TW201802836A - Overcurrent protection component with positive temperature coefficient for increasing bearing voltage of positive temperature coefficient polymer material layer and achieving stable electric characteristics and reliability - Google Patents

Overcurrent protection component with positive temperature coefficient for increasing bearing voltage of positive temperature coefficient polymer material layer and achieving stable electric characteristics and reliability Download PDF

Info

Publication number
TW201802836A
TW201802836A TW105121500A TW105121500A TW201802836A TW 201802836 A TW201802836 A TW 201802836A TW 105121500 A TW105121500 A TW 105121500A TW 105121500 A TW105121500 A TW 105121500A TW 201802836 A TW201802836 A TW 201802836A
Authority
TW
Taiwan
Prior art keywords
polyolefin
temperature coefficient
positive temperature
unit
overcurrent protection
Prior art date
Application number
TW105121500A
Other languages
Chinese (zh)
Other versions
TWI598893B (en
Inventor
陳繼聖
江長鴻
Original Assignee
富致科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富致科技股份有限公司 filed Critical 富致科技股份有限公司
Priority to TW105121500A priority Critical patent/TWI598893B/en
Application granted granted Critical
Publication of TWI598893B publication Critical patent/TWI598893B/en
Publication of TW201802836A publication Critical patent/TW201802836A/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)

Abstract

An overcurrent protection component with positive temperature coefficient comprises a positive temperature coefficient material layer and two electrodes. The positive temperature coefficient material layer contains a polymer matrix and conductive particle filler. The polymer matrix is composed of heterogeneous rheological polymer. The composition of heterogeneous rheological polymer comprises a first polyolefin unit, a second polyolefin unit and a third polyolefin unit. The first polyolefin unit, the second polyolefin unit and the third polyolefin unit are solidified after melt mixing to form the polymer matrix. The first polyolefin unit has a melt flow index between 0.1 g/10 min to 2.5 g/10 min, the second polyolefin unit has a melt flow index between 20 g/10 min to 30 g/10 min, and the third polyolefin unit has a melt flow index less than 0.00001 g/10 min. The overcurrent protection component with positive temperature coefficient according to the present invention possesses excellent electric stability and reliability.

Description

正溫度係數過電流保護元件Positive temperature coefficient overcurrent protection element

本發明是有關於一種正溫度係數過電流保護元件,特別是指一種具有不同熔流指數範圍的一第一聚烯烴單元、一第二聚烯烴單元及一第三聚烯烴單元的正溫度係數過電流保護元件。The invention relates to a positive temperature coefficient overcurrent protection element, in particular to a positive temperature coefficient of a first polyolefin unit, a second polyolefin unit and a third polyolefin unit having different melt flow index ranges. Current protection element.

正溫度係數導電性高分子元件由於具有正溫度係數效應,所以可作為過電流保護元件用途。正溫度係數過電流保護元件包括一正溫度係數導電性高分子材料層及形成在該正溫度係數導電性高分子材料層之兩相對應表面上的正、負電極。該正溫度係數導電性高分子材料層包括一具晶相區及非晶相區的高分子基體及一分散於該高分子基體之非晶相區而形成一連續導電路徑之導電性顆粒填充物。正溫度係數效應是指當該高分子基體的溫度升到其熔點時,該晶相區開始融熔而產生新的非晶相區。當非晶相區增加到一程度而與原存的非晶相區相結合時,會使得該導電性顆粒填充物的導電路徑形成不連續狀,而造成該正溫度係數導電性高分子材料之電阻急速增加,並因而形成斷電。Since the positive temperature coefficient conductive polymer element has a positive temperature coefficient effect, it can be used as an overcurrent protection element. The positive temperature coefficient overcurrent protection element includes a positive temperature coefficient conductive polymer material layer and positive and negative electrodes formed on two corresponding surfaces of the positive temperature coefficient conductive polymer material layer. The positive temperature coefficient conductive polymer material layer includes a polymer matrix having a crystalline phase region and an amorphous phase region, and a conductive particle filler dispersed in the amorphous phase region of the polymer matrix to form a continuous conductive path. . The positive temperature coefficient effect means that when the temperature of the polymer matrix rises to its melting point, the crystalline phase region starts to melt and a new amorphous phase region is generated. When the amorphous phase region is increased to a certain extent and combined with the existing amorphous phase region, the conductive path of the conductive particle filler will form a discontinuity, resulting in the positive temperature coefficient of the conductive polymer material. The resistance increases rapidly, and a power failure is caused.

正溫度係數過電流保護元件主要的訴求是要同時具有高的正溫度係數效應、高導電度、高電氣穩定性。The main requirements of positive temperature coefficient overcurrent protection components are to have high positive temperature coefficient effect, high conductivity, and high electrical stability at the same time.

傳統的正溫度係數導電性高分子材料層通常包括一高分子基體及一導電性碳粉填充物。該高分子基體具有一聚合物組成。該聚合物組成通常包含一重量平均分子量範圍介於50,000 g/mol至300,000 g/mol的非接枝型聚烯烴[具有一在190℃與2.16 kg壓力下介於0.1 g/10 min至10 g/10 min的熔流指數(melt flow index, MFI)]與可選擇地一重量平均分子量範圍介於50,000 g/mol至200,000 g/mol的接枝型聚烯烴(具有一在190℃與2.16 kg壓力下介於0.5 g/10 min至10 g/10 min的熔流指數)。該接枝型聚烯烴的主要功能在於增強正溫度係數導電性高分子材料層與電極之間的接著性。The traditional positive temperature coefficient conductive polymer material layer usually includes a polymer matrix and a conductive carbon powder filler. The polymer matrix has a polymer composition. The polymer composition typically comprises a non-grafted polyolefin having a weight average molecular weight ranging from 50,000 g / mol to 300,000 g / mol [having a weight range between 0.1 g / 10 min to 10 g at 190 ° C and a pressure of 2.16 kg. / 10 min melt flow index (MFI)] and optionally a grafted polyolefin (having a weight average molecular weight ranging from 50,000 g / mol to 200,000 g / mol (with a temperature of 190 ° C and 2.16 kg) Melt flow index between 0.5 g / 10 min and 10 g / 10 min under pressure). The main function of the grafted polyolefin is to enhance the adhesion between the positive temperature coefficient conductive polymer material layer and the electrode.

