TW201805127A - Control device of robot arm and teaching system and method using the same - Google Patents

Control device of robot arm and teaching system and method using the same Download PDF

Info

Publication number
TW201805127A
TW201805127A TW105137642A TW105137642A TW201805127A TW 201805127 A TW201805127 A TW 201805127A TW 105137642 A TW105137642 A TW 105137642A TW 105137642 A TW105137642 A TW 105137642A TW 201805127 A TW201805127 A TW 201805127A
Authority
TW
Taiwan
Prior art keywords
robot arm
joint
touch
teaching
touch sensing
Prior art date
Application number
TW105137642A
Other languages
Chinese (zh)
Other versions
TWI651175B (en
Inventor
蘇瑞堯
劉彥辰
陳慶順
陳昌毅
吳棖立
游鴻修
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201611128571.9A priority Critical patent/CN107717981B/en
Priority to US15/392,251 priority patent/US10144125B2/en
Publication of TW201805127A publication Critical patent/TW201805127A/en
Application granted granted Critical
Publication of TWI651175B publication Critical patent/TWI651175B/en

Links

Landscapes

  • Manipulator (AREA)

Abstract

A control device for a robot arm includes a pressure sensing module and a control module. The pressure sensing module is provided on an operating portion of the robot arm, and the pressure sensing module has a touch sensitive surface for detecting an operation command applied to the touch sensitive surface. The control module is adapted to receive at least a pressure sensing signal outputted by the pressure sensing module and to output a motor driving signal to the robot arm in response to the operation command. The touch sensitive surface includes a first touch sensitive area for defining a first reference coordinate system satisfying a translational motion model and a second touch sensitive area for defining a second reference coordinate system satisfying a rotational motion model and the control module controls the robot arm to translate or rotate according to the touch position of the operation command.

Description

機械手臂之控制裝置及其教導系統與方法 Mechanical arm control device and teaching system and method thereof

本發明是有關於一種機械手臂,且特別是有關於一種機械手臂之控制裝置及其教導系統與方法。 The present invention relates to a robotic arm, and more particularly to a mechanical arm control device and teaching system and method therefor.

在傳統的製造或裝配自動化工廠中,機器人或機械手臂由關節馬達控制器控制,以進行相對應之關節馬達的運動。同時各關節馬達也會傳輸座標訊號至機械手臂控制模組以進行座標整合並運算成一絕對座標訊息,且絕對座標訊息會被同步顯示於使用者介面,以供使用者判斷機械手臂之運行狀態是否符合預期。然而,當機械手臂之運行狀態不符合預期時,使用者通常只能從程式語言或應用程式上修改指令,並根據指令一而再、再而三的修改機械手臂的移動路徑。如此繁雜的工作不僅耗時,且缺少直覺式的編程能力。亦即,機械手臂與使用者之間缺少直覺式的輸入介面,且以往的編程系統無法讓使用者根據直覺式的操作來修改或訓練機械手臂的移動路徑,是目前機械手臂設計及製造生產上仍需要去克服的問題。 In a conventional manufacturing or assembly automation plant, the robot or robotic arm is controlled by a joint motor controller to perform the motion of the corresponding joint motor. At the same time, each joint motor also transmits a coordinate signal to the robot control module for coordinate integration and calculation into an absolute coordinate message, and the absolute coordinate message is synchronously displayed on the user interface for the user to judge whether the mechanical arm is in operation or not. In line with expectations. However, when the operating state of the robot arm is not as expected, the user can usually only modify the command from the programming language or the application, and modify the moving path of the robot arm again and again according to the command. Such complicated work is not only time consuming, but also lacks intuitive programming skills. That is to say, there is no intuitive input interface between the robot arm and the user, and the conventional programming system cannot allow the user to modify or train the moving path of the robot arm according to the intuitive operation, which is currently the design and manufacture of the robot arm. Still need to overcome the problem.

本發明係有關於一種機械手臂之控制裝置及其教導系統與方法,可供操作人員根據直覺式的操作來修改或訓練機械手臂的移動路徑,以達到直覺式控制。 The present invention relates to a control device for a robot arm and a teaching system and method thereof for an operator to modify or train a moving path of a robot arm according to an intuitive operation to achieve intuitive control.

本發明係有關於一種機械手臂之控制裝置及其教導系統與方法,可供操作人員彈性地調整機械手臂的順應程度,並可徒手直接教導機械手臂以進行關節姿態控制(粗定位教導)及/或機械手臂端部位置控制(細定位教導)。 The invention relates to a control device for a mechanical arm and a teaching system and method thereof, which can flexibly adjust the compliance degree of the robot arm, and can directly teach the robot arm to perform joint posture control (coarse positioning teaching) and/or. Or mechanical arm end position control (fine positioning teaching).

根據本發明之一方面,提出一種機械手臂之控制裝置,包括一壓力感測模組以及一控制模組。壓力感測模組設置於一機械手臂的一操作部上,壓力感測模組具有一觸碰感應表面,用以偵測施加於觸碰感應表面上的一操作指令。控制模組用以接收壓力感測模組輸出的至少一壓力感測訊號,並輸出一馬達驅動訊號至機械手臂,以回應操作指令。觸碰感應表面包括一第一觸碰感應區以及一第二觸碰感應區,第一觸碰感應區用以定義滿足一平移運動模式的第一參考座標系,而第二觸碰感應區用以定義滿足一旋轉運動模式的第二參考座標系,且控制模組根據操作指令的觸碰位置,控制機械手臂平移或旋轉運動。 According to an aspect of the invention, a control device for a robot arm includes a pressure sensing module and a control module. The pressure sensing module is disposed on an operating portion of a mechanical arm, and the pressure sensing module has a touch sensing surface for detecting an operation command applied to the touch sensing surface. The control module is configured to receive at least one pressure sensing signal output by the pressure sensing module, and output a motor driving signal to the robot arm in response to the operation instruction. The touch sensing surface includes a first touch sensing area and a second touch sensing area, wherein the first touch sensing area is used to define a first reference coordinate system that satisfies a translational motion mode, and the second touch sensing area is used. To define a second reference coordinate system that satisfies a rotational motion mode, and the control module controls the mechanical arm translation or rotational motion according to the touch position of the operation command.

根據本發明之一方面,提出一種機械手臂的教導系統,包括一壓力感測模組以及一控制模組。壓力感測模組設置於一機械手臂的一操作部上,壓力感測模組具有一觸碰感應表面,用以偵測施加於觸碰感應表面上的一操作指令。觸碰感應表面包括一第一觸碰感應區以及一第二觸碰感應區,第一觸碰感應區用以定義滿足一平移運動模式的第一參考座標系,而第二觸碰感應 區用以定義滿足一旋轉運動模式的第二參考座標系。控制模組用以接收壓力感測模組輸出的至少一壓力感測訊號,並輸出一馬達驅動訊號至機械手臂,以回應操作指令,其中控制模組包括一關節馬達控制器、一模式切換模組以及複數個關節馬達編碼器。關節馬達控制器根據操作指令產生一組使機械手臂的端部平移運動或旋轉運動的馬達扭力訊號,且控制模組根據操作指令的觸碰位置,控制機械手臂平移或旋轉運動。模式切換模組用以切換機械手臂的操作模式,機械手臂的操作模式包括一順應教導模式以及一觸碰操作模式。關節馬達編碼器設置於機械手臂的關節處,此些關節馬達編碼器於順應教導模式下根據機械手臂的移動軌跡產生一組關節角度訊號。 According to an aspect of the invention, a teaching system for a robot arm is provided, comprising a pressure sensing module and a control module. The pressure sensing module is disposed on an operating portion of a mechanical arm, and the pressure sensing module has a touch sensing surface for detecting an operation command applied to the touch sensing surface. The touch sensing surface includes a first touch sensing area and a second touch sensing area, wherein the first touch sensing area is used to define a first reference coordinate system that satisfies a translational motion mode, and the second touch sensing area The zone is used to define a second reference coordinate system that satisfies a rotational motion mode. The control module is configured to receive at least one pressure sensing signal output by the pressure sensing module, and output a motor driving signal to the robot arm in response to the operation command, wherein the control module includes a joint motor controller and a mode switching mode Group and a plurality of joint motor encoders. The joint motor controller generates a set of motor torque signals for translational or rotational movement of the end of the robot arm according to the operation command, and the control module controls the translation or rotation movement of the robot arm according to the touch position of the operation command. The mode switching module is used to switch the operation mode of the robot arm, and the operation mode of the robot arm includes a compliance teaching mode and a touch operation mode. The joint motor encoder is disposed at the joint of the robot arm, and the joint motor encoder generates a set of joint angle signals according to the movement trajectory of the robot arm in the compliant teaching mode.

