TW201741711A - Lens assembly - Google Patents
Lens assembly Download PDFInfo
- Publication number
- TW201741711A TW201741711A TW105115028A TW105115028A TW201741711A TW 201741711 A TW201741711 A TW 201741711A TW 105115028 A TW105115028 A TW 105115028A TW 105115028 A TW105115028 A TW 105115028A TW 201741711 A TW201741711 A TW 201741711A
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- imaging
- image side
- object side
- refractive power
- Prior art date
Links
Landscapes
- Lenses (AREA)
Abstract
Description
本發明係有關於一種成像鏡頭。 The present invention relates to an imaging lens.
數位相機與手幾不斷的往高畫素與輕量化發展,使得小型化與具有高解析度的成像鏡頭需求大增。習知的成像鏡頭體積較大,已經無法滿足現今的需求,需要有另一種新架構的成像鏡頭,才能同時滿足小型化與高解析度需求。 The continuous development of digital cameras and hands to high-definition and lightweight, so that the demand for miniaturization and high-resolution imaging lenses has increased. The conventional imaging lens is large in size and cannot meet the needs of today. It requires an imaging lens of another new architecture to meet both miniaturization and high resolution requirements.
有鑑於此,本發明之主要目的在於提供一種成像鏡頭,其鏡頭總長度短小,但是仍具有良好的光學性能,鏡頭解析度也能滿足要求。 In view of this, the main object of the present invention is to provide an imaging lens whose lens length is short, but still has good optical performance, and the lens resolution can also meet the requirements.
本發明之成像鏡頭沿著一光軸從一物側至一像側依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡及一第五透鏡。第一透鏡包括一凸面朝向像側。第二透鏡包括一凹面朝向物側。第三透鏡為雙凸透鏡具有正屈光力。第四透鏡具有負屈光力且包括一凹面朝向物側。第五透鏡具有正屈光力且包括一凸面朝向像側。第一透鏡滿足以下條件:-20f1/f2;其中,f1為第一透鏡之有效焦距,f為成像鏡頭之有效焦距。 The imaging lens of the present invention sequentially includes a first lens, a second lens, a third lens, a fourth lens and a fifth lens from an object side to an image side along an optical axis. The first lens includes a convex surface facing the image side. The second lens includes a concave surface facing the object side. The third lens is a lenticular lens having a positive refractive power. The fourth lens has a negative refractive power and includes a concave surface facing the object side. The fifth lens has a positive refractive power and includes a convex surface toward the image side. The first lens satisfies the following conditions: -20 f 1 /f 2; wherein f 1 is the effective focal length of the first lens, and f is the effective focal length of the imaging lens.
其中成像鏡頭滿足以下條件:0.4BFL/TTL0.9;其中,BFL為第五透鏡之像側面至一成像面於光軸上之距 離,TTL為第一透鏡之物側面至成像面於光軸上之距離。 The imaging lens satisfies the following conditions: 0.4 BFL/TTL 0.9; wherein, BFL is the distance from the image side of the fifth lens to an imaging surface on the optical axis, and TTL is the distance from the object side of the first lens to the imaging surface on the optical axis.
其中第三透鏡滿足以下條件:2(R31-R32)/(R31+R32)10;其中,R31為第三透鏡之物側面之曲率半徑,R32為第三透鏡之像側面之曲率半徑。 The third lens satisfies the following conditions: 2 (R 31 -R 32 )/(R 31 +R 32 ) 10; wherein R 31 is a radius of curvature of an object side surface of the third lens, and R 32 is a radius of curvature of an image side surface of the third lens.
本發明之成像鏡頭可更包括一稜鏡,此稜鏡包括一入射面面向第五透鏡之像側面。 The imaging lens of the present invention may further include a cymbal including an incident surface facing the image side of the fifth lens.
其中可更包括一濾光片,設置於第五透鏡與稜鏡之間。 The filter may be further disposed between the fifth lens and the crucible.
本發明之成像鏡頭沿著一光軸從一物側至一像側依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一濾光片及一稜鏡。第一透鏡包括一凸面朝向像側。第二透鏡包括一凹面朝向物側。第三透鏡為雙凸透鏡具有正屈光力。第四透鏡具有負屈光力且包括一凹面朝向物側。第五透鏡具有正屈光力且包括一凸面朝向像側。稜鏡包括一入射面面向濾光片之像側面。成像鏡頭滿足以下條件:2(R31-R32)/(R31+R32)10,0.4BFL/TTL0.9,-20f1/f2;其中,R31為第三透鏡之物側面之曲率半徑,R32為第三透鏡之像側面之曲率半徑,BFL為第五透鏡之像側面至一成像面於光軸上之距離,TTL為第一透鏡之物側面至成像面於光軸上之距離,f1為第一透鏡之有效焦距,f為成像鏡頭之有效焦距。 The imaging lens of the present invention sequentially includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a filter from an object side to an image side along an optical axis. And a trip. The first lens includes a convex surface facing the image side. The second lens includes a concave surface facing the object side. The third lens is a lenticular lens having a positive refractive power. The fourth lens has a negative refractive power and includes a concave surface facing the object side. The fifth lens has a positive refractive power and includes a convex surface toward the image side. The 稜鏡 includes an incident surface facing the image side of the filter. The imaging lens satisfies the following conditions: 2 (R 31 -R 32 )/(R 31 +R 32 ) 10,0.4 BFL/TTL 0.9,-20 f 1 /f 2; wherein R 31 is the radius of curvature of the side surface of the third lens, R 32 is the radius of curvature of the image side of the third lens, and BFL is the distance from the image side of the fifth lens to the image plane on the optical axis, TTL The distance from the side of the object of the first lens to the optical axis of the imaging surface, f 1 is the effective focal length of the first lens, and f is the effective focal length of the imaging lens.
