JPS6016453Y2 - Continuous casting mold - Google Patents

Continuous casting mold

Info

Publication number
JPS6016453Y2
JPS6016453Y2 JP16812477U JP16812477U JPS6016453Y2 JP S6016453 Y2 JPS6016453 Y2 JP S6016453Y2 JP 16812477 U JP16812477 U JP 16812477U JP 16812477 U JP16812477 U JP 16812477U JP S6016453 Y2 JPS6016453 Y2 JP S6016453Y2
Authority
JP
Japan
Prior art keywords
mold
mold wall
thermocouple
continuous casting
sensor holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16812477U
Other languages
Japanese (ja)
Other versions
JPS5493013U (en
Inventor
稔生 岡田
紘 今田
勝良 松尾
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP16812477U priority Critical patent/JPS6016453Y2/en
Publication of JPS5493013U publication Critical patent/JPS5493013U/ja
Application granted granted Critical
Publication of JPS6016453Y2 publication Critical patent/JPS6016453Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、連続鋳造設備に使用される鋳型に係わり、
とくに、溶鋼面レベル検知用の熱電対を埋設した連続鋳
造用鋳型の改良に関する。
[Detailed description of the invention] This invention relates to molds used in continuous casting equipment.
In particular, it relates to the improvement of continuous casting molds with embedded thermocouples for detecting the level of molten steel.

近時、製鋼工場では、連続製造法が省力化、自動化、そ
してコスト低減等の利点から急激に普及しているが、こ
れら連続鋳造によるインゴットの性状を良好ならしめる
ための鋳造条件のうち、重要なものとして、溶鋼の注入
速度、鋳造引抜速度がある。
In recent years, continuous manufacturing methods have become rapidly popular in steel factories due to their advantages such as labor saving, automation, and cost reduction.However, there are some important casting conditions to improve the properties of ingots produced by continuous casting. These include the injection speed of molten steel and the casting withdrawal speed.

そして、これらの速度を制御するためには、溶鋼面レベ
ルを検知してフィードバックする必要があるところから
、従来その検知方法としては、γ線源をガイガー管、ま
たはシンチレーションカウンタを作動させて検知する方
式、或いは鋳型内の型面近くに熱電対を挿入して、その
温度により溶鋼面を推定検知する方法等が代表的である
が、実用上、安全上の点から主として後者の方式が採用
されている。
In order to control these speeds, it is necessary to detect and feed back the molten steel surface level, so the conventional method of detection is to operate a Geiger tube or scintillation counter to detect the gamma ray source. Typical methods include inserting a thermocouple near the mold surface in the mold and estimating the molten steel surface based on the temperature, but the latter method is mainly adopted from a practical and safety point of view. ing.

ところで、連続鋳造における溶鋼面レベルの検知を熱電
対で行なうには、鋳型に熱電対を直接取付けるのである
が、従来では、背面から鋳型壁内面近傍に達するめくら
孔に熱電対を挿入して検知していたから、センサーへの
溶鋼からの入熱が間接的で検知精度が悪く、レベル測定
精度の向上は望めなかった。
By the way, in order to detect the molten steel surface level during continuous casting using a thermocouple, the thermocouple is attached directly to the mold, but conventionally the thermocouple is inserted into a blind hole that reaches near the inner surface of the mold wall from the back side. As a result, the heat input from the molten steel to the sensor was indirect, resulting in poor detection accuracy and no hope of improving level measurement accuracy.

また、鋳型壁内面に熱電対を等間隔に取りつけたセンサ
ーブロックを埋め込み、電鋳法により前記センサーブロ
ックを埋設するようにしたものが提案されたが、電鋳法
によるメッキ部に、換言すれば、センサーブロックと鋳
型壁との間に構造的な接合線が存在し、この接合境界か
ら電鋳層にクラック発生の恐れがあり、かつ、センサー
ブロックの取替えが困難であるという問題があった。
In addition, it has been proposed that a sensor block with thermocouples attached at equal intervals is embedded in the inner surface of the mold wall, and the sensor block is buried by electroforming. However, there is a problem in that there is a structural joint line between the sensor block and the mold wall, and there is a risk of cracks occurring in the electroformed layer from this joint boundary, and that it is difficult to replace the sensor block.