根據本發明之一方面,提出一種對機械手臂進行直接教導的方法,包括下列步驟。對一機械手臂進行初始化,並輸出一馬達驅動訊號至機械手臂。記錄機械手臂的移動軌跡,以得知機械手臂的目前位置及姿態。當機械手臂的移動軌跡偏離一目標位置時,切換機械手臂的操作模式,此操作模式包括一順應教導模式以及一觸控操作模式,其中,在觸控操作模式下,透過來自一壓力感測模組的操作指令對機械手臂進行機械手臂端部位置控制;在順應教導模式下,徒手對機械手臂進行關節姿態控制;以及透過對機械手臂的端部位置控制,或先透過對機械手臂的端部位置控制再進行關節姿態控制,或先透過對機械手臂進行關節姿態控制再進行端部位置控制,修正機械手臂的移動軌跡。結束記錄機械手臂的移動軌跡。重現機械手臂的教導軌跡,以移動機械手臂至目標位置。 According to one aspect of the invention, a method of direct teaching of a robotic arm is provided, comprising the following steps. Initialize a robot arm and output a motor drive signal to the robot arm. Record the movement path of the robot arm to know the current position and posture of the robot arm. When the movement track of the robot arm deviates from a target position, switching the operation mode of the robot arm, the operation mode includes a compliance teaching mode and a touch operation mode, wherein in the touch operation mode, the transmission is from a pressure sensing mode The group's operation command controls the robot arm end position; in the compliant teaching mode, the joint posture control of the robot arm is performed by hand; and the end position control of the robot arm is passed, or the end of the robot arm is first passed. The position control then performs the joint attitude control, or the joint position control of the robot arm is performed first, and then the end position control is performed to correct the movement trajectory of the robot arm. End recording the movement of the robot arm. Reproduce the teaching trajectory of the robot arm to move the robot arm to the target position.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉諸項實施例,並配合所附圖式,作詳細說明如下: In order to provide a better understanding of the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings

100‧‧‧控制裝置 100‧‧‧Control device

101‧‧‧機械手臂 101‧‧‧ Robotic arm

102‧‧‧關節馬達 102‧‧‧ joint motor

103‧‧‧前臂 103‧‧‧Forearm

104‧‧‧後臂 104‧‧‧ rear arm

105‧‧‧操作部 105‧‧‧Operation Department

106‧‧‧握持部 106‧‧‧ grip

107‧‧‧支架 107‧‧‧ bracket

108‧‧‧端部 108‧‧‧End

108a‧‧‧圓柱體 108a‧‧‧Cylinder

109‧‧‧機械工具 109‧‧‧Mechanical tools

110‧‧‧壓力感測模組 110‧‧‧ Pressure Sensing Module

111‧‧‧壓力感測元件 111‧‧‧ Pressure sensing components

112‧‧‧觸碰感應表面 112‧‧‧Touch touch surface

112a‧‧‧第一環狀觸碰感應區 112a‧‧‧First ring touch sensing area

112b‧‧‧第二環狀觸碰感應區 112b‧‧‧Second circular touch sensing area

113‧‧‧陣列電路 113‧‧‧Array circuit

114‧‧‧第一線路 114‧‧‧First line

115‧‧‧第二線路 115‧‧‧second line

116‧‧‧電極層 116‧‧‧Electrode layer

117‧‧‧壓力感測層 117‧‧‧ Pressure sensing layer

118‧‧‧下電極層 118‧‧‧ lower electrode layer

130‧‧‧控制模組 130‧‧‧Control Module

132‧‧‧關節馬達控制器 132‧‧‧ Joint Motor Controller

133‧‧‧重力補償器 133‧‧‧Gravity compensator

134‧‧‧模式切換模組 134‧‧‧Mode Switching Module

135‧‧‧摩擦力補償器 135‧‧‧ friction compensator

136‧‧‧關節馬達編碼器 136‧‧‧Joint motor encoder

138‧‧‧教導控制器 138‧‧‧ teach controller

140‧‧‧教導系統 140‧‧‧Training system

A1~A8‧‧‧感測區域 A1~A8‧‧‧Sensing area

P、P1、P2‧‧‧觸碰點 P, P1, P2‧‧‧ touch points

fy‧‧‧Y軸向上的分量 Fy‧‧‧Y axial component

fx‧‧‧X軸向上的分量 Fx‧‧‧X axial component

F‧‧‧作用力 F‧‧‧force

C1、C2‧‧‧拖曳軌跡 C1, C2‧‧‧ drag track

Ry、Rx‧‧‧力矩 Ry, Rx‧‧‧ torque

τg‧‧‧重力補償力矩 τ g ‧‧‧gravity compensation torque

τF‧‧‧摩擦力補償力矩 τ F ‧‧‧ friction compensation torque

S11~S18‧‧‧步驟 S11~S18‧‧‧Steps

第1圖繪示應用於本發明之機械手臂之控制裝置中的壓力感測模組的示意圖。 Fig. 1 is a schematic view showing a pressure sensing module applied to a control device for a robot arm of the present invention.

第2圖繪示一具有徒手教導功能的機械手臂的示意圖。 Figure 2 is a schematic view of a robotic arm with a freehand teaching function.

第3A及3B圖繪示壓力感測模組設置於機械手臂的端部的示意圖及展開示意圖。 3A and 3B are schematic and exploded views showing the pressure sensing module disposed at the end of the robot arm.

第4A至4D圖分別繪示端部進行徒手教導以對應產生平移運動或旋轉運動的參考示意圖。 4A to 4D respectively show reference diagrams in which the end portion performs a freehand teaching to correspondingly generate a translational motion or a rotational motion.

第5圖繪示操作人員對機械手臂進行徒手教導的示意圖。 Figure 5 is a schematic diagram showing the operator's hands-on teaching of the robot arm.

第6圖繪示依照本發明一實施例之機械手臂之教導系統的方塊圖。 Figure 6 is a block diagram showing the teaching system of the robot arm in accordance with an embodiment of the present invention.

第7圖繪示對機械手臂進行力矩補償的示意圖。 Figure 7 is a schematic diagram showing torque compensation for the robot arm.

第8圖繪示依照本發明一實施例之對機械手臂進行直接教導的流程圖。 Figure 8 is a flow chart showing the direct teaching of the robot arm in accordance with an embodiment of the present invention.

以下係提出實施例進行詳細說明,實施例僅用以作為範例說明,並非用以限縮本發明欲保護之範圍。 The embodiments are described in detail below, and the embodiments are only intended to be illustrative and not intended to limit the scope of the invention.

請參照第1及2圖,根據本發明一實施例之機械手臂101之控制裝置100包括一壓力感測模組110以及一控制模組130。壓力感測模組110設置於一機械手臂101的操作部105上, 如第3A圖,且壓力感測模組110具有一觸碰感應表面112,用以偵測施加於觸碰感應表面112上的一操作指令。此外,控制模組130用以接收壓力感測模組110輸出的至少一壓力感測訊號,並輸出一馬達驅動訊號至機械手臂101,以回應操作指令。 Referring to FIGS. 1 and 2 , the control device 100 of the robot arm 101 includes a pressure sensing module 110 and a control module 130 according to an embodiment of the invention. The pressure sensing module 110 is disposed on the operating portion 105 of the robot arm 101. As shown in FIG. 3A , the pressure sensing module 110 has a touch sensing surface 112 for detecting an operation command applied to the touch sensing surface 112 . In addition, the control module 130 is configured to receive at least one pressure sensing signal output by the pressure sensing module 110 and output a motor driving signal to the robot arm 101 in response to the operation command.

請參照第1及3A圖,壓力感測模組110包括多個以陣列排列並且相互連接的壓力感測元件111,以形成一觸碰感應表面112。每一個壓力感測元件111具有一上電極層116、一壓力感測層117以及一下電極層118,且壓力感測層117位於上電極層116與下電極層118之間。每一個壓力感測元件111可做為一觸碰點P,當壓力感測層117受壓而導通於上電極層116與下電極層118之間時,可藉由連接各壓力感測元件111的陣列電路113傳輸至控制模組130,以供控制模組130判斷觸碰點P的座標或所在的觸碰區域,進而驅動機械手臂101,以回應操作指令。 Referring to FIGS. 1 and 3A , the pressure sensing module 110 includes a plurality of pressure sensing elements 111 arranged in an array and connected to each other to form a touch sensing surface 112 . Each of the pressure sensing elements 111 has an upper electrode layer 116, a pressure sensing layer 117 and a lower electrode layer 118, and the pressure sensing layer 117 is located between the upper electrode layer 116 and the lower electrode layer 118. Each of the pressure sensing elements 111 can be used as a touch point P. When the pressure sensing layer 117 is pressed between the upper electrode layer 116 and the lower electrode layer 118, the pressure sensing elements 111 can be connected. The array circuit 113 is transmitted to the control module 130 for the control module 130 to determine the coordinates of the touch point P or the touch area where it is located, thereby driving the robot arm 101 in response to the operation command.

在一實施例中,陣列電路113可包括多條沿著X軸向平行排列的第一線路114以及多條沿著Y軸方向平行排列的第二線路115,每一條第一線路114電性連接沿著X軸向直線排列的壓力感測元件111的上電極層116,而每一條第二線路115電性連接沿著Y軸向直線排列的壓力感測元件111的下電極層118,以形成一觸碰感應表面112。當然,以其他觸碰感應技術或近接感應技術所形成的觸碰感應表面112亦可應用在本發明之控制裝置100中,本發明不以此為限。 In an embodiment, the array circuit 113 may include a plurality of first lines 114 arranged in parallel along the X-axis and a plurality of second lines 115 arranged in parallel along the Y-axis direction. Each of the first lines 114 is electrically connected. The upper electrode layer 116 of the pressure sensing element 111 is linearly arranged along the X-axis, and each of the second lines 115 is electrically connected to the lower electrode layer 118 of the pressure sensing element 111 linearly arranged along the Y-axis to form One touches the sensing surface 112. Of course, the touch sensing surface 112 formed by other touch sensing technologies or proximity sensing technologies can also be applied to the control device 100 of the present invention, and the present invention is not limited thereto.

