TW201742296A - Metal-ion battery - Google Patents

Metal-ion battery Download PDF

Info

Publication number
TW201742296A
TW201742296A TW105140794A TW105140794A TW201742296A TW 201742296 A TW201742296 A TW 201742296A TW 105140794 A TW105140794 A TW 105140794A TW 105140794 A TW105140794 A TW 105140794A TW 201742296 A TW201742296 A TW 201742296A
Authority
TW
Taiwan
Prior art keywords
ion battery
metal ion
metal
negative electrode
aluminum
Prior art date
Application number
TW105140794A
Other languages
Chinese (zh)
Other versions
TWI606630B (en
Inventor
江建志
林俊凱
陳光耀
吳俊星
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to KR1020170060869A priority Critical patent/KR102043331B1/en
Priority to US15/598,102 priority patent/US10418663B2/en
Priority to JP2017097886A priority patent/JP6621442B2/en
Priority to CN201710347665.3A priority patent/CN107394260B/en
Application granted granted Critical
Publication of TWI606630B publication Critical patent/TWI606630B/en
Publication of TW201742296A publication Critical patent/TW201742296A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A metal-ion battery is provided. The metal-ion battery includes a positive electrode, a separator, a negative electrode, and an electrolyte. The positive electrode is separated from the negative electrode via the separator, and the electrolyte is disposed between the positive electrode and the negative electrode, wherein the electrolyte includes aluminum halide and an ionic liquid. In particular, the negative electrode is a metal or an alloy thereof, wherein the metal is Cu, Fe, Co, Zn, In, Ni, Sn, Cr, La, Y, Ti, Mn, or Mo.

Description

金屬離子電池 Metal ion battery

本揭露關於一種儲能元件,更特別關於一種金屬離子電池。 The present disclosure relates to an energy storage component, and more particularly to a metal ion battery.

鋁在地球上蘊藏量非常豐富,以鋁作為材料的電子裝置具有較低的成本。在儲能元件的應用方面,鋁及其化合物在自然界相較於鋰、鎘等金屬無生物毒性,是十分環保的儲能原料且鋁在電化學充放電的過程中電子轉移數目可達到三,因此可提供較高的能量儲存容量。再者,由於鋁具有低可燃性及電子氧化還原性質,大幅提昇鋁離子電池在使用上的安全性。然而,傳統以鋁作為負極的金屬離子電池,面臨負極材料破損、低電池放電電壓、無放電電壓平台(discharge voltage plateaus)之電容行為、及伴隨快速電池容量衰減之循環壽命不充足等問題。 Aluminum is abundant in the earth, and electronic devices using aluminum as a material have lower costs. In the application of energy storage components, aluminum and its compounds are not biotoxic in nature compared to metals such as lithium and cadmium. They are environmentally friendly energy storage materials and the number of electron transfer in aluminum during electrochemical charging and discharging can reach three. Provides high energy storage capacity. Furthermore, aluminum has a low flammability and electronic redox properties, which greatly enhances the safety of the use of aluminum ion batteries. However, the conventional metal ion battery using aluminum as a negative electrode faces problems such as damage of the negative electrode material, low battery discharge voltage, discharge voltage plateaus, and insufficient cycle life with rapid battery capacity reduction.

因此,業界需要一種新的金屬離子電池以解決上述問題。 Therefore, the industry needs a new metal ion battery to solve the above problems.

根據本揭露實施例,本揭露提供一種儲能元件,例如為金屬離子電池。該金屬離子電池包含:一正極;一隔離層;一負極,其中該負極以隔離層與該正極相隔,其中該負極係為一 金屬或其合金,其中該金屬係銅、鐵、鋅、鈷、銦、鎳、錫、鉻、鑭、釔、鈦、錳、或鉬;以及,一電解質,設置於該正極與該負極之間,其中該電解質包含一鹵化鋁及一離子液體。 In accordance with an embodiment of the present disclosure, the present disclosure provides an energy storage component, such as a metal ion battery. The metal ion battery comprises: a positive electrode; an isolating layer; a negative electrode, wherein the negative electrode is separated from the positive electrode by a separating layer, wherein the negative electrode is a negative electrode a metal or an alloy thereof, wherein the metal is copper, iron, zinc, cobalt, indium, nickel, tin, chromium, lanthanum, cerium, titanium, manganese, or molybdenum; and an electrolyte disposed between the positive electrode and the negative electrode Wherein the electrolyte comprises an aluminum halide and an ionic liquid.

10‧‧‧正極 10‧‧‧ positive

11‧‧‧集電層 11‧‧‧ Collector layer

12‧‧‧負極 12‧‧‧negative

13‧‧‧活性材料 13‧‧‧Active materials

14‧‧‧隔離膜 14‧‧‧Separator

20‧‧‧電解質 20‧‧‧ Electrolytes

100‧‧‧金屬離子電池 100‧‧‧metal ion battery

第1圖係本揭露一實施例所述金屬離子電池之示意圖;以及第2-4圖係顯示本揭露實施例所述金屬離子電池其充放電過程中,電壓與時間的關係。 1 is a schematic view of a metal ion battery according to an embodiment of the present invention; and FIGS. 2-4 are diagrams showing voltage versus time during charging and discharging of the metal ion battery according to the embodiment of the present disclosure.