この考案は、上記従来の問題点を解決するためになされ
たもので、溶鋼よりの入熱を熱電対に直接伝達し、かつ
、熱電対近傍の熱流を良好にしてレベル測定精度並びに
レスポンスの向上を図るとともに、メッキ部と熱電対と
の間に構造的な接合線がなく、而も熱電対の取替えを容
易に行うことができるように工夫した連続鋳造用鋳型を
提供するものである。
This idea was made to solve the above-mentioned conventional problems.It directly transfers the heat input from molten steel to the thermocouple, improves the heat flow near the thermocouple, and improves level measurement accuracy and response. In addition, the present invention provides a continuous casting mold which has no structural joining line between the plated part and the thermocouple, and which is designed so that the thermocouple can be easily replaced.

以下、この考案の一実施例を添附図面に従って詳細に説
明する。
An embodiment of this invention will be described in detail below with reference to the accompanying drawings.

連続鋳造用鋳型、例えば、第1図に示されるようにスラ
ブの連続鋳造用鋳型1にあっては、一対の広面鋳型壁2
,2′間にスラブの厚み寸法に相当する左右一対の狭面
鋳型壁3,3′を進退自在の移動部材4に連結され、該
狭面鋳型壁3,3′をスラブの巾寸法に移動調整後、固
定する。
In a continuous casting mold, for example, a slab continuous casting mold 1 as shown in FIG. 1, a pair of wide mold walls 2 are used.
, 2', a pair of left and right narrow mold walls 3, 3' corresponding to the thickness dimension of the slab are connected to a movable member 4 that can move forward and backward, and move the narrow mold walls 3, 3' to the width dimension of the slab. After adjustment, fix.

この鋳型1にける一つの鋳型壁、例えば狭面鋳型壁3に
溶鋼レベルを検出するセンサーを埋設する。
A sensor for detecting the level of molten steel is embedded in one mold wall of the mold 1, for example, the narrow mold wall 3.

即ち、狭面鋳型壁3は、第2図および第3図に示すよう
に、鋳型壁3の長手方向に冷却水通路5゜・・・、5を
内部に形成し、さらに背面3a側から、一定深さで上記
冷却水通路5.・・・、5を貫通する鋳型壁長手方向の
長溝6を削設する。
That is, as shown in FIGS. 2 and 3, the narrow mold wall 3 has cooling water passages 5° . 5. The above cooling water passage at a constant depth. . . . A long groove 6 in the longitudinal direction of the mold wall is cut to pass through the mold wall 5.

該長溝6には、長溝6の底面から鋳型壁3の内面3bに
貫通する小孔7.・・・、7を、鋳型壁3の長手方向、
所謂鋳片の進行方向に所要間隔で多数個穿設する。
The long groove 6 has a small hole 7 that penetrates from the bottom of the long groove 6 to the inner surface 3b of the mold wall 3. ..., 7 in the longitudinal direction of the mold wall 3,
A large number of holes are drilled at required intervals in the direction of progress of the slab.

一方、溶鋼面レベルを検出するための熱電対8、・・・
、8を上記小孔7.・・・、7の間隔に配列して支持す
るセンサー保持体9を、該センサー保持体9の熱電対8
.・・・、8を上記小孔7.・・・、7に嵌入せしめ、
熱電対8.・・・、8の先端部が鋳型壁3の内面3bか
ら僅かに突出するようにしてセンサー保持体9を長溝6
内に固定する。
On the other hand, a thermocouple 8 for detecting the molten steel surface level,...
, 8 into the small hole 7. . . , the sensor holders 9 are arranged and supported at intervals of 7, and the thermocouples 8 of the sensor holders 9 are
.. ..., 8 into the small hole 7. ..., inserted into 7,
Thermocouple8. ..., the sensor holder 9 is inserted into the long groove 6 so that the tip of the sensor holder 8 slightly protrudes from the inner surface 3b of the mold wall 3.
Fixed inside.