壓力感測模組110可偵測一物體是否觸碰機械手臂101。此物體例如是操作人員或與機械手臂101偕同運作的機器。壓力感測模組110可與機械手臂101機電整合,以做為機械手臂 101的觸覺皮膚。此外,控制模組130可經由機械手臂101內部的訊號線與壓力感測模組110電性連接,或經由無線傳輸的方式接收壓力感測模組110輸出的訊號。 The pressure sensing module 110 can detect whether an object touches the robot arm 101. This object is for example an operator or a machine that operates in conjunction with the robotic arm 101. The pressure sensing module 110 can be mechanically integrated with the robot arm 101 as a mechanical arm 101 tactile skin. In addition, the control module 130 can be electrically connected to the pressure sensing module 110 via a signal line inside the robot arm 101 or receive the signal output by the pressure sensing module 110 via wireless transmission.

舉例來說,當操作人員以手指觸碰壓力感測模組110時,壓力感測模組110根據施加於觸碰感應表面112上的一操作指令產生一壓力感測訊號,此壓力感測訊號經由控制模組130轉換成用以控制機械手臂101的端部108平移及/或旋轉的馬達驅動訊號。此外,馬達驅動訊號的運動參數(位移量及旋轉量)可由單一觸碰點P產生的平移訊號或旋轉訊號來決定,或由多個觸碰點P組合產生的平移訊號或旋轉訊號來決定,或由上述兩者的組合來決定,進而控制機械手臂101的各關節馬達102、前臂103及後臂104產生水平移動、垂直移動、向前伸展、向後倒退、向上抬升、向下降低或旋轉運動等。 For example, when the operator touches the pressure sensing module 110 with a finger, the pressure sensing module 110 generates a pressure sensing signal according to an operation command applied to the touch sensing surface 112. The pressure sensing signal is generated. The motor drive signal is controlled via the control module 130 to control the translation and/or rotation of the end 108 of the robot arm 101. In addition, the motion parameter (displacement amount and rotation amount) of the motor driving signal can be determined by a translation signal or a rotation signal generated by a single touch point P, or by a translation signal or a rotation signal generated by a combination of a plurality of touch points P, Or by a combination of the two, thereby controlling the joint motor 102, the forearm 103, and the rear arm 104 of the robot arm 101 to generate horizontal movement, vertical movement, forward extension, backward backward, upward ascending, downward downward, or rotational motion. Wait.

請參照第2圖,壓力感測模組110設置於一機械手臂101的操作部105上。在一實施例中,操作部105例如位於機械手臂101的前臂103的最前端,其具有一可供操作人員握持的握持部106、一用以放置機械工具109的支架107以及一用以設置壓力感測模組110的端部108。然而,在另一實施例中,壓力感測模組110亦可設置於容易觸碰的任一部位,例如前臂103的外表面或後臂104的外表面上,但本發明對此不加以限制。 Referring to FIG. 2 , the pressure sensing module 110 is disposed on the operating portion 105 of the robot arm 101 . In an embodiment, the operating portion 105 is located, for example, at the foremost end of the forearm 103 of the robot arm 101, and has a grip portion 106 that can be gripped by an operator, a bracket 107 for placing the mechanical tool 109, and a The end 108 of the pressure sensing module 110 is disposed. However, in another embodiment, the pressure sensing module 110 can also be disposed on any part that is easy to touch, such as the outer surface of the forearm 103 or the outer surface of the rear arm 104, but the invention does not limit this. .

請參照第3A圖,觸碰感應表面112例如彎曲為一曲面,而用以設置壓力感測模組110的端部108例如為一圓柱體108a,且觸碰感應表面112位於圓柱體108a之圓周表面上,以形成一個以圓柱體108a的中心為圓心、圓柱體108a的半徑為距離、 Z軸為軸向長度的三度空間極坐標系,用以定義觸碰感應表面112上任一觸碰點P的座標。在一實施例中,觸碰感應表面112可完整包覆端部108,或局部包覆端部108,或者觸碰感應表面112可分為多個獨立的感測區域,每一個獨立感測區域貼附在不同的方位上,並一起圍繞在端部108的周圍表面以形成一環狀感測區域或其他形狀,本發明對此不加以限制。 Referring to FIG. 3A, the touch sensing surface 112 is bent into a curved surface, for example, the end portion 108 for arranging the pressure sensing module 110 is, for example, a cylinder 108a, and the touch sensing surface 112 is located at the circumference of the cylinder 108a. On the surface, to form a center centered on the cylinder 108a, the radius of the cylinder 108a is a distance, The Z-axis is a three-dimensional spatial polar coordinate system of axial length for defining the coordinates of any touch point P on the touch sensing surface 112. In an embodiment, the touch sensing surface 112 may completely cover the end portion 108, or partially cover the end portion 108, or the touch sensing surface 112 may be divided into a plurality of independent sensing regions, each of which is independent of the sensing region. The invention is attached to a different orientation and surrounds the peripheral surface of the end portion 108 to form an annular sensing area or other shape, which is not limited by the present invention.

請參照第3B圖,在一實施例中,觸碰感應表面112展開來之後,可依照操作模式區分為第一環狀觸碰感應區112a以及第二環狀觸碰感應區112b。第一環狀觸碰感應區112a可區分多個感測區域A1~A8,例如4~12個或更多,本實施例以8個為範例。第二環狀觸碰感應區112b可區分多個感測區域A1~A8,例如4~12個或更多,本實施例以8個為範例。每個感測區域A1~A8位於圓柱體108a的不同方位(例如上、下、左、右、左上、右上、左下、右下)上,以將圓柱體108a的圓周表面的座標加以定義,進而方便計算施加於感測區域A1~A8上的作用力的方位及座標。 Referring to FIG. 3B, in an embodiment, after the touch sensing surface 112 is deployed, the first annular touch sensing area 112a and the second annular touch sensing area 112b may be divided according to the operation mode. The first annular touch sensing area 112a can distinguish the plurality of sensing areas A1 to A8, for example, 4 to 12 or more. In this embodiment, eight are taken as an example. The second ring-shaped touch sensing area 112b can distinguish the plurality of sensing areas A1 to A8, for example, 4 to 12 or more. In this embodiment, eight are taken as an example. Each of the sensing regions A1 to A8 is located at different orientations of the cylinder 108a (eg, upper, lower, left, right, upper left, upper right, lower left, lower right) to define coordinates of the circumferential surface of the cylinder 108a, and further It is convenient to calculate the orientation and coordinates of the forces applied to the sensing areas A1 to A8.

第一環狀觸碰感應區112a用以定義滿足一平移運動模式的第一參考座標系,也就是說,當偵測到施加於第一環狀觸碰感應區112a上的操作指令時,控制模組130可控制機械手臂101之端部108進行平移運動。此外,第二環狀觸碰感應區112b用以定義滿足一旋轉運動模式的第二參考座標系,也就是說,當偵測到施加於第二環狀觸碰感應區112b上的操作指令時,控制模組130可控制機械手臂101之端部108進行旋轉運動。 The first annular touch sensing area 112a is configured to define a first reference coordinate system that satisfies a translational motion mode, that is, when an operation instruction applied to the first annular touch sensing area 112a is detected, the control is performed. The module 130 can control the translation of the end 108 of the robot arm 101. In addition, the second annular touch sensing area 112b is used to define a second reference coordinate system that satisfies a rotational motion mode, that is, when an operation command applied to the second annular touch sensing area 112b is detected. The control module 130 can control the end 108 of the robot arm 101 to perform a rotational motion.

因此,在第4A及4B圖中,機械手臂101的端部 108可根據施加於第一環狀觸碰感應區112a上的單一觸碰點P的座標(或方位),產生相對於圓柱體108a的軸線(即Z軸)垂直的一維或二維的平移運動,或可根據施加於第一環狀觸碰感應區112a上的至少兩個觸碰點P各自形成的拖曳軌跡,產生沿著圓柱體108a的軸線(即Z軸)的平移運動。例如,以多根手指(例如二個,亦可三個或四個)同時且持續按壓在端部108上,並控制各手指同時平行移動或旋轉以產生多個等長度之由A點移動到B點的拖曳軌跡,此時,控制模組130可根據由A點到B點的移動向量或旋轉角度來控制端部108沿著Z軸平移運動。 Therefore, in the 4A and 4B drawings, the end of the robot arm 101 108 may generate a one-dimensional or two-dimensional translation perpendicular to the axis of the cylinder 108a (ie, the Z-axis) according to the coordinates (or orientation) of the single touch point P applied to the first annular touch sensing area 112a. Movement, or a translational motion along the axis of the cylinder 108a (i.e., the Z-axis) may be generated based on the respective towed trajectories formed by the at least two touch points P applied to the first annular touch sensing region 112a. For example, multiple fingers (eg, two, or three or four) are simultaneously and continuously pressed on the end 108, and each finger is controlled to move or rotate in parallel at the same time to generate a plurality of equal lengths moved from point A to The drag track of point B, at this time, the control module 130 can control the translation movement of the end portion 108 along the Z axis according to the motion vector or rotation angle from point A to point B.