以下針對本揭露之金屬離子電池作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式僅為簡單描述本揭露。當然,這些僅用以舉例而非本揭露之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關連性。且在圖式中,實施例之形狀、數量、或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,此外,特定之實施例僅為揭示本揭露使用之特定方式,其並非用以限定本揭露。 The metal ion battery of the present disclosure will be described in detail below. It will be appreciated that the following description provides many different embodiments or examples for implementing the various aspects of the disclosure. The specific elements and arrangements described below are merely illustrative of the disclosure. Of course, these are only used as examples and not as a limitation of the disclosure. Moreover, repeated numbers or labels may be used in different embodiments. These repetitions are merely for the purpose of simplicity and clarity of the disclosure, and are not intended to be a limitation of the various embodiments and/or structures discussed. In the drawings, the shape, number, or thickness of the embodiments may be expanded and simplified or conveniently indicated. Furthermore, the components of the drawings will be described separately, and it is noted that the components not shown or described in the drawings are known to those of ordinary skill in the art and, in addition, The embodiments are merely illustrative of specific ways of using the disclosure, and are not intended to limit the disclosure.

本揭露提供一種金屬離子電池,包含:一正極;一隔離層;一負極,其中該負極以隔離層與該正極相隔,其中該負極係為一金屬或其合金,其中該金屬係銅、鐵、鋅、鈷、銦、 鎳、錫、鉻、鑭、釔、鈦、錳、或鉬;以及,一電解質,設置於該正極與該負極之間,其中該電解質包含一鹵化鋁及一離子液體。根據本揭露實施例,金屬離子電池負極之金屬不為鋁。根據本揭露實施例,該金屬與電解質中的鹵素陰離子可形成金屬鹵化物,且該金屬的鹵化物係為路易斯酸。因此,在金屬離子電池充放電時,該負極所溶出之金屬可與電解質進行反應而形成鹵化金屬酸根,而電解質中的鹵化鋁與亦可離子液體反應形成一鹵化鋁酸根,以使該電解質系統維持可逆。此外,根據本揭露某些實施例,由該負極溶出之金屬與電解質進行反應所形成的鹵化金屬酸根,由於具有比鹵化鋁酸根具有更小的離子尺寸,因此可更易於與活性材料(例如:石墨)進行插層反應,或進一步協助氯化鋁酸根與活性材料進行插層反應,提昇金屬離子電池總發電量及延長金屬離子電池使用壽命。 The present disclosure provides a metal ion battery comprising: a positive electrode; a separator; a negative electrode, wherein the negative electrode is separated from the positive electrode by a separator, wherein the negative electrode is a metal or an alloy thereof, wherein the metal is copper, iron, Zinc, cobalt, indium, Nickel, tin, chromium, ruthenium, osmium, titanium, manganese, or molybdenum; and an electrolyte disposed between the positive electrode and the negative electrode, wherein the electrolyte comprises an aluminum halide and an ionic liquid. According to an embodiment of the present disclosure, the metal of the negative electrode of the metal ion battery is not aluminum. According to an embodiment of the present disclosure, the metal and the halogen anion in the electrolyte may form a metal halide, and the halide of the metal is a Lewis acid. Therefore, when the metal ion battery is charged and discharged, the metal eluted from the negative electrode can react with the electrolyte to form a metal halide, and the aluminum halide in the electrolyte can also react with the ionic liquid to form a halogenated aluminate to make the electrolyte system. Maintain reversibility. Further, according to some embodiments of the present disclosure, the metal halide formed by reacting the metal eluted from the negative electrode with the electrolyte may have a smaller ion size than the halogenated aluminate, and thus may be more easily associated with the active material (for example: Graphite) intercalation reaction, or further assist in the intercalation reaction between the aluminum chloride acid and the active material to increase the total power generation of the metal ion battery and prolong the service life of the metal ion battery.

請參照第1圖,係為本揭露一實施例所述金屬離子電池100的示意圖,該金屬離子電池100可包含一正極10、一負極12、及一隔離層14,其中該隔離層14可設置於該正極10及該負極12之間,以使得該負極以該隔離層14與該正極相隔,避免該正極10與該負極12直接接觸。該金屬離子電池100包含一電解質20設置於該金屬離子電池100內,並位於該正極與該負極之間,使得電解質20與該正極10及負極12接觸。該金屬離子電池100可為充電式之二次電池,但本揭露亦涵蓋一次電池。 Please refer to FIG. 1 , which is a schematic diagram of a metal ion battery 100 according to an embodiment of the present disclosure. The metal ion battery 100 can include a positive electrode 10 , a negative electrode 12 , and an isolation layer 14 , wherein the isolation layer 14 can be disposed. Between the positive electrode 10 and the negative electrode 12, the negative electrode is separated from the positive electrode by the isolation layer 14 to avoid direct contact between the positive electrode 10 and the negative electrode 12. The metal ion battery 100 includes an electrolyte 20 disposed in the metal ion battery 100 and located between the positive electrode and the negative electrode such that the electrolyte 20 is in contact with the positive electrode 10 and the negative electrode 12. The metal ion battery 100 may be a rechargeable secondary battery, but the present disclosure also covers a primary battery.

