TW201743409A - Manufacturing method of semiconductor chip module - Google Patents

Manufacturing method of semiconductor chip module Download PDF

Info

Publication number
TW201743409A
TW201743409A TW106119874A TW106119874A TW201743409A TW 201743409 A TW201743409 A TW 201743409A TW 106119874 A TW106119874 A TW 106119874A TW 106119874 A TW106119874 A TW 106119874A TW 201743409 A TW201743409 A TW 201743409A
Authority
TW
Taiwan
Prior art keywords
pcb
layer
cutting
laser beam
semiconductor wafer
Prior art date
Application number
TW106119874A
Other languages
Chinese (zh)
Inventor
柳弘俊
宋厚根
Original Assignee
宰體有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宰體有限公司 filed Critical 宰體有限公司
Publication of TW201743409A publication Critical patent/TW201743409A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process

Abstract

The present invention relates to a method for producing semiconductor chip modules, more specifically to a method for producing semiconductor chip modules in which semiconductor chip modules are produced by cutting, along the semiconductor chip boundaries, a PCB substrate comprising a PCB layer having a plurality of semiconductor chips mounted thereon. Disclosed is a method for producing semiconductor chip modules, the method comprising: a step for preparing a PCB substrate (1) comprising a PCB layer (20) which is provided with a plurality of semiconductor chips (24), for executing previously configured functions, mounted thereon and which is divided with respect to the semiconductor chips (24), and a glass layer (10) attached on one surface of the PCB layer (20); and a division step for dividing the PCB substrate (1) into a previously configured shape with respect to the semiconductor chips (24) by sequentially cutting the PCB layer (20) and glass layer (10) by means of a laser beam.

Description

半導體晶片模組的製造方法 Semiconductor chip module manufacturing method

本發明涉及一種半導體晶片模組的製造方法,詳言之,係涉及對於包含貼合有多個半導體晶片的PCB層的PCB基板以半導體晶片的邊界為準進行切割,從而製造半導體晶片模組的半導體晶片模組的製造方法。 The present invention relates to a method of fabricating a semiconductor wafer module, and more particularly to a method of manufacturing a semiconductor wafer module by cutting a PCB substrate including a PCB layer on which a plurality of semiconductor wafers are bonded by a boundary of a semiconductor wafer. A method of manufacturing a semiconductor wafer module.

半導體封裝(Semiconductor Packaging)意味著將在晶圓上形成積體電路製造出的半導體晶粒(Die)貼合(Attach)於如同印刷電路板(Printed Circuit Board,PCB)的基板(substrate)上。 Semiconductor packaging means that a semiconductor die (die) fabricated by forming an integrated circuit on a wafer is attached to a substrate such as a printed circuit board (PCB).

如此,半導體封裝技術也應用於影像感測器上。影像感測器可大致分為電荷耦合元件的影像感測器(charge coupled device image sensor,CCD)和金屬氧化物半導體元件的影像感測器(CMOS Image Sensor)。 As such, semiconductor packaging technology is also applied to image sensors. The image sensor can be roughly classified into a charge coupled device image sensor (CCD) and a metal oxide semiconductor device image sensor (CMOS Image Sensor).

該影像感測器的封裝採取在影像感測器半導體晶粒貼合於貼合基板或封裝之後如同玻璃基板的透明基板間隔固定距離地覆蓋上部的形態。即,影像感測器的封裝是在保護影像感測器的同時,使光入射於受光面或者活,性表面(Active Surface)來構成封裝。 The image sensor package is configured to cover the upper portion at a fixed distance from the transparent substrate of the glass substrate after the image sensor semiconductor die is bonded to the bonded substrate or package. That is, the image sensor package is configured to protect the image sensor while causing the light to be incident on the light receiving surface or the active surface to form a package.

如上所述,影像感測器的封裝結構採取在基板或由封裝材料形成的封裝的內部貼合在貼合影像感測器晶片晶粒的形態。封裝材料是影像感測器封裝外殼(Housing)構成物之一,除此之外,還需要使光入射之諸如玻璃基板的透明基板。 As described above, the package structure of the image sensor is applied to the inside of the substrate or the package formed of the package material, and is attached to the image sensor wafer die. The encapsulating material is one of the components of the image sensor package housing, and in addition, a transparent substrate such as a glass substrate that allows light to enter is required.

半導體及其他電子元件通常是通過在基板上一同生成元件的多個複製物並切割該元件(singulation)而製造出的。 Semiconductors and other electronic components are typically fabricated by creating a plurality of replicas of the component together on the substrate and cutting the singulation.

切割是在元件之間產生切斷或破壞將在基板上製造的多個元件相互分離,以形成單獨的元件,並且可通過雷射處理來進行該切割。 Cutting is to create a cut or break between components. The plurality of components fabricated on the substrate are separated from each other to form a separate component, and the cutting can be performed by laser processing.

一般來說,玻璃基板相比於貼合在貼合影像感測器半導體晶粒的基板更易脆,在用雷射處理玻璃基板時,存在沿著切割槽(kerf)發生裂縫和碎片的傾向。 In general, a glass substrate is more brittle than a substrate bonded to a semiconductor chip to which an image sensor is attached, and when a glass substrate is treated with a laser, there is a tendency for cracks and chips to occur along a kerf.

從而,現有的影像感測器封裝結構製造方法如下:在貼合影像感測器半導體晶粒貼合的基板上蓋住玻璃基板之前,對基板進行切割,之後將玻璃基板覆蓋於被切割的基板來形成影像感測器的封裝結構,或者通過將被玻璃基板覆蓋的基板翻轉的同時用分別不同波長的雷射進行處理的方式形成影像感測器的封裝結構。 Therefore, the conventional image sensor package structure is manufactured by cutting a substrate before covering the glass substrate on the substrate to which the image sensor semiconductor die is attached, and then covering the substrate with the glass substrate. The package structure of the image sensor is formed, or the package structure of the image sensor is formed by inverting the substrate covered by the glass substrate while processing with lasers of different wavelengths.