由於元件的承受電壓會受到導電性碳粉填充物的導電度影響而降低,因此需要較高導電度且需要承受高電壓的電流保護元件並不適用導電性碳粉填充物。在提升承受電壓上,雖然可藉由增加非導電性顆粒填充物(例如無機化合物)等方式來增加正溫度係數導電性高分子材料層的承受電壓,但其導電度無法提高,無法適用在需要較高工作電流的裝置上。Since the withstand voltage of the element is reduced by the conductivity of the conductive toner filler, the current protection element that requires higher conductivity and needs to withstand high voltage is not suitable for the conductive toner filler. In terms of increasing the withstand voltage, although the withstand voltage of the positive temperature coefficient conductive polymer material layer can be increased by adding non-conductive particulate fillers (such as inorganic compounds), the conductivity cannot be improved, and it cannot be used where needed. Higher operating current devices.

因此,本發明之目的,即在提供一種正溫度係數過電流保護元件,可以提高正溫度係數高分子材料層的承受電壓,及穩定電氣特性與可靠性。Therefore, an object of the present invention is to provide a positive temperature coefficient overcurrent protection element, which can improve the withstand voltage of a positive temperature coefficient polymer material layer and stabilize electrical characteristics and reliability.

於是,本發明正溫度係數過電流保護元件包含一正溫度係數材料層及兩個設在該正溫度係數材料層上的電極。該正溫度係數材料層包括一高分子基體及一均勻分散於該高分子基體內的導電性顆粒填充物。該高分子基體具有一異相流變性聚合物組成(hetero-phase rheological polymer composition),該異相流變性聚合物組成包含一第一聚烯烴單元、一第二聚烯烴單元及一第三聚烯烴單元,該第一聚烯烴單元包含一非接枝型聚烯烴,該第一聚烯烴單元與該第二聚烯烴單元及該第三聚烯烴是共熔融混煉後固化而形成該高分子基體。該第一聚烯烴單元具有一在190℃與2.16 kg壓力下介於0.1 g/10 min至2.5 g/10 min的熔流指數;該第二聚烯烴單元具有一在190℃與2.16 kg壓力下介於20 g/10 min至30 g/10 min的熔流指數;該第三聚烯烴單元具有一在190℃與2.16 kg壓力下小於0.00001 g/10 min的熔流指數。該第一聚烯烴單元占該異相流變性聚合物組成重量的2.5-75 wt%;該第二聚烯烴單元占該異相流變性聚合物組成重量的12.5-75 wt%;及該第三聚烯烴占該異相流變性聚合物組成重量的12.5-60 wt%。Therefore, the positive temperature coefficient overcurrent protection element of the present invention includes a positive temperature coefficient material layer and two electrodes provided on the positive temperature coefficient material layer. The positive temperature coefficient material layer includes a polymer matrix and a conductive particle filler uniformly dispersed in the polymer matrix. The polymer matrix has a hetero-phase rheological polymer composition. The hetero-phase rheological polymer composition includes a first polyolefin unit, a second polyolefin unit, and a third polyolefin unit. The first polyolefin unit includes a non-grafted polyolefin. The first polyolefin unit, the second polyolefin unit, and the third polyolefin are co-melted and kneaded to form the polymer matrix. The first polyolefin unit has a melt flow index between 0.1 g / 10 min and 2.5 g / 10 min at 190 ° C and a pressure of 2.16 kg; the second polyolefin unit has a melt flow index at 190 ° C and a pressure of 2.16 kg A melt flow index between 20 g / 10 min and 30 g / 10 min; the third polyolefin unit has a melt flow index of less than 0.00001 g / 10 min at 190 ° C and a pressure of 2.16 kg. The first polyolefin unit accounts for 2.5-75 wt% of the composition weight of the heterophasic rheological polymer; the second polyolefin unit accounts for 12.5-75 wt% of the composition weight of the heterophasic rheological polymer; and the third polyolefin 12.5-60 wt% of the composition weight of the heterophasic rheological polymer.

本發明之功效在於:該異相流變性聚合物組成包含特定熔流指數範圍的第二聚烯烴單元及第三聚烯烴單元,經與該第一聚烯烴單元共熔融混煉後固化可形成一具有耐高電壓與高電壓可靠性佳之高分子基體,並可提高本發明正溫度係數過電流保護元件之電氣穩定性與可靠性。The effect of the present invention is that the heterophasic rheological polymer composition includes a second polyolefin unit and a third polyolefin unit in a specific melt flow index range. After co-melting and kneading with the first polyolefin unit, it can be formed into A polymer matrix with high voltage resistance and high voltage reliability, and can improve the electrical stability and reliability of the positive temperature coefficient overcurrent protection element of the present invention.

以下將就本發明內容進行詳細說明:The following will describe the content of the present invention in detail:

較佳地,該第一聚烯烴單元具有一介於50,000 g/mol至300,000 g/mol之間的重量平均分子量。Preferably, the first polyolefin unit has a weight average molecular weight between 50,000 g / mol and 300,000 g / mol.

較佳地,該第二聚烯烴單元具有一介於10,000 g/mol至49,000 g/mol之間的重量平均分子量。Preferably, the second polyolefin unit has a weight average molecular weight between 10,000 g / mol and 49,000 g / mol.

較佳地,該第三聚烯烴單元具有一不小於5,000,000 g/mol的重量平均分子量。更佳地,該第三聚烯烴單元具有一介於5,000,000 g/mol至10,500,000 g/mol之間的重量平均分子量。Preferably, the third polyolefin unit has a weight average molecular weight of not less than 5,000,000 g / mol. More preferably, the third polyolefin unit has a weight average molecular weight between 5,000,000 g / mol and 10,500,000 g / mol.

較佳地,該第一聚烯烴單元還包含一接枝型聚烯烴。Preferably, the first polyolefin unit further comprises a grafted polyolefin.

較佳地,該導電性顆粒填充物為碳黑(carbon black)。Preferably, the conductive particle filler is carbon black.

