TW201736876A - Flexible color filter and method of preparing the same - Google Patents

Flexible color filter and method of preparing the same Download PDF

Info

Publication number
TW201736876A
TW201736876A TW106110444A TW106110444A TW201736876A TW 201736876 A TW201736876 A TW 201736876A TW 106110444 A TW106110444 A TW 106110444A TW 106110444 A TW106110444 A TW 106110444A TW 201736876 A TW201736876 A TW 201736876A
Authority
TW
Taiwan
Prior art keywords
layer
color filter
separation
flexible color
black matrix
Prior art date
Application number
TW106110444A
Other languages
Chinese (zh)
Other versions
TWI713718B (en
Inventor
朴盛浩
宋仙英
Original Assignee
東友精細化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東友精細化工有限公司 filed Critical 東友精細化工有限公司
Publication of TW201736876A publication Critical patent/TW201736876A/en
Application granted granted Critical
Publication of TWI713718B publication Critical patent/TWI713718B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks

Abstract

The present invention relates to a flexible color filter prepared by carrying out procedures on a carrier substrate and the preparation method thereof in which a protective layer is formed before a black matrix layer is formed and the black matrix layer and a colorant layer are formed successively thereon.

Description

可撓性彩色濾光片及其製備方法Flexible color filter and preparation method thereof

本發明係關於一種可撓性彩色濾光片及其製備方法。特定言之,本發明係關於一種藉由在一載體基板上實行程序而製備之可撓性彩色濾光片及其製備方法。The present invention relates to a flexible color filter and a method of preparing the same. In particular, the present invention relates to a flexible color filter prepared by performing a procedure on a carrier substrate and a method of preparing the same.

隨著網際網路變得普遍且待傳遞之資訊量爆發性地增加,未來將產生可隨時隨地存取資訊之一「無處不在的顯示」環境。因此,可攜式顯示器,諸如筆記型電腦、電子記事簿及PDA發揮重要作用。為實現此一無處不在的顯示環境,需要顯示器係可攜式的,使得可在一所要時間及地點直接存取資訊,且亦需要用於顯示各種多媒體資訊之一大螢幕特性。因此,為同時滿足此可攜性及大螢幕特性,需要發展出一種能夠摺疊之顯示器,該顯示器在充當一顯示器時展開且在攜帶時被摺疊並儲存。 平板顯示裝置之代表性實例包含一液晶顯示器(LCD)及一有機發光二極體(OLED)顯示器。 與習知LCD相比,OLED具有諸如一極輕的且薄的螢幕、一廣色彩再現範圍、一快速回應時間及一高對比度之優點。另外,OLED係正蓬勃發展之最適合用於可撓性顯示器之顯示器。 特定言之,使用白光源之白色OLED顯示器正因其等高效率、高解析度及長壽命特性而被國內外研究人員廣泛研究,且正實現為大面積高品質顯示器以及一般照明之各種應用。 彩色濾光片用於白色OLED顯示器中之全彩實施。彩色濾光片包含紅色、綠色及藍色著色區且組合行進穿過其之光以表達色彩。通常,一黑色矩陣圖案經形成以阻擋光(惟像素區除外)且防止各著色劑層的邊界處之色彩混合,且藉由圖案化在其上形成一著色劑層。 此時,若黑色矩陣圖案之黏著不充分,則黑色矩陣圖案可能在重複圖案化以形成著色劑區時被損壞,藉此引起光洩漏現象或不良色彩再現性。 另外,此一問題妨礙彩色濾光片之一精細圖案之實施。 韓國專利註冊號10-0325119中揭示一種使用一緩衝層改良一膜之黏著之技術。所揭示之方法包含:在外塗層上形成一緩衝層,以改良用於保護液晶顯示裝置之彩色濾光片基板中之著色劑層且維持表面平滑度的外塗層與用於施加電壓以驅動液晶的透明導電膜層之黏著;及在其上形成一透明導電膜層。As the Internet becomes more prevalent and the amount of information to be delivered increases explosively, there will be an "ubiquitous display" environment where information can be accessed anytime, anywhere. Therefore, portable displays, such as notebook computers, electronic organizers, and PDAs, play an important role. In order to realize this ubiquitous display environment, the display is portable, so that information can be directly accessed at a desired time and place, and a large screen feature for displaying various multimedia information is also required. Therefore, in order to simultaneously satisfy this portability and large screen characteristics, it is required to develop a display that can be folded, which is deployed as a display and folded and stored while being carried. Representative examples of flat panel display devices include a liquid crystal display (LCD) and an organic light emitting diode (OLED) display. Compared with conventional LCDs, OLEDs have advantages such as a very light and thin screen, a wide color reproduction range, a fast response time, and a high contrast ratio. In addition, OLED is booming and is most suitable for displays for flexible displays. In particular, white OLED displays using white light sources are being widely studied by researchers at home and abroad for their high efficiency, high resolution and long life characteristics, and are being realized for various applications of large-area high-quality displays and general illumination. Color filters are used in full color implementations in white OLED displays. The color filter contains red, green, and blue colored regions and combines light traveling therethrough to express color. Typically, a black matrix pattern is formed to block light (except for the pixel regions) and to prevent color mixing at the boundaries of the respective colorant layers, and a colorant layer is formed thereon by patterning. At this time, if the adhesion of the black matrix pattern is insufficient, the black matrix pattern may be damaged when the patterning is repeated to form the toner region, thereby causing a light leakage phenomenon or poor color reproducibility. In addition, this problem hinders the implementation of a fine pattern of one of the color filters. A technique for improving the adhesion of a film using a buffer layer is disclosed in Korean Patent Registration No. 10-0325119. The disclosed method comprises: forming a buffer layer on the overcoat layer to improve an overcoat layer for protecting a colorant layer in a color filter substrate of a liquid crystal display device and maintaining surface smoothness and for applying a voltage to drive Adhesion of the transparent conductive film layer of the liquid crystal; and forming a transparent conductive film layer thereon.

