoclonal antibody or antigen binding portion thereof that binds to human IP-10 and includes heavy and light chain variable regions comprising the amino acid sequences of SEQ ID NOS: 16 and 22, respectively. 一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括分別包括以下胺基酸序列之重鏈及輕鏈可變區: (a) SEQ ID NO: 18及24; (b) SEQ ID NO: 30及36; (c) SEQ ID NO: 42及48; (d) SEQ ID NO: 54及60; (e) SEQ ID NO: 66及72; (f) SEQ ID NO: 78及84; (g) SEQ ID NO: 90及96; (h) SEQ ID NO: 102及108; (i) SEQ ID NO: 114及120; (j) SEQ ID NO: 126及132; (k) SEQ ID NO: 138及144;或 (l) SEQ ID NO: 150及156。An isolated monoclonal antibody or antigen binding portion thereof that binds to human IP-10 and comprises a heavy chain and a light chain variable region comprising the following amino acid sequences, respectively: (a) SEQ ID NOs: 18 and 24; b) SEQ ID NOs: 30 and 36; (c) SEQ ID NOS: 42 and 48; (d) SEQ ID NOS: 54 and 60; (e) SEQ ID NO: 66 and 72; (f) SEQ ID NO: 78 and 84; (g) SEQ ID NOs: 90 and 96; (h) SEQ ID NOs: 102 and 108; (i) SEQ ID NOs: 114 and 120; (j) SEQ ID NOs: 126 and 132; SEQ ID NOs: 138 and 144; or (l) SEQ ID NOS: 150 and 156. 一種經分離之單株抗體或其抗原結合部分,其結合人類IP-10且包括分別包括SEQ ID NO: 18及24之胺基酸序列之全長重鏈及輕鏈。An isolated monoclonal antibody or antigen binding portion thereof that binds to human IP-10 and comprises a full length heavy chain and a light chain comprising the amino acid sequences of SEQ ID NOS: 18 and 24, respectively. 如前述請求項中任一項之抗體或其抗原結合部分,其展現下列性質中之一者或其組合: (a) 抑制IP-10結合至CXCR3; (b) 抑制IP-10誘導之鈣流動; (c) 抑制IP-10誘導之細胞遷移; (d) 與恒河猴IP-10交叉反應; (e) 不與小鼠IP-10交叉反應; (f) 不與人類MIG交叉反應;及/或 (g) 不與人類ITAC交叉反應。The antibody or antigen-binding portion thereof according to any of the preceding claims, which exhibits one or a combination of the following properties: (a) inhibiting IP-10 binding to CXCR3; (b) inhibiting IP-10 induced calcium flux (c) inhibiting IP-10-induced cell migration; (d) cross-reacting with rhesus IP-10; (e) not cross-reacting with mouse IP-10; (f) not cross-reacting with human MIG; / or (g) does not cross-react with human ITAC. 如前述請求項中任一項之抗體或其抗原結合部分,其以1 × 10-9 M或更小之KD 結合至人類IP-10。Preceding the requested item in any one antibody or antigen binding portion thereof binds to human IP-10 to 1 × 10 -9 M or K D of less. 如前述請求項中任一項之抗體或其抗原結合部分,其以1 × 10-10 M或更小之KD 結合至人類IP-10。Preceding the requested item in any one antibody or antigen binding portion thereof binds to human IP-10 to 1 × 10 -10 M or K D of less. 如前述請求項中任一項之抗體或其抗原結合部分,其以1 × 10-11 M或更小之KD 結合至人類IP-10。Preceding the requested item in any one antibody or antigen binding portion thereof binds to human IP-10 to 1 × 10 -11 M or K D of less. 如前述請求項中任一項之抗體或其抗原結合部分,其結合至SISNQP (SEQ ID NO: 163)、VNPRSLEKL (SEQ ID NO: 164)及/或IIPASQFCPRVEIIA (SEQ ID NO: 165)內之胺基酸殘基。The antibody or antigen-binding portion thereof according to any of the preceding claims, which binds to an amine in SISNQP (SEQ ID NO: 163), VNPRSLEKL (SEQ ID NO: 164) and/or IIPASQFCPRVEIIA (SEQ ID NO: 165) Base acid residue. 如前述請求項中任一項之抗體或其抗原結合部分,其係人類、人類化或嵌合抗體。The antibody or antigen-binding portion thereof according to any of the preceding claims, which is a human, humanized or chimeric antibody. 如前述請求項中任一項之抗體或其抗原結合部分,其係IgG1、IgG2或IgG4同型(isotype)。The antibody or antigen-binding portion thereof according to any of the preceding claims, which is an isotype of IgGl, IgG2 or IgG4. 