TW201735132A - Fin field effect transistor (FinFET) device and method for forming dielectric layer therein - Google Patents

Fin field effect transistor (FinFET) device and method for forming dielectric layer therein Download PDF

Info

Publication number
TW201735132A
TW201735132A TW105109829A TW105109829A TW201735132A TW 201735132 A TW201735132 A TW 201735132A TW 105109829 A TW105109829 A TW 105109829A TW 105109829 A TW105109829 A TW 105109829A TW 201735132 A TW201735132 A TW 201735132A
Authority
TW
Taiwan
Prior art keywords
layer
field effect
effect transistor
fin field
transistor device
Prior art date
Application number
TW105109829A
Other languages
Chinese (zh)
Inventor
葉書銘
林耿任
王韶韋
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW105109829A priority Critical patent/TW201735132A/en
Publication of TW201735132A publication Critical patent/TW201735132A/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A FinFET device has a dielectric layer with a stacked nitride. The FinFET includes an oxide layer disposed on a substrate. A nitride layer is disposed on the oxide layer. An oxidation layer is disposed on the nitride layer, wherein the oxidation layer at least depletes nitrogen in the nitride layer. A high-K dielectric layer is disposed over the oxidation layer.

Description

鰭式場效電晶體元件以及形成其中介電層的方法Fin field effect transistor element and method of forming a dielectric layer therein

本發明是有關於一種半導體技術,且特別是有關於鰭式場效電晶體元件以及形成其中介電層的方法。This invention relates to a semiconductor technology, and more particularly to a fin field effect transistor element and a method of forming a dielectric layer therein.

在縮小電子產品的尺寸且功能及操作速度日益增加的需求下,半導體元件例如場效電晶體的尺寸也需要隨著縮小。當場效電晶體的尺寸大幅度縮小下,其閘極結構的尺寸也是跟隨縮小,傳統的多晶矽閘極結構已經無法適用,且閘極結構也需要不同的設計。With the demand for shrinking the size of electronic products and increasing functions and operating speeds, the size of semiconductor components such as field effect transistors also needs to shrink. When the size of the field effect transistor is greatly reduced, the size of the gate structure is also reduced. The conventional polysilicon gate structure is no longer applicable, and the gate structure also needs different designs.

在這些研發的技術中,鰭式場效電晶體 (Fin Field Effect Transistor,FinFET)元件也已被提出。這種FinFET元件的結構,傳統MOSFET的2D結構,改變為3D結構的設計,其中源極與汲極,不是形成於矽基底的平面內,而是形成於凸出的鰭狀結構的表面,而閘極結構形成在源極與汲極之間而橫跨凸出的鰭狀結構。閘極絕緣層也是形成在鰭狀結構的表面,而被閘極結構覆蓋。如此,FinFET元件的尺寸可以有效降低。Among these developed technologies, Fin Field Effect Transistor (FinFET) elements have also been proposed. The structure of such a FinFET element, the 2D structure of a conventional MOSFET, is changed to the design of a 3D structure in which the source and the drain are formed not in the plane of the germanium substrate but on the surface of the convex fin structure. The gate structure is formed between the source and the drain and spans the convex fin structure. The gate insulating layer is also formed on the surface of the fin structure and covered by the gate structure. As such, the size of the FinFET component can be effectively reduced.

對於FinFET元件,由於閘極絕緣層是形成在鰭狀結構表面,而鰭狀結構從3D的結構來看是凸出的薄片,因此,閘極絕緣層在鰭狀結構在薄片的頂端區域與底端區域的幾何結構的差異甚大,因此會影響閘極絕緣層的形成條件,也因此影響其可靠度。For the FinFET element, since the gate insulating layer is formed on the surface of the fin structure and the fin structure is a convex sheet from the 3D structure, the gate insulating layer is in the top region and bottom of the fin structure in the fin structure. The geometrical structure of the end regions is very different, so it will affect the formation conditions of the gate insulating layer and thus affect its reliability.

對於FinFET元件,如何因應製造出具有較高可靠度的閘極絕緣層,是設計上需要考量的因素其一。For FinFET components, how to manufacture a gate insulating layer with high reliability is one of the factors that need to be considered in design.

本發明提供一種鰭式場效電晶體元件以及形成其中介電層的方法,至少可以提升閘極絕緣層的可靠度。The present invention provides a fin field effect transistor element and a method of forming a dielectric layer therein, which can at least improve the reliability of the gate insulating layer.

