TW201740090A - Molten material thermocouple methods and apparatus - Google Patents
Molten material thermocouple methods and apparatus Download PDFInfo
- Publication number
- TW201740090A TW201740090A TW106111348A TW106111348A TW201740090A TW 201740090 A TW201740090 A TW 201740090A TW 106111348 A TW106111348 A TW 106111348A TW 106111348 A TW106111348 A TW 106111348A TW 201740090 A TW201740090 A TW 201740090A
- Authority
- TW
- Taiwan
- Prior art keywords
- protective sleeve
- thermocouple
- container
- molten material
- wall
- Prior art date
Links
- 239000012768 molten material Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000001681 protective effect Effects 0.000 claims abstract description 184
- 239000000463 material Substances 0.000 claims abstract description 85
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 16
- 239000011214 refractory ceramic Substances 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 8
- 239000011521 glass Substances 0.000 claims description 77
- 239000006060 molten glass Substances 0.000 claims description 50
- 238000007496 glass forming Methods 0.000 claims description 48
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 38
- 239000007787 solid Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 15
- 229910052697 platinum Inorganic materials 0.000 claims description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 12
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 6
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 6
- 229910001887 tin oxide Inorganic materials 0.000 claims description 6
- 229910000629 Rh alloy Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000005352 clarification Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000005553 drilling Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000002241 glass-ceramic Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005816 glass manufacturing process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- HYERJXDYFLQTGF-UHFFFAOYSA-N rhenium Chemical compound [Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re] HYERJXDYFLQTGF-UHFFFAOYSA-N 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- -1 but not limited to Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/167—Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/167—Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
- C03B5/1672—Use of materials therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/167—Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
- C03B5/1672—Use of materials therefor
- C03B5/1675—Platinum group metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/28—Arrangement of controlling, monitoring, alarm or the like devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
- F27D21/0014—Devices for monitoring temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/08—Protective devices, e.g. casings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
- G01N33/205—Metals in liquid state, e.g. molten metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/38—Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/38—Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
- G01N33/386—Glass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/854—Thermoelectric active materials comprising inorganic compositions comprising only metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2211/00—Heating processes for glass melting in glass melting furnaces
- C03B2211/70—Skull melting, i.e. melting or refining in cooled wall crucibles or within solidified glass crust, e.g. in continuous walled vessels
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
本案依據專利法主張於西元2016年4月5日申請的美國專利申請案第15/091,183號的優先權權益,本案依賴於此美國專利申請案之內容且將其以引用之方式全部併入本文。The present application is based on the priority of the U.S. Patent Application Serial No. 15/091,183, filed on Apr. 5, 2016, the entire content of which is hereby incorporated by reference. .
本揭示一般係關於用於利用熱電偶量測材料的溫度的方法及設備,更具體而言,係關於用於利用位於保護套筒中的熱電偶量測容器內的熔融玻璃形成材料的溫度的方法及設備。The present disclosure relates generally to a method and apparatus for measuring the temperature of a material using a thermocouple, and more particularly to a temperature for forming a material using molten glass in a thermocouple measuring container located in a protective sleeve. Method and equipment.
已知利用熱電偶量測溫度。進一步已知將熱電偶放置於保護套筒中,以保護熱電偶。It is known to measure temperature using a thermocouple. It is further known to place a thermocouple in a protective sleeve to protect the thermocouple.
以下呈現本揭示之簡化總結,以提供實施方式中所述的一些示例性實施例之基本理解。A simplified summary of the disclosure is presented below to provide a basic understanding of some exemplary embodiments described in the embodiments.
在一個實施例中,熔融材料設備可包括容器,容器包括壁與開口,壁至少部分地界定容納區域,而開口延伸通過壁。熔融材料設備可包括保護套筒,保護套筒至少部分安裝於容器的壁的開口內。保護套筒可包括第一端部、與第一端部相對的第二端部及內鑽孔。保護套筒的內鑽孔可包括在第一端部處的開口端以及在第二端部處的封閉端。可以藉由保護套筒的第二端部的內端表面界定封閉端。熔融材料設備可包括位於保護套筒的內鑽孔內的熱電偶。熱電偶可以偏置朝向保護套筒的第二端部的內端表面。In one embodiment, the molten material apparatus can include a container including a wall and an opening, the wall at least partially defining a receiving area, and the opening extending through the wall. The molten material apparatus can include a protective sleeve that is at least partially mounted within the opening of the wall of the container. The protective sleeve can include a first end, a second end opposite the first end, and an inner bore. The inner bore of the protective sleeve can include an open end at the first end and a closed end at the second end. The closed end can be defined by the inner end surface of the second end of the protective sleeve. The molten material apparatus can include a thermocouple located within the inner bore of the protective sleeve. The thermocouple can be biased toward the inner end surface of the second end of the protective sleeve.
在另一實施例中,熱電偶可以接觸保護套筒的第二端部的內端表面。In another embodiment, the thermocouple can contact the inner end surface of the second end of the protective sleeve.
在另一實施例中,熔融材料設備可包括至少部分位於保護套筒的內鑽孔內的支撐套筒。支撐套筒可包括第一端部、與支撐套筒的第一端部相對的第二端部及內鑽孔。支撐套筒的內鑽孔可包括在支撐套筒的第一端部處的開口端。In another embodiment, the molten material apparatus can include a support sleeve at least partially within the inner bore of the protective sleeve. The support sleeve can include a first end, a second end opposite the first end of the support sleeve, and an inner bore. The inner bore of the support sleeve can include an open end at the first end of the support sleeve.
在另一實施例中,支撐套筒的內鑽孔可包括在支撐套筒的第二端部處的封閉端。可以藉由支撐套筒的第二端部的內端表面界定封閉端。熱電偶可位於支撐套筒的內鑽孔內。熱電偶可偏置以抵靠支撐套筒的第二端部的內端表面。In another embodiment, the inner bore of the support sleeve can include a closed end at the second end of the support sleeve. The closed end can be defined by the inner end surface of the second end of the support sleeve. The thermocouple can be located within the inner bore of the support sleeve. The thermocouple can be biased against the inner end surface of the second end of the support sleeve.
在另一實施例中,支撐套筒的第二端部的外端表面可偏置以抵靠保護套筒的第二端部的內端表面。In another embodiment, the outer end surface of the second end of the support sleeve can be biased against the inner end surface of the second end of the protective sleeve.
在另一實施例中,保護套筒可由耐火陶瓷材料製成。In another embodiment, the protective sleeve can be made of a refractory ceramic material.
在另一實施例中,耐火陶瓷材料可包括選自由氧化錫、氧化鉻及融合氧化鋯組成的群組的化合物。In another embodiment, the refractory ceramic material can include a compound selected from the group consisting of tin oxide, chromium oxide, and fused zirconia.
在另一實施例中,熱電偶可包括鉑/銠合金熱電偶。In another embodiment, the thermocouple can include a platinum/rhodium alloy thermocouple.
在另一實施例中,熱電偶可包括B型熱電偶。In another embodiment, the thermocouple can include a Type B thermocouple.
在另一實施例中,支撐套筒可包括鉑或鉑合金。In another embodiment, the support sleeve can comprise platinum or a platinum alloy.
在另一實施例中,保護套筒可以在容納區域內從容器的壁的內表面延伸大於0 cm至約25 cm的距離。In another embodiment, the protective sleeve may extend from the inner surface of the wall of the container in the receiving area by a distance of from greater than 0 cm to about 25 cm.
在另一實施例中,熔融材料設備可包括容器的容納區域內的熔融玻璃形成材料。In another embodiment, the molten material apparatus can include a molten glass forming material within the containment area of the container.
在另一實施例中,熔融玻璃形成材料包括金屬。In another embodiment, the molten glass forming material comprises a metal.
在另一實施例中,熔融材料設備可包括在容器的壁的內表面的邊線上的固體玻璃層。In another embodiment, the molten material apparatus can include a solid glass layer on the edge of the inner surface of the wall of the container.
在另一實施例中,固體玻璃可密封容器的壁與保護套筒之間的界面。In another embodiment, the solid glass seals the interface between the wall of the container and the protective sleeve.
在另一實施例中,熔融材料設備可包括容器,容器包括壁與開口,壁至少部分地界定容納區域,而開口延伸通過壁。熔融材料設備可包括保護套筒,保護套筒至少部分安裝於容器的壁的開口內。保護套筒可由耐火陶瓷材料製成,耐火陶瓷材料包括選自由氧化錫、氧化鉻及融合氧化鋯組成的群組的化合物。熔融材料設備可包括位於保護套筒的內鑽孔內的熱電偶。In another embodiment, the molten material apparatus can include a container including a wall and an opening, the wall at least partially defining a receiving area, and the opening extending through the wall. The molten material apparatus can include a protective sleeve that is at least partially mounted within the opening of the wall of the container. The protective sleeve may be made of a refractory ceramic material comprising a compound selected from the group consisting of tin oxide, chromium oxide, and fused zirconia. The molten material apparatus can include a thermocouple located within the inner bore of the protective sleeve.
在另一實施例中,熱電偶可以接觸保護套筒的內端表面,保護套筒的內端表面至少部分地界定保護套筒的內鑽孔。In another embodiment, the thermocouple can contact the inner end surface of the protective sleeve, the inner end surface of the protective sleeve at least partially defining the inner bore of the protective sleeve.
在另一實施例中,熔融材料設備可包括至少部分位於保護套筒的內鑽孔內的支撐套筒。In another embodiment, the molten material apparatus can include a support sleeve at least partially within the inner bore of the protective sleeve.
在另一實施例中,熱電偶可位於支撐套筒的內鑽孔內。In another embodiment, the thermocouple can be located within the inner bore of the support sleeve.
在另一實施例中,熱電偶可接觸支撐套筒的內端表面,支撐套筒的內端表面界定支撐套筒的內鑽孔的封閉端,而支撐套筒的外端表面可接觸保護套筒的內端表面,保護套筒的內端表面至少部分地界定保護套筒的內鑽孔。In another embodiment, the thermocouple can contact the inner end surface of the support sleeve, the inner end surface of the support sleeve defines a closed end of the inner bore of the support sleeve, and the outer end surface of the support sleeve can contact the protective sleeve The inner end surface of the barrel, the inner end surface of the protective sleeve at least partially defines an inner bore of the protective sleeve.
在另一實施例中,處理熔融材料的方法可包括以下步驟:將熱電偶插入由耐火陶瓷材料製成的保護套筒。保護套筒可以至少部分安裝於容器的壁的開口內,而該方法可包括以下步驟:利用熱電偶量測容器的容納區域內的材料的溫度。In another embodiment, a method of processing a molten material can include the step of inserting a thermocouple into a protective sleeve made of a refractory ceramic material. The protective sleeve can be at least partially mounted within the opening of the wall of the container, and the method can include the step of measuring the temperature of the material within the containment area of the container using a thermocouple.