較佳地,該導電性顆粒填充物占該正溫度係數材料層重量的40-60wt%。Preferably, the conductive particle filler accounts for 40-60 wt% of the weight of the positive temperature coefficient material layer.

較佳地,該導電性顆粒填充物的粒徑為40-100 nm、DBP吸油量為60-120 cc/100 g及有機揮發成分為0.2-2.0 wt%。Preferably, the conductive particle filler has a particle diameter of 40-100 nm, a DBP oil absorption of 60-120 cc / 100 g, and an organic volatile component of 0.2-2.0 wt%.

較佳地,該非接枝型聚烯烴、該第二聚烯烴單元及該第三聚烯烴單元為聚乙烯(PE)。更佳地,該非接枝型聚烯烴、該第二聚烯烴單元及該第三聚烯烴單元是高密度聚乙烯(HDPE),該接枝型聚烯烴是羧酸酐接枝型高密度聚乙烯。Preferably, the non-grafted polyolefin, the second polyolefin unit and the third polyolefin unit are polyethylene (PE). More preferably, the non-grafted polyolefin, the second polyolefin unit and the third polyolefin unit are high-density polyethylene (HDPE), and the graft-type polyolefin is a carboxylic anhydride-grafted high-density polyethylene.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are represented by the same numbers.

本發明將就以下實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The present invention will be further described with reference to the following examples, but it should be understood that these examples are for illustrative purposes only and should not be construed as limiting the implementation of the present invention.

參閱圖1,本發明正溫度係數過電流保護元件的一實施例包含:一正溫度係數材料層2,該正溫度係數材料層2具有大於零且小於0.3 Ω-cm的體積電阻率;及兩個電極3,設在該正溫度係數材料層2上。該正溫度係數材料層2包括一高分子基體21及一均勻分散於該高分子基體21內的導電性顆粒填充物22。Referring to FIG. 1, an embodiment of the positive temperature coefficient overcurrent protection element of the present invention includes: a positive temperature coefficient material layer 2 having a volume resistivity greater than zero and less than 0.3 Ω-cm; and two Each electrode 3 is provided on the positive temperature coefficient material layer 2. The positive temperature coefficient material layer 2 includes a polymer matrix 21 and a conductive particle filler 22 uniformly dispersed in the polymer matrix 21.

在本發明的具體實施例中,該高分子基體21具有一異相流變性聚合物組成,該異相流變性聚合物組成是指該聚合物組成包含熔流指數具有顯著差異的聚烯烴,該異相流變性聚合物組成包含至少一可熔流的(melt-extrudable)第一聚烯烴單元、一可熔流的第二聚烯烴單元及一可熔流的第三聚烯烴單元。該第一聚烯烴單元包含一非接枝型聚烯烴及一接枝型聚烯烴。該接枝型聚烯烴的主要功能在於增強該正溫度係數材料層2與該兩個電極3之間的接著性。該第一聚烯烴單元、該第二聚烯烴單元與該第三聚烯烴單元是共熔融混煉後固化而形成該高分子基體21。該第一聚烯烴單元具有一在190℃與2.16 kg壓力下介於0.1 g/10 min至2.5 g/10 min的熔流指數;該第二聚烯烴單元具有一在190℃與2.16 kg壓力下介於20 g/10 min至30 g/10 min的熔流指數;該第三聚烯烴單元具有一在190℃與2.16 kg壓力下小於0.00001 g/10 min的熔流指數。該第一聚烯烴單元占該異相流變性聚合物組成重量的2.5-75 wt%;該第二聚烯烴單元占該異相流變性聚合物組成重量的12.5-75 wt%;及該第三聚烯烴占該異相流變性聚合物組成重量的12.5-60 wt%。In a specific embodiment of the present invention, the polymer matrix 21 has a heterogeneous rheological polymer composition. The heterogeneous rheological polymer composition refers to a polymer composition including a polyolefin having a significant difference in melt flow index. The denatured polymer composition includes at least one melt-extrudable first polyolefin unit, a meltable second polyolefin unit, and a meltable third polyolefin unit. The first polyolefin unit includes a non-grafted polyolefin and a grafted polyolefin. The main function of the grafted polyolefin is to enhance the adhesion between the positive temperature coefficient material layer 2 and the two electrodes 3. The first polyolefin unit, the second polyolefin unit and the third polyolefin unit are co-melted, kneaded and solidified to form the polymer matrix 21. The first polyolefin unit has a melt flow index between 0.1 g / 10 min and 2.5 g / 10 min at 190 ° C and a pressure of 2.16 kg; the second polyolefin unit has a melt flow index at 190 ° C and a pressure of 2.16 kg A melt flow index between 20 g / 10 min and 30 g / 10 min; the third polyolefin unit has a melt flow index of less than 0.00001 g / 10 min at 190 ° C and a pressure of 2.16 kg. The first polyolefin unit accounts for 2.5-75 wt% of the composition weight of the heterophasic rheological polymer; the second polyolefin unit accounts for 12.5-75 wt% of the composition weight of the heterophasic rheological polymer; and the third polyolefin 12.5-60 wt% of the composition weight of the heterophasic rheological polymer.

在本發明的具體實施例中,該導電性顆粒填充物22為碳黑,其平均粒徑為82 nm、DBP吸油量為75 cc/100 g及有機揮發成分為1.0 wt%。該導電性顆粒填充物占該正溫度係數材料層重量的40-60wt%。In a specific embodiment of the present invention, the conductive particle filler 22 is carbon black, with an average particle diameter of 82 nm, a DBP oil absorption of 75 cc / 100 g, and an organic volatile content of 1.0 wt%. The conductive particle filler accounts for 40-60 wt% of the weight of the positive temperature coefficient material layer.