如前述請求項中任一項之抗體或其抗原結合部分,其係抗體片段或單鏈抗體。The antibody or antigen-binding portion thereof according to any of the preceding claims, which is an antibody fragment or a single chain antibody. 一種雙特異性分子,其包括如前述請求項中任一項之抗體或其抗原結合部分及第二抗體或其抗原結合部分。A bispecific molecule comprising the antibody or antigen binding portion thereof and a second antibody or antigen binding portion thereof according to any of the preceding claims. 一種免疫偶聯物(immunoconjugate),其包括如請求項1至27中任一項之抗體或其抗原結合部分連接至治療劑。An immunoconjugate comprising the antibody or antigen-binding portion thereof according to any one of claims 1 to 27 linked to a therapeutic agent. 如請求項29之免疫偶聯物,其中該治療劑係細胞毒素或放射性同位素。The immunoconjugate of claim 29, wherein the therapeutic agent is a cytotoxin or a radioisotope. 一種組合物,其包括如請求項1至27中任一項之抗體或其抗原結合部分、如請求項28之雙特異性分子或如請求項29或30之免疫偶聯物及醫藥上可接受之載劑。A composition comprising an antibody or antigen-binding portion thereof according to any one of claims 1 to 27, a bispecific molecule according to claim 28 or an immunoconjugate as claimed in claim 29 or 30, and pharmaceutically acceptable Carrier. 一種經分離之核酸,其編碼如請求項1至27中任一項之抗體或其抗原結合部分之重鏈及/或輕鏈可變區。An isolated nucleic acid encoding a heavy chain and/or a light chain variable region of an antibody or antigen binding portion thereof according to any one of claims 1 to 27. 一種表現載體,其包括如請求項32之核酸。A performance vector comprising the nucleic acid of claim 32. 一種宿主細胞,其包括如請求項33之表現載體。A host cell comprising the expression vector of claim 33. 一種製備抗IP-10抗體之方法,其包括在如請求項34之宿主細胞中表現該抗體且自該宿主細胞分離該抗體。A method of making an anti-IP-10 antibody comprising expressing the antibody in a host cell as claimed in claim 34 and isolating the antibody from the host cell. 一種抑制經活化之T細胞或NK細胞介導之發炎反應或自體免疫反應之方法,其包括使該等T細胞或NK細胞與如請求項1至27中任一項之抗體或其抗原結合部分接觸,從而抑制該發炎反應或自體免疫反應。A method of inhibiting an inflammatory or autoimmune response mediated by an activated T cell or NK cell, which comprises binding the T cell or NK cell to an antibody or antigen thereof according to any one of claims 1 to 27 Partial contact, thereby inhibiting the inflammatory response or autoimmune response. 一種治療需要治療之個體之發炎疾病或自體免疫疾病之方法,其包括向該個體投與如請求項1至27中任一項之抗體或其抗原結合部分,從而治療該個體之該發炎疾病或自體免疫疾病。A method of treating an inflammatory disease or an autoimmune disease in an individual in need of treatment, comprising administering to the individual an antibody or antigen-binding portion thereof according to any one of claims 1 to 27, thereby treating the inflammatory disease of the individual Or autoimmune disease. 如請求項37之方法,其中該疾病係發炎腸病(IBD)。The method of claim 37, wherein the disease is inflammatory bowel disease (IBD). 如請求項38之方法,其中該IBD係潰瘍性結腸炎或克羅恩氏病(Crohn's disease)。The method of claim 38, wherein the IBD is ulcerative colitis or Crohn's disease. 如請求項37之方法,其中該疾病係選自由以下組成之群:類風濕性關節炎、全身性紅斑狼瘡、I型糖尿病、發炎皮膚病症(例如牛皮癬、扁平苔蘚)、自體免疫甲狀腺病(例如格雷夫斯氏病(Graves' disease)、橋本氏甲狀腺炎(Hashimoto’s thyroiditis))、薛格連氏症候群(Sjogren's syndrome)、肺發炎(例如氣喘、慢性阻塞性肺疾病、肺類肉瘤病、淋巴球性肺泡炎)、移植排斥、骨髓損傷、腦損傷(例如中風)、神經退化性疾病(例如阿茲海默氏病(Alzheimer’s disease)、帕金森氏病(Parkinson’s disease))、牙齦炎、基因療法誘導之發炎、血管生成疾病、發炎腎病(例如IgA腎病變、膜增殖性腎小球性腎炎、快速進展性腎小球性腎炎)、多發性硬化及動脈粥樣硬化。