[技術問題] 本發明之一目的係提供一種可撓性彩色濾光片,其藉由改良彩色濾光片之一黑色矩陣層與其下層或基底基板之間的黏著而具有增強的色彩再現性,及一種製備該可撓性彩色濾光片之方法。 本發明之另一目的係提供一種可撓性彩色濾光片,其藉由改良彩色濾光片之一黑色矩陣層與其下層或基底基板之間的黏著而具有獲得高解析度之精細圖案,及一種製備該可撓性彩色濾光片之方法。 [技術解決方案] 根據本發明之一個態樣,提供一種可撓性彩色濾光片,其包括:一分離層;一保護層,其形成於該分離層上;一黑色矩陣(BM)層,其形成於該保護層上;及一著色劑層,其形成於BM層中間,其中該BM層與其下層之分離負荷係2.5 N/mm2 或更大。 該保護層可經形成以覆蓋該分離層之一側表面。 該可撓性彩色濾光片可進一步包括安置於該分離層下方之一基底膜,且可進一步包括形成於該黑色矩陣層及該著色劑層上之一外塗層。 該保護層可包括一有機絕緣膜及一無機絕緣膜之至少一者。 根據本發明之另一態樣,提供一種可撓性顯示裝置,其包括上文描述之一可撓性彩色濾光片。 根據本發明之又一態樣,提供一種用於製備一可撓性彩色濾光片之方法,其包括以下步驟:藉由將用於形成分離層之一組合物施覆於一載體基板上而形成一分離層;在該分離層上形成一保護層;在該保護層上形成一黑色矩陣(BM)層且在該BM層中間形成一著色劑層;及移除該載體基板,其中該BM層與其下層之分離負荷係2.5 N/mm2 或更大。 可藉由施覆或沈積用於形成該保護層之一組合物而形成該保護層。 根據本發明之用於製備一可撓性彩色濾光片之方法可進一步包括在該BM層及該著色劑層上形成一外塗層之步驟。 另外,根據本發明之用於製備一可撓性彩色濾光片之方法可進一步包括在該移除該載體基板之後將一基底膜附接於自其移除該載體基板之一表面上之步驟。 [有利效應] 根據本發明之一可撓性彩色濾光片,一BM層與其下層或一基底基板之間的黏著由於在形成BM層之前形成一保護層而得以增強。 由於BM層之黏著增強,在後續處理中對BM層之損壞降低,此實現BM層及著色劑層之精細圖案且防止光洩漏。 因此,可獲得具有高解析度及極佳色彩再現性之一可撓性彩色濾光片以及包括該可撓性彩色濾光片之一可撓性顯示裝置。[Technical Problem] An object of the present invention is to provide a flexible color filter which has enhanced color reproducibility by improving adhesion between a black matrix layer of a color filter and a lower layer or a base substrate thereof, And a method of preparing the flexible color filter. Another object of the present invention is to provide a flexible color filter having a high-resolution fine pattern by improving adhesion between a black matrix layer of a color filter and a lower layer or a base substrate thereof, and A method of making the flexible color filter. [Technical Solution] According to an aspect of the present invention, a flexible color filter comprising: a separation layer; a protective layer formed on the separation layer; and a black matrix (BM) layer, It is formed on the protective layer; and a colorant layer is formed in the middle of the BM layer, wherein the separation load of the BM layer and the lower layer thereof is 2.5 N/mm 2 or more. The protective layer may be formed to cover one side surface of the separation layer. The flexible color filter may further include a base film disposed under the separation layer, and may further include an outer coating layer formed on the black matrix layer and the colorant layer. The protective layer may include at least one of an organic insulating film and an inorganic insulating film. In accordance with another aspect of the present invention, a flexible display device is provided that includes one of the flexible color filters described above. According to still another aspect of the present invention, a method for preparing a flexible color filter comprising the steps of: applying a composition for forming a separation layer to a carrier substrate is provided Forming a separation layer; forming a protective layer on the separation layer; forming a black matrix (BM) layer on the protective layer and forming a colorant layer in the middle of the BM layer; and removing the carrier substrate, wherein the BM The separation load of the layer from its lower layer is 2.5 N/mm 2 or more. The protective layer can be formed by applying or depositing a composition for forming one of the protective layers. The method for preparing a flexible color filter according to the present invention may further comprise the step of forming an overcoat layer on the BM layer and the colorant layer. Further, the method for preparing a flexible color filter according to the present invention may further comprise the step of attaching a base film to a surface from which one of the carrier substrates is removed after the removing of the carrier substrate . [Advantageous Effect] According to the flexible color filter of the present invention, the adhesion between a BM layer and its underlying layer or a base substrate is enhanced by forming a protective layer before forming the BM layer. As the adhesion of the BM layer is enhanced, damage to the BM layer is reduced in subsequent processing, which achieves a fine pattern of the BM layer and the toner layer and prevents light leakage. Therefore, a flexible color filter having high resolution and excellent color reproducibility and a flexible display device including the flexible color filter can be obtained.

