TW201742503A - 窄頻定位信號設計方案和程序 - Google Patents

窄頻定位信號設計方案和程序 Download PDF

Info

Publication number
TW201742503A
TW201742503A TW106113587A TW106113587A TW201742503A TW 201742503 A TW201742503 A TW 201742503A TW 106113587 A TW106113587 A TW 106113587A TW 106113587 A TW106113587 A TW 106113587A TW 201742503 A TW201742503 A TW 201742503A
Authority
TW
Taiwan
Prior art keywords
prs
transmitting
different
transmitted
monitoring
Prior art date
Application number
TW106113587A
Other languages
English (en)
Other versions
TWI740930B (zh
Inventor
任丘 王
浩 許
陳旺旭
曉峰 王
彼得 加爾
艾柏多 瑞可亞瓦利諾
貞 蒙托傑
雷敬
法庫里安席得亞里艾卡巴
Original Assignee
高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高通公司 filed Critical 高通公司
Publication of TW201742503A publication Critical patent/TW201742503A/zh
Application granted granted Critical
Publication of TWI740930B publication Critical patent/TWI740930B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本案內容的某些態樣大體而言係關於基於下行鏈路(DL)的定位參考信號(PRS)技術和基於上行鏈路(UL)的定位參考信號(PRS)技術,該等技術可以有助於在部署窄頻設備(例如,窄頻物聯網路(NB-IoT)設備)的系統中實現定位程序。一種可以由節點執行的示例性方法包括以下步驟:監測在更寬系統頻寬中的窄頻區域中,從一或多個基地站傳輸的定位參考信號(PRS),其中PRS的音調跨度下文中的至少一項進行重複:同一子訊框中的多個符號,或者多個連續子訊框;及基於該PRS,估計來自該一或多個基地站的時序。