< 實施例Examples 1(E1)>1 (E1) >

將7.875 g做為該非接枝型聚烯烴的高密度聚乙烯(購自Formosa plastic Corp.,商品型號為HDPE9007,重量平均分子量為120,000 g/mol,在190℃與2.16 kg壓力下的MFI約為0.8 g/10 min)、7.875 g做為該接枝型聚烯烴的不飽和羧酸接枝型高密度聚乙烯(購自Dupont,商品型號為MB100D,重量平均分子量為80,000 g/mol,在190℃與2.16 kg壓力下的MFI約為2.0 g/10 min)、2.625 g做為該第二聚烯烴單元的高密度聚乙烯(購自Formosa plastic Corp.,商品型號為HDPE7200,重量平均分子量為40,000 g/mol,在190℃與2.16 kg壓力下的MFI約為22.0 g/10 min)、2.625 g做為該第三聚烯烴單元的高密度聚乙烯(購自Ticona,商品型號為GUR4170,重量平均分子量為10,500,000 g/mol,在190℃與2.16 kg壓力下的MFI小於0.00001 g/10 min(約為0.0000001 g/10min))、與29 g做為導電性顆粒填充物的碳黑(購自Columbian Chemicals Company,商品型號為Raven 430UB,平均粒徑為82 nm,DBP吸油量為75 cc/100 g,有機揮發成分為1.0 wt%,導電度為2.86×104 m-1 Ω-1 )加入一Brabender混煉機內混煉。混煉溫度為200℃;攪拌速度為50 rpm;加壓重量為5 kg;混煉時間為10 min。將混煉後所得的混合物置於一模具中,之後,以熱壓機對混合物樣品進行熱壓,熱壓溫度為200℃、熱壓時間為4 min、熱壓壓力為80 kg/cm2 ,以將混練後的樣品熱壓成厚度為0.35 mm的薄片。之後,於薄片兩側各貼一片鍍鎳銅箔(做為電極),再依同樣熱壓條件熱壓,形成一厚度為0.42 mm的三明治結構,將此三明治結構沖切成8 mm×8 mm的晶片樣品。High-density polyethylene (purchased from Formosa plastic Corp., HDPE9007) with a weight average molecular weight of 120,000 g / mol was used as the high-density polyethylene for the non-grafted polyolefin (7.875 g). 0.8 g / 10 min), 7.875 g of unsaturated carboxylic acid grafted high density polyethylene (purchased from Dupont, commercial model MB100D, weight average molecular weight 80,000 g / mol, 190 g) as the grafted polyolefin The MFI under the pressure of 2.16 kg is about 2.0 g / 10 min), and 2.625 g is used as the second polyolefin unit of high density polyethylene (purchased from Formosa plastic Corp., product model is HDPE7200, and the weight average molecular weight is 40,000). g / mol, MFI at 190 ° C and 2.16 kg pressure is about 22.0 g / 10 min), 2.625 g is used as the third polyolefin unit of high density polyethylene (purchased from Ticona, product model is GUR4170, weight average Molecular weight of 10,500,000 g / mol, MFI under 190 ° C and pressure of 2.16 kg is less than 0.00001 g / 10 min (approximately 0.0000001 g / 10min), and 29 g of carbon black as a conductive particle filler (purchased from Columbian Chemicals Company, model Raven 430UB, average particle size 82 nm DBP oil absorption of 75 cc / 100 g, volatile organic content of 1.0 wt%, the electric conductivity of 2.86 × 10 4 m -1 Ω -1 ) was added to the kneader and kneaded a Brabender. The mixing temperature is 200 ° C; the stirring speed is 50 rpm; the pressing weight is 5 kg; and the mixing time is 10 minutes. The mixture obtained after the kneading is placed in a mold, and then the sample of the mixture is hot-pressed with a hot press at a hot-pressing temperature of 200 ° C, a hot-pressing time of 4 minutes, and a hot-pressing pressure of 80 kg / cm 2 . The kneaded sample was hot-pressed into a sheet with a thickness of 0.35 mm. After that, a piece of nickel-plated copper foil (as an electrode) was pasted on each side of the sheet, and then hot-pressed under the same hot-pressing conditions to form a sandwich structure with a thickness of 0.42 mm. The sandwich structure was punched into 8 mm × 8 mm. Wafer samples.

如表1所示,實施例1的正溫度係數材料層2由31.5 wt%第一聚烯烴單元(該非接枝型聚烯烴與該接枝型聚烯烴的重量比為1:1)、5.25 wt%第二聚烯烴單元、5.25 wt%第三聚烯烴單元及58 wt%導電性顆粒填充物所組成。而其中的異相流變性聚合物組成由75 wt%第一聚烯烴單元、12.5 wt%第二聚烯烴單元與12.5 wt%第三聚烯烴單元所組成。測量實施例1所製得樣品的電阻值及體積電阻率,結果如表2所示。

Figure TW201802836AD00001
【表2】
Figure TW201802836AD00002
表2中的「NA」表示無法進行測試。As shown in Table 1, the positive temperature coefficient material layer 2 of Example 1 consists of 31.5 wt% of the first polyolefin unit (the weight ratio of the non-grafted polyolefin to the grafted polyolefin is 1: 1), 5.25 wt. A second polyolefin unit, a 5.25 wt% third polyolefin unit, and a 58 wt% conductive particle filler. The heterophasic rheological polymer composition is composed of 75 wt% first polyolefin unit, 12.5 wt% second polyolefin unit, and 12.5 wt% third polyolefin unit. The resistance value and volume resistivity of the sample prepared in Example 1 were measured, and the results are shown in Table 2.
Figure TW201802836AD00001
【Table 2】
Figure TW201802836AD00002
"NA" in Table 2 indicates that the test cannot be performed.

< 實施例Examples 2-7(E2-E7)>2-7 (E2-E7) >

實施例2-7之樣品的製備程序與條件與實施例1不同之處在於材料比例不同(如表1所示)。測量實施例2-7所製得樣品的電阻值及體積電阻率如表2所示。The procedures and conditions for preparing the samples of Examples 2-7 are different from those of Example 1 in that the material ratios are different (as shown in Table 1). Table 2 shows the resistance value and volume resistivity of the samples prepared in Examples 2-7.