其中第一透鏡與第二透鏡中至少有一片透鏡具有負屈光力。 Wherein at least one of the first lens and the second lens has a negative refractive power.
其中第一透鏡之屈光力與第二透鏡之屈光力相反。 The refractive power of the first lens is opposite to the refractive power of the second lens.
其中第一透鏡具有負屈光力,第二透鏡具有負屈光力。 Wherein the first lens has a negative refractive power and the second lens has a negative refractive power.
本發明之成像鏡頭可更包括一光圈,設置於物側與第一透鏡之間。 The imaging lens of the present invention may further include an aperture disposed between the object side and the first lens.
為使本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明。 The above described objects, features, and advantages of the invention will be apparent from the description and appended claims
1、2、3‧‧‧成像鏡頭 1, 2, 3 ‧ ‧ imaging lens
L11、L21、L31‧‧‧第一透鏡 L11, L21, L31‧‧‧ first lens
L12、L22、L32‧‧‧第二透鏡 L12, L22, L32‧‧‧ second lens
L13、L23、L33‧‧‧第三透鏡 L13, L23, L33‧‧‧ third lens
L14、L24、L34‧‧‧第四透鏡 L14, L24, L34‧‧‧ fourth lens
L15、L25、L35‧‧‧第五透鏡 L15, L25, L35‧‧‧ fifth lens
ST1、ST2、ST3‧‧‧光圈 ST1, ST2, ST3‧‧ ‧ aperture
OF1、OF2、OF3‧‧‧濾光片 OF1, OF2, OF3‧‧‧ Filters
P1、P2、P3‧‧‧稜鏡 P1, P2, P3‧‧‧稜鏡
IMA1、IMA2、IMA3‧‧‧成像面 IMA1, IMA2, IMA3‧‧‧ imaging surface
OA1、OA2、OA3‧‧‧光軸 OA1, OA2, OA3‧‧‧ optical axis
S11、S12、S13、S14、S15、S16、S17‧‧‧面 S11, S12, S13, S14, S15, S16, S17‧‧
S18、S19、S110、S111、S112、S113‧‧‧面 S18, S19, S110, S111, S112, S113‧‧‧
S21、S22、S23、S24、S25、S26、S27‧‧‧面 S21, S22, S23, S24, S25, S26, S27‧‧
S28、S29、S210、S211、S212、S213‧‧‧面 S28, S29, S210, S211, S212, S213‧‧‧
S31、S32、S33、S34、S35、S36、S37‧‧‧面 S31, S32, S33, S34, S35, S36, S37‧‧
S38、S39、S310、S311、S312、S313‧‧‧面 S38, S39, S310, S311, S312, S313‧‧
S114、S214、S314‧‧‧入射面 S114, S214, S314‧‧‧ incident surface
S115、S215、S315‧‧‧反射面 S115, S215, S315‧‧‧ reflective surface
S116、S216、S316‧‧‧出射面 S116, S216, S316‧‧‧ exit surface
第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。 1 is a schematic view showing a lens configuration and an optical path of a first embodiment of an imaging lens according to the present invention.
第2A圖係第1圖之成像鏡頭之縱向球差圖。 Fig. 2A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 1.
第2B圖係第1圖之成像鏡頭之像散場曲圖。 Fig. 2B is an astigmatic field curvature diagram of the imaging lens of Fig. 1.
第2C圖係第1圖之成像鏡頭之畸變圖。 Fig. 2C is a distortion diagram of the imaging lens of Fig. 1.
第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。 Fig. 3 is a schematic view showing a lens configuration and an optical path of a second embodiment of the imaging lens according to the present invention.
第4A圖係第3圖之成像鏡頭之縱向球差圖。 Fig. 4A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 3.
第4B圖係第3圖之成像鏡頭之像散場曲圖。 Fig. 4B is an astigmatic field curvature diagram of the imaging lens of Fig. 3.
第4C圖係第3圖之成像鏡頭之畸變圖。 Fig. 4C is a distortion diagram of the imaging lens of Fig. 3.
第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。 Fig. 5 is a view showing a lens configuration and an optical path of a third embodiment of the imaging lens according to the present invention.
第6A圖係第5圖之成像鏡頭之縱向球差圖。 Fig. 6A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 5.
第6B圖係第5圖之成像鏡頭之像散場曲圖。 Fig. 6B is an astigmatic field curvature diagram of the imaging lens of Fig. 5.
第6C圖係第5圖之成像鏡頭之畸變圖。 Fig. 6C is a distortion diagram of the imaging lens of Fig. 5.