根據本揭露實施例,該正極10可包含一集電層11及一活性材料13設置於該集電層11之上。根據本揭露實施例,該正極10亦可由該集電層11及活性材料13所構成。根據本揭露實施例,該集 電層11可為導電性碳基材,例如碳布、碳氈、碳紙。該集電層11亦可為金屬材質如鋁、鎳、銅等金屬以及碳材與金屬的複合層。舉例來說,該導電性碳基材可具有片電阻介於約1mΩ.cm2至6mΩ.cm2之間、以及含碳量大於65wt%。該活性材料13包括層狀活性材料或該層狀活性材料的團聚物。根據本揭露實施例,該活性材料13可為插層碳材,例如:石墨(包含天然石墨、人工石墨、熱解石墨、發泡石墨、鱗片石墨、或膨脹石墨)、石墨烯、奈米碳管或上述材料之組合。根據本揭露實施例,該活性材料13可為層狀雙氫氧化物(layered double hydroxide)、層狀氧化物、層狀硫族化合物(layered chalcogenide)或上述材料之組合。該活性材料13可具有一孔隙度介於約0.05至0.95之間,例如介於約0.3至0.9之間。此外,根據本揭露實施例,該活性材料13可直接成長於該集電層11之上(即兩者之間沒有任何介質),或是利用黏著劑將該活性材料13固定於該集電層11上。 According to the embodiment of the present disclosure, the positive electrode 10 may include a collector layer 11 and an active material 13 disposed on the collector layer 11. According to the disclosed embodiment, the positive electrode 10 can also be composed of the collector layer 11 and the active material 13. According to an embodiment of the present disclosure, the collector layer 11 may be a conductive carbon substrate such as carbon cloth, carbon felt, or carbon paper. The collector layer 11 may also be a metal material such as a metal such as aluminum, nickel or copper, and a composite layer of a carbon material and a metal. For example, the conductive carbon substrate may have a sheet resistance of about 1 mΩ. Cm 2 to 6mΩ. Between cm 2 and carbon content greater than 65 wt%. The active material 13 comprises a layered active material or agglomerates of the layered active material. According to the disclosed embodiment, the active material 13 may be an intercalated carbon material, such as graphite (including natural graphite, artificial graphite, pyrolytic graphite, foamed graphite, flake graphite, or expanded graphite), graphene, nano carbon. Tube or a combination of the above materials. According to an embodiment of the present disclosure, the active material 13 may be a layered double hydroxide, a layered oxide, a layered chalcogenide or a combination of the above. The active material 13 can have a porosity of between about 0.05 and 0.95, such as between about 0.3 and 0.9. In addition, according to the embodiment of the present disclosure, the active material 13 may be directly grown on the collector layer 11 (ie, without any medium between them), or the active material 13 may be fixed to the collector layer by an adhesive. 11 on.

根據本揭露實施例,該隔離層14之材質可為玻璃纖維、聚乙烯(polyethylene、PE)、聚丙烯(Polypropylene、PP)、不織布、木質纖維、聚醚碸樹脂(Poly(ether sulfones)、PES)、陶瓷纖維等或上述之組合。 According to the embodiment of the disclosure, the material of the isolation layer 14 can be glass fiber, polyethylene (PE), polypropylene (polypropylene, PP), non-woven fabric, wood fiber, polyether epoxy resin (Poly (ether sulfones), PES ), ceramic fibers, etc. or a combination thereof.

根據本揭露實施例,該負極12係為一金屬M或含金屬M的合金。其中,該金屬的鹵化物(MXy,X為鹵素,y可為介於1-4的整數)係為路易斯酸,以使得該負極所溶出之金屬可與電解質20進行反應而形成鹵化金屬酸根,使離子液體系統維持可逆。根據本揭露實施例,該金屬M可為銅、鐵、鋅、鈷、銦、鎳、錫、鉻、鑭、釔、 鈦、錳、或鉬。此外,若該負極12為含金屬M的合金時,該含金屬M的合金係不包含鋁。此外,該負極12可更包含一集電層(未繪示),而該第一金屬或含第一金屬的合金係配置於該集電層上。根據本揭露實施例,該第一金屬或含第一金屬的合金可直接成長於該集電層之上(即兩者之間沒有任何介質),或是利用黏著劑將該該金屬或含該金屬的合金固定於該集電層上。根據本揭露實施例,該金屬M可為還原電位小於鋁的金屬,以改善金屬離子電池負極腐蝕的問題。 According to an embodiment of the present disclosure, the negative electrode 12 is a metal M or an alloy containing metal M. Wherein, the metal halide (MX y , X is a halogen, y may be an integer between 1 and 4) is a Lewis acid, so that the metal eluted from the negative electrode can react with the electrolyte 20 to form a metal halide. To maintain the ionic liquid system reversible. According to an embodiment of the present disclosure, the metal M may be copper, iron, zinc, cobalt, indium, nickel, tin, chromium, niobium, tantalum, titanium, manganese, or molybdenum. Further, when the negative electrode 12 is an alloy containing metal M, the metal M-containing alloy does not contain aluminum. In addition, the negative electrode 12 may further include a collector layer (not shown), and the first metal or the alloy containing the first metal is disposed on the collector layer. According to an embodiment of the present disclosure, the first metal or the alloy containing the first metal may be directly grown on the collector layer (ie, without any medium between them), or may be made of the metal by an adhesive. An alloy of metal is fixed on the collector layer. According to an embodiment of the present disclosure, the metal M may be a metal having a reduction potential lower than aluminum to improve the corrosion of the negative electrode of the metal ion battery.