在下文中,將參考隨附圖式詳細描述根據本發明之一可撓性彩色濾光片及其製備方法之較佳實施例。然而,隨附於本發明之圖式僅為用於描述本發明之實例,且本發明不受圖式之限制。再者,為更清楚表達,可在圖式中放大、案例比縮小或省略一些元件。 本發明提議一種可撓性彩色濾光片,其藉由在藉由在一載體基板上實行程序而製備之一彩色濾光片的BM層下方形成一保護層而具有一BM層之增強的黏著。 圖1係根據本發明之一項實施例之可撓性彩色濾光片之一橫截面視圖。 參考圖1,根據本發明之一項實施例之可撓性彩色濾光片包括一分離層120、一保護層130、圖案化於保護層130上之一黑色矩陣(BM)層140及形成於BM層140中間的像素區中之一著色劑層150。 分離層120係經形成以在本發明之製備方法中在完成彩色濾光片之後自一載體基板剝除之一層。因此,分離層120可藉由一實體力與載體基板分離,且在分離之後層壓於一基底膜上。 分離層120在其與載體基板分離時較佳具有1 N/25 mm或更小、更佳0.1 N/25 mm或更小之一剝離強度。即,分離層120較佳由可將在使分離層120與載體基板分離期間所施加之一實體力維持在1 N/25 mm內、尤其在0.1 N/25 mm內之一材料形成。 若分離層120之剝離強度超過1 N/25 mm,則難以將分離層與載體基板乾淨地分離,因此分離層120可殘留於載體基板上。再者,分離層120、保護層130、BM層140、著色劑層150及外塗層160之一或多者上可產生裂紋。 特定言之,分離層120之剝離強度較佳為0.1 N/25 mm或更小,此係因為此容許控制在與載體基板分離之後膜中之捲邊產生。 分離層120可由例如選自由以下各者組成的群組之至少一者之一聚合物材料製成:聚丙烯酸酯、聚甲基丙烯酸酯(例如,PMMA)、聚醯亞胺、聚醯胺、聚乙烯醇、聚醯胺酸、聚烯烴(例如,PE、PP)、聚苯乙烯、聚降冰片烯、苯基馬來醯亞胺共聚物、聚偶氮苯、聚伸苯基鄰苯二甲醯胺、聚酯(例如,PET、PBT)、聚芳酯、肉桂酸酯聚合物、香豆素聚合物、苄甲內醯胺聚合物、查耳酮(chalcone)聚合物及芳族乙炔聚合物。 分離層120較佳具有10 nm至1000 nm、更佳50 nm至500 nm之一厚度。若分離層120之厚度小於10 nm,則分離層可能不均勻地形成而誘發不均勻上方圖案之形成,分離層之剝離強度可能局部升高以引起斷裂,或捲邊控制可能在分離層與載體基板分離之後失效。若分離層之厚度大於1000 nm,則分離層之剝離強度可能無法再降低,且膜之可撓性可劣化。 分離層120在其自載體基板剝離之後較佳具有30 mN/m至70 mN/m之一表面能。再者,分離層120與載體基板之間之一表面能差較佳為10 mN/m或更大。分離層120應維持與載體基板之穩定黏著直至其與載體基板分離,且接著應容易分離而無彩色濾光片之斷裂或捲邊產生。當分離層120之表面能符合30 mN/m至70 mN/m之範圍時,其之剝離強度可受控制,可確保分離層120與相鄰保護層130之間的良好黏著以改良程序之效率。再者,當分離層120與載體基板之間之表面能差係10 mN/m或更大時,其可容易與載體基板分離以防止彩色濾光片之斷裂或裂紋產生。 保護層130形成於分離層120上且充當形成於保護層130上之BM層的一增強黏著層。 保護層130可由一有機絕緣膜或一無機絕緣膜形成。當保護層130由一有機層形成以保證一可撓性彩色濾光片之功能時,可使用上文關於分離層120描述之聚合物材料。保護層130可具有0.5 μm至5 μm之一厚度。 BM層140係用於屏蔽除像素區之外的區域中之光且防止各著色劑層之邊界上的色彩混合之一陰影層。因此,BM層140係由一不透明材料形成且經圖案化以包圍像素區。 BM層140形成於保護層130上以增強與下層之黏著。根據本發明之一項實施例,形成於保護層130上之BM層140之分離負荷係平均2.5 N/mm2 或更大。 黏著劑層150用於實施全彩顯示,且通常將紅色、綠色及藍色色彩圖案化並配置於BM層140中間。然而,著色劑層不一定包含全部紅色、綠色及藍色圖案,亦不一定僅包含紅色、綠色及藍色圖案。實情係,可根據色彩模型而僅包含一些此等色彩之圖案,或可包含諸如白色之額外色彩圖案。 同時,當外部光到達各色彩之著色劑層時,僅具有各自波長之光透射且具有兩外兩個波長之光被吸收。因此,可有效地降低外部光之入射光量,此容許著色劑層充當一偏光板以防止外部光之反射。 BM層140及著色劑層150亦可由上文描述之聚合物材料形成。 雖未在圖式中展示,但圖1中所示之根據本發明之一項實施例之彩色濾光片可構成具有附接於分離層120下方的一可撓性基底膜之一可撓性彩色濾光片。 基底膜可為一透明膜或一偏光板。 若其具有良好透明度、機械強度及熱穩定性,則透明膜不受限制。透明膜之具體實例可包含:熱塑性樹脂,例如,聚酯樹脂,諸如聚對苯二甲酸乙二酯、聚間苯二甲酸乙二酯、聚萘二甲酸乙二酯及聚對苯二甲酸丁二酯;纖維素樹脂,諸如二乙醯基纖維素及三乙醯基纖維素;聚碳酸酯樹脂;丙烯酸酯樹脂,諸如聚(甲基)丙烯酸甲酯及聚(甲基)丙烯酸乙酯;苯乙烯樹脂,諸如聚苯乙烯及丙烯腈-苯乙烯共聚物;聚烯烴樹脂,諸如聚乙烯、聚丙烯、具有一環狀或降冰片烯結構之聚烯烴及乙烯-丙烯共聚物;氯乙烯樹脂;醯胺樹脂,諸如尼龍及芳族聚醯胺;醯亞胺樹脂;聚醚碸樹脂;碸樹脂;聚二醚酮樹脂;聚苯硫醚樹脂;乙烯醇樹脂;偏二氯乙烯樹脂;乙烯醇縮丁醛樹脂;烯丙基樹脂;聚甲醛樹脂及環氧樹脂。再者,可使用由熱塑性樹脂之一摻合物構成之一膜。另外,可使用熱可固化或UV可固化樹脂,諸如(甲基)丙烯酸酯、胺基甲酸酯、丙烯酸胺基甲酸酯、環氧樹脂及矽樹脂。 此一透明膜可具有一適合厚度。例如,考慮到強度及處理方面之可使用性或薄層性質,透明膜之厚度可在自1 μm至500 μm、較佳1 μm至300 μm、更佳5μm至200 μm之範圍內。 透明膜可含有至少一種適合添加劑。添加劑之實例可包含一UV吸收劑、一抗氧化劑、一潤滑劑、一塑化劑、一釋放劑、一防著色劑、一抗燃劑、一成核劑、一抗靜電劑、一顏料或一著色劑。透明膜可包括各種功能層,包含一硬塗佈層、一抗反射層及一氣體阻障層,但本發明不限於此。即,亦可取決於所要用途而包含其他功能層。 若需要,透明膜可經表面處理。例如,可藉由諸如電漿、電暈及底塗處理之乾燥方法或藉由諸如鹼處理(包含皂化反應)之化學方法而實行表面處理。 再者,透明膜可為一等向性膜、一阻滯膜或一保護膜。 在等向性膜之情況中,較佳滿足40 nm或更小、較佳15 nm或更小之一平面內阻滯(Ro)及-90 nm至+75 nm、較佳-80 nm至+60 nm、尤其-70 nm至+45 nm之一厚度阻滯(Rth),平面內阻滯(Ro)及厚度阻滯(Rth)由以下方程式表示。 Ro=[(nx-ny)×d] Rth=[(nx+ny)/2-nz]×d 其中,nx及ny各自為一膜平面上之一主折射率,nz係膜之厚度方向上之一折射率,且d係膜之一厚度。 阻滯膜可藉由單軸拉伸或雙軸拉伸一聚合物膜(一聚合物塗層或一液晶塗層)而製備,且其通常用於改良或控制一顯示器之光學性質,例如,視角補償、色彩靈敏度改良、光洩漏防止或色彩控制。 阻滯膜可包含一半波(1/2)或四分之一波(1/4)板、一正C板、一負C板、一正A板、一負A板及一雙軸板。 保護膜可為在其之至少一個表面上包括一壓敏黏著(PSA)層之一聚合物樹脂膜,或諸如聚丙烯之一自黏膜。保護膜可用於保護彩色濾光片之表面且改良可加工性。 偏光板可為已知用於一顯示面板中之任一偏光板。 明確言之,可使用(但不限於)聚乙烯醇(PVA)、三醋酸纖維素(TAC)或環烯烴聚合物(COP)膜。 根據本發明之另一實施例,一外塗層可形成於BM層140及著色劑層150上以在彩色濾光片與基底膜之黏著期間保護圖案。 圖2係根據本發明之另一實施例之包括一外塗層之可撓性彩色濾光片之一橫截面視圖。 如圖2中所示,根據本發明之另一實施例之可撓性彩色濾光片包括一分離層120、一保護層130、圖案化於保護層130上之一BM層140及一著色劑層150,以及覆蓋BM層140及著色劑層150之一外塗層160。 外塗層160亦可由上文描述之聚合物材料形成。 現在,詳細描述根據本發明之一實施例之具有上文描述之結構的可撓性彩色濾光片之一製備方法。 圖3a至圖3g係示意性地展示根據本發明之可撓性彩色濾光片製備方法之一項實施例之程序之橫截面視圖。 首先,如圖3a中所示,製備一載體基板170,施覆用於形成一分離層之一組合物,且形成一分離層120。 載體基板170較佳為一玻璃基板,但其不限於此。即,可使用其他種類的材料(若其等係耐熱材料),該等材料可耐受電極形成之一處理溫度且在一高溫下維持平坦化而不變形。 用於形成一分離層之組合物可藉由此項技術中已知的一習知塗佈方法施覆。例如,可提及旋塗、模具塗佈、噴塗、輥塗、網版塗佈、狹縫塗佈、浸塗、凹版塗佈及類似者。或者,可使用一噴墨方法。 在塗佈之後,用於形成一分離層之組合物經受藉由熱固化或UV固化之固化以形成分離層120。熱固化及UV固化可單獨實行或組合實行。就熱固化而言,可使用一烘箱或熱板。加熱溫度及時間取決於組合物,且例如固化可在80℃至250℃下執行達10分鐘至120分鐘。 接著,如圖3b中所示,一保護層130形成於分離層120上。 可藉由施覆一有機絕緣膜或藉由沈積一無機絕緣膜而形成保護層130。當使用有機絕緣膜時,一熟知塗佈方法可用作一施覆方法。例如,可提及旋塗、模具塗佈、噴塗、輥塗、網版塗佈、狹縫塗佈、浸塗、凹版塗佈及類似者。或者,可使用一噴墨方法。 同時,由於分離層120可藉由一實體力剝除且剝離強度極弱(如上文描述),故保護層130較佳經形成以覆蓋分離層120之兩側。 接著,如圖3c中所示,一BM層140形成於保護層130上。可藉由圖案化一不透明有機材料而形成BM層140。 現在,如圖3d中所示,紅色(R)、綠色(G)及藍色(B)色彩之一著色劑層150形成於BM層140之圖案中間。可任意選擇著色劑層150之色彩,且亦可任意選擇色彩之形成順序。 根據本發明之一實施例,BM層140及著色劑層150可經實施而具有精細圖案,且BM層140在形成著色劑層150期間之損壞歸因於BM層140之增強的黏著而最小化。 接著,如圖3e中所示,用於保護圖案之一外塗層160形成於BM層140及著色劑層150上。 隨後,如圖3f中所示,使載體基板170與分離層120分離。 載體基板170與分離層120之分離可在室溫下執行且可由一實體剝離實行,其中自分離層120剝除由例如玻璃製成之載體基板170。 剝離方法之實例可包含(但不限於)掀離及剝除。 此後,如圖3g中所示,將一基底膜110附接於自其移除載體基板170之分離層120之一表面上。 雖未在圖式中展示,但基底膜110可使用一黏著層(且可使用一光可固化黏著劑)黏著至分離層120。因為光可固化黏著劑在光固化之後無需一單獨乾燥程序,所以製程係簡單的。因此,生產率增大。在本發明中,可使用此項技術領域中可用之光可固化黏著劑而無特定限制。例如,可使用包括環氧化合物或丙烯酸單體之一組合物。 為固化黏著層,可使用:光,諸如遠紫外線、紫外線、近紫外線、紅外線;電磁波,諸如X射線、γ射線,且亦可使用電子束、質子束、中子束。然而,UV固化在固化速度、固化裝置可用性、成本等方面係有利的。 一高壓水銀燈、無電極燈、超高壓水銀燈、碳弧燈、氙氣燈、金屬鹵化物燈、化學燈、黑光及類似者可用作UV固化之一光源。 在下文中,描述經實行以找出其中保護層增強BM層之黏著之本發明的效應之一實例及一比較實例。然而,此係為了幫助理解本發明且並不意欲限制本發明。實例及比較實例 實例 製備5 x 5 cm (厚度:0.7 mm)之一玻璃基板,用乙醇及去離子水清潔且藉由吹氣而乾燥。 接著,藉由使用一微量吸移管以0.70 ml滴落物進行5x5旋塗且依450 rpm自旋達10秒而施覆用於形成一保護層之一組合物。 將其擱置於一水平位置上達約3分鐘,在100度下預固化達90秒,將其曝露且在230度下固化達20分鐘以形成1.15μm之一保護層。 此後,在保護層之頂部上形成一黑色矩陣層。 隨後,使其在室溫下熟化達4小時以上,以3 mm至4 mm之一直徑施覆已在-20度下保持冷凍之一密封劑,附接一上玻璃基板,且藉由重力施加一壓力達1分鐘以與一上玻璃基板組裝。 接著,其曝露於7000 mJ能量及18 mW照明,且在200度下固化達1小時以完成實例之一測試件。 因此獲得之測試件之結構展示於圖4a及圖4b中。圖4a及圖4b分別為完成的測試件之一橫截面視圖及一平面圖。 如圖4a中所示,測試件具有以一疊放(pile)堆疊一下玻璃基板710、一保護層720、一BM層730、一密封劑740及一上玻璃基板750之一結構,且如圖4b中所示,上玻璃基板750及下玻璃基板710經配置而彼此交叉。比較實例 比較實例藉由相同製程而具有與實例之測試件的結構相同之結構,惟一BM層形成於一玻璃基板上而無一保護層除外,且其之橫截面視圖展示於圖5中。 如圖5中所示,比較實例中不存在保護層,且僅以一疊放堆疊一下玻璃基板810、一BM層830、一密封劑840及一上玻璃基板850。 接著,使用一UTM測試機INSTRON 5567來量測黑色矩陣之黏著性。明確言之,藉由以10 mm/min之一速率分別上拉上玻璃基板且下拉下玻璃基板直至下玻璃基板與黑色矩陣分離而計算每密封劑面積之最大負荷值。 以下表1展示量測結果。 [表1] 如表1中所示,本發明之實例之平均負荷係2.61 N/mm2 ,與無保護層之比較實例相比,其能夠承受0.52 N/mm2 之額外負荷。本發明之實例之最大負荷與最小負荷之間的變動範圍0.77及標準差0.22約係比較實例之變動範圍及標準差之一半,此展示極穩定的黏著效能。 儘管已展示且描述本發明之特定實施例及實例,然熟習此項技術者將瞭解,並不意欲將本發明限制於較佳實施例,且熟習此項技術者將顯而易見,可在不脫離本發明之精神及範疇之情況下進行各種改變及修改。 因此,本發明之範疇將由隨附申請專利範圍及其等效物定義。Hereinafter, preferred embodiments of a flexible color filter and a method of fabricating the same according to the present invention will be described in detail with reference to the accompanying drawings. However, the drawings that are attached to the present invention are only examples for describing the present invention, and the present invention is not limited by the drawings. Furthermore, for a clearer expression, some elements may be enlarged, reduced or omitted in the drawings. The present invention proposes a flexible color filter having an enhanced adhesion of a BM layer by forming a protective layer under the BM layer of a color filter prepared by performing a process on a carrier substrate. . 