請參閱第1圖,第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。成像鏡頭1沿著一光軸OA1從一物側至一像側依序包括一光圈ST1、一第一透鏡L11、一第二透鏡L12、一第三透鏡L13、一第四透鏡L14、一第五透鏡L15、一濾光片OF1及一稜鏡P1。成像時,來自物側之光線最後成像於一成像面IMA1上。第一透鏡L11為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S12為凸面,像側面S13為凸面,物側面S12與像側面S13皆為非球面表面。第二透鏡L12為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S14為凹面,像側面S15為凹面,物側面S14與像側面S15皆為非球面表面。第三透鏡L13為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S16為凸面,像側面S17為凸面,物側面S16與像側面S17皆為非球面表面。第四透鏡L14為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S18為凹面,像側面S19為凹面,物側面S18與像側面S19皆為非球面表面。第五透鏡L15為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S110為凸面,像側面S111為凸面,物側面S110與像側面S111皆為非球面表面。濾光片OF1其物側面S112與像側面S113皆為平面。稜鏡P1其入射面S114、反射面S115及出射面S116皆為平面,來自物側之光線由入射面S114進入稜鏡P1,再經反射面S115反射改變光線行進方向,由出射面S116離開稜鏡P1,最後成像於成像面IMA1上,稜鏡P1之主要功能在於改變入射光線的行進方向,以達到縮短鏡頭總長度之目的。 Please refer to FIG. 1. FIG. 1 is a schematic view showing a lens configuration and an optical path of a first embodiment of an imaging lens according to the present invention. The imaging lens 1 includes an aperture ST1, a first lens L11, a second lens L12, a third lens L13, a fourth lens L14, and a first step from an object side to an image side along an optical axis OA1. Five lenses L15, one filter OF1 and one 稜鏡 P1. At the time of imaging, the light from the object side is finally imaged on an image plane IMA1. The first lens L11 is a lenticular lens having a positive refractive power made of a plastic material, the object side surface S12 being a convex surface, the image side surface S13 being a convex surface, and the object side surface S12 and the image side surface S13 being aspherical surfaces. The second lens L12 is a biconcave lens having a negative refractive power made of a plastic material, the object side surface S14 is a concave surface, the image side surface S15 is a concave surface, and the object side surface S14 and the image side surface S15 are both aspherical surfaces. The third lens L13 is a lenticular lens having a positive refractive power made of a plastic material, the object side surface S16 being a convex surface, the image side surface S17 being a convex surface, and the object side surface S16 and the image side surface S17 being aspherical surfaces. The fourth lens L14 is a biconcave lens having a negative refractive power made of a plastic material, the object side surface S18 being a concave surface, the image side surface S19 being a concave surface, and the object side surface S18 and the image side surface S19 being aspherical surfaces. The fifth lens L15 is a lenticular lens having a positive refractive power made of a plastic material, the object side surface S110 is a convex surface, the image side surface S111 is a convex surface, and the object side surface S110 and the image side surface S111 are aspherical surfaces. The filter side OF1 has a flat surface S112 and an image side surface S113. The entrance surface S114, the reflection surface S115 and the exit surface S116 of the 稜鏡P1 are all planes, and the light from the object side enters the 稜鏡P1 from the incident surface S114, and then changes the direction of the ray by the reflection surface S115, and exits the rib by the exit surface S116. The mirror P1 is finally imaged on the imaging surface IMA1, and the main function of the 稜鏡P1 is to change the traveling direction of the incident light to achieve the purpose of shortening the total length of the lens.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第
一實施例中的成像鏡頭1需滿足底下三條件:
其中,R131為第三透鏡L13之物側面S16之曲率半徑,R132為第三透鏡L13之像側面S17之曲率半徑,BFL1為第五透鏡L15之像側面S111至成像面IMA1於光軸OA1上之距離,TTL1為第一透鏡L11之物側面S12至成像面IMA1於光軸OA1上之距離,f11為第一透鏡L11之有效焦距,f1為成像鏡頭1之有效焦距。 Wherein R1 31 is the radius of curvature of the object side surface S16 of the third lens L13, R1 32 is the radius of curvature of the image side surface S17 of the third lens L13, and BFL1 is the image side surface S111 of the fifth lens L15 to the imaging plane IMA1 on the optical axis OA1. The distance TTL1 is the distance from the object side S12 of the first lens L11 to the imaging plane IMA1 on the optical axis OA1, f1 1 is the effective focal length of the first lens L11, and f1 is the effective focal length of the imaging lens 1.
利用上述透鏡、光圈ST1及稜鏡P1之設計,使得成像鏡頭1能有效的縮短鏡頭總長度、有效的修正像差、鏡頭解析度也能滿足要求。 With the design of the above lens, aperture ST1 and 稜鏡P1, the imaging lens 1 can effectively shorten the total length of the lens, effective correction aberration, and lens resolution.
表一為第1圖中成像鏡頭1之各透鏡之相關參數表,表一資料顯示,第一實施例之成像鏡頭1之有效焦距等於4.4132mm、光圈值等於2.2、鏡頭總長度等於8.842mm。 Table 1 is a table of related parameters of the lenses of the imaging lens 1 in Fig. 1. Table 1 shows that the effective focal length of the imaging lens 1 of the first embodiment is equal to 4.4132 mm, the aperture value is equal to 2.2, and the total length of the lens is equal to 8.842 mm.
表一中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 The aspherical surface depression z of each lens in Table 1 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12
其中:c:曲率; h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~E:非球面係數。 Where: c: curvature; h: the vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~E: aspheric coefficient.
表二為表一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 Table 2 is a table of related parameters of the aspherical surface of each lens in Table 1, where k is a conical coefficient (Conic Constant) and A~E is an aspherical coefficient.