根據本揭露實施例,該電解質20包含一離子液體及鹵化鋁。在一實施例中,該電解質更包括該金屬的鹵化物。該離子液體具有一熔點低於100℃,可為室溫離子液體(room temperature ion liquid、RTIL)。舉例來說,該離子液體可包含烷基咪唑鎓鹽(alkylimidazolium salt)、烷基吡啶鎓鹽(alkylpyridinium salt)、烷基氟吡唑鎓鹽(alkylfluoropyrazolium salt)、烷基三唑鎓鹽(alkyltriazolium salt)、芳烷銨鹽(aralkylammonium aluminates)、烷基烷氧基銨鹽(alkylalkoxyammonium aluminates)、芳烷鏻鹽(aralkylphosphonium salt)、芳烷鋶鹽(aralkylsulfonium salt)、鋁酸烷基胍鹽(alkylguanidinium salt)、及其混合物。該離子液體及該金屬鹵化物之莫耳比至少為或大於約1.1、或至少為或大於約1.2,例如介於1.1至2.1之間,例如約1.3、1.5、1.6、或1.8。根據本揭露實施例,當鹵化鋁為氯化鋁(AlCl3)之情況下,離子液體可例如為氯化1-乙基-3-甲基咪唑鎓,且氯化鋁與氯化1-乙基-3-甲基咪唑鎓之莫耳比至少為或大於約1.2,例如介於1.2至1.8之間。可對離子液體電解質進行摻雜(或添加添加劑)以提高電導率且降低黏度,或可以其他方式變更離子液體電 解質以得到有利於金屬之可逆電沉積的組合物。 According to an embodiment of the present disclosure, the electrolyte 20 comprises an ionic liquid and an aluminum halide. In an embodiment, the electrolyte further comprises a halide of the metal. The ionic liquid has a melting point of less than 100 ° C and may be room temperature ion liquid (RTIL). For example, the ionic liquid may comprise an alkylimidazolium salt, an alkylpyridinium salt, an alkylfluoropyrazolium salt, an alkyltriazolium salt. , aralkylammonium aluminates, alkylalkoxyammonium aluminates, aralkylphosphonium salts, aralkylsulfonium salts, alkylguanidinium salts ), and mixtures thereof. The ionic liquid and the metal halide have a molar ratio of at least or greater than about 1.1, or at least or greater than about 1.2, such as between 1.1 and 2.1, such as about 1.3, 1.5, 1.6, or 1.8. According to an embodiment of the present disclosure, when the aluminum halide is aluminum chloride (AlCl 3 ), the ionic liquid may be, for example, 1-ethyl-3-methylimidazolium chloride, and aluminum chloride and 1-ethyl chloride. The molar ratio of -3-methylimidazolium is at least or greater than about 1.2, such as between 1.2 and 1.8. The ionic liquid electrolyte may be doped (or added with additives) to increase conductivity and reduce viscosity, or the ionic liquid electrolyte may be altered in other ways to obtain a composition that facilitates reversible electrodeposition of the metal.

根據本揭露實施例,該離子液體可為具有鹵離子的鹽類。在該金屬離子電池進行充放電後,該鹵化鋁可與該離子液體形成一鹵化鋁酸根,例如氯化鋁酸根(AlCl4 -)。此外,在該金屬離子電池進行充放電後,該負極之該金屬係與電解質反應形成一鹵化金屬酸根。 According to an embodiment of the present disclosure, the ionic liquid may be a salt having a halide ion. After the metal ion battery is charged and discharged, the aluminum halide may form a halogenated aluminate with the ionic liquid, such as aluminum chloride (AlCl 4 - ). Further, after the metal ion battery is charged and discharged, the metal of the negative electrode reacts with the electrolyte to form a halogenated metal acidate.

根據本揭露某些實施例,該金屬M可為Cu、Fe、Cr、Co、Mn、Zn、或Ni,而鹵化鋁可為氯化鋁。如此一來,在該金屬離子電池進行充放電反應時,所形成的氯化金屬酸根(MCl(x+1) -,x可為介於1-4的整數)可例如:CuCl2 -、CuCl3 -、FeCl3 -、FeCl4 -、MnCl3 -、MnCl4 -、ZnCl3 -、NiCl3 -、CoCl3 -、CoCl4 -CrCl3 -、或CrCl4 -。因此,該氯化金屬酸根可更易於與活性材料(例如:石墨)進行插層反應,或進一步協助氯化鋁酸根與活性材料進行插層反應,提昇金屬離子電池總發電量及延長金屬離子電池使用壽命。 According to some embodiments of the present disclosure, the metal M may be Cu, Fe, Cr, Co, Mn, Zn, or Ni, and the aluminum halide may be aluminum chloride. In this way, when the metal ion battery is subjected to a charge and discharge reaction, the formed metal chloride metalate (MCl (x+1) - , x may be an integer ranging from 1 to 4), for example, CuCl 2 - , CuCl 3 - , FeCl 3 - , FeCl 4 - , MnCl 3 - , MnCl 4 - , ZnCl 3 - , NiCl 3 - , CoCl 3 - , CoCl 4 - CrCl 3 - , or CrCl 4 - . Therefore, the metal chloride acid chloride can be more easily intercalated with an active material (for example, graphite), or further assist the intercalation reaction between the aluminum chloride acid and the active material, thereby increasing the total power generation of the metal ion battery and prolonging the metal ion battery. Service life.

為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例及比較實施例,作詳細說明如下: The above and other objects, features and advantages of the present invention will become more apparent and understood.

實施例1: Example 1:

提供一厚度為0.025mm之銅箔(由Alfa Aesar製造),對其進行裁切,得到銅電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(60.5mg))。接著,按照銅電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁 (AlCl3)/氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3與[EMIm]Cl之比約為1.4:1),得到金屬離子電池(1)。 A copper foil (manufactured by Alfa Aesar) having a thickness of 0.025 mm was provided and cut to obtain a copper electrode. Next, a separator film (glass filter paper (2 layers), product number: Whatman GFA) and a graphite electrode (including an active material disposed on a current collecting substrate, wherein the current collecting substrate is carbon fiber paper, The active material is expanded graphite (60.5 mg)). Next, it is arranged in the order of a copper electrode (as a negative electrode), a separator, and a graphite electrode (as a positive electrode), and is encapsulated and injected into an electrolyte (aluminum chloride (AlCl 3 ) / 1-ethyl chloride) in an aluminum plastic film. 3-ethyl-3-methylimidazolium chloride ([EMIm]Cl), wherein the ratio of AlCl 3 to [EMIm]Cl is about 1.4:1), a metal ion battery (1) is obtained.