< 實施例Examples 8-10(E8-E10)>8-10 (E8-E10) >

實施例8-10之樣品的製備程序與條件分別與實施例4-6不同之處在於做為該第三聚烯烴單元的高密度聚乙烯是使用商品型號GUR4120(購自Ticona,商品型號為GUR4120,重量平均分子量為5,000,000 g/mol,在190℃與2.16 kg壓力下的MFI小於0.00001 g/10 min(約為0.000001 g/10min))取代實施例4-6的GUR4170(如表1所示)。測量實施例8-10所製得樣品的電阻值及體積電阻率如表2所示。The procedures and conditions for preparing the samples of Examples 8-10 are different from those of Examples 4-6 in that the high-density polyethylene used as the third polyolefin unit is a commercial model GUR4120 (purchased from Ticona, and the commercial model is GUR4120). , The weight average molecular weight is 5,000,000 g / mol, and the MFI at 190 ° C and 2.16 kg pressure is less than 0.00001 g / 10 min (approximately 0.000001 g / 10min) instead of GUR4170 of Example 4-6 (as shown in Table 1) . Table 2 shows the resistance value and volume resistivity of the samples prepared in Examples 8-10.

< 比較例Comparative example 1(CE1)>1 (CE1) >

比較例1之樣品的製備程序與條件與實施例1不同之處在於比較例1不添加該第二聚烯烴單元與第三聚烯烴單元且材料比例不同(如表1所示),測量比較例1所製得樣品的電阻值及體積電阻率如表2所示。The preparation procedure and conditions of the sample of Comparative Example 1 are different from those of Example 1 in that Comparative Example 1 does not add the second polyolefin unit and the third polyolefin unit and the material ratio is different (as shown in Table 1). 1 The resistance value and volume resistivity of the prepared sample are shown in Table 2.

< 比較例Comparative example 2-4(CE2-CE4)>2-4 (CE2-CE4) >

比較例2-4之樣品的製備程序與條件與實施例1不同之處在於比較例2-4不添加該第三聚烯烴單元且材料比例不同(如表1所示),測量比較例2-4所製得樣品的電阻值及體積電阻率如表2所示。The procedure and conditions for preparing the samples of Comparative Example 2-4 are different from those of Example 1 in that Comparative Example 2-4 does not add the third polyolefin unit and the material ratio is different (as shown in Table 1). The resistance value and volume resistivity of the sample obtained in Table 4 are shown in Table 2.

< 比較例Comparative example 5-7(CE5-CE7)>5-7 (CE5-CE7) >

比較例5-7之樣品的製備程序與條件與實施例1不同之處在於比較例5-7不添加該第二聚烯烴單元且材料比例不同(如表1所示)。比較例7的材料配方在混煉機內混煉後無法成型製得樣品,故無法進行後續電性功能測試。測量比較例5-6所製得樣品的電阻值及體積電阻率如表2所示The procedures and conditions for preparing the samples of Comparative Examples 5-7 are different from those of Example 1 in that Comparative Example 5-7 does not add the second polyolefin unit and has a different material ratio (as shown in Table 1). The material formula of Comparative Example 7 cannot be formed into a sample after being mixed in a kneader, so subsequent electrical functional tests cannot be performed. The resistance value and volume resistivity of the samples prepared in Comparative Examples 5-6 are shown in Table 2.

< 比較例Comparative example 8-9(CE8-CE9)>8-9 (CE8-CE9) >

比較例8-9之樣品的製備程序與條件與實施例1不同之處在於材料比例不同(如表1所示)。比較例8-9的材料配方在混煉機內混煉後無法成型製得樣品,故無法進行後續電性功能測試。The procedures and conditions for preparing the samples of Comparative Examples 8-9 are different from those of Example 1 in that the material ratios are different (as shown in Table 1). The material formulas of Comparative Examples 8-9 could not be formed into samples after mixing in the kneader, so subsequent electrical function tests could not be performed.

< 比較例Comparative example 10-12(CE10-CE12)>10-12 (CE10-CE12) >

比較例10-12之樣品的製備程序與條件分別與實施例4-6不同之處在於做為該第三聚烯烴單元的高密度聚乙烯是使用商品型號GUR4012(購自Ticona,商品型號為GUR4012,重量平均分子量為1,500,000 g/mol,在190℃與2.16 kg壓力下的MFI為0.00001 g/10 min)取代實施例4-6的GUR4170(如表1所示)。測量比較例10-12所製得樣品的電阻值及體積電阻率如表2所示。The preparation procedures and conditions of the samples of Comparative Examples 10-12 are different from those of Examples 4-6 in that the high-density polyethylene used as the third polyolefin unit is a product model GUR4012 (purchased from Ticona, product model GUR4012). , The weight average molecular weight is 1,500,000 g / mol, and the MFI at 190 ° C and a pressure of 2.16 kg is 0.00001 g / 10 min) instead of GUR4170 of Example 4-6 (as shown in Table 1). Table 2 shows the resistance value and volume resistivity of the samples prepared in Comparative Examples 10-12.

< 比較例Comparative example 13(CE13)>13 (CE13) >

比較例13之樣品的製備程序與條件與比較例6不同之處在於做為該第三聚烯烴單元的高密度聚乙烯是使用商品型號GUR4012取代比較例6的GUR4170(如表1所示)。測量比較例13所製得樣品的電阻值及體積電阻率如表2所示。The preparation procedure and conditions of the sample of Comparative Example 13 are different from those of Comparative Example 6 in that the high-density polyethylene used as the third polyolefin unit is a commercial model GUR4012 instead of GUR4170 of Comparative Example 6 (as shown in Table 1). The resistance value and volume resistivity of the sample prepared in Comparative Example 13 are shown in Table 2.

電性功能測試Electrical function test

電阻對溫度測試Resistance vs. temperature test (Resistance vs. Temperature test, RT test)(Resistance vs. Temperature test, RT test)

分別對實施例1-10及比較例1-6、10-13所製得樣品進行電阻對溫度測試:將樣品放置於熱風烘箱內,以升溫速率2℃/min從25℃升溫至185℃,樣品電連接微歐姆計(不通電)收集電阻及溫度數據,每一實施例及每一比較例皆測試10個樣品,記錄不同溫度下之電阻值,結果如表2所示。The resistance versus temperature test was performed on the samples prepared in Example 1-10 and Comparative Examples 1-6 and 10-13 respectively: The samples were placed in a hot air oven and heated from 25 ° C to 185 ° C at a heating rate of 2 ° C / min. The samples were electrically connected to a micro-ohmmeter (not energized) to collect resistance and temperature data. Each example and each comparative example were tested with 10 samples, and the resistance values at different temperatures were recorded. The results are shown in Table 2.