The method of claim 37, wherein the disease is selected from the group consisting of rheumatoid arthritis, systemic lupus erythematosus, type I diabetes, inflammatory skin conditions (eg, psoriasis, lichen planus), autoimmune thyroid disease ( For example, Graves' disease, Hashimoto's thyroiditis, Sjogren's syndrome, lung inflammation (eg, asthma, chronic obstructive pulmonary disease, pulmonary sarcoma, lymphocytosis) Alveolitis), transplant rejection, bone marrow damage, brain damage (eg stroke), neurodegenerative diseases (eg Alzheimer's disease, Parkinson's disease), gingivitis, gene therapy induction Inflammation, angiogenic diseases, inflammatory nephropathy (eg, IgA nephropathy, membrane proliferative glomerulonephritis, rapidly progressive glomerulonephritis), multiple sclerosis, and atherosclerosis. 如請求項37至40中任一項之方法,其中該方法包括以介於30 mg至450 mg之間之劑量投與單一劑量之該抗體或其抗原結合部分。The method of any one of claims 37 to 40, wherein the method comprises administering a single dose of the antibody or antigen-binding portion thereof at a dose between 30 mg and 450 mg. 如請求項41之方法,其中該劑量係選自30 mg、40 mg、50 mg、60 mg、70 mg、80 mg、90 mg、100 mg、110 mg、120 mg、130 mg、140 mg、150 mg、160 mg、170 mg、180 mg、190 mg、200 mg、210 mg、220 mg、230 mg、240 mg、250 mg、260 mg、270 mg、280 mg、290 mg、300 mg、310 mg、320 mg、330 mg、340 mg、350 mg、360 mg、370 mg、380 mg、390 mg、400 mg或450mg。The method of claim 41, wherein the dosage is selected from the group consisting of 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 Mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 310 mg, 320 mg, 330 mg, 340 mg, 350 mg, 360 mg, 370 mg, 380 mg, 390 mg, 400 mg or 450 mg. 如請求項41之方法,其中該劑量係選自35 mg、45 mg、55 mg、65 mg、75 mg、85 mg、95 mg、105 mg、115 mg、125 mg、135 mg、145 mg、155 mg、165 mg、175 mg、185 mg、195 mg、205 mg、215 mg、225 mg、235 mg、245 mg、255 mg、265 mg、275 mg、285 mg、295 mg、305 mg、315 mg、325 mg、335 mg、345 mg、355 mg、365 mg、375 mg、385 mg、395 mg、405 mg或445mg。The method of claim 41, wherein the dosage is selected from the group consisting of 35 mg, 45 mg, 55 mg, 65 mg, 75 mg, 85 mg, 95 mg, 105 mg, 115 mg, 125 mg, 135 mg, 145 mg, 155 Mg, 165 mg, 175 mg, 185 mg, 195 mg, 205 mg, 215 mg, 225 mg, 235 mg, 245 mg, 255 mg, 265 mg, 275 mg, 285 mg, 295 mg, 305 mg, 315 mg, 325 mg, 335 mg, 345 mg, 355 mg, 365 mg, 375 mg, 385 mg, 395 mg, 405 mg or 445 mg. 如請求項41之方法,其中該劑量係40 mg。The method of claim 41, wherein the dosage is 40 mg. 如請求項41之方法,其中該劑量係100 mg。The method of claim 41, wherein the dosage is 100 mg. 如請求項41之方法,其中該劑量係150 mg。The method of claim 41, wherein the dosage is 150 mg. 如請求項41之方法,其中該劑量係250 mg。The method of claim 41, wherein the dosage is 250 mg. 如請求項41至47中任一項之方法,其中每週或每兩週投與該抗體或其抗原結合部分。The method of any one of claims 41 to 47, wherein the antibody or antigen-binding portion thereof is administered weekly or biweekly. 如請求項41至48中任一項之方法,其中投與該抗體或其抗原結合部分約12週之時段。The method of any one of claims 41 to 48, wherein the antibody or antigen-binding portion thereof is administered for a period of about 12 weeks. 如請求項41至49中任一項之方法,其中在第1、15、29、43、57及71天投與該抗體或其抗原結合部分。The method of any one of claims 41 to 49, wherein the antibody or antigen-binding portion thereof is administered on days 1, 15, 29, 43, 57 and 71. 如請求項41至50中任一項之方法,其中該抗體或其抗原結合部分經調配用於靜脈內投與。The method of any one of claims 41 to 50, wherein the antibody or antigen-binding portion thereof is formulated for intravenous administration. 如請求項41至50中任一項之方法,其中該抗體或其抗原結合部分經調配用於皮下投與。