Description

窄頻定位信號設計方案和程序
本專利申請案主張享受2016年5月18日提出申請的美國臨時申請案第62/338,475和2017年4月21日提出申請的美國專利申請案第15/493,247的優先權,該兩份申請案均已經轉讓給本案的受讓人,故以引用方式將其全部內容明確地併入本文。
大體而言,本案內容的某些態樣係關於無線通訊,具體而言,本案內容的某些態樣係關於在使用更寬系統頻寬中的窄頻區域的無線通訊系統中的定位。
已廣泛地部署無線通訊系統以便提供各種類型的通訊內容,例如,語音、資料等等。該等系統可以是多工存取系統,其能夠經由共享可用的系統資源(例如,頻寬和傳輸功率)來支援與多個使用者進行通訊。此種多工存取系統的實例係包括:分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、第三代合作夥伴計畫(3GPP)長期進化(LTE)(其包括改進的LTE系統)和正交分頻多工存取(OFDMA)系統。
通常而言,無線多工存取通訊系統可以同時地支援多個無線終端的通訊。每一個終端經由前向鏈路和反向鏈路上的傳輸與一或多個基地站進行通訊。前向鏈路(或下行鏈路)是指從基地站到終端的通訊鏈路,而反向鏈路(或上行鏈路)是指從終端到基地站的通訊鏈路。可以經由單輸入單輸出、多輸入單輸出或者多輸入多輸出(MIMO)系統來建立此種通訊鏈路。
無線通訊網路可以包括能夠支援多個無線設備的通訊的多個基地站。無線設備可以包括使用者設備(UE)。一些UE可以視作為機器類型通訊(MTC)UE(其可以包括遠端設備),其中該等MTC UE可以與基地站、另一個遠端設備或者某個其他實體進行通訊。機器類型通訊(MTC)可以代表在該通訊的至少一個末端涉及至少一個遠端設備的通訊,MTC可以包括資料通訊的形式,其中資料通訊涉及不一定需要人機互動的一或多個實體。例如,MTC UE可以包括能夠經由公用陸上行動網路(PLMN),與MTC伺服器及/或其他MTC設備進行MTC通訊的UE。
在一些情況下,諸如MTC和其他類型的設備之類的設備,可以使用更寬系統頻寬中的窄頻(NB)區域進行通訊。使用窄頻區域,可能對於諸如定位程序(其中在定位程序中,使用定位參考信號來在網路中追蹤設備的位置(及/或移動))之類的各種程序而言呈現一些挑戰。
本案內容的系統、方法和設備均具有若干態樣,但該等態樣中沒有單一的一個可以單獨地對其期望的屬性負責。在不限制本案內容的範疇的前提下,現在將簡要地論述一些特徵,本案內容的範疇是由在此之後的請求項所表述的。在仔細思考該等論述之後,特別是在閱讀標題為「具體實施方式」的部分之後,人們將理解本案內容的特徵是如何具有優勢的,該等優勢包括:改良無線網路中存取點和站之間的通訊。
本案內容的態樣提供了一種用於由無線節點執行的無線通訊的方法。該方法大體而言包括以下步驟:監測在更寬系統頻寬中的窄頻區域中,從一或多個基地站傳輸的定位參考信號(PRS);及基於該PRS,估計來自該一或多個基地站的時序。
本案內容的態樣提供了一種用於由基地站執行的無線通訊的方法。該方法大體而言包括以下步驟:監測在更寬系統頻寬中的窄頻區域中,從至少一個無線節點傳輸的定位參考信號(PRS);及基於該PRS,估計來自該至少一個無線節點的時序。
本案內容的態樣提供了一種用於由無線節點執行的無線通訊的方法。該方法大體而言包括以下步驟:決定更寬系統頻寬中用於向一或多個基地站傳輸定位參考信號(PRS)的窄頻區域內資源;及使用所決定的資源來傳輸PRS。
本案內容的態樣提供了一種用於由基地站執行的無線通訊的方法。該方法大體而言包括以下步驟:決定更寬系統頻寬中用於向一或多個無線節點傳輸下行鏈路定位參考信號(PRS)的窄頻區域內資源;及使用所決定的資源來傳輸下行鏈路PRS。
本案內容的態樣提供了一種用於由無線節點執行的無線通訊的方法。該方法大體而言包括以下步驟:監測跨度更寬系統頻寬中的複數個窄頻區域,從一或多個基地站傳輸的定位參考信號(PRS);及基於該PRS,估計下行鏈路時序或者該無線節點的相對位置中的至少一項。
本案內容的態樣提供了一種用於由無線節點執行的無線通訊的方法。該方法大體而言包括以下步驟:決定更寬系統頻寬中用於向一或多個基地站傳輸定位參考信號(PRS)的複數個窄頻區域中的資源;及使用所決定的資源來傳輸PRS。
本案內容的態樣提供了一種用於由基地站執行的無線通訊的方法。該方法大體而言包括以下步驟:監測跨度更寬系統頻寬中的複數個窄頻區域,從無線節點傳輸的定位參考信號(PRS);及基於該PRS,估計上行鏈路時序或者該無線節點的相對位置中的至少一項。
本案內容的態樣提供了一種用於由基地站執行的無線通訊的方法。該方法大體而言包括以下步驟:決定更寬系統頻寬中用於向至少一個無線節點傳輸定位參考信號(PRS)的複數個窄頻區域中的資源;及使用所決定的資源來傳輸PRS。
提供了包括方法、裝置、系統、電腦程式產品、電腦可讀取媒體和處理系統的眾多其他態樣。
本案內容的態樣提供了用於具有有限的通訊資源設備(例如,低成本(LC)機器類型通訊(MTC)設備、LC增強型MTC(eMTC)設備、窄頻物聯網路(IoT)設備等等)的定位的技術和裝置。如本文所將描述的,無線節點可以在整體系統頻寬的一或多個窄頻區域中,(向一或多個基地站)傳輸定位參考信號(PRS)以實現基於上行鏈路的PRS定位。類似地,一或多個基地站可以傳輸窄頻PRS來實現基於下行鏈路的PRS定位。
本文所描述的技術可以用於各種無線通訊網路,諸如分碼多工存取(CDMA)網路、分時多工存取(TDMA)網路、分頻多工存取(FDMA)網路、正交FDMA(OFDMA)網路、單載波FDMA(SC-FDMA)網路等等。術語「網路」和「系統」經常可以交換使用。CDMA網路可以實現諸如通用陸地無線電存取(UTRA)、CDMA 2000等等之類的無線電技術。UTRA包括寬頻CDMA(W-CDMA)、分時同步CDMA(TD-SCDMA)和其他CDMA的變型。CDMA 2000覆蓋IS-2000、IS-95和IS-856標準。TDMA網路可以實現諸如行動通訊全球系統(GSM)之類的無線電技術。OFDMA網路可以實現諸如進化的UTRA(E-UTRA)、超行動寬頻(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM®等等之類的無線電技術。UTRA和E-UTRA是通用行動電信系統(UMTS)的一部分。3GPP長期進化(LTE)和改進的LTE(LTE-A)(具有分頻雙工(FDD)和分時雙工(TDD)兩種方式)是UMTS的採用E-UTRA的發佈版,其在下行鏈路上使用OFDMA,在上行鏈路上使用SC-FDMA。在來自名為「第三代合作夥伴計畫」(3GPP)的組織的文件中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM。在來自名為「第三代合作夥伴計畫2」(3GPP2)的組織的文件中描述了CDMA 2000和UMB。新無線電(NR)(其亦可以稱為5G)是第三代合作夥伴計畫(3GPP)所頒佈的LTE行動服務標準的增強集。本文所描述的技術可以用於上文提及的該等無線網路和無線電技術以及其他無線網路和無線電技術。為了清楚說明起見,下文針對LTE/LTE-A來描述該等技術的某些態樣,在下文描述的大多部分中使用LTE/LTE-A術語。LTE和LTE-A通常稱為LTE。
圖1圖示在其中可以實現本案內容的態樣的具有基地站(BS)和使用者設備(UE)的示例性無線通訊網路100。
例如,可以針對無線通訊網路100中的某些UE(例如,LC MTC UE、LC eMTC UE等等),支援一或多個傳呼程序增強。根據本文所提供的技術,無線通訊網路100中的BS和LC UE能夠從無線通訊網路100所支援的可用系統頻寬中決定LC UE應當針對從無線通訊網路100中的BS傳輸的附隨的傳呼訊息來監測何者窄頻區域。此外,根據本文所提供的技術,無線通訊網路100中的BS及/或LC UE能夠基於無線通訊網路100中的一或多個觸發,決定及/或調適用於傳呼訊息的附隨大小。BS可以稱為節點B、eNodeB或eNB、gNB、存取點(AP)、無線電頭端、TRP(傳輸接收點、傳輸接收點等等)、新無線電(NR)BS、5G NB等等。
無線通訊網路100可以是LTE網路或某種其他無線網路。無線通訊網路100可以包括多個進化節點B(eNB)110和其他網路實體。eNB是與使用者設備(UE)進行通訊的實體,eNB亦可以稱為基地站、節點B、存取點(AP)等等。每一個eNB可以為特定的地理區域提供通訊覆蓋。在3GPP中,根據術語「細胞」使用的上下文,術語「細胞」可以代表eNB的覆蓋區域及/或服務該覆蓋區域的eNB子系統。
eNB可以為巨集細胞、微微細胞、毫微微細胞及/或其他類型的細胞提供通訊覆蓋。巨集細胞可以覆蓋相對較大的地理區域(例如,半徑幾個公里),其允許具有服務訂閱的UE能不受限制地存取。微微細胞可以覆蓋相對較小的地理區域,其允許具有服務訂閱的UE能不受限制地存取。毫微微細胞可以覆蓋相對較小的地理區域(例如,家庭),其允許與該毫微微細胞具有關聯的UE(例如,封閉用戶群組(CSG)中的UE)受限制的存取。用於巨集細胞的eNB可以稱為巨集eNB。用於微微細胞的eNB可以稱為微微eNB。用於毫微微細胞的eNB可以稱為毫微微eNB或家庭eNB(HeNB)。在圖1所示的實例中,eNB 110a可以是用於巨集細胞102a的巨集eNB,eNB 110b可以是用於微微細胞102b的微微eNB,eNB 110c可以是用於毫微微細胞102c的毫微微eNB。eNB可以支援一或多個(例如,三個)細胞。本文的術語「eNB」、「基地站」和「細胞」可以互換地使用。
此外,無線通訊網路100亦可以包括中繼站。中繼站是可以從上游站(例如,eNB或UE)接收資料的傳輸,並向下游站(例如,UE或eNB)發送該資料的傳輸的實體。此外,中繼站亦可以是能對其他UE的傳輸進行中繼的UE。在圖1中所示的實例中,中繼(站)eNB 110d可以與巨集eNB 110a和UE 120d進行通訊,以便促進實現eNB 110a和UE 120d之間的通訊。此外,中繼站亦可以稱為中繼eNB、中繼基地站、中繼器等等。
無線通訊網路100可以是包括不同類型的eNB(例如,巨集eNB、微微eNB、毫微微eNB、中繼eNB等等)的異質網路。該等不同類型的eNB在無線通訊網路100中可以具有不同的傳輸功率位準、不同的覆蓋區域和不同的干擾影響。例如,巨集eNB可以具有較高的傳輸功率位準(例如,5到40瓦),而微微eNB、毫微微eNB和中繼eNB可以具有較低的傳輸功率位準(例如,0.1到2瓦)。
網路控制器130可以耦合到一組eNB,並可為該等eNB提供協調和控制。網路控制器130可以經由回載來與該等eNB進行通訊。該等eNB亦可以彼此之間進行通訊,例如,經由無線回載或有線回載來直接通訊或者間接通訊。
UE 120(例如,120a、120b、120c)可以分散於整個無線通訊網路100中,每一個UE可以是靜止的,亦可以是行動的。UE亦可以稱為存取終端、終端、行動站(MS)、用戶單元、站(STA)等等。UE可以是蜂巢式電話、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板設備、智慧型電話、小筆電、智慧型電腦、超級本、導航設備、遊戲設備、照相機、車載設備、無人機、機器人/機器人設備、可穿戴設備(例如,智慧手錶、智慧服裝、智慧腕帶、智慧環、智慧手環、智慧眼鏡、虛擬實境護目鏡)、醫療設備、保健設備等等。MTC UE包括諸如感測器、計量器、監測器、位置標籤、無人機、追蹤器、機器/機器人設備等等之類的設備。UE(例如,MTC設備)可以實現為萬物網路(IoE)或物聯網路(IoT)(例如,窄頻IoT(NB-IoT))設備。