在另一實施例中,該方法可包括以下步驟:藉由利用液體冷卻容器的壁,將大量熔融玻璃形成材料固化成容器的壁的內表面的邊線上的固體玻璃層。In another embodiment, the method can include the step of solidifying a plurality of molten glass forming materials into a solid glass layer on the edge of the inner surface of the wall of the container by utilizing the wall of the liquid cooling vessel.
在另一實施例中,保護套筒的端部可以穿過壁的開口,並穿過固體玻璃層,而使得保護套筒的端部係位於熔融玻璃形成材料內。In another embodiment, the end of the protective sleeve can pass through the opening of the wall and through the layer of solid glass such that the ends of the protective sleeve are within the molten glass forming material.
在另一實施例中,該方法可包括以下步驟:將大量熔融玻璃形成材料固化成固體玻璃,以密封容器的壁與保護套筒之間的界面。In another embodiment, the method can include the step of curing a plurality of molten glass forming materials into a solid glass to seal the interface between the walls of the container and the protective sleeve.
在另一實施例中,量測材料的溫度之步驟可包括以下步驟:將熱電偶偏置以抵靠保護套筒的內端表面,保護套筒的內端表面界定保護套筒的內鑽孔的封閉端。In another embodiment, the step of measuring the temperature of the material may include the steps of biasing the thermocouple against the inner end surface of the protective sleeve, the inner end surface of the protective sleeve defining an inner bore of the protective sleeve Closed end.
在另一實施例中,該方法可包括以下步驟:藉由將支撐套筒至少部分地插入保護套筒的內鑽孔內,以支撐保護套筒。In another embodiment, the method can include the step of supporting the protective sleeve by at least partially inserting the support sleeve into the inner bore of the protective sleeve.
在另一實施例中,量測材料的溫度之步驟可包括以下步驟:將熱電偶偏置以抵靠支撐套筒的封閉端部的內端表面,而使得支撐套筒的封閉端部的外端表面偏置以抵靠保護套筒的內端表面,保護套筒的內端表面界定保護套筒的內鑽孔的封閉端。In another embodiment, the step of measuring the temperature of the material may include the step of biasing the thermocouple against the inner end surface of the closed end of the support sleeve such that the closed end of the support sleeve is outside The end surface is biased against the inner end surface of the protective sleeve and the inner end surface of the protective sleeve defines a closed end of the inner bore of the protective sleeve.
應瞭解,上述一般描述與以下詳細描述二者皆描述本揭示之實施例,並且意欲提供用於理解所敘述及主張的實施例之本質及特性之概述或框架。包括附隨圖式以提供對實施例的進一步理解,且附隨圖式併入本說明書中並構成本說明書的一部分。圖式說明本揭示的各種實施例,且與描述一同用於解釋其原理及操作。The above description of the embodiments of the present invention is intended to be in the The accompanying drawings are included to provide a further understanding of the embodiments The drawings illustrate various embodiments of the present disclosure and, together with the description
現參照圖示本發明之示例性實施例的隨附圖式,以下將更充分描述設備及方法。在圖式各處儘可能使用相同的元件符號以指稱相同或相似的部件。然而,本揭示可以用許多不同形式實現,且不應視為受限於本文所記載的實施例。The apparatus and method will now be described more fully hereinafter with reference to the accompanying drawings, which illustrate, FIG. Wherever possible, the same reference numerals are used throughout the drawings to refer to the However, the present disclosure may be embodied in many different forms and should not be construed as being limited to the embodiments described herein.
通常藉由讓熔融玻璃流至形成主體以製造玻璃板,藉此可以藉由各種帶狀形成處理形成玻璃帶,包括浮式、狹槽拉伸、向下拉伸、融合向下拉伸、向上拉伸、壓滾或任何其他形成處理。隨後,來自此等處理中之任一者的玻璃帶接著可以分割,以提供適合於進一步處理成所期望應用(包括但不限於顯示器應用)的一或更多個玻璃板。舉例而言,一或更多個玻璃板可用於各種顯示器應用,包括液晶顯示器(LCD)、電泳顯示器(EPD)、有機發光二極體顯示器(OLED)、電漿顯示面板(PDP)或類似者。The glass sheet is usually produced by flowing molten glass to the forming body, whereby the glass ribbon can be formed by various strip forming processes, including floating, slot stretching, downward stretching, fusion downward stretching, upward Stretching, rolling or any other forming process. Subsequently, the glass ribbon from any of these processes can then be segmented to provide one or more glass sheets suitable for further processing into the desired application, including but not limited to display applications. For example, one or more glass sheets can be used in a variety of display applications, including liquid crystal displays (LCDs), electrophoretic displays (EPDs), organic light emitting diode displays (OLEDs), plasma display panels (PDPs), or the like. .
第1圖示意性圖示示例性玻璃製造設備101,以形成玻璃帶103。為了說明之目的,玻璃製造設備101係圖示為融合下拉式設備,但是可在進一步實例中提供其他玻璃製造設備,如向上拉伸式、浮式、壓滾式、狹槽拉伸式等。如圖所示,玻璃製造設備101可包括熔融容器105,熔融容器105經定向以接收來自儲存倉109的批次材料107。可藉由馬達113所提供動力的批次遞送裝置111而引入批次材料107。可選擇的控制器115可經操作以啟動馬達113,以將批次材料107之期望量引入熔融容器105中,如箭頭117所指示。玻璃熔融探針119可用於量測豎管123內的熔融材料121之位準,並經由通訊線路125將量測資訊傳送至控制器115。FIG. 1 schematically illustrates an exemplary glass manufacturing apparatus 101 to form a glass ribbon 103. For purposes of illustration, the glass manufacturing apparatus 101 is illustrated as a fused pull down apparatus, although other glass making apparatus may be provided in further examples, such as up stretch, float, roll, slot stretch, and the like. As shown, the glass manufacturing apparatus 101 can include a melting vessel 105 that is oriented to receive batch material 107 from the storage bin 109. Batch material 107 can be introduced by batch delivery device 111 powered by motor 113. The optional controller 115 can be operated to activate the motor 113 to introduce the desired amount of batch material 107 into the molten vessel 105 as indicated by arrow 117. The glass melt probe 119 can be used to measure the level of the molten material 121 in the riser 123 and communicate the measurement information to the controller 115 via the communication line 125.
玻璃製造設備101亦可包括澄清容器127,澄清容器127位於熔融容器105的下游,並經由第一連接導管129耦接至熔融容器105。在一些實施例中,可經由第一連接導管129將熔融材料121從熔融容器105重力饋送至澄清容器127。舉例而言,重力可作用以驅動熔融材料121從熔融容器105穿過第一連接導管129的內部通路到澄清容器127。在澄清容器127中,可藉由各種技術從熔融材料121移除氣泡。The glass manufacturing apparatus 101 may also include a clarification vessel 127 located downstream of the smelting vessel 105 and coupled to the smelting vessel 105 via a first connecting conduit 129. In some embodiments, the molten material 121 can be gravity fed from the melting vessel 105 to the clarification vessel 127 via the first connecting conduit 129. For example, gravity can act to drive the molten material 121 from the molten vessel 105 through the internal passage of the first connecting conduit 129 to the clarification vessel 127. In the clarification vessel 127, bubbles can be removed from the molten material 121 by various techniques.
玻璃製造設備101可進一步包括混合腔室131,混合腔室131可位於澄清容器127的下游。混合腔室131可用於提供熔融材料121的均勻組合物,藉此減少或消除可能存在於離開澄清容器127的熔融材料121中的不均勻的線(cord)。如圖所示,澄清容器127可經由第二連接導管135耦接到混合腔室131。在一些實施例中,可經由第二連接導管135將熔融材料121從澄清容器127重力饋送至混合腔室131。舉例而言,重力可作用以驅動熔融材料121從澄清容器127穿過第二連接導管135的內部通路到混合腔室131。The glass manufacturing apparatus 101 may further include a mixing chamber 131 that may be located downstream of the clarification vessel 127. The mixing chamber 131 can be used to provide a uniform composition of molten material 121, thereby reducing or eliminating non-uniform cords that may be present in the molten material 121 exiting the clarification vessel 127. As shown, the clarification vessel 127 can be coupled to the mixing chamber 131 via a second connecting conduit 135. In some embodiments, the molten material 121 can be gravity fed from the clarification vessel 127 to the mixing chamber 131 via the second connecting conduit 135. For example, gravity can act to drive the molten material 121 from the clarification vessel 127 through the internal passage of the second connecting conduit 135 to the mixing chamber 131.
玻璃製造設備101可進一步包括遞送容器133,遞送容器133可位於混合腔室131的下游。遞送容器133可調節饋送至玻璃形成器140的熔融材料121。舉例而言,遞送容器133可作為累加器及/或流量控制器,以調整及提供到玻璃形成器140的熔融材料121的一致流量。如圖所示,混合腔室131可經由第三連接導管137耦接到遞送容器133。在一些實施例中,可經由第三連接導管137將熔融材料121從混合腔室131重力饋送至遞送容器133。舉例而言,重力可作用以驅動熔融材料121從混合腔室131穿過第三連接導管137的內部通路到遞送容器133。The glass manufacturing apparatus 101 can further include a delivery container 133 that can be located downstream of the mixing chamber 131. The delivery container 133 can adjust the molten material 121 that is fed to the glass former 140. For example, the delivery container 133 can act as an accumulator and/or flow controller to adjust and provide a consistent flow to the molten material 121 of the glass former 140. As shown, the mixing chamber 131 can be coupled to the delivery container 133 via a third connecting conduit 137. In some embodiments, the molten material 121 can be gravity fed from the mixing chamber 131 to the delivery container 133 via a third connecting conduit 137. For example, gravity can act to drive the molten material 121 from the mixing chamber 131 through the internal passage of the third connecting conduit 137 to the delivery container 133.
如圖進一步所示,遞送管139可定位以將熔融材料121遞送至玻璃製造設備101的玻璃形成器140。玻璃形成器140可將離開形成容器143的根部145的熔融材料121拉伸成為玻璃帶103。在所示實施例中,形成容器143可設置入口141,入口141經定向以從遞送容器133的遞送管139接收熔融材料121。玻璃帶103的寬度「W」可以延伸於玻璃帶103的第一垂直邊緣153與玻璃帶103的第二垂直邊緣155之間。As further shown, the delivery tube 139 can be positioned to deliver the molten material 121 to the glass former 140 of the glass manufacturing apparatus 101. The glass former 140 can stretch the molten material 121 leaving the root portion 145 forming the container 143 into the glass ribbon 103. In the illustrated embodiment, the forming container 143 can be provided with an inlet 141 that is oriented to receive molten material 121 from the delivery tube 139 of the delivery container 133. The width "W" of the glass ribbon 103 may extend between the first vertical edge 153 of the glass ribbon 103 and the second vertical edge 155 of the glass ribbon 103.
