TW201742126A - Gate-all-around complementary nanowire device with III-V quantum well transistor, germanium junctionless transistor and method for making the same - Google Patents

Gate-all-around complementary nanowire device with III-V quantum well transistor, germanium junctionless transistor and method for making the same Download PDF

Info

Publication number
TW201742126A
TW201742126A TW105132263A TW105132263A TW201742126A TW 201742126 A TW201742126 A TW 201742126A TW 105132263 A TW105132263 A TW 105132263A TW 105132263 A TW105132263 A TW 105132263A TW 201742126 A TW201742126 A TW 201742126A
Authority
TW
Taiwan
Prior art keywords
gate
layer
transistor
quantum well
iii
Prior art date
Application number
TW105132263A
Other languages
Chinese (zh)
Other versions
TWI628703B (en
Inventor
肖德元
汝京 張
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Publication of TW201742126A publication Critical patent/TW201742126A/en
Application granted granted Critical
Publication of TWI628703B publication Critical patent/TWI628703B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode

Abstract

Techniques are disclosed for a gate-all-around complementary nanowire device with III-V quantum well transistor, a germanium junctionless transistor and method for making the same. The gate-all-around complementary nanowire device with III-V quantum well transistor comprises a first Ge nanowire, a N<SP>-</SP>-InGaAs and a N<SP>+</SP>-InGaAs, in which a first trench, a semiconductor barrier layer, a first high-K dielectric layer and a first metal gate electrode are formed in the N<SP>+</SP>-InGaAs. The germanium junctionless transistor comprises a second Ge nanowire and a P<SP>+</SP>-Ge layer, in which a second trench, a second high-K dielectric layer and a second metal gate electrode are formed in the P<SP>+</SP>-Ge layer.

Description

環閘極III-V族量子井電晶體及鍺無接面電晶體及其製造方法 Ring gate III-V family quantum well transistor and tantalum junctionless crystal and manufacturing method thereof

本發明涉及一種半導體元件及其製造方法,特別是涉及一種環閘極III-V族量子井電晶體及鍺無接面電晶體及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a ring gate III-V quantum well transistor and a germanium junctionless transistor and a method of fabricating the same.

現今,大多數積體電路都是基於矽的,然而,隨著積體電路特徵尺寸的逐漸減小,現有的矽塊(Bulk silicon)材料和製程已接近它們的物理極限,遇到了嚴峻的挑戰。32奈米技術節點以下尤其是22奈米以下,電晶體的結構和材料將面臨更多挑戰。必須採取新的技術來提高性能(新材料、新結構及新製程)。其中,引入新的通道材料是主要革新途徑。研究表明Ge具有較高的電洞遷移率、III-V族族半導體材料(如GaAs、InP、InGaAs,InAs和GaSb)具有較高的電子遷移率,因此,在15奈米的節點後,新型矽基高遷移率材料將逐步由應變矽材料過渡到新型高遷移率Ge/III-V族/石墨烯等半導體材料。 Nowadays, most integrated circuits are based on 矽. However, as the feature size of integrated circuits is gradually reduced, existing Bulk silicon materials and processes are close to their physical limits, and severe challenges are encountered. . Below 32 nanometer technology nodes, especially below 22 nm, the structure and materials of the transistor will face more challenges. New technologies must be adopted to improve performance (new materials, new structures, and new processes). Among them, the introduction of new channel materials is the main innovative approach. Studies have shown that Ge has a high hole mobility, and III-V semiconductor materials (such as GaAs, InP, InGaAs, InAs, and GaSb) have high electron mobility, so after a 15 nm node, a new type of The bismuth-based high mobility materials will gradually transition from strained bismuth materials to new semiconductor materials such as high mobility Ge/III-V/graphene.

論文(M.Radosavljevic et al.,Non-Planar,Multi-Gate InGaAs Quantum Well Field Effect Transistors with High-K Gate Dielectric and Ultra-Scaled Gate-to-Drain/Gate-to-Source Separation for Low Power Logic Applications,IEDM 2010,pp.126-129)公開了一種非平面多閘極結構的InGaAs量子井場效應電晶體,其主要公開的內容為在矽基底上製作InGaAs鰭結構,然後採用高k(介電常數)閘極介電質實現閘極-漏分離/閘極-源分離的低功率邏輯電路。這種InGaAs量子井場效應電晶體具有較高的電子遷移速率,可以提高邏輯電路的速度。如何能進一步加強元件閘極控制能力,增強驅動電流以及提高元件集成密度是業界需要進一步解決的技術問題。 Paper (M.Radosavljevic et al., Non-Planar, Multi-Gate InGaAs Quantum Well Field Effect Transistors with High-K Gate Dielectric and Ultra-Scaled Gate-to-Drain/Gate-to-Source Separation for Low Power Logic Applications, IEDM 2010, pp. 126-129) discloses a non-planar multi-gate structure InGaAs quantum well field transistor, the main disclosure of which is to fabricate an InGaAs fin structure on a germanium substrate, and then use high-k (dielectric) Constant) Gate dielectric to achieve low-power logic for gate-drain separation/gate-source separation. This InGaAs quantum well field effect transistor has a high electron transfer rate and can increase the speed of the logic circuit. How to further strengthen the component gate control capability, enhance the drive current and increase the component integration density are technical problems that need to be further solved in the industry.

專利號為US8884363B2的專利中,公開了一種環閘極結構的矽奈米線電晶體,其主要內容為通過對SOI基底的頂層矽及埋氧層進行圖形化形成矽奈米線,然後去除支撐矽奈米線的部分埋氧層,使得欲製備閘極的位置形成懸空結構,最後基於該懸空結構製作環閘極結構,然而,基於矽材料的奈米線仍然受到矽本身物理極限的影響,難以在較低的技術節點下進一步提高元件的性能。另外,該專利中所製作的電晶體的源汲摻雜與通道摻雜相反,元件通道形成在閘極氧層表面區域,由於閘極氧化層與半導體通道界面的不完整性,載子受到散射影響,導致遷移率下降及可靠性降低。 Patent No. US8884363B2 discloses a nanowire transistor with a ring gate structure, which is mainly formed by patterning a top layer of a SOI substrate and a buried oxide layer to form a nanowire, and then removing the support. The partial buried oxygen layer of the nanowire line makes the position of the gate to form a suspended structure, and finally the ring gate structure is formed based on the suspended structure. However, the nanowire based on the tantalum material is still affected by the physical limit of the tantalum itself. It is difficult to further improve the performance of components at lower technology nodes. In addition, the source germanium doping of the transistor fabricated in this patent is opposite to the channel doping, and the element channel is formed in the surface region of the gate oxide layer, and the carrier is scattered due to the incompleteness of the interface between the gate oxide layer and the semiconductor channel. Impact, resulting in reduced mobility and reduced reliability.

專利公開號為US20100164102A1的公開文本中,公開了一種矽鰭形結構上的Ge奈米帶的製作方法,其主要通過在矽鰭形結構頂部生長GeSi後,通過氧化濃縮製程形成Ge奈米帶,這種製程由於是在Si材料外面包覆GeSi材料,Ge的濃度相對較低,採用氧化濃縮製程的時間較長,而且所形成的Ge奈米帶的質量也比較難以保証。 In the publication of the patent publication No. US20100164102A1, a method for fabricating a Ge nanobelt on a skeletal structure is disclosed, which mainly forms a Ge nanobelt by an oxidative concentration process after growing GeSi on top of the skeg structure. This process is coated with GeSi material on the outside of the Si material, the concentration of Ge is relatively low, the oxidation concentration process is long, and the quality of the formed Ge nanobelt is difficult to guarantee.

鑒於以上所述,本發明提供一種能夠有效提高閘極區控制範圍、降低寄生電阻,並將具有高電子遷移率的III-V族量子井電晶體以及具 有高電洞遷移率的鍺無接面電晶體進行有效集成的方法。 In view of the above, the present invention provides a III-V quantum well transistor and a device capable of effectively improving the control range of the gate region, reducing parasitic resistance, and having high electron mobility. A method for efficient integration of tantalum-free transistors with high hole mobility.

鑒於以上所述現有技術的缺點,本發明的目的在於提供一種環閘極III-V族量子井電晶體及鍺無接面電晶體及其製造方法,提供一種能夠有效提高閘極區控制範圍、降低寄生電阻,並將具有高電子遷移率的III-V族量子井電晶體以及具有高電洞遷移率的鍺無接面電晶體進行有效集成的方法。 In view of the above disadvantages of the prior art, an object of the present invention is to provide a ring-gate III-V quantum well transistor and a 锗-free junction transistor and a method of fabricating the same, and to provide an improved control region of a gate region, A method of reducing parasitic resistance and efficiently integrating a III-V quantum well transistor having high electron mobility and a tantalum junctionless transistor having high hole mobility.