無線通訊網路100(例如,LTE網路)中的一或多個UE 120亦可以是低成本(LC)、低資料速率設備,例如,LC MTC UE、LC eMTC UE等等。LC UE可以與傳統UE及/或高級UE共存於LTE網路中,與無線網路中的其他UE(例如,非LC UE)相比,可以具有受限的一或多個能力。例如,當與LTE網路中的傳統UE及/或高級UE相比時,LC UE可以以下文中的一或多個方式進行操作:最大頻寬的減少(相對於傳統UE)、單個接收射頻(RF)鏈、峰值速率的減少、傳輸功率的減少、秩1傳輸、半雙工操作等等。如本文所使用的,具有有限通訊資源的設備(例如,MTC設備、eMTC設備等等)通常稱為LC UE。類似地,諸如傳統UE及/或高級UE(例如,在LTE中)之類的傳統設備,通常稱為非LC UE。
圖2是BS/eNB 110和UE 120的設計方案的方塊圖,其中BS/eNB 110和UE 120可以分別是圖1中的BS/eNB 110裡的一個和圖1中的UE 120裡的一個。BS 110可以裝備有T 付天線234a到234t,UE 120可以裝備有R 付天線252a到252r,其中通常
在BS 110處,傳輸處理器220可以從資料來源212接收用於一或多個UE的資料,基於從每一個UE接收的通道品質指示符(CQI)來選擇用於該UE的一或多個調制和編碼方案(MCS),基於針對每一個UE選定的MCS來對用於該UE的資料進行處理(例如,編碼和調制),並提供用於所有UE的資料符號。此外,傳輸處理器220亦可以處理系統資訊(例如,用於半靜態資源劃分資訊(SRPI)等等)和控制資訊(例如,CQI請求、容許、上層信號傳遞等),並提供管理負擔符號和控制符號。處理器220亦可以產生用於參考信號(例如,共用參考信號(CRS))和同步信號(例如,主要同步信號(PSS)和輔助同步信號(SSS))的參考符號。傳輸(TX)多輸入多輸出(MIMO)處理器230可以對該等資料符號、控制符號、管理負擔符號及/或參考符號(若有的話)執行空間處理(例如,預編碼),並向T 個調制器(MOD)232a到232t提供T 個輸出符號串流。每一個MOD 232可以處理各自的輸出符號串流(例如,用於OFDM等),以獲得輸出取樣串流。每一個MOD 232亦可以進一步處理(例如,轉換成類比信號、放大、濾波和升頻轉換)輸出取樣串流,以獲得下行鏈路信號。來自調制器232a到232t的T 個下行鏈路信號可以分別經由T 付天線234a到234t進行傳輸。
在UE 120處,天線252a到252r可以從BS 110及/或其他BS接收下行鏈路信號,並分別將接收的信號提供給解調器(DEMOD)254a到254r。每一個DEMOD 254可以調節(例如,濾波、放大、降頻轉換和數位化)其接收的信號,以獲得輸入取樣。每一個DEMOD 254亦可以進一步處理該等輸入取樣(例如,用於OFDM等),以獲得接收的符號。MIMO偵測器256可以從所有R 個解調器254a到254r獲得接收的符號,對接收的符號執行MIMO偵測(若有的話),並提供偵測的符號。接收處理器258可以處理(例如,解調和解碼)偵測到的符號,向資料槽260提供針對UE 120的經解碼資料,向控制器/處理器280提供經解碼的控制資訊和系統資訊。通道處理器可以決定參考信號接收功率(RSRP)、接收信號強度指示符(RSSI)、參考信號接收品質(RSRQ)、CQI等等。
在上行鏈路上,在UE 120處,傳輸處理器264可以從資料來源262接收資料,從控制器/處理器280接收控制資訊(例如,用於包括RSRP、RSSI、RSRQ、CQI等等的報告),並對該資料和控制資訊進行處理。此外,處理器264亦可以產生用於一或多個參考信號的參考符號。來自傳輸處理器264的符號可以由TX MIMO處理器266進行預編碼(若有的話),由MOD 254a到254r進行進一步處理(例如,用於SC-FDM、OFDM等等),並傳輸給BS 110。在BS 110處,來自UE 120和其他UE的上行鏈路信號可以由天線234進行接收,由DEMOD 232進行處理,由MIMO偵測器236進行偵測(若有的話),由接收處理器238進行進一步處理,以獲得由UE 120發送的經解碼的資料和控制資訊。處理器238可以向資料槽239提供經解碼資料,向控制器/處理器240提供經解碼控制資訊。BS 110可以包括通訊單元244,並經由通訊單元244向網路控制器130進行通訊。網路控制器130可以包括通訊單元294、控制器/處理器290和記憶體292。
控制器/處理器240和280可以分別導引BS 110和UE 120處的操作。例如,BS 110處的控制器/處理器240及/或其他處理器和模組,可以執行或者導引圖10、圖13、圖14、圖17中所圖示的操作及/或用於本文所描述的技術的其他過程。類似地,UE 120處的控制器/處理器280及/或其他處理器和模組,可以執行或者導引圖11、圖12、圖15、圖16中所圖示的操作及/或用於本文所描述的技術的過程。記憶體242和282可以分別儲存用於BS 110和UE 120的資料和程式碼。排程器246可以排程UE在下行鏈路及/或上行鏈路上進行資料傳輸。
圖3圖示用於LTE中的FDD的示例性訊框結構300。可以將用於下行鏈路和上行鏈路中的每一個的傳輸等時線劃分成無線電訊框的單位。每一個無線電訊框可以具有預定的持續時間(例如,10毫秒(ms)),並被劃分成具有索引0到9的10個子訊框。每一個子訊框可以包括兩個時槽。因此,每一個無線電訊框可以包括索引為0到19的20個時槽。每一個時槽可以包括L 個符號週期,例如,對於普通循環字首的七個符號週期(如圖2中所示)或者對於擴展循環字首的六個符號週期。可以向每一個子訊框中的2L 個符號週期分配索引0到2L -1。
在LTE中,eNB可以在由該eNB所支援的每一個細胞的系統頻寬的中間1.08 MHz中,在下行鏈路上傳輸主要同步信號(PSS)和輔助同步信號(SSS)。如圖3中所示,普通循環字首的情況下,可以分別在每一個無線電訊框的子訊框0和5中的符號週期6和5裡傳輸PSS和SSS。PSS和SSS可以由UE用於細胞搜尋和擷取。eNB可以跨由該eNB所支援的每一個細胞的系統頻寬來傳輸特定於細胞的參考信號(CRS)。CRS可以在每一個子訊框的某些符號週期中傳輸,其可以由UE用於執行通道估計、通道品質量測及/或其他功能。此外,eNB亦可以在某些無線電訊框的時槽1中的符號週期0到3裡傳輸實體廣播通道(PBCH)。PBCH可以攜帶某種系統資訊。eNB可以在某些子訊框中在實體下行鏈路共享通道(PDSCH)上,傳輸諸如系統資訊區塊(SIB)之類的其他系統資訊。eNB可以在子訊框的前B 個符號週期中在實體下行鏈路控制通道(PDCCH)上傳輸控制資訊/資料,其中對於每一個子訊框而言,B 是可配置的。eNB可以在每一個子訊框的剩餘符號週期中在PDSCH上傳輸訊務資料及/或其他資料。
在標題名稱為「Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation」的3GPP TS 36.211中,描述了LTE中的PSS、SSS、CRS和PBCH,其中該文件是公眾可獲得的。
圖4圖示用於具有普通循環字首的下行鏈路的兩種示例性子訊框格式410和420。可以將可用於下行鏈路的時間頻率資源劃分成一些資源區塊。每一個資源區塊可以覆蓋一個時槽中的12個次載波,每一個資源區塊可以包括多個資源元素。每一個資源元素可以覆蓋一個符號週期中的一個次載波,每一個資源元素可以用於發送一個調制符號,其中該調制符號可以是實數值,亦可以是複數值。
子訊框格式410可以用於裝備有兩付天線的eNB。可以在符號週期0、4、7和11中,從天線0和1傳輸CRS。參考信號是傳輸器和接收器先前均已知的信號,參考信號亦可以稱為引導頻。CRS是特定於細胞的參考信號,例如其是基於細胞標識(ID)產生的。在圖4中,對於具有標記Ra的給定資源元素,可以從天線a,在該資源元素上傳輸調制符號,而不可在該資源元素上從其他天線傳輸調制符號。子訊框格式420可以用於裝備有四付天線的eNB。可以在符號週期0、4、7和11中,從天線0和1傳輸CRS,在符號週期1和8中,從天線2和3傳輸CRS。對於子訊框格式410和420二者而言,CRS可以在均勻間隔的次載波上傳輸,其中該等次載波可以是基於細胞ID來決定的。不同的eNB可以在相同或不同的次載波上傳輸其CRS,此情形取決於其細胞ID。對於子訊框格式410和420二者而言,不用於CRS的資源元素可以用於傳輸資料(例如,訊務資料、控制資料及/或其他資料)。
對於用於LTE中的FDD的下行鏈路和上行鏈路裡的每一個而言,可以使用交錯結構。例如,可以定義具有索引0到Q -1的Q 個交錯體,其中Q 可以等於4、6、8、10或者某個其他值。每一個交錯體可以包括分隔開Q 個訊框的子訊框。具體而言,交錯體q 可以包括子訊框qq +Qq +2Q 等等,其中
針對下行鏈路和上行鏈路上的資料傳輸,無線網路可以支援混合自動重傳請求(HARQ)。對於HARQ,傳輸器(例如,eNB 110)可以發送封包的一或多個傳輸,直到該封包被接收器(例如,UE 120)正確解碼,或者滿足某種其他終止條件為止。對於同步HARQ,可以在單個交錯體的子訊框中發送該封包的所有傳輸。對於非同步HARQ,該封包的每一個傳輸可以在任意子訊框中發送。
UE可以位於多個eNB的覆蓋範圍之內。可以選擇該等eNB中的一個來服務該UE。可以基於諸如接收信號強度、接收信號品質、路徑損耗等等之類的各種標準,來選擇服務的eNB。可以經由信號與干擾加雜訊比(SINR),或者參考信號接收品質(RSRQ)或者某種其他度量,對接收信號品質進行量化。UE可能在顯著干擾場景下進行操作,其中在顯著干擾場景下,UE可以觀測到來自一或多個干擾eNB的強干擾。
如上文所提及的,無線通訊網路(例如,無線通訊網路100)中的一或多個UE可以是與無線通訊網路中的其他(非LC)設備相比,具有有限通訊資源的設備(例如,LC UE)。
在一些系統中,例如在LTE版本13中,LC UE可以受限於可用系統頻寬中的特定窄頻分配(例如,具有不超過六個資源區塊(RB))。但是,LC UE能夠重新調諧到LTE系統的可用系統頻寬中的不同窄頻區域(例如,進行操作及/或常駐),例如以便在LTE系統中共存。
再舉一個LTE系統中的共存的實例,LC UE能夠接收(重複地)傳統實體廣播通道(PBCH)(例如,通常攜帶有可以用於初始存取細胞的參數的LTE實體通道),以及支援一或多個傳統實體隨機存取通道(PRACH)格式。例如,LC UE能夠接收傳統PBCH,其跨多個子訊框具有一或多個額外的PBCH的重複。再舉一個實例,LC UE能夠在LTE系統中向eNB傳輸PRACH的一或多個重複(例如,在支援一或多個PRACH格式的情況下)。PRACH可以用於標識LC UE。此外,重複的PRACH嘗試的數量可以由eNB進行配置。