第2圖係為沿著第1圖之線段2-2玻璃製造設備101之橫截面透視圖。如圖所示,形成容器143可包括溝槽201,經定向以從入口141接收熔融材料121。形成容器143可進一步包括形成楔209,形成楔209包括在形成楔209之相對端之間延伸的一對向下傾斜匯聚表面部分207a、207b。該對向下傾斜匯聚表面部分207a、207b沿著拉伸方向211匯聚,以形成根部145。拉伸平面213延伸通過根部145,其中可沿著拉伸平面213於拉伸方向211拉伸玻璃帶103。如圖所示,拉伸平面213可對分根部145,但是拉伸平面213可相對於根部145以其他定向延伸。Figure 2 is a cross-sectional perspective view of the glass manufacturing apparatus 101 along line 2-2 of Figure 1. As shown, the forming container 143 can include a groove 201 that is oriented to receive molten material 121 from the inlet 141. Forming the container 143 can further include forming a wedge 209 that includes a pair of downwardly sloping converging surface portions 207a, 207b extending between opposite ends of the forming wedge 209. The pair of downwardly inclined converging surface portions 207a, 207b converge in the stretching direction 211 to form a root portion 145. The stretching plane 213 extends through the root 145 where the glass ribbon 103 can be stretched in the stretching direction 211 along the stretching plane 213. As shown, the stretch plane 213 can be opposite the root portion 145, but the stretch plane 213 can extend in other orientations relative to the root 145.
參照第2圖,在一個實施例中,熔融材料121可從入口141流入形成容器143之溝槽201中。隨後,熔融材料121可從溝槽201流出,而同時流過相應堰203a、203b,並向下流過相應堰203a、203b的外表面205a、205b。隨後,各別熔融材料121流沿著形成楔209的向下傾斜匯聚表面部分207a、207b流動,而從形成容器143之根部145拉出,在根部145處,該等流匯聚並融合成為玻璃帶103。隨後,可在拉伸平面213中沿著拉伸方向211將玻璃帶103融合拉離根部145,其中玻璃板104(見第1圖)隨後可以與玻璃帶103分離。Referring to Fig. 2, in one embodiment, molten material 121 can flow from inlet 141 into trench 201 forming container 143. Subsequently, the molten material 121 may flow out of the groove 201 while flowing through the respective crucibles 203a, 203b and flowing downward through the outer surfaces 205a, 205b of the respective crucibles 203a, 203b. Subsequently, the respective molten material 121 flows along the downwardly inclined converging surface portions 207a, 207b forming the wedge 209, and is pulled out from the root portion 145 forming the container 143 where the streams converge and fuse into a glass ribbon. 103. Subsequently, the glass ribbon 103 can be fused away from the root 145 along the stretching direction 211 in the stretching plane 213, wherein the glass sheet 104 (see Figure 1) can then be separated from the glass ribbon 103.
如第2圖所示,玻璃帶103可以從根部145拉出,其中玻璃帶103的第一主表面215a與玻璃帶103的第二主表面215b面向相反方向,並界定玻璃帶103的厚度「T」可以小於或等於約1毫米(mm)、小於或等於約0.5毫米、小於或等於約500微米(μm)、例如小於或等於約300微米、例如小於或等於約200微米或例如小於或等於約100微米,但是在進一步實施例中可提供其他厚度。此外,玻璃帶103可以包括各種組合物,包括但不限於鈉鈣玻璃、硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃、含鹼玻璃或無鹼玻璃。As shown in Fig. 2, the glass ribbon 103 can be pulled out from the root portion 145, wherein the first major surface 215a of the glass ribbon 103 faces the second major surface 215b of the glass ribbon 103 in the opposite direction and defines the thickness "T of the glass ribbon 103". "may be less than or equal to about 1 millimeter (mm), less than or equal to about 0.5 millimeters, less than or equal to about 500 micrometers (μm), such as less than or equal to about 300 micrometers, such as less than or equal to about 200 micrometers, or such as less than or equal to about 100 microns, although other thicknesses may be provided in further embodiments. Additionally, glass ribbon 103 can include various compositions including, but not limited to, soda lime glass, borosilicate glass, aluminoborosilicate glass, alkali-containing glass or alkali-free glass.
第3圖至第7圖示意性圖示根據本文所示實施例的熔融材料設備300的特徵與處理熔融材料的方法。在一些實施例中,處理熔融材料的方法可包括以下步驟:利用熱電偶350量測材料的溫度,以及利用位於保護套筒320中的熱電偶350量測容器305內的熔融玻璃形成材料306的溫度。在一些實施例中,熔融玻璃形成材料306可設置於玻璃製造設備(例如玻璃製造設備101)的容器305(例如,熔融容器105、澄清容器127、混合腔室131、遞送容器133、形成容器143等)中。應理解,本文所揭示的具體實施例係意欲為示例性,而因此並非限制性。3 through 7 schematically illustrate features of a molten material apparatus 300 and a method of processing a molten material in accordance with embodiments shown herein. In some embodiments, the method of processing molten material can include the steps of: measuring the temperature of the material using thermocouple 350, and measuring the molten glass forming material 306 within container 305 using thermocouple 350 located in protective sleeve 320. temperature. In some embodiments, the molten glass forming material 306 can be disposed in a container 305 of a glass manufacturing apparatus (eg, glass manufacturing apparatus 101) (eg, molten vessel 105, clarification vessel 127, mixing chamber 131, delivery vessel 133, forming vessel 143) Etc.). The specific embodiments disclosed herein are intended to be illustrative, and thus not restrictive.
如第3圖所示,在一個實施例中,熔融材料設備300可包括容器305,容器305包括壁310與開口315,壁310至少部分地界定容納區域307,而開口315延伸通過壁310。壁310係圖示為上游端壁,但是在進一步實施例中,具有開口的壁可以是下游端壁、側壁或底壁。此外,在熔融材料並不包括自由表面的實例中,在進一步實施例中,壁可包含頂壁。As shown in FIG. 3, in one embodiment, the molten material apparatus 300 can include a container 305 that includes a wall 310 and an opening 315 that at least partially defines a receiving area 307 and an opening 315 that extends through the wall 310. Wall 310 is illustrated as an upstream end wall, but in a further embodiment, the wall having an opening may be a downstream end wall, a side wall or a bottom wall. Moreover, in instances where the molten material does not include a free surface, in a further embodiment, the wall can comprise a top wall.
開口315可提供進入容器305的容納區域307的通路。如圖所示,透過容器305的單一壁設置單一開口315。在進一步實施例中,容器的複數個或全部壁可設置單一開口或複數個開口。在此類實施例中,每一開口或開口的子集可設置熱電偶350,以量測與相應開口的位置相關聯的溫度。The opening 315 can provide access to the receiving area 307 of the container 305. As shown, a single opening 315 is provided through a single wall of the container 305. In a further embodiment, a plurality of or all of the walls of the container may be provided with a single opening or a plurality of openings. In such embodiments, each opening or subset of openings may be provided with a thermocouple 350 to measure the temperature associated with the location of the respective opening.
在一些實施例中,容器305可用於容納浸沒式燃燒熔融處理中的材料。浸沒式燃燒熔融處理可包括以下應用,將燃料及氧化劑與容器305的容納區域307中的材料(例如,批次材料107)混合,並與材料直接燃燒,以將材料熔融,並形成例如熔融材料121。材料的浸沒式燃燒熔融可造成容器305的容納區域307內的熔融材料的對流攪拌(例如攪動),並可讓容器305與相關聯部件受到高溫以及潛在的腐蝕性環境的影響。In some embodiments, the vessel 305 can be used to hold materials in a submerged combustion melt process. The submerged combustion melt treatment can include the application of mixing the fuel and oxidant with the material in the containment region 307 of the vessel 305 (eg, batch material 107) and combusting directly with the material to melt the material and form, for example, a molten material. 121. Submerged combustion melting of the material can cause convective agitation (e.g., agitation) of the molten material within the containment region 307 of the vessel 305 and can subject the vessel 305 and associated components to high temperatures and potentially corrosive environments.
在一個實施例中,熔融材料設備300可包括容器305的容納區域307內的熔融玻璃形成材料306。在一些實例中,熔融玻璃形成材料306可冷卻以形成玻璃、玻璃陶瓷或其他含玻璃材料。在另一實施例中,熔融玻璃形成材料306可包括金屬。舉例而言,在一個實施例中,熔融玻璃形成材料306包括可用於製造提供抗微生物性質的玻璃、玻璃陶瓷或其他含金屬玻璃的金屬(例如,重量30%的金屬)。在一些實施例中,包括金屬的熔融玻璃形成材料306可在容器305的容納區域307內產生腐蝕性環境。在一些實例中,可提供單一金屬,或是可提供二或更多種不同類型的金屬的組合。儘管考量到廣泛的金屬,但在一些實施例中,玻璃形成材料306可包括選自由以下組成的群組中之至少一種金屬(亦即,單獨或與任何複數種金屬的任何組合):銅、鐵、銀及鉑。在一個實施例中,熔融玻璃形成材料306包括可用於製造提供抗微生物性質的玻璃、玻璃陶瓷或其他含銅玻璃的銅(例如,重量30%的銅)。在一些實施例中,包括銅的熔融玻璃形成材料306可在容器305的容納區域307內產生腐蝕性環境。可進行設置以適應與玻璃形成材料306相關聯的腐蝕性環境。舉例而言,可以如下所述設計與熔融玻璃形成材料相互作用的容器的壁以及其他部件,以承受腐蝕性環境,以防止部件故障及/或增加部件的壽命。In one embodiment, the molten material apparatus 300 can include a molten glass forming material 306 within the containment region 307 of the container 305. In some examples, the molten glass forming material 306 can be cooled to form a glass, glass ceramic, or other glass-containing material. In another embodiment, the molten glass forming material 306 can comprise a metal. For example, in one embodiment, the molten glass forming material 306 includes glass, glass ceramics, or other metal-containing glass-containing metals (eg, 30% by weight metal) that can be used to provide antimicrobial properties. In some embodiments, the molten glass forming material 306 comprising metal can create a corrosive environment within the containment region 307 of the container 305. In some examples, a single metal may be provided, or a combination of two or more different types of metals may be provided. Although a wide variety of metals are contemplated, in some embodiments, the glass forming material 306 can comprise at least one metal selected from the group consisting of: (ie, alone or in any combination with any of a plurality of metals): copper, Iron, silver and platinum. In one embodiment, the molten glass forming material 306 includes copper (eg, 30% by weight copper) that can be used to make glass, glass ceramic, or other copper-containing glass that provides antimicrobial properties. In some embodiments, the molten glass forming material 306 comprising copper can create a corrosive environment within the containment region 307 of the container 305. Settings can be made to accommodate the corrosive environment associated with the glass forming material 306. For example, the walls of the container and other components that interact with the molten glass forming material can be designed to withstand the corrosive environment to prevent component failure and/or increase component life.