第一實施例之成像鏡頭1,其第三透鏡L13之物側面S16之曲率半徑R131=2.435mm,第三透鏡L13之像側面S17之曲率半徑R132=-1.729mm,第五透鏡L15之像側面S111至成像面IMA1於光軸OA1上之距離BFL1=4.503mm,第一透鏡L11之物側面S12至成像面IMA1於光軸OA1上之距離TTL1=8.842mm,第一透鏡L11之有效焦距f11=4.31710mm,成像鏡頭1之有效焦距f1=4.4132mm,由上述資料可得到(R131-R132)/(R131+R132)=5.898、BFL1/TTL1=0.509、f11/f1=0.978,皆能滿足上述條件(1)至條件(3)之要求。 In the imaging lens 1 of the first embodiment, the curvature radius R1 31 of the object side S16 of the third lens L13 is 2.435 mm, and the curvature radius R1 32 of the image side surface S17 of the third lens L13 is -1.729 mm, and the fifth lens L15 The distance BFL1=4.503 mm from the side surface S111 to the imaging surface IMA1 on the optical axis OA1, the distance TTL1=8.842 mm of the object side surface S12 of the first lens L11 to the optical axis OA1 of the first lens L11, and the effective focal length of the first lens L11 F1 1 =4.31710mm, the effective focal length of imaging lens 1 is f1=4.4132mm, which can be obtained from the above data (R1 31 -R1 32 )/(R1 31 +R1 32 )=5.898, BFL1/TTL1=0.509, f1 1 /f1 =0.978, can meet the requirements of the above conditions (1) to (3).
另外,第一實施例之成像鏡頭1的光學性能也可達到要求,這可從第2A至第2C圖看出。第2A圖所示的,是第一實施例之成像鏡頭1的縱向球差(Longitudinal Spherical Aberration)圖。第2B圖所示的,是第一實施例之成像鏡頭1的像散場曲(Astigmatic Field Curves)圖。第2C圖所示的,是第一實施例之成像鏡頭1的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 1 of the first embodiment can also be achieved, which can be seen from the 2A to 2C drawings. Fig. 2A is a longitudinal Spherical Aberration diagram of the imaging lens 1 of the first embodiment. Fig. 2B is an astigmatic field curve diagram of the imaging lens 1 of the first embodiment. Fig. 2C is a distortion diagram of the imaging lens 1 of the first embodiment.
由第2A圖可看出,第一實施例之成像鏡頭1對波長為760.0000nm、820.0000nm、860.0000nm之光線所產生的縱向球差值介於-0.025mm至0.030mm之間。由第2B圖可看出,第一實施例之成像鏡頭1對波長為820.0000nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.050mm至0.050mm之間。由第2C圖可看出,第一實施例之成像鏡頭1對波長為820.0000nm之光線所產生的畸變介於0%至1.1%之間。顯見第一實施例之成像鏡頭1之縱向球差、像散場曲、畸變都能 被有效修正,從而得到較佳的光學性能。 As can be seen from FIG. 2A, the imaging lens 1 of the first embodiment produces a longitudinal spherical aberration value of -0.025 mm to 0.030 mm for light having a wavelength of 760.0000 nm, 820.0000 nm, and 86.0000 nm. As can be seen from FIG. 2B, the imaging lens 1 of the first embodiment has an astigmatic field curvature of -0.050 mm to 0.050 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 820.0000 nm. between. As can be seen from FIG. 2C, the imaging lens 1 of the first embodiment has a distortion of between 0% and 1.1% for light having a wavelength of 820.0000 nm. It is apparent that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 1 of the first embodiment can be It is effectively corrected to obtain better optical performance.
請參閱第3圖,第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。成像鏡頭2沿著一光軸OA2從一物側至一像側依序包括一光圈ST2、一第一透鏡L21、一第二透鏡L22、一第三透鏡L23、一第四透鏡L24、一第五透鏡L25、一濾光片OF2及一稜鏡P2。成像時,來自物側之光線最後成像於一成像面IMA2上。第一透鏡L21為凹凸透鏡具有負屈光力由塑膠材質製成,其物側面S22為凹面,像側面S23為凸面,物側面S22與像側面S23皆為非球面表面。第二透鏡L22為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S24為凹面,像側面S25為凹面,物側面S24與像側面S25皆為非球面表面。第三透鏡L23為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S26為凸面,像側面S27為凸面,物側面S26與像側面S27皆為非球面表面。第四透鏡L24為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S28為凹面,像側面S29為凹面,物側面S28與像側面S29皆為非球面表面。第五透鏡L25為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S210為凸面,像側面S211為凸面,物側面S210與像側面S211皆為非球面表面。濾光片OF2其物側面S212與像側面S213皆為平面。稜鏡P2其入射面S214、反射面S215及出射面S216皆為平面,來自物側之光線由入射面S214進入稜鏡P2,再經反射面S215反射改變光線行進方向,由出射面S216離開稜鏡P2,最後成像於成像面IMA2上,稜鏡P2之主要功能在於改變入射光線的行進方向,以達到縮短鏡頭總長度之目的。 Please refer to FIG. 3, which is a schematic diagram of a lens configuration and an optical path of a second embodiment of an imaging lens according to the present invention. The imaging lens 2 includes an aperture ST2, a first lens L21, a second lens L22, a third lens L23, a fourth lens L24, and a first step from an object side to an image side along an optical axis OA2. Five lenses L25, one filter OF2 and one P2. At the time of imaging, the light from the object side is finally imaged on an image plane IMA2. The first lens L21 is a meniscus lens having a negative refractive power made of a plastic material, and the object side surface S22 is a concave surface, the image side surface S23 is a convex surface, and the object side surface S22 and the image side surface S23 are both aspherical surfaces. The second lens L22 is a biconcave lens having a negative refractive power made of a plastic material, the object side surface S24 is a concave surface, the image side surface S25 is a concave surface, and the object side surface S24 and the image side surface S25 are