本發明一實施例提供一種鰭式場效電晶體元件,其中具有堆疊氮化物的介電層。鰭式場效電晶體元件包括氧化物層,設置於基底上。氮化物層設置於該氧化物層上。氧化生成層設置於該氮化物層上,其中該氧化生成層消耗該氮化物層中的氮成分。高介電常數介電層位於該氧化生成層上方。An embodiment of the invention provides a fin field effect transistor device having a dielectric layer with stacked nitrides. The fin field effect transistor element includes an oxide layer disposed on the substrate. A nitride layer is disposed on the oxide layer. An oxidation generating layer is disposed on the nitride layer, wherein the oxidation generating layer consumes a nitrogen component in the nitride layer. A high-k dielectric layer is located above the oxidation generating layer.

在前述鰭式場效電晶體元件的一實施例中,該基底有一凸出結構,且該氧化物層至少是在該凸出結構的暴露表面上。In an embodiment of the fin field effect transistor device, the substrate has a raised structure and the oxide layer is at least on the exposed surface of the protruding structure.

在前述鰭式場效電晶體元件的一實施例中,該凸出結構是鰭狀結構。In an embodiment of the aforementioned fin field effect transistor element, the protruding structure is a fin structure.

在前述鰭式場效電晶體元件的一實施例中,該氧化物層是一自然氧化層或是氧化矽層。In an embodiment of the fin field effect transistor device, the oxide layer is a natural oxide layer or a hafnium oxide layer.

在前述鰭式場效電晶體元件的一實施例中,該氮化物層包括氮化矽層,且該氧化生成層包括氮氧化物層。In an embodiment of the aforementioned fin field effect transistor device, the nitride layer comprises a tantalum nitride layer, and the oxidation generating layer comprises an oxynitride layer.

在前述鰭式場效電晶體元件的一實施例中,該氧化物層的厚度是在5埃至15埃的範圍。In an embodiment of the aforementioned fin field effect transistor device, the oxide layer has a thickness in the range of 5 angstroms to 15 angstroms.

在前述鰭式場效電晶體元件的一實施例中,該氮化物層的厚度是在10埃至20埃的範圍。In an embodiment of the aforementioned fin field effect transistor device, the thickness of the nitride layer is in the range of 10 angstroms to 20 angstroms.

在前述鰭式場效電晶體元件的一實施例中,該氧化物層、該氮化物層及該氧化生成層的總厚度是小於或等於40埃。In an embodiment of the fin field effect transistor device, the total thickness of the oxide layer, the nitride layer, and the oxidation generating layer is less than or equal to 40 angstroms.

本發明一實施例提供也提供一種形成在鰭式場效電晶體元件中的介電層的方法。此方法包括:形成氧化物層於基底上;形成氮化物層於該氧化物層上;進行氧化製程於該氮化物層上,以形成氧化生成層;沉積高介電常數介電層於該氧化生成層上方。An embodiment of the invention provides a method of also providing a dielectric layer formed in a fin field effect transistor device. The method includes: forming an oxide layer on a substrate; forming a nitride layer on the oxide layer; performing an oxidation process on the nitride layer to form an oxide generating layer; and depositing a high-k dielectric layer on the oxide layer Above the generation layer.

在前述的方法的一實施例中,該氧化製程包括對該氮化物層通入氧氣以形成氮氧化物層。In an embodiment of the foregoing method, the oxidizing process includes introducing oxygen into the nitride layer to form an oxynitride layer.

在前述的方法的一實施例中,其方法更包括對該基底形成凸出結構在頂部,且該氧化物層至少是在該凸出結構的暴露表面上。In an embodiment of the foregoing method, the method further comprises forming a convex structure on the top of the substrate, and the oxide layer is at least on the exposed surface of the protruding structure.

在前述的方法的一實施例中,該凸出結構是鰭狀結構。In an embodiment of the aforementioned method, the protruding structure is a fin structure.

在前述的方法的一實施例中,該氧化物層是由自然氧化形成或是由沉積製程形成。In an embodiment of the foregoing method, the oxide layer is formed by natural oxidation or by a deposition process.

在前述的方法的一實施例中,該氮化物層包括氮化矽層,且該氧化生成層包括氮氧化物層。In an embodiment of the foregoing method, the nitride layer comprises a tantalum nitride layer, and the oxidation generating layer comprises an oxynitride layer.

在前述的方法的一實施例中,該氧化物層的厚度是在5埃至15埃的範圍。In an embodiment of the foregoing method, the oxide layer has a thickness in the range of 5 angstroms to 15 angstroms.