請參照第4A圖,在一平移運動模式下,當偵測到施加於第一環狀觸碰感應區112a上的一操作指令(例如單一觸碰動作)時,此觸碰座標上的作用力F於X軸向上的分量為fx,於Y軸向上的分量為fy。因此,端部108根據X軸向上的分量fx產生於X軸向上的平移,且端部108根據Y軸向上的分量fy產生於Y軸向上的平移,因此端部108可產生二維的平移運動。當作用力於X軸向上的分量fx為零或於Y軸向上的分量fy為零時,端部108只會有一維的平移運動。 Referring to FIG. 4A, in a translational motion mode, when an operation command (for example, a single touch action) applied to the first annular touch sensing area 112a is detected, the force on the touch coordinate is detected. The component of F in the X-axis is fx, and the component in the Y-axis is fy. Therefore, the end portion 108 generates a translation in the X-axis according to the component fx in the X-axis direction, and the end portion 108 generates a translation in the Y-axis according to the component fy in the Y-axis direction, so that the end portion 108 can generate a two-dimensional translational motion. . When the component fx acting on the X-axis is zero or the component fy in the Y-axis is zero, the end 108 only has one-dimensional translational motion.

接著,請參照第4B圖,在一平移運動模式下,當偵測到施加於第一環狀觸碰感應區112a上的操作指令(例如兩個觸碰動作)時,根據兩個手指同時持續按壓與旋轉以產生施加於第一環狀觸碰感應區112a上的兩個觸碰點P1、P2各自形成的等長度拖曳軌跡,可控制端部108產生沿著圓柱體108a的軸線(即Z軸)的平移運動。例如,若以順時鐘方向產生拖曳軌跡C1時,可控制端部108產生沿著+Z軸向的平移;若以逆時鐘方向產生拖曳 軌跡C2時,可控制端部108產生沿著-Z軸向的平移。在本實施例中,以兩個手指同時且持續按壓在端部108上做說明,但不限於此,亦可以三個或四個手指同時且持續按壓。 Next, referring to FIG. 4B, in a translational motion mode, when an operation command (for example, two touch actions) applied to the first ring-shaped touch sensing area 112a is detected, the two fingers continue simultaneously according to the two fingers. Pressing and rotating to create an equal length drag trajectory formed by each of the two touch points P1, P2 applied to the first annular touch sensing area 112a, the control end 108 is generated along the axis of the cylinder 108a (ie, Z Translational movement of the axis). For example, if the drag track C1 is generated in the clockwise direction, the control end 108 can be translated along the +Z axis; if the drag is generated in the counterclockwise direction At track C2, the controllable end 108 produces a translation along the -Z axis. In the present embodiment, the two fingers are simultaneously and continuously pressed on the end portion 108 for explanation, but it is not limited thereto, and three or four fingers may be simultaneously and continuously pressed.

此外,請參照第4C及4D圖,機械手臂101的端部108可根據施加於第二環狀觸碰感應區112b上的一觸碰點P的座標,產生相對於垂直圓柱體108a的軸線(即Z軸)的一維或二維座標軸(X軸及/或Y軸)旋轉的旋轉運動,或根據施加於第二環狀觸碰感應區112b上的兩個觸碰點P1、P2各自形成的等長度拖曳軌跡,產生相對於圓柱體108a的軸線(即Z軸)旋轉的旋轉運動。例如,以多根手指(例如二個,亦可三個或四個)同時且持續按壓在端部108上,並控制各手指同時平行移動或旋轉以產生多個等長度之由A點移動到B點的拖曳軌跡,此時,控制模組130可根據由A點到B點的移動向量或旋轉角度來控制端部108繞著Z軸旋轉運動。 In addition, referring to FIGS. 4C and 4D, the end 108 of the robot arm 101 can generate an axis with respect to the vertical cylinder 108a according to the coordinates of a touch point P applied to the second annular touch sensing area 112b ( That is, the rotational motion of the one-dimensional or two-dimensional coordinate axis (X-axis and/or Y-axis) of the Z-axis) or the two touch points P1 and P2 applied to the second annular touch sensing region 112b are respectively formed. The equal length drag track produces a rotational motion that is rotated relative to the axis of the cylinder 108a (ie, the Z axis). For example, multiple fingers (eg, two, or three or four) are simultaneously and continuously pressed on the end 108, and each finger is controlled to move or rotate in parallel at the same time to generate a plurality of equal lengths moved from point A to The drag track of point B, at this time, the control module 130 can control the rotational movement of the end portion 108 about the Z axis according to the motion vector or the rotation angle from point A to point B.

請參照第4C圖,在一旋轉運動模式中,當偵測到施加於第二環狀觸碰感應區112b上的一操作指令(例如單一觸碰動作)時,此觸碰座標上的作用力F於X軸向上的分量為fx,於Y軸向上的分量為fy。因此,端部108可根據X軸向上的分量fx產生繞著Y軸向旋轉的力矩Ry,且端部108可根據Y軸向上的分量fy產生繞著X軸向旋轉的力矩Rx,因此端部108可產生二維的旋轉運動。當作用力於X軸向上的分量fx為零或於Y軸向上的分量fy為零時,端部108只會繞著一維座標軸旋轉。 Referring to FIG. 4C, in a rotational motion mode, when an operation command (for example, a single touch action) applied to the second annular touch sensing area 112b is detected, the force on the touch coordinate is detected. The component of F in the X-axis is fx, and the component in the Y-axis is fy. Therefore, the end portion 108 can generate a moment Ry that is rotated about the Y-axis according to the component fx in the X-axis direction, and the end portion 108 can generate a moment Rx that rotates around the X-axis according to the component fy in the Y-axis direction, thus the end portion 108 can produce two-dimensional rotational motion. When the component fx of the force in the X-axis is zero or the component fy in the Y-axis is zero, the end portion 108 is only rotated about the one-dimensional coordinate axis.

請參照第4D圖,在一旋轉運動模式下,當偵測到施加於第二環狀觸碰感應區112b上的操作指令(例如兩個觸碰動 作)時,根據兩個手指同時持續按壓與旋轉以產生施加於第二環狀觸碰感應區112b上的兩個觸碰點P1、P2各自形成的拖曳軌跡,可控制端部108產生相對於圓柱體108a的軸線(即Z軸)旋轉的旋轉運動。例如,若以順時鐘方向產生拖曳軌跡C1時,可控制端部108產生繞著Z軸向的順時鐘旋轉;若以逆時鐘方向產生拖曳軌跡C2時,可控制端部108產生繞著Z軸向的逆時鐘旋轉。在本實施例中,以兩個手指同時且持續按壓在端部108上做說明,但不限於此,亦可以三個或四個手指同時且持續按壓。 Referring to FIG. 4D, in a rotational motion mode, when an operation command applied to the second annular touch sensing area 112b is detected (eg, two touches When the two fingers simultaneously press and rotate to generate the drag trajectories respectively formed by the two touch points P1, P2 applied to the second annular touch sensing area 112b, the control end 108 can be generated relative to A rotational motion of the axis (ie, the Z-axis) of the cylinder 108a. For example, if the drag track C1 is generated in the clockwise direction, the control end 108 is rotated clockwise around the Z axis; if the drag track C2 is generated in the counterclockwise direction, the control end 108 is generated around the Z axis. The counterclockwise rotation. In the present embodiment, the two fingers are simultaneously and continuously pressed on the end portion 108 for explanation, but it is not limited thereto, and three or four fingers may be simultaneously and continuously pressed.

請參照第5及6圖,依照本發明一實施例之機械手臂101之教導系統140包括一壓力感測模組110以及一控制模組130。壓力感測模組110設置於一機械手臂101的操作部105上,且壓力感測模組110具有一觸碰感應表面112,用以偵測施加於觸碰感應表面112上的一操作指令,有關壓力感測模組110的細部內容請參照上述實施例,在此不再贅述。 Referring to FIGS. 5 and 6, the teaching system 140 of the robot arm 101 includes a pressure sensing module 110 and a control module 130 in accordance with an embodiment of the present invention. The pressure sensing module 110 is disposed on the operating portion 105 of the robot arm 101, and the pressure sensing module 110 has a touch sensing surface 112 for detecting an operation command applied to the touch sensing surface 112. For details of the details of the pressure sensing module 110, refer to the above embodiments, and details are not described herein again.