both aspherical surfaces. The third lens L23 is a lenticular lens having a positive refractive power made of a plastic material, the object side surface S26 being a convex surface, the image side surface S27 being a convex surface, and the object side surface S26 and the image side surface S27 being aspherical surfaces. The fourth lens L24 is a biconcave lens having a negative refractive power made of a plastic material, the object side surface S28 being a concave surface, the image side surface S29 being a concave surface, and the object side surface S28 and the image side surface S29 being aspherical surfaces. The fifth lens L25 is a lenticular lens having a positive refractive power made of a plastic material, the object side surface S210 is a convex surface, the image side surface S211 is a convex surface, and the object side surface S210 and the image side surface S211 are both aspherical surfaces. The filter side OF2 has a flat surface S212 and an image side surface S213. The entrance surface S214, the reflection surface S215 and the exit surface S216 of the 稜鏡P2 are all planes, and the light from the object side enters the 稜鏡P2 from the incident surface S214, and then reflects the direction of the ray by the reflection surface S215, and exits the rib by the exit surface S216. The mirror P2 is finally imaged on the imaging surface IMA2, and the main function of the 稜鏡P2 is to change the traveling direction of the incident light to achieve the purpose of shortening the total length of the lens.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第
二實施例中的成像鏡頭1需滿足底下三條件:
其中,R231為第三透鏡L23之物側面S26之曲率半徑,R232為第三透鏡L23之像側面S27之曲率半徑,BFL2為第五透鏡L25之像側面S211至成像面IMA2於光軸OA2上之距離,TTL2為第一透鏡L21之物側面S22至成像面IMA2於光軸OA2上之距離,f21為第一透鏡L21之有效焦距,f2為成像鏡頭2之有效焦距。 Wherein R2 31 is the radius of curvature of the object side surface S26 of the third lens L23, R2 32 is the radius of curvature of the image side surface S27 of the third lens L23, and BFL2 is the image side surface S211 of the fifth lens L25 to the imaging plane IMA2 on the optical axis OA2. The distance TTL2 is the distance from the object side S22 of the first lens L21 to the imaging plane IMA2 on the optical axis OA2, f2 1 is the effective focal length of the first lens L21, and f2 is the effective focal length of the imaging lens 2.
利用上述透鏡、光圈ST2及稜鏡P2之設計,使得成像鏡頭2能有效的縮短鏡頭總長度、有效的修正像差、鏡頭解析度也能滿足要求。 With the design of the above lens, aperture ST2 and 稜鏡P2, the imaging lens 2 can effectively shorten the total length of the lens, effective correction aberration, and lens resolution.
表三為第3圖中成像鏡頭2之各透鏡之相關參數表,表三資料顯示,第二實施例之成像鏡頭2之有效焦距等於4.5294mm、光圈值等於2.3、鏡頭總長度等於8.283mm。 Table 3 is a table of related parameters of the lenses of the imaging lens 2 in Fig. 3. Table 3 shows that the effective focal length of the imaging lens 2 of the second embodiment is equal to 4.5294 mm, the aperture value is equal to 2.3, and the total length of the lens is equal to 8.283 mm.
表三中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 The aspherical surface depression z of each lens in Table 3 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12
其中:c:曲率; h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~E:非球面係數。 Where: c: curvature; h: the vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~E: aspheric coefficient.
表四為表三中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 Table 4 is a table of related parameters of the aspherical surface of each lens in Table 3, where k is a conical coefficient (Conic Constant) and A~E is an aspherical coefficient.
第二實施例之成像鏡頭2,其第三透鏡L23之物側面S26之曲率半徑R231=2.801mm,第三透鏡L23之像側面S27之曲率半徑R232=-1.719mm,第五透鏡L25之像側面S211至成像面IMA2於光軸OA2上之距離BFL2=5.711mm,第一透鏡L21之物側面S22至成像面IMA2於光軸OA2上之距離TTL2=8.283mm,第一透鏡L21之有效焦距f21=-30.69820mm,成像鏡頭2之有效焦距f2=4.5294mm,由上述資料可得到(R231-R232)/(R231+R232)=4.177、BFL2/TTL2=0.689、f21/f2=-6.778,皆能滿足上述條件(4)至條件(6)之要求。 In the imaging lens 2 of the second embodiment, the curvature radius R2 31 of the object side surface S26 of the third lens L23 is 2.801 mm, and the curvature radius R2 32 of the image side surface S27 of the third lens L23 is -1.719 mm, and the fifth lens L25 is The distance BFL2=5.711 mm from the side surface S211 to the imaging plane IMA2 on the optical axis OA2, the distance TTL2=8.283 mm of the object side surface S22 of the first lens L21 to the imaging plane IMA2 on the optical axis OA2, and the effective focal length of the first lens L21 F2 1 = -30.69820mm, the effective focal length of imaging lens 2 is f2=4.5294mm, which can be obtained from the above data (R2 31 -R2 32 )/(R2 31 +R2 32 )=4.177, BFL2/TTL2=0.689, f2 1 / F2=-6.778 can meet the requirements of the above conditions (4) to (6).