在一些實施例中,容器305可包括水冷式容器(例如,熔融容器),其中液體303可循環通過壁310內的一或更多個內部液體路徑304(例如在壁310的內表面312與壁310的外表面313之間)。循環通過壁310內的一或更多個內部液體路徑304的液體303可降低壁310的溫度,並因此延長容器305的操作壽命。在其他實施例中,熔融材料設備300可包括在容器305的壁310的內表面312的邊線上的固體玻璃層311。舉例而言,至少部分依據由於循環通過壁310內的一或更多個內部液體路徑304的液體303的壁310的經降低溫度,可以冷卻及固化相鄰於壁310的內表面312的熔融玻璃形成材料306,以形成在壁310的內表面312的邊線上的固體玻璃層311。固體玻璃層311可以有助於防止由於腐蝕性高溫熔融玻璃形成材料在壁310的內表面312上流動時可能發生的腐蝕性攻擊。In some embodiments, the container 305 can include a water-cooled container (eg, a molten container), wherein the liquid 303 can circulate through one or more internal liquid paths 304 within the wall 310 (eg, at the inner surface 312 and wall of the wall 310) Between the outer surfaces 313 of 310). The liquid 303 circulating through the one or more internal liquid paths 304 within the wall 310 can reduce the temperature of the wall 310 and thus extend the operational life of the container 305. In other embodiments, the molten material apparatus 300 can include a solid glass layer 311 on the edge of the inner surface 312 of the wall 310 of the vessel 305. For example, the molten glass adjacent to the inner surface 312 of the wall 310 can be cooled and solidified, at least in part, based on the reduced temperature of the wall 310 of the liquid 303 circulating through one or more internal liquid paths 304 within the wall 310. Material 306 is formed to form a solid glass layer 311 on the edge of inner surface 312 of wall 310. The solid glass layer 311 can help prevent corrosive attack that may occur as a result of the corrosive high temperature molten glass forming material flowing over the inner surface 312 of the wall 310.
在一些實施例中,容器305的壁310可包括結構金屬層(例如鋼),結構金屬層可包括可將液體303循環以冷卻壁310的一或更多個內部液體路徑304。在其他實施例中,壁310的內表面312可包括保護金屬層(例如鉑、氧化鋁、石英等),以將結構金屬與熔融玻璃形成材料306分離。固體玻璃層311可以在保護金屬層的內表面312的邊線上,以將結構金屬與熔融玻璃形成材料306進一步分離。在一些實施例中,至少部分依據熔融玻璃形成材料306的腐蝕性質,可能難以量測容器305的容納區域307內的熔融玻璃形成材料306的溫度。舉例而言,直接放置於熔融玻璃形成材料306中的熱電偶350可能熔融或快速腐蝕,而使得熱電偶350的操作壽命可能減少,並且變得不切實際。此外,直接放置於熔融玻璃形成材料306中的護套(例如鉑或含鉑合金)中的熱電偶350亦可能相對較快地腐蝕(特別是存在金屬(例如銅、鐵、銀、鉑及/或其他金屬)的情況),而使得熱電偶350與護套的操作壽命可能減少,並且同樣變得不切實際。In some embodiments, the wall 310 of the vessel 305 can include a structural metal layer (eg, steel) that can include one or more internal liquid paths 304 that can circulate the liquid 303 to cool the wall 310. In other embodiments, the inner surface 312 of the wall 310 can include a protective metal layer (eg, platinum, alumina, quartz, etc.) to separate the structural metal from the molten glass forming material 306. The solid glass layer 311 can be on the side of the inner surface 312 of the protective metal layer to further separate the structural metal from the molten glass forming material 306. In some embodiments, depending on the corrosive nature of the molten glass forming material 306, it may be difficult to measure the temperature of the molten glass forming material 306 within the containment region 307 of the container 305. For example, the thermocouple 350 placed directly in the molten glass forming material 306 may melt or rapidly corrode, so that the operational life of the thermocouple 350 may be reduced and become impractical. In addition, the thermocouple 350 placed directly in the sheath (eg, platinum or platinum-containing alloy) in the molten glass forming material 306 may also corrode relatively quickly (especially in the presence of metals (eg, copper, iron, silver, platinum, and/or Or the case of other metals), the operational life of the thermocouple 350 and the jacket may be reduced, and it becomes equally impractical.
如第3圖至第7圖所示,本揭示的實施例利用至少部分安裝於容器305的壁310的開口315內的保護套筒320以保護熔融材料設備300的熱電偶350。有利地,保護套筒320可以保護熱電偶350免於暴露於熔融玻璃形成材料306,而因此例如延長熱電偶350的操作壽命。保護套筒320可由廣泛的耐火陶瓷材料製成。在一個實施例中,耐火陶瓷材料可包括選自由氧化錫、氧化鉻及融合氧化鋯組成的群組的化合物。舉例而言,化合物可包含單獨或彼此任意組合的任何上述化合物。此類化合物可提供對於包括金屬(例如銅、鐵、銀、鉑及/或其他金屬)的熔融玻璃組合物的期望耐腐蝕性。耐火陶瓷材料可以與熔融玻璃形成材料306相容。舉例而言,保護套筒320的耐火陶瓷材料可以在暴露於熔融玻璃形成材料306時減少或防止保護套筒320的腐蝕及/或故障。As shown in FIGS. 3-7, the embodiments of the present disclosure utilize a protective sleeve 320 that is at least partially mounted within the opening 315 of the wall 310 of the container 305 to protect the thermocouple 350 of the molten material apparatus 300. Advantageously, the protective sleeve 320 can protect the thermocouple 350 from exposure to the molten glass forming material 306 and thus, for example, extend the operational life of the thermocouple 350. The protective sleeve 320 can be made from a wide range of refractory ceramic materials. In one embodiment, the refractory ceramic material can include a compound selected from the group consisting of tin oxide, chromium oxide, and fused zirconia. For example, the compound may comprise any of the above compounds, either alone or in any combination with each other. Such compounds can provide the desired corrosion resistance to molten glass compositions including metals such as copper, iron, silver, platinum, and/or other metals. The refractory ceramic material can be compatible with the molten glass forming material 306. For example, the refractory ceramic material of the protective sleeve 320 can reduce or prevent corrosion and/or failure of the protective sleeve 320 when exposed to the molten glass forming material 306.
在一些實施例中,熱電偶350可包括鉑/銠合金熱電偶350。在其他實施例中,熱電偶350可包括B型熱電偶350,B型熱電偶350可量測約1600℃至約1700℃的範圍內的溫度,而在此溫度範圍內工作時沒有熱損壞。對於本申請之目的,B型熱電偶係為鉑/銠合金熱電偶,以重量計,具有包括Pt/Rh 70%/30%的鉑/銠含量的第一導體以及包括Pt/Rh 94%/6%的鉑/銠含量的第二導體。應理解,在進一步實施例中,可採用任何類型的熱電偶350,包括本文未明確描述的熱電偶。熱電偶350可以單次、週期性及連續地量測熔融玻璃形成材料306的溫度。此外,熱電偶350可以將量測的溫度傳遞(例如,有線通訊、無線通訊)至控制器或其他處理器,其中紀錄、操縱、在計算中使用、在控制系統等中使用量測的溫度。在一些實施例中,可以將量測的溫度提供至玻璃製造設備(例如,玻璃製造設備101)的任何一或更多個部件,以控制玻璃製造處理的態樣。In some embodiments, the thermocouple 350 can include a platinum/rhodium alloy thermocouple 350. In other embodiments, the thermocouple 350 can include a Type B thermocouple 350 that can measure temperatures in the range of about 1600 ° C to about 1700 ° C without any thermal damage when operating in this temperature range. For the purposes of this application, a Type B thermocouple is a platinum/rhodium alloy thermocouple having a first conductor comprising a Pt/Rh 70%/30% platinum/rhenium content and comprising Pt/Rh 94%/by weight. 6% platinum/rhenium content of the second conductor. It should be understood that in further embodiments, any type of thermocouple 350 can be utilized, including thermocouples not explicitly described herein. The thermocouple 350 can measure the temperature of the molten glass forming material 306 in a single, periodic, and continuous manner. In addition, the thermocouple 350 can transfer the measured temperature (eg, wired communication, wireless communication) to a controller or other processor where recording, manipulation, use in calculations, use of measured temperatures in a control system, and the like. In some embodiments, the measured temperature can be provided to any one or more components of a glass manufacturing apparatus (eg, glass manufacturing apparatus 101) to control the aspect of the glass manufacturing process.
如第4圖所示,熱電偶350可包括支架353,彈簧355可連接到支架353,以將熱電偶350沿著方向314朝向容器305的內部偏置。舉例而言,彈簧355可附接至容器305的壁310的外表面313上的錨固器354a、354b,以將熱電偶350沿著方向314朝向容器305的內部偏置。在進一步實施例中,彈簧355可直接附接至容器305的壁310的外表面313。此外,儘管圖示單一彈簧355,其中單一彈簧355的中心部分係位於由支架353界定的拖架內,但在其他實施例中,可提供不同或複數個彈簧。此外,應理解,可提供廣泛的偏置組件,以將熱電偶350沿著方向314偏置。實際上,除了附加或者可替代的一或更多個彈簧之外,偏置組件可包括壓縮支架、下拉或其他偏置組件。有利地,偏置熱電偶350可以穩定熱電偶350,以在操作期間不受振動及其他移動的影響,並可提供接觸力,以維持熱電偶350與熱電偶350會接觸的表面之間的接觸。舉例而言,將熱電偶350偏置以抵靠在表面上可改善材料與熱電偶350之間的熱傳遞,包括材料與熱電偶350之間的任何結構或材料。因此,偏置熱電偶350可改善利用熱電偶350量測材料的溫度的量測的品質。此外,在一些實施例中,偏置熱電偶350可提供相對於保護套筒320永久地附接熱電偶350的替代方案。因此,熱電偶與保護套筒320的拆卸可簡化,以允許快速更換保護套筒320,而不損壞熱電偶,亦不需要更換熱電偶及/或支撐套筒。As shown in FIG. 4, the thermocouple 350 can include a bracket 353 that can be coupled to the bracket 353 to bias the thermocouple 350 in a direction 314 toward the interior of the container 305. For example, the spring 355 can be attached to the anchors 354a, 354b on the outer surface 313 of the wall 310 of the container 305 to bias the thermocouple 350 in a direction 314 toward the interior of the container 305. In a further embodiment, the spring 355 can be attached directly to the outer surface 313 of the wall 310 of the container 305. Moreover, although a single spring 355 is illustrated in which the central portion of the single spring 355 is located within the carriage defined by the bracket 353, in other embodiments, different or plural springs may be provided. Moreover, it should be understood that a wide range of biasing components can be provided to bias thermocouple 350 in direction 314. In fact, the biasing assembly can include a compression bracket, pull down or other biasing assembly in addition to one or more springs that are additional or alternative. Advantageously, the biasing thermocouple 350 can stabilize the thermocouple 350 from vibration and other movements during operation and can provide contact forces to maintain contact between the thermocouple 350 and the surface that the thermocouple 350 will contact. . For example, biasing the thermocouple 350 against the surface may improve heat transfer between the material and the thermocouple 350, including any structure or material between the material and the thermocouple 350. Therefore, biasing the thermocouple 350 can improve the quality of the measurement of the temperature of the material measured by the thermocouple 350. Moreover, in some embodiments, the biasing thermocouple 350 can provide an alternative to permanently attaching the thermocouple 350 relative to the protective sleeve 320. Therefore, the disassembly of the thermocouple and the protective sleeve 320 can be simplified to allow quick replacement of the protective sleeve 320 without damaging the thermocouple and without the need to replace the thermocouple and/or the support sleeve.