接著,使用NEWARE電池分析器量測實施例1所得之鋁離子電池(1)之電池效能(量測條件為:充電電流100mA/g,截止電壓2.45V,放電電流100mA/g,截止電壓1V),可得知其最大比容量為95.8mAh/g。第1圖係繪示為金屬離子電池(2)在充電過程中,電壓與時間的關係圖。由第2圖可知,金屬離子電池(1)除了在2.3V至2.45V呈現明顯的充電電壓平台外,在2.0V至2.1V以及1.8V至1.9V也分別顯現出充電電壓平台。此外,金屬離子電池(1)在500mA/g電流下進行充放電測試時,其比容量亦可達87.43mAh/g。由於使用銅作為負極,在充放電過程中可形成離子尺寸較小的氯化銅酸根(CuCl3 -)以及氯化亞銅酸根(CuCl2 -),因此可使得金屬離子電池(1)的比容量提昇。 Next, the battery performance of the aluminum ion battery (1) obtained in Example 1 was measured using a NEWARE battery analyzer (measurement conditions were: charging current 100 mA/g, cutoff voltage 2.45 V, discharge current 100 mA/g, cutoff voltage 1 V) It can be known that its maximum specific capacity is 95.8 mAh/g. Figure 1 is a graph showing the relationship between voltage and time during charging of a metal ion battery (2). As can be seen from Fig. 2, the metal ion battery (1) exhibits a charging voltage platform at 2.0V to 2.1V and 1.8V to 1.9V, respectively, in addition to a significant charging voltage platform at 2.3V to 2.45V. In addition, when the metal ion battery (1) is subjected to charge and discharge tests at a current of 500 mA/g, the specific capacity can also reach 87.43 mAh/g. Since copper is used as the negative electrode, chloride chloride (CuCl 3 - ) and cuprous chloride (CuCl 2 - ) having a small ion size can be formed during charge and discharge, so that the ratio of the metal ion battery (1) can be made. Capacity increase.

實施例2: Example 2:

提供一厚度為0.03mm之鎳箔(偉斯販售),對其進行裁切,得到鎳電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(72mg))。接著,按照鎳電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3與[EMIm]Cl之比約為1.4:1),得到金屬離子電池(2)。 A nickel foil (Vess sold) having a thickness of 0.03 mm was provided, which was cut to obtain a nickel electrode. Next, a separator film (glass filter paper (2 layers), product number: Whatman GFA) and a graphite electrode (including an active material disposed on a current collecting substrate, wherein the current collecting substrate is carbon fiber paper, The active material is expanded graphite (72 mg)). Next, it is arranged in the order of a nickel electrode (as a negative electrode), a separator, and a graphite electrode (as a positive electrode), and is encapsulated and injected into an electrolyte (aluminum chloride (AlCl 3 ) / 1-ethyl chloride) in an aluminum plastic film. 3-ethyl-3-methylimidazolium chloride ([EMIm]Cl), wherein the ratio of AlCl 3 to [EMIm]Cl is about 1.4:1), a metal ion battery (2) is obtained.

接著,使用NEWARE電池分析器量測實施例2所得之鋁離子電池(2)之電池效能(量測條件為:充電電流100mA/g,截止電壓2.45V,放電電流100mA/g,截止電壓1V),可得知其最大比容量為88mAh/g。第3圖係繪示為金屬離子電池(2)在充放電過程中,電壓與時間的關係圖。由第3圖可知,金屬離子電池(2)除了在2.3V至2.45V呈現明顯的充電電壓平台外,在2.0V至2.1V以及1.8V至1.9V也分別顯現出充電電壓平台,以及在2.3V至2.0V及1.8V至1.5V也分別顯現多個放電電壓平台。 Next, the battery performance of the aluminum ion battery (2) obtained in Example 2 was measured using a NEWARE battery analyzer (measurement conditions were: charging current 100 mA/g, cutoff voltage 2.45 V, discharge current 100 mA/g, cutoff voltage 1 V) It can be known that its maximum specific capacity is 88 mAh/g. Figure 3 is a graph showing the relationship between voltage and time during charging and discharging of a metal ion battery (2). As can be seen from Fig. 3, the metal ion battery (2) exhibits a charging voltage platform at 2.0V to 2.1V and 1.8V to 1.9V, respectively, in addition to a significant charging voltage platform at 2.3V to 2.45V, and in 2.3. V to 2.0V and 1.8V to 1.5V also exhibit multiple discharge voltage platforms, respectively.

在對金屬離子電池(2)進行多次充放電循環後,觀察金屬離子電池(2)其鎳電極(作為負極),並未發現穿孔或破損現象。因此,以鎳電極作為負極搭配氯化鋁/氯化1-乙基-3-甲基咪唑鎓電解質,可對於負極的腐蝕問題得到相當不錯的改善。 After the metal ion battery (2) was subjected to a plurality of charge and discharge cycles, the nickel ion electrode (as a negative electrode) of the metal ion battery (2) was observed, and no perforation or breakage was observed. Therefore, the use of a nickel electrode as a negative electrode with an aluminum chloride/1-ethyl-3-methylimidazolium chloride electrolyte can provide a relatively good improvement in the corrosion of the negative electrode.