1 is a cross-sectional view of one of the flexible color filters in accordance with an embodiment of the present invention. Referring to FIG. 1, a flexible color filter according to an embodiment of the present invention includes a separation layer 120, a protective layer 130, a black matrix (BM) layer 140 patterned on the protective layer 130, and is formed on One of the colorant layers 150 in the pixel region intermediate the BM layer 140. The separation layer 120 is formed to strip one layer from a carrier substrate after completion of the color filter in the preparation method of the present invention. Therefore, the separation layer 120 can be separated from the carrier substrate by a physical force and laminated on a base film after separation. The separation layer 120 preferably has a peel strength of 1 N/25 mm or less, more preferably 0.1 N/25 mm or less when it is separated from the carrier substrate. That is, the separation layer 120 is preferably formed of a material that can maintain one of the physical forces applied during separation of the separation layer 120 from the carrier substrate within 1 N/25 mm, particularly within 0.1 N/25 mm. If the peeling strength of the separation layer 120 exceeds 1 N/25 mm, it is difficult to cleanly separate the separation layer from the carrier substrate, and thus the separation layer 120 may remain on the carrier substrate. Further, cracks may be generated on one or more of the separation layer 120, the protective layer 130, the BM layer 140, the colorant layer 150, and the overcoat layer 160. Specifically, the peeling strength of the separation layer 120 is preferably 0.1 N/25 mm or less because it allows control of the curling in the film after separation from the carrier substrate. The separation layer 120 may be made of, for example, a polymer material selected from at least one of the group consisting of polyacrylate, polymethacrylate (eg, PMMA), polyimine, polyamine, Polyvinyl alcohol, polylysine, polyolefin (for example, PE, PP), polystyrene, polynorbornene, phenyl maleimide copolymer, polyazobenzene, polyphenylene phenylene Formamide, polyester (eg PET, PBT), polyarylate, cinnamate polymer, coumarin polymer, benzalkonium polymer, chalcone polymer and aromatic acetylene polymer. The separation layer 120 preferably has a thickness of one of 10 nm to 1000 nm, more preferably 50 nm to 500 nm. If the thickness of the separation layer 120 is less than 10 nm, the separation layer may be unevenly formed to induce formation of a non-uniform upper pattern, and the peel strength of the separation layer may locally rise to cause fracture, or the hemming control may be in the separation layer and the carrier. The substrate fails after separation. If the thickness of the separation layer is more than 1000 nm, the peel strength of the separation layer may not be further lowered, and the flexibility of the film may be deteriorated. The separation layer 120 preferably has a surface energy of from 30 mN/m to 70 mN/m after it is peeled off from the carrier substrate. Furthermore, the surface energy difference between the separation layer 120 and the carrier substrate is preferably 10 mN/m or more. The separation layer 120 should maintain a stable adhesion to the carrier substrate until it is separated from the carrier substrate, and then should be easily separated without the breakage or curling of the color filter. When the surface of the separation layer 120 can conform to the range of 30 mN/m to 70 mN/m, the peel strength can be controlled to ensure good adhesion between the separation layer 120 and the adjacent protective layer 130 to improve the efficiency of the process. . Further, when the surface energy difference between the separation layer 120 and the carrier substrate is 10 mN/m or more, it can be easily separated from the carrier substrate to prevent breakage or crack generation of the color filter. The protective layer 130 is formed on the separation layer 120 and serves as a reinforced adhesive layer of the BM layer formed on the protective layer 130. The protective layer 130 may be formed of an organic insulating film or an inorganic insulating film. When the protective layer 130 is formed of an organic layer to ensure the function of a flexible color filter, the polymeric material described above with respect to the separation layer 120 can be used. The protective layer 130 may have a thickness of one of 0.5 μm to 5 μm. The BM layer 140 is used to shield light in regions other than the pixel regions and to prevent color mixing on one of the borders of the respective colorant layers. Thus, BM layer 140 is formed of an opaque material and patterned to surround the pixel regions. A BM layer 140 is formed on the protective layer 130 to enhance adhesion to the underlying layer. According to an embodiment of the present invention, the separation load of the BM layer 140 formed on the protective layer 130 is an average of 2.5 N/mm 2 or more. Adhesive layer 150 is used to implement full color display, and typically red, green, and blue colors are patterned and disposed intermediate BM layer 140. However, the colorant layer does not necessarily contain all of the red, green, and blue patterns, and does not necessarily include only red, green, and blue patterns. The fact is that only some of these colors can be included according to the color model, or an additional color pattern such as white can be included. Meanwhile, when external light reaches the coloring agent layer of each color, only light having a respective wavelength is transmitted and light having two outer two wavelengths is absorbed. Therefore, the amount of incident light of external light can be effectively reduced, which allows the colorant layer to function as a polarizing plate to prevent reflection of external light. The BM layer 140 and the color former layer 150 can also be formed from the polymeric materials described above. Although not shown in the drawings, the color filter according to an embodiment of the present invention shown in FIG. 1 may constitute one of a flexible base film attached to the lower side of the separation layer 120. Color filter. The base film may be a transparent film or a polarizing plate. The transparent film is not limited if it has good transparency, mechanical strength and thermal stability. Specific examples of the transparent film may include: a thermoplastic resin such as a polyester