為實現上述目的及其他相關目的,本發明提供一種環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,包括步驟:步驟1),提供一矽基底,於所述矽基底表面形成SiGe層;步驟2),於所述SiGe層及矽基底中製作淺溝槽隔離結構,去除矽基底表面的淺溝槽隔離結構,獲得位於所述矽基底表面的SiGe凸起結構;步驟3),於所述SiGe凸起結構表面磊晶SiGe,形成SiGe帶結構;步驟4),對各SiGe帶結構進行氧化濃縮製程形成由氧化層包圍的Ge帶結構,去除所述氧化層,並對所述矽基底表面進行氧化形成表面氧化層;步驟5),於第一Ge帶結構表面依次形成環繞的N-型InGaAs層及N+型InGaAs層,於第二Ge帶結構表面形成環繞的P+型Ge層;步驟6),去除與第一閘極區對應的N+型InGaAs層,露出N-型InGaAs層,形成第一環形溝槽,並去除與第二閘極區對應的P+型Ge層,露出第二Ge帶結構,形成第二環形溝槽;步驟7),於第一環形溝槽表面依次形成半導體阻擋層、第一高K(介電常數)介電層以及第一金屬閘極,於第二環形溝槽表面依次形成第二高K介電層以及第二金屬閘極。 To achieve the above and other related objects, the present invention provides a method for fabricating a ring-gate III-V quantum well transistor and a tantalum-free transistor, comprising the steps of: step 1), providing a substrate, Forming a SiGe layer on the surface of the germanium substrate; step 2), forming a shallow trench isolation structure in the SiGe layer and the germanium substrate, removing the shallow trench isolation structure on the surface of the germanium substrate, and obtaining a SiGe bump structure on the surface of the germanium substrate Step 3), epitaxial SiGe is formed on the surface of the SiGe bump structure to form a SiGe strip structure; and step 4), an oxidative concentration process is performed on each SiGe strip structure to form a Ge strip structure surrounded by an oxide layer, and the oxide layer is removed. And oxidizing the surface of the germanium substrate to form a surface oxide layer; step 5) sequentially forming a surrounding N -type InGaAs layer and an N + -type InGaAs layer on the surface of the first Ge strip structure to form a surface on the second Ge strip structure a surrounding P + -type Ge layer; step 6), removing an N + -type InGaAs layer corresponding to the first gate region, exposing the N -type InGaAs layer, forming a first annular trench, and removing the second gate region corresponding to the P + type Ge layer, exposing the second belt structure Ge Forming a second annular trench; step 7) sequentially forming a semiconductor barrier layer, a first high K (dielectric constant) dielectric layer, and a first metal gate on the first annular trench surface, and the second annular trench The surface sequentially forms a second high-k dielectric layer and a second metal gate.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶 體的製造方法的一種較佳方案,還包括步驟:步驟8),於閘極區結構兩側製作側壁結構;步驟9),於第一閘極區兩側的N+型InGaAs源極區及N+型InGaAs汲極區上分別製作III-V族量子井電晶體的源極金屬及汲極金屬,並於第二閘極區兩側的P+型Ge源極區及的P+型Ge汲極區分別製作鍺無接面電晶體的源極金屬及汲極金屬。 A preferred embodiment of the method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor of the present invention further includes the steps of: step 8): fabricating sidewall structures on both sides of the gate region structure; Step 9) fabricating source metal and drain metal of the III-V quantum well transistor on the N + -type InGaAs source region and the N + -type InGaAs drain region on both sides of the first gate region, respectively The P + -type Ge source region and the P + -type Ge drain region on both sides of the second gate region respectively form a source metal and a drain metal of the junctionless transistor.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,步驟4)中,去除所述氧化層後,還包括於H2環境中對所述Ge帶結構進行退火的步驟,所述Ge帶結構的直徑範圍為10~100nm。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, in step 4), after removing the oxide layer, it is also included in the H 2 environment. The step of annealing the Ge band structure, the Ge band structure having a diameter ranging from 10 to 100 nm.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,步驟5)中,採用分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種於第一Ge帶結構表面依次形成環繞所述第一Ge帶結構的N-型InGaAs層及N+型InGaAs層。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, in step 5), molecular beam epitaxy, atomic layer deposition, and metal organic One of the chemical vapor deposition methods of the compound sequentially forms an N -type InGaAs layer and an N + -type InGaAs layer surrounding the first Ge band structure on the surface of the first Ge band structure.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,所述N-型InGaAs層的濃度範圍為10~100nm,摻雜濃度為1017/cm3數量級。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, the concentration of the N - type InGaAs layer ranges from 10 to 100 nm, and the doping concentration is 10 17 /cm 3 order of magnitude.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,所述N+型InGaAs層的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, the concentration of the N + -type InGaAs layer ranges from 10 to 200 nm, and the doping concentration is 10 19 /cm 3 order of magnitude.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,步驟5)中,採用分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種於所述第二Ge帶結構表面 形成環繞所述第二Ge帶結構的P+型Ge層。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, in step 5), molecular beam epitaxy, atomic layer deposition, and metal organic One of the chemical vapor deposition methods of the compound forms a P + -type Ge layer surrounding the second Ge band structure on the surface of the second Ge band structure.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,所述P+型Ge層的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, the concentration of the P + -type Ge layer ranges from 10 to 200 nm, and the doping concentration is 10 19 /cm 3 order of magnitude.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,步驟7)中,所述半導體阻擋層選用為N-型InP層,其製備方法包括分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種,其濃度範圍為50~100nm,其摻雜Si的濃度為1018/cm3數量級。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, in the step 7), the semiconductor barrier layer is selected as an N - type InP layer. The preparation method includes one of molecular beam epitaxy, atomic layer deposition, and metal organic compound chemical vapor deposition, and the concentration thereof ranges from 50 to 100 nm, and the concentration of doped Si is on the order of 10 18 /cm 3 .

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,步驟7)中,採用原子層沈積法、金屬有機化合物化學氣相沈積法及低壓化學氣相沈積法中的一種製備所述第一高K介電層及第二高K介電層,所述第一高K介電層及第二高K介電層的濃度範圍為1~5nm,材料包括Al2O3及TiSiOx中的一種。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, in step 7), atomic layer deposition, metal organic compound chemical vapor deposition And preparing the first high-k dielectric layer and the second high-k dielectric layer in a low-pressure chemical vapor deposition method, wherein the first high-k dielectric layer and the second high-k dielectric layer have a concentration range of 1 to 5 nm, the material includes one of Al 2 O 3 and TiSiO x .

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法的一種較佳方案,步驟7)中,採用物理氣相沈積法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種製備所述第一金屬閘極及第二金屬閘極,所述第一金屬閘極及第二金屬閘極的材料包括TiN、NiAu及CrAu中的一種。 As a preferred embodiment of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, in step 7), physical vapor deposition, atomic layer deposition, and metal organic The first metal gate and the second metal gate are prepared by a compound chemical vapor deposition method, and the material of the first metal gate and the second metal gate includes one of TiN, NiAu and CrAu.

本發明還提供一種環閘極III-V族量子井電晶體及鍺無接面電晶體,包括III-V族量子井電晶體及鍺無接面電晶體;所述III-V族量子井電晶體包括:第一Ge帶結構;N-型InGaAs層,環繞於所述第一Ge帶結構表 面;N+型InGaAs層,環繞於所述N-型InGaAs層表面,且與第一閘極區對應的N+型InGaAs層被去除,露出N-型InGaAs層,形成第一環形溝槽;第一閘極區,包括依次形成於所述第一環形溝槽表面的半導體阻擋層、第一高K介電層以及第一金屬閘極;所述鍺無接面電晶體包括:第二Ge帶結構;P+型Ge層,環繞於所述第二Ge帶結構表面,且與第二閘極區對應的P+型Ge層被去除,露出第二Ge帶結構,形成第二環形溝槽;第二閘極區,包括依次形成於所述第二環形溝槽表面第二高K介電層以及第二金屬閘極。 The invention also provides a ring gate III-V quantum well transistor and a tantalum junctionless crystal, comprising a III-V quantum well transistor and a tantalum junctionless crystal; the III-V quantum well electric The crystal includes: a first Ge band structure; an N -type InGaAs layer surrounding the first Ge band structure surface; and an N + -type InGaAs layer surrounding the surface of the N -type InGaAs layer and the first gate region Corresponding N + -type InGaAs layer is removed to expose the N -type InGaAs layer to form a first annular trench; the first gate region includes a semiconductor barrier layer sequentially formed on the surface of the first annular trench, a high K dielectric layer and a first metal gate; the germanium junctionless transistor comprising: a second Ge band structure; a P + type Ge layer surrounding the second Ge band structure surface, and the second a P + -type Ge layer corresponding to the gate region is removed to expose the second Ge band structure to form a second annular trench; and a second gate region includes a second high-k layer sequentially formed on the surface of the second annular trench The electrical layer and the second metal gate.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的一種較佳方案,其還包括:側壁結構,形成於閘極區結構兩側;III-V族量子井電晶體的源極金屬及汲極金屬,分別形成於第一閘極區兩側的N+型InGaAs源極區及N+型InGaAs汲極區上;以及鍺無接面電晶體的源極金屬及汲極金屬,分別形成於第二閘極區兩側的P+型Ge源極區及的P+型Ge汲極區上。 A preferred embodiment of the ring-gate III-V quantum well transistor and the 锗-free junction transistor of the present invention further includes: a sidewall structure formed on both sides of the gate region structure; III-V quantum well The source metal and the drain metal of the transistor are respectively formed on the N + -type InGaAs source region and the N + -type InGaAs drain region on both sides of the first gate region; and the source metal of the germanium-free junction transistor And the drain metal are respectively formed on the P + -type Ge source region and the P + -type Ge drain region on both sides of the second gate region.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的一種較佳方案,所述第一Ge帶結構及第二Ge帶結構的直徑範圍為10~100nm。 As a preferred embodiment of the ring gate III-V quantum well transistor and the tantalum junction transistor of the present invention, the first Ge band structure and the second Ge band structure have a diameter ranging from 10 to 100 nm.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的一種較佳方案,所述N-型InGaAs層的濃度範圍為10~100nm,摻雜濃度為1017/cm3數量級。 As a preferred embodiment of the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, the concentration of the N - type InGaAs layer ranges from 10 to 100 nm, and the doping concentration is 10 17 / Cm 3 orders of magnitude.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的一種較佳方案,所述N+型InGaAs層的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 As a preferred embodiment of the ring gate III-V quantum well transistor and the tantalum junction transistor of the present invention, the concentration of the N + -type InGaAs layer ranges from 10 to 200 nm, and the doping concentration is 10 19 / Cm 3 orders of magnitude.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的一種較佳方案,所述P+型Ge層的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 As a preferred embodiment of the ring gate III-V quantum well transistor and the tantalum junction transistor of the present invention, the P + -type Ge layer has a concentration ranging from 10 to 200 nm and a doping concentration of 10 19 / Cm 3 orders of magnitude.