另外,第二實施例之成像鏡頭2的光學性能也可達到要求,這可從第4A至第4C圖看出。第4A圖所示的,是第二實施例之成像鏡頭2的縱向球差(Longitudinal Spherical Aberration)圖。第4B圖所示的,是第二實施例之成像鏡頭2的像散場曲(Astigmatic Field Curves)圖。第4C圖所示的,是第二實施例之成像鏡頭2的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 2 of the second embodiment can also be achieved, which can be seen from Figs. 4A to 4C. Fig. 4A is a longitudinal Spherical Aberration diagram of the imaging lens 2 of the second embodiment. Fig. 4B is an astigmatic field curve diagram of the imaging lens 2 of the second embodiment. Fig. 4C is a distortion diagram of the imaging lens 2 of the second embodiment.
由第4A圖可看出,第二實施例之成像鏡頭2對波長為760.0000nm、820.0000nm、860.0000nm之光線所產生的縱向球差值介於-0.025mm至0.025mm之間。由第4B圖可看出,第二實施例之成像鏡頭2對波長為820.0000nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.15mm至0.07mm之間。由第4C圖可看出,第二實施例之成像鏡頭2對波長為820.0000nm之光線所產生的畸變介於-2.3%至0%之間。顯見第二實施例之成像鏡頭2之縱向球差、像散場曲、畸變都能被 有效修正,從而得到較佳的光學性能。 As can be seen from FIG. 4A, the longitudinal lens difference produced by the imaging lens 2 of the second embodiment for light having a wavelength of 760.0000 nm, 820.0000 nm, and 86.0000 nm is between -0.025 mm and 0.025 mm. As can be seen from FIG. 4B, the imaging lens 2 of the second embodiment has an astigmatic field curvature of -0.15 mm to 0.07 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 820.0000 nm. between. As can be seen from Fig. 4C, the imaging lens 2 of the second embodiment produces a distortion of -2.3% to 0% for light having a wavelength of 820.0000 nm. It is obvious that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 2 of the second embodiment can be Effective correction to achieve better optical performance.
請參閱第5圖,第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。成像鏡頭3沿著一光軸OA3從一物側至一像側依序包括一光圈ST3、一第一透鏡L31、一第二透鏡L32、一第三透鏡L33、一第四透鏡L34、一第五透鏡L35、一濾光片OF3及一稜鏡P3。成像時,來自物側之光線最後成像於一成像面IMA3上。第一透鏡L31為凹凸透鏡具有負屈光力由塑膠材質製成,其物側面S32為凹面,像側面S33為凸面,物側面S32與像側面S33皆為非球面表面。第二透鏡L32為凹凸透鏡具有正屈光力由塑膠材質製成,其物側面S34為凹面,像側面S35為凸面,物側面S34與像側面S35皆為非球面表面。第三透鏡L33為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S36為凸面,像側面S37為凸面,物側面S36與像側面S37皆為非球面表面。第四透鏡L34為凹凸透鏡具有負屈光力由塑膠材質製成,其物側面S38為凹面,像側面S39為凸面,物側面S38與像側面S39皆為非球面表面。第五透鏡L35為凹凸透鏡具有正屈光力由塑膠材質製成,其物側面S310為凹面,像側面S311為凸面,物側面S310與像側面S311皆為非球面表面。濾光片OF3其物側面S312與像側面S313皆為平面。稜鏡P3其入射面S314、反射面S315及出射面S316皆為平面,來自物側之光線由入射面S314進入稜鏡P3,再經反射面S315反射改變光線行進方向,由出射面S316離開稜鏡P3,最後成像於成像面IMA3上,稜鏡P3之主要功能在於改變入射光線的行進方向,以達到縮短鏡頭總長度之目的。 Please refer to FIG. 5, which is a schematic diagram of a lens configuration and an optical path of a third embodiment of an imaging lens according to the present invention. The imaging lens 3 sequentially includes an aperture ST3, a first lens L31, a second lens L32, a third lens L33, a fourth lens L34, and a first image from an object side to an image side along an optical axis OA3. Five lenses L35, one filter OF3 and one P3. At the time of imaging, the light from the object side is finally imaged on an image plane IMA3. The first lens L31 has a negative refractive power and is made of a plastic material. The object side surface S32 is a concave surface, the image side surface S33 is a convex surface, and the object side surface S32 and the image side surface S33 are aspherical surfaces. The second lens L32 is a meniscus lens having a positive refractive power made of a plastic material, and the object side surface S34 is a concave surface, the image side surface S35 is a convex surface, and the object side surface S34 and the image side surface S35 are both aspherical surfaces. The third lens L33 is a lenticular lens having a positive refractive power made of a plastic material, the object side surface S36 being a convex surface, the image side surface S37 being a convex surface, and the object side surface S36 and the image side surface S37 being aspherical surfaces. The fourth lens L34 is a meniscus lens having a negative refractive power made of a plastic material, the object side surface S38 being a concave surface, the image side surface S39 being a convex surface, and the object side surface S38 and the image side surface S39 being aspherical surfaces. The fifth lens L35 is a meniscus lens having a positive refractive power made of a plastic material, and the object side surface S310 is a concave surface, the image side surface S311 is a convex surface, and the object side surface S310 and the image side surface S311 are both aspherical surfaces. The filter OF3 has a flat surface S312 and an image side surface S313. The entrance surface S314, the reflection surface S315 and the exit surface S316 of the 稜鏡P3 are all planes, and the light from the object side enters the 稜鏡P3 from the incident surface S314, and then reflects the direction of the ray by the reflection surface S315, and exits the rib by the exit surface S316. The mirror P3 is finally imaged on the imaging surface IMA3, and the main function of the 稜鏡P3 is to change the traveling direction of the incident light to achieve the purpose of shortening the total length of the lens.