resin such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, and polybutylene terephthalate a diester; a cellulose resin such as diethyl cellulose and triethyl fluorenyl cellulose; a polycarbonate resin; an acrylate resin such as poly(methyl) methacrylate and poly(ethyl) acrylate; Styrene resin, such as polystyrene and acrylonitrile-styrene copolymer; polyolefin resin such as polyethylene, polypropylene, polyolefin having a cyclic or norbornene structure, and ethylene-propylene copolymer; vinyl chloride resin Amidoxime resin, such as nylon and aromatic polyamine; quinone imine resin; polyether oxime resin; oxime resin; polydiether ketone resin; polyphenylene sulfide resin; vinyl alcohol resin; vinylidene chloride resin; Alkyd resin; allyl resin; polyacetal resin and epoxy resin. Further, a film composed of a blend of one of thermoplastic resins may be used. In addition, heat curable or UV curable resins such as (meth) acrylates, urethanes, urethane acrylates, epoxies, and enamel resins may be used. This transparent film can have a suitable thickness. For example, the thickness of the transparent film may range from 1 μm to 500 μm, preferably from 1 μm to 300 μm, more preferably from 5 μm to 200 μm, in view of strength and handling workability or thin layer properties. The transparent film may contain at least one suitable additive. Examples of the additive may include a UV absorber, an antioxidant, a lubricant, a plasticizer, a release agent, a color preventive agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment or A coloring agent. The transparent film may include various functional layers including a hard coat layer, an anti-reflection layer, and a gas barrier layer, but the invention is not limited thereto. That is, other functional layers may also be included depending on the intended use. The transparent film can be surface treated if desired. For example, the surface treatment can be carried out by a drying method such as plasma, corona and undercoat treatment or by a chemical method such as alkali treatment (including saponification reaction). Furthermore, the transparent film may be an isotropic film, a retardation film or a protective film. In the case of an isotropic film, it is preferred to satisfy an in-plane retardation (Ro) of 40 nm or less, preferably 15 nm or less, and -90 nm to +75 nm, preferably -80 nm to + One of 60 nm, especially -70 nm to +45 nm thickness retardation (Rth), in-plane retardation (Ro) and thickness retardation (Rth) is represented by the following equation. Ro=[(nx-ny)×d] Rth=[(nx+ny)/2-nz]×d where nx and ny are each one of the principal refractive indices on a film plane, and the thickness direction of the nz film is One of the refractive indices, and one of the thicknesses of the d-type film. The retardation film can be prepared by uniaxially stretching or biaxially stretching a polymer film (a polymer coating or a liquid crystal coating), and is generally used to improve or control the optical properties of a display, for example, Viewing angle compensation, color sensitivity improvement, light leakage prevention, or color control. The retardation film may comprise a half wave (1/2) or a quarter wave (1/4) plate, a positive C plate, a negative C plate, a positive A plate, a negative A plate, and a double plate. The protective film may be a polymer resin film including one of pressure-sensitive adhesive (PSA) layers on at least one surface thereof, or a self-adhesive film such as polypropylene. The protective film can be used to protect the surface of the color filter and improve workability. The polarizing plate may be any polarizing plate known for use in a display panel. Specifically, polyvinyl alcohol (PVA), cellulose triacetate (TAC) or cyclic olefin polymer (COP) membranes can be used, but not limited to. In accordance with another embodiment of the present invention, an overcoat layer can be formed over the BM layer 140 and the colorant layer 150 to protect the pattern during adhesion of the color filter to the base film. 2 is a cross-sectional view of one of the flexible color filters including an overcoat layer in accordance with another embodiment of the present invention. As shown in FIG. 2, a flexible color filter according to another embodiment of the present invention includes a separation layer 120, a protective layer 130, a BM layer 140 patterned on the protective layer 130, and a colorant. Layer 150, and an outer coating 160 covering one of BM layer 140 and colorant layer 150. Overcoat layer 160 can also be formed from the polymeric materials described above. Now, a method of preparing one of the flexible color filters having the structure described above according to an embodiment of the present invention will be described in detail. 3a through 3g are cross-sectional views schematically showing the procedure of an embodiment of a method of preparing a flexible color filter according to the present invention. First, as shown in FIG. 3a, a carrier substrate 170 is prepared, which is applied to form a composition of a separation layer, and a separation layer 120 is formed. The carrier substrate 170 is preferably a glass substrate, but is not limited thereto. That is, other kinds of materials (if they are heat resistant materials) can be used, which can withstand one of the treatment temperatures of the electrode formation and maintain flattening without deformation at a high temperature. The composition used to form a separate layer can be applied by a conventional coating method known in the art. For example, spin coating, die coating, spray coating, roll coating, screen coating, slit coating, dip coating, gravure coating, and the like can be mentioned. Alternatively, an ink jet method can be used. After coating, the composition for forming a separation layer is subjected to curing by heat curing or UV curing to form the separation layer 120. Thermal curing and UV curing can be carried out separately or in combination. For heat curing, an oven or hot plate can be used. The heating temperature and time depend on the composition, and for example, curing can be carried out at 80 ° C to 250 ° C for 10 minutes to 120 minutes. Next, as shown in FIG. 3b, a protective layer 130 is formed on the separation layer 120. The protective layer 130 may be formed by applying an organic insulating film or by depositing an inorganic insulating film. When an organic insulating film is used, a well-known coating method can be used as a coating method. For