如第5圖至第7圖所示,保護套筒320可包括保護套筒第一端部321、與保護套筒第一端部321相對的保護套筒第二端部322及保護套筒內鑽孔325。整個申請案的「內鑽孔」意欲表示內部通路、內部通道、內部開口、內部導管、內部狹槽,或可藉由鑽孔程序產生或藉由模製、研磨或不視為鑽孔程序的其他形成技術產生的其他內鑽孔。保護套筒內鑽孔325可包括保護套筒第一端部321處的保護套筒開口端323(見第7圖)與保護套筒第二端部322處的保護套筒封閉端324。保護套筒封閉端324可藉由保護套筒第二端部322的保護套筒內端表面326界定。As shown in FIGS. 5 to 7, the protective sleeve 320 may include a first end portion 321 of the protective sleeve, a second end portion 322 of the protective sleeve opposite the first end portion 321 of the protective sleeve, and a protective sleeve. Drill 325. The "internal bore" of the entire application is intended to mean internal passages, internal passages, internal openings, internal conduits, internal slots, or may be created by drilling procedures or by molding, grinding or not considered drilling procedures. Other internal boreholes created by other forming techniques. The protective sleeve inner bore 325 can include a protective sleeve open end 323 (see Figure 7) at the first end 321 of the protective sleeve and a protective sleeve closed end 324 at the second end 322 of the protective sleeve. The protective sleeve closed end 324 can be defined by a protective sleeve inner end surface 326 that protects the second end 322 of the sleeve.
在一些實施例中,熔融材料設備300可以可選擇地包括至少部分位於保護套筒320的保護套筒內鑽孔325內的支撐套筒370。支撐套筒370可包括支撐套筒第一端部371、與支撐套筒第一端部371相對的支撐套筒第二端部372及支撐套筒內鑽孔375。如第7圖所示,支撐套筒內鑽孔375可包括支撐套筒第一端部371處的支撐套筒開口端373與支撐套筒第二端部372處的支撐套筒封閉端374。支撐套筒封閉端374可藉由支撐套筒第二端部372的支撐套筒內端表面376界定。In some embodiments, the molten material apparatus 300 can optionally include a support sleeve 370 that is at least partially located within the bore 325 of the protective sleeve of the protective sleeve 320. The support sleeve 370 can include a support sleeve first end 371, a support sleeve second end 372 opposite the support sleeve first end 371, and a support sleeve bore 375. As shown in FIG. 7, the support sleeve inner bore 375 can include a support sleeve open end 373 at the support sleeve first end 371 and a support sleeve closed end 374 at the support sleeve second end 372. The support sleeve closed end 374 can be defined by a support sleeve inner end surface 376 that supports the sleeve second end 372.
如第7圖所示,保護套筒320可包括保護套筒外尺寸390與保護套筒內鑽孔尺寸381。此外,支撐套筒370可包括支撐套筒外尺寸380與支撐套筒內鑽孔尺寸361。類似地,熱電偶350可包括熱電偶外尺寸360。在一些實施例中,支撐套筒370可以在結構上支撐保護套筒320。舉例而言,相較於可製造保護套筒320的相對脆弱的材料(例如耐火陶瓷材料),可藉由包括較高延展性的材料(例如,金屬)製造支撐套筒370。在一些實施例中,支撐套筒370可包括鉑或鉑合金,鉑或鉑合金可抵抗高溫環境,並提供高熱導率,以增加熱電偶350的溫度量測回應時間。在其他實施例中,支撐套筒370可包括可承受高溫的替代材料,包括鉬、氧化鋁及其他材料。有利地,相較於支撐套筒370的材料,保護套筒320的耐火陶瓷材料可以更易於與腐蝕性熔融玻璃形成材料306相容。同時,支撐套筒370可增強保護套筒320的結構完整性。舉例而言,支撐套筒370可以幫助保護套筒320抵抗由具有使保護套筒易碎或更無法抵抗操作應力的特徵(例如,材料、尺寸、形狀)的保護套筒320的應用而導致的剝落、破裂或其他故障模式。舉例而言,操作應力可能由加熱或冷卻保護套筒、衝擊保護套筒的熔融材料流動、熔融玻璃的加熱處理等所引起。As shown in FIG. 7, the protective sleeve 320 can include a protective sleeve outer dimension 390 and a protective sleeve inner bore size 381. Additionally, the support sleeve 370 can include a support sleeve outer dimension 380 and a support sleeve inner bore size 361. Similarly, thermocouple 350 can include a thermocouple outer dimension 360. In some embodiments, the support sleeve 370 can structurally support the protective sleeve 320. For example, the support sleeve 370 can be fabricated by a material that includes a higher ductility (eg, metal) than a relatively fragile material (eg, a refractory ceramic material) that can be fabricated with the protective sleeve 320. In some embodiments, the support sleeve 370 can include platinum or a platinum alloy that resists high temperature environments and provides high thermal conductivity to increase the temperature measurement response time of the thermocouple 350. In other embodiments, the support sleeve 370 can include alternative materials that can withstand high temperatures, including molybdenum, alumina, and other materials. Advantageously, the refractory ceramic material of the protective sleeve 320 may be more compatible with the corrosive molten glass forming material 306 than the material of the support sleeve 370. At the same time, the support sleeve 370 can enhance the structural integrity of the protective sleeve 320. For example, the support sleeve 370 can help protect the sleeve 320 against the application of the protective sleeve 320 having features (eg, material, size, shape) that make the protective sleeve fragile or less resistant to operational stresses. Peeling, cracking or other failure modes. For example, the operating stress may be caused by heating or cooling the protective sleeve, the flow of the molten material of the impact protection sleeve, the heat treatment of the molten glass, and the like.
如第5圖所示,保護套筒內鑽孔尺寸381可容納支撐套筒外尺寸380,而支撐套筒內鑽孔尺寸361可容納熱電偶外尺寸360,而使得熱電偶350可位於支撐套筒內鑽孔375內,而支撐套筒370可位於保護套筒內鑽孔325內。在一些實施例中,支撐套筒370可以緊密地配合在保護套筒內鑽孔325內。在其他實施例中,支撐套筒外尺寸380可以小於保護套筒內鑽孔尺寸381,並可在支撐套筒370與保護套筒內鑽孔325之間提供空間。在其他實施例中,熱電偶外尺寸360可以小於支撐套筒內鑽孔尺寸361,並可在熱電偶350與支撐套筒內鑽孔375之間提供空間。在一些實施例中,熱電偶350可以緊密地配合在支撐套筒內鑽孔375內。As shown in Figure 5, the bore size 381 within the protective sleeve can accommodate the outer dimension 380 of the support sleeve, while the bore size 361 within the support sleeve can accommodate the outer dimension 360 of the thermocouple such that the thermocouple 350 can be located in the support sleeve The bore 375 is bored within the barrel and the support sleeve 370 can be located within the bore 325 of the protective sleeve. In some embodiments, the support sleeve 370 can fit snugly within the bore 325 within the protective sleeve. In other embodiments, the outer sleeve dimension 380 can be smaller than the bore size 381 within the protective sleeve and can provide space between the support sleeve 370 and the bore 325 within the protective sleeve. In other embodiments, the thermocouple outer dimension 360 can be smaller than the bore size 361 within the support sleeve and can provide space between the thermocouple 350 and the bore 375 within the support sleeve. In some embodiments, the thermocouple 350 can fit tightly within the bore 375 within the support sleeve.
可從保護套筒320移除支撐套筒370或可從支撐套筒370移除熱電偶350的一些實施例的可移除性質可以容易地檢查、修理或更換保護套筒320、支撐套筒370及/或熱電偶350。舉例而言,在顯著磨損及使用之後,熱電偶350與支撐套筒370(若提供的話)可以容易地從保護套筒320移除,以利用新的保護套筒320更換保護套筒320,而不丟棄其他昂貴部件(例如,熱電偶350及/或可選擇的支撐套筒370)。The removable sleeve 320 can be easily inspected, repaired or replaced, and the support sleeve 370 can be easily inspected, repaired, or replaced by the removable nature of some embodiments that can remove the support sleeve 370 from the protective sleeve 320 or can remove the thermocouple 350 from the support sleeve 370. And / or thermocouple 350. For example, after significant wear and use, the thermocouple 350 and the support sleeve 370 (if provided) can be easily removed from the protective sleeve 320 to replace the protective sleeve 320 with the new protective sleeve 320, Other expensive components (eg, thermocouple 350 and/or optional support sleeve 370) are not discarded.
在其他實施例中,如第6圖所示,保護套筒內鑽孔尺寸381可容納熱電偶外尺寸360,而使得熱電偶350可位於保護套筒320內(例如,在沒有支撐套筒370時)。在一些實施例中,熱電偶350可以緊密地配合在保護套筒內鑽孔325內。在其他實施例中,熱電偶外尺寸360可以小於保護套筒內鑽孔尺寸381,並可在熱電偶350與保護套筒內鑽孔325之間提供空間。因此,可將熱電偶350從保護套筒320移除,以例如檢查熱電偶350、修復熱電偶350或更換熱電偶350。此外,如上所述,亦可移除熱電偶,以允許檢查、修理或更換保護套筒320,同時允許重新使用熱電偶。在保護套筒320足夠堅固以抵抗處理應力而不需支撐套筒370加強的實施例中,可提供沒有支撐套筒370的保護套筒320。In other embodiments, as shown in FIG. 6, the bore size 381 within the protective sleeve can accommodate the thermocouple outer dimension 360 such that the thermocouple 350 can be positioned within the protective sleeve 320 (eg, without the support sleeve 370) Time). In some embodiments, the thermocouple 350 can fit tightly within the bore 325 within the protective sleeve. In other embodiments, the thermocouple outer dimension 360 can be smaller than the bore size 381 within the protective sleeve and can provide space between the thermocouple 350 and the protective sleeve bore 325. Accordingly, the thermocouple 350 can be removed from the protective sleeve 320 to, for example, inspect the thermocouple 350, repair the thermocouple 350, or the heat exchange coupler 350. Additionally, as noted above, the thermocouple can also be removed to allow inspection, repair or replacement of the protective sleeve 320 while allowing reuse of the thermocouple. In embodiments where the protective sleeve 320 is sufficiently strong to withstand the processing stress without the support sleeve 370 being reinforced, a protective sleeve 320 without the support sleeve 370 can be provided.