在前述的方法的一實施例中,該氮化物層的厚度是在10埃至20埃的範圍。In an embodiment of the foregoing method, the thickness of the nitride layer is in the range of 10 angstroms to 20 angstroms.

在前述的方法的一實施例中,其中該氧化物層、該氮化物層及該氧化生成層的總厚度是小於或等於40埃。In an embodiment of the foregoing method, wherein the total thickness of the oxide layer, the nitride layer, and the oxidation generating layer is less than or equal to 40 angstroms.

基於上述,本發明提出的鰭式場效電晶體元件以及形成其中介電層的方法,對於閘極絕緣層因應凸出的鰭結構,針對氮成份雖隨著深度而變化的濃度分佈,在鰭結構的不同區域都可以達到較一致的氮濃度分佈,因此至少能提升閘極絕緣層的可靠度。Based on the above, the fin field effect transistor element and the method of forming the dielectric layer therefor, for the gate structure of the gate insulating layer, the concentration distribution of the nitrogen component varies with depth, in the fin structure Different regions can achieve a more uniform distribution of nitrogen concentration, thus at least improving the reliability of the gate insulation.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

本發明針對鰭式場效電晶體元件中的閘極絕緣層的形成,提出相關的製造技術,可以提升可靠度。The present invention is directed to the formation of a gate insulating layer in a fin field effect transistor device, and proposes related manufacturing techniques to improve reliability.

以下提供多個實施例用來說明本發明,但是本發明不僅限於所舉的實施例。The following examples are provided to illustrate the invention, but the invention is not limited to the examples.

本發明針對具有3D結構的鰭式場效電晶體元件的閘極絕緣層進行研究而至少發現,對於在鰭狀結構上所形成用於構成閘極絕緣層的襯底介電層,如果氮成份在深度方向的濃度分佈於鰭狀結構的不同區域,容易造成不一致,也因此影響閘極絕緣層的可靠度。The present invention is directed to the study of a gate insulating layer of a fin field effect transistor device having a 3D structure, and at least found that for a dielectric layer of a substrate formed on a fin structure for forming a gate insulating layer, if the nitrogen component is The concentration in the depth direction is distributed in different regions of the fin structure, which tends to cause inconsistency and thus affect the reliability of the gate insulating layer.

先針對鰭式場效電晶體元件的閘極絕緣層所可能產生的問題做描述。圖1是依照本發明一實施例,繪示鰭式場效電晶體元件的結構示意圖。參閱圖1,鰭式場效電晶體元件包是以基底100為基礎。基底100例是矽基底。在基底100上,利用一般半導體製程,會先形成凸出的鰭狀結構100a。由於鰭狀結構100a很薄,因此從3D的結構來看是薄片的結構。又,鰭狀結構100a是基底100的頂部結構,因此也是矽的半導體材質。鰭式場效電晶體是要在鰭狀結構100a上形成,因此其也需要形成閘極絕緣層106在鰭狀結構100a的表面上。First, the problems that may occur in the gate insulating layer of the FinFET device are described. 1 is a schematic structural view of a fin field effect transistor device according to an embodiment of the invention. Referring to FIG. 1, the fin field effect transistor component package is based on the substrate 100. One example of the substrate is a tantalum substrate. On the substrate 100, a convex fin structure 100a is formed first by a general semiconductor process. Since the fin structure 100a is thin, it is a structure of a sheet from the viewpoint of the structure of 3D. Moreover, the fin structure 100a is the top structure of the substrate 100, and therefore is also a semiconductor material of germanium. The fin field effect transistor is to be formed on the fin structure 100a, so it is also necessary to form the gate insulating layer 106 on the surface of the fin structure 100a.

於此,閘極絕緣層106的實際結構是由多層的介電層堆疊而成,其會在後面細部描述。圖1繪示的閘極絕緣層106僅是在鰭狀結構100a表面的部份,閘極絕緣層106於一實施例也可以有其他部份延伸在基底100的水平表面上,而被內介電層(inter-dielectric)102覆蓋成為內介電層102的一部份。Here, the actual structure of the gate insulating layer 106 is formed by stacking a plurality of dielectric layers, which will be described later. The gate insulating layer 106 is only a portion of the surface of the fin structure 100a. The gate insulating layer 106 may have other portions extending over the horizontal surface of the substrate 100 in an embodiment. An inter-dielectric 102 covers a portion of the inner dielectric layer 102.