表2的結果顯示實施例1之140℃電阻值(R140)的平均值為1002.58 Ω;而比較例1之140℃電阻值(R140)的平均值僅為553.8 Ω,明顯小於實施例1。140℃電阻值(R140)越高表示正溫度係數過電流保護元件可承受的額定電壓會越大。實施例1-10之140℃電阻值(R140)明顯大於比較例1-6、10-13之140℃電阻值(R140),約為2倍。The results in Table 2 show that the average value of the 140 ° C resistance value (R140) of Example 1 is 1002.58 Ω; while the average value of the 140 ° C resistance value (R140) of Comparative Example 1 is only 553.8 Ω, which is significantly smaller than that of Example 1. 140 The higher the ℃ resistance value (R140) is, the greater the rated voltage that the positive temperature coefficient overcurrent protection element can withstand. The 140 ° C resistance value (R140) of Example 1-10 is significantly larger than the 140 ° C resistance value (R140) of Comparative Examples 1-6 and 10-13, which is about 2 times.

崩壞測試Crash test (Breakdown test)(Breakdown test)

分別對實施例1-10與比較例1-6、10-13所製得樣品進行崩壞測試:以32 Vdc及100 A通電60秒進行測試,每一實施例及每一比較例皆測試10個樣品,記錄測試後不燒燬的個數通過率,結果如表2所示。Crash tests were performed on the samples prepared in Examples 1-10 and Comparative Examples 1-6 and 10-13: 32 Vdc and 100 A were applied for 60 seconds to conduct the test. Each example and each comparative example were tested for 10 For each sample, the pass rate of the number that did not burn down after the test was recorded. The results are shown in Table 2.

表2的結果顯示實施例1-10的崩壞測試通過率均為100%;比較例1(不含第二聚烯烴單元及第三聚烯烴單元)的崩壞測試通過率為0%;比較例2-4(不含第三聚烯烴單元)的崩壞測試通過率為0-20%;比較例5-6及13(不含第二聚烯烴單元)的崩壞測試通過率為20%;比較例10-12(第三聚烯烴單元為GUR4012)的崩壞測試通過率只有20-30%,顯示比較例1-6、10-13皆無法達到100%通過率。The results in Table 2 show that the crash test pass rates of Examples 1-10 were all 100%; the crash test pass rate of Comparative Example 1 (excluding the second polyolefin unit and the third polyolefin unit) was 0%; The pass rate of the crash test of Example 2-4 (excluding the third polyolefin unit) is 0-20%; the pass rate of the crash test of Comparative Examples 5-6 and 13 (excluding the second polyolefin unit) is 20% ; The crash test pass rate of Comparative Example 10-12 (the third polyolefin unit is GUR4012) was only 20-30%, showing that Comparative Examples 1-6 and 10-13 could not reach the 100% pass rate.

崩壞測試(32 Vdc)的結果顯示,只有以含第二聚烯烴單元及第三聚烯烴單元且第三聚烯烴單元之MFI在190℃與2.16 kg壓力下小於0.00001 g/10 min的配方所製得樣品有極佳的表現。推測為添加該第二聚烯烴單元會和該第三聚烯烴單元在混煉溫度(200℃)下產生熔流現象,而與該第一聚烯烴單元之間的分子鏈互熔而形成穩定均相,因此可以提升高分子基體的結構強度,進而提升正溫度係數過電流保護元件的電氣穩定性。The results of the crash test (32 Vdc) show that only formulas containing the second and third polyolefin units and the MFI of the third polyolefin unit are less than 0.00001 g / 10 min at 190 ° C and 2.16 kg pressure. The obtained sample has excellent performance. It is presumed that the addition of the second polyolefin unit and the third polyolefin unit will produce a melt flow phenomenon at the mixing temperature (200 ° C), and the molecular chains between the first polyolefin unit and the first polyolefin unit will fuse with each other to form a stable uniformity. Therefore, the structural strength of the polymer matrix can be improved, and the electrical stability of the positive temperature coefficient overcurrent protection element can be improved.

耐久性測試Endurance test (Endurance test)(Endurance test)

分別對實施例1-10及比較例1-6、10-13所製得樣品進行耐久性測試:以32 Vdc、10 A通電60秒及斷電60秒的條件下,進行7200次循環測試,每一實施例及每一比較例皆測試10個樣品,記錄測試後電阻(Rf)與測試前電阻(Ri)之電阻變化率

Figure TW201802836AD00003
及在循環測試後樣品不燒燬的個數通過率,結果如表2所示。Endurance tests were performed on the samples prepared in Examples 1-10 and Comparative Examples 1-6 and 10-13: 7200 cycles were performed at 32 Vdc, 10 A for 60 seconds and 60 seconds after power off. Ten samples were tested for each example and each comparative example, and the resistance change rate of the resistance (Rf) after the test and the resistance (Ri) before the test were recorded.
Figure TW201802836AD00003
And the pass rate of the number of samples that did not burn down after the cyclic test, the results are shown in Table 2.

表2的結果顯示比較例1及4因樣品在測試中全數燒燬而無法進行電阻變化率的測量,實施例1-10的耐久性測試通過率及電阻變化率明顯優於比較例2-3、5-6、10-13,表示實施例1-10在32 Vdc下具有較佳的電氣耐久性。The results in Table 2 show that Comparative Examples 1 and 4 were unable to measure the resistance change rate because the samples were completely burned during the test. The durability test pass rate and resistance change rate of Examples 1-10 were significantly better than those of Comparative Examples 2-3, 5-6 and 10-13 indicate that Examples 1-10 have better electrical durability at 32 Vdc.