如第6圖所示,熱電偶350可位於保護套筒320的保護套筒內鑽孔325內,且熱電偶350可接觸保護套筒第二端部322的保護套筒內端表面326。在進一步實施例中,熱電偶350可偏置朝向保護套筒第二端部322的保護套筒內端表面326(例如,藉由彈簧355)。在一些實施例中,如第5圖所示,熱電偶350可位於支撐套筒370的支撐套筒內鑽孔375內,且熱電偶350可接觸支撐套筒第二端部372的支撐套筒內端表面376。在進一步實施例中,熱電偶350可偏置以抵靠支撐套筒第二端部372的支撐套筒內端表面376(例如,藉由彈簧355)。此外,支撐套筒第二端部372的支撐套筒外端表面378可偏置以抵靠及接觸保護套筒第二端部322的保護套筒內端表面326(例如,藉由彈簧355)。As shown in FIG. 6, the thermocouple 350 can be located within the protective sleeve bore 325 of the protective sleeve 320, and the thermocouple 350 can contact the protective sleeve inner end surface 326 of the protective sleeve second end 322. In a further embodiment, the thermocouple 350 can be biased toward the protective sleeve inner end surface 326 of the protective sleeve second end 322 (eg, by the spring 355). In some embodiments, as shown in FIG. 5, the thermocouple 350 can be located within the support sleeve bore 375 of the support sleeve 370, and the thermocouple 350 can contact the support sleeve of the support sleeve second end 372. Inner end surface 376. In a further embodiment, the thermocouple 350 can be biased against the support sleeve inner end surface 376 of the support sleeve second end 372 (eg, by the spring 355). Additionally, the support sleeve outer end surface 378 of the support sleeve second end 372 can be biased to abut and contact the protective sleeve inner end surface 326 of the protective sleeve second end 322 (eg, by spring 355) .
如第7圖所示,保護套筒320可以在容器305的壁310與保護套筒320之間的界面316處利用黏合劑318(例如,水泥、膠水、密封劑等)固定於壁310的開口315內。參照第3圖、第5圖及第6圖,舉例而言,在一些實施例中,固體玻璃311可以密封容器305的壁310與保護套筒320之間的界面316。固體玻璃311與黏合劑318可以單獨或組合地密封容器305的壁310與保護套筒320之間的界面316。因此,可將保護套筒320可從壁310中的開口315移除,以例如檢查保護套筒320、修理保護套筒320或更換保護套筒320。可藉由在界面316處將保護套筒320與壁310分離,而完成將保護套筒320從壁310中的開口315移除。舉例而言,可移除(例如,鑿刻、破壞等)界面316處的黏合劑318及/或固體玻璃311,以將保護套筒320與容器305的壁310分離。As shown in FIG. 7, the protective sleeve 320 can be secured to the opening of the wall 310 by an adhesive 318 (eg, cement, glue, sealant, etc.) at the interface 316 between the wall 310 of the container 305 and the protective sleeve 320. Within 315. Referring to FIGS. 3, 5, and 6, for example, in some embodiments, solid glass 311 can seal interface 316 between wall 310 of container 305 and protective sleeve 320. The solid glass 311 and the adhesive 318 may seal the interface 316 between the wall 310 of the container 305 and the protective sleeve 320, either alone or in combination. Accordingly, the protective sleeve 320 can be removed from the opening 315 in the wall 310 to, for example, inspect the protective sleeve 320, repair the protective sleeve 320, or replace the protective sleeve 320. Removal of the protective sleeve 320 from the opening 315 in the wall 310 can be accomplished by separating the protective sleeve 320 from the wall 310 at the interface 316. For example, the adhesive 318 and/or solid glass 311 at the interface 316 can be removed (eg, chiseled, broken, etc.) to separate the protective sleeve 320 from the wall 310 of the container 305.
如第7圖進一步圖示,開口315可包括開口尺寸391,而保護套筒320可插入其中。在一些實施例中,保護套筒外尺寸390可以大於容器305的壁310中的開口315的開口尺寸391。在進一步實施例中,保護套筒外尺寸390可以大約與容器305的壁310中的開口315的開口尺寸391相同。應理解,保護套筒外尺寸390越大,則保護套筒320可提供熱電偶350越多保護,保護套筒320可以更加強以抵抗使用中的損害。相反地,保護套筒外尺寸390越小,則熱可以更好(例如,更快)地從熔融玻璃形成材料306通過保護套筒320傳遞至熱電偶350。因此,在一些實施例中,可以至少部分依據通過保護套筒320的熱傳遞速率與保護套筒320的保護等級之間的折衷以選擇保護套筒外尺寸390。As further illustrated in Figure 7, the opening 315 can include an opening dimension 391 into which the protective sleeve 320 can be inserted. In some embodiments, the protective sleeve outer dimension 390 can be larger than the opening size 391 of the opening 315 in the wall 310 of the container 305. In a further embodiment, the protective sleeve outer dimension 390 can be about the same as the opening size 391 of the opening 315 in the wall 310 of the container 305. It will be appreciated that the greater the outer dimension 390 of the protective sleeve, the more protection the sleeve 320 can provide to the thermocouple 350, the more the protective sleeve 320 can be strengthened to resist damage in use. Conversely, the smaller the protective sleeve outer dimension 390, the better heat (eg, faster) can be transferred from the molten glass forming material 306 through the protective sleeve 320 to the thermocouple 350. Thus, in some embodiments, the protective sleeve outer dimension 390 can be selected based, at least in part, on the tradeoff between the rate of heat transfer through the protective sleeve 320 and the degree of protection of the protective sleeve 320.
在一些實施例中,保護套筒320可以在容納區域307內從容器305的壁310的內表面312延伸大於0 cm至約25 cm的距離302。在進一步實施例中,距離302可以從大於0 cm至約15 cm。在另一者中,距離302可以從約2 cm至約15 cm。在另一實施例中,距離302可以從約2 cm至約7 cm。在另一實施例中,距離302可以從約3 cm至約5 cm。距離302可以至少部分依據待量測的熔融玻璃形成材料306的溫度的位置。舉例而言,在一些實施例(未圖示)中,保護套筒320的保護套筒外端表面328可以與壁310的內表面312齊平,且固體玻璃311層可以在保護套筒外端表面328上延伸,而熱電偶350可量測壁310的內表面312處的固體玻璃311的溫度所對應的溫度。在其他實施例中,例如第3圖、第5圖及第6圖所示,保護套筒320可延伸至熔融玻璃形成材料306中,而熱電偶350可量測距離容器305的壁310的內表面312一距離302的熔融玻璃形成材料306的溫度所對應的溫度。In some embodiments, the protective sleeve 320 can extend from the inner surface 312 of the wall 310 of the container 305 within a receiving area 307 by a distance 302 of greater than 0 cm to about 25 cm. In further embodiments, the distance 302 can range from greater than 0 cm to about 15 cm. In the other, the distance 302 can be from about 2 cm to about 15 cm. In another embodiment, the distance 302 can be from about 2 cm to about 7 cm. In another embodiment, the distance 302 can be from about 3 cm to about 5 cm. The distance 302 can depend, at least in part, on the location of the temperature of the molten glass forming material 306 to be measured. For example, in some embodiments (not shown), the protective sleeve outer end surface 328 of the protective sleeve 320 may be flush with the inner surface 312 of the wall 310, and the solid glass 311 layer may be at the outer end of the protective sleeve. The surface 328 extends over the thermocouple 350 to measure the temperature corresponding to the temperature of the solid glass 311 at the inner surface 312 of the wall 310. In other embodiments, such as shown in FIGS. 3, 5, and 6, the protective sleeve 320 can extend into the molten glass forming material 306, and the thermocouple 350 can measure the distance from the wall 310 of the container 305. The surface 312 is a temperature corresponding to the temperature of the molten glass forming material 306 of 302.
在一些實施例中,處理熔融材料121的方法可包括以下步驟:將熱電偶350插入保護套筒320,以及利用熱電偶350量測容器305的容納區域307內的材料(例如,熔融玻璃形成材料306)的溫度。在一些實施例中,該方法可包括以下步驟:藉由利用液體303冷卻容器305的壁310,將大量熔融玻璃形成材料306固化成容器305的壁310的內表面312的邊線上的固體玻璃311層。舉例而言,液體303可以在內部液體路徑304中通過壁310循環。在一些實施例中,該方法可包括以下步驟:將大量熔融玻璃形成材料306固化成固體玻璃311,以密封容器305的壁310與保護套筒320之間的界面316。In some embodiments, the method of processing the molten material 121 can include the steps of inserting the thermocouple 350 into the protective sleeve 320, and measuring the material within the containment region 307 of the container 305 using the thermocouple 350 (eg, molten glass forming material) 306) temperature. In some embodiments, the method can include the step of solidifying a plurality of molten glass forming materials 306 into solid glass 311 on the side of the inner surface 312 of the wall 310 of the container 305 by cooling the wall 310 of the container 305 with the liquid 303. Floor. For example, liquid 303 can circulate through wall 310 in internal liquid path 304. In some embodiments, the method can include the step of curing a plurality of molten glass forming materials 306 into solid glass 311 to seal the interface 316 between the wall 310 of the container 305 and the protective sleeve 320.
在一些實施例中,保護套筒320的保護套筒第二端部322可穿過壁310的開口315,並穿過固體玻璃311層,而使得保護套筒第二端部322位於熔融玻璃形成材料306內。在一些實施例中,該方法可包括以下步驟:藉由將支撐套筒370至少部分地插入保護套筒320的保護套筒內鑽孔325內,以支撐保護套筒370。In some embodiments, the protective sleeve second end 322 of the protective sleeve 320 can pass through the opening 315 of the wall 310 and pass through the layer of solid glass 311 such that the second end 322 of the protective sleeve is formed in the molten glass. Within material 306. In some embodiments, the method can include the step of supporting the protective sleeve 370 by at least partially inserting the support sleeve 370 into the protective sleeve bore 325 of the protective sleeve 320.
在一些實施例中,量測材料(例如,熔融玻璃形成材料306)的溫度之步驟可包括以下步驟:將熱電偶350偏置以抵靠保護套筒320的保護套筒內端表面326。在一些實施例中,量測材料的溫度之步驟可包括以下步驟:將熱電偶350偏置以抵靠支撐套筒封閉端374的支撐套筒內端表面376,而使得支撐套筒第二端部372的支撐套筒外端表面378偏置,而藉此接觸保護套筒320的保護套筒內端表面326。In some embodiments, the step of measuring the temperature of the material (eg, molten glass forming material 306) can include the step of biasing the thermocouple 350 against the protective sleeve inner end surface 326 of the protective sleeve 320. In some embodiments, the step of measuring the temperature of the material can include the step of biasing the thermocouple 350 against the support sleeve inner end surface 376 of the support sleeve closed end 374 such that the second end of the support sleeve The support sleeve outer end surface 378 of the portion 372 is biased thereby contacting the protective sleeve inner end surface 326 of the protective sleeve 320.