從結構上來看,線狀的閘極結構108設置在內介電層102上,且橫跨鰭狀結構100a而覆蓋閘極絕緣層106。在鰭狀結構100a沒有被閘極結構108覆蓋的兩邊,其利用植入製程而形成源極/汲極104a、104b。如此,單一個的鰭式場效電晶體可以被製造出來。實際上,多個鰭式場效電晶體可以緊密製造在一起,因此多個鰭狀結構100a也會構成類似鰭的架構。Structurally, a linear gate structure 108 is disposed over the inner dielectric layer 102 and overlies the fin structure 100a to cover the gate insulating layer 106. On either side of the fin structure 100a that is not covered by the gate structure 108, it utilizes an implantation process to form source/drain electrodes 104a, 104b. Thus, a single fin field effect transistor can be fabricated. In fact, multiple fin field effect transistors can be fabricated tightly together, so multiple fin structures 100a will also form a fin-like architecture.

實際上,多個鰭式場效電晶體可以緊密製造在一起,因此多個鰭狀結構100a也會構成類似鰭的架構。圖2是依照本發明一實施例,繪示鰭式場效電晶體元件沿著閘極線的剖面示意圖。參閱圖2,在基底100的頂部形成有多個鰭狀結構100a。在圖1的閘極絕緣層106,實際上是多個介電層的堆疊所成,其一般包括襯底的介電層120,以及具有高介電常數(high-K)介電層122。高介電常數介電層122的作用是因應元件尺寸的縮小,而仍能提供所需要足夠的電容值。而例如線狀的閘極結構124,橫跨鰭狀結構100a而覆蓋high-K介電層122。In fact, multiple fin field effect transistors can be fabricated tightly together, so multiple fin structures 100a will also form a fin-like architecture. 2 is a cross-sectional view of a fin field effect transistor device along a gate line, in accordance with an embodiment of the invention. Referring to FIG. 2, a plurality of fin structures 100a are formed on the top of the substrate 100. The gate insulating layer 106 of FIG. 1 is actually a stack of a plurality of dielectric layers, which typically includes a dielectric layer 120 of the substrate, and a high-k dielectric layer 122. The function of the high-k dielectric layer 122 is to provide a sufficient capacitance value in response to the reduction in component size. For example, the linear gate structure 124 covers the high-k dielectric layer 122 across the fin structure 100a.

具有high-K介電層的材料,如一般所知是高於氧化矽的介電常數,例如是HfO2 、HfSiO4 、HfSiON、Al2 O3 、La2 O3 、Ta2 O5 、Y2 O3 、ZrO2 、SrTiO3 、ZrSiO4 、HfZrO4 、SrBi2 Ta2 O9 、PbZrxTi1-xO3 、或是BaxSr1-xTiO3 ,但是不限於前述。A material having a high-k dielectric layer, as is generally known to be higher than the dielectric constant of yttria, is, for example, HfO 2 , HfSiO 4 , HfSiON, Al 2 O 3 , La 2 O 3 , Ta 2 O 5 , Y 2 O 3 , ZrO 2 , SrTiO 3 , ZrSiO 4 , HfZrO 4 , SrBi 2 Ta 2 O 9 , PbZrxTi1-xO 3 , or BaxSr1-xTiO 3 , but is not limited to the above.

襯底的介電層120一般例如會包括含氮的氮化矽。由於基底100頂部的鰭狀結構100a是如薄片的結構,因此例如在鰭狀結構100a的底部的區域206a、側壁的區域206b、以及頂部的區域206c的幾何結構不同,因此對於沉積的條件會不同,也因此在上述不同區域而隨深度方向的氮濃度,也會不一致。如此會影響整個閘極絕緣層的可靠度。The dielectric layer 120 of the substrate will typically include, for example, nitrogen-containing tantalum nitride. Since the fin structure 100a at the top of the substrate 100 is a structure such as a sheet, for example, the geometry of the region 206a at the bottom of the fin structure 100a, the region 206b of the sidewall, and the region 206c at the top are different, and thus the conditions for deposition may be different. Therefore, the nitrogen concentration in the depth direction in the above different regions may also be inconsistent. This will affect the reliability of the entire gate insulation.

至少為了能提升閘極絕緣層的可靠度,本發明提出形成位於底層的介電層120的方法,可以在鰭狀結構100a上的不同區域  有較一致的氮濃度分佈,也因此可以提升可靠度。At least in order to improve the reliability of the gate insulating layer, the present invention proposes a method of forming the dielectric layer 120 on the underlying layer, which can have a relatively uniform nitrogen concentration distribution in different regions on the fin structure 100a, thereby improving reliability. .