請參照第6圖,控制模組130包括一關節馬達控制器132、一模式切換模組134、至少一個關節馬達編碼器136以及一教導控制器138。第6圖中以一個關節馬達編碼器136為例說明。模式切換模組134用以切換機械手臂101的操作模式,以選擇進入一觸碰操作模式或一順應教導模式。在觸碰操作模式下,關節馬達控制器132可根據來自壓力感測模組110的操作指令產生一組使機械手臂101移動的馬達扭力訊號,以控制各關節馬達102的扭力。此外,在順應教導模式中,關節馬達控制器132可根據來自關節馬達編碼器136的編碼指令產生一組關節角度訊號。觸碰操作模式與順應教導模式的差別在於:觸碰操作模式可 透過來自壓力感測模組110的操作指令精確地控制端部108的位置,而順應教導模式可透過徒手拉動機械手臂101以快速地移動機械手臂101到達預定的位置,也就是控制機械手臂101的關節姿態。因此,本發明之教導系統可透過觸碰操作模式直接進行機械手臂101的端部位置控制(可稱為細定位教導),或者先透過順應教導模式進行機械手臂101的關節姿態控制(可稱為粗定位教導),再透過觸碰操作模式進行機械手臂101的端部位置的精確控制(細定位教導),或者先進行機械手臂101的端部位置的精確控制(細定位教導),再進行機械手臂101的關節姿態控制(粗定位教導),本發明對此不加以限制,進而解決教導系統進行直接粗定位教導時遇到的定位精度不佳以及馬達阻力過大以致無法達到機械手臂端部位置的精確控制(細定位)等問題。 Referring to FIG. 6 , the control module 130 includes a joint motor controller 132 , a mode switching module 134 , at least one joint motor encoder 136 , and a teaching controller 138 . In Fig. 6, a joint motor encoder 136 is taken as an example. The mode switching module 134 is configured to switch the operation mode of the robot arm 101 to select to enter a touch operation mode or a compliance teaching mode. In the touch operation mode, the joint motor controller 132 can generate a set of motor torque signals for moving the robot arm 101 according to an operation command from the pressure sensing module 110 to control the torque of each joint motor 102. Moreover, in the compliant teaching mode, the joint motor controller 132 can generate a set of joint angle signals based on the encoded commands from the joint motor encoder 136. The difference between the touch operation mode and the compliance teaching mode is that the touch operation mode can be The position of the end portion 108 is precisely controlled by an operation command from the pressure sensing module 110, and the compliant teaching mode can be used to quickly move the robot arm 101 to a predetermined position by moving the robot arm 101, that is, controlling the robot arm 101. Joint posture. Therefore, the teaching system of the present invention can directly perform the end position control of the robot arm 101 (which can be referred to as fine positioning teaching) through the touch operation mode, or first perform the joint posture control of the robot arm 101 through the compliant teaching mode (may be called The coarse positioning teaching), the precise control of the end position of the robot arm 101 (fine positioning teaching) by the touch operation mode, or the precise control of the end position of the robot arm 101 (fine positioning teaching), and then mechanical The joint posture control of the arm 101 (coarse positioning teaching), the present invention does not limit this, and further solves the problem that the positioning accuracy encountered by the teaching system for direct coarse positioning teaching is poor and the motor resistance is too large to reach the end position of the robot arm. Problems such as precise control (fine positioning).

此外,關節馬達編碼器136設置於機械手臂101的關節處,此些關節馬達編碼器136於順應教導模式下根據機械手臂101的移動軌跡產生一組關節角度訊號,以記錄各關節的目前位置及姿態。另外,教導控制器138連接關節馬達編碼器136,且於順應教導模式下儲存關節馬達編碼器136產生的此組關節角度訊號,亦可於觸碰操作模式下儲存各關節處的馬達扭力訊號,以記錄教導點(即關節姿態)的座標資訊。當要重現機械手臂101的移動軌跡時,教導控制器138可將此組關節角度訊號及馬達扭力訊號轉換成使機械手臂101的移動軌跡重現的馬達驅動訊號。 In addition, the joint motor encoder 136 is disposed at the joint of the robot arm 101, and the joint motor encoder 136 generates a set of joint angle signals according to the movement trajectory of the robot arm 101 in the compliant teaching mode to record the current position of each joint and attitude. In addition, the teaching controller 138 is coupled to the joint motor encoder 136, and stores the set of joint angle signals generated by the joint motor encoder 136 in the compliant teaching mode, and can also store the motor torque signals at the joints in the touch operation mode. To record the coordinate information of the teaching point (ie, the joint posture). When the movement trajectory of the robot arm 101 is to be reproduced, the teaching controller 138 can convert the set of joint angle signals and the motor torque signals into motor drive signals for reproducing the movement trajectory of the robot arm 101.

請參照第5圖,也就是說,教導控制器138係利用操作人員於進行機械手臂101教導時所產生之觸碰感應訊號(單點觸碰訊號或至少兩點觸碰點各自形成的拖曳訊號)、編碼器位置 (關節角度訊號)和教導點的座標資訊,並配合內建的機械手臂101數學模型以及物理參數(各關節的質心位置、質量、摩擦係數以及參考重力方向等)計算出對各關節馬達102、前臂103或後臂104進行控制的輸出指令,使操作人員能更直接地對機械手臂101進行教導,並能根據個別狀況調整不同定位精度。同時,在直接教導過程中,教導控制器138儲存教導點之座標資訊,這些教導點的座標資訊構成了機械手臂101的移動軌跡。因此,有了教導點的座標資訊,教導控制器138便可進一步產生規劃好的教導路徑,並驅動機械手臂101,使手臂端部108平順地經過這些教導點。 Please refer to FIG. 5 , that is, the teaching controller 138 utilizes the touch sensing signal generated by the operator when performing the teaching of the robot arm 101 (the single-touch signal or the at least two touch points respectively form a drag signal). ), encoder position (joint angle signal) and coordinate information of the teaching point, and with the mathematical model of the built-in robot arm 101 and physical parameters (centroid position, mass, friction coefficient and reference gravity direction of each joint, etc.), the joint motor 102 is calculated. The output command of the forearm 103 or the rear arm 104 is controlled so that the operator can directly teach the robot arm 101 and can adjust different positioning accuracy according to individual conditions. At the same time, in the direct teaching process, the teaching controller 138 stores the coordinate information of the teaching points, and the coordinate information of the teaching points constitutes the movement trajectory of the robot arm 101. Thus, with the coordinate information of the teaching points, the teaching controller 138 can further generate a planned teaching path and drive the robotic arm 101 to smoothly pass the arm ends 108 through the teaching points.

此外,請參照第6及7圖,關節馬達控制器132更包括一重力補償器133,重力補償器133根據機械手臂101上每個關節的角度、每個手臂的重心到每個關節的重心的距離以及每個手臂的質量計算作用於每個手臂上的重力補償力矩τg。另外,關節馬達控制器132更包括一摩擦力補償器135,摩擦力補償器135可根據機械手臂101上每個關節的轉動速度計算作用於每個關節上的摩擦力補償力矩τF。因此,控制模組110可根據上述的重力補償力矩τg及摩擦力補償力矩τF來修正機械手臂101的各關節馬達102的輸出力矩τ。 In addition, referring to Figures 6 and 7, the joint motor controller 132 further includes a gravity compensator 133 that depends on the angle of each joint on the robot arm 101, the center of gravity of each arm, and the center of gravity of each joint. The distance and the mass of each arm calculate the gravity compensation moment τ g acting on each arm. In addition, the joint motor controller 132 further includes a friction compensator 135 that calculates a frictional compensation torque τ F acting on each joint based on the rotational speed of each joint on the robot arm 101. Therefore, the control module 110 can correct the output torque τ of each joint motor 102 of the robot arm 101 according to the gravity compensation torque τ g and the friction compensation torque τ F described above.

當操作人員實際使用直接教導時,由於大部分機械手臂101各關節都存在阻力(慣量負載效應、摩擦力等),操作人員往往必須施加較大的力量才能推動機器人,導致教導點無法細微化。雖然習知技術經由一些複雜或特殊之機構設計可解決阻力的問題,但卻無法彈性化地調整教導時的順應程度。因此,本 發明之教導系統中結合了壓力感測模組110以及關節馬達編碼器136以進行細定位和粗定位的教導,故可根據個別狀況順應教導機器人,使操作人員更省力,以提高人機協調作業時的細定位教導的便捷性。 When the operator actually uses the direct teaching, since most of the joints of the robot arm 101 have resistance (inertia load effect, friction, etc.), the operator often has to exert a large force to push the robot, and the teaching point cannot be subtle. Although conventional techniques can solve the problem of resistance through some complicated or special mechanism design, they cannot flexibly adjust the degree of compliance in teaching. Therefore, this The teaching system of the invention combines the pressure sensing module 110 and the joint motor encoder 136 to teach the fine positioning and the coarse positioning, so that the robot can be taught according to individual conditions, so that the operator can save labor and improve the coordination of human and machine operations. The convenience of fine positioning teaching.