なお、上限用、下限用のリミットを検出するための熱電
対8’、8’は他のものと若干位置、間隔が異なる。
Note that the thermocouples 8' and 8' for detecting the upper and lower limits are slightly different in position and spacing from the other thermocouples.

該センサー保持体9の各熱電対8.δの配線(具体的に
図示せず。
Each thermocouple 8 of the sensor holder 9. Wiring of δ (not specifically shown).

)は、センサー保持体9の背部から水密の配線管10て
束ねて外部へ引き出す一方、鋳型壁3の背面3aには、
上記長溝6の開口をパツキン11を介してカバーし、か
つ、上記配線管10をパツキンリング12でシールする
取付板13をポルト14.・・・、14で固定し、長溝
6を水密構造としている。
) are bundled into a watertight wiring pipe 10 from the back of the sensor holder 9 and pulled out to the outside, while on the back 3a of the mold wall 3,
A mounting plate 13 that covers the opening of the long groove 6 with a packing 11 and seals the wiring pipe 10 with a packing ring 12 is attached to the port 14. ..., 14, and the long groove 6 has a watertight structure.

なお、センサー保持体9は、各熱電対8.・・・、8と
ともに予じめ防水型に構成しておく。
Note that the sensor holder 9 holds each thermocouple 8. . . , and 8 are configured in advance to be waterproof.

而して、上記の如くして熱電対8.・・・、8の先端部
を鋳型壁3の内面3bから僅かに突出させた状態で、電
鋳法、即ち、電気分解による電着を利用して陰極物体で
ある鋳型壁3の内面3bに銅合金、ニッケル、クロム等
の金属メッキを施し、鋳型壁3の内面3b並びに突出し
た熱電対8.・・・。
Thus, the thermocouple 8. ..., with the tip of 8 slightly protruding from the inner surface 3b of the mold wall 3, using electroforming, that is, electrodeposition by electrolysis, onto the inner surface 3b of the mold wall 3, which is a cathode object. Metal plating such as copper alloy, nickel, chromium, etc. is applied to the inner surface 3b of the mold wall 3 and the protruding thermocouple 8. ....

8の先端部をメッキ部14で被覆する。8 is covered with a plating part 14.

上記のように構成すれば、熱電対8.・・・、8に溶鋼
よりの入熱が直接伝達され、同時に冷却水通路5の冷却
水によりセンサー保持体9および熱電対8.・・・、8
の先端部近傍の抜熱が良好となり、レベル測定精度並び
にレスポンスの向上を図れることになる。
If configured as described above, thermocouple 8. ..., 8, the heat input from the molten steel is directly transferred to the sensor holder 9 and the thermocouple 8. ..., 8
Heat removal from the vicinity of the tip is improved, and level measurement accuracy and response can be improved.

また、熱電対8.・・・、8とメッキ部3に構造的な接
合線がないためクラック発生の心配がなく、さらに、冷
却水通路5を貫通してもよいから、上記従来の熱電対を
利用したものに比較して、連続鋳造用鋳型への取付は位
置および範囲の制約がなく、而も、取付板13の着脱に
より、センサー保持体9の取替も外部から可能である。
Also, thermocouple 8. . . . Since there is no structural joining line between the plated part 3 and the part 8, there is no need to worry about cracking, and furthermore, the cooling water passage 5 can be penetrated, so compared to the conventional thermocouple described above. Therefore, there are no restrictions on the position or range of attachment to the continuous casting mold, and by attaching and detaching the attachment plate 13, the sensor holder 9 can be replaced from the outside.