圖3A~3E是依照本發明一實施例,繪示形成在鰭式場效電晶體元件中的介電層的剖面結構流程示意圖。參閱圖3A,以鰭狀結構100a代表基底100來描述,鰭狀結構100a的暴露表面會有一氧化物層150。此氧化物層150例如是在環境中經自然氧化而形成的,又例如也可以是經由製程附加形成的氧化矽層,但不限前述方式。氧化物層150是襯底層,其作用是要防止後續製程中的氮原子進入到基底100,其也就是鰭狀結構100a。氧化物層150的厚度例如是在5埃至15埃的範圍。3A-3E are schematic flow charts showing a cross-sectional structure of a dielectric layer formed in a fin field effect transistor device, in accordance with an embodiment of the invention. Referring to FIG. 3A, the fin structure 100a represents the substrate 100, and the exposed surface of the fin structure 100a has an oxide layer 150. The oxide layer 150 is formed, for example, by natural oxidation in an environment, and may be, for example, a ruthenium oxide layer formed by a process addition, but is not limited to the above. The oxide layer 150 is a substrate layer that functions to prevent nitrogen atoms in subsequent processes from entering the substrate 100, which is the fin structure 100a. The thickness of the oxide layer 150 is, for example, in the range of 5 angstroms to 15 angstroms.

參閱圖3B,接著形成氮化物層152,例如是氮化矽層,其是阻障效用。氮化物層152是含氮的材質,而氮濃度的變化也會造成阻障效果的變化。然而如圖2所述,由於在鰭狀結構100a的不同區域206a、206b、206c,會有不同的形成條件,造成在這些區域的氮濃度不一致。Referring to FIG. 3B, a nitride layer 152 is formed, such as a tantalum nitride layer, which is a barrier effect. The nitride layer 152 is a nitrogen-containing material, and a change in the nitrogen concentration also causes a change in the barrier effect. However, as illustrated in Figure 2, due to the different formation conditions in the different regions 206a, 206b, 206c of the fin structure 100a, the nitrogen concentrations in these regions are inconsistent.

參閱圖3C,至少為了減緩氮濃度在鰭狀結構100a的不同區域的不一致,本發明提出對氮化物層152再進行氧化製程154,其例如通入氧氣。於一實施例,氮化物層152以氮化矽為例,在通入氧氣後會將氮化矽的一部分,其例如上表面部份氧化,而改變成氮氧化矽層,因此可以消耗掉一些氮成分,而使得氮濃度在鰭狀結構100a的表面有較為一致的狀態。Referring to Figure 3C, at least to mitigate inconsistencies in nitrogen concentration in different regions of the fin structure 100a, the present invention contemplates a further oxidation process 154 of the nitride layer 152, such as by introducing oxygen. In one embodiment, the nitride layer 152 is exemplified by tantalum nitride. After the oxygen is introduced, a part of the tantalum nitride, for example, the upper surface portion is oxidized, and the yttrium oxide layer is changed, so that some of the yttrium oxide layer can be consumed. The nitrogen component causes the nitrogen concentration to have a relatively uniform state on the surface of the fin structure 100a.

參閱圖3D,經過對氮化物層152進行氧化製程154後,至少在氮化物層152的頂部會形成氧化生成層156,其例如是氮氧化矽。如此,氧化物層150、氮化物層152以及氧化生成層(156)構成介電層120。Referring to FIG. 3D, after the oxidation process 154 is performed on the nitride layer 152, an oxidation generating layer 156, such as hafnium oxynitride, is formed at least on top of the nitride layer 152. As such, the oxide layer 150, the nitride layer 152, and the oxidation generating layer (156) constitute the dielectric layer 120.

就厚度而言,如前述,氧化物層150的厚度是在5埃至15埃的範圍。氮化物層152的厚度例如是在10埃至20埃的範圍。又,氧化物層150、氮化物層152及氧化生成層156的總厚度,例如是小於或等於40埃。In terms of thickness, as described above, the thickness of the oxide layer 150 is in the range of 5 angstroms to 15 angstroms. The thickness of the nitride layer 152 is, for example, in the range of 10 angstroms to 20 angstroms. Further, the total thickness of the oxide layer 150, the nitride layer 152, and the oxidation generating layer 156 is, for example, 40 angstroms or less.