請參照第8圖,根據本發明一實施例之對機械手臂101進行直接教導之方法包括下列步驟:在步驟S11中,對機械手臂101進行初始化,例如設定各關節馬達102的慣性矩陣、重力矩、摩擦係數以及參考重力方向等參數及運動方程式,例如「牛頓.歐拉運動方程式」、「拉格朗其(Lagrangian)運動方程式」等,控制模組130可經由各關節馬達102輸出的慣性矩陣或重力矩計算出機械手臂101的目前位置及姿態,亦即機械手臂101的初始位置及姿態。在步驟S12中,記錄機械手臂101的移動軌跡,並驅動機械手臂101的端部108至一目標位置。此時,控制模組130可根據運動參數(例如扭力及速度)設定機械手臂101的工作範圍以及工作模式,並根據機械手臂101的工作模式,輸出一馬達驅動訊號至機械手臂101。此外,控制模組130可判斷機械手臂101的移動軌跡是否在一預定的移動路徑上或偏離目標位置,若機械手臂101偏離目標位置,可選擇進行下列教導步驟。在步驟S13中,若需對機械手臂101進行直接教導時,切換機械手臂101的操作模式至下列三種操作模式其中之一。在第一種操作模式(步驟S14)中,可透過來自壓力感測模組110的操作指令控制機械手臂101,直接進行端部位置控制(細定位教導),以修正機械手臂101 的移動軌跡。在第二種操作模式(步驟S15)中,可先徒手移動機械手臂101到預定的位置,也就是控制機械手臂101的關節姿態(粗定位教導),接著,再透過觸碰操作進行機械手臂101端部位置的精確控制(細定位教導),以修正機械手臂101的移動軌跡。另外,在第三種操作模式(步驟16)中,可先進行機械手臂101的端部位置控制(細定位教導)之後,再徒手進行關節姿態控制(粗定位教導),以修正機械手臂101的移動軌跡。接著,在步驟S17中,當完成上述教導之後,結束記錄機械手臂101的移動軌跡。此時,教導控制器138可儲存操作人員於進行機械手臂101教導時所產生之觸碰感應訊號(單點觸碰訊號或至少兩個觸碰點各自形成的拖曳訊號)、編碼器位置(關節角度訊號)和教導點的座標資訊。在步驟S18中,當要重現機械手臂101的教導軌跡時,教導控制器138可將剛才儲存的訊號轉換成使機械手臂101的移動軌跡重現的馬達驅動訊號,以驅動機械手臂101至目標位置。 Referring to FIG. 8, a method for directly teaching the robot arm 101 according to an embodiment of the present invention includes the following steps: in step S11, the robot arm 101 is initialized, for example, the inertia matrix and the heavy torque of each joint motor 102 are set. Parameters such as friction coefficient and reference gravity direction and equations of motion, such as "Newton. Euler's equation of motion", "Lagrangian equation of motion", etc., the inertia matrix that control module 130 can output via each joint motor 102 Or the heavy moment calculates the current position and posture of the robot arm 101, that is, the initial position and posture of the robot arm 101. In step S12, the movement trajectory of the robot arm 101 is recorded, and the end portion 108 of the robot arm 101 is driven to a target position. At this time, the control module 130 can set the working range and the working mode of the robot arm 101 according to the motion parameters (such as the torque and the speed), and output a motor driving signal to the robot arm 101 according to the working mode of the robot arm 101. In addition, the control module 130 can determine whether the movement trajectory of the robot arm 101 is on a predetermined movement path or deviate from the target position. If the robot arm 101 deviates from the target position, the following teaching steps can be selected. In step S13, if the robot arm 101 is to be directly taught, the operation mode of the robot arm 101 is switched to one of the following three operation modes. In the first mode of operation (step S14), the robot arm 101 can be controlled by an operation command from the pressure sensing module 110, and the end position control (fine positioning teaching) can be directly performed to correct the robot arm 101. The movement track. In the second mode of operation (step S15), the robot arm 101 can be moved by hand to a predetermined position, that is, the joint posture of the robot arm 101 is controlled (coarse positioning teaching), and then the robot arm 101 is further operated by the touch operation. Precise control of the position of the end (fine positioning teaching) to correct the movement trajectory of the robot arm 101. In addition, in the third operation mode (step 16), after the end position control (fine positioning teaching) of the robot arm 101 is performed, the joint posture control (coarse positioning teaching) is performed by hand to correct the mechanical arm 101. Move the track. Next, in step S17, when the above teaching is completed, the movement trajectory of the recording robot 101 is ended. At this time, the teaching controller 138 can store the touch sensing signal generated by the operator when performing the teaching of the robot arm 101 (the single-touch signal or the drag signal formed by each of the at least two touch points), the encoder position (joint Angle signal) and coordinate information of the teaching point. In step S18, when the teaching trajectory of the robot arm 101 is to be reproduced, the teaching controller 138 can convert the signal just stored into a motor driving signal for reproducing the movement trajectory of the robot arm 101 to drive the robot arm 101 to the target. position.

由上述的說明可知,操作人員可透過壓力感測模組110給予機械手臂101移動的操作指令,並可透過控制模組130轉化成機械手臂101各關節處所需之扭力值或對扭力值進行補償(重力補償力矩或摩擦力補償力矩),以供控制模組130控制各關節的位置及姿態,進而實現人與機械手臂101協作的工業應用。此外,本發明之教導系統及教導方法中結合了壓力感測模組110以及關節馬達編碼器136以進行細定位和粗定位的教導,可供操作人員彈性地調整機械手臂101的順應程度,進而解決教導系統 進行直接教導時遇到的定位精度不佳以及馬達阻力過大無法細定位等問題。 As can be seen from the above description, the operator can give an operation command for the movement of the robot arm 101 through the pressure sensing module 110, and can convert the torque value required for the joints of the robot arm 101 or the torque value through the control module 130. The compensation (gravity compensation torque or friction compensation torque) is used for the control module 130 to control the position and posture of each joint, thereby realizing the industrial application of the cooperation between the human and the robot arm 101. In addition, the teaching system and teaching method of the present invention combines the pressure sensing module 110 and the joint motor encoder 136 to teach fine positioning and coarse positioning, so that the operator can flexibly adjust the compliance degree of the robot arm 101, and thus Solution teaching system Problems such as poor positioning accuracy encountered in direct teaching and excessive motor resistance cannot be finely positioned.

綜上所述,雖然本發明已以諸項實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In the above, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧控制裝置 100‧‧‧Control device

101‧‧‧機械手臂 101‧‧‧ Robotic arm

102‧‧‧關節馬達 102‧‧‧ joint motor

103‧‧‧前臂 103‧‧‧Forearm

104‧‧‧後臂 104‧‧‧ rear arm

105‧‧‧操作部 105‧‧‧Operation Department

106‧‧‧握持部 106‧‧‧ grip

107‧‧‧支架 107‧‧‧ bracket

108‧‧‧端部 108‧‧‧End

109‧‧‧機械工具 109‧‧‧Mechanical tools

110‧‧‧壓力感測模組 110‧‧‧ Pressure Sensing Module

130‧‧‧控制模組 130‧‧‧Control Module

Claims (21)