example, spin coating, die coating, spray coating, roll coating, screen coating, slit coating, dip coating, gravure coating, and the like can be mentioned. Alternatively, an ink jet method can be used. Meanwhile, since the separation layer 120 can be peeled off by a physical force and the peel strength is extremely weak (as described above), the protective layer 130 is preferably formed to cover both sides of the separation layer 120. Next, as shown in FIG. 3c, a BM layer 140 is formed on the protective layer 130. The BM layer 140 can be formed by patterning an opaque organic material. Now, as shown in FIG. 3d, one of the red (R), green (G), and blue (B) colors of the colorant layer 150 is formed in the middle of the pattern of the BM layer 140. The color of the colorant layer 150 can be arbitrarily selected, and the order in which the colors are formed can also be arbitrarily selected. In accordance with an embodiment of the present invention, BM layer 140 and colorant layer 150 may be implemented to have a fine pattern, and damage of BM layer 140 during formation of colorant layer 150 is minimized due to enhanced adhesion of BM layer 140. . Next, as shown in FIG. 3e, an overcoat layer 160 for a protective pattern is formed on the BM layer 140 and the colorant layer 150. Subsequently, as shown in FIG. 3f, the carrier substrate 170 is separated from the separation layer 120. The separation of the carrier substrate 170 from the separation layer 120 can be performed at room temperature and can be performed by a physical peeling, wherein the carrier substrate 170 made of, for example, glass is stripped from the separation layer 120. Examples of the stripping method may include, but are not limited to, detachment and stripping. Thereafter, as shown in FIG. 3g, a base film 110 is attached to the surface of one of the separation layers 120 from which the carrier substrate 170 is removed. Although not shown in the drawings, the base film 110 may be adhered to the separation layer 120 using an adhesive layer (and a photocurable adhesive may be used). Because the photocurable adhesive does not require a separate drying process after photocuring, the process is simple. Therefore, the productivity is increased. In the present invention, a photocurable adhesive usable in the art can be used without particular limitation. For example, a composition including an epoxy compound or an acrylic monomer can be used. To cure the adhesive layer, light can be used, such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays; electromagnetic waves such as X-rays, gamma rays, and electron beams, proton beams, and neutron beams can also be used. However, UV curing is advantageous in terms of curing speed, curing device availability, cost, and the like. A high pressure mercury lamp, an electrodeless lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, a chemical lamp, a black light, and the like can be used as one of the UV curing sources. In the following, an example of a effect of the present invention which is carried out to find the adhesion of the protective layer-enhanced BM layer and a comparative example are described. However, this is to assist the understanding of the invention and is not intended to limit the invention. Examples and Comparative Examples Example Preparation of 5 x 5 cm (thickness: 0.7 mm) one of a glass substrate, the cleaning with ethanol and deionized water and dried by blowing. Next, a composition for forming a protective layer was applied by spin-coating with 0.50 ml of a drop using a micropipette and spinning at 450 rpm for 10 seconds. It was placed in a horizontal position for about 3 minutes, pre-cured at 100 degrees for 90 seconds, exposed and cured at 230 degrees for 20 minutes to form a protective layer of 1.15 μm. Thereafter, a black matrix layer is formed on top of the protective layer. Subsequently, it is aged at room temperature for more than 4 hours, and one of the seals having a diameter of 3 mm to 4 mm has been kept frozen at -20 degrees, an upper glass substrate is attached, and is applied by gravity. A pressure of up to 1 minute to assemble with an upper glass substrate. Next, it was exposed to 7000 mJ of energy and 18 mW of illumination and cured at 200 degrees for 1 hour to complete one of the test pieces of the example. The structure of the test piece thus obtained is shown in Figures 4a and 4b. 4a and 4b are a cross-sectional view and a plan view, respectively, of the completed test piece. As shown in FIG. 4a, the test piece has a structure in which a glass substrate 710, a protective layer 720, a BM layer 730, a sealant 740, and an upper glass substrate 750 are stacked in a stack, and as shown in FIG. As shown in 4b, the upper glass substrate 750 and the lower glass substrate 710 are configured to cross each other. Comparative Example A comparative example has the same structure as the test piece of the example by the same process, and the only BM layer is formed on a glass substrate except for a protective layer, and a cross-sectional view thereof is shown in FIG. As shown in FIG. 5, the protective layer is not present in the comparative example, and only the glass substrate 810, a BM layer 830, a sealant 840, and an upper glass substrate 850 are stacked in a stack. Next, a UTM tester INSTRON 5567 was used to measure the adhesion of the black matrix. Specifically, the maximum load per sealant area is calculated by pulling up the glass substrate at a rate of 10 mm/min and pulling down the glass substrate until the lower glass substrate is separated from the black matrix. Table 1 below shows the measurement results. [Table 1] As shown in Table 1, the average load of the example of the present invention was 2.61 N/mm 2 , which was able to withstand an additional load of 0.52 N/mm 2 compared to the comparative example without the protective layer. The variation range between the maximum load and the minimum load of the example of the present invention is 0.77 and the standard deviation is 0.22, which is about one-half of the variation range and standard deviation of the comparative example. This shows an extremely stable adhesive performance. While the invention has been shown and described with respect to the specific embodiments and embodiments of the present invention, it is understood that Various changes and modifications are made in the spirit and scope of the invention. Accordingly, the scope of the invention is defined by the scope of the appended claims and their equivalents.