尚、図示の実施例では鋳型1の狭面側鋳型壁3にセンサ
ーを埋設する場合について説明したが、広面側型壁2に
設けてもよく、また、鋳型1の構成も組立型鋳型に限定
されるものではないこと勿論である。
In the illustrated embodiment, the sensor is embedded in the narrow side mold wall 3 of the mold 1, but it may also be provided in the wide side mold wall 2, and the configuration of the mold 1 is also limited to an assembled mold. Of course, this is not something that can be done.

以上の説明からも明らかなように、この考案は、鋳型壁
背面に削設した長溝内に小孔を穿設し、該小孔に嵌入す
る熱電対の先端部が鋳型壁内面から僅かに突出するよう
センサー保持枠を長溝に固定し、然る後、鋳型壁内面を
電鋳法により被覆したものであるから、溶鋼よりの入熱
は熱電対に直接伝達され、レベル測定精度やレスポンス
が向上するとともに、メッキ部(被覆部)と熱電対との
間に構造的な接合線がないからクラックが発生すること
がなく、而も、熱電対を鋳型の外部から着脱できるから
取替えも容易に行うことができる。
As is clear from the above explanation, this idea involves making a small hole in a long groove cut into the back surface of the mold wall, and the tip of the thermocouple that fits into the small hole protrudes slightly from the inside surface of the mold wall. The sensor holding frame is fixed in the long groove, and then the inner surface of the mold wall is coated by electroforming, so the heat input from the molten steel is directly transmitted to the thermocouple, improving level measurement accuracy and response. In addition, since there is no structural joining line between the plated part (sheathing part) and the thermocouple, cracks do not occur, and since the thermocouple can be attached and removed from the outside of the mold, replacement is easy. be able to.

また、長溝を鋳型内の冷却水通路を挿通させて、センサ
ー保持体を防水型とすれば、冷却水により熱電対近傍の
熱流が良好となり、熱電対部分の温度平均化がなく適切
な温度勾配パターンを示し、上記レベル測定精度等を一
段と向上できるとともに、冷却水通路による熱電対の取
付は位置および範囲の制約もない等、種々の利点を右上
実用上の価値が大きいものである。
In addition, if the long groove is inserted through the cooling water passage in the mold to make the sensor holder waterproof, the cooling water will improve the heat flow near the thermocouple, preventing temperature averaging in the thermocouple area and creating an appropriate temperature gradient. The above-mentioned level measurement accuracy can be further improved by showing the pattern, and the mounting of the thermocouple through the cooling water passage has various advantages such as there are no restrictions on position or range, and is of great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造用鋳型の断面図、第2図はこの考案に
係る連続鋳造用鋳型の要部を拡大した第3図のA−A線
断面図、第3図は第2図の背面図である。 1・・・・・・鋳型、3・・・・・・鋳型壁、5・・・
・・・冷却水通路、6・・・・・・長溝、7・・・・・
・小孔、訃・・・・・熱電対、9・・・・・・センサー
保持体、10・・・・・・配線管、取付板、14・・・
・・・メッキ部。 13・・・・・・
Fig. 1 is a sectional view of a continuous casting mold, Fig. 2 is a sectional view taken along the line A-A in Fig. 3, which is an enlarged view of the main parts of the continuous casting mold according to this invention, and Fig. 3 is a rear view of Fig. 2. It is a diagram. 1...Mold, 3...Mold wall, 5...
...Cooling water passage, 6...Long groove, 7...
・Small hole, end...Thermocouple, 9...Sensor holder, 10...Wiring pipe, mounting plate, 14...
...Plating section. 13...