參閱圖3E,接著依照實際製程,高介電常數介電層122可以形成於氧化生成層156的上方。高介電常數介電層122可以利用原子層沉積(Atom Layer Deposition,ADL)製程來形成,但不限於此。這些高介電常數介電層122、氧化物層150、氮化物層152及氧化生成層156等構成閘極絕緣層180。於此,閘極絕緣層180不僅限於前述的堆疊層。形成閘極絕緣層180後,利用多道的製程,其例如包括沉積、定義、以及研磨等等的製程,而形成閘極結構124於內介電層102以及閘極絕緣層180上。於此,閘極結構124例如也可以是多層的堆疊。之後,完成鰭式場效電晶體的後續製程的描述,對於本領域的技術人員是可以了解,也不限於特定的方式,於此省略。Referring to FIG. 3E, a high-k dielectric layer 122 may be formed over the oxide-generating layer 156 in accordance with an actual process. The high-k dielectric layer 122 may be formed using an Atom Layer Deposition (ADL) process, but is not limited thereto. The high-k dielectric layer 122, the oxide layer 150, the nitride layer 152, the oxidation generating layer 156, and the like constitute a gate insulating layer 180. Here, the gate insulating layer 180 is not limited to the aforementioned stacked layers. After the gate insulating layer 180 is formed, a gate process 124 is formed on the inner dielectric layer 102 and the gate insulating layer 180 by a multi-pass process including, for example, deposition, definition, and grinding. Here, the gate structure 124 can also be, for example, a stack of multiple layers. Thereafter, the description of the subsequent process of completing the fin field effect transistor can be understood by those skilled in the art, and is not limited to a specific mode, and is omitted here.

綜上所述,本發明針對鰭式場效電晶體的閘極絕緣層所包含的介電層提出不同的結構以及對應的製造方法。藉由氧化製程消耗氮濃度,如此可以使氮濃度在鰭狀結構100a的不同區域較趨於一致,如此也提升閘極絕緣層的可靠度。In summary, the present invention proposes different structures and corresponding manufacturing methods for the dielectric layers included in the gate insulating layer of the fin field effect transistor. By consuming the nitrogen concentration in the oxidation process, the nitrogen concentration can be made uniform in different regions of the fin structure 100a, which also improves the reliability of the gate insulating layer.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧基底
100a‧‧‧鰭狀結構
102‧‧‧內介電層
104a、104b‧‧‧源極/汲極
106‧‧‧閘極絕緣層
108‧‧‧閘極結構
150‧‧‧氧化物層
152‧‧‧氮化物層
154‧‧‧氧化製程
156‧‧‧氧化生成層
120‧‧‧介電層
122‧‧‧高介電常數介電層
124‧‧‧閘極結構
180‧‧‧閘極絕緣層
206a、206b、206c‧‧‧區域
100‧‧‧Base
100a‧‧‧Fin structure
102‧‧‧Internal dielectric layer
104a, 104b‧‧‧ source/bungee
106‧‧‧gate insulation
108‧‧‧ gate structure
150‧‧‧Oxide layer
152‧‧‧ nitride layer
154‧‧‧Oxidation process
156‧‧‧Oxidation layer
120‧‧‧ dielectric layer
122‧‧‧High dielectric constant dielectric layer
124‧‧‧ gate structure
180‧‧‧ gate insulation
206a, 206b, 206c‧‧‧ areas

圖1是依照本發明一實施例,繪示鰭式場效電晶體元件的結構示意圖。 圖2是依照本發明一實施例,繪示鰭式場效電晶體元件沿著閘極線的剖面示意圖。 圖3A~3E是依照本發明一實施例,繪示形成在鰭式場效電晶體元件中的介電層的剖面結構流程示意圖。1 is a schematic structural view of a fin field effect transistor device according to an embodiment of the invention. 2 is a cross-sectional view of a fin field effect transistor device along a gate line, in accordance with an embodiment of the invention. 3A-3E are schematic flow charts showing a cross-sectional structure of a dielectric layer formed in a fin field effect transistor device, in accordance with an embodiment of the invention.