110‧‧‧基底膜
120‧‧‧分離層
130‧‧‧保護層
140‧‧‧黑色矩陣(BM)層
150‧‧‧著色劑層
160‧‧‧外塗層
170‧‧‧載體基板
710‧‧‧下玻璃基板
720‧‧‧保護層
730‧‧‧黑色矩陣(BM)層
740‧‧‧密封劑
750‧‧‧上玻璃基板
810‧‧‧下玻璃基板
830‧‧‧黑色矩陣(BM)層
840‧‧‧密封劑
850‧‧‧上玻璃基板
110‧‧‧ basement membrane
120‧‧‧Separation layer
130‧‧‧Protective layer
140‧‧‧Black matrix (BM) layer
150‧‧‧Colorant layer
160‧‧‧Overcoat
170‧‧‧ Carrier substrate
710‧‧‧Lower glass substrate
720‧‧‧protection layer
730‧‧‧Black matrix (BM) layer
740‧‧‧Sealant
750‧‧‧Upper glass substrate
810‧‧‧Lower glass substrate
830‧‧‧Black matrix (BM) layer
840‧‧‧Sealant
850‧‧‧Upper glass substrate

圖1係根據本發明之一項實施例之可撓性彩色濾光片之一橫截面視圖。 圖2係根據本發明之另一實施例之可撓性彩色濾光片之一橫截面視圖。 圖3a至圖3g係示意性地展示根據本發明的可撓性彩色濾光片製備方法之一項實施例之程序之橫截面視圖。 圖4a及圖4b分別為本發明之一實例之一測試件之一橫截面視圖及一平面圖。 圖5係一比較實例之一測試件之一橫截面視圖。1 is a cross-sectional view of one of the flexible color filters in accordance with an embodiment of the present invention. 2 is a cross-sectional view of one of the flexible color filters in accordance with another embodiment of the present invention. 3a through 3g are cross-sectional views schematically showing the procedure of an embodiment of a method of preparing a flexible color filter according to the present invention. 4a and 4b are respectively a cross-sectional view and a plan view of a test piece according to an example of the present invention. Figure 5 is a cross-sectional view of one of the test pieces of a comparative example.