實施例3: Example 3:

提供一厚度為0.1mm之不銹鋼箔(由新日鐵製造及販售、編號為YUS190,成份包含鐵及鉻),對其進行裁切,得到不銹鋼電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(45mg))。接著,按照不銹鋼電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3與[EMIm]Cl之比約為1.4:1),得到金屬離子電池(3)。 A stainless steel foil (manufactured and sold by Nippon Steel, numbered YUS190, containing iron and chromium) was cut and cut to obtain a stainless steel electrode. Next, a separator film (glass filter paper (2 layers), product number: Whatman GFA) and a graphite electrode (including an active material disposed on a current collecting substrate, wherein the current collecting substrate is carbon fiber paper, The active material is expanded graphite (45 mg)). Next, it is arranged in the order of a stainless steel electrode (as a negative electrode), a separator, and a graphite electrode (as a positive electrode), and is encapsulated and injected into an electrolyte (aluminum chloride (AlCl 3 ) / 1-ethyl chloride) in an aluminum plastic film. 3-ethyl-3-methylimidazolium chloride ([EMIm]Cl), wherein the ratio of AlCl3 to [EMIm]Cl is about 1.4:1), a metal ion battery (3) is obtained.

接著,使用NEWARE電池分析器量測實施例3所得之鋁 離子電池(3)之電池效能(量測條件為:充電電流100mA/g,截止電壓2.45V,放電電流100mA/g,截止電壓1V),可得知其最大比容量可達95.8mAh/g。第4圖係繪示為該金屬離子電池(3)在充放電(電流為100mA/g)過程中,電壓與時間的關係圖。由第4圖可知,該金屬離子電池(3)除了在2.3V至2.45V呈現明顯的充電電壓平台外,在2.0V至2.2V顯現出充電電壓平台,以及在2.3V至1.5V也分別顯現多個放電電壓平台。由於使用不銹鋼作為負極,在充放電過程中可形成離子尺寸較小的氯化亞鉻酸根(CrCl3 -)以及氯化亞鐵酸根(FeCl3 -),因此可使得金屬離子電池(3)的比容量提昇。 Next, the battery performance of the aluminum ion battery (3) obtained in Example 3 was measured using a NEWARE battery analyzer (measurement conditions were: charging current 100 mA/g, cutoff voltage 2.45 V, discharge current 100 mA/g, cutoff voltage 1 V) It can be known that its maximum specific capacity can reach 95.8mAh/g. Fig. 4 is a graph showing voltage vs. time during charge and discharge (current of 100 mA/g) of the metal ion battery (3). As can be seen from Fig. 4, the metal ion battery (3) exhibits a charging voltage platform at 2.0V to 2.2V in addition to a significant charging voltage platform at 2.3V to 2.45V, and also appears at 2.3V to 1.5V, respectively. Multiple discharge voltage platforms. Since stainless steel is used as the negative electrode, chlorite chromite (CrCl 3 - ) and ferrous chloride (FeCl 3 - ) having a small ion size can be formed during charging and discharging, thereby making the metal ion battery (3) Specific capacity increase.

比較例1: Comparative Example 1:

提供一厚度為0.025mm之鋁箔,對其進行裁切,得到鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(57mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3與[EMIm]Cl之比約為1.4:1),得到金屬離子電池(4)。 An aluminum foil having a thickness of 0.025 mm was provided and cut to obtain an aluminum electrode. Next, a separator film (glass filter paper (2 layers), product number: Whatman GFA) and a graphite electrode (including an active material disposed on a current collecting substrate, wherein the current collecting substrate is carbon fiber paper, The active material is expanded graphite (57 mg)). Next, it is arranged in the order of an aluminum electrode (as a negative electrode), a separator, and a graphite electrode (as a positive electrode), and is encapsulated and injected into an electrolyte (aluminum chloride (AlCl 3 ) / 1-ethyl chloride -) 3-ethyl-3-methylimidazolium chloride ([EMIm]Cl), wherein the ratio of AlCl 3 to [EMIm]Cl is about 1.4:1), a metal ion battery (4) is obtained.

接著,使用NEWARE電池分析器量測比較例1所得之鋁離子電池(4)之電池效能(量測條件為:充電電流100mA/g,截止電壓2.45V,放電電流100mA/g,截止電壓1.5V),可得知其最大比容量可達80.7mAh/g。 Next, the battery performance of the aluminum ion battery (4) obtained in Comparative Example 1 was measured using a NEWARE battery analyzer (measurement conditions were: charging current 100 mA/g, cutoff voltage 2.45 V, discharge current 100 mA/g, cutoff voltage 1.5 V) ), it can be known that its maximum specific capacity can reach 80.7mAh / g.

與比較例1相比,實施例1及3所述使用非鋁電極作為負 極的金屬離子電池,由於經充放電後,其負極可與電解質反應形成離子尺寸較氯化鋁酸根小的氯化金屬酸根,因此更易於與石墨進行插層反應,或進一步協助氯化鋁酸根與石墨進行插層反應,提昇金屬離子電池的比容量。此外,實施例2所述使用鎳作為負極的金屬離子電池,由於經充放電後其鎳電極仍未有腐蝕發生,因此可提昇金屬離子電池總發電量及延長金屬離子電池使用壽命。 Compared with Comparative Example 1, the non-aluminum electrodes were used as negative in Examples 1 and 3. A very large metal ion battery, since the negative electrode can react with the electrolyte to form a metal chloride having a smaller ion size than the aluminum chloride after charging and discharging, so it is easier to intercalate with graphite or further assist the aluminum chloride Intercalation reaction with graphite to increase the specific capacity of the metal ion battery. In addition, in the metal ion battery using nickel as the negative electrode as described in Embodiment 2, since the nickel electrode still has no corrosion after charging and discharging, the total power generation of the metal ion battery can be increased and the service life of the metal ion battery can be prolonged.

雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above several embodiments, but it is not intended to limit the disclosure, and any one skilled in the art can make any changes and refinements without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of this disclosure is subject to the definition of the scope of the patent application.

10‧‧‧正極 10‧‧‧ positive

11‧‧‧集電層 11‧‧‧ Collector layer

12‧‧‧負極 12‧‧‧negative

13‧‧‧活性材料 13‧‧‧Active materials

14‧‧‧隔離膜 14‧‧‧Separator

20‧‧‧電解質 20‧‧‧ Electrolytes

100‧‧‧金屬離子電池 100‧‧‧metal ion battery

Claims (17)

一種金屬離子電池,包含:一正極;一隔離層;一負極,其中該負極以隔離層與該正極相隔,其中該負極係為一金屬或其合金,其中該金屬係銅、鐵、鋅、鈷、銦、鎳、錫、鉻、鑭、釔、鈦、錳、或鉬;以及一電解質,設置於該正極與該負極之間,其中該電解質包含一鹵化鋁及一離子液體。 A metal ion battery comprising: a positive electrode; a separator; a negative electrode, wherein the negative electrode is separated from the positive electrode by a separator, wherein the negative electrode is a metal or an alloy thereof, wherein the metal is copper, iron, zinc, cobalt And indium, nickel, tin, chromium, lanthanum, cerium, titanium, manganese, or molybdenum; and an electrolyte disposed between the positive electrode and the negative electrode, wherein the electrolyte comprises an aluminum halide and an ionic liquid. 如申請專利範圍第1項所述之金屬離子電池,其中該正極由一集電層及一活性材料所構成。 The metal ion battery according to claim 1, wherein the positive electrode is composed of a collector layer and an active material. 如申請專利範圍第2項所述之金屬離子電池,其中該集電層係導電性碳基材。 The metal ion battery according to claim 2, wherein the collector layer is a conductive carbon substrate. 如申請專利範圍第3項所述之金屬離子電池,其中該導電性碳基材係碳布、碳氈、或碳紙。 The metal ion battery according to claim 3, wherein the conductive carbon substrate is carbon cloth, carbon felt, or carbon paper. 如申請專利範圍第2項所述之金屬離子電池,其中該活性材料係層狀活性材料。 The metal ion battery of claim 2, wherein the active material is a layered active material. 如申請專利範圍第2項所述之金屬離子電池,其中該活性材料係石墨、奈米碳管、石墨烯、或上述之組合。 The metal ion battery of claim 2, wherein the active material is graphite, carbon nanotubes, graphene, or a combination thereof. 如申請專利範圍第6項所述之金屬離子電池,其中該石墨係天然石墨、人工石墨、熱解石墨、發泡石墨、膨脹石墨、或上述材料的組合。 The metal ion battery according to claim 6, wherein the graphite is natural graphite, artificial graphite, pyrolytic graphite, expanded graphite, expanded graphite, or a combination thereof. 如申請專利範圍第1項所述之金屬離子電池,其中該 電解質更包括該金屬的鹵化物。 The metal ion battery according to claim 1, wherein the metal ion battery The electrolyte further includes a halide of the metal. 如申請專利範圍第8項所述之金屬離子電池,其中該金屬的鹵化物係為一金屬氯化物。 The metal ion battery of claim 8, wherein the halide of the metal is a metal chloride. 如申請專利範圍第8項所述之金屬離子電池,其中該金屬的鹵化物係為路易斯酸。 The metal ion battery of claim 8, wherein the metal halide is a Lewis acid. 如申請專利範圍第1項所述之金屬離子電池,其中該鹵化鋁包含氟化鋁、氯化鋁、溴化鋁或上述材料的組合。 The metal ion battery of claim 1, wherein the aluminum halide comprises aluminum fluoride, aluminum chloride, aluminum bromide or a combination thereof. 如申請專利範圍第1項所述之金屬離子電池,其中該離子液體包含烷基咪唑鎓鹽(alkylimidazolium salt)、烷基吡啶鎓鹽(alkylpyridinium salt)、烷基氟吡唑鎓鹽(alkylfluoropyrazolium salt)、烷基三唑鎓鹽(alkyltriazolium salt)、芳烷銨鹽(aralkylammonium aluminates)、烷基烷氧基銨鹽(alkylalkoxyammonium aluminates)、芳烷鏻鹽(aralkylphosphonium salt)、芳烷鋶鹽(aralkylsulfonium salt)、鋁酸烷基胍鹽(alkylguanidinium salt)、或上述之組合。 The metal ion battery according to claim 1, wherein the ionic liquid comprises an alkylimidazolium salt, an alkylpyridinium salt, or an alkylfluoropyrazolium salt. , alkyltriazolium salt, aralkylammonium aluminates, alkylalkoxyammonium aluminates, aralkylphosphonium salts, aralkylsulfonium salts , an alkylguanidinium salt, or a combination thereof. 如申請專利範圍第12項所述之金屬離子電池,其中該離子液體包含氯化1-乙基-3-甲基咪唑鎓。 The metal ion battery of claim 12, wherein the ionic liquid comprises 1-ethyl-3-methylimidazolium chloride. 如申請專利範圍第1項所述之金屬離子電池,其中在該金屬離子電池進行充放電後,該鹵化鋁與該離子液體反應形成一鹵化鋁酸根。 The metal ion battery according to claim 1, wherein after the metal ion battery is charged and discharged, the aluminum halide reacts with the ionic liquid to form a halogenated aluminate. 如申請專利範圍第14項所述之金屬離子電池,其中在該金屬離子電池進行充放電後,該負極之該金屬與該電解質反應形成一鹵化金屬酸根。 The metal ion battery according to claim 14, wherein after the metal ion battery is charged and discharged, the metal of the negative electrode reacts with the electrolyte to form a halogenated metalate. 如申請專利範圍第15項所述之金屬離子電池,其中該鹵化金屬酸根之離子尺寸小於該鹵化鋁酸根之離子尺寸。 The metal ion battery of claim 15, wherein the metal halide ion has an ion size smaller than an ion size of the haloaluminate. 如申請專利範圍第16項所述之金屬離子電池,其中該鹵化鋁酸根係為氯化鋁酸根。 The metal ion battery of claim 16, wherein the halogenated aluminate is aluminosilicate.
TW105140794A 2016-05-17 2016-12-09 Metal-ion battery TWI606630B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020170060869A KR102043331B1 (en) 2016-05-17 2017-05-17 Metal-ion battery
US15/598,102 US10418663B2 (en) 2016-05-17 2017-05-17 Metal-ion battery
JP2017097886A JP6621442B2 (en) 2016-05-17 2017-05-17 Metal ion battery
CN201710347665.3A CN107394260B (en) 2016-05-17 2017-05-17 Metal ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201662337629P 2016-05-17 2016-05-17