一種機械手臂之控制裝置,包括:一壓力感測模組,設置於一機械手臂的一操作部上,該壓力感測模組具有一觸碰感應表面,用以偵測施加於該觸碰感應表面上的一操作指令,其中該觸碰感應表面包括一第一觸碰感應區以及一第二觸碰感應區,該第一觸碰感應區用以定義滿足一平移運動模式的第一參考座標系,而該第二觸碰感應區用以定義滿足一旋轉運動模式的第二參考座標系;以及一控制模組,用以接收該壓力感測模組輸出的至少一壓力感測訊號,並輸出一馬達驅動訊號至該機械手臂,以回應該操作指令,其中該控制模組根據該操作指令的觸碰位置,控制該機械手臂平移或旋轉運動。 A control device for a mechanical arm includes: a pressure sensing module disposed on an operating portion of a mechanical arm, the pressure sensing module having a touch sensing surface for detecting a touch sensing An operation command on the surface, wherein the touch sensing surface comprises a first touch sensing area and a second touch sensing area, wherein the first touch sensing area is used to define a first reference coordinate that satisfies a translational motion mode And the second touch sensing area is configured to define a second reference coordinate system that satisfies a rotational motion mode; and a control module is configured to receive the at least one pressure sensing signal output by the pressure sensing module, and A motor drive signal is output to the robot arm to respond to an operation command, wherein the control module controls the translational or rotational movement of the robot arm according to the touch position of the operation command. 如申請專利範圍第1項所述之控制裝置,其中該壓力感測模組包括複數個以陣列排列並且相互連接的壓力感測元件,每一壓力感測元件具有一上電極層、一壓力感測層以及一下電極層,且該壓力感測層位於該上電極層與該下電極層之間。 The control device of claim 1, wherein the pressure sensing module comprises a plurality of pressure sensing elements arranged in an array and connected to each other, each pressure sensing element having an upper electrode layer and a pressure sense And a lower electrode layer, and the pressure sensing layer is located between the upper electrode layer and the lower electrode layer. 如申請專利範圍第1項所述之控制裝置,其中該觸碰感應表面彎曲為一曲面,且該操作部具有一端部,該觸碰感應表面位於該端部之表面上。 The control device of claim 1, wherein the touch sensing surface is curved into a curved surface, and the operating portion has an end portion, the touch sensing surface being located on a surface of the end portion. 如申請專利範圍第3項所述之控制裝置,其中該端部為一圓柱體,該第一觸碰感應區與該第二觸碰感應區環繞在該圓柱體之圓周表面。 The control device of claim 3, wherein the end portion is a cylinder, and the first touch sensing area and the second touch sensing area surround the circumferential surface of the cylinder. 如申請專利範圍第4項所述之控制裝置,其中該機械手臂 的該端部根據施加於該第一觸碰感應區上的單一觸碰點的座標,產生相對於該圓柱體的軸線垂直的一維或二維的平移運動,或根據施加於該第一觸碰感應區上的至少兩個觸碰點各自形成的拖曳軌跡,產生沿著該圓柱體的軸線的平移運動。 The control device of claim 4, wherein the robot arm The end portion generates a one-dimensional or two-dimensional translational motion perpendicular to an axis of the cylinder according to a coordinate of a single touch point applied to the first touch sensing area, or according to the first touch applied thereto A drag trajectory formed by each of the at least two touch points on the touch sensing area produces a translational motion along the axis of the cylinder. 如申請專利範圍第4項所述之控制裝置,其中該機械手臂的該端部根據施加於該第二觸碰感應區上的單一觸碰點的座標,產生相對於垂直該圓柱體的軸線的一維或二維座標軸旋轉的旋轉運動,或根據施加於該第二觸碰感應區上的至少兩個觸碰點各自形成的拖曳軌跡,產生相對於該圓柱體的軸線旋轉的旋轉運動。 The control device of claim 4, wherein the end of the robot arm is generated relative to a vertical axis of the cylinder according to a coordinate of a single touch point applied to the second touch sensing area. A rotational motion of the one- or two-dimensional coordinate axis rotation, or a rotational motion formed by each of the at least two touch points applied to the second touch sensing area, produces a rotational motion that is rotated relative to the axis of the cylinder. 如申請專利範圍第1項所述之控制裝置,其中該控制模組包括一關節馬達控制器以及一模式切換模組,該模式切換模組用以切換該機械手臂的操作模式,該機械手臂的操作模式包括一順應教導模式以及一觸碰操作模式,在該觸碰操作模式下,該關節馬達控制器根據該操作指令產生一組使該機械手臂的該端部平移運動或旋轉運動的馬達扭力訊號。 The control device of claim 1, wherein the control module comprises a joint motor controller and a mode switching module, wherein the mode switching module is configured to switch an operation mode of the robot arm, the robot arm The operation mode includes a compliance teaching mode and a touch operation mode, in which the joint motor controller generates a set of motor torques for translational or rotational movement of the end of the robot arm according to the operation command. Signal. 如申請專利範圍第7項所述之控制裝置,其中該控制模組包括至少一關節馬達編碼器,設置於該機械手臂的關節處,該關節馬達編碼器於該順應教導模式下根據該機械手臂的移動軌跡產生一組關節角度訊號。 The control device of claim 7, wherein the control module comprises at least one joint motor encoder disposed at a joint of the robot arm, the joint motor encoder according to the robot arm in the compliant teaching mode The movement track produces a set of joint angle signals. 如申請專利範圍第8項所述之控制裝置,其中該控制模組包括一教導控制器,該教導控制器於該順應教導模式中儲存該關 節馬達編碼器產生的該組關節角度訊號,且該教導控制器可將該組關節角度訊號及該組馬達扭力訊號轉換成使該機械手臂的移動軌跡重現的該馬達驅動訊號。 The control device of claim 8, wherein the control module comprises a teaching controller, wherein the teaching controller stores the switch in the compliant teaching mode The set of joint angle signals generated by the motor encoder, and the teaching controller can convert the set of joint angle signals and the set of motor torque signals into the motor drive signal for reproducing the movement track of the robot arm. 如申請專利範圍第7項所述之控制裝置,其中該關節馬達控制器更包括一重力補償器,該重力補償器根據該機械手臂上每個關節的角度、每個手臂的重心到每個關節的重心的距離以及每個手臂的質量計算作用於每個手臂上的重力補償力矩。 The control device of claim 7, wherein the joint motor controller further comprises a gravity compensator for each joint according to an angle of each joint on the robot arm and a center of gravity of each arm The distance of the center of gravity and the mass of each arm calculate the gravitational compensation moment acting on each arm. 如申請專利範圍第7項所述之控制裝置,其中該關節馬達控制器更包括一摩擦力補償器,該摩擦力補償器根據該機械手臂上每個關節的轉動速度計算作用於每個關節上的摩擦力補償力矩。 The control device of claim 7, wherein the joint motor controller further comprises a friction compensator for calculating the acting speed of each joint based on the rotational speed of each joint on the robot arm. Friction compensation torque. 一種機械手臂的教導系統,包括:一壓力感測模組,設置於一機械手臂的一操作部上,該壓力感測模組具有一觸碰感應表面,用以偵測施加於該觸碰感應表面上的一操作指令,其中該觸碰感應表面包括一第一觸碰感應區以及一第二觸碰感應區,該第一觸碰感應區用以定義滿足一平移運動模式的第一參考座標系,而該第二觸碰感應區用以定義滿足一旋轉運動模式的第二參考座標系;以及一控制模組,用以接收該壓力感測模組輸出的至少一壓力感測訊號,並輸出一馬達驅動訊號至該機械手臂,以回應該操作指令,其中該控制模組包括:一關節馬達控制器,該關節馬達控制器根據該操作指令產生 一組使該機械手臂平移運動或旋轉運動的馬達扭力訊號;一模式切換模組,用以切換該機械手臂的操作模式,該機械手臂的操作模式包括一順應教導模式以及一觸碰操作模式;以及複數個關節馬達編碼器,設置於該機械手臂的關節處,該些關節馬達編碼器於該順應教導模式下根據該機械手臂的移動軌跡產生一組關節角度訊號;其中,該控制模組根據該操作指令的觸碰位置,控制該機械手臂平移或旋轉運動。 A teaching system of a mechanical arm includes: a pressure sensing module disposed on an operating portion of a mechanical arm, the pressure sensing module having a touch sensing surface for detecting a touch sensing An operation command on the surface, wherein the touch sensing surface comprises a first touch sensing area and a second touch sensing area, wherein the first touch sensing area is used to define a first reference coordinate that satisfies a translational motion mode And the second touch sensing area is configured to define a second reference coordinate system that satisfies a rotational motion mode; and a control module is configured to receive the at least one pressure sensing signal output by the pressure sensing module, and Outputting a motor driving signal to the robot arm to respond to an operation command, wherein the control module comprises: a joint motor controller, and the joint motor controller generates the command according to the operation command a set of motor torque signals for translating or rotating the mechanical arm; a mode switching module for switching an operating mode of the robot arm, the operating mode of the robot arm comprising a compliant teaching mode and a touch operation mode; And a plurality of joint motor encoders disposed at the joint of the robot arm, wherein the joint motor encoder generates a set of joint angle signals according to the movement trajectory of the robot arm in the compliant teaching mode; wherein the control module is The touch position of the operation command controls the translation or rotation movement of the robot arm. 如申請專利範圍第12項所述之教導系統,其中該壓力感測模組包括多個以陣列排列並且相互連接的壓力感測元件,每一壓力感測元件具有一上電極層、一壓力感測層以及一下電極層,且該壓力感測層位於該上電極層與該下電極層之間。 The teaching system of claim 12, wherein the pressure sensing module comprises a plurality of pressure sensing elements arranged in an array and connected to each other, each pressure sensing element having an upper electrode layer and a pressure sense And a lower electrode layer, and the pressure sensing layer is located between the upper electrode layer and the lower electrode layer. 如申請專利範圍第12項所述之教導系統,其中該觸碰感應表面為一曲面,且該操作部具有一端部,該曲面位於該端部之表面上。 The teaching system of claim 12, wherein the touch sensing surface is a curved surface, and the operating portion has an end portion on a surface of the end portion. 如申請專利範圍第14項所述之教導系統,其中該端部為一圓柱體,該第一觸碰感應區與該第二觸碰感應區環繞在該圓柱體的圓周表面。 The teaching system of claim 14, wherein the end portion is a cylinder, and the first touch sensing area and the second touch sensing area surround the circumferential surface of the cylinder. 如申請專利範圍第15項所述之教導系統,其中該機械手臂的該端部根據施加於該第一觸碰感應區上的單一觸碰點的位置及方向,產生相對於該圓柱體的軸線垂直的一維或二維的平移運動,或根據施加於該第一觸碰感應區上的至少兩個觸碰點各自 形成的拖曳軌跡,產生沿著該圓柱體的軸線的平移運動。 The teaching system of claim 15, wherein the end of the robot arm generates an axis relative to the cylinder according to a position and a direction of a single touch point applied to the first touch sensing area. Vertical one- or two-dimensional translational motion, or according to at least two touch points applied to the first touch sensing area The resulting drag trajectory produces a translational motion along the axis of the cylinder. 如申請專利範圍第15項所述之教導系統,其中該機械手臂的該端部根據施加於該第二觸碰感應區上的單一觸碰點的位置及方向,產生相對於垂直該圓柱體的軸線的一維或二維座標軸旋轉的旋轉運動,或根據施加於該環狀觸碰感應區上的至少兩個觸碰點各自形成的拖曳軌跡,產生相對於該軸線旋轉的旋轉運動。 The teaching system of claim 15, wherein the end of the robot arm is generated relative to the vertical cylinder according to a position and a direction of a single touch point applied to the second touch sensing area. A rotational motion of the one-dimensional or two-dimensional coordinate axis rotation of the axis, or a rotational motion formed by each of the at least two touch points applied to the annular touch sensing area, produces a rotational motion that rotates relative to the axis. 如申請專利範圍第14項所述之教導系統,其中該控制模組更包括一教導控制器,該教導控制器於該順應教導模式中儲存該些關節馬達編碼器產生的該組關節角度訊號,且該教導控制器可將該組關節角度訊號轉換成使該機械手臂的移動軌跡重現的該馬達驅動訊號。 The teaching system of claim 14, wherein the control module further comprises a teaching controller, wherein the teaching controller stores the set of joint angle signals generated by the joint motor encoders in the compliant teaching mode, And the teaching controller can convert the set of joint angle signals into the motor drive signal that causes the movement track of the robot arm to reproduce. 如申請專利範圍第14項所述之教導系統,其中該關節馬達控制器更包括一重力補償器,該重力補償器根據該機械手臂上每個關節的角度、每個手臂的重心到每個關節的重心的距離以及每個手臂的質量計算作用於每個手臂上的重力補償力矩。 The teaching system of claim 14, wherein the joint motor controller further comprises a gravity compensator for each joint according to an angle of each joint on the robot arm and a center of gravity of each arm The distance of the center of gravity and the mass of each arm calculate the gravitational compensation moment acting on each arm. 如申請專利範圍第14項所述之教導系統,其中該關節馬達控制器更包括一摩擦力補償器,該摩擦力補償器根據該機械手臂上每個關節的轉動速度計算作用於每個關節上的摩擦力補償力矩。 The teaching system of claim 14, wherein the joint motor controller further comprises a friction compensator that acts on each joint based on a rotational speed of each joint on the robot arm. Friction compensation torque. 一種對機械手臂進行直接教導的方法,包括:對一機械手臂進行初始化,並輸出一馬達驅動訊號至該機械 手臂;記錄該機械手臂的移動軌跡,以得知該機械手臂的目前位置及姿態;當該機械手臂的移動軌跡偏離一目標位置時,切換該機械手臂的操作模式,該操作模式包括一順應教導模式以及一觸控操作模式,其中,在該觸控操作模式下,透過來自一壓力感測模組的操作指令對該機械手臂進行機械手臂端部位置控制;在該順應教導模式下,徒手對該機械手臂進行關節姿態控制;透過對該機械手臂的端部位置控制,或先透過對該機械手臂的端部位置控制再進行關節姿態控制,或先透過對該機械手臂進行關節姿態控制再進行端部位置控制,修正該機械手臂的移動軌跡;結束記錄該機械手臂的移動軌跡;以及重現該機械手臂的教導軌跡,以移動該機械手臂至該目標位置。 A method of directly teaching a robot arm, comprising: initializing a robot arm and outputting a motor drive signal to the machine An arm; recording a movement trajectory of the robot arm to know the current position and posture of the robot arm; when the movement trajectory of the robot arm deviates from a target position, switching an operation mode of the robot arm, the operation mode including a compliance instruction a mode and a touch operation mode, wherein in the touch operation mode, the mechanical arm end position is controlled by an operation command from a pressure sensing module; in the compliance teaching mode, the hand is The mechanical arm performs joint posture control; the position control of the arm is controlled, or the joint position control of the arm is first controlled by the end position, or the joint posture control of the robot arm is performed first. End position control, correcting the movement trajectory of the robot arm; ending recording the movement trajectory of the robot arm; and reproducing the teaching trajectory of the robot arm to move the robot arm to the target position.
TW105137642A 2016-08-12 2016-11-17 Control device of robot arm and teaching system and method using the same TWI651175B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611128571.9A CN107717981B (en) 2016-08-12 2016-12-09 Control device of mechanical arm and teaching system and method thereof
US15/392,251 US10144125B2 (en) 2016-08-12 2016-12-28 Control device of robot arm and teaching system and method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662374074P 2016-08-12 2016-08-12
US62/374,074 2016-08-12