120‧‧‧分離層 120‧‧‧Separation layer

130‧‧‧保護層 130‧‧‧Protective layer

140‧‧‧黑色矩陣(BM)層 140‧‧‧Black matrix (BM) layer

150‧‧‧著色劑層 150‧‧‧Colorant layer

Claims (10)

一種可撓性彩色濾光片,其包括: 一分離層; 一保護層,其形成於該分離層上; 一黑色矩陣層,其形成於該保護層上;及 一著色劑層,其形成於該黑色矩陣層中間, 其中該黑色矩陣層與其下層之分離負荷係2.5 N/mm2 或更大。A flexible color filter comprising: a separation layer; a protective layer formed on the separation layer; a black matrix layer formed on the protective layer; and a colorant layer formed on In the middle of the black matrix layer, the separation load of the black matrix layer and the lower layer thereof is 2.5 N/mm 2 or more. 如請求項1之可撓性彩色濾光片,其中該保護層經形成以覆蓋該分離層之一側表面。The flexible color filter of claim 1, wherein the protective layer is formed to cover a side surface of the separation layer. 如請求項1之可撓性彩色濾光片,其進一步包括安置於該分離層下方之一基底膜。The flexible color filter of claim 1, further comprising a base film disposed under the separation layer. 如請求項1之可撓性彩色濾光片,其進一步包括形成於該黑色矩陣層及該著色劑層上之一外塗層。The flexible color filter of claim 1, further comprising an overcoat layer formed on the black matrix layer and the colorant layer. 如請求項1至4中任一項之可撓性彩色濾光片,其中該保護層包括一有機絕緣膜及一無機絕緣膜之至少一者。The flexible color filter of any one of claims 1 to 4, wherein the protective layer comprises at least one of an organic insulating film and an inorganic insulating film. 一種可撓性顯示裝置包括如請求項1至4中任一項之一可撓性彩色濾光片。A flexible display device comprising the flexible color filter of any one of claims 1 to 4. 一種用於製備一可撓性彩色濾光片之方法,其包括以下步驟: 藉由將用於形成一分離層之一組合物施覆於一載體基板上而形成該分離層; 在該分離層上形成一保護層; 在該保護層上形成一黑色矩陣層且在該黑色矩陣層中間形成一著色劑層;及 移除該載體基板, 其中該黑色矩陣層與其下層之分離負荷係2.5 N/mm2 或更大。A method for preparing a flexible color filter, comprising the steps of: forming the separation layer by applying a composition for forming a separation layer onto a carrier substrate; Forming a protective layer thereon; forming a black matrix layer on the protective layer and forming a colorant layer in the middle of the black matrix layer; and removing the carrier substrate, wherein the separation load of the black matrix layer and the lower layer thereof is 2.5 N/ Mm 2 or larger. 如請求項7之用於製備一可撓性彩色濾光片之方法,其中藉由施覆或沈積用於形成該保護層之一組合物而形成該保護層。A method for preparing a flexible color filter according to claim 7, wherein the protective layer is formed by applying or depositing a composition for forming one of the protective layers. 如請求項7之用於製備一可撓性彩色濾光片之方法,其進一步包括在該黑色矩陣層及該著色劑層上形成一外塗層之步驟。A method for preparing a flexible color filter according to claim 7, further comprising the step of forming an overcoat layer on the black matrix layer and the colorant layer. 如請求項7之用於製備一可撓性彩色濾光片之方法,其進一步包括在該移除該載體基板之後將一基底膜附接於自其移除該載體基板之一表面上之步驟。A method for preparing a flexible color filter according to claim 7, further comprising the step of attaching a base film to a surface from which one of the carrier substrates is removed after the removing of the carrier substrate .
TW106110444A 2016-03-31 2017-03-29 Flexible color filter and method of preparing the same TWI713718B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160039130A KR102611196B1 (en) 2016-03-31 2016-03-31 Flexible Color Filter and Fabrication Method for the Same
KR10-2016-0039130 2016-03-31

Publications (2)

Publication Number Publication Date
TW201736876A true TW201736876A (en) 2017-10-16
TWI713718B TWI713718B (en) 2020-12-21

Family

ID=59966052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110444A TWI713718B (en) 2016-03-31 2017-03-29 Flexible color filter and method of preparing the same

Country Status (3)

Country Link
KR (1) KR102611196B1 (en)
TW (1) TWI713718B (en)
WO (1) WO2017171324A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802795B2 (en) 2019-04-05 2023-10-31 3M Innovative Properties Company Sensor array spectrometer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325119B1 (en) 1994-12-08 2002-06-24 박영구 Method for fabricating color filter substrate
KR100305639B1 (en) * 1998-12-15 2001-11-30 박종섭 Liquid crystal display device including a color filter attached to the outside of the substrate
JP4883849B2 (en) * 2001-06-28 2012-02-22 京セラ株式会社 Color filter, manufacturing method thereof, and liquid crystal display device
JP4525903B2 (en) * 2004-05-26 2010-08-18 三菱瓦斯化学株式会社 Color filter substrate
JP4707996B2 (en) * 2004-11-08 2011-06-22 共同印刷株式会社 Flexible display and manufacturing method thereof
JP2007316366A (en) * 2006-05-26 2007-12-06 Nippon Shokubai Co Ltd Polarizer protective film, polarizing plate and image display device
JP4999095B2 (en) * 2006-12-27 2012-08-15 日東電工株式会社 Polarizer protective film, polarizing plate, and image display device
JP2008181078A (en) * 2006-12-27 2008-08-07 Nitto Denko Corp Polarizer protection film, polarizing plate and image display device
JP2009025762A (en) * 2007-07-24 2009-02-05 Nitto Denko Corp Optical film, polarizing plate and image display device
JP2009036797A (en) * 2007-07-31 2009-02-19 Nitto Denko Corp Optical film, polarizing plate, and image display device
KR101285636B1 (en) * 2008-06-27 2013-07-12 엘지디스플레이 주식회사 Manufacturing method of flexible liquid crystal display device
KR101680765B1 (en) * 2010-11-17 2016-11-30 삼성전자주식회사 Organic light emitting display device and folderble display device having the same
KR101886430B1 (en) * 2011-11-03 2018-08-08 엘지디스플레이 주식회사 Flexible display device and manufacturing method comprising the same
KR101552994B1 (en) * 2012-08-31 2015-09-15 엘지디스플레이 주식회사 Organic Emitting Display Device and Method for Manufacturing the Same
TWI533034B (en) * 2013-04-23 2016-05-11 住華科技股份有限公司 Method of fabricating flexible color filter and flexible color display device
KR20160017396A (en) * 2014-08-05 2016-02-16 삼성디스플레이 주식회사 Flexible display apparatus and manufacturing method thereof

Also Published As

Publication number Publication date
KR20170112282A (en) 2017-10-12
WO2017171324A1 (en) 2017-10-05
TWI713718B (en) 2020-12-21
KR102611196B1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US11069750B2 (en) Flexible color filter, flexible organic light emitting display device comprising same, and manufacturing method therefor
JP4213616B2 (en) Base film for liquid crystal panel, functional film for liquid crystal panel, method for producing functional film, and apparatus for producing functional film
JP3826145B2 (en) Condensing film, liquid crystal panel and backlight, and method for producing condensing film
TWI727038B (en) Touch sensor integrated color filter and manufacturing method for the same
TWI703721B (en) Method of manufacturing flexible display device
TW201822995A (en) Polarizing film, method for manufacture thereof, optical film, and image display device
WO2018180938A1 (en) Display device and method for manufacturing display device
TW201932886A (en) Circularly polarizing plate and display device
TWI713718B (en) Flexible color filter and method of preparing the same
CN108700734B (en) Flexible color filter
JP6880714B2 (en) Decorative member, display device using it, and manufacturing method of decorative member
KR102354027B1 (en) Method for manufacturing flexible color filter
TW201635119A (en) Film touch sensor and method for fabricating the same
TWI281078B (en) Optical compensation film and the manufacturing method thereof
KR20210040374A (en) Optical film
KR20170112233A (en) Flexible Color Filter and Flexible Display Device Including the Same
US20130258253A1 (en) Polarizing layer of liquid crystal panel and manufacturing method for the same
JP2008250312A (en) Method for manufacturing display element
JP5831328B2 (en) Color filter for liquid crystal display
JP2017181529A (en) Transfer member and member for transfer
JP2006284739A (en) Manufacturing method of display element
JP2017181530A (en) Method for producing member with functional layer and method for producing member for display device
JP2017116879A (en) Base material for display
JP2017116878A (en) Base material for display