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的一種較佳方案,所述半導體阻擋層選用為N-型InP層,其濃度範圍為50~100nm,其摻雜Si的濃度為1018/cm3數量級。 As a preferred embodiment of the ring gate III-V quantum well transistor and the tantalum junction transistor of the present invention, the semiconductor barrier layer is selected as an N -type InP layer, and its concentration ranges from 50 to 100 nm. The concentration of doped Si is on the order of 10 18 /cm 3 .

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的一種較佳方案,所述第一高K介電層及第二高K介電層的濃度範圍為1~5nm,材料包括Al2O3及TiSiOx中的一種。 As a preferred embodiment of the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention, the first high-k dielectric layer and the second high-k dielectric layer have a concentration range of 1 ~5nm, the material includes one of Al 2 O 3 and TiSiO x .

作為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的一種較佳方案,所述第一金屬閘極及第二金屬閘極的材料包括TiN、NiAu及CrAu中的一種。 As a preferred embodiment of the ring gate III-V quantum well transistor and the tantalum junction transistor of the present invention, the materials of the first metal gate and the second metal gate include TiN, NiAu and CrAu. One kind.

如上所述,本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體及其製造方法,具有以下有益效果: As described above, the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention and the method for fabricating the same have the following beneficial effects:

第一,本發明通過氧化濃縮等製程製作出懸空的且高質量的Ge奈米帶,為後續的III-V族量子井電晶體及鍺無接面電晶體提供了良好的基底材料; First, the present invention produces a suspended and high-quality Ge nanobelt by an oxidation and concentration process, and provides a good base material for the subsequent III-V quantum well transistor and the tantalum-free transistor;

第二,本發明提供了一種可以有效集成環閘極III-V族量子井電晶體及鍺無接面電晶體的方法,相比於平面結構,本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體可以大大提高閘極的控制能力,以及提高元件的驅動能力; Secondly, the present invention provides a method for effectively integrating a ring-gate III-V quantum well transistor and a tantalum-free transistor, and the ring-gate III-V quantum well of the present invention is compared to a planar structure. The transistor and the 锗-free transistor can greatly improve the control ability of the gate and improve the driving capability of the component;

第三,本發明採用無接面型的電晶體,減小了元件的寄生電 容,其通道由於避開了不完整的閘極氧化層與半導體通道界面,載子受到界面散射影響有限,從而大大提高了載子遷移率。 Third, the present invention uses a junctionless type of transistor to reduce the parasitic current of the component. Because the channel avoids the interface between the incomplete gate oxide layer and the semiconductor channel, the carrier is limited by the interface scattering, which greatly improves the carrier mobility.

第四,本發明結構及製程簡單,在積體電路製造領域具有廣泛的應用前景。 Fourth, the structure and the process of the invention are simple, and have wide application prospects in the field of integrated circuit manufacturing.

101‧‧‧矽基底 101‧‧‧矽Base

102‧‧‧SiGe層 102‧‧‧SiGe layer

103‧‧‧淺溝槽隔離結構 103‧‧‧Shallow trench isolation structure

104‧‧‧SiGe凸起結構 104‧‧‧SiGe raised structure

105‧‧‧SiGe帶結構 105‧‧‧SiGe belt structure

106‧‧‧Ge帶結構 106‧‧‧Ge belt structure

106'‧‧‧第一Ge帶結構 106'‧‧‧First Ge band structure

106"‧‧‧第二Ge帶結構 106"‧‧‧Second Ge band structure

106a‧‧‧氧化層 106a‧‧‧Oxide layer

107‧‧‧表面氧化層 107‧‧‧Surface oxide layer

108‧‧‧N-型InGaAs層 108‧‧‧N - type InGaAs layer

109‧‧‧N+型InGaAs層 109‧‧‧N + type InGaAs layer

110‧‧‧P+型Ge層 110‧‧‧P + type Ge layer

111‧‧‧半導體阻擋層 111‧‧‧Semiconductor barrier

112‧‧‧第一高K介電層 112‧‧‧First high-k dielectric layer

113‧‧‧第一金屬閘極 113‧‧‧First metal gate

114‧‧‧第二高K介電層 114‧‧‧Second high K dielectric layer

115‧‧‧第二金屬閘極 115‧‧‧Second metal gate

116‧‧‧側壁結構 116‧‧‧ sidewall structure

109a‧‧‧N+型InGaAs源極區 109a‧‧‧N + type InGaAs source region

109b‧‧‧N+型InGaAs汲極區 109b‧‧‧N + type InGaAs bungee region

117‧‧‧III-V族量子井電晶體的源極金屬 Source metal of 117‧‧‧III-V quantum well transistor

118‧‧‧III-V族量子井電晶體的汲極金屬 118‧‧‧III-V family of quantum well dielectrics

110a‧‧‧P+型Ge汲極區 110a‧‧‧P + type Ge bungee

110b‧‧‧P+型Ge源極區 110b‧‧‧P + type Ge source region

119‧‧‧鍺無接面電晶體的汲極金屬 119‧‧‧锗 Bungee metal without junction transistor

120‧‧‧鍺無接面電晶體的源極金屬 120‧‧‧锗 source metal without junction transistor

109c‧‧‧第一環形溝槽 109c‧‧‧ first annular groove

110c‧‧‧第二環形溝槽 110c‧‧‧second annular groove

g1‧‧‧第一閘極區 G1‧‧‧First Gate Area

g2‧‧‧第二閘極區 G2‧‧‧second gate area

第1圖~第16c圖顯示為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法各步驟所呈現的結構示意圖。 1 to 16c are schematic views showing the structures of the steps of the method for fabricating the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention.

第8b圖為第8a圖中沿第一Ge帶結構106的縱切面結構示意圖。 Figure 8b is a schematic view of the longitudinal section along the first Ge strip structure 106 in Figure 8a.

第9b圖為第9a圖中沿第二Ge帶結構106的縱切面結構示意圖。 Figure 9b is a schematic view of the longitudinal section along the second Ge strip structure 106 in Figure 9a.

第10b圖為第10a圖中沿第一Ge帶結構106的縱切面結構示意圖。 Figure 10b is a schematic view of the longitudinal section along the first Ge strip structure 106 in Figure 10a.

第11b圖為第11a圖中沿第二Ge帶結構106的縱切面結構示意圖。 Figure 11b is a schematic view of the longitudinal section along the second Ge strip structure 106 in Figure 11a.

第12b圖為第12a圖中沿第一Ge帶結構106的縱切面結構示意圖。 Figure 12b is a schematic view of the longitudinal section along the first Ge strip structure 106 in Figure 12a.

第13b圖為第13a圖中沿第一Ge帶結構106的縱切面結構示意圖。 Figure 13b is a schematic view of the longitudinal section along the first Ge strip structure 106 in Figure 13a.

第14b圖為第14a圖中沿第一Ge帶結構106的縱切面結構示意圖。 Figure 14b is a schematic view of the longitudinal section along the first Ge strip structure 106 in Figure 14a.

第15b圖為第15a圖中沿第二Ge帶結構106的縱切面結構示意圖。 Figure 15b is a schematic view of the longitudinal section along the second Ge strip structure 106 in Figure 15a.

第16a圖~第16c圖顯示為本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體的結構示意圖。 16a to 16c are schematic views showing the structure of the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention.

第17a圖顯示為平(能)帶電壓下的矽基底上多層結構的FinFET量子井電晶體(QW-FinFET)的能帶圖。 Figure 17a shows the energy band diagram of a FinFET quantum well transistor (QW-FinFET) with a multilayer structure on a germanium substrate with a flat voltage.

第17b圖顯示為閘極加正偏壓時,矽基底上多層結構的n型通道的FinFET量子井電晶體(QW-FinFET)的能帶圖。 Figure 17b shows the energy band diagram of a FinFET quantum well transistor (QW-FinFET) of a multi-layered n-channel on a germanium substrate with a positive bias applied to the gate.

以下通過特定的具體實例說明本發明的實施方式,本領域技術人員可由本說明書所揭露的內容輕易地了解本發明的其他優點與功效。本發明還可以通過另外不同的具體實施方式加以實施或應用,本說明書中的各項細節也可以基於不同觀點與應用,在沒有背離本發明的精神下進行各種修飾或改變。 The embodiments of the present invention are described below by way of specific examples, and those skilled in the art can readily understand other advantages and effects of the present invention from the disclosure of the present disclosure. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention.

請參閱第1圖~第16c圖。需要說明的是,本實施例中所提供的圖示僅以示意方式說明本發明的基本構想,遂圖示中僅顯示與本發明中有關的組件而非按照實際實施時的組件數目、形狀及尺寸繪製,其實際實施時各組件的型態、數量及比例可為一種隨意的改變,且其組件布局型態也可能更為複雜。 Please refer to Figures 1 to 16c. It should be noted that the illustrations provided in the embodiments merely illustrate the basic concept of the present invention in a schematic manner, and only the components related to the present invention are shown in the drawings, rather than the number and shape of components in actual implementation. Dimensional drawing, the actual type of implementation of each component's type, number and proportion can be a random change, and its component layout can be more complicated.

如第1圖~第16c圖所示,本實施例提供一種環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,包括步驟:如第1圖所示,首先進行步驟1),提供一矽基底101,於所述矽基底101表面形成SiGe層102。 As shown in FIG. 1 to FIG. 16c, the present embodiment provides a method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor, including the steps: as shown in FIG. In step 1), a substrate 101 is provided, and a SiGe layer 102 is formed on the surface of the germanium substrate 101.

作為示例,可以採用如電漿增強化學氣相沈積法等於所述矽基底101表面形成SiGe層102,所述SiGe層102的濃度範圍為10~100nm。 As an example, the SiGe layer 102 may be formed by a plasma enhanced chemical vapor deposition method equal to the surface of the tantalum substrate 101, and the concentration of the SiGe layer 102 ranges from 10 to 100 nm.