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第
三實施例中的成像鏡頭3需滿足底下三條件:
其中,R331為第三透鏡L33之物側面S36之曲率半徑,R332為第三透鏡L33之像側面S37之曲率半徑,BFL3為第五透鏡L35之像側面S311至成像面IMA3於光軸OA3上之距離,TTL3為第一透鏡L31之物側面S32至成像面IMA3於光軸OA3上之距離,f31為第一透鏡L31之有效焦距,f3為成像鏡頭3之有效焦距。 Wherein R3 31 is the radius of curvature of the object side surface S36 of the third lens L33, R3 32 is the radius of curvature of the image side surface S37 of the third lens L33, and BFL3 is the image side surface S311 of the fifth lens L35 to the imaging plane IMA3 on the optical axis OA3. The distance TTL3 is the distance from the object side S32 of the first lens L31 to the imaging plane IMA3 on the optical axis OA3, f3 1 is the effective focal length of the first lens L31, and f3 is the effective focal length of the imaging lens 3.
利用上述透鏡、光圈ST3及稜鏡P3之設計,使得成像鏡頭3能有效的縮短鏡頭總長度、有效的修正像差、鏡頭解析度也能滿足要求。 With the design of the above lens, aperture ST3 and 稜鏡P3, the imaging lens 3 can effectively shorten the total length of the lens, effective correction aberration, and lens resolution.
表五為第5圖中成像鏡頭3之各透鏡之相關參數表,表五資料顯示,第三實施例之成像鏡頭3之有效焦距等於4.5294mm、光圈值等於2.4、鏡頭總長度等於8.017mm。 Table 5 is a table of related parameters of the lenses of the imaging lens 3 in Fig. 5. Table 5 shows that the effective focal length of the imaging lens 3 of the third embodiment is equal to 4.5294 mm, the aperture value is equal to 2.4, and the total length of the lens is equal to 8.017 mm.
表五中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 The aspherical surface depression z of each lens in Table 5 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12
其中:c:曲率; h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~E:非球面係數。 Where: c: curvature; h: the vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~E: aspheric coefficient.
表六為表五中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 Table 6 is the relevant parameter table of the aspherical surface of each lens in Table 5, where k is the conic coefficient (Conic Constant) and A~E is the aspherical coefficient.
第三實施例之成像鏡頭3,其第三透鏡L33之物側面S36之曲率半徑R331=4.622mm,第三透鏡L33之像側面S37之曲率半徑R332=-2.202mm,第五透鏡L35之像側面S311至成像面IMA3於光軸OA3上之距離BFL3=5.938mm,第一透鏡L31之物側面S32至成像面IMA3於光軸OA3上之距離TTL3=8.017mm,第一透鏡L31之有效焦距f31=-63.87000mm,成像鏡頭3之有效焦距f3=4.5294mm,由上述資料可得到(R331-R332)/(R331+R332)=2.820、BFL3/TTL3=0.741、f31/f3=-14.101,皆能滿足上述條件(7)至條件(9)之要求。 In the imaging lens 3 of the third embodiment, the curvature radius R3 31 of the object side S36 of the third lens L33 is 4.622 mm, and the curvature radius R3 32 of the image side surface S37 of the third lens L33 is -2.220 mm, and the fifth lens L35 The distance BFL3=5.938 mm from the side surface S311 to the imaging plane IMA3 on the optical axis OA3, the distance TTL3=8.017 mm of the object side surface S32 of the first lens L31 to the optical axis OA3 of the first lens L31, and the effective focal length of the first lens L31 F3 1 = -63.87000mm, the effective focal length of the imaging lens 3 is f3 = 4.5294mm, which can be obtained from the above data (R3 31 - R3 32 ) / (R3 31 + R3 32 ) = 2.820, BFL3 / TTL3 = 0.741, f3 1 / F3=-14.101, can meet the requirements of the above conditions (7) to (9).
另外,第三實施例之成像鏡頭3的光學性能也可達到要求,這可從第6A至第6C圖看出。第6A圖所示的,是第三實施例之成像鏡頭3的縱向球差(Longitudinal Spherical Aberration)圖。第6B圖所示的,是第三實施例之成像鏡頭3的像散場曲(Astigmatic Field Curves)圖。第6C圖所示的,是第三實施例之成像鏡頭3的畸變(Distortion)圖。 Further, the optical performance of the imaging lens 3 of the third embodiment can also be achieved, which can be seen from Figs. 6A to 6C. Fig. 6A is a longitudinal Spherical Aberration diagram of the imaging lens 3 of the third embodiment. Fig. 6B is an astigmatism field curve diagram of the imaging lens 3 of the third embodiment. Fig. 6C is a distortion diagram of the imaging lens 3 of the third embodiment.