此外,LC UE亦可以是鏈路預算受限的設備,並且可以基於其鏈路預算限制,在不同的操作模式下進行操作(例如,引起向LC UE傳輸不同數量的重複訊息,或者從LC UE傳輸不同數量的重複訊息)。例如,在一些情況下,LC UE可以操作在幾乎沒有重複的普通覆蓋模式下(例如,UE成功地接收及/或傳輸訊息所需要的重複數量可以較低,或者甚至可以不需要重複)。或者,在一些情況下,LC UE可以操作在可以具有較高數量的重複的覆蓋增強(CE)模式下。例如,對於328位元有效負荷而言,CE模式下的LC UE可能需要有效負荷的150或者更多次重複,以便成功地接收有效負荷。
在一些情況下,例如,亦針對於LTE版本13,LC UE可能關於其對廣播和單播傳輸的接收,僅具有有限的能力。例如,LC UE接收的廣播傳輸的最大傳輸塊(TB)大小可能被限制於1000位元。另外,在一些情況下,LC UE可能不能在一個子訊框中接收多於一個的單播TB。在一些情況下(例如,對於上文所描述的CE模式和普通模式二者而言),LC UE可能不能在一個子訊框中接收多於一個的廣播TB。此外,在一些情況下,LC UE可能不能在一個子訊框中接收單播TB和廣播TB二者。
對於MTC而言,在LTE系統中共存的LC UE亦可以支援用於某些程序(例如,傳呼、隨機存取程序等等)的新訊息(例如,與用於該等程序的在LTE中使用的習知訊息相比)。換言之,用於傳呼、隨機存取程序等等的該等新訊息,可以與用於和非LC UE相關聯的類似程序的訊息是分開的。例如,與在LTE中使用的習知傳呼訊息相比,LC UE能夠監測及/或接收非LC UE不能夠進行監測及/或接收的傳呼訊息。類似地,與在習知隨機存取程序中使用的習知隨機存取回應(RAR)訊息相比,LC UE能夠接收亦不能夠被非LC UE進行接收的RAR訊息。此外,與LC UE相關聯的新傳呼和RAR訊息,亦可以被重複一次或多次(例如,「附隨」)。此外,針對該等新訊息,可以支援不同數量的重複(例如,不同的附隨大小)。寬頻系統中的示例性窄頻共存
如上文所提及的,在無線通訊網路中,可以支援窄頻(例如,MTC或NB-IoT)操作(例如,與LTE或者某種其他RAT共存)。例如,圖5A和圖5B圖示MTC操作中的LC UE如何可在寬頻系統(例如,LTE)中共存的實例。
如在圖5A的示例性訊框結構中所示,與MTC及/或eMTC操作相關聯的子訊框510可以與和LTE(或者某種其他RAT)相關聯的一般子訊框520進行分時多工(TDM)。
另外地或替代地,如在圖5B的示例性訊框結構中所示,MTC中的LC UE所使用的一或多個窄頻區域560、562,可以在LTE支援的更寬頻寬550中進行分頻多工。可以針對MTC及/或eMTC操作,支援多個窄頻區域,其中每一個窄頻區域跨度不超過總共6個RB的頻寬。在一些情況下,MTC操作中的每一個LC UE可以在一個時間,在一個窄頻區域中(例如,以1.4 MHz或者6個RB)操作。但是,在任何給定的時間,MTC操作中的LC UE可以重新調諧到更寬系統頻寬中的其他窄頻區域。在一些實例中,多個LC UE可以由同一窄頻區域進行服務。在其他實例中,多個LC UE可以由不同的窄頻區域進行服務(例如,每一個窄頻區域跨度6個RB)。在其他實例中,LC UE的不同組合可以由一或多個相同的窄頻區域及/或一或多個不同的窄頻區域進行服務。
LC UE可以由於各種不同的操作,在窄頻區域中操作(例如,監測/接收/傳輸)。例如,如圖5B中所示,一或多個LC UE可以針對於來自無線通訊網路中的BS的PSS、SSS、PBCH、MTC信號傳遞或者傳呼傳輸,對子訊框552的第一窄頻區域560(例如,其跨度不超過6個RB的寬頻資料)進行監測。此外,如圖5B中所示,LC UE可以使用子訊框554的第二窄頻區域562(例如,其亦跨度不超過6個RB的寬頻資料),來傳輸先前在從BS接收的信號傳遞中配置的RACH或者資料。在一些情況下,第二窄頻區域可以由使用第一窄頻區域的相同LC UE來使用(例如,LC UE可以在第一窄頻區域中進行監測之後,重新調諧到第二窄頻區域來進行傳輸)。在一些情況下(儘管未圖示),第二窄頻區域可以由與使用第一窄頻區域的LC UE不同的LC UE來使用。
儘管本文所描述的實例假定6個RB的窄頻,但熟習此項技術者應當認識到,本文所提供的技術亦可以應用於不同大小的窄頻區域。用於 MTC 的示例性窄頻管理
如上文所提及的,在某些系統中(例如,在LTE版本12中),可以支援用於MTC(例如,eMTC)的窄頻操作。支援MTC的窄頻操作的細胞,可以具有不同的系統頻寬來用於下行鏈路(DL)和上行鏈路(UL)操作。具有不同的DL和UL系統頻寬(SB)的細胞,可以以與用於將UL系統頻寬組織為窄頻區域的方式不同的方式,將DL系統頻寬組織為窄頻區域。因此,本案內容的態樣提供了用於將DL系統頻寬和UL系統頻寬組織為窄頻區域的技術。
支援MTC的窄頻操作和傳統UE的細胞,可以從傳統UE接收傳統PUCCH傳輸。可以在細胞的UL系統頻寬的任一邊緣或者兩個邊緣處,傳輸傳統PUCCH傳輸。因此,本案內容的態樣提供了用於保留UL窄頻區域中包括的傳輸資源,以便傳統PUCCH傳輸進行使用的技術。類似的保留亦可以應用於DL窄頻區域,以便其他傳統DL信號或者通道進行使用。
支援用於MTC的窄頻操作的細胞,亦可以支援探測參考信號(SRS)的傳輸。用於SRS的傳輸的當前最小定義的頻寬是四個RB。但是,如上文所提及的,窄頻區域的頻寬是六個RB。六個RB不可被四個RB整除的事實,對於在基於六個RB的窄頻操作中,使用四個RB來管理SRS傳輸產生了一些挑戰。因此,本案內容的態樣提供了用於在支援窄頻操作(例如,用於MTC)的細胞中,分配用於傳輸SRS的傳輸資源的技術。
使用FDD進行操作的細胞可以具有與該細胞的UL系統頻寬相比,具有不同的大小的DL系統頻寬。例如,細胞可以在十MHz的系統頻寬中執行DL操作,在五MHz的系統頻寬中執行UL操作。為了支援MTC操作和MTC UE,細胞可以將DL系統頻寬和UL系統頻寬組織成窄頻區域。控制該細胞的eNB或者其他BS可以向MTC UE分配DL窄頻區域,以便MTC UE對來自該eNB的信號進行監測。類似地,eNB(或者其他BS)可以向MTC UE分配UL窄頻區域,以便MTC在傳輸UL信號時使用。在該實例中,細胞可以將DL系統頻寬組織成八個DL窄頻區域,而將UL系統頻寬組織成四個UL窄頻區域。
當BS(例如,eNB或者細胞)支援MTC UE時,其中細胞的DL系統頻寬和UL系統頻寬被組織成窄頻區域,BS可以在DL窄頻區域和UL窄頻區域之間建立映射,使得向MTC UE分配DL窄頻區域,隱含著向該MTC UE分配UL窄頻區域。具有映射使BS能夠簡化該細胞中的資源的排程,例如,BS可以在相應的UL窄頻區域上,預期針對在DL窄頻區域上去往MTC UE的傳輸的ACK/NAK。同樣,MTC UE在針對該MTC UE所分配的DL窄頻區域上,對DL傳輸進行監測,並使用相應的UL窄頻區域上的傳輸進行回應。
根據本案內容的態樣,提供了用於BS映射UL窄頻區域和DL窄頻區域的技術。BS可以決定由該BS所支援的UL系統頻寬和DL系統頻寬的最小大小,決定可以以所決定的大小來組織的窄頻區域的數量,隨後以該窄頻區域數量來組織該DL系統頻寬和UL系統頻寬二者。轉而,BS可以將每一個DL窄頻區域映射到一個UL窄頻區域。例如,細胞可以在十MHz的系統頻寬中執行DL操作,在五MHz的系統頻寬中執行UL操作。在該實例中,BS可以決定UL系統頻寬和DL系統頻寬的最小大小是五MHz,隨後決定該BS可以在五MHz系統頻寬中組織四個窄頻區域。仍然在該實例中,BS可以轉而在DL系統頻寬中組織四個DL窄頻區域,在UL系統頻寬中組織四個UL窄頻區域,並且將每個DL窄頻區域映射到一個UL窄頻區域。
圖6圖示DL窄頻區域到UL窄頻區域的示例性映射600,如前述。圖1中的eNB 110a可以使用此種映射。儘管圖6將DL系統頻寬610和UL系統頻寬650圖示成看上去在相同的頻率範圍中,但在使用FDD的細胞中DL系統頻寬和UL系統頻寬處於不同頻率範圍中。DL系統頻寬610是十MHz或者五十個RB寬,UL系統頻寬650是五MHz或者二十五個RB寬。支援MTC UE並同時操作DL系統頻寬610和UL系統頻寬650的BS,可以決定與DL系統頻寬610相比,UL系統頻寬650更小(UL系統頻寬650的5 MHz大小是UL系統頻寬650和DL系統頻寬610的最小大小)。隨後,BS可以決定該BS能從UL系統頻寬650中組織四個窄頻區域652、654、656和658。隨後,BS可以決定從DL系統頻寬中組織四個窄頻區域,並對來自DL系統頻寬的DL窄頻區域612、614、616和618進行組織。隨後,BS可以將DL窄頻區域612映射到UL窄頻區域652,將DL窄頻區域614映射到UL窄頻區域654,將DL窄頻區域616映射到UL窄頻區域656,將DL窄頻區域618映射到UL窄頻區域658。
如上文所提及的,在LTE版本12中介紹了LC MTC UE。在LTE版本13(Rel-13)中可以進行額外的增強,以支援MTC操作。例如,MTC UE能夠在更寬系統頻寬(例如,1.4 MHz、3 MHz、5 MHz、10 MHz、15 MHz、20 MHz)中的1.4 MHz或六個RB的窄頻區域中進行操作(例如,監測、傳輸和接收)。作為第二實例,基地站和MTC UE可以經由某種技術(例如,附隨),支援多達20 dB的覆蓋增強(CE)。此外,覆蓋增強亦可以稱為覆蓋擴展和範圍擴展。
當UE需要與該UE當前沒有連接到的細胞進行連接時,該UE和細胞參與稱為隨機存取通道(RACH)程序的訊息的交換。在RACH程序中,UE在為實體隨機存取通道(PRACH)信號所保留的傳輸資源集中,傳輸PRACH信號(其有時稱為RACH程序的Msg1),隨後,細胞使用在下行鏈路共享通道(DL-SCH)上攜帶的隨機存取回應(RAR)訊息(其有時稱為RACH程序的Msg2)來回應該PRACH信號。UE使用RRC連接請求訊息(其有時稱為RACH程序的Msg3)來回應該RAR訊息,細胞使用爭用解決訊息(其有時稱為RACH程序的Msg4)進行回應。隨後,UE與該細胞相連接。
在當前(例如,LTE版本12)無線技術中,由MTC設備傳輸的PRACH信號包括單個音調中的一個具有4個符號的群組,並使用2個躍變值。
如下文所進一步詳細描述的,根據本案內容的某些態樣,可以在基於上行鏈路的定位程序中,使用PRACH信號。窄頻定位信號設計方案和程序
如前述,部署有窄頻設備(例如,MTC和NB-IoT設備)的系統在執行定位程序時將遭遇挑戰。該等挑戰可能源自於有限的頻率維度(例如,200 kHz的1個RB系統頻寬)、多使用者容量和某些設備部署中的深度覆蓋,以及支援不同的覆蓋增強位準的可能性。在一些情況下,可能期望多達20 dB的覆蓋增強,此情形可以經由長附隨來實現(例如,在多個子訊框上進行,此舉影響有限的時間資源)。此外,該等系統可以具有相對較大的細胞半徑(例如,多達35 km),此舉導致較長的傳輸延遲(例如,多達200 μs)。
本案內容的態樣提供了用於在部署有窄頻設備的系統中進行定位的各種機制。如下文所進一步詳細描述的,該等機制可以包括基於下行鏈路的定位程序(基於DL定位參考信號或者DL PRS)、基於上行鏈路的定位程序(基於UL PRS)和混合方法(例如,基於DL PRS和UL PRS的組合)。