如第2圖~第3圖所示,然後進行步驟2),於所述SiGe層102及矽基底101中製作淺溝槽隔離結構103,去除矽基底101表面的淺溝槽隔離結構103,獲得位於所述矽基底101表面的SiGe凸起結構104。 As shown in FIG. 2 to FIG. 3, then step 2) is performed to form a shallow trench isolation structure 103 in the SiGe layer 102 and the germanium substrate 101, and the shallow trench isolation structure 103 on the surface of the germanium substrate 101 is removed. A SiGe bump structure 104 on the surface of the germanium substrate 101.

具體地,包括以下步驟:步驟2-1),採用光刻-蝕刻製程於所述SiGe層102及矽基底 101中製作多個間隔排列的溝槽,所述溝槽的截面形狀為倒梯形,各溝槽之間保留有SiGe凸起結構104;步驟2-2),於各溝槽內填充絕緣介電質,如二氧化矽等,形成淺溝槽隔離結構103;步驟2-3),採用乾式蝕刻製程或濕式蝕刻製程去除矽基底101表面的淺溝槽隔離結構103,獲得位於所述矽基底101表面的SiGe凸起結構104,在本實施例中,所述SiGe凸起結構104的截面形狀為正梯形。 Specifically, the method includes the following steps: Step 2-1), using a photolithography-etching process on the SiGe layer 102 and the germanium substrate In the 101, a plurality of spaced-apart trenches are formed, the cross-sectional shape of the trenches is an inverted trapezoid, and a SiGe bump structure 104 remains between the trenches; and step 2-2) is filled with an insulating dielectric in each trench. a thin trench isolation structure 103, such as cerium oxide, etc.; step 2-3), removing the shallow trench isolation structure 103 on the surface of the ruthenium substrate 101 by a dry etching process or a wet etching process to obtain the ruthenium substrate In the present embodiment, the SiGe bump structure 104 has a cross-sectional shape of a positive trapezoid.

如第4圖所示,接著進行步驟3),於所述SiGe凸起結構104表面磊晶SiGe,形成SiGe帶結構105。 As shown in FIG. 4, step 3) is followed by epitaxial SiGe on the surface of the SiGe bump structure 104 to form a SiGe strip structure 105.

具體地,採用如電漿增強化學氣相沈積法等於所述SiGe凸起結構104表面磊晶SiGe,形成SiGe帶結構105。 Specifically, the SiGe ribbon structure 105 is formed by, for example, plasma enhanced chemical vapor deposition equal to the surface epitaxial SiGe of the SiGe bump structure 104.

如第5圖~第7圖所示,然後進行步驟4),對各SiGe帶結構105進行氧化濃縮製程形成由氧化層106a包圍的Ge帶結構106,去除所述氧化層106a,並對所述矽基底101表面進行氧化形成表面氧化層107。 As shown in FIG. 5 to FIG. 7, step 4) is followed by performing an oxidative concentration process on each SiGe strip structure 105 to form a Ge strip structure 106 surrounded by the oxide layer 106a, removing the oxide layer 106a, and The surface of the crucible substrate 101 is oxidized to form a surface oxide layer 107.

具體地,對所述SiGe帶結構105進行氧化處理,使得裡面的Si元素氧化成二氧化矽,而Ge元素逐漸濃縮至SiGe帶結構105中部區域,直至形成由氧化層106a包圍的Ge帶結構106,然後採用如濕式蝕刻等製程去除表面的氧化層106a,獲得裸露的截面呈圓形的Ge帶結構106。最後,採用氧化製程使得矽基底101裸露的矽氧化層106a表面氧化層107,提高元件的絕緣性能。本實施例是對整體的SiGe進行氧化濃縮,因此,可以縮短氧化製程所需要的時間,並獲得較高質量的Ge奈米帶,另外,圓形的Ge奈米帶可以有效提高後續元件的閘極控制能力,並降低閘極介電質與Ge奈米帶表面 的不平整度,降低表面載子的散射效應。 Specifically, the SiGe ribbon structure 105 is oxidized such that the Si element therein is oxidized to cerium oxide, and the Ge element is gradually concentrated to the central region of the SiGe ribbon structure 105 until the Ge ribbon structure 106 surrounded by the oxide layer 106a is formed. Then, the surface oxide layer 106a is removed by a process such as wet etching to obtain a bare Ge band structure 106 having a circular cross section. Finally, an oxidation process is used to expose the surface oxide layer 107 of the tantalum oxide layer 106a exposed to the tantalum substrate 101, thereby improving the insulating properties of the device. In this embodiment, the overall SiGe is oxidatively concentrated, so that the time required for the oxidation process can be shortened, and a higher quality Ge nanobelt can be obtained. In addition, the circular Ge nanobelt can effectively improve the gate of the subsequent component. Extreme control capability and reduced gate dielectric and Ge nanobelt surface The unevenness reduces the scattering effect of surface carriers.

作為示例,步驟4)中,去除所述氧化層106a後,還包括於H2環境中對所述Ge帶結構106進行退火的步驟,進一步消除Ge帶結構106的內應力及缺陷,在本實施例,所述Ge帶結構106的直徑範圍為10~100nm。如第7圖所示,Ge帶結構106包括第一Ge帶結構106'及第二Ge帶結構106"。 As an example, in step 4), after removing the oxide layer 106a, the step of annealing the Ge band structure 106 in the H 2 environment is further included to further eliminate the internal stress and defects of the Ge band structure 106. For example, the Ge band structure 106 has a diameter ranging from 10 to 100 nm. As shown in FIG. 7, the Ge strip structure 106 includes a first Ge strip structure 106' and a second Ge strip structure 106".

如第8a圖~第9b圖所示,其中,第8b圖為第8a圖中沿第一Ge帶結構106'的縱切面結構示意圖,第9b圖為第9a圖中沿第二Ge帶結構106"的縱切面結構示意圖,接著進行步驟5),於第一Ge帶結構106'表面依次形成環繞的N-型InGaAs層108及N+型InGaAs層109,於第二Ge帶結構106"表面形成環繞的P+型Ge層110。 As shown in FIG. 8a to FIG. 9b, wherein FIG. 8b is a schematic diagram of a longitudinal section along the first Ge strip structure 106' in FIG. 8a, and FIG. 9b is a second Ge strip structure 106 in FIG. 9a. "The schematic diagram of the longitudinal section structure, followed by step 5), sequentially forming a surrounding N - -type InGaAs layer 108 and an N + -type InGaAs layer 109 on the surface of the first Ge strip structure 106' to form a surface on the second Ge strip structure 106" A surrounding P + -type Ge layer 110.

如第8a圖~第9b圖所示,作為示例,步驟5)中,採用分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種於第一Ge帶結構106'表面依次形成環繞所述第一Ge帶結構106'的N-型InGaAs層108及N+型InGaAs層109。 As shown in FIGS. 8a to 9b, as an example, in step 5), one of molecular beam epitaxy, atomic layer deposition, and metal organic compound chemical vapor deposition is used for the first Ge band structure 106'. The surface sequentially forms an N -type InGaAs layer 108 and an N + -type InGaAs layer 109 surrounding the first Ge strip structure 106 ′.

作為示例,所述N-型InGaAs層108的濃度範圍為10~100nm,摻雜濃度為1017/cm3數量級。 As an example, the N - type InGaAs layer 108 has a concentration ranging from 10 to 100 nm and a doping concentration of the order of 10 17 /cm 3 .

作為示例,所述N+型InGaAs層109的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 As an example, the N + -type InGaAs layer 109 has a concentration ranging from 10 to 200 nm and a doping concentration of the order of 10 19 /cm 3 .

如第9a圖~第9b圖所示,作為示例,步驟5)中,採用分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種於所述第二Ge帶結構106"表面形成環繞所述第二Ge帶結構106"的P+型Ge層110。 As shown in FIGS. 9a to 9b, as an example, in step 5), one of molecular beam epitaxy, atomic layer deposition, and metal organic compound chemical vapor deposition is used for the second Ge band structure. A 106" surface forms a P + type Ge layer 110 surrounding the second Ge strip structure 106".

作為示例,所述P+型Ge層110的濃度範圍為10~200nm,摻雜 濃度為1019/cm3數量級。 As an example, the P + -type Ge layer 110 has a concentration ranging from 10 to 200 nm and a doping concentration of the order of 10 19 /cm 3 .

如第10a圖~第11b圖所示,其中,第10b圖為第10a圖中沿第一Ge帶結構106'的縱切面結構示意圖,第11b圖為第11a圖中沿第二Ge帶結構106"的縱切面結構示意圖,N+型InGaAs層109中定義一第一閘極區g1,P+型Ge層110中定義一第二閘極區g2。接著進行步驟6),去除與第一閘極區g1對應的N+型InGaAs層109,露出N-型InGaAs層108,形成第一環形溝槽109c,並去除與第二閘極區g2對應的P+型Ge層110,露出第二Ge帶結構106",形成第二環形溝槽110c。 10a to 11b, wherein FIG. 10b is a schematic diagram of a longitudinal section along the first Ge strip structure 106' in FIG. 10a, and FIG. 11b is a second Ge strip structure 106 in FIG. 11a. "The schematic diagram of the longitudinal section structure, a first gate region g1 is defined in the N + -type InGaAs layer 109, and a second gate region g2 is defined in the P + -type Ge layer 110. Then, step 6) is performed to remove the first gate region. The N + -type InGaAs layer 109 corresponding to the pole region g1 exposes the N -type InGaAs layer 108, forms the first annular trench 109c, and removes the P + -type Ge layer 110 corresponding to the second gate region g2 to expose the second The Ge strip structure 106" forms a second annular trench 110c.

作為示例,如第10a圖~第10b圖所示,去除與第一閘極區g1對應的N+型InGaAs層109,露出N-型InGaAs層108,形成第一環形溝槽109c。 As an example, as shown in FIGS. 10a to 10b, the N + -type InGaAs layer 109 corresponding to the first gate region g1 is removed, and the N - -type InGaAs layer 108 is exposed to form the first annular trench 109c.