即,對於現有的方式,由於製造影像感測器封裝的製程分為許多步驟,因此製程時間拉長,據此存在製造成本增加的問題。 That is, with the conventional method, since the process of manufacturing the image sensor package is divided into a plurality of steps, the process time is elongated, and there is a problem that the manufacturing cost increases.

本發明的目的在於,為了解決如上所述的問題提供如下的半導體晶片模組的製造方法:利用雷射光束依次切割貼合多個半導體晶片的PCB層和附著在PCB層一面的玻璃層,可以將因切割而可能發生的的裂縫(crack)和碎屑(chipping)最小化。 An object of the present invention is to provide a method for manufacturing a semiconductor wafer module by sequentially cutting a PCB layer bonded to a plurality of semiconductor wafers and a glass layer attached to one side of the PCB layer by using a laser beam in order to solve the above problems. Cracks and chipping that may occur due to cutting are minimized.

本發明為了達成如上所述的發明目的,揭露一種半導體晶片模組的製造方法,包括:PCB基板(1)準備步驟,準備該PCB基板(1),該PCB基板(1)包括PCB層(20)和玻璃層(10),該PCB層(20)貼合有執行預先設定功能的多個半導體晶片(24),並以半導體晶片(24)為基準分割該PCB層(20),該玻璃層(10)附著在該PCB層20的一面;分割步驟,利用雷射光束依次切割該PCB層(20)和該玻璃層(10),以該半導體晶片(24)為基準按照預先設定的形狀分割的分割該PCB基板(1)步驟。 In order to achieve the above object, the present invention discloses a method for fabricating a semiconductor wafer module, comprising: a PCB substrate (1) preparation step of preparing the PCB substrate (1), the PCB substrate (1) comprising a PCB layer (20) And a glass layer (10) to which a plurality of semiconductor wafers (24) performing a predetermined function are attached, and the PCB layer (20) is divided based on the semiconductor wafer (24), the glass layer (10) attaching to one side of the PCB layer 20; and dividing the step of sequentially cutting the PCB layer (20) and the glass layer (10) by a laser beam, and dividing the semiconductor wafer (24) according to a predetermined shape The step of dividing the PCB substrate (1).

該PCB層(20)厚度可大於該玻璃層(10)。 The PCB layer (20) may be thicker than the glass layer (10).

該分割步驟可包括:切割該PCB層(20)的第一切割步驟;以及切割該玻璃層(10)的第二切割步驟。 The dividing step can include: a first cutting step of cutting the PCB layer (20); and a second cutting step of cutting the glass layer (10).

在一實施例中,該第一切割步驟可切割至比該PCB層(20)的底面高的高度。 In an embodiment, the first cutting step can be cut to a height that is higher than the bottom surface of the PCB layer (20).

此時,該第二切割步驟可一同切割在該PCB層(20)未被切割的部分和該玻璃層10。 At this time, the second cutting step may cut together the portion of the PCB layer (20) that has not been cut and the glass layer 10.

在另一實施例中,可在該第二切割步驟之後執行該第一切割步驟。 In another embodiment, the first cutting step can be performed after the second cutting step.

該第二切割步驟可利用具有功率比在切割該PCB層(20)時使用的雷射光束的功率低的雷射光束來切割該玻璃層(10)。 The second cutting step can utilize a laser beam having a lower power than the laser beam used in cutting the PCB layer (20) to cut the glass layer (10).

該分割步驟可利用具有預先設定的波束寬度的平行雷射光束依次切割該PCB層(20)和該玻璃層(10)。 The dividing step can sequentially cut the PCB layer (20) and the glass layer (10) using parallel laser beams having a predetermined beam width.

該第二切割步驟可利用具有波束寬度比在切割該PCB層(20)時使用的雷射光束的波束寬度小的平行雷射光束切割該玻璃層(10)。 The second cutting step can cut the glass layer (10) with a parallel laser beam having a beam width that is smaller than the beamwidth of the laser beam used in cutting the PCB layer (20).

該第二切割步驟可沿著螺旋形態的路徑移動該雷射光束來切割該玻璃層(10)。 The second cutting step can move the laser beam along the path of the spiral shape to cut the glass layer (10).

該雷射光束可以是短波長的UV雷射光束。 The laser beam can be a short wavelength UV laser beam.

該半導體晶片模組(2)可以是指紋識別感測器。 The semiconductor wafer module (2) may be a fingerprint recognition sensor.

根據本發明的半導體晶片模組的製造方法具有如下的優點:其利用雷射光束依次切割貼合多個半導體晶片的PCB層和附著在PCB層一面的玻璃層,可以將因切割而可能產生的裂縫(crack)和碎屑(chipping)最小化。 The method for fabricating a semiconductor wafer module according to the present invention has the advantage that it sequentially cuts a PCB layer bonded to a plurality of semiconductor wafers and a glass layer attached to one side of the PCB layer by using a laser beam, which may be generated by cutting. Cracks and chipping are minimized.

具體而言,將PCB層切割至比PCB層底面更高的高度,之後再將PCB層中未切割的部分和玻璃層一同切割,因此可以防止因受到雷射光束透過致使溫度上升從而導致PCB層過熱而發生玻璃層的損傷。 Specifically, the PCB layer is cut to a higher height than the bottom surface of the PCB layer, and then the uncut portion of the PCB layer is cut together with the glass layer, thereby preventing the PCB layer from being caused by the temperature of the laser beam being transmitted through the laser beam. The glass layer is damaged by overheating.

並且,根據本發明的半導體晶片模組製造方法具有如下的優點:只改變短波長雷射光束的功率,將PCB層和附著在PCB層一面的玻璃層全部切割,進而可使半導體晶片模組的製程簡單化,並縮短製程時間,從而減少製造成本。 Moreover, the semiconductor wafer module manufacturing method according to the present invention has the following advantages: only changing the power of the short-wavelength laser beam, and cutting the PCB layer and the glass layer attached to one side of the PCB layer, thereby enabling the semiconductor wafer module. The process is simplified and the process time is shortened, thereby reducing manufacturing costs.