熱失控測試Thermal runaway test (Thermal runaway test)(Thermal runaway test)

分別對實施例1-10及比較例1-6、10-13所製得樣品進行熱失控測試:以32 Vdc(100 A)在環境溫度23℃下開始測試,以間隔2 min逐步(stepwise)上升3.2 Vdc,從32 Vdc升電壓至64 Vdc(一旦測試到元件燒燬即中止),每一實施例及每一比較例皆測試5個樣品,記錄測試到可承受的最大破壞電壓(最大承受電壓),結果如表2所示。The thermal runaway test was performed on the samples prepared in Example 1-10 and Comparative Examples 1-6 and 10-13: the test was started at 32 Vdc (100 A) at an ambient temperature of 23 ° C, and stepwise at intervals of 2 minutes Rise 3.2 Vdc, increase the voltage from 32 Vdc to 64 Vdc (stop once the component is burned out), test 5 samples for each example and each comparative example, and record the maximum breakdown voltage that the test can withstand (maximum withstand voltage ), The results are shown in Table 2.

表2的結果顯示實施例1-10直到升電壓至64 Vdc後仍未燒燬,明顯優於比較例1-6、10-13的最大承受電壓32-35.2 Vdc,表示實施例1-10具有較佳的耐電壓性。The results in Table 2 show that Examples 1-10 did not burn down until the voltage was raised to 64 Vdc, which was significantly better than the maximum withstand voltages 32-35.2 Vdc of Comparative Examples 1-6 and 10-13, indicating that Examples 1-10 had Good voltage resistance.

綜上所述,本發明正溫度係數過電流保護元件藉由該異相流變性聚合物組成包含特定熔流指數範圍的第二聚烯烴單元及第三聚烯烴單元,經與該第一聚烯烴單元共熔融混煉後固化而形成一具有耐高電壓與高電壓可靠性佳之高分子基體,並藉此提高正溫度係數過電流保護元件之電氣穩定性與可靠性,故確實能達成本發明之目的。In summary, the positive temperature coefficient overcurrent protection element of the present invention uses the heterophasic rheological polymer to form a second polyolefin unit and a third polyolefin unit including a specific melt flow index range. After co-melting and mixing, it solidifies to form a polymer matrix with high voltage resistance and high voltage reliability, and thereby improves the electrical stability and reliability of the positive temperature coefficient overcurrent protection element, so it can indeed achieve the purpose of cost invention. .

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited in this way, any simple equivalent changes and modifications made in accordance with the scope of the patent application and the content of the patent specification of the present invention are still Within the scope of the invention patent.

2‧‧‧正溫度係數材料層
21‧‧‧高分子基體
22‧‧‧導電性顆粒填充物
3‧‧‧電極
2‧‧‧Positive temperature coefficient material layer
21‧‧‧ polymer matrix
22‧‧‧ conductive particle filler
3‧‧‧ electrode

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: [圖1]是一示意圖,說明本發明一實施例的正溫度係數過電流保護元件的結構。Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: [FIG. 1] is a schematic diagram illustrating the structure of a positive temperature coefficient overcurrent protection element according to an embodiment of the present invention.

2‧‧‧正溫度係數材料層 2‧‧‧Positive temperature coefficient material layer

21‧‧‧高分子基體 21‧‧‧ polymer matrix

22‧‧‧導電性顆粒填充物 22‧‧‧ conductive particle filler

3‧‧‧電極 3‧‧‧ electrode

Claims (11)