作為示例,如第11a圖~第11b圖所示,去除與第二閘極區g2對應的P+型Ge層110,露出第二Ge帶結構106",形成第二環形溝槽110c。 As an example, as shown in FIGS. 11a to 11b, the P + -type Ge layer 110 corresponding to the second gate region g2 is removed, and the second Ge strip structure 106" is exposed to form the second annular trench 110c.

如第12a圖~第15b圖所示,其中,第12b圖為第12a圖中沿第一Ge帶結構106'的縱切面結構示意圖,第13b圖為第13a圖中沿第一Ge帶結構106'的縱切面結構示意圖,第14b圖為第14a圖中沿第一Ge帶結構106'的縱切面結構示意圖,第15b圖為第15a圖中沿第二Ge帶結構106"的縱切面結構示意圖,接著進行步驟7),於第一環形溝槽109c表面依次形成半導體阻擋層111(如第12a、12b圖所示)、第一高K介電層112(如第13a、13b圖所示)以及第一金屬閘極113(如第14a、14b圖所示),於第二環形溝槽110c表面依次形成第二高K介電層114以及第二金屬閘極115(如第15a、15b圖所示),其中,所述第一高K介電層112及第二高K介電層114可以同時製備,所述第一金屬閘極113以及第二金屬閘極115可以同時製備,以節省製程步驟及製 程成本。 As shown in Fig. 12a to Fig. 15b, wherein Fig. 12b is a schematic view of the longitudinal section along the first Ge strip structure 106' in Fig. 12a, and Fig. 13b is the first Ge strip structure 106 in Fig. 13a. Schematic diagram of longitudinal section structure, Fig. 14b is a schematic diagram of the longitudinal section along the first Ge strip structure 106' in Fig. 14a, and Fig. 15b is a schematic diagram of the longitudinal section along the second Ge strip structure 106" in Fig. 15a. Next, in step 7), a semiconductor barrier layer 111 (as shown in FIGS. 12a and 12b) and a first high-k dielectric layer 112 are sequentially formed on the surface of the first annular trench 109c (as shown in FIGS. 13a and 13b). And a first metal gate 113 (as shown in FIGS. 14a and 14b), a second high-k dielectric layer 114 and a second metal gate 115 are sequentially formed on the surface of the second annular trench 110c (eg, 15a, 15b) The first high-k dielectric layer 112 and the second high-k dielectric layer 114 can be simultaneously prepared, and the first metal gate 113 and the second metal gate 115 can be simultaneously prepared. Save process steps and system Cost of the process.

如第12a圖~第12b圖所示,作為示例,步驟7)中,所述半導體阻擋層111選用為N-型InP層,其製備方法包括分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種,其濃度範圍為50~100nm,其摻雜Si的濃度為1018/cm3數量級,較佳的摻雜濃度為1.2×1018/cm3As shown in FIG. 12a to FIG. 12b, as an example, in step 7), the semiconductor barrier layer 111 is selected as an N - type InP layer, and the preparation method thereof includes molecular beam epitaxy, atomic layer deposition, and metal organic One of the chemical vapor deposition methods of the compound has a concentration ranging from 50 to 100 nm, and the concentration of doped Si is on the order of 10 18 /cm 3 , and the preferred doping concentration is 1.2 × 10 18 /cm 3 .

如第13a圖~第13b圖以及第15a圖~第15b圖所示,作為示例,步驟7)中,採用原子層沈積法、金屬有機化合物化學氣相沈積法及低壓化學氣相沈積法中的一種製備所述第一高K介電層112及第二高K介電層114,所述第一高K介電層112及第二高K介電層114的濃度範圍為1~5nm,材料包括Al2O3及TiSiOx中的一種。 As shown in Fig. 13a to Fig. 13b and Fig. 15a to Fig. 15b, as an example, in step 7), atomic layer deposition, metal organic compound chemical vapor deposition and low pressure chemical vapor deposition are used. The first high-k dielectric layer 112 and the second high-k dielectric layer 114 are prepared, and the first high-k dielectric layer 112 and the second high-k dielectric layer 114 have a concentration ranging from 1 to 5 nm. One of Al 2 O 3 and TiSiO x is included.

如第14a圖~第14b圖以及第15a圖~第15b圖作為示例,步驟7)中,採用物理氣相沈積法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種製備所述第一金屬閘極113極第二金屬閘極115,所述第一金屬閘極113極第二金屬閘極115的材料包括TiN、NiAu及CrAu中的一種。 As shown in FIGS. 14a to 14b and 15a to 15b as an example, in the step 7), the physical vapor deposition method, the atomic layer deposition method, and the metal organic compound chemical vapor deposition method are used to prepare the The first metal gate 113 is electrically connected to the second metal gate 115, and the material of the first metal gate 113 and the second metal gate 115 includes one of TiN, NiAu and CrAu.

本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體可以大大提高閘極的控制能力,以及提高元件的驅動能力。 The ring gate III-V quantum well transistor and the 锗-free junction transistor of the invention can greatly improve the control ability of the gate and improve the driving capability of the component.

如第16a圖所示,接著進行步驟8),於第一、二閘極區g1、g2的結構兩側製作側壁結構116。 As shown in Fig. 16a, step 8) is followed to form sidewall structures 116 on both sides of the structures of the first and second gate regions g1, g2.

作為示例,所述側壁結構116的材料可以為二氧化矽或氮化矽,或者是二氧化矽及氮化矽組成的雙層材料。 As an example, the material of the sidewall structure 116 may be ceria or tantalum nitride, or a two-layer material composed of ceria and tantalum nitride.

如第16a圖~第16c圖所示,其中,第16b圖顯示為第16a圖中的III-V族量子井電晶體的側視結構示意圖,第16c圖顯示為第16a圖中的鍺 無接面電晶體的側視結構示意圖,最後進行步驟9),於第一閘極區g1兩側的N+型InGaAs源極區109a及N+型InGaAs汲極區109b上分別製作III-V族量子井電晶體的源極金屬117及汲極金屬118,並於第二閘極區g2兩側的P+型Ge源極區110b及的P+型Ge汲極區110a分別製作鍺無接面電晶體的源極金屬120及汲極金屬119。 As shown in Figures 16a to 16c, wherein Figure 16b shows a side view of the III-V quantum well transistor in Figure 16a, and Figure 16c shows the connection in Figure 16a. A schematic view of the side view of the surface transistor, and finally step 9), respectively, a III-V quantum is fabricated on the N + -type InGaAs source region 109a and the N + -type InGaAs drain region 109b on both sides of the first gate region g1. The source metal 117 and the drain metal 118 of the well transistor are respectively fabricated on the P + -type Ge source region 110b and the P + -Ge germanium region 110a on both sides of the second gate region g2. The source metal 120 and the drain metal 119 of the crystal.

如第16a圖~第16c圖所示,本實施例還提供一種環閘極III-V族量子井電晶體及鍺無接面電晶體,所述環閘極III-V族量子井電晶體及鍺無接面電晶體包括III-V族量子井電晶體及鍺無接面電晶體,其中,第16b圖顯示為第16a圖中的III-V族量子井電晶體的側視結構示意圖,第16c圖顯示為第16a圖中的鍺無接面電晶體的側視結構示意圖。 As shown in FIG. 16a to FIG. 16c, the present embodiment further provides a ring gate III-V family quantum well transistor and a germanium junctionless transistor, the ring gate III-V family quantum well transistor and The 锗-free junction transistor includes a III-V quantum well transistor and a 锗-free junction transistor, wherein FIG. 16b shows a side view structure of the III-V quantum well transistor in FIG. 16a, Figure 16c shows a schematic side view of the tantalum junctionless transistor in Figure 16a.

如第16a圖所示,作為示例,本實施例的環閘極III-V族量子井電晶體及鍺無接面電晶體還包括:側壁結構116,形成於第一、二閘極區g1、g2的結構兩側;III-V族量子井電晶體的源極金屬117及汲極金屬118,分別形成於第一閘極區g1兩側的N+型InGaAs源極區109a及N+型InGaAs汲極區109b上;以及鍺無接面電晶體的源極金屬120及汲極金屬119,分別形成於第二閘極區g2兩側的P+型Ge源極區110b及的P+型Ge汲極區110a上。 As shown in FIG. 16a, as an example, the ring gate III-V quantum well transistor and the tantalum junction transistor of the embodiment further include: a sidewall structure 116 formed on the first and second gate regions g1. The two sides of the structure of g2; the source metal 117 and the drain metal 118 of the III-V quantum well transistor are respectively formed in the N + -type InGaAs source region 109a and the N + -type InGaAs on both sides of the first gate region g1 The drain metal region 109b; and the source metal 120 and the drain metal 119 of the germanium-free transistor are respectively formed on the P + -type Ge source region 110b and the P + -type Ge on both sides of the second gate region g2 On the bungee region 110a.

如第16a圖及第16b圖所示,所述III-V族量子井電晶體包括:第一Ge帶結構106';N-型InGaAs層108,環繞於所述第一Ge帶結構106'表面;N+型InGaAs層109,環繞於所述N-型InGaAs層108表面,且與第一閘極區g1對應的N+型InGaAs層109被去除,露出N-型InGaAs層108,形成第一環形溝槽109c;第一閘極區g1,包括依次形成於所述第一環形溝槽109c表面的半導體阻擋層111、第一高K介電層112以及第一金屬閘極113。 As shown in FIGS. 16a and 16b, the III-V quantum well transistor includes: a first Ge strip structure 106'; and an N - type InGaAs layer 108 surrounding the surface of the first Ge strip structure 106'. An N + -type InGaAs layer 109 surrounds the surface of the N -type InGaAs layer 108 , and the N + -type InGaAs layer 109 corresponding to the first gate region g1 is removed, exposing the N -type InGaAs layer 108 to form a first The annular trench 109c; the first gate region g1 includes a semiconductor barrier layer 111, a first high-k dielectric layer 112, and a first metal gate 113 which are sequentially formed on the surface of the first annular trench 109c.