Publications (2)

Publication Number Publication Date
TW201805127A true TW201805127A (en) 2018-02-16
TWI651175B TWI651175B (en) 2019-02-21

Family

ID=62014243

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105137642A TWI651175B (en) 2016-08-12 2016-11-17 Control device of robot arm and teaching system and method using the same
TW105138872A TWI634400B (en) 2016-08-12 2016-11-25 Robot control device and robot operation method

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105138872A TWI634400B (en) 2016-08-12 2016-11-25 Robot control device and robot operation method

Country Status (1)

Country Link
TW (2) TWI651175B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675269B (en) * 2018-04-02 2019-10-21 新世代機器人暨人工智慧股份有限公司 Posture switchable robot and method of adjusting posture thereof
TWI712475B (en) * 2018-04-03 2020-12-11 台達電子工業股份有限公司 Teaching method for robotic arm and gesture teaching device using the same
US10981273B2 (en) 2018-04-03 2021-04-20 Delta Electronics, Inc. Action teaching method for robotic arm and gesture teaching device
TWI725630B (en) * 2019-11-21 2021-04-21 財團法人工業技術研究院 Processing path generating device and method thereof
TWI741349B (en) * 2018-08-22 2021-10-01 日商發那科股份有限公司 Control device and axial feed control method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373747A (en) * 1991-03-30 1994-12-20 Kabushiki Kaisha Toshiba Robot hand and robot
JPH11231925A (en) * 1998-02-10 1999-08-27 Yaskawa Electric Corp Hand of direct teaching robot
DE19943318A1 (en) * 1999-09-10 2001-03-22 Charalambos Tassakos Trajectory path point position detection method e.g. for programming industrial robot, uses manual movement of robot tool along trajectory with force/moment sensor signals converted into movement control signals
US8255079B2 (en) * 2009-09-22 2012-08-28 GM Global Technology Operations LLC Human grasp assist device and method of use
WO2012101956A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Robot-arm control device and control method, robot, robot-arm control program, and integrated electronic circuit
US20130343640A1 (en) * 2012-06-21 2013-12-26 Rethink Robotics, Inc. Vision-guided robots and methods of training them
CN104428107B (en) * 2012-07-10 2016-06-29 西门子公司 The method that robot arranges and is used for controlling robot
CN103170973B (en) * 2013-03-28 2015-03-11 上海理工大学 Man-machine cooperation device and method based on Kinect video camera
CN103495981A (en) * 2013-09-29 2014-01-08 中山大学 Manipulator based on touch sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675269B (en) * 2018-04-02 2019-10-21 新世代機器人暨人工智慧股份有限公司 Posture switchable robot and method of adjusting posture thereof
TWI712475B (en) * 2018-04-03 2020-12-11 台達電子工業股份有限公司 Teaching method for robotic arm and gesture teaching device using the same
US10981273B2 (en) 2018-04-03 2021-04-20 Delta Electronics, Inc. Action teaching method for robotic arm and gesture teaching device
TWI741349B (en) * 2018-08-22 2021-10-01 日商發那科股份有限公司 Control device and axial feed control method
US11163290B2 (en) 2018-08-22 2021-11-02 Fanuc Corporation Control device and axial feed control method
TWI725630B (en) * 2019-11-21 2021-04-21 財團法人工業技術研究院 Processing path generating device and method thereof
US11648667B2 (en) 2019-11-21 2023-05-16 Industrial Technology Research Institute Processing path generating device and method thereof

Also Published As

Publication number Publication date
TW201805745A (en) 2018-02-16
TWI634400B (en) 2018-09-01
TWI651175B (en) 2019-02-21

Similar Documents

Publication Publication Date Title
CN107717981B (en) Control device of mechanical arm and teaching system and method thereof
TWI651175B (en) Control device of robot arm and teaching system and method using the same
US9958862B2 (en) Intuitive motion coordinate system for controlling an industrial robot
JP6924145B2 (en) Robot teaching method and robot arm control device
JP6839084B2 (en) Remote control robot system
JP6450960B2 (en) Robot, robot system and teaching method
US20150273689A1 (en) Robot control device, robot, robotic system, teaching method, and program
JP7049069B2 (en) Robot system and control method of robot system
JP7339806B2 (en) Control system, robot system and control method
JP2019018340A (en) Work robot, control method therefor
JP4534015B2 (en) Master / slave robot control information confirmation method
US9962835B2 (en) Device for dynamic switching of robot control points
US20200001454A1 (en) Motion teaching apparatus, robot system, and motion teaching method
JP6457208B2 (en) Operation instruction system and operation instruction method for robot
JP2008217260A (en) Force feedback apparatus
KR101474778B1 (en) Control device using motion recognition in artculated robot and method thereof
JP7185749B2 (en) ROBOT SYSTEM AND ROBOT SYSTEM CONTROL METHOD
JP4822067B2 (en) Robot and its direct teaching device
WO2018212199A1 (en) Operation device and operating method thereof
KR20190001842A (en) Performance evaluation system of multi-joint haptic device and performance evaluation method using the same
US20230112463A1 (en) Tele-manufacturing system
JP2018114590A (en) Robot teaching device and robot teaching method
KR100321497B1 (en) Robot Motion Teach Method
Ryuh et al. Tele-operating System of Field Robot for Cultivation Management-Vision based Tele-operating System of Robotic Smart Farming for Fruit Harvesting and Cultivation Management