一種正溫度係數過電流保護元件,包含: 一正溫度係數材料層;及 兩個電極,設在該正溫度係數材料層上; 該正溫度係數材料層包括一高分子基體及一均勻分散於該高分子基體內的導電性顆粒填充物; 該高分子基體具有一異相流變性聚合物組成,該異相流變性聚合物組成包含一第一聚烯烴單元、一第二聚烯烴單元及一第三聚烯烴單元,該第一聚烯烴單元包含一非接枝型聚烯烴,該第一聚烯烴單元與該第二聚烯烴單元及該第三聚烯烴是共熔融混煉後固化而形成該高分子基體; 該第一聚烯烴單元具有一在190℃與2.16 kg壓力下介於0.1 g/10 min至2.5 g/10 min的熔流指數; 該第二聚烯烴單元具有一在190℃與2.16 kg壓力下介於20 g/10 min至30 g/10 min的熔流指數; 該第三聚烯烴單元具有一在190℃與2.16 kg壓力下小於0.00001 g/10 min的熔流指數; 該第一聚烯烴單元占該異相流變性聚合物組成重量的2.5-75 wt%; 該第二聚烯烴單元占該異相流變性聚合物組成重量的12.5-75 wt%;及 該第三聚烯烴占該聚合物異相流變性組成重量的12.5-60 wt%。A positive temperature coefficient overcurrent protection element includes: a positive temperature coefficient material layer; and two electrodes provided on the positive temperature coefficient material layer; the positive temperature coefficient material layer includes a polymer matrix and a uniform dispersion in the Filler of conductive particles in a polymer matrix; the polymer matrix has a heterophasic rheological polymer composition, the heterophasic rheological polymer composition includes a first polyolefin unit, a second polyolefin unit and a third polymer Olefin unit, the first polyolefin unit includes an ungrafted polyolefin, the first polyolefin unit, the second polyolefin unit and the third polyolefin are co-melted and kneaded to form the polymer matrix The first polyolefin unit has a melt flow index between 0.1 g / 10 min and 2.5 g / 10 min at 190 ° C and a pressure of 2.16 kg; the second polyolefin unit has a melt flow index at 190 ° C and a pressure of 2.16 kg A melt flow index between 20 g / 10 min and 30 g / 10 min; the third polyolefin unit has a melt flow index of less than 0.00001 g / 10 min at 190 ° C and a pressure of 2.16 kg; the first polymer Olefin units account for this heterogeneous flow 2.5-75 wt% of the composition weight of the denatured polymer; the second polyolefin unit accounts for 12.5-75 wt% of the composition weight of the heterophasic rheological polymer; and the third polyolefin accounts for 12.5-60 wt%. 如請求項1所述的正溫度係數過電流保護元件,其中,該第一聚烯烴單元具有一介於50,000 g/mol至300,000 g/mol之間的重量平均分子量。The positive temperature coefficient overcurrent protection device according to claim 1, wherein the first polyolefin unit has a weight average molecular weight between 50,000 g / mol and 300,000 g / mol. 如請求項2所述的正溫度係數過電流保護元件,其中,該第二聚烯烴單元具有一介於10,000 g/mol至49,000 g/mol之間的重量平均分子量。The positive temperature coefficient overcurrent protection device according to claim 2, wherein the second polyolefin unit has a weight average molecular weight between 10,000 g / mol and 49,000 g / mol. 如請求項2所述的正溫度係數過電流保護元件,其中,該第三聚烯烴單元具有一不小於5,000,000 g/mol的重量平均分子量。The positive temperature coefficient overcurrent protection element according to claim 2, wherein the third polyolefin unit has a weight average molecular weight of not less than 5,000,000 g / mol. 如請求項4所述的正溫度係數過電流保護元件,其中,該第三聚烯烴單元具有一介於5,000,000 g/mol至10,500,000 g/mol之間的重量平均分子量。The positive temperature coefficient overcurrent protection device according to claim 4, wherein the third polyolefin unit has a weight average molecular weight between 5,000,000 g / mol and 10,500,000 g / mol. 如請求項1所述的正溫度係數過電流保護元件,其中,該第一聚烯烴單元還包含一接枝型聚烯烴。The positive temperature coefficient overcurrent protection device according to claim 1, wherein the first polyolefin unit further comprises a grafted polyolefin. 如請求項1所述的正溫度係數過電流保護元件,其中,該導電性顆粒填充物為碳黑。The positive temperature coefficient overcurrent protection device according to claim 1, wherein the conductive particle filler is carbon black. 如請求項1所述的正溫度係數過電流保護元件,其中,該導電性顆粒填充物占該正溫度係數材料層重量的40-60wt%。The positive temperature coefficient overcurrent protection element according to claim 1, wherein the conductive particle filler accounts for 40-60 wt% of the weight of the positive temperature coefficient material layer. 如請求項7所述的正溫度係數過電流保護元件,其中,該導電性顆粒填充物的粒徑為40-100 nm、DBP吸油量為60-120 cc/100 g及有機揮發成分為0.2-2.0 wt%。The positive temperature coefficient overcurrent protection element according to claim 7, wherein the conductive particle filler has a particle diameter of 40-100 nm, a DBP oil absorption of 60-120 cc / 100 g, and an organic volatile content of 0.2- 2.0 wt%. 如請求項1所述的正溫度係數過電流保護元件,其中,該非接枝型聚烯烴、該第二聚烯烴單元及該第三聚烯烴單元為聚乙烯。The positive temperature coefficient overcurrent protection element according to claim 1, wherein the non-grafted polyolefin, the second polyolefin unit, and the third polyolefin unit are polyethylene. 如請求項6所述的正溫度係數過電流保護元件,其中,該非接枝型聚烯烴、該第二聚烯烴單元及該第三聚烯烴單元是高密度聚乙烯,該接枝型聚烯烴是羧酸酐接枝型高密度聚乙烯。The positive temperature coefficient overcurrent protection device according to claim 6, wherein the non-grafted polyolefin, the second polyolefin unit, and the third polyolefin unit are high-density polyethylene, and the grafted polyolefin is Carboxylic anhydride grafted high density polyethylene.
TW105121500A 2016-07-07 2016-07-07 Positive temperature coefficient overcurrent protection device TWI598893B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105121500A TWI598893B (en) 2016-07-07 2016-07-07 Positive temperature coefficient overcurrent protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105121500A TWI598893B (en) 2016-07-07 2016-07-07 Positive temperature coefficient overcurrent protection device

Publications (2)

Publication Number Publication Date
TWI598893B TWI598893B (en) 2017-09-11
TW201802836A true TW201802836A (en) 2018-01-16

Family

ID=60719653

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105121500A TWI598893B (en) 2016-07-07 2016-07-07 Positive temperature coefficient overcurrent protection device

Country Status (1)

Country Link
TW (1) TWI598893B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684189B (en) * 2018-09-27 2020-02-01 聚鼎科技股份有限公司 Positive temperature coefficient device
TWI822427B (en) * 2022-10-28 2023-11-11 聚鼎科技股份有限公司 Over-current protection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684189B (en) * 2018-09-27 2020-02-01 聚鼎科技股份有限公司 Positive temperature coefficient device
TWI822427B (en) * 2022-10-28 2023-11-11 聚鼎科技股份有限公司 Over-current protection device

Also Published As

Publication number Publication date
TWI598893B (en) 2017-09-11

Similar Documents

Publication Publication Date Title
JP3930905B2 (en) Conductive polymer composition and device
US8653932B2 (en) Conductive composite material with positive temperature coefficient of resistance and overcurrent protection component
JP6598231B2 (en) Polymer conductive composite material and PTC element
JPH07507655A (en) conductive polymer composition
JP3558771B2 (en) Positive temperature coefficient composition
CN102344598A (en) Polymer-carbon nanotube-carbon black composite temperature self-regulating positive temperature coefficient (PTC) electric heating material
US9773589B1 (en) PTC circuit protection device
JP3813611B2 (en) Conductive polymer having PTC characteristics, method for controlling PTC characteristics of the polymer, and electronic device using the polymer
TWI598893B (en) Positive temperature coefficient overcurrent protection device
US6479575B1 (en) Electrical devices comprising conductive polymer blend compositions
US9455075B1 (en) Over-current protection device
US10147525B1 (en) PTC circuit protection device
TW201120922A (en) Method for enhancing current-carrying ability of polymer thermistor.
JP2002241554A (en) Semiconductive admixture
CN105590710B (en) Positive temperature coefficient overcurrent protection element
TWI744625B (en) PTC circuit protection device
US10790074B1 (en) PTC circuit protection device
TWI634569B (en) Over-current protection device
TWI567764B (en) Pptc over-current protection device
TWI779155B (en) Overcurrent protection device
TWI726245B (en) Overcurrent protection device
JP4957439B2 (en) Positive resistance temperature characteristic resistor
TWI636467B (en) Positive temperature coefficient circuit protection device
US10325701B1 (en) Over-current protection device
JP2001085203A (en) Ptc composition