如第16a圖及第16c圖所示,所述鍺無接面電晶體包括:第二Ge帶結構106";P+型Ge層110,環繞於所述第二Ge帶結構106"表面,且與第二閘極區g2對應的P+型Ge層110被去除,露出第二Ge帶結構106",形成第二環形溝槽110c;第二閘極區g2,包括依次形成於所述第二環形溝槽110c表面第二高K介電層114以及第二金屬閘極115。 As shown in FIGS. 16a and 16c, the germanium junctionless transistor includes: a second Ge strip structure 106"; a P + -type Ge layer 110 surrounding the surface of the second Ge strip structure 106", and The P + -type Ge layer 110 corresponding to the second gate region g2 is removed to expose the second Ge strip structure 106" to form a second annular trench 110c; and the second gate region g2 includes sequentially formed in the second The annular trench 110c has a second high-k dielectric layer 114 and a second metal gate 115 on the surface.

作為示例,所述第一Ge帶結構106'及第二Ge帶結構106"的直徑範圍為10~100nm。 As an example, the first Ge strip structure 106' and the second Ge strip structure 106" have a diameter ranging from 10 to 100 nm.

作為示例,所述N-型InGaAs層108的濃度範圍為10~100nm,摻雜濃度為1017/cm3數量級。 As an example, the N - type InGaAs layer 108 has a concentration ranging from 10 to 100 nm and a doping concentration of the order of 10 17 /cm 3 .

作為示例,所述N+型InGaAs層109的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 As an example, the N + -type InGaAs layer 109 has a concentration ranging from 10 to 200 nm and a doping concentration of the order of 10 19 /cm 3 .

作為示例,所述P+型Ge層110的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 As an example, the P + -type Ge layer 110 has a concentration ranging from 10 to 200 nm and a doping concentration of the order of 10 19 /cm 3 .

作為示例,所述半導體阻擋層111選用為N-型InP層,其濃度範圍為50~100nm,其摻雜Si的濃度為1018/cm3數量級。 As an example, the semiconductor barrier layer 111 is selected to be an N - type InP layer having a concentration ranging from 50 to 100 nm and a doped Si concentration of the order of 10 18 /cm 3 .

作為示例,所述第一高K介電層112及第二高K介電層114的濃度範圍為1~5nm,材料包括Al2O3及TiSiOx中的一種。 As an example, the first high-k dielectric layer 112 and the second high-k dielectric layer 114 have a concentration ranging from 1 to 5 nm, and the material includes one of Al 2 O 3 and TiSiO x .

作為示例,所述第一金屬閘極113極第二金屬閘極115的材料包括TiN、NiAu及CrAu中的一種。 As an example, the material of the first metal gate 113 and the second metal gate 115 includes one of TiN, NiAu, and CrAu.

第17a圖顯示為平(能)帶電壓下的矽基底上多層結構的FinFET量子井電晶體(QW-FinFET)的能帶圖,第17b圖顯示為閘極加正偏壓時,矽基底上多層結構的n型通道的FinFET量子井電晶體(QW-FinFET) 的能帶圖,可見,當量子井電晶體閘極加正偏壓時,在InP及InGaAs界面區域由於能帶彎曲形成二維電子氣面(two-dimensional electron gas)結構,從而使元件具有很高的電子遷移率。 Figure 17a shows the energy band diagram of a FinFET quantum well transistor (QW-FinFET) with a multilayer structure on a germanium substrate with a flat voltage. Figure 17b shows the gate on a germanium substrate with a positive bias applied to the gate. Multi-layered n-channel FinFET quantum well transistor (QW-FinFET) The energy band diagram shows that when the gate of the equivalent subwell is positively biased, the two-dimensional electron gas structure is formed in the InP and InGaAs interface regions due to the band bending, so that the components have a very high High electron mobility.

本實施例提供了一種環閘極III-V族量子井電晶體及鍺無接面電晶體,實際上III-V族量子井電晶體及鍺無接面電晶體都屬於無接面場效應電晶體的範疇,無接面場效應電晶體(JLT)由源極區、通道、汲極區,閘極氧化層及閘極組成,從源極區至通道和汲極區,其雜質摻雜類型相同,沒有PN結,屬於多數載子導電的元件。其絕緣體閘極介電質將整個圓柱體通道包裹起來,在其上面又包裹金屬閘極。導電通道與金屬閘極之間被絕緣體介電質隔離,通道內的多數載子(電洞)從圓柱體通道體內而非表面由源極達到汲極。通過閘極偏壓使元件通道內的多數載子累積或耗盡,可以調製通道導電進而控制通道電流。當閘極偏壓大到將圓柱體通道靠近汲極某一截面處的電洞完全耗盡掉,在這種情況下,元件通道電阻變成準無限大,元件處於關閉狀態。由於閘極偏壓可以從360度方向將圓柱體通道電洞由表及裡將其耗盡,這樣大大增強了閘極對圓柱體通道的控制能力,還有效地降低了元件的閾值電壓。由於避開了不完整的閘極氧化層與半導體通道界面,載子受到界面散射影響有限,提高了載子遷移率。此外,無接面場效應電晶體屬於多數載子導電元件,沿通道方向,靠近汲極的電場強度比常規反型通道的MOS電晶體要來得低,因此,元件的性能及可靠性得以大大提高。 The present embodiment provides a ring-gate III-V quantum well transistor and a tantalum-free transistor. In fact, the III-V quantum well transistor and the tantalum-free transistor belong to the junctionless field effect transistor. In the category of crystals, the junction-free field effect transistor (JLT) consists of the source region, the channel, the drain region, the gate oxide layer and the gate, and the impurity doping type from the source region to the channel and the drain region. The same, no PN junction, belongs to the majority of the carrier conductive components. The insulator gate dielectric encapsulates the entire cylindrical channel and overlies the metal gate. The conductive channel and the metal gate are separated by an insulator dielectric, and most of the carriers (holes) in the channel reach the drain from the source of the cylinder channel rather than the surface. By accumulating or depleting the majority of the carriers in the component channel by the gate bias, the channel conduction can be modulated to control the channel current. When the gate bias is so large that the hole in the cylinder channel near a section of the drain is completely depleted, in this case, the component channel resistance becomes quasi-infinite and the component is turned off. Since the gate bias can deplete the cylindrical channel hole from the surface and the inside from the 360 degree direction, the gate can control the channel of the cylinder greatly, and the threshold voltage of the component is effectively reduced. Since the incomplete gate oxide layer and the semiconductor channel interface are avoided, the carrier is limited by the interface scattering, which improves the carrier mobility. In addition, the junctionless field effect transistor belongs to the majority carrier conductive element, and the electric field intensity near the drain in the channel direction is lower than that of the conventional inversion channel MOS transistor, so the performance and reliability of the component are greatly improved. .

如上所述,本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體及其製造方法,具有以下有益效果: As described above, the ring-gate III-V quantum well transistor and the tantalum-free transistor of the present invention and the method for fabricating the same have the following beneficial effects:

第一,本發明通過氧化濃縮等製程製作出懸空的且高質量的Ge奈米帶,為後續的III-V族量子井電晶體及鍺無接面電晶體提供了良好的基底材料; First, the present invention produces a suspended and high-quality Ge nanobelt by an oxidation and concentration process, and provides a good base material for the subsequent III-V quantum well transistor and the tantalum-free transistor;

第二,本發明提供了一種可以有效集成環閘極III-V族量子井電晶體及鍺無接面電晶體的方法,相比於平面結構,本發明的環閘極III-V族量子井電晶體及鍺無接面電晶體可以大大提高閘極的控制能力,以及提高元件的驅動能力; Secondly, the present invention provides a method for effectively integrating a ring-gate III-V quantum well transistor and a tantalum-free transistor, and the ring-gate III-V quantum well of the present invention is compared to a planar structure. The transistor and the 锗-free transistor can greatly improve the control ability of the gate and improve the driving capability of the component;

第三,本發明採用無接面型的電晶體,減小了元件的寄生電容,其通道由於避開了不完整的閘極氧化層與半導體通道界面,載子受到界面散射影響有限,從而大大提高了載子遷移率。 Thirdly, the invention adopts a junctionless type of transistor, which reduces the parasitic capacitance of the component, and the channel avoids the interface of the incomplete gate oxide layer and the semiconductor channel, and the carrier is limited by the interface scattering, thereby greatly Improved carrier mobility.

第四,本發明結構及製程簡單,在積體電路製造領域具有廣泛的應用前景。 Fourth, the structure and the process of the invention are simple, and have wide application prospects in the field of integrated circuit manufacturing.

所以,本發明有效克服了現有技術中的種種缺點而具高度產業利用價值。 Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

上述實施例僅例示性說明本發明的原理及其功效,而非用於限制本發明。任何熟悉此技術的人士皆可在不違背本發明的精神及範疇下,對上述實施例進行修飾或改變。因此,舉凡所屬技術領域中具有通常知識者在未脫離本發明所揭示的精神與技術思想下所完成的一切等效修飾或改變,仍應由本發明的權利要求所涵蓋。 The above-described embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Modifications or variations of the above-described embodiments may be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and scope of the invention will be covered by the appended claims.