由第6A圖可看出,第三實施例之成像鏡頭3對波長為760.0000nm、820.0000nm、860.0000nm之光線所產生的縱向球差值介於-0.025mm至0.025mm之間。由第6B圖可看出,第三實施例之成像鏡頭3對波長為820.0000nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.15mm至0.10mm之間。由第6C圖可看出,第三實施例之成像鏡頭3對波長為820.0000nm之光線所產生的畸變介於-2.3%至0%之間。顯見第三實施例之成像鏡頭3之縱向球差、像散場曲、畸變都能被 有效修正,從而得到較佳的光學性能。 As can be seen from Fig. 6A, the longitudinal spherical aberration value of the imaging lens 3 of the third embodiment for light having wavelengths of 760.0000 nm, 820.0000 nm, and 860.0000 nm is between -0.025 mm and 0.025 mm. As can be seen from FIG. 6B, the imaging lens 3 of the third embodiment has an astigmatic field curvature of -0.15 mm to 0.10 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 820.0000 nm. between. As can be seen from Fig. 6C, the distortion of the imaging lens 3 of the third embodiment for light having a wavelength of 820.0000 nm is between -2.3% and 0%. It is obvious that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 3 of the third embodiment can be Effective correction to achieve better optical performance.
1‧‧‧成像鏡頭 1‧‧‧ imaging lens
L11‧‧‧第一透鏡 L11‧‧‧ first lens
L12‧‧‧第二透鏡 L12‧‧‧ second lens
L13‧‧‧第三透鏡 L13‧‧‧ third lens
L14‧‧‧第四透鏡 L14‧‧‧4th lens
L15‧‧‧第五透鏡 L15‧‧‧ fifth lens
ST1‧‧‧光圈 ST1‧‧‧ aperture
OF1‧‧‧濾光片 OF1‧‧‧Filter
P1‧‧‧稜鏡 P1‧‧‧稜鏡
OA1‧‧‧光軸 OA1‧‧‧ optical axis
IMA1‧‧‧成像面 IMA1‧‧‧ imaging surface
S11、S12、S13、S14、S15‧‧‧面 S11, S12, S13, S14, S15‧‧
S16、S17、S18、S19、S110‧‧‧面 S16, S17, S18, S19, S110‧‧‧
S111、S112、S113‧‧‧面 S111, S112, S113‧‧‧
S114‧‧‧入射面 S114‧‧‧Incoming surface
S115‧‧‧反射面 S115‧‧‧reflecting surface
S116‧‧‧出射面 S116‧‧‧ outgoing surface
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105115028A TWI663419B (en) | 2016-05-16 | 2016-05-16 | Lens assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105115028A TWI663419B (en) | 2016-05-16 | 2016-05-16 | Lens assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201741711A true TW201741711A (en) | 2017-12-01 |
TWI663419B TWI663419B (en) | 2019-06-21 |
Family
ID=61230214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105115028A TWI663419B (en) | 2016-05-16 | 2016-05-16 | Lens assembly |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI663419B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109188675A (en) * | 2018-09-29 | 2019-01-11 | 辽宁中蓝电子科技有限公司 | Long-focus biprism periscope type lens |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007145194A1 (en) * | 2006-06-14 | 2007-12-21 | Konica Minolta Opto, Inc. | Imaging optical system, imaging lens device, and digital apparatus |
JP2010145828A (en) * | 2008-12-19 | 2010-07-01 | Tamron Co Ltd | Imaging lens |
TWI518360B (en) * | 2014-08-26 | 2016-01-21 | 大立光電股份有限公司 | Image capturing optical system, image capturing device and electronic device |
-
2016
- 2016-05-16 TW TW105115028A patent/TWI663419B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109188675A (en) * | 2018-09-29 | 2019-01-11 | 辽宁中蓝电子科技有限公司 | Long-focus biprism periscope type lens |
Also Published As
Publication number | Publication date |
---|---|
TWI663419B (en) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI534471B (en) | Wide-angle lens | |
US10310225B2 (en) | Wide-angle lens | |
TWI476436B (en) | Lens assembly | |
TWI491915B (en) | Wide-angle lens | |
US20160103301A1 (en) | Wide-Angle Lens | |
US10133034B2 (en) | Projection lens assembly | |
US10859795B2 (en) | Lens assembly | |
US10955645B2 (en) | Wide-angle lens assembly | |
US11624895B2 (en) | Lens assembly | |
US9958651B2 (en) | Panoramic lens assembly | |
TWI683129B (en) | Lens assembly | |
US11774729B2 (en) | Wide-angle lens assembly | |
TWI480576B (en) | Wide-angle lens | |
TW201730619A (en) | Wide-angle lens | |
TW201939088A (en) | Lens assembly | |
TWI491913B (en) | Lens assembly | |
US10261291B2 (en) | Lens assembly | |
TWI690725B (en) | Lens assembly | |
TW201602629A (en) | Lens assembly | |
TW201741711A (en) | Lens assembly | |
TWI522645B (en) | Lens assembly | |
TWI808056B (en) | Wide-angle lens assembly | |
TWI595260B (en) | Lens assembly | |
TWI504926B (en) | Miniaturized lens assembly | |
TW201740157A (en) | Panoramic lens |