100a‧‧‧凸出結構 100a‧‧‧ protruding structure

120‧‧‧介電層 120‧‧‧ dielectric layer

150‧‧‧氧化物層 150‧‧‧Oxide layer

152‧‧‧氮化物層 152‧‧‧ nitride layer

156‧‧‧氧化生成層 156‧‧‧Oxidation layer

Claims (17)

一種鰭式場效電晶體元件,具有堆疊氮化物的介電層,包括: 氧化物層,設置於基底上; 氮化物層,設置於該氧化物層上; 氧化生成層,位於該氮化物層上,其中該氧化生成層消耗該氮化物層中的氮成分;以及 高介電常數介電層,設置於該氧化生成層上方。A fin field effect transistor device having a dielectric layer on which a nitride is stacked, comprising: an oxide layer disposed on a substrate; a nitride layer disposed on the oxide layer; and an oxidation generating layer on the nitride layer Wherein the oxidation generating layer consumes a nitrogen component in the nitride layer; and a high-k dielectric layer is disposed over the oxide generating layer. 如申請專利範圍第1項所述的鰭式場效電晶體元件,其中該基底有一凸出結構,且該氧化物層至少是在該凸出結構的暴露表面上。The fin field effect transistor device of claim 1, wherein the substrate has a convex structure, and the oxide layer is at least on an exposed surface of the protruding structure. 如申請專利範圍第2項所述的鰭式場效電晶體元件,其中該凸出結構是鰭狀結構。The fin field effect transistor device of claim 2, wherein the protruding structure is a fin structure. 如申請專利範圍第1項所述的鰭式場效電晶體元件,其中該氧化物層是一自然氧化層或是氧化矽層。The fin field effect transistor device of claim 1, wherein the oxide layer is a natural oxide layer or a hafnium oxide layer. 如申請專利範圍第1項所述的鰭式場效電晶體元件,其中該氮化物層包括氮化矽層,且該氧化生成層包括氮氧化物層。The fin field effect transistor device of claim 1, wherein the nitride layer comprises a tantalum nitride layer, and the oxidation generating layer comprises an oxynitride layer. 如申請專利範圍第1項所述的鰭式場效電晶體元件,其中該氧化物層的厚度是在5埃至15埃的範圍。The fin field effect transistor device of claim 1, wherein the oxide layer has a thickness in the range of 5 angstroms to 15 angstroms. 如申請專利範圍第6項所述的鰭式場效電晶體元件,其中該氮化物層的厚度是在10埃至20埃的範圍。The fin field effect transistor device of claim 6, wherein the nitride layer has a thickness in the range of 10 angstroms to 20 angstroms. 如申請專利範圍第7項所述的鰭式場效電晶體元件,其中該氧化物層、該氮化物層及該氧化生成層的總厚度是小於或等於40埃。The fin field effect transistor device of claim 7, wherein the total thickness of the oxide layer, the nitride layer, and the oxidation generating layer is less than or equal to 40 angstroms. 一種形成在鰭式場效電晶體元件中的介電層的方法,包括:        形成氧化物層於基底上;        形成氮化物層於該氧化物層上;        進行氧化製程於該氮化物層上,以形成氧化生成層;以及        沉積高介電常數介電層於該氧化生成層上方。A method of forming a dielectric layer in a fin field effect transistor device, comprising: forming an oxide layer on a substrate; forming a nitride layer on the oxide layer; performing an oxidation process on the nitride layer to form An oxide generating layer; and depositing a high-k dielectric layer over the oxide generating layer. 如申請專利範圍第9項所述的形成在鰭式場效電晶體元件中的介電層的方法,其中該氧化製程包括對該氮化物層通入氧氣以形成氮氧化物層。A method of forming a dielectric layer in a fin field effect transistor device according to claim 9, wherein the oxidizing process comprises introducing oxygen into the nitride layer to form an oxynitride layer. 如申請專利範圍第9項所述的形成在鰭式場效電晶體元件中的介電層的方法,更包括對該基底形成凸出結構在頂部,且該氧化物層至少是在該凸出結構的暴露表面上。The method of forming a dielectric layer in a fin field effect transistor device according to claim 9, further comprising forming a protruding structure on the top of the substrate, and the oxide layer is at least at the protruding structure The exposed surface. 如申請專利範圍第11項所述的形成在鰭式場效電晶體元件中的介電層的方法,其中該凸出結構是鰭狀結構。A method of forming a dielectric layer in a fin field effect transistor device according to claim 11, wherein the protruding structure is a fin structure. 如申請專利範圍第9項所述的形成在鰭式場效電晶體元件中的介電層的方法,其中該氧化物層是由自然氧化形成或是由沉積製程形成。A method of forming a dielectric layer in a fin field effect transistor device according to claim 9, wherein the oxide layer is formed by natural oxidation or formed by a deposition process. 如申請專利範圍第9項所述的形成在鰭式場效電晶體元件中的介電層的方法,其中該氮化物層包括氮化矽層,且該氧化生成層包括氮氧化物層。The method of forming a dielectric layer in a fin field effect transistor device according to claim 9, wherein the nitride layer comprises a tantalum nitride layer, and the oxidation generating layer comprises an oxynitride layer. 如申請專利範圍第9項所述的形成在鰭式場效電晶體元件中的介電層的方法,其中該氧化物層的厚度是在5埃至15埃的範圍。A method of forming a dielectric layer in a fin field effect transistor device according to claim 9, wherein the thickness of the oxide layer is in the range of 5 angstroms to 15 angstroms. 如申請專利範圍第15項所述的形成在鰭式場效電晶體元件中的介電層的方法,其中該氮化物層的厚度是在10埃至20埃的範圍。A method of forming a dielectric layer in a fin field effect transistor device according to claim 15 wherein the thickness of the nitride layer is in the range of 10 angstroms to 20 angstroms. 如申請專利範圍第16項所述的形成在鰭式場效電晶體元件中的介電層的方法,其中該氧化物層、該氮化物層及該氧化生成層的總厚度是小於或等於40埃。The method of forming a dielectric layer in a fin field effect transistor device according to claim 16, wherein the total thickness of the oxide layer, the nitride layer, and the oxidation generating layer is less than or equal to 40 angstroms. .
TW105109829A 2016-03-29 2016-03-29 Fin field effect transistor (FinFET) device and method for forming dielectric layer therein TW201735132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105109829A TW201735132A (en) 2016-03-29 2016-03-29 Fin field effect transistor (FinFET) device and method for forming dielectric layer therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105109829A TW201735132A (en) 2016-03-29 2016-03-29 Fin field effect transistor (FinFET) device and method for forming dielectric layer therein