101‧‧‧矽基底 101‧‧‧矽Base

106‧‧‧Ge帶結構 106‧‧‧Ge belt structure

106'‧‧‧第一Ge帶結構 106'‧‧‧First Ge band structure

106"‧‧‧第二Ge帶結構 106"‧‧‧Second Ge band structure

108‧‧‧N-型InGaAs層 108‧‧‧N - type InGaAs layer

109‧‧‧N+型InGaAs層 109‧‧‧N + type InGaAs layer

110‧‧‧P+型Ge層 110‧‧‧P + type Ge layer

111‧‧‧半導體阻擋層 111‧‧‧Semiconductor barrier

112‧‧‧第一高K介電層 112‧‧‧First high-k dielectric layer

113‧‧‧第一金屬閘極 113‧‧‧First metal gate

114‧‧‧第二高K介電層 114‧‧‧Second high K dielectric layer

115‧‧‧第二金屬閘極 115‧‧‧Second metal gate

116‧‧‧側壁結構 116‧‧‧ sidewall structure

109a‧‧‧N+型InGaAs源極區 109a‧‧‧N + type InGaAs source region

109b‧‧‧N+型InGaAs汲極區 109b‧‧‧N + type InGaAs bungee region

117‧‧‧III-V族量子井電晶體的源極金屬 Source metal of 117‧‧‧III-V quantum well transistor

118‧‧‧III-V族量子井電晶體的汲極金屬 118‧‧‧III-V family of quantum well dielectrics

110a‧‧‧P+型Ge汲極區 110a‧‧‧P + type Ge bungee

110b‧‧‧P+型Ge源極區 110b‧‧‧P + type Ge source region

119‧‧‧鍺無接面電晶體的汲極金屬 119‧‧‧锗 Bungee metal without junction transistor

120‧‧‧鍺無接面電晶體的源極金屬 120‧‧‧锗 source metal without junction transistor

109c‧‧‧第一環形溝槽 109c‧‧‧ first annular groove

110c‧‧‧第二環形溝槽 110c‧‧‧second annular groove

g1‧‧‧第一閘極區 G1‧‧‧First Gate Area

g2‧‧‧第二閘極區 G2‧‧‧second gate area

Claims (20)

一種環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,包括步驟:步驟1),提供一矽基底,於該矽基底表面形成SiGe層;步驟2),於該SiGe層及該矽基底中製作淺溝槽隔離結構,去除該矽基底表面的該淺溝槽隔離結構,獲得位於該矽基底表面的SiGe凸起結構;步驟3),於該SiGe凸起結構表面磊晶SiGe,形成SiGe帶結構;步驟4),對各SiGe帶結構進行氧化濃縮製程形成由氧化層包圍的Ge帶結構,去除該氧化層,並對該矽基底表面進行氧化形成表面氧化層,該Ge帶結構包括第一Ge帶結構及第二Ge帶結構;步驟5),於該第一Ge帶結構表面依次形成環繞的N-型InGaAs層及N+型InGaAs層,該N+型InGaAs層中定義出第一閘極區,於該第二Ge帶結構表面形成環繞的P+型Ge層,該P+型Ge層中定義出第二閘極區;步驟6),去除與該第一閘極區對應的該N+型InGaAs層,露出該N-型InGaAs層,形成第一環形溝槽,並去除與該第二閘極區對應的該P+型Ge層,露出該第二Ge帶結構,形成第二環形溝槽;步驟7),於該第一環形溝槽表面依次形成半導體阻擋層、第一高K介電層以及第一金屬閘極,於該第二環形溝槽表面依次形成第二高K介電層以及第二金屬閘極。 A method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor, comprising the steps of: step 1), providing a germanium substrate, forming a SiGe layer on the surface of the germanium substrate; and step 2) Forming a shallow trench isolation structure in the SiGe layer and the germanium substrate, removing the shallow trench isolation structure on the surface of the germanium substrate to obtain a SiGe bump structure on the surface of the germanium substrate; and step 3) on the surface of the SiGe bump structure Epitaxial SiGe, forming a SiGe band structure; step 4), performing an oxidative concentration process on each SiGe band structure to form a Ge band structure surrounded by an oxide layer, removing the oxide layer, and oxidizing the surface of the germanium substrate to form a surface oxide layer, The Ge band structure includes a first Ge band structure and a second Ge band structure; and Step 5) sequentially forming a surrounding N -type InGaAs layer and an N + -type InGaAs layer on the surface of the first Ge band structure, the N + -type InGaAs layer a first gate region is defined in the layer, and a surrounding P + -type Ge layer is formed on the surface of the second Ge strip structure, wherein the second gate region is defined in the P + -type Ge layer; and the step 6) is removed The N + -type InGaAs layer corresponding to a gate region exposes the N - -type InGaAs layer Forming a first annular trench, and removing the P + -type Ge layer corresponding to the second gate region, exposing the second Ge strip structure to form a second annular trench; and step 7), in the first ring The surface of the shaped trenches sequentially forms a semiconductor barrier layer, a first high-k dielectric layer and a first metal gate, and a second high-k dielectric layer and a second metal gate are sequentially formed on the surface of the second annular trench. 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:還包括步驟:步驟8),於該第一閘極區及該第二閘極區的結構兩側分別製作側壁結構; 步驟9),於該第一閘極區兩側的N+型InGaAs源極區及N+型InGaAs汲極區上分別製作III-V族量子井電晶體的源極金屬及汲極金屬,並於該第二閘極區兩側的P+型Ge源極區及的P+型Ge汲極區分別製作鍺無接面電晶體的源極金屬及汲極金屬。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to claim 1, wherein the method further comprises the step of: step 8), in the first gate region and A sidewall structure is respectively formed on both sides of the structure of the second gate region; Step 9), III-V is respectively formed on the N + -type InGaAs source region and the N + -type InGaAs drain region on both sides of the first gate region The source metal and the drain metal of the quantum well transistor, and the P + -Ge source region and the P + -Ge germanium region on both sides of the second gate region respectively form a germanium-free junction transistor Source metal and silicon metal. 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:步驟4)中,去除該氧化層後,還包括於H2環境中對該Ge帶結構進行退火的步驟,該Ge帶結構的直徑範圍為10~100nm。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to claim 1, wherein in step 4), after removing the oxide layer, it is further included in H 2 . The step of annealing the Ge band structure in the environment, the Ge band structure having a diameter ranging from 10 to 100 nm. 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:步驟5)中,採用分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種於該第一Ge帶結構表面依次形成環繞該第一Ge帶結構的該N-型InGaAs層及該N+型InGaAs層。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to the first aspect of the patent application, wherein: in step 5), molecular beam epitaxy and atomic layer deposition are used. And one of the metal organic compound chemical vapor deposition methods sequentially forming the N -type InGaAs layer and the N + -type InGaAs layer surrounding the first Ge strip structure on the surface of the first Ge strip structure. 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:該N-型InGaAs層的濃度範圍為10~100nm,摻雜濃度為1017/cm3數量級。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to claim 1, wherein the concentration of the N - type InGaAs layer ranges from 10 to 100 nm, and is doped. The concentration is on the order of 10 17 /cm 3 . 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:該N+型InGaAs層的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to claim 1, wherein the concentration of the N + -type InGaAs layer ranges from 10 to 200 nm, and is doped. The concentration is on the order of 10 19 /cm 3 . 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:步驟5)中,採用分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種於該第二Ge帶結構表面形成環繞該第二Ge帶結構的該P+型Ge層。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to the first aspect of the patent application, wherein: in step 5), molecular beam epitaxy and atomic layer deposition are used. And one of the metal organic compound chemical vapor deposition methods forms a P + -type Ge layer surrounding the second Ge band structure on the surface of the second Ge band structure. 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:該P+型Ge層的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to claim 1, wherein the P + -type Ge layer has a concentration ranging from 10 to 200 nm, and is doped. The concentration is on the order of 10 19 /cm 3 . 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:步驟7)中,該半導體阻擋層選用為N-型InP層,其製備方法包括分子束磊晶法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種,其濃度範圍為50~100nm,其摻雜Si的濃度為1018/cm3數量級。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to claim 1, wherein in the step 7), the semiconductor barrier layer is selected as an N - type InP layer. The preparation method includes one of molecular beam epitaxy, atomic layer deposition, and metal organic compound chemical vapor deposition, and the concentration thereof ranges from 50 to 100 nm, and the concentration of doped Si is on the order of 10 18 /cm 3 . 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:步驟7)中,採用原子層沈積法、金屬有機化合物化學氣相沈積法及低壓化學氣相沈積法中的一種製備該第一高K介電層及該第二高K介電層,該第一高K介電層及該第二高K介電層的濃度範圍為1~5nm,材料包括Al2O3及TiSiOx中的一種。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to the first aspect of the patent application, wherein: in step 7), an atomic layer deposition method, a metal organic compound chemical gas is used. The first high-k dielectric layer and the second high-k dielectric layer, the first high-k dielectric layer and the second high-k dielectric layer are prepared by one of a phase deposition method and a low-pressure chemical vapor deposition method The concentration ranges from 1 to 5 nm, and the material includes one of Al 2 O 3 and TiSiO x . 如申請專利範圍第1項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體的製造方法,其中:步驟7)中,採用物理氣相沈積法、原子層沈積法及金屬有機化合物化學氣相沈積法中的一種製備該第一金屬閘極及該第二金屬閘極,該第一金屬閘極及該第二金屬閘極的材料包括TiN、NiAu及CrAu中的一種。 The method for manufacturing a ring-gate III-V quantum well transistor and a tantalum-free transistor according to the first aspect of the patent application, wherein: in step 7), physical vapor deposition and atomic layer deposition are used. And a metal organic compound chemical vapor deposition method for preparing the first metal gate and the second metal gate, the material of the first metal gate and the second metal gate comprises TiN, NiAu and CrAu One. 一種環閘極III-V族量子井電晶體及鍺無接面電晶體,包括III-V族量子井電晶體及鍺無接面電晶體;該III-V族量子井電晶體包括: 第一Ge帶結構;N-型InGaAs層,環繞於該第一Ge帶結構表面;N+型InGaAs層,環繞於該N-型InGaAs層表面,該N+型InGaAs層定義出一第一閘極區,且與第一閘極區對應的N+型InGaAs層被去除,露出該N-型InGaAs層,形成第一環形溝槽;該第一閘極區,包括依次形成於該第一環形溝槽表面的半導體阻擋層、第一高K介電層以及第一金屬閘極;該鍺無接面電晶體包括:第二Ge帶結構;P+型Ge層,環繞於該第二Ge帶結構表面,該P+型Ge層定義出一第二閘極區,且與該第二閘極區對應的該P+型Ge層被去除,露出該第二Ge帶結構,形成第二環形溝槽;該第二閘極區,包括依次形成於該第二環形溝槽表面第二高K介電層以及第二金屬閘極。 A ring gate III-V quantum well transistor and a 锗-free junction transistor, comprising a III-V quantum well transistor and a 锗-free junction transistor; the III-V quantum well transistor comprises: a Ge-band structure; an N - type InGaAs layer surrounding the surface of the first Ge-band structure; an N + -type InGaAs layer surrounding the surface of the N - type InGaAs layer, the N + -type InGaAs layer defining a first gate region And the N + -type InGaAs layer corresponding to the first gate region is removed to expose the N -type InGaAs layer to form a first annular trench; the first gate region includes sequentially formed on the first ring a semiconductor barrier layer on the surface of the trench, a first high-k dielectric layer, and a first metal gate; the germanium junctionless transistor includes: a second Ge band structure; a P + -type Ge layer surrounding the second Ge band a P + -type Ge layer defining a second gate region, and the P + -type Ge layer corresponding to the second gate region is removed to expose the second Ge band structure to form a second annular trench The second gate region includes a second high-k dielectric layer and a second metal gate sequentially formed on the surface of the second annular trench. 如申請專利範圍第12項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體,其中,還包括:側壁結構,形成於該第一閘極區與該第二閘極區的結構兩側;III-V族量子井電晶體的源極金屬及汲極金屬,分別形成於該第一閘極區兩側的N+型InGaAs源極區及N+型InGaAs汲極區上;鍺無接面電晶體的源極金屬及汲極金屬,分別形成於該第二閘極區兩側的P+型Ge源極區及P+型Ge汲極區上。 The ring gate III-V quantum well transistor and the tantalum junctionless transistor according to claim 12, further comprising: a sidewall structure formed on the first gate region and the second gate Both sides of the structure of the polar region; the source metal and the drain metal of the III-V quantum well transistor are respectively formed in the N + -type InGaAs source region and the N + -type InGaAs drain region on both sides of the first gate region The source metal and the drain metal of the junctionless transistor are respectively formed on the P + -type Ge source region and the P + -type Ge drain region on both sides of the second gate region. 如申請專利範圍第12項所述的環閘極III-V族量子井電晶體及鍺無接面 電晶體,其中:該第一Ge帶結構及該第二Ge帶結構的直徑範圍為10~100nm。 The ring gate III-V quantum well transistor and the 锗 joint are as described in claim 12 The transistor, wherein: the first Ge strip structure and the second Ge strip structure have a diameter ranging from 10 to 100 nm. 如申請專利範圍第12項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體,其中:該N-型InGaAs層的濃度範圍為10~100nm,摻雜濃度為1017/cm3數量級。 The ring gate III-V quantum well transistor and the tantalum junctionless transistor according to claim 12, wherein the N - type InGaAs layer has a concentration ranging from 10 to 100 nm and a doping concentration of 10 17 / cm 3 orders of magnitude. 如申請專利範圍第12項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體,其中:該N+型InGaAs層的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 The ring gate III-V quantum well transistor and the tantalum junctionless transistor according to claim 12, wherein the N + -type InGaAs layer has a concentration ranging from 10 to 200 nm and a doping concentration of 10 19 / cm 3 orders of magnitude. 如申請專利範圍第12項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體,其中:該P+型Ge層的濃度範圍為10~200nm,摻雜濃度為1019/cm3數量級。 The ring gate III-V quantum well transistor and the tantalum junctionless transistor according to claim 12, wherein the P + -type Ge layer has a concentration ranging from 10 to 200 nm and a doping concentration of 10 19 / cm 3 orders of magnitude. 如申請專利範圍第12項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體,其中:該半導體阻擋層選用為N-型InP層,其濃度範圍為50~100nm,其摻雜Si的濃度為1018/cm3數量級。 The ring gate III-V quantum well transistor and the tantalum junctionless transistor according to claim 12, wherein the semiconductor barrier layer is selected as an N - type InP layer, and the concentration ranges from 50 to 100 nm. Its doped Si concentration is on the order of 10 18 /cm 3 . 如申請專利範圍第12項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體,其中:該第一高K介電層及該第二高K介電層的濃度範圍為1~5nm,材料包括Al2O3及TiSiOx中的一種。 The ring gate III-V quantum well transistor and the tantalum junctionless transistor according to claim 12, wherein: the concentration of the first high K dielectric layer and the second high K dielectric layer The range is 1 to 5 nm, and the material includes one of Al 2 O 3 and TiSiO x . 如申請專利範圍第12項所述的環閘極III-V族量子井電晶體及鍺無接面電晶體,其中:該第一金屬閘極及該第二金屬閘極的材料包括TiN、NiAu及CrAu中的一種。 The ring gate III-V quantum well transistor and the tantalum junctionless transistor according to claim 12, wherein the material of the first metal gate and the second metal gate comprises TiN, NiAu And one of CrAu.
TW105132263A 2016-05-24 2016-10-05 Gate-all-around complementary nanowire device with iii-v quantum well transistor, germanium junctionless transistor and method for making the same TWI628703B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201610352706.3 2016-05-24
CN201610352706.3A CN107424994B (en) 2016-05-24 2016-05-24 Gate all around III-V quantum well transistor and germanium junction transistor without junction and its manufacturing method