The method of any one of claims 41 to 50, wherein the antibody or antigen-binding portion thereof is formulated for subcutaneous administration. 如請求項41至52中任一項之方法,其中該病症係潰瘍性結腸炎。The method of any one of claims 41 to 52, wherein the condition is ulcerative colitis. 一種治療需要治療個體之潰瘍性結腸炎之方法,其包括向該個體投與如請求項1至27中任一項之抗體或其抗原結合部分,從而治療該個體之該潰瘍性結腸炎,其中該方法包括每兩週經靜脈內投與單一劑量之約40mg該抗體或其抗原結合部分約12週之時段。A method of treating ulcerative colitis in a subject in need thereof, comprising administering to the individual the antibody or antigen-binding portion thereof according to any one of claims 1 to 27, thereby treating the ulcerative colitis of the individual, wherein The method comprises intravenously administering a single dose of about 40 mg of the antibody or antigen binding portion thereof for a period of about 12 weeks every two weeks. 一種治療需要治療個體之涉及不期望IP-10活性之病毒或細菌感染之方法,其包括向該個體投與如請求項1至27中任一項之抗體或其抗原結合部分,從而治療該個體之該病毒或細菌感染。A method of treating a viral or bacterial infection involving an undesired IP-10 activity in a subject in need thereof, comprising administering to the individual an antibody or antigen-binding portion thereof according to any one of claims 1 to 27, thereby treating the individual The virus or bacterial infection. 如請求項55之方法,其中該病毒感染係由人類免疫缺陷病毒(HIV)、C型肝炎病毒(HCV)、I型單純疱疹病毒(HSV-1)或嚴重急性呼吸症候群(SARS)病毒介導。The method of claim 55, wherein the viral infection is mediated by human immunodeficiency virus (HIV), hepatitis C virus (HCV), herpes simplex virus type 1 (HSV-1) or severe acute respiratory syndrome (SARS) virus. . 一種如請求項1至27中任一項之抗體或其抗原結合部分、如請求項28之雙特異性分子或如請求項29或30之免疫偶聯物之用途,其用於抑制發炎反應或自體免疫反應。An antibody, or an antigen-binding portion thereof, according to any one of claims 1 to 27, wherein the bispecific molecule of claim 28 or the immunoconjugate of claim 29 or 30 is used for inhibiting an inflammatory response or Autoimmune response. 一種如請求項1至27中任一項之抗體或其抗原結合部分、如請求項28之雙特異性分子或如請求項29或30之免疫偶聯物之用途,其用以製造用於抑制發炎反應或自體免疫反應之藥劑。Use of an antibody or antigen-binding portion thereof according to any one of claims 1 to 27, such as the bispecific molecule of claim 28 or the immunoconjugate of claim 29 or 30, for use in the manufacture of An agent for an inflammatory response or an autoimmune response.
TW106107456A 2016-08-12 2017-03-07 IP-10 antibodies and their uses TW201805303A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662374622P 2016-08-12 2016-08-12
US62/374,622 2016-08-12

Publications (1)

Publication Number Publication Date
TW201805303A true TW201805303A (en) 2018-02-16

Family

ID=60421906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106107456A TW201805303A (en) 2016-08-12 2017-03-07 IP-10 antibodies and their uses

Country Status (3)

Country Link
AR (1) AR109237A1 (en)
TW (1) TW201805303A (en)
UY (1) UY37170A (en)

Also Published As

Publication number Publication date
UY37170A (en) 2017-09-29
AR109237A1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US11708405B2 (en) IP-10 antibodies and their uses
US9994633B2 (en) IP-10 antibodies and their uses
CA2570823C (en) Interferon alpha receptor 1 antibodies and their uses
TW201805303A (en) IP-10 antibodies and their uses
AU2011250741B2 (en) IP-10 antibodies and their uses
AU2011236019B2 (en) Interferon alpha receptor 1 antibodies and their uses