Publications (1)

Publication Number Publication Date
TW201735132A true TW201735132A (en) 2017-10-01

Family

ID=61021494

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105109829A TW201735132A (en) 2016-03-29 2016-03-29 Fin field effect transistor (FinFET) device and method for forming dielectric layer therein

Country Status (1)

Country Link
TW (1) TW201735132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271094B2 (en) 2018-11-29 2022-03-08 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method of manufacturing the same
TWI793370B (en) * 2018-11-29 2023-02-21 台灣積體電路製造股份有限公司 Semiconductor structure and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271094B2 (en) 2018-11-29 2022-03-08 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method of manufacturing the same
TWI793370B (en) * 2018-11-29 2023-02-21 台灣積體電路製造股份有限公司 Semiconductor structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US11855172B2 (en) Semiconductor device and method for fabricating the same
TWI635535B (en) Semiconductor process of forming metal gates with different threshold voltages and semiconductor structure thereof
US8809962B2 (en) Transistor with reduced parasitic capacitance
US20180130905A1 (en) Semiconductor device and method for fabricating the same
US10199277B2 (en) Semiconductor process
US8728881B2 (en) Semiconductor device and method for manufacturing the same
US20160233092A1 (en) Gate and gate forming process
US10930544B2 (en) Method of manufacturing semiconductor device having buried gate electrodes
US10056491B2 (en) Semiconductor devices including gate dielectric structures
US9780169B2 (en) Semiconductor structure having epitaxial layers
TW201735132A (en) Fin field effect transistor (FinFET) device and method for forming dielectric layer therein
KR102417179B1 (en) semiconductor device having multithreshold voltage
CN104377124A (en) Method for manufacturing semiconductor device
WO2016155189A1 (en) Thin-film transistor and preparation method therefor, array substrate and preparation method therefor, and display device
JP2010010266A (en) Method for manufacturing semiconductor device and semiconductor device
US20170271470A1 (en) Method for fabrication of a field-effect with reduced stray capacitance
TWI521705B (en) Finfet and method of fabricating finfet
US9978873B2 (en) Method for fabricating FinFet
TWI662599B (en) Semiconductor device and fabrication method thereof
US20120238067A1 (en) Methods of Fabricating Semiconductor Devices Having Gate Trenches
US9478628B1 (en) Metal gate forming process
TWI605587B (en) Semiconductor device and manufacturing mehod thereof
CN103456785B (en) Semiconductor structure and its manufacture craft
US20220278217A1 (en) High dielectric constant metal gate mos transistor and method for making the same
CN103107089A (en) Manufacturing method of non-planar transistor