Publications (2)

Publication Number Publication Date
TW201742126A true TW201742126A (en) 2017-12-01
TWI628703B TWI628703B (en) 2018-07-01

Family

ID=60422825

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105132263A TWI628703B (en) 2016-05-24 2016-10-05 Gate-all-around complementary nanowire device with iii-v quantum well transistor, germanium junctionless transistor and method for making the same

Country Status (2)

Country Link
CN (1) CN107424994B (en)
TW (1) TWI628703B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695505B (en) * 2018-09-28 2020-06-01 大陸商芯恩(青島)積體電路有限公司 Gate-all-around quantum well complementary inverter and method of making the same
US11799035B2 (en) * 2019-04-12 2023-10-24 The Research Foundation For The State University Of New York Gate all-around field effect transistors including quantum-based features

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851790B2 (en) * 2008-12-30 2010-12-14 Intel Corporation Isolated Germanium nanowire on Silicon fin
CN102034863B (en) * 2009-09-28 2012-10-31 中芯国际集成电路制造(上海)有限公司 Semiconductor device, transistor having gate of around cylindrical channel and manufacturing method
CN101719500B (en) * 2009-12-01 2011-09-21 中国科学院上海微系统与信息技术研究所 Composite material inversion mode all-around-gate CMOS field effect transistor
US9748338B2 (en) * 2012-06-29 2017-08-29 Intel Corporation Preventing isolation leakage in III-V devices
KR102002380B1 (en) * 2012-10-10 2019-07-23 삼성전자 주식회사 Semiconductor device and fabricated method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695505B (en) * 2018-09-28 2020-06-01 大陸商芯恩(青島)積體電路有限公司 Gate-all-around quantum well complementary inverter and method of making the same
US11799035B2 (en) * 2019-04-12 2023-10-24 The Research Foundation For The State University Of New York Gate all-around field effect transistors including quantum-based features

Also Published As

Publication number Publication date
TWI628703B (en) 2018-07-01
CN107424994A (en) 2017-12-01
CN107424994B (en) 2019-12-17

Similar Documents

Publication Publication Date Title
US9153657B2 (en) Semiconductor devices comprising a fin
US9614058B2 (en) Methods of forming low defect replacement fins for a FinFET semiconductor device and the resulting devices
US20110018065A1 (en) Method for manufacturing semiconductor device and semiconductor device
US9905421B2 (en) Improving channel strain and controlling lateral epitaxial growth of the source and drain in FinFET devices
US20110254102A1 (en) Hybrid orientation inversion mode gaa cmosfet
US8354721B2 (en) Gate-all-around CMOSFET devices
US20110254013A1 (en) Hybrid orientation accumulation mode gaa cmosfet
WO2011066726A1 (en) Hybrid material accumulation mode cmos fet with entirely surrounding cylindrical gate
WO2011066727A1 (en) Mixed material inverted mode gate-all-around cmos field effect transistor
TWI630719B (en) Expitaxially regrown heterostructure nanowire lateral tunnel field effect transistor
US20110254101A1 (en) Hybrid material inversion mode gaa cmosfet
US20110254100A1 (en) Hybrid material accumulation mode gaa cmosfet
US11437482B2 (en) Field effect transistor, method of fabricating field effect transistor, and electronic device
US8815669B2 (en) Metal gate structures for CMOS transistor devices having reduced parasitic capacitance
TWI628703B (en) Gate-all-around complementary nanowire device with iii-v quantum well transistor, germanium junctionless transistor and method for making the same
WO2016029711A1 (en) Tunnel field effect transistor and manufacturing method thereof
US11201246B2 (en) Field-effect transistor structure and fabrication method
US20200328294A1 (en) Field effect transistor, method of fabricating field effect transistor, and electronic device
WO2017079979A1 (en) Tunnel field-effect transistor, and manufacturing method thereof
US20230326925A1 (en) Monolithic complementary field-effect transistors having carbon-doped release layers
KR102273935B1 (en) Tunnel field-effect transistor based on negative differential transconductance
KR101289666B1 (en) Bulk-type nanostructure transistor and manufacturing method therefor
WO2017088186A1 (en) Tunneling field-effect transistor and manufacturing method therefor
Yang et al. CMOS compatible gate-all-around vertical silicon-nanowire MOSFETs
TW202406095A (en) Monolithic complementary field-effect transistors having carbon-doped release layers