應理解,各種所揭示實施例可以涉及組合該特定實施例所描述的特定特徵、元件或步驟。亦應理解,儘管關於一個特定實施例描述特定特徵、元件或步驟,但是可利用各種未圖示的組合或排列的替代實施例互換或組合。It should be understood that the various disclosed embodiments may be described in connection with the specific features, elements or steps described in the particular embodiments. It is also to be understood that the specific features, elements, or steps are described in the context of a particular embodiment, but may be interchanged or combined with alternative embodiments of various combinations or arrangements not illustrated.
應理解,本文所用之術語「該」、「一」或「一個」意指「至少一個」,且不應限於「僅有一個」,除非明確指示為相反。因此,舉例而言,除非上下文明確另外指示,否則對於「一部件」的參照包括具有二或更多個部件的實施例。It is to be understood that the terms "the", "an" or "an" are used to mean "at least one" and should not be limited to "the only one" unless explicitly indicated to the contrary. Thus, for example, reference to "a component" includes an embodiment having two or more components unless the context clearly dictates otherwise.
本文所表示之範圍可為從「約」一個特定值及/或到「約」另一特定值。當表示此種範圍時,實施例包括從一個特定值及/或到另一特定值。同樣地,當以使用前置詞「約」的近似方式表示值時,將可瞭解到特定值將形成另一態樣。可進一步瞭解範圍的每一端點明顯與另一端點有關,並獨立於另一端點。The scope of the disclosure may be from "about" a particular value and/or to "about" another particular value. When such a range is indicated, embodiments include from a particular value and/or to another particular value. Similarly, when values are expressed in an approximate manner using the preamble "about," it will be appreciated that a particular value will form another aspect. It will be further appreciated that each endpoint of the range is clearly related to the other endpoint and is independent of the other endpoint.
除非另外明確陳述,否則並不視為本文所述任何方法必須建構為以特定順序施行其步驟。因此,在方法請求項並不實際記載其步驟之順序或者不在申請專利範圍或敘述中具體說明步驟係限制於特定順序的情況中,不推斷任何特定順序。Unless otherwise expressly stated otherwise, any method described herein is not considered to be constructed to perform its steps in a particular order. Therefore, no particular order is recited where the method claims are not in the nature of the order of the steps, or in the scope of the claims.
儘管可使用過渡短語「包含」以揭示特定實施例的各種特徵、元件或步驟,但應理解亦暗示包括可能使用過渡短語「由其組成」或「基本上由其組成」揭示的替代實施例。因此,舉例而言,暗示包含A+B+C的設備的替代實施例包括由A+B+C組成的設備的實施例以及基本上由A+B+C組成的設備的實施例。The use of the phrase "comprising", "a", "an" example. Thus, for example, an alternate embodiment suggesting that a device comprising A+B+C includes an embodiment of a device consisting of A+B+C and an embodiment of a device consisting essentially of A+B+C.
該領域具有通常知識者應理解,在不脫離本申請案之精神及範疇的情況下,可對本揭示作出各種修改及變化。因此,預期本申請案涵蓋此發明之修改及變化,其中該等修改及變化係在所附申請專利範圍及其均等物之範疇內。It will be appreciated by those skilled in the art that various modifications and changes can be made in the present disclosure without departing from the spirit and scope of the invention. Therefore, it is intended that the present invention cover the modifications and variations of the invention, which are within the scope of the appended claims and their equivalents.
101‧‧‧玻璃製造設備
103‧‧‧玻璃帶
104‧‧‧玻璃板
105‧‧‧熔融容器
107‧‧‧批次材料
109‧‧‧儲存倉
111‧‧‧批次遞送裝置
113‧‧‧馬達
115‧‧‧控制器
117‧‧‧箭頭
119‧‧‧玻璃熔融探針
121‧‧‧熔融材料
123‧‧‧豎管
125‧‧‧通訊線路
127‧‧‧澄清容器
129‧‧‧第一連接導管
131‧‧‧混合腔室
133‧‧‧遞送容器
135‧‧‧第二連接導管
137‧‧‧第三連接導管
139‧‧‧遞送管
140‧‧‧玻璃形成器
141‧‧‧入口
143‧‧‧形成容器
145‧‧‧根部
153‧‧‧第一垂直邊緣
155‧‧‧第二垂直邊緣
201‧‧‧溝槽
203a‧‧‧堰
203b‧‧‧堰
205a‧‧‧外表面
205b‧‧‧外表面
207a‧‧‧向下傾斜匯聚表面部分
207b‧‧‧向下傾斜匯聚表面部分
209‧‧‧形成楔
211‧‧‧拉伸方向
213‧‧‧拉伸平面
215a‧‧‧第一主表面
215b‧‧‧第二主表面
300‧‧‧熔融材料設備
302‧‧‧距離
303‧‧‧液體
304‧‧‧內部液體路徑
305‧‧‧容器
306‧‧‧熔融玻璃形成材料
307‧‧‧容納區域
310‧‧‧壁
311‧‧‧固體玻璃
312‧‧‧內表面
313‧‧‧外表面
314‧‧‧方向
315‧‧‧開口
316‧‧‧界面
318‧‧‧黏合劑
320‧‧‧保護套筒
321‧‧‧保護套筒第一端部
322‧‧‧保護套筒第二端部
323‧‧‧保護套筒開口端
324‧‧‧保護套筒封閉端
325‧‧‧保護套筒內鑽孔
326‧‧‧保護套筒內端表面
328‧‧‧保護套筒外端表面
350‧‧‧熱電偶
353‧‧‧支架
354a‧‧‧錨固器
354b‧‧‧錨固器
355‧‧‧彈簧
360‧‧‧熱電偶外尺寸
361‧‧‧支撐套筒內鑽孔尺寸
370‧‧‧保護套筒
371‧‧‧支撐套筒第一端部
372‧‧‧支撐套筒第二端部
373‧‧‧支撐套筒開口端
374‧‧‧支撐套筒封閉端
375‧‧‧支撐套筒內鑽孔
376‧‧‧支撐套筒內端表面
378‧‧‧支撐套筒外端表面
380‧‧‧支撐套筒外尺寸
381‧‧‧保護套筒內鑽孔尺寸
390‧‧‧保護套筒外尺寸
391‧‧‧開口尺寸101‧‧‧Glass manufacturing equipment
103‧‧‧glass ribbon
104‧‧‧ glass plate
105‧‧‧Melt container
107‧‧‧ batch materials
109‧‧‧Storage warehouse
111‧‧‧Batch delivery device
113‧‧‧Motor
115‧‧‧ Controller
117‧‧‧ arrow
119‧‧‧Glass melting probe
121‧‧‧ molten material
123‧‧‧ standpipe
125‧‧‧Communication lines
127‧‧‧Clarification container
129‧‧‧First connecting catheter
131‧‧‧Mixed chamber
133‧‧‧ delivery container
135‧‧‧Second connection catheter
137‧‧‧ third connecting catheter
139‧‧‧ delivery tube
140‧‧‧ glass former
141‧‧‧ entrance
143‧‧‧ Forming a container
145‧‧‧ root
153‧‧‧ first vertical edge
155‧‧‧second vertical edge
201‧‧‧ trench
203a‧‧‧堰
203b‧‧‧堰
205a‧‧‧ outer surface
205b‧‧‧ outer surface
207a‧‧‧ sloping the surface of the convergence surface
207b‧‧‧Look down the convergence surface section
209‧‧‧ forming a wedge
211‧‧‧Stretching direction
213‧‧‧ stretching plane
215a‧‧‧ first major surface
215b‧‧‧second main surface
300‧‧‧Molten material equipment
302‧‧‧distance
303‧‧‧Liquid
304‧‧‧Internal fluid path
305‧‧‧ Container
306‧‧‧Melt glass forming materials
307‧‧‧ accommodating area
310‧‧‧ wall
311‧‧‧Solid glass
312‧‧‧ inner surface
313‧‧‧ outer surface
314‧‧‧ Direction
315‧‧‧ openings
316‧‧‧ interface
318‧‧‧Binder
320‧‧‧protective sleeve
321‧‧‧First end of protective sleeve
322‧‧‧The second end of the protective sleeve
323‧‧‧Protection sleeve open end
324‧‧‧ protective sleeve closed end
325‧‧‧Drilling in the protective sleeve
326‧‧‧ Protective sleeve inner end surface
328‧‧‧ Protective sleeve outer end surface
350‧‧‧ thermocouple
353‧‧‧ bracket
354a‧‧‧Anchor
354b‧‧‧Anchor
355‧‧ ‧ spring
360‧‧‧ Thermocouple outer dimensions
361‧‧‧Drilling dimensions in the support sleeve
370‧‧‧protective sleeve
371‧‧‧First end of the support sleeve
372‧‧‧Support sleeve second end
373‧‧‧Open end of support sleeve
374‧‧‧Support sleeve closed end
375‧‧‧Drilling in the support sleeve
376‧‧‧Support sleeve inner end surface
378‧‧‧Support sleeve outer end surface
380‧‧‧Support sleeve outer dimensions
381‧‧‧Drilling dimensions in the protective sleeve
390‧‧‧protection sleeve outer dimensions
391‧‧‧ opening size
當參照隨附圖式閱讀時可更加瞭解本揭示的此等及其他特徵、實施例及優點:These and other features, embodiments, and advantages of the present disclosure will become more apparent from the reading of the drawings.