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)鋳型壁背面に、鋳片進行方向の長溝を削設腰該長
溝に鋳型壁内面に貫通する小孔を所要間隔に穿設すると
ともに、上記長溝に、鋳型内の溶鋼レベルを検出する熱
電対を上記小孔の間隔に配列してなるセンサー保持体を
、上記熱電対の先端部が鋳型壁内面から僅かに突出する
ように固定し、然る後、鋳型壁内面を電鋳法により被覆
したことを特徴とする連続鋳造用鋳型。
(1) Cut long grooves in the direction of slab movement on the back side of the mold wall. Small holes penetrating the inner surface of the mold wall are drilled at required intervals in the long grooves, and the level of molten steel in the mold is detected in the long grooves. A sensor holder having thermocouples arranged at intervals between the small holes is fixed so that the tips of the thermocouples slightly protrude from the inner surface of the mold wall, and then the inner surface of the mold wall is electroformed. A continuous casting mold characterized by being coated.
(2) 上記長溝を、鋳型内の冷却水通路を挿通する
如く削設するとともに、上記センサー保持体を防水型と
したことを特徴とする実用新案登録請求の範囲第1項記
載の連続鋳造用鋳型。
(2) Continuous casting according to claim 1, characterized in that the long groove is cut so as to pass through a cooling water passage in the mold, and the sensor holder is of a waterproof type. template.
JP16812477U 1977-12-13 1977-12-13 Continuous casting mold Expired JPS6016453Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16812477U JPS6016453Y2 (en) 1977-12-13 1977-12-13 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16812477U JPS6016453Y2 (en) 1977-12-13 1977-12-13 Continuous casting mold

Publications (2)

Publication Number Publication Date
JPS5493013U JPS5493013U (en) 1979-07-02
JPS6016453Y2 true JPS6016453Y2 (en) 1985-05-22

Family

ID=29168970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16812477U Expired JPS6016453Y2 (en) 1977-12-13 1977-12-13 Continuous casting mold

Country Status (1)

Country Link
JP (1) JPS6016453Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10656024B2 (en) * 2016-04-05 2020-05-19 Corning Incorporated Molten material thermocouple methods and apparatus

Also Published As

Publication number Publication date
JPS5493013U (en) 1979-07-02

Similar Documents

Publication Publication Date Title
US6065867A (en) Method and device for measuring the temperature and the level of the molten electrolysis bath in cells for aluminum production
Badri et al. A mold simulator for the continuous casting of steel: Part I. The development of a simulator
US3709040A (en) Lances for taking samples of molten metal
CN103487157A (en) Sensor component for fine multipoint temperature measurement in metal die
US4699014A (en) Molten metal sampler with sand cast mold part
JPS6016453Y2 (en) Continuous casting mold
US4358948A (en) Method and apparatus for predicting metallographic structure
TW200400093A (en) Adjustment of heat transfer in continuous casting molds in particular in the region of the meniscus
JP2000246413A (en) Method for estimating flowing speed of molten steel in mold for continuous casting
CZ236589A3 (en) Apparatus for continuous or semi-continuous casting of metallic materials
CN211614307U (en) Submerged nozzle centering measuring tool
GB2289758A (en) Sampling vessel for thermal analysis
JPS5912118Y2 (en) Continuous casting mold
KR101211999B1 (en) Dual Sampler Comprehensive Probe
JPH0242409B2 (en)
JP3121672B2 (en) Monitoring and measuring device for mold temperature
DE3141116C2 (en) Method and device for carrying out successive temperature measurements and / or sampling and / or thermal analyzes in iron and steel melts
SU969451A1 (en) Casting mold
FR2498959B1 (en)
RU2672646C1 (en) Steel melts process parameters measuring device with simultaneous sample selection
JPH0449881B2 (en)
KR20000040915A (en) Floating sensor for analyzing temperature and flux of molten steel inside casing mold of continuous casting equipment
CN218638531U (en) Graphite mould of crystallizer
JPS60203348A (en) Measuring method of temperature distribution in continuous casting billet and metallic rivet
JPH01110226A (en) Thermometer for measuring temperature of molten metal