通常,可以在預先定義的頻寬中,並根據諸如子訊框偏移、週期和持續時間之類的一組配置參數,來傳輸PRS信號。此外,網路的每一個細胞可以應用不同的靜音模式(其定義細胞不傳輸PRS的時間),以盡力避免干擾從其他細胞傳輸的PRS。可以在預先定義的子訊框處,並重複地傳輸PRS(例如,在可以稱為「定位機會」的若干連續子訊框中)。PRS自身可以是基於任何適當的已知序列(例如,Zadoff-Chu序列)。來自不同細胞的PRS可以在碼域中多工(每一個細胞傳輸不同的(正交的)PRS序列),在頻域中多工(例如,按照不同的頻率偏移),及/或在時域中多工(例如,使用基於時間的閒置)。
根據基於DL的定位方法,一或多個基地站可以在更寬系統頻寬中的一或多個窄頻區域中傳輸PRS。無線節點(例如,UE)可以監測該DL PRS,基於該DL PRS來執行時序及/或位置估計。UE可以經由獲得BS(其中UE從該等BS接收到DL PRS)的位置,並基於該等BS的位置和DL PRS的時序來執行三邊量測程序,來對該UE的位置進行估計。另外地或替代地,UE可以向位置服務(LCS)伺服器提供BS(其中UE從該等BS接收到DL PRS)的標識符和時序資訊及/或彼等參數,其中LCS伺服器可以執行三邊量測來估計該UE的位置。
如圖7中所示,在一些情況下,PRS 702可以是交錯的(例如,跨度子訊框中的符號及/或跨度PRS音調)。此外,可以重複PRS(例如,跨度同一子訊框中的多個符號或者跨度多個子訊框)。跨度多個音調交錯可以提供頻率分集,並適合於涉及基於IDFT的接收器的寬頻操作。可以佈置PRS 702的位置,以避免CRS 704和用於命令信號傳遞(例如,PCFICH/PHICH/PDCCH)的資源706(例如,前三個符號)。
如圖8中所示,在單個音調中對PRS進行重複及/或交錯,可以允許PRS的相干合併(其提供額外的增益)。並且可以在無需估計頻率偏移的情況下,進行PRS的合併。PRS可以例如跨度時槽或者跨度子訊框躍變到不同PRS音調(例如,具有不同的音調索引的音調)。可以經由將810處的PRS與820處的PRS進行比較觀察到跨度子訊框從一個音調到另一個音調的PRS躍變的實例。
在單個音調中重複及/或交錯PRS,可以特別適合於涉及處於深度覆蓋的設備及/或基於相位偏移的接收器的定位程序。對於帶內部署而言(例如,當窄頻區域在用於寬頻通訊的系統頻寬之內時),PRS的循環字首(CP)可以與用於寬頻通訊的CP(例如,普通CP或者擴展CP)相同。在一些情況下,CP可能受到細胞大小的限制(例如,給定大小的細胞需要用於對該細胞中的信號進行準確解碼的最小CP)。
對於UL-PRS而言,在一些情況下,可以傳輸類似實體隨機存取通道(PRACH)的信號(例如,在具有2個躍變值的單個音調中)。在該等情況下,單個類似於PRACH的PRS傳輸可以意欲到達多個BS。由於UE通常與服務細胞的DL時序對準,因此UE可以基於該DL時序來傳輸PRS。UE基於該UE的服務細胞的DL時序所傳輸的PRS,可能對於一或多個相鄰細胞的基地站中的PRS造成負延遲(例如,若與服務細胞的BS相比,UE更靠近相鄰細胞的BS,則來自該UE的PRS將更早地到達該相鄰細胞的BS,並呈現為具有負延遲)。用於解決此情形的一種方法是使BS進行監測以偵測具有負延遲的PRS。另一種方法是UE對PRS傳輸延遲某個量,其中對該量進行選擇,使得當從該UE接收PRS時所有期望的BS將經歷正延遲,並因此消除對具有負延遲的PRS進行檢查的需求。
在一些情況下,用於定位的類似於PRACH的信號,可以與普通PRACH相比具有不同的參數(例如,CP長度、頻帶、音調、時間、躍變值)。在一些情況下,BS(例如,eNB)可以在對UE的PRACH(例如,排程的或者命令的PRACH)進行排程的PDCCH中設置1位元,以便向該UE指示該PRACH將用於定位或者PRS程序(與PRACH程序相比)。隨後,UE可以偵測該位元被設置,並進行相應地動作(例如,若用於PRS的話,延遲UL傳輸)。
如圖9中所示,在一些情況下,可以使用固定躍變值在單個音調上傳輸UL PRS。在一些情況下,不同類型的信號可用於PRS,例如,其具有與上文所描述的類似於PRACH信號不同的參數(例如,不同的CP長度、不同的音調間隔、不同數量的躍變值或者不同的躍變值)。在一些情況下,除了固定躍變值之外,亦可以使用隨機躍變值。
在一些情況下,UL及/或DL PRS程序的一或多個態樣可以是依賴於細胞的。例如,對於具有同步的eNB的小型細胞大小而言,距離最遙遠的eNB的距離可以位於用於普通資料的CP之中,可以使用與用於普通資料的CP相同的CP長度來傳輸PRS。再舉一個實例,UE可以首先執行細胞存取,獲得PRS配置(用於該細胞),並且與此同時,從多個細胞接收PRS,執行針對多個細胞的時序及/或位置估計。
根據本案內容的態樣,若UE處於連接模式,則UE可以接收用於傳輸UL PRS的排程(例如,UL容許)。在一些情況下,UE可以向多個細胞傳輸具有一個躍變值的作為單個音調的UL PRS(例如,如圖9中所示)。在該等情況下,從UE到服務於多個細胞中的一個細胞的最遠BS(例如,eNB)的往返延遲,應當在UL PRS的CP的長度之內。在一些情況下,可以基於細胞大小及/或CP大小來決定一個躍變值。在一些情況下,多個BS(例如,eNB)可以基於UL PRS,來同時地估計時序及/或位置。
另一態樣,對於較大的細胞大小及/或非同步細胞而言(其中在該情況下,BS是不同步的),可以分階段執行基於DL的PRS程序。例如,在第一階段中,UE可以基於PSS/SSS/PBCH來獲取每個細胞。當UE已經獲取各個細胞時,UE可以從該細胞獲取PRS配置及/或其他資訊。在第二階段中,UE可以基於DL PRS和使用從細胞獲取的資訊(例如,PRS配置、時序資訊)(若有的話)來執行時序估計,如前述。當然,具有不同的CP長度的其他細胞信號可能造成細胞間干擾。
在一些情況下,亦可以分多個階段執行基於UL的PRS程序。例如,在第一階段中,UE可以向多個BS發送作為單個傳輸的UL PRS(若該等BS的細胞較小及/或同步的話),或者對於BS服務較大的及/或非同步的細胞的情況,傳輸多個PRS傳輸(每一個對應一個或幾個BS)。如上文參照圖8-圖9所描述的,可以使用固定躍變值在單個音調上及/或使用隨機躍變值,來傳輸UL PRS。在第二階段,每一個BS可以基於針對於該BS的UL PRS,來執行時序估計。
在混合PRS程序中,可以使用UL PRS和DL PRS的組合。例如,在「DL-UL-DL」混合方法中,UE可以從服務細胞獲得DL PRS,以及獲得用於多個細胞的UL PRS配置。UE可以接收針對UL PRS的eNB排程,基於該UL PRS配置來傳輸UL PRS,如上文參照圖8-圖9所描述的。隨後,eNB可以執行eNB之間的粗略DL時序偏移估計。隨後,UE可以接收與該等eNB中的一或多個eNB相對應的一或多個DL時序調整。對於每一個細胞而言,UE可以調整DL時序(例如,經由應用DL時序調整),使用所調整的DL時序來執行基於DL的PRS程序。
在「DL-DL-UL」混合方法中,UE可以再次從服務細胞獲得DL PRS,以及獲得用於多個鄰點細胞的UL PRS配置。隨後,UE可以使用PSS/SSS,來獲得針對服務於多個鄰點細胞的BS的DL時序偏移估計。對於每一個鄰點細胞而言,UE可以基於針對每一個鄰點細胞的DL時序偏移,來決定UL時序調整(TA)調整。隨後,UE可以基於針對每個鄰點細胞的UL TA調整,來傳輸UL PRS。
在一些情況下,例如,當存在多個可用的RB時,可以使用躍變來擴展PRS頻寬。在該等情況下,對於基於DL的PRS而言,eNB可以在多個RB上傳輸PRS信號(例如,UE在每一個時間週期,在一個RB中接收PRS)。UE可以重新調諧接收器,以接收不同的RB中的PRS,隨後,對源自於該重新調諧的相位偏移進行估計,並補償該相位偏移。UE可以將所接收到的PRS RB串接在一起,以高效地處理更寬頻寬的PRS信號。隨後,UE可以使用該等增強型(例如,串接的)PRS信號來估計時序。
對於基於UL的PRS而言,UE可以在不同的時間,在不同的音調及/或RB位置(例如,在同一子訊框中或者跨度多個子訊框的不同符號)處來傳輸UL PRS。在該情況下,eNB可以估計由於重新調諧(例如,用於在不同的音調及/或RB位置中接收PRS)而造成的相位偏移,並補償該相位偏移。在該等情況下,eNB可以將多個音調及/或RB串接在一起,以高效地處理更寬頻寬的PRS信號。在一些情況下,連續的PRS子訊框可以比傳統的更長,可以具有更小的週期,及/或每一週期可以具有更多的PRS子訊框。
此外,不同的eNB在傳輸DL PRS時,亦可以使用不同的RB,以避免或者減少靜音。在一些情況下,eNB可以保留一些RB僅僅用於定位(例如,用於傳輸PRS),其中為彼等RB排程較少或不排程普通資料(例如,PDSCH)。
圖10-圖17圖示從基地站(例如,eNB)和無線節點(例如,UE)角度來看,用於基於DL的PRS程序和基於UL的PRS程序的各種操作。
例如,圖10圖示根據本案內容的某些態樣,可以由BS執行的、用於基於下行鏈路的窄頻PRS的示例性操作1000。操作1000開始於1002處,決定更寬系統頻寬中用於向一或多個無線節點傳輸下行鏈路定位參考信號(PRS)的窄頻區域內資源。在1004處,BS使用所決定的資源來傳輸下行鏈路PRS,其中該傳輸包括:傳輸跨度下文中的至少一項重複的PRS的音調:同一子訊框中的多個符號,或者多個連續的子訊框。
圖11圖示可以由無線節點執行的、用於基於下行鏈路的窄頻PRS的示例性操作1100,其可以視作為圖10的操作1000的互補操作。例如,操作1100可以由UE來執行,其中該UE監測在圖10中傳輸的DL PRS。操作1100開始於1102處,監測在更寬系統頻寬中的窄頻區域中,從一或多個基地站(BS)傳輸的定位參考信號(PRS),其中PRS的音調跨度下文中的至少一項進行重複:同一子訊框中的多個符號,或者多個連續子訊框。在1104處,無線節點基於該PRS,估計來自一或多個基地站的時序。
圖12圖示根據本案內容的某些態樣,可以由無線節點執行的、用於基於上行鏈路的窄頻PRS的示例性操作1200。操作1200開始於1202處,決定更寬系統頻寬中用於向一或多個基地站傳輸定位參考信號(PRS)的窄頻區域內資源。在1204處,無線節點使用所決定的資源來傳輸PRS。
圖13圖示可以由BS執行的、用於基於上行鏈路的窄頻PRS的示例性操作1300,其可以視作為圖12的操作1200的互補操作。例如,操作1300開始於1302處,監測在更寬系統頻寬中的窄頻區域中,從無線節點傳輸的第一定位參考信號(PRS)。在1304處,BS基於該第一PRS,估計來自該無線節點的時序。
圖14圖示根據本案內容的某些態樣,可以由BS執行的、用於跨度多個窄頻的基於下行鏈路的PRS的示例性操作1400。操作1400開始於1402處,決定更寬系統頻寬中用於向至少一個無線節點傳輸定位參考信號(PRS)的複數個窄頻區域裡的資源。在1404處,BS使用所決定的資源來傳輸PRS。
圖15圖示可以由無線節點執行的、用於跨度多個窄頻的基於下行鏈路的窄頻PRS的示例性操作1500,其可以視作為圖14的操作1400的互補操作。操作1500開始於1502處,監測跨度更寬系統頻寬中的複數個窄頻區域,從一或多個基地站傳輸的定位參考信號(PRS),其中PRS的音調跨度下文中的至少一項進行重複:同一子訊框中的多個符號,或者多個連續子訊框。在1504處,無線節點基於該PRS,估計下行鏈路時序或者該無線節點的相對位置中的至少一個。
圖16圖示根據本案內容的某些態樣,可以由無線節點執行的、用於跨度多個窄頻的基於上行鏈路的窄頻PRS的示例性操作1600。操作1600開始於1602處,決定更寬系統頻寬中用於向一或多個基地站傳輸定位參考信號(PRS)的複數個窄頻區域裡的資源。在1604處,無線節點使用所決定的資源來傳輸PRS。
圖17圖示根據本案內容的某些態樣,可以由BS執行的、用於跨度多個窄頻的基於上行鏈路的窄頻PRS的示例性操作1700,其可以視作為圖16的操作1600的互補操作。例如,操作1700開始於1702處,監測跨度更寬系統頻寬中的複數個窄頻區域,從無線節點傳輸的定位參考信號(PRS)。在1704處,BS基於該PRS,估計上行鏈路時序或者該無線節點的相對位置中的至少一個。
如前述,本文所提供的基於DL的PRS技術和基於UL的PRS技術,可以有助於在部署有窄頻設備(例如,NB-IoT設備)的系統中實現定位程序。
如本文所使用的,術語「或」意味著包含性的「或」而不是排外的「或」。亦即,除非另外說明或者從上下文中明確得知,否則例如短語「X使用A或B」意味任何自然的包含性排列。亦即,例如,任何以下實例皆滿足短語「X使用A或B」:X使用A;X使用B;或者X使用A和B二者。如本文所使用的,除非特別說明,否則用單數形式修飾某一要素並不意味著「一個且僅僅一個」,而是「一或多個」。例如,除非另外明確指出,或者從上下文中明確得知其針對於單數形式,否則如本案及所附申請專利範圍中所使用的冠詞「一(a)」和「一個(an)」應當通常被解釋為意味著「一或多個」。除非另外明確指出,否則術語「一些」代表一或多個。如本文所使用的,代表一個項目列表「中的至少一個」的短語是指該等項目的任意組合,其包括單個成員。舉例而言,「abc 中的至少一個」意欲覆蓋:abca-ba-cb-ca ‑b ‑c ,以及具有多個相同要素的任意組合(例如,a-aa-a-aa-a-ba-a-ca-b-ba-c-cb-bb-b-bb-b-cc-cc-c-c 或者abc 的任何其他排序)。
結合本文所揭示內容描述的方法或者演算法的步驟可直接體現為硬體、由處理器執行的軟體模組或者二者的組合。軟體應當被廣泛地解釋為意味著指令、資料、代碼或者其任意組合,無論其被稱為軟體、韌體、中間軟體、代碼、微代碼、硬體描述語言、機器語言還是其他術語。軟體模組可以位於RAM記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、EEPROM記憶體、PCM(相變記憶體)、暫存器、硬碟、可移除磁碟、CD-ROM或者本領域已知的任何其他形式的儲存媒體中。可以將示例性儲存媒體耦合到處理器,從而使該處理器能夠從該儲存媒體讀取資訊,及/或向該儲存媒體寫入資訊。或者,儲存媒體亦可以是處理器的組成部分。處理器和儲存媒體可以位於ASIC中。該ASIC可以位於使用者終端中。或者,處理器和儲存媒體亦可以作為個別元件存在於使用者終端中。通常,在附圖中圖示有操作的地方,該等操作可以具有類似地進行編號的相應配對的手段加功能元件。例如,圖10-圖17中圖示的操作1000-1700,具有圖10A-圖17A中所圖示的相應手段加功能元件1000A-1700A。
在一或多個示例性設計方案中,所描述功能可以用硬體、軟體或者其組合的方式來實現。當在軟體中實現時,可以將該等功能儲存在電腦可讀取媒體上或者作為電腦可讀取媒體上的一或多個指令或代碼進行傳輸。電腦可讀取媒體包括電腦儲存媒體和通訊媒體二者,其中通訊媒體包括促進從一個地方向另一個地方傳送電腦程式的任何媒體。儲存媒體可以是通用或特定用途電腦能夠存取的任何可用媒體。舉例而言,但非做出限制,此種電腦可讀取媒體可以包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存、磁碟儲存或其他磁儲存設備,或者能夠用於攜帶或儲存具有指令或資料結構形式的期望的程式碼構件並能夠由通用或特定用途電腦,或者通用或特定用途處理器進行存取的任何其他媒體。此外,任何連接可以適當地稱為電腦可讀取媒體。例如,若軟體是使用同軸電纜、光纖光纜、雙絞線、數位用戶線路(DSL)或者諸如紅外線、無線電和微波之類的無線技術從網站、伺服器或其他遠端源傳輸的,則同軸電纜、光纖光纜、雙絞線、DSL或者諸如紅外線、無線電和微波之類的無線技術包括在該媒體的定義中。如本文所使用的,磁碟和光碟包括壓縮光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和和藍光光碟,其中磁碟通常磁性地複製資料,而光碟則用雷射來光學地複製資料。上文的組合亦應當包括在電腦可讀取媒體的範疇之內。
為使任何熟習此項技術者能夠實施或者使用本案內容,上文圍繞本案內容進行了描述。對於熟習此項技術者而言,對所揭示內容的各種修改是顯而易見的,並且,本文所定義的整體原理亦可以在不脫離本案內容的精神或範疇的基礎上適用於其他變型。因此,本案內容並不限於本文所描述的實例和設計方案,而是符合與本文所揭示的原理和新穎性特徵相一致的最廣範疇。
100‧‧‧無線通訊網路
102a‧‧‧巨集細胞
102b‧‧‧微微細胞
102c‧‧‧毫微微細胞
110‧‧‧BS/eNB
110a‧‧‧巨集eNB
110b‧‧‧微微eNB
110c‧‧‧毫微微eNB
110d‧‧‧中繼(站)eNB
120‧‧‧UE
120a‧‧‧UE
120b‧‧‧UE
120c‧‧‧UE
120d‧‧‧UE
130‧‧‧網路控制器
212‧‧‧資料來源
220‧‧‧傳輸處理器
230‧‧‧傳輸(TX)多輸入多輸出(MIMO)處理器
232a‧‧‧調制器/解調器
232t‧‧‧調制器/解調器
234a‧‧‧天線
234t‧‧‧天線
236‧‧‧MIMO偵測器
238‧‧‧接收處理器
239‧‧‧資料槽
240‧‧‧控制器/處理器
242‧‧‧記憶體
244‧‧‧通訊單元
246‧‧‧排程器
252a‧‧‧天線
252r‧‧‧天線
254a‧‧‧解調器/調制器
254r‧‧‧解調器/調制器
256‧‧‧MIMO偵測器
258‧‧‧接收處理器
260‧‧‧資料槽
262‧‧‧資料來源
264‧‧‧傳輸處理器
266‧‧‧TX MIMO處理器
280‧‧‧控制器/處理器
282‧‧‧記憶體
290‧‧‧控制器/處理器
292‧‧‧記憶體
294‧‧‧通訊單元
300‧‧‧訊框結構
410‧‧‧子訊框格式
420‧‧‧子訊框格式
550‧‧‧更寬頻寬
552‧‧‧子訊框
554‧‧‧子訊框
560‧‧‧第一窄頻區域
562‧‧‧第二窄頻區域
600‧‧‧映射
610‧‧‧DL系統頻寬
612‧‧‧DL窄頻區域
614‧‧‧DL窄頻區域
616‧‧‧DL窄頻區域
618‧‧‧DL窄頻區域
650‧‧‧UL系統頻寬
652‧‧‧UL窄頻區域
654‧‧‧UL窄頻區域
656‧‧‧UL窄頻區域
658‧‧‧UL窄頻區域
702‧‧‧PRS
704‧‧‧CRS
706‧‧‧資源
1000‧‧‧操作
1000A‧‧‧手段加功能元件
1002‧‧‧方塊
1002A‧‧‧構件
1004‧‧‧方塊
1004A‧‧‧構件
1100‧‧‧操作
1100A‧‧‧手段加功能元件
1102‧‧‧方塊
1102A‧‧‧構件
1104‧‧‧方塊
1104A‧‧‧構件
1200‧‧‧操作
1200A‧‧‧手段加功能元件
1202‧‧‧方塊
1202A‧‧‧構件
1204‧‧‧方塊
1204A‧‧‧構件
1300‧‧‧操作
1300A‧‧‧手段加功能元件
1302‧‧‧方塊
1302A‧‧‧構件
1304‧‧‧方塊
1304A‧‧‧構件
1400‧‧‧操作
1400A‧‧‧手段加功能元件
1402‧‧‧方塊
1402A‧‧‧構件
1404‧‧‧方塊
1404A‧‧‧構件
1500‧‧‧操作
1500A‧‧‧手段加功能元件
1502‧‧‧方塊
1502A‧‧‧構件
1504‧‧‧方塊
1504A‧‧‧構件
1600‧‧‧操作
1600A‧‧‧手段加功能元件
1602‧‧‧方塊
1602A‧‧‧構件
1604‧‧‧方塊
1604A‧‧‧構件
1700‧‧‧操作
1700A‧‧‧手段加功能元件
1702‧‧‧方塊
1702A‧‧‧構件
1704‧‧‧方塊
1704A‧‧‧構件
為了能夠詳細地理解本案內容的上文所描述特徵的實現方式,本案針對上文的簡要概括參考一些態樣提供了更具體的描述,該等態樣中的一些在附圖中給予了說明。但是,應當注意的是,由於本發明的描述可准許其他等同的有效態樣,因此該等附圖僅僅圖示了本案內容的某些典型態樣,其不應被認為限制本發明的範疇。
圖1是根據本案內容的某些態樣,概念性地圖示一種示例性無線通訊網路的方塊圖。
圖2是根據本案內容的某些態樣,概念性地圖示在無線通訊網路中,進化節點B(eNB)與使用者設備(UE)的通訊的實例的方塊圖。
圖3是根據本案內容的某些態樣,概念性地圖示用於在無線通訊網路中使用的特定無線電存取技術(RAT)的示例性訊框結構的方塊圖。
圖4根據本案內容的某些態樣,圖示用於具有普通循環字首的下行鏈路的示例性子訊框格式。
圖5A和圖5B根據本案內容的某些態樣,圖示諸如LTE的寬頻系統中的MTC共存的實例。
圖6根據本案內容的某些態樣,圖示DL窄頻區域到UL窄頻區域的示例性映射。
圖7根據本案內容的某些態樣,圖示實體資源區塊(PRB)中的示例性定位參考信號(PRS)音調。
圖8根據本案內容的某些態樣,圖示具有跨度子訊框的躍變的PRB中的示例性PRS音調。
圖9根據本案內容的某些態樣,圖示具有跨度子訊框的躍變的、具有單個音調的示例性PRS。
圖10根據本案內容的某些態樣,圖示可以由BS執行的、用於基於下行鏈路的窄頻PRS的示例性操作。
圖10A圖示能夠執行圖10中所圖示的操作的示例性構件。
圖11根據本案內容的某些態樣,圖示可以由無線節點執行的、用於基於下行鏈路的窄頻PRS的示例性操作。
圖11A圖示能夠執行圖11中所圖示的操作的示例性構件。
圖12根據本案內容的某些態樣,圖示可以由無線節點執行的、用於基於上行鏈路的窄頻PRS的示例性操作。
圖12A圖示能夠執行圖12中所圖示的操作的示例性構件。
圖13根據本案內容的某些態樣,圖示可以由BS執行的、用於基於上行鏈路的窄頻PRS的示例性操作。
圖13A圖示能夠執行圖13中所圖示的操作的示例性構件。
圖14根據本案內容的某些態樣,圖示可以由BS執行的、用於跨度多個窄頻的基於下行鏈路的PRS的示例性操作。
圖14A圖示能夠執行圖14中所圖示的操作的示例性構件。
圖15根據本案內容的某些態樣,圖示可以由無線節點執行的、用於跨度多個窄頻的基於下行鏈路的窄頻PRS的示例性操作。
圖15A圖示能夠執行圖15中所圖示的操作的示例性構件。
圖16根據本案內容的某些態樣,圖示可以由無線節點執行的、用於跨度多個窄頻的基於上行鏈路的窄頻PRS的示例性操作。
圖16A圖示能夠執行圖16中所圖示的操作的示例性構件。
圖17根據本案內容的某些態樣,圖示可以由BS執行的、用於跨度多個窄頻的基於上行鏈路的窄頻PRS的示例性操作。
圖17A圖示能夠執行圖17中所圖示的操作的示例性構件。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
1000‧‧‧操作
1002‧‧‧方塊
1004‧‧‧方塊

Claims (68)

  1. 一種用於由一無線節點執行的無線通訊的方法,包括以下步驟: 監測在一更寬系統頻寬中的一窄頻區域中,從一或多個基地站(BS)傳輸的定位參考信號(PRS),其中該PRS的音調跨度下文中的至少一項進行重複:同一子訊框中的多個符號,或者多個連續子訊框;及基於該PRS,估計來自該一或多個基地站的時序。
  2. 根據請求項1之方法,亦包括以下步驟:提供基於所估計的該時序而產生的回饋。
  3. 根據請求項2之方法,其中該回饋包括下文中的至少一項: 指示所估計的該時序的一參數、估計的距該等基地站中的一或多個基地站的一距離,或者該無線節點的一位置。
  4. 根據請求項1之方法,其中從每一個BS傳輸的該PRS是跨度多個窄頻區域傳輸的。
  5. 根據請求項1之方法,其中來自每一個BS的PRS是在該窄頻區域中傳輸的。
  6. 根據請求項5之方法,其中來自每一個BS的PRS是在該窄頻區域中重複的。
  7. 根據請求項6之方法,其中每一個定位參考信號跨度同一子訊框或者另一個子訊框中的一組該多個符號重複。
  8. 根據請求項7之方法,其中用於在不同的子訊框中傳輸PRS的該等音調或其他音調是以下的至少一種情況:在音調索引中交錯或者躍變。
  9. 根據請求項6之方法,其中每一個定位參考信號跨度多個子訊框重複。
  10. 根據請求項6之方法,亦包括以下步驟:針對一給定的子訊框,基於一躍變模式來決定用於監測PRS的該窄頻區域。
  11. 根據請求項1之方法,其中該PRS是使用與下行鏈路傳輸相同的一循環字首(CP)來傳輸的,其中該等下行鏈路傳輸是使用該系統頻寬中比該系統頻寬的該窄頻部分更大的一部分來傳輸的。
  12. 根據請求項1之方法,亦包括以下步驟: 接收一PRS配置;及對根據該PRS配置傳輸的PRS進行監測。
  13. 根據請求項1之方法,其中該PRS是從多個細胞傳輸的。
  14. 根據請求項1之方法,其中該監測該PRS之步驟包括以下步驟:僅在執行與該一或多個基地站中的一個基地站的一細胞擷取程序之後,才監測來自該基地站的該PRS。
  15. 根據請求項1之方法,亦包括以下步驟: 基於所監測的該PRS,估計一下行鏈路時序偏移;及傳輸一上行鏈路PRS,以供該等基地站中的一或多個基地站來使用以估計一上行鏈路時序偏移。
  16. 根據請求項15之方法,其中該下行鏈路時序偏移是根據一服務BS來估計的,並且該方法亦包括以下步驟: 應用該下行鏈路時序偏移,以監測從不同於該服務BS的該一或多個基地站傳輸的PRS。
  17. 一種用於由一基地站執行的無線通訊的方法,包括以下步驟: 監測在一更寬系統頻寬中的一窄頻區域中,從一無線節點傳輸的第一定位參考信號(PRS);及基於該第一PRS,估計來自該無線節點的時序。
  18. 根據請求項17之方法,亦包括以下步驟:提供基於所估計的該時序而產生的回饋。
  19. 根據請求項18之方法,其中該回饋包括下文中的至少一項: 指示所估計的該時序的一參數、估計的距該基地站的一距離,或者該無線節點的一位置。
  20. 根據請求項17之方法,其中該第一PRS包括亦被用作一實體隨機存取通道(PRACH)信號的一傳輸序列。
  21. 根據請求項20之方法,亦包括以下步驟: 在監測該第一PRS之後監測另一個PRS,該第一PRS具有的參數類似於該PRACH信號的參數,該另一個PRS是使用不同於該PRACH信號的該等參數的參數來傳輸的。
  22. 根據請求項20之方法,亦包括以下步驟:傳輸用於指示該無線節點將傳輸該傳輸序列用於一PRS程序還是一PRACH程序的信號傳遞。
  23. 根據請求項17之方法,亦包括以下步驟: 當該無線節點處於一連接模式時,傳輸針對該無線節點要在傳輸該第一PRS中使用的排程資訊;及根據該排程資訊,監測該第一PRS。
  24. 根據請求項17之方法,其中該第一PRS是跨度多個窄頻區域傳輸的。
  25. 根據請求項17之方法,其中該第一PRS的PRS音調跨度下文中的至少一項進行重複: 同一子訊框中的多個符號,或者多個子訊框。
  26. 根據請求項17之方法,亦包括以下步驟:監測來自該第一無線節點的在該窄頻區域中的一第二PRS,其中該第二PRS是該第一PRS的一重複。
  27. 根據請求項26之方法,其中該第二PRS是該第一PRS跨度同一子訊框或者另一個子訊框中的多個其他符號的一重複。
  28. 根據請求項27之方法,亦包括以下步驟:在與該第一PRS的一不同子訊框中,監測來自該第一無線節點的在該窄頻區域中的一第三PRS,其中用於傳輸該第三PRS的音調在與用於傳輸該第一PRS的音調相比時是以下的至少一種情況:在音調索引中交錯或者躍變。
  29. 根據請求項26之方法,其中該第二PRS是該第一PRS跨度多個子訊框的一重複。
  30. 根據請求項29之方法,亦包括以下步驟:針對一給定的子訊框,基於一躍變模式,決定要監測該第一PRS或者該第二PRS的該窄頻區域。
  31. 根據請求項17之方法,其中該第一PRS是使用與下行鏈路傳輸相同的一循環字首(CP)來傳輸的,其中該等下行鏈路傳輸是使用該系統頻寬中比該系統頻寬的該窄頻部分更大的一部分來傳輸的。
  32. 根據請求項17之方法,亦包括以下步驟: 向該無線節點傳輸一PRS配置;及對根據該PRS配置傳輸的該第一PRS進行監測。
  33. 根據請求項17之方法,亦包括以下步驟:監測從一或多個其他無線節點傳輸的其他PRS。
  34. 根據請求項17之方法,亦包括以下步驟: 基於該第一PRS,估計一上行鏈路時序偏移;及傳輸一下行鏈路PRS,以供該無線節點或者一或多個其他無線節點來使用以估計一下行鏈路時序偏移。
  35. 一種用於由一無線節點執行的無線通訊的方法,包括以下步驟: 決定更寬系統頻寬中用於向一或多個基地站傳輸定位參考信號(PRS)的一窄頻區域內資源;及使用所決定的該等資源來傳輸該PRS。
  36. 根據請求項35之方法,其中該PRS包括亦被用作一實體隨機存取通道(PRACH)信號的一傳輸序列。
  37. 根據請求項36之方法,亦包括以下步驟: 在使用基於該PRACH信號的參數的參數來傳輸該PRS之後,使用不是基於該PRACH信號的該等參數的不同參數來傳輸另一個PRS。
  38. 根據請求項36之方法,亦包括以下步驟:接收用於指示傳輸該傳輸序列用於一PRS程序還是一PRACH程序的信號傳遞。
  39. 根據請求項38之方法,亦包括以下步驟:當傳輸該傳輸序列用於該PRS程序時,延遲該PRS的傳輸,以防止該等基地站中的一或多個基地站在偵測該傳輸序列時,監測負的相對延遲。
  40. 根據請求項36之方法,其中該窄頻區域與一資源區塊(RB)中的一單個音調相對應。
  41. 根據請求項36之方法,其中決定該等資源之步驟包括以下步驟:基於一躍變模式決定該等資源,該躍變模式用於決定針對同一子訊框中的不同時間的不同窄頻區域。
  42. 根據請求項35之方法,其中決定該等資源之步驟包括以下步驟:基於一躍變模式來決定該等資源,該躍變模式用於決定針對不同子訊框的不同窄頻區域。
  43. 根據請求項35之方法,亦包括以下步驟: 當處於與該一或多個基地站中的一個基地站的一連接模式時,接收用於傳輸該PRS的排程資訊;及根據該排程資訊來傳輸該PRS。
  44. 根據請求項35之方法,其中該決定之步驟包括以下步驟:基於一躍變模式,決定用於向該一或多個基地站中的不同基地站傳輸該PRS的不同的單個音調。
  45. 根據請求項35之方法,其中該傳輸之步驟包括以下步驟:傳輸要由多個細胞使用以對該無線節點的一相對位置進行估計的該PRS。
  46. 根據請求項35之方法,亦包括以下步驟: 從一服務基地站接收另一個PRS;及基於由另一個基地站傳輸的一主要同步信號(PSS)或者一輔助同步信號(SSS)中的至少一個和該另一個PRS,估計針對該另一個基地站的一下行鏈路時序偏移。
  47. 根據請求項46之方法,亦包括以下步驟: 在向該基地站傳輸另一個PRS時,使用所估計的該下行鏈路時序偏移執行一上行鏈路時序調整。
  48. 一種用於由一基地站執行的無線通訊的方法,包括以下步驟: 決定更寬系統頻寬中用於向一或多個無線節點傳輸下行鏈路定位參考信號(PRS)的一窄頻區域內資源;及使用所決定的該等資源來傳輸該下行鏈路PRS,其中該傳輸包括傳輸跨度下文中的至少一項重複的該下行鏈路PRS的音調:同一子訊框中的多個符號,或者多個連續子訊框。
  49. 根據請求項48之方法,其中該窄頻區域與一資源區塊(RB)中的一單個音調相對應。
  50. 根據請求項48之方法,其中該決定之步驟包括以下步驟:基於一躍變模式選擇用於同一子訊框中的不同時間的不同窄頻區域。
  51. 根據請求項48之方法,其中該決定之步驟包括以下步驟:基於一躍變模式選擇用於不同子訊框的不同窄頻區域。
  52. 根據請求項48之方法,其中該決定之步驟包括以下步驟:基於一躍變模式選擇用於向不同的無線節點傳輸PRS的一不同的單個音調。
  53. 一種用於由一無線節點執行的無線通訊的方法,包括以下步驟: 監測跨度一更寬系統頻寬中的複數個窄頻區域,從一或多個基地站傳輸的定位參考信號(PRS),其中該PRS的音調跨度下文中的至少一項進行重複:同一子訊框中的多個符號,或者多個連續子訊框;及基於該PRS,估計一下行鏈路時序或者該無線節點的一相對位置中的至少一項。
  54. 根據請求項53之方法,其中該監測之步驟包括以下步驟:在不同的監測時間間隔中,針對PRS監測不同的資源區塊(RB)。
  55. 根據請求項53之方法,亦包括以下步驟:基於該PRS,估計一相位偏移。
  56. 根據請求項55之方法,亦包括以下步驟:補償該相位偏移。
  57. 根據請求項53之方法,其中所估計的該下行鏈路時序或者所估計的該無線節點的該相對位置中的至少一項是基於串接在一起的複數個PRS的。
  58. 一種用於由一無線節點執行的無線通訊的方法,包括以下步驟: 決定更寬系統頻寬中用於向一或多個基地站傳輸定位參考信號(PRS)的複數個窄頻區域中的資源;及使用所決定的該等資源來傳輸該PRS。
  59. 根據請求項58之方法,其中該傳輸之步驟包括以下步驟:在不同的傳輸時間間隔中,在不同的資源區塊(RB)中傳輸PRS。
  60. 根據請求項58之方法,其中該傳輸之步驟包括以下步驟:在不同的資源區塊(RB)中,向該一或多個基地站中的不同基地站傳輸PRS。
  61. 一種用於由一基地站執行的無線通訊的方法,包括以下步驟: 監測跨度一更寬系統頻寬中的複數個窄頻區域,從一無線節點傳輸的定位參考信號(PRS);及基於該PRS,估計一上行鏈路時序或者該無線節點的一相對位置中的至少一項。
  62. 根據請求項61之方法,其中該監測之步驟包括以下步驟:在不同的監測時間間隔中,針對PRS監測不同的資源區塊(RB)。
  63. 根據請求項61之方法,亦包括以下步驟:基於該PRS,估計一相位偏移。
  64. 根據請求項63之方法,亦包括以下步驟:補償該相位偏移。
  65. 根據請求項64之方法,其中所估計的該上行鏈路時序或者所估計的該無線節點的該相對位置中的至少一項是基於串接在一起的複數個PRS的。
  66. 一種用於由一無線節點執行的無線通訊的方法,包括以下步驟: 決定更寬系統頻寬中用於向至少一個無線節點傳輸定位參考信號(PRS)的複數個窄頻區域中的資源;及使用所決定的該等資源來傳輸該PRS。
  67. 根據請求項66之方法,其中該傳輸之步驟包括以下步驟:在不同的傳輸時間間隔中,在不同的資源區塊(RB)中傳輸PRS。
  68. 根據請求項66之方法,其中該傳輸之步驟包括以下步驟:在不同的資源區塊(RB)中,向不同的無線節點傳輸PRS。
TW106113587A 2016-05-18 2017-04-24 窄頻定位信號設計方案和程序 TWI740930B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662338475P 2016-05-18 2016-05-18
US62/338,475 2016-05-18
US15/493,247 2017-04-21
US15/493,247 US10716084B2 (en) 2016-05-18 2017-04-21 Narrowband positioning signal design and procedures

Publications (2)

Publication Number Publication Date
TW201742503A true TW201742503A (zh) 2017-12-01
TWI740930B TWI740930B (zh) 2021-10-01

Family

ID=58699268

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106113587A TWI740930B (zh) 2016-05-18 2017-04-24 窄頻定位信號設計方案和程序

Country Status (5)

Country Link
US (1) US10716084B2 (zh)
EP (1) EP3459301B1 (zh)
CN (1) CN109155983B (zh)
TW (1) TWI740930B (zh)
WO (1) WO2017200708A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111972014A (zh) * 2018-04-06 2020-11-20 瑞典爱立信有限公司 相关属性的窄带定位参考信号生成

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10455544B2 (en) 2015-01-30 2019-10-22 Qualcomm Incorporated Enhanced paging procedures for machine type communications (MTC)
KR102265770B1 (ko) * 2016-08-04 2021-06-15 샤프 가부시키가이샤 기지국 장치, 로케이션 서버 및 통신 방법
US10547421B2 (en) 2016-09-30 2020-01-28 Qualcomm Incorporated Scheduling for positioning reference signal (PRS) in narrowband-internet of things (NB-IoT)
AU2017337034B2 (en) 2016-09-30 2022-06-23 Qualcomm Incorporated Scheduling for positioning reference signal (PRS) in narrowband-internet of things (NB-IoT)
US10560942B2 (en) * 2018-02-21 2020-02-11 Qualcomm Incorporated Sub-band utilization for a wireless positioning measurement signal
WO2020000432A1 (en) 2018-06-29 2020-01-02 Qualcomm Incorporated Flexible resource allocation for narrowband and wideband coexistence
US11310816B2 (en) * 2018-07-10 2022-04-19 Qualcomm Incorporated Associating a downlink reference signal for positioning of a user equipment with an uplink reference signal for transmission by the user equipment
CN112868197A (zh) 2018-07-27 2021-05-28 三星电子株式会社 电信系统中与定位参考信号配置相关的改进
GB2576054A (en) * 2018-08-03 2020-02-05 Samsung Electronics Co Ltd Improvements in and relating to positioning reference signal configuration in a telecommunication system
GB2591960A (en) * 2018-08-03 2021-08-11 Samsung Electronics Co Ltd Improvements in and relating to positioning reference signal configuration in a telecommunication system
US11646921B2 (en) 2018-08-09 2023-05-09 Qualcomm Incorporated Using physical channels for positioning measurement signals
CN112753255B (zh) * 2018-09-28 2024-02-06 上海诺基亚贝尔股份有限公司 具有gNB和UE的不同参数集的PRS的多路复用机制
CN111465101B (zh) * 2019-01-18 2024-01-05 株式会社Kt 在新无线电中执行定位的装置和方法
US20220131727A1 (en) * 2019-02-14 2022-04-28 Apple Inc. Downlink (dl) positioning reference signal (prs) bandwidth part (bwp) configuration reference signal design and user equipment (ue) based positioning enhancements for new radio (nr) positioning
GB2583691B (en) * 2019-02-15 2021-11-03 Samsung Electronics Co Ltd Methods, apparatus, and systems for transmitting and receiving positioning reference signals in 5G new radio networks
CN111669257B (zh) * 2019-03-07 2021-12-10 华为技术有限公司 Prs的频域资源映射方法、装置及存储介质
WO2020198271A1 (en) * 2019-03-25 2020-10-01 Sony Corporation Methods and devices for dual-direction positioning of a device
US11902929B2 (en) 2019-03-27 2024-02-13 Interdigital Patent Holdings, Inc. Methods, apparatuses and systems directed to idle/inactive mode positioning in NR
GB2582788B (en) * 2019-04-02 2021-10-13 Samsung Electronics Co Ltd Methods and apparatus for configuring 5G new radio uplink positioning reference signals
US20210076359A1 (en) * 2019-05-02 2021-03-11 Apple Inc. Method and system for dl prs transmission for accurate rat-dependent nr positioning
US11139935B2 (en) 2019-05-02 2021-10-05 Qualcomm Incorporated Aperiodic and cross component carrier positioning reference signals
US11239967B2 (en) * 2019-05-02 2022-02-01 Qualcomm Incorporated Patterns for reference signals used for positioning in a wireless communications system
WO2020229066A1 (en) * 2019-05-10 2020-11-19 Sony Corporation Bandwidth parts for positioning signals
CN114402667B (zh) * 2019-10-01 2024-04-02 上海诺基亚贝尔股份有限公司 针对下行链路出发角(dl-aod)定位的多级定位参考信号(prs)机制
US11422223B2 (en) * 2019-10-10 2022-08-23 Qualcomm Incorporated Method and apparatus for 5G positioning accuracy improvement in presence of phase noise
WO2021203307A1 (en) * 2020-04-08 2021-10-14 Apple Inc. Methods and apparatus for measurement gap activation and deactivation for positioning measurements
WO2021232345A1 (en) * 2020-05-21 2021-11-25 Qualcomm Incorporated Positioning reference signal hopping for reduced capability user equipment
CN111869155B (zh) * 2020-06-05 2023-05-23 北京小米移动软件有限公司 定位参考信号的传输方法及装置、电子设备及存储介质
CN111669703B (zh) * 2020-06-12 2021-07-06 同济大学 一种NB-IoT终端定位系统及方法
US11792607B2 (en) * 2020-07-22 2023-10-17 Qualcomm Incorporated Positioning signal frequency hop aggregation
CN116686350A (zh) * 2020-12-22 2023-09-01 上海诺基亚贝尔股份有限公司 基于上行链路和基于下行链路的定位
CN113411880B (zh) * 2021-06-17 2022-07-01 中信科移动通信技术股份有限公司 一种无线网络上行同步方法及系统
WO2024099897A1 (en) * 2022-11-08 2024-05-16 Nokia Technologies Oy Positioning with discontinuous reception

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337182A (ja) * 2004-05-28 2005-12-08 Mitsubishi Electric Corp 内燃機関の燃圧制御装置
US7697641B2 (en) * 2004-06-28 2010-04-13 L-3 Communications Parallel DSP demodulation for wideband software-defined radios
TWI339951B (en) * 2007-11-14 2011-04-01 Via Tech Inc Chip sets and clock generation methods thereof
CN101772157A (zh) 2008-12-30 2010-07-07 三星电子株式会社 终端辅助的下行定位方法
US20130336193A1 (en) 2012-06-19 2013-12-19 Qualcomm Incorporated Network information for assisting user equipment
US7994982B2 (en) * 2009-06-12 2011-08-09 Raytheon Company Method and apparatus for bounded time delay estimation
CN101594336B (zh) 2009-06-19 2012-12-19 中兴通讯股份有限公司 一种定位参考信号的发送方法
US20110124347A1 (en) 2009-09-15 2011-05-26 Byron Hua Chen Method And Apparatus for UE Positioning in LTE Networks
CN102823308A (zh) 2010-02-12 2012-12-12 瑞典爱立信有限公司 执行无线通信网络中的测量来定位或使能基于位置的服务的方法和器件
EP2721883B1 (en) 2011-06-16 2018-02-21 Telefonaktiebolaget LM Ericsson (publ) Base station and method for positioning support
CN102892196B (zh) 2011-07-22 2016-03-30 华为技术有限公司 一种异构网络中移动台定位方法及设备
US8571131B1 (en) * 2012-06-20 2013-10-29 MagnaCom Ltd. Dynamic filter adjustment for highly-spectrally-efficient communications
WO2014168315A1 (en) * 2013-04-08 2014-10-16 Lg Electronics Inc. Method and apparatus for reporting channel state information for fractional beamforming in a wireless communication system
JP5984769B2 (ja) * 2013-09-26 2016-09-06 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3090579A4 (en) 2014-01-31 2016-12-14 Huawei Tech Co Ltd DEVICE, NETWORK AND METHOD FOR CELL DISCOVERY
CN104144485B (zh) 2014-07-17 2017-12-26 北京邮电大学 上下行分离的双连接场景中用户设备上行功率控制方法
WO2016155775A1 (en) 2015-03-30 2016-10-06 Sony Corporation Apparatus, systems and methods for mobile network positioning of mtc devices using partial power boosting
EP3280200B1 (en) 2015-04-01 2019-12-11 LG Electronics Inc. Method for performing ranging related operation in wireless communication system
US10530542B2 (en) 2015-04-07 2020-01-07 Telefonaktiebolaget L M Ericsson (Publ) Transmitting positioning reference signals
US20160302094A1 (en) 2015-04-09 2016-10-13 Lg Electronics Inc. Method of measuring radio resource and apparatus therefor
EP3335357B1 (en) 2015-08-14 2020-06-24 Telefonaktiebolaget LM Ericsson (PUBL) Facilitated positioning of wireless communication devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111972014A (zh) * 2018-04-06 2020-11-20 瑞典爱立信有限公司 相关属性的窄带定位参考信号生成
CN111972014B (zh) * 2018-04-06 2022-08-26 瑞典爱立信有限公司 相关属性的窄带定位参考信号生成
US11567159B2 (en) 2018-04-06 2023-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Narrowband positioning reference signal generation for correlation properties

Also Published As

Publication number Publication date
EP3459301A1 (en) 2019-03-27
CN109155983B (zh) 2021-04-30
TWI740930B (zh) 2021-10-01
EP3459301B1 (en) 2024-01-24
US20170339658A1 (en) 2017-11-23
CN109155983A (zh) 2019-01-04
WO2017200708A1 (en) 2017-11-23
US10716084B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
TWI740930B (zh) 窄頻定位信號設計方案和程序
AU2017296388B2 (en) Techniques for locating devices using narrowband positioning reference signals
US20220240216A1 (en) Systems and methods for network procedures for on-demand random access channel (rach)
CN111316694B (zh) 用于针对bl/ce ue的测量间隙增强的方法、装置和介质
AU2017217846B2 (en) Multi-PRB operation for narrowband systems
TWI790300B (zh) 非週期性追蹤參考信號
JP6668367B2 (ja) カバレッジ拡張のための基準信号設計
TW201831024A (zh) 隨機存取通道(rach)定時調整
TW201822570A (zh) 毫米波(mmw)中的二步隨機存取通道(rach)程序
TWI798208B (zh) 用於不同操作模式下的新無線電技術同步配置的方法
TWI756376B (zh) 同步時槽中的資料傳輸
US20190059012A1 (en) Multiplexing channel state information reference signals and synchronization signals in new radio
JP2019517207A (ja) eMTCにおけるアップリンク送信ギャップ
TWI775962B (zh) 與載波相關的隨機存取通道(rach)回應搜尋空間
TWI762683B (zh) 用於窄頻操作的上行鏈路和下行鏈路授權
CA3027422C (en) Techniques for locating devices using narrowband positioning reference signals
TW201840227A (zh) 用於毫米波基地台的減小功率模式
WO2018223303A1 (en) Random access channel enhancements for narrowband systems