Publications (2)

Publication Number Publication Date
TWI606630B TWI606630B (en) 2017-11-21
TW201742296A true TW201742296A (en) 2017-12-01

Family

ID=61023246

Family Applications (3)

Application Number Title Priority Date Filing Date
TW105140794A TWI606630B (en) 2016-05-17 2016-12-09 Metal-ion battery
TW105141738A TWI609516B (en) 2016-05-17 2016-12-16 Metal-ion battery and method for preparing the same
TW105141735A TWI606627B (en) 2016-05-17 2016-12-16 Metal-ion battery

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW105141738A TWI609516B (en) 2016-05-17 2016-12-16 Metal-ion battery and method for preparing the same
TW105141735A TWI606627B (en) 2016-05-17 2016-12-16 Metal-ion battery

Country Status (1)

Country Link
TW (3) TWI606630B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI654170B (en) 2017-12-22 2019-03-21 財團法人工業技術研究院 Electrolyte composition and metal-ion battery employing the same
US10340552B1 (en) 2017-12-22 2019-07-02 Industrial Technology Research Institute Electrolyte composition and metal-ion battery employing the same
TWI663767B (en) * 2018-07-06 2019-06-21 國立臺灣科技大學 Metal-ion battery and the manufacturing method thereof
TWI672844B (en) 2018-12-19 2019-09-21 財團法人工業技術研究院 The method and device for charging alluminum battery
CN111384360B (en) 2018-12-27 2022-02-22 财团法人工业技术研究院 Metal ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843070B2 (en) * 2014-02-28 2017-12-12 The Board Of Trustees Of The Leland Stanford Junior University Ultra-fast rechargeable metal-ion battery

Also Published As

Publication number Publication date
TWI609516B (en) 2017-12-21
TWI606630B (en) 2017-11-21
TW201742304A (en) 2017-12-01
TW201742303A (en) 2017-12-01
TWI606627B (en) 2017-11-21

Similar Documents

Publication Publication Date Title
Dong et al. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors
TWI606630B (en) Metal-ion battery
EP3246980B1 (en) Metal-ion battery and method for preparing the same
JP6348961B2 (en) battery
JP6621442B2 (en) Metal ion battery
JP6613474B2 (en) Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
Gui et al. Synergistic Coupling of Ether Electrolyte and 3D Electrode Enables Titanates with Extraordinary Coulombic Efficiency and Rate Performance for Sodium‐Ion Capacitors
JP5953966B2 (en) Positive electrode composite
US20060088767A1 (en) Battery with molten salt electrolyte and high voltage positive active material
Rashad et al. Magnesium/lithium-ion hybrid battery with high reversibility by employing NaV3O8· 1.69 H2O nanobelts as a positive electrode
JP2020524359A (en) A conformable alkali metal battery with a conductive deformable quasi-solid polymer electrode
JP2011210694A (en) Nonaqueous electrolyte secondary battery
Pan et al. Na2S sacrificial cathodic material for high performance sodium-ion capacitors
JP2013196878A (en) Sulfur secondary battery
Chou et al. The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery
KR101771330B1 (en) Electrolyte and secondary battery comprising the same
WO2023042262A1 (en) Lithium secondary battery
US20220052344A1 (en) Sodium-ion batteries
Dehghan-Manshadi et al. Polymer-Metal Oxides Nanocomposites for Metal-Ion Batteries
JP2013206645A (en) Active material and power storage device
TWI429595B (en) The method for forming the Anode material composite of TI, LI, SN for battery
JP2016100241A (en) Nonaqueous electrolyte secondary battery
JP5777555B2 (en) Power storage device
JP2017228710A (en) Lithium ion capacitor and electrolyte solution for lithium ion capacitor