1‧‧‧PCB基板 1‧‧‧PCB substrate

2‧‧‧半導體晶片模組 2‧‧‧Semiconductor chip module

10‧‧‧玻璃層 10‧‧‧ glass layer

20‧‧‧PCB層 20‧‧‧PCB layer

22‧‧‧基板 22‧‧‧Substrate

24‧‧‧半導體晶片 24‧‧‧Semiconductor wafer

26‧‧‧環氧模具化合物(EMC) 26‧‧‧Epoxy mold compound (EMC)

30‧‧‧切割槽 30‧‧‧Cutting trough

D1‧‧‧波束寬度 D 1 ‧‧‧beamwidth

C‧‧‧切割線 C‧‧‧ cutting line

D2‧‧‧波束寬度 D 2 ‧‧‧beamwidth

d1‧‧‧波束寬度 d 1 ‧‧‧beamwidth

d2‧‧‧波束寬度 d 2 ‧‧‧beamwidth

K1~K3‧‧‧厚度 K 1 ~K 3 ‧‧‧thickness

L1‧‧‧路徑 L 1 ‧‧‧ Path

L2‧‧‧路徑 L 2 ‧‧‧ Path

圖1是顯示通過根據本發明的半導體晶片模組的製造方法製造的半導體晶片模組的立體圖; 圖2是顯示根據本發明的半導體晶片模組的製造方法的一實施例的剖面圖;圖2a是顯示在被雷射光束切割之前的PCB基板的圖1中I-I’方向的剖面圖;圖2b是顯示在被雷射光束第一次切割PCB基板的圖1中I-I’方向的剖面圖;圖2c是顯示在被雷射光束第二次切割的PCB基板的圖1中I-I’方向的剖面圖;以及圖3是將圖1的D1擴大的擴大圖,顯示被雷射光束經過二次切割的PCB基板的一部分的平面圖。 1 is a perspective view showing a semiconductor wafer module manufactured by a method of fabricating a semiconductor wafer module according to the present invention; FIG. 2 is a cross-sectional view showing an embodiment of a method of fabricating a semiconductor wafer module according to the present invention; Is a cross-sectional view taken in the direction of I-I' of FIG. 1 of the PCB substrate before being cut by the laser beam; FIG. 2b is a view showing the direction of I-I' of FIG. 1 in which the laser beam is first cut by the laser beam. FIG. 2c is a cross-sectional view taken along the line I-I' of FIG. 1 of the PCB substrate cut by the laser beam for the second time; and FIG. 3 is an enlarged view showing the expansion of D 1 of FIG. A plan view of a portion of the PCB substrate through which the beam is cut.

以下,對於根據本發明的半導體晶片模組的製造方法將參照附圖進行如下說明。 Hereinafter, a method of manufacturing a semiconductor wafer module according to the present invention will be described below with reference to the drawings.

根據本發明的半導體晶片模組的製造方法中所使用的PCB基板1可包括:貼合有執行預先設定功能的多個半導體晶片24,並以該半導體晶片24為基準分割的PCB層20;以及附著在PCB層20的一面上的玻璃層10。 The PCB substrate 1 used in the method of manufacturing a semiconductor wafer module according to the present invention may include: a PCB layer 20 to which a plurality of semiconductor wafers 24 performing a predetermined function are attached, and which are divided based on the semiconductor wafer 24; A glass layer 10 attached to one side of the PCB layer 20.

該半導體晶片可以是屬於執行預先設定功能的元件。 The semiconductor wafer may be an element that performs a predetermined function.

例如,半導體晶片24是利用光電變換元件和電荷耦合元件對拍攝物件進行拍攝並輸出電氣性信號的影像感測器晶片,可以是固態拍攝元件(CCD,charge couple device)或者金屬氧化物半導體元件影像感測器晶片(CIS;CMOS Image Sensor),但並不限定於此。 For example, the semiconductor wafer 24 is an image sensor wafer that captures a photographed object by using a photoelectric conversion element and a charge coupled device and outputs an electrical signal, and may be a CCD (charge couple device) or a metal oxide semiconductor device image. Sensor chip (CIS; CMOS Image Sensor), but is not limited thereto.

若半導體晶片24是影像感測器晶片,則通過半導體晶片24形成的半導體晶片模組2可屬於指紋識別感測器。 If the semiconductor wafer 24 is an image sensor wafer, the semiconductor wafer module 2 formed by the semiconductor wafer 24 may belong to a fingerprint recognition sensor.

如圖1所示,PCB基板1可包括:貼合有執行預先設定功能的多個半導體晶片24,並以半導體晶片24為基準分割的PCB層20;及附著在該PCB層20的一面的玻璃層10。 As shown in FIG. 1, the PCB substrate 1 may include: a plurality of semiconductor wafers 24 that perform a predetermined function, and a PCB layer 20 divided by the semiconductor wafer 24; and a glass attached to one side of the PCB layer 20. Layer 10.

PCB基板1是在基板22(substrate)上貼合有多個半導體晶片24而形成的。這時,該PCB基板1為了切割後形成多個半導體晶片模組2而貼合具有預定間隔或預定圖案的多個半導體晶片24。 The PCB substrate 1 is formed by laminating a plurality of semiconductor wafers 24 on a substrate 22 (substrate). At this time, the PCB substrate 1 is bonded to a plurality of semiconductor wafers 24 having a predetermined interval or a predetermined pattern in order to form a plurality of semiconductor wafer modules 2 after dicing.

因此,PCB基板1通過雷射光束按照預先設定的形狀分割以預定間隔貼合的半導體晶片24,從而可形成個別運作的半導體晶片模組2。 Therefore, the PCB substrate 1 is divided into semiconductor wafers 24 that are bonded at predetermined intervals by a laser beam in a predetermined shape, so that the individually operated semiconductor wafer modules 2 can be formed.

作為一例,如圖1所示可以沿著將半導體晶片24邊緣的周邊分 割的圓形切割線(C)分割PCB基板1,但並不限定於此。該切割線(C)可根據半導體晶片模組2的用途具有圓形及多角形等多種形狀。 As an example, as shown in FIG. 1, the periphery of the edge of the semiconductor wafer 24 can be divided. The cut circular cutting line (C) divides the PCB substrate 1, but is not limited thereto. The cutting line (C) can have various shapes such as a circular shape and a polygonal shape depending on the use of the semiconductor wafer module 2.

構成PCB基板1的PCB層20可包括:多個半導體晶片24、貼合多個半導體晶片24的基板22以及形成在半導體晶片24的貼合面的EMC 26。 The PCB layer 20 constituting the PCB substrate 1 may include a plurality of semiconductor wafers 24, a substrate 22 to which the plurality of semiconductor wafers 24 are bonded, and an EMC 26 formed on the bonding surface of the semiconductor wafer 24.

PCB層20可根據半導體晶片24的功能及性能形成多種厚度。PCB層20的一面,特別是貼合半導體層24的面上可附著玻璃層10。這時,在玻璃層10在附著於PCB層20之前,貼合半導體晶片24的面可由EMC 26(epoxy mold compound,環氧模具化合物)注塑。 PCB layer 20 can be formed into a variety of thicknesses depending on the function and performance of semiconductor wafer 24. The glass layer 10 can be attached to one side of the PCB layer 20, particularly the surface to which the semiconductor layer 24 is bonded. At this time, before the glass layer 10 is attached to the PCB layer 20, the surface to which the semiconductor wafer 24 is bonded may be injection molded by EMC 26 (epoxy mold compound).

玻璃層10在保護貼合在該PCB層20的基板22上的半導體晶片24,同時如果半導體晶片24是影像感測器晶片,則可以使光入射至影像感測器晶片的受光面。 The glass layer 10 protects the semiconductor wafer 24 attached to the substrate 22 of the PCB layer 20, and if the semiconductor wafer 24 is an image sensor wafer, light can be incident on the light receiving surface of the image sensor wafer.

玻璃層10根據半導體晶片24的功能和性能可以形成多種厚度。 但玻璃層10作用為半導體晶片模組2的保護層,因此較佳係玻璃層10厚度小於PCB層20。 The glass layer 10 can be formed into a variety of thicknesses depending on the function and performance of the semiconductor wafer 24. However, the glass layer 10 functions as a protective layer of the semiconductor wafer module 2, so that the thickness of the glass layer 10 is preferably smaller than that of the PCB layer 20.

作為一例,當PCB層20的厚度是K1時,玻璃層10的厚度K2可以比K1的1/7小或在相同的範圍內。 As an example, when the thickness of the PCB layer 20 is K1, the thickness K2 of the glass layer 10 may be smaller than 1/7 of K1 or in the same range.

當用雷射光束對在PCB層20上完成塗層玻璃層10的PCB基板1進行切割時,在PCB層20的一面塗層的玻璃層10非常薄,因此相比於PCB層20相對較脆,因此存在雷射光束形成的熱玻璃層20破損,以及切割後產生裂縫和碎片現象的問題。 When the PCB substrate 1 on which the coated glass layer 10 is completed on the PCB layer 20 is cut with a laser beam, the glass layer 10 coated on one side of the PCB layer 20 is very thin, and thus relatively brittle compared to the PCB layer 20. Therefore, there is a problem that the hot glass layer 20 formed by the laser beam is broken, and cracks and chips are generated after the cutting.

以下,參照圖2a至圖3,將針對用於解決上述問題之本發明的半導體晶片模組的製造方法進行說明。 Hereinafter, a method of manufacturing a semiconductor wafer module according to the present invention for solving the above problems will be described with reference to FIGS. 2a to 3.

圖2是顯示根據本發明的半導體晶片模組的製造方法的一實施例的剖面圖;圖2a是顯示在被雷射光束切割之前的PCB基板的圖1中I-I’方向的剖面圖;圖2b是顯示在被雷射光束第一次切割PCB基板的圖1中I-I’方向的剖面圖;以及圖2c是顯示在被雷射光束第二次切割的PCB基板的圖1中I-I’方向的剖面圖。 2 is a cross-sectional view showing an embodiment of a method of fabricating a semiconductor wafer module in accordance with the present invention; and FIG. 2a is a cross-sectional view taken along line II' of FIG. 1 of the PCB substrate before being cut by a laser beam; 2b is a cross-sectional view taken along the line I-I' of FIG. 1 in which the laser beam is first cut by the laser beam; and FIG. 2c is a view showing the PCB substrate cut by the laser beam for the second time in FIG. A section view in the -I' direction.

首先,在圖2a中,以位於半導體晶片24的邊緣的邊界的切割線(C)為基準分割該PCB基板1,進而可形成單一的半導體晶片模組2。 First, in FIG. 2a, the PCB substrate 1 is divided by a dicing line (C) located at the boundary of the edge of the semiconductor wafer 24, and a single semiconductor wafer module 2 can be formed.

在一實施例中,PCB基板1上部配置玻璃層10,首先通過雷射 光束切割玻璃層10,之後可切割位於下部的PCB層20。 In an embodiment, the upper portion of the PCB substrate 1 is provided with a glass layer 10, first through a laser. The beam cuts the glass layer 10, after which the PCB layer 20 at the lower portion can be cut.

在另一實施例中,在PCB基板1上部配置PCB層20,首先通過雷射光束切割PCB層20,之後可切割位於下部的玻璃層10。 In another embodiment, the PCB layer 20 is disposed on the upper portion of the PCB substrate 1, and the PCB layer 20 is first cut by a laser beam, after which the glass layer 10 located at the lower portion can be cut.

圖2b及圖2c是示出當PCB基板1上部配置PCB層20時的半導體晶片模組的製造方法的圖面。 2b and 2c are views showing a method of manufacturing the semiconductor wafer module when the PCB layer 20 is disposed on the upper portion of the PCB substrate 1.

圖2b中,具有預先設定條件的雷射光束照射於PCB層20的上面,可對PCB層20進行第一次切割。 In Fig. 2b, a laser beam having a predetermined condition is irradiated onto the upper surface of the PCB layer 20, and the PCB layer 20 can be cut for the first time.

在此,雷射光束的預先設定的條件是指,例如雷射光束的波長、功率的大小及波束寬度(beam width)等。 Here, the predetermined condition of the laser beam refers to, for example, the wavelength of the laser beam, the magnitude of the power, and the beam width.

具有d1波束寬度並沿著切割線(C)移動的UV(ultra violet,紫外線)雷射光束照射於PCB層20上面,對PCB層20進行第一次切割。 An ultraviolet (ultraviolet) laser beam having a d 1 beam width and moving along the cutting line (C) is irradiated onto the PCB layer 20 to perform the first cutting of the PCB layer 20.

在PCB層20和玻璃層10不產生破損的範圍內,PCB層20可以具有多種波長的雷射光束切割,但是用UV雷射光束切割PCB層20切割時,無需改變照射於切割PCB層20的第一切割階段與切割玻璃層10的第二切割步驟之間的雷射光束波長,因此具有縮減製程時間和費用的優點。 In the range where the PCB layer 20 and the glass layer 10 are not damaged, the PCB layer 20 may have laser beam cuts of various wavelengths, but when the PCB layer 20 is cut by the UV laser beam, there is no need to change the illumination of the cut PCB layer 20. The wavelength of the laser beam between the first cutting stage and the second cutting step of the cut glass layer 10 has the advantage of reducing process time and expense.

另外,如圖2b至圖3所示,該雷射光束具有D1的波束寬度並以半導體晶片24的邊緣的切割線(C)為移動路徑(L1)照射於PCB層20的上面,在該雷射光束照射的PCB層20的上面可形成沿著切割線C而形成並具有d1寬度的切割槽30(kerf)。 Further, as shown in Figure 2b to FIG. 3, the laser beam having a beam width D 1 above and to the cutting edge line 24 of a semiconductor wafer (C) of the movement path (1 L) is irradiated on the PCB layer 20, in PCB layer above the irradiated laser beam 20 may be formed along the cutting line C and having cutting grooves d 30 (kerf) width 1.

這時,較佳為,對於PCB層20全部切割,而是切割至比PCB層20的底面高的高度。 At this time, it is preferable that the PCB layer 20 is entirely cut, but cut to a height higher than the bottom surface of the PCB layer 20.

也就是說,若PCB層20如果都被雷射光束全部切割,則在PCB層20底面附著之薄薄的玻璃層10就會有可能被通過雷射光束在PCB層20上產生的熱所損壞,因此較佳為留出PCB層20和玻璃層10的邊界部分的一部分。 That is, if the PCB layer 20 is completely cut by the laser beam, the thin glass layer 10 attached to the bottom surface of the PCB layer 20 may be damaged by the heat generated by the laser beam on the PCB layer 20. Therefore, it is preferable to leave a part of the boundary portion of the PCB layer 20 and the glass layer 10.

即,如果PCB層20的厚度是K1,則通過該雷射光束可形成K3(K3>K1)深度的切割槽30。 That is, if the thickness of the PCB layer 20 is K1, the cutting groove 30 having a depth of K3 (K3>K1) can be formed by the laser beam.

剩下未被切割的PCB層20的厚度(K1-K3)較佳為至少大於玻璃層10的厚度K2,以防止玻璃層10因為PCB層20的熱而破損。 The thickness (K1-K3) of the remaining uncut PCB layer 20 is preferably at least greater than the thickness K2 of the glass layer 10 to prevent the glass layer 10 from being damaged by the heat of the PCB layer 20.

並且,為使切割槽30的切割寬度和切割深度均勻的形成,可由通過遠心(telecentric)透鏡的平行雷射光束切割PCB層20,但並不限定於此。 Also, in order to uniformly form the cutting width and the cutting depth of the cutting groove 30, the PCB layer 20 may be cut by a parallel laser beam passing through a telecentric lens, but is not limited thereto.

之後,如圖2c所示,若對PCB層20通過雷射光束完成第一次切割步驟結束,則可對玻璃層10的執行通過雷射光束的第二次切割步驟。 Thereafter, as shown in FIG. 2c, if the first cutting step is completed for the PCB layer 20 by the laser beam, a second cutting step of the laser beam can be performed on the glass layer 10.

如圖2c所示,具有預先設定條件的雷射光束照射於在PCB層20形成的切割槽30的底面,從而可對玻璃層10進行第二次切割。 As shown in Fig. 2c, a laser beam having a predetermined condition is irradiated onto the bottom surface of the cutting groove 30 formed in the PCB layer 20, so that the glass layer 10 can be cut a second time.

即,玻璃層10與在第一次切割步驟中未被完全切割而剩下的PCB層20的一部分一同被進行切割。 That is, the glass layer 10 is cut together with a portion of the PCB layer 20 that is not completely cut in the first cutting step.

對於未被完全切割而剩下的PCB層20與玻璃層10,雷射光束照射於在PCB層20上形成的切割槽30,因此為了進行玻璃層20的第二次切割而無需再翻轉PCB基板1,進而可節省製程時間和費用,同時沿著在PCB層20上形成的切割槽30照射雷射光束且使雷射光束保持不變,因此具有可以更精準地第二次切割玻璃層10的優點。另外,照射具有d2波束寬度且沿著切割線(C)而移動的UV(ultra violet)雷射光束照射,從而第二次切割該未被完全切割而剩下的PCB層20與玻璃層10。 For the PCB layer 20 and the glass layer 10 which are not completely cut, the laser beam is irradiated onto the cutting groove 30 formed on the PCB layer 20, so that it is not necessary to flip the PCB substrate for the second cutting of the glass layer 20. 1, in turn, can save process time and cost, while irradiating the laser beam along the cutting groove 30 formed on the PCB layer 20 and keeping the laser beam unchanged, so that the glass layer 10 can be cut a second time more accurately. advantage. In addition, an ultraviolet (ultra violet) laser beam having a d2 beam width and moving along the cutting line (C) is irradiated, thereby cutting the remaining PCB layer 20 and the glass layer 10 which are not completely cut.

這時,較佳為,對未被完全切割而剩下的PCB層20與玻璃層10進行切割時使用與在對PCB層20進行第一次切割時使用的雷射光束相同波長的UV雷射光束。 At this time, it is preferable to use the same wavelength of the UV laser beam as the laser beam used for the first cutting of the PCB layer 20 when cutting the PCB layer 20 and the glass layer 10 which are not completely cut. .

未被完全切割而剩下的PCB層20與玻璃層10在進行切割時,可以在PCB層20與玻璃層10不破損的範圍內使用各種波長的雷射光束進行切割,但通過使用與在對PCB層20進行第一次切割時所使用的雷射光束相同波長的UV雷射光束,進而無需改變照射於切割PCB層20的第一次切割步驟與切割玻璃層10的第二次切割步驟之間的雷射光束的波長,因此具有縮減製程時間和費用的優點。 When the PCB layer 20 and the glass layer 10 which are not completely cut are cut, the laser beams of various wavelengths can be cut in the range where the PCB layer 20 and the glass layer 10 are not damaged, but by using and The PCB layer 20 performs the laser beam of the same wavelength for the laser beam used in the first cutting, thereby eliminating the need to change the first cutting step of the cutting of the PCB layer 20 and the second cutting step of cutting the glass layer 10. The wavelength of the laser beam between them has the advantage of reducing process time and cost.

並且,較佳為,未被完全切割而剩下的PCB層20與玻璃層10在進行切割時使用功率比在第一次切割PCB層20時使用的雷射光束功率低的雷射光束。 Moreover, it is preferable that the PCB layer 20 and the glass layer 10 which are not completely cut and used have a laser beam having a power lower than that of the laser beam used when the PCB layer 20 is first cut.

通常,玻璃層10相比於貼合半導體晶片24的PCB層20更脆(brittleness),因此利用功率比在第一次切割PCB層20時使用的雷射光束功率低的雷射光束切割未被完全切割而剩下的PCB層20和玻璃層10,從而可以將在玻璃層10上可能產生的裂縫和碎片等的破損最小化。 In general, the glass layer 10 is more brittle than the PCB layer 20 that is bonded to the semiconductor wafer 24, and thus is not cut with a laser beam having a lower power than the laser beam used when the PCB layer 20 is first cut. The remaining PCB layer 20 and the glass layer 10 are completely cut, so that breakage of cracks, chips, and the like which may occur on the glass layer 10 can be minimized.

並且,較佳為,在切割玻璃層10時,使用雷射波束寬度比在切 割PCB層20時使用的波束寬度d1更小的波束寬度d2的雷射光束。 And, preferably, at the time of cutting the glass layer 10, a laser beam width is smaller than the beam width in the beam width d 20 using the dicing PCB layers 1 d 2 of the laser beam.

因此雷射光束可以在切割槽30的寬度d1之間沿著形成的特定圖案的移動路徑移動來切割玻璃層10。 Therefore, the laser beam can be cut along the moving path of the specific pattern formed between the widths d 1 of the cutting grooves 30 to cut the glass layer 10.

作為一例,如圖3所示,可以通過在切割槽30的寬度d1之間沿著螺旋形態的路徑(L2)而移動雷射光束切割玻璃層10,但這並不限定於此。 As an example, as shown in Figure 3, along the path through the coil form (L 2) to move the cutting laser beam in the glass layer 10 between a width of the cutting grooves 30 d, but not limited thereto.

玻璃層10可被沿著螺旋形態的路徑(L2)而移動的雷射光束切割,進而相比於單純沿著切割線(C)而進行移動雷射光束,具有在切割時可以減少因雷射光束可在玻璃層10產生裂縫和破損等的損傷的優點。 The glass layer 10 can be cut by a laser beam that moves along a path (L 2 ) of a spiral shape, thereby moving the laser beam simply along the cutting line (C), which can reduce the cause of the lightning when cutting The beam of light can have the advantage of damage such as cracks and breakage in the glass layer 10.

並且,為使玻璃層10的切割寬度和切割深度均勻地形成,玻璃層10可被通過遠心(telecentric)透鏡的平行雷射光束切割,但並不限定於此。 Also, in order to uniformly form the cut width and the cut depth of the glass layer 10, the glass layer 10 may be cut by a parallel laser beam of a telecentric lens, but is not limited thereto.

利用具有如上所述結構的PCB基板1的半導體晶片模組的製造方法,包括:準備PCB基板1步驟,PCB基板1包括PCB層20、玻璃層10,其中PCB層20貼合有執行預先設定功能的多個半導體晶片24,並以半導體晶片24為基準分割PCB層20,玻璃層10附著在PCB層20的一面;分割步驟,利用雷射光束依次切割PCB層20及玻璃層10,以半導體24為基準按照預先設定的形狀分割PCB基板1。 A method of manufacturing a semiconductor wafer module using the PCB substrate 1 having the above structure includes: preparing a PCB substrate 1 including a PCB layer 20 and a glass layer 10, wherein the PCB layer 20 is attached to perform a preset function a plurality of semiconductor wafers 24, and dividing the PCB layer 20 with the semiconductor wafer 24 as a reference, the glass layer 10 is attached to one side of the PCB layer 20; in the dividing step, the PCB layer 20 and the glass layer 10 are sequentially cut by the laser beam to the semiconductor 24 The PCB substrate 1 is divided in accordance with a predetermined shape for the reference.

準備PCB基板1的步驟如下:為了利用雷射光束依次切割PCB層20及玻璃層10,提供上部配置有PCB層20的PCB基板1,或者提供上部配置有玻璃層10的PCB基板1。 The steps of preparing the PCB substrate 1 are as follows: In order to sequentially cut the PCB layer 20 and the glass layer 10 by the laser beam, the PCB substrate 1 on which the PCB layer 20 is disposed is provided, or the PCB substrate 1 on which the glass layer 10 is disposed is provided.

在一實施例中,提供上部配置有PCB層20的PCB基板1時,第一次切割PCB層20,之後可第二次切割玻璃層10。 In one embodiment, when the PCB substrate 1 having the PCB layer 20 disposed thereon is provided, the PCB layer 20 is first cut, and then the glass layer 10 is cut a second time.

另一實施例中,提供上部配置有玻璃層10的PCB基板1時,第一次切割玻璃層10之後可第二次切割PCB層20。 In another embodiment, when the PCB substrate 1 having the glass layer 10 disposed thereon is provided, the PCB layer 20 may be cut a second time after the glass layer 10 is first cut.

具體而言,該切割步驟可以包括:切割PCB層20的第一切割步驟;切割玻璃層10的第二切割步驟。 Specifically, the cutting step may include a first cutting step of cutting the PCB layer 20 and a second cutting step of cutting the glass layer 10.

對於第一切割步驟與第二切割步驟,可通過具有預先設定條件的雷射光束進行切割。 For the first cutting step and the second cutting step, the cutting can be performed by a laser beam having a predetermined condition.

如果對PCB層20進行切割的第一切割步驟先於對玻璃層10進行第二切割步驟執行,第一切割步驟可以切割至比PCB層20的底面高的高度。 If the first cutting step of cutting the PCB layer 20 is performed prior to the second cutting step of the glass layer 10, the first cutting step may be cut to a height higher than the bottom surface of the PCB layer 20.

這時,第一切割步驟之後執行的第二切割步驟,可對PCB層20 中未切割的部分與玻璃層10一同進行切割。 At this time, the second cutting step performed after the first cutting step may be performed on the PCB layer 20 The uncut portion is cut along with the glass layer 10.

這時,第二切割步驟可以利用功率比在切割PCB層20時使用的雷射光束的功率低的雷射光束切割玻璃層10。 At this time, the second cutting step may cut the glass layer 10 with a laser beam having a lower power than the laser beam used when cutting the PCB layer 20.

對於PCB基板1的分割步驟,可利用具有預先設定波束寬度(beam width)的平行雷射光束,依次切割PCB層20和玻璃層10。 For the dividing step of the PCB substrate 1, the PCB layer 20 and the glass layer 10 can be sequentially cut by using a parallel laser beam having a predetermined beam width.

這時,較佳為,第二切割步驟利用波束寬度比在切割PCB層20時使用的雷射光束的波束寬度(beam width)小的平行雷射光束切割玻璃層10。 At this time, preferably, the second cutting step cuts the glass layer 10 by a parallel laser beam having a beam width smaller than a beam width of a laser beam used when the PCB layer 20 is cut.

並且,在第二切割步驟中,該雷射光束可沿著螺旋形態的路徑移動來切割玻璃層10。 Also, in the second cutting step, the laser beam can be moved along the path of the spiral shape to cut the glass layer 10.

該分割步驟中使用的雷射光束可以是短波長的UV雷射光束。 The laser beam used in the dividing step may be a short-wavelength UV laser beam.

以上內容不過是就本發明而實現的較佳實施例的一部分而進行了說明,眾所周知,對本發明的範圍的理解不能侷限於以上實施例。以上說明的本發明的技術思想以及包含其根本的技術思想全部都包含於本發明的範圍之內。 The above description is only a part of a preferred embodiment of the present invention, and it is well understood that the scope of the present invention is not limited to the above embodiments. The technical idea of the present invention described above and the technical idea including the above are all included in the scope of the present invention.

1‧‧‧PCB基板 1‧‧‧PCB substrate

2‧‧‧半導體晶片模組 2‧‧‧Semiconductor chip module

10‧‧‧玻璃層 10‧‧‧ glass layer

20‧‧‧PCB層 20‧‧‧PCB layer

22‧‧‧基板 22‧‧‧Substrate

24‧‧‧半導體晶片 24‧‧‧Semiconductor wafer

D1‧‧‧波束寬度 D 1 ‧‧‧beamwidth

C‧‧‧切割線 C‧‧‧ cutting line

Claims (11)

一種半導體晶片模組的製造方法,其特徵在於,包括:PCB基板(1)準備步驟,準備該PCB基板(1),該PCB基板(1)包括PCB層(20)和玻璃層(10),該PCB層(20)貼合有執行預先設定功能的多個半導體晶片(24),並以半導體晶片(24)為基準分割該PCB層(20),該玻璃層(10)附著在該PCB層20的一面;以及分割步驟,利用雷射光束依次切割該PCB層(20)和該玻璃層(10),以該半導體晶片(24)為基準按照預先設定的形狀分割的分割該PCB基板(1)步驟。 A method of manufacturing a semiconductor wafer module, comprising: preparing a PCB substrate (1), preparing the PCB substrate (1), the PCB substrate (1) comprising a PCB layer (20) and a glass layer (10), The PCB layer (20) is attached with a plurality of semiconductor wafers (24) performing a predetermined function, and the PCB layer (20) is divided based on the semiconductor wafer (24), and the glass layer (10) is attached to the PCB layer And a dividing step of sequentially cutting the PCB layer (20) and the glass layer (10) by using a laser beam, and dividing the PCB substrate according to a predetermined shape based on the semiconductor wafer (24) (1) )step. 依據申請專利範圍第1項所述之半導體晶片模組的製造方法,其中,該PCB層(20)厚度大於該玻璃層(10)。 The method of fabricating a semiconductor wafer module according to claim 1, wherein the PCB layer (20) has a thickness greater than the glass layer (10). 依據申請專利範圍第1項所述之半導體晶片模組的製造方法,其中,該分割步驟包括:切割該PCB層(20)的第一切割步驟;以及切割該玻璃層(10)的第二切割步驟。 The method of manufacturing a semiconductor wafer module according to claim 1, wherein the dividing step comprises: a first cutting step of cutting the PCB layer (20); and cutting a second cutting of the glass layer (10) step. 依據申請專利範圍第3項所述之半導體晶片模組的製造方法,其中,該第一切割步驟切割至比該PCB層(20)的底面高的高度,該第二切割步驟一同切割在該PCB層(20)未被切割的部分和該玻璃層10。 The method of manufacturing a semiconductor wafer module according to claim 3, wherein the first cutting step is cut to a height higher than a bottom surface of the PCB layer (20), and the second cutting step is simultaneously cut on the PCB The layer (20) is not cut and the glass layer 10. 依據申請專利範圍第3項所述之半導體晶片模組的製造方法,其中,在該第二切割步驟之後執行該第一切割步驟。 The method of manufacturing a semiconductor wafer module according to claim 3, wherein the first cutting step is performed after the second cutting step. 依據申請專利範圍第4項所述之半導體晶片模組的製造方法,其中,該第二切割步驟利用具有功率比在切割該PCB層(20)時使用的雷射光束的功率低的雷射光束來切割該玻璃層(10)。 The method of fabricating a semiconductor wafer module according to claim 4, wherein the second cutting step utilizes a laser beam having a power lower than a power of a laser beam used in cutting the PCB layer (20). To cut the glass layer (10). 依據申請專利範圍第4項所述之半導體晶片模組的製造方法,其中,該分割步驟利用具有預先設定的波束寬度的平行雷射光束依次切割該PCB層(20)和該玻璃層(10)。 The method of manufacturing a semiconductor wafer module according to the fourth aspect of the invention, wherein the dividing step sequentially cuts the PCB layer (20) and the glass layer (10) by using a parallel laser beam having a predetermined beam width. . 依據申請專利範圍第7項所述之半導體晶片模組的製造方法,其中,該第二切割步驟利用具有波束寬度比在切割該PCB層(20)時使用的雷射光束的波束寬度小的平行雷射光束切割該玻璃層(10)。 The method of manufacturing a semiconductor wafer module according to claim 7, wherein the second cutting step utilizes a beam width having a beam width smaller than a beam width of the laser beam used when cutting the PCB layer (20). The laser beam cuts the glass layer (10). 依據申請專利範圍第8項所述之半導體晶片模組的製造方法,其中,該第二切割步驟沿著螺旋形態的路徑移動該雷射光束來切割該玻璃層(10)。 The method of fabricating a semiconductor wafer module according to claim 8, wherein the second cutting step moves the laser beam along a path of a spiral shape to cut the glass layer (10). 依據申請專利範圍第1項至第9項中任一項所述之半導體晶片模組的製造方法,其中,該雷射光束是短波長的UV雷射光束。 The method of manufacturing a semiconductor wafer module according to any one of claims 1 to 9, wherein the laser beam is a short-wavelength UV laser beam. 依據申請專利範圍第1項至第9項中任一項所述之半導體晶片模組的製造方法,其中,該半導體晶片模組(2)為指紋識別感測器。 The method of manufacturing a semiconductor wafer module according to any one of claims 1 to 9, wherein the semiconductor wafer module (2) is a fingerprint recognition sensor.
TW106119874A 2016-06-14 2017-06-14 Manufacturing method of semiconductor chip module TW201743409A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160073789A KR20170140969A (en) 2016-06-14 2016-06-14 Manufacturing method of semiconductor chip module

Publications (1)

Publication Number Publication Date
TW201743409A true TW201743409A (en) 2017-12-16

Family

ID=60664215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106119874A TW201743409A (en) 2016-06-14 2017-06-14 Manufacturing method of semiconductor chip module

Country Status (3)

Country Link
KR (1) KR20170140969A (en)
TW (1) TW201743409A (en)
WO (1) WO2017217770A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI275168B (en) * 2003-06-06 2007-03-01 Sanyo Electric Co Semiconductor device and method for making the same
KR100959922B1 (en) * 2007-11-20 2010-05-26 삼성전자주식회사 Camera modules and methods of fabricating the same
US8519298B2 (en) * 2010-03-25 2013-08-27 Veeco Instruments, Inc. Split laser scribe
US20110287607A1 (en) * 2010-04-02 2011-11-24 Electro Scientific Industries, Inc. Method and apparatus for improved wafer singulation
US9287310B2 (en) * 2012-04-18 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for glass removal in CMOS image sensors

Also Published As

Publication number Publication date
KR20170140969A (en) 2017-12-22
WO2017217770A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
US10886420B2 (en) Thin optoelectronic modules with apertures and their manufacture
US9190398B2 (en) Method for packaging an optical module
KR102626784B1 (en) Photovoltaic modules with apertures and their production
US9698326B2 (en) Optoelectronic semiconductor component
TWI657603B (en) Semiconductor package device and method of manufacturing the same
US9812619B2 (en) Optoelectronic component and method for producing same
US20190051762A1 (en) Thin optoelectronic modules with apertures and their manufacture
TW201024011A (en) Cutting apparatus and cutting method for manufacturing electronic component
JP5599397B2 (en) Optoelectronic semiconductor device and manufacturing method thereof
US11942563B1 (en) Manufacturing method of chip package and chip package
US20220336697A1 (en) Method for Singulating Components from A Component Composite, and Component
US11728321B2 (en) Optoelectronic component and manufacturing method
TW201743409A (en) Manufacturing method of semiconductor chip module
KR20170106347A (en) Method for producing a plurality of optoelectronic semiconductor components and optoelectronic semiconductor component
KR101140081B1 (en) LED Package and Manufacturing Method thereof
US20150001111A1 (en) Optical package with recess in transparent cover
US10672963B2 (en) Method of manufacturing substrate and method of manufacturing light emitting device
CN100444361C (en) Chip packing structure
JP2011129683A (en) Method of manufacturing semiconductor device and semiconductor manufacturing device
US10879427B2 (en) Method of producing an optoelectronic component, and optoelectronic component
US20070075441A1 (en) Chip package structure
JP2013021237A (en) Semiconductor device and method of manufacturing the same