第1圖圖示根據本文所述之實施例的玻璃製造設備的示意圖;1 is a schematic view of a glass manufacturing apparatus according to embodiments described herein;
第2圖圖示沿著第1圖之線段2-2的玻璃製造設備之橫截面透視圖;Figure 2 is a cross-sectional perspective view of the glass manufacturing apparatus along line 2-2 of Figure 1;
第3圖圖示沿著第1圖之視圖3的示例性熔融材料設備之放大橫截面圖;Figure 3 illustrates an enlarged cross-sectional view of an exemplary molten material apparatus along view 3 of Figure 1;
第4圖圖示沿著第3圖之線段4-4的示例性熔融材料設備之示意圖;Figure 4 illustrates a schematic view of an exemplary molten material apparatus along line 4-4 of Figure 3;
第5圖圖示沿著第3圖之視圖5的示例性熔融材料設備之放大橫截面圖;Figure 5 illustrates an enlarged cross-sectional view of an exemplary molten material apparatus along view 5 of Figure 3;
第6圖圖示沿著第3圖之視圖5的另一示例性熔融材料設備之放大橫截面圖;以及Figure 6 illustrates an enlarged cross-sectional view of another exemplary molten material apparatus along view 5 of Figure 3;
第7圖圖示示例性熔融材料設備之示意組件圖。Figure 7 illustrates a schematic assembly diagram of an exemplary molten material device.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic deposit information (please note according to the order of the depository, date, number)
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of country, organization, date, number)
(請換頁單獨記載) 無(Please change the page separately) No
300‧‧‧熔融材料設備 300‧‧‧Molten material equipment
303‧‧‧液體 303‧‧‧Liquid
304‧‧‧內部液體路徑 304‧‧‧Internal fluid path
305‧‧‧容器 305‧‧‧ Container
306‧‧‧熔融玻璃形成材料 306‧‧‧Melt glass forming materials
307‧‧‧容納區域 307‧‧‧ accommodating area
310‧‧‧壁 310‧‧‧ wall
311‧‧‧固體玻璃 311‧‧‧Solid glass
312‧‧‧內表面 312‧‧‧ inner surface
313‧‧‧外表面 313‧‧‧ outer surface
314‧‧‧方向 314‧‧‧ Direction
315‧‧‧開口 315‧‧‧ openings
320‧‧‧保護套筒 320‧‧‧protective sleeve
350‧‧‧熱電偶 350‧‧‧ thermocouple
370‧‧‧保護套筒 370‧‧‧protective sleeve
Claims (40)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/091,183 | 2016-04-05 | ||
US15/091,183 US10656024B2 (en) | 2016-04-05 | 2016-04-05 | Molten material thermocouple methods and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201740090A true TW201740090A (en) | 2017-11-16 |
TWI732847B TWI732847B (en) | 2021-07-11 |
Family
ID=58672662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106111348A TWI732847B (en) | 2016-04-05 | 2017-04-05 | Molten material thermocouple methods and apparatus |
Country Status (6)
Country | Link |
---|---|
US (1) | US10656024B2 (en) |
JP (1) | JP2019510977A (en) |
KR (1) | KR20180125019A (en) |
CN (1) | CN108885140A (en) |
TW (1) | TWI732847B (en) |
WO (1) | WO2017176700A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11370685B2 (en) | 2016-08-02 | 2022-06-28 | Corning Incorporated | Methods for melting reactive glasses and glass-ceramics and melting apparatus for the same |
CN108529853B (en) * | 2018-04-10 | 2019-12-27 | 湖北新华光信息材料有限公司 | Glass continuous melting furnace and melting method |
US11912608B2 (en) | 2019-10-01 | 2024-02-27 | Owens-Brockway Glass Container Inc. | Glass manufacturing |
US11505486B2 (en) * | 2019-10-08 | 2022-11-22 | Owens-Brockway Glass Container Inc. | Verifiable bubbler |
WO2021117618A1 (en) * | 2019-12-10 | 2021-06-17 | Agc株式会社 | Melted glass transport device, glass article manufacturing device, and glass article manufacturing method |
CN114112078B (en) * | 2021-11-10 | 2023-12-01 | 中国科学院上海光学精密机械研究所 | Glass melt temperature direct measuring device |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB719026A (en) | 1952-02-01 | 1954-11-24 | Leeds & Northrup Co | Improvements in temperature-measuring thermocouple apparatus |
US3329534A (en) | 1963-02-14 | 1967-07-04 | Engelhard Ind Inc | Thermocouple with platinum group metal inner sheath |
DE1995599U (en) * | 1967-09-19 | 1968-10-31 | Voest Ag | DEVICE FOR CONTINUOUS MEASUREMENT OF THE TEMPERATURE OF METAL STRIPS IN MELTING OR FRESH FURNACES, IN PARTICULAR CRUCIBLES OR CONVERTERS |
JPS6016453Y2 (en) * | 1977-12-13 | 1985-05-22 | 株式会社神戸製鋼所 | Continuous casting mold |
US4287380A (en) * | 1979-09-18 | 1981-09-01 | Emhart Industries, Inc. | Electrode assembly for molten glass forehearth |
JPH0633387Y2 (en) * | 1986-06-13 | 1994-08-31 | 日本碍子株式会社 | thermocouple |
JPH01171333U (en) * | 1988-05-23 | 1989-12-05 | ||
AU622743B2 (en) * | 1989-11-22 | 1992-04-16 | Nippon Steel Corporation | Thermocouple-type temperature sensor and method of measuring temperature of molten steel |
US5197805A (en) | 1991-09-30 | 1993-03-30 | Pyromation, Inc. | Temperature sensor protection tube |
JPH06329420A (en) * | 1993-05-21 | 1994-11-29 | Nippon Sheet Glass Co Ltd | Glass melting furnace |
JPH08320263A (en) * | 1995-05-24 | 1996-12-03 | Tokyo Yogyo Co Ltd | Molten metal vessel and metal melting furnace having molten metal temperature measuring probe |
JP3324389B2 (en) * | 1996-04-01 | 2002-09-17 | 三菱自動車工業株式会社 | Gas temperature measurement device |
JP2949086B2 (en) * | 1997-01-29 | 1999-09-13 | 株式会社岡崎製作所 | Sodium thermometer |
US20030180537A1 (en) * | 1998-01-30 | 2003-09-25 | Black Diamond Granules, Inc. | Spheroidal particles and apparatus and process for producing same |
JP3571951B2 (en) * | 1999-01-20 | 2004-09-29 | 中小企業総合事業団 | Thermocouple device |
US6701751B2 (en) | 2001-06-14 | 2004-03-09 | Avacon, S.A. | Glass melting furnace |
US20040136873A1 (en) * | 2003-01-09 | 2004-07-15 | Argonaut Technologies, Inc. | Modular reactor system |
KR100611358B1 (en) * | 2004-11-24 | 2006-08-11 | 한국수력원자력 주식회사 | Equipment and Method for Vitrification of Spent Resin Containing Transition Metals |
JP2006153706A (en) | 2004-11-30 | 2006-06-15 | Taiyo Nippon Sanso Corp | Temperature sensing element and vapor phase deposition device |
CN100487399C (en) | 2006-10-19 | 2009-05-13 | 沈阳东大传感技术有限公司 | Consumption-type thermal couple on-line calibration method |
US20090052498A1 (en) | 2007-08-24 | 2009-02-26 | Asm America, Inc. | Thermocouple |
DE102009033502B4 (en) | 2009-07-15 | 2016-03-03 | Schott Ag | Method and device for producing glass products from a molten glass |
US20110150034A1 (en) | 2009-12-23 | 2011-06-23 | Thermo Fisher Scientific | Sanitary clean in place thermowell |
US8240170B2 (en) * | 2010-02-22 | 2012-08-14 | Corning Incorporated | Apparatus for sealing a joint between vessels for conveying molten glass |
US9145319B2 (en) * | 2012-04-27 | 2015-09-29 | Johns Manville | Submerged combustion melter comprising a melt exit structure designed to minimize impact of mechanical energy, and methods of making molten glass |
US8821013B2 (en) * | 2010-10-28 | 2014-09-02 | Corning Incorporated | Thermocouples with two tabs spaced apart along a transverse axis and methods |
CN102889941A (en) | 2011-07-17 | 2013-01-23 | 赵宽 | Quartz pipe sleeve-isolated and sealed long-service life thermocouple |
CN202188921U (en) | 2011-07-20 | 2012-04-11 | 陕西彩虹电子玻璃有限公司 | Thermocouple apparatus applied in electric smelter pool bottom glass liquid temperature detection |
CN202533192U (en) | 2012-02-13 | 2012-11-14 | 泰山玻璃纤维有限公司 | Device used for precision measurement of temperature gradient of melted glass operation channel |
US20150275108A1 (en) * | 2012-10-25 | 2015-10-01 | How Kiap Gueh | Gasification devices and methods |
DE102013000607B3 (en) * | 2013-01-16 | 2014-05-15 | S + S Regeltechnik Gmbh | Dipping temperature sensor, has sensing element fitted into dip-side end of protective tube, where protective tube is axially introduced into dip tube until face surface of shaped body fits axially against bottom of dip tube |
EP2781607A1 (en) * | 2013-03-20 | 2014-09-24 | Heraeus Electro-Nite International N.V. | Sampler for molten iron |
CN203908697U (en) | 2013-12-30 | 2014-10-29 | 焦作市圣昊铝业有限公司 | Stationary anti-corrosion thermocouple |
EP2899518A1 (en) | 2014-01-27 | 2015-07-29 | Technische Universität Chemnitz | Temperature measurement device |
-
2016
- 2016-04-05 US US15/091,183 patent/US10656024B2/en not_active Expired - Fee Related
-
2017
- 2017-04-04 CN CN201780022275.7A patent/CN108885140A/en active Pending
- 2017-04-04 KR KR1020187032066A patent/KR20180125019A/en active IP Right Grant
- 2017-04-04 WO PCT/US2017/025874 patent/WO2017176700A1/en active Application Filing
- 2017-04-04 JP JP2018551822A patent/JP2019510977A/en active Pending
- 2017-04-05 TW TW106111348A patent/TWI732847B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN108885140A (en) | 2018-11-23 |
US10656024B2 (en) | 2020-05-19 |
WO2017176700A1 (en) | 2017-10-12 |
TWI732847B (en) | 2021-07-11 |
US20170284872A1 (en) | 2017-10-05 |
KR20180125019A (en) | 2018-11-21 |
JP2019510977A (en) | 2019-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI732847B (en) | Molten material thermocouple methods and apparatus | |
US8925353B2 (en) | Process and system for fining glass | |
CN102180587A (en) | Method and apparatus for making a glass sheet with controlled heating | |
TWI727124B (en) | Glass manufacturing method and preheating method of glass supply pipe | |
JP5730259B2 (en) | Glass manufacturing apparatus and glass manufacturing method | |
JP6002526B2 (en) | Glass substrate manufacturing apparatus and glass substrate manufacturing method | |
US20210130214A1 (en) | Method for manufacturing glass article, and melting furnace | |
JP2014069983A (en) | Method and apparatus for producing glass substrate | |
CN111433161B (en) | Glass manufacturing apparatus and method including thermal shield | |
US20220298048A1 (en) | Apparatus for transferring molten glass, apparatus for producing glass article, and method for producing glass article | |
JP6792825B2 (en) | Manufacturing method of glass articles and melting furnace | |
Dzyuzer | Use of refractories in the melting tank of a high-production-capacity glass melting furnace | |
JP6739965B2 (en) | Glass plate manufacturing method | |
JP6498546B2 (en) | Glass plate manufacturing method and melting tank | |
WO2019195632A1 (en) | Apparatus for heating molten material | |
JP5704505B2 (en) | Sheet glass manufacturing apparatus and sheet glass manufacturing method | |
WO2013024649A1 (en) | Float glass production device, and float glass production method employing same | |
TW201941660A (en) | Devices and methods for heating molten material | |
WO2017205203A1 (en) | Glass manufacturing apparatus and methods | |
WO2022131205A1 (en) | Glass article production apparatus | |
WO2023069232A1 (en) | Apparatus for forming molten glass with structurally reinforced conduits | |
WO2012114842A1 (en) | Device for manufacturing sheet glass, and method for manufacturing sheet glass | |
JP2024538182A (en) | Apparatus for forming molten glass using a structurally reinforced conduit - Patent application | |
TW202317485A (en) | Apparatus and methods for cooling walls of a glass melting vessel | |
Yamamura et al. | Integrated Approach to Achieve Optimum Design of Glass Furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |