TW201731251A - Methods, apparatuses and systems directed to initial synchronization and/or initial acquisition for highly directional systems - Google Patents

Methods, apparatuses and systems directed to initial synchronization and/or initial acquisition for highly directional systems Download PDF

Info

Publication number
TW201731251A
TW201731251A TW105140026A TW105140026A TW201731251A TW 201731251 A TW201731251 A TW 201731251A TW 105140026 A TW105140026 A TW 105140026A TW 105140026 A TW105140026 A TW 105140026A TW 201731251 A TW201731251 A TW 201731251A
Authority
TW
Taiwan
Prior art keywords
symbol
synchronization information
ofdm
subcarriers
tail
Prior art date
Application number
TW105140026A
Other languages
Chinese (zh)
Inventor
艾佩斯蘭 戴米爾
艾爾登 貝拉
米海拉 貝露里
拉比庫馬 普拉格達
Original Assignee
Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idac控股公司 filed Critical Idac控股公司
Publication of TW201731251A publication Critical patent/TW201731251A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Abstract

Methods, apparatuses, systems, devices, and computer program products directed to highly directional systems, and to initial synchronization in the highly directional systems. In an embodiment, a high efficiency OFDM based ("he-OFDM-based") waveform may be leveraged (adapted) for initial synchronization. In an embodiment, initial synchronization may be carried out using an OFDM signal that carries synchronization information in at least a tail portion of one or more modulation symbols of each OFDM symbol. The modulation symbols may be concentrated within a single sub-band. The single sub-band may map to a particular sub-band of the available channel, such as, for example, a center sub-band of the available channel. Alternatively, the modulation symbols may be dispersed among multiple sub-bands, and such multiple sub-bands may map to, for example, the center sub-band and other sub-bands.

Description

針對高度定向系統中初始同步及/或初始獲取方法、裝置及系統Initial synchronization and/or initial acquisition method, device and system for highly oriented systems

相關申請案交叉引用 本申請案要求享有2015年12月4日申請的美國臨時專利申請62/263,592的權益,其中該申請案在此引入以作為參考。 技術領域CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the present disclosure. Technical field

本申請案與無線通訊有關。This application is related to wireless communication.

為了滿足下一代蜂巢通信系統需要的高資料速率,無線產業和學界探索了多種利用在諸如釐米波(cmW)和毫米波(mmW)這類高於6吉赫(GHz)的頻率上可用的大頻寬的多種方式。這些頻率上的可用的大頻寬能為使用者特定的資料傳輸提供巨大的容量。To meet the high data rates required for next-generation cellular communication systems, the wireless industry and academia have explored a variety of uses available at frequencies above 6 GHz, such as centimeter waves (cmW) and millimeter waves (mmW). Multiple ways of bandwidth. The large bandwidth available at these frequencies provides tremendous capacity for user-specific data transmission.

使用6 GHz以上頻率的一個難題是與其傳播相關聯的特性,這些特性對於無線通訊而言是非常不利的。舉例來說,傳輸頻率越高,所遭遇的自由空間路徑損失也會越大。降雨及/或氧氣之類的大氣氣體可能會進一步增大衰減,並且植物也有可能會導致衰減和去極化。雖然窄波束場型是一種有益於應對此類損失的技術,但其對於遞送胞元特定及/或廣播資訊而言同樣也是挑戰。One difficulty in using frequencies above 6 GHz is the characteristics associated with its propagation, which are very detrimental to wireless communications. For example, the higher the transmission frequency, the greater the loss of free space path encountered. Atmospheric gases such as rainfall and/or oxygen may increase attenuation further, and plants may also cause attenuation and depolarization. While a narrow beam pattern is a technique that is beneficial for dealing with such losses, it is also a challenge for delivering cell-specific and/or broadcast information.

在以下的詳細描述中將會闡述眾多的具體細節,以提供關於這裡揭露的實施例及/或示例的全面理解。然而應該理解,此類實施例和示例是可以在沒有這裡詳細闡述的一些或所有具體細節的情況下實踐的。在其他情況下,眾所周知的方法、過程、元件和電路並沒有被詳細描述,以免與後續描述混淆。更進一步,在這裡沒有具體描述的實施例和示例也是可以實踐的,由此可以替代在這裡描述、揭露或以其他方式顯性、隱性及/或內在提供(統稱為“提供”)的實施例及其他示例或者與之結合。示例通信系統 Numerous specific details are set forth in the Detailed Description of the <RTIgt;</RTI><RTIgt;</RTI><RTIgt;</RTI> to provide a comprehensive understanding of the embodiments and/or examples disclosed herein. It should be understood, however, that such embodiments and examples may be practiced without some or all of the specific details set forth herein. In other instances, well-known methods, procedures, components, and circuits have not been described in detail to avoid obscuring the description. Further, the embodiments and examples not specifically described herein are also practiced, and thus may be substituted for implementations that are described, disclosed, or otherwise disclosed, implicitly, and/or inherently (collectively referred to as "providing"). Examples and other examples are combined with them. Example communication system

這裡提供的方法、裝置和系統非常適合同時涉及有線和無線網路的通信。有線網路是眾所周知的。關於各種類型的無線裝置和基礎架構的綜述是對照第1A圖至第1E圖提供的,其中該網路的各種元件可以使用、執行這裡提供的方法、裝置和系統,依照這裡提供的方法、裝置和系統來佈置,及/或被適配及/或配置為用於這裡提供的方法、裝置和系統。The methods, apparatus, and systems provided herein are well suited for communication involving both wired and wireless networks. Wired networks are well known. An overview of various types of wireless devices and infrastructure is provided in connection with Figures 1A through 1E, wherein various elements of the network can use, perform, and perform the methods, apparatus, and systems provided herein, in accordance with the methods and apparatus provided herein. And systems are arranged, and/or adapted and/or configured for use in the methods, apparatus, and systems provided herein.

第1A圖是可以實施所揭露的一個或多個實施例的示例通信系統100的圖式。示例通信系統100是出於闡述說明的目的而被提供,而非用於對所揭露的實施例進行限制。通信系統100可以是為多個無線使用者提供語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100經由共用包括無線頻寬的系統資源來允許多個無線使用者存取此類內容。作為示例,通信系統100可以使用一種或多種頻道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。FIG. 1A is a diagram of an example communication system 100 in which one or more of the disclosed embodiments may be implemented. The example communication system 100 is provided for illustrative purposes and is not intended to limit the disclosed embodiments. The communication system 100 can be a multiple access system that provides content, such as voice, data, video, messaging, broadcast, etc., to multiple wireless users. The communication system 100 allows multiple wireless consumers to access such content via sharing system resources including wireless bandwidth. By way of example, communication system 100 may use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). Single carrier FDMA (SC-FDMA) and the like.

如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN)104、核心網路106、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,但是應該瞭解,所揭露的實施例設想了任何數量的WTRU、基地台、網路及/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。例如,WTRU 102a、102b、102c、102d可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、隨身型易網機、個人電腦、無線感測器、消費類電子裝置等等。As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, radio access network (RAN) 104, core network 106, public switched telephone network (PSTN). 108, the Internet 110, and other networks 112, but it should be understood that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. For example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, mobile phones, personal digital assistants (PDA), smart phones, laptops, portable Internet devices, personal computers, wireless sensors, consumer electronics devices, and more.

通信系統100還可以包括基地台114a和基地台114b。每一個基地台114a、114b可以是被配置為與WTRU 102a、102b、102c、102d中的至少一個無線對接來促使存取一個或多個通信網路的任何類型的裝置,該網路則可以是核心網路106、網際網路110及/或網路112。作為示例,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、網站控制器、存取點(AP)、無線路由器等等。雖然每一個基地台114a、114b都被描述為是單一元件,但是應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。Communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b may be any type of device configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks, which may be Core network 106, internet 110, and/or network 112. By way of example, base stations 114a, 114b may be base transceiver stations (BTS), Node Bs, eNodeBs, local Node Bs, local eNodeBs, website controllers, access points (APs), wireless routers, and the like. While each base station 114a, 114b is described as a single component, it should be understood that the base stations 114a, 114b can include any number of interconnected base stations and/or network elements.

基地台114a可以是RAN 104的一部分,並且該RAN還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可以被配置為在名為胞元(未顯示)的特定地理區域內傳輸及/或接收無線信號。胞元可被進一步劃分為胞元扇區。例如,與基地台114a關聯的胞元可分為三個扇區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,每一個收發器對應於胞元的一個扇區。在另一個實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,由此可以為胞元的每個扇區使用多個收發器。The base station 114a may be part of the RAN 104, and the RAN may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), a radio network controller (RNC), a relay. Nodes and so on. Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals in a particular geographic area known as a cell (not shown). The cell can be further divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, that is, each transceiver corresponds to one sector of a cell. In another embodiment, base station 114a may use multiple input multiple output (MIMO) technology whereby multiple transceivers may be used for each sector of a cell.

基地台114a、114b可以經由空氣介面116以與一個或多個WTRU 102a、102b、102c、102d進行通信,該空氣介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、紅外線(IR)、紫外線(UV)、可見光等等)。該空氣介面116可以用任何適當的無線電存取技術(RAT)來建立。The base stations 114a, 114b can communicate with one or more WTRUs 102a, 102b, 102c, 102d via an air interface 116, which can be any suitable wireless communication link (e.g., radio frequency (RF), microwave, infrared ( IR), ultraviolet (UV), visible light, etc.). The air interface 116 can be established using any suitable radio access technology (RAT).

更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種頻道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。舉例來說,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,並且該技術可以使用寬頻CDMA(WCDMA)來建立空氣介面116。WCDMA可以包括諸如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA則可以包括高速下鏈封包存取(HSDPA)及/或高速上鏈封包存取(HSUPA)。More specifically, as noted above, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 104 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), and the technology may use wideband CDMA (WCDMA) ) to establish the air interface 116. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA can include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA).

在另一個實施例中,基地台114a與WTRU 102a、102b、102c可以實施演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,該技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)來建立空氣介面116。In another embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or Advanced LTE (LTE-A) is used to establish the air interface 116.

在其他實施例中,基地台114a與WTRU 102a、102b、102c可以實施IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM增強資料速率演進(EDGE)、GSM EDGE(GERAN)等無線電存取技術。In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may implement IEEE 802.16 (Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Provisional Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM), Radio Access Technology for GSM Enhanced Data Rate Evolution (EDGE), GSM EDGE (GERAN).

作為示例,第1A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點,並且可以使用任何適當的RAT來促成例如營業場所、住宅、交通工具、校園等等的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以實施諸如IEEE 802.11之類的無線電技術以建立無線區域網路(WLAN)。在另一個實施例中,基地台114b與WTRU 102c、102d可以實施諸如IEEE 802.15之類的無線電技術以建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可以使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直接連接到網際網路110。由此,基地台114b未必需要經由核心網路106來存取網際網路110。As an example, base station 114b in FIG. 1A may be a wireless router, a local Node B, a local eNodeB, or an access point, and may use any suitable RAT to facilitate, for example, a business location, a home, a vehicle, a campus, etc. Wireless connection in a local area. In one embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN). In still another embodiment, base station 114b and WTRUs 102c, 102d may use a cellular based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish picocells or femtocells. As shown in FIG. 1A, the base station 114b can be directly connected to the Internet 110. Thus, the base station 114b does not necessarily need to access the Internet 110 via the core network 106.

RAN 104可以與核心網路106通信,該核心網路可以是被配置為向一個或多個WTRU 102a、102b、102c、102d提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。例如,核心網路106可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或執行使用者驗證之類的高階安全功能。雖然在第1A圖中沒有顯示,但是應該瞭解,RAN 104及/或核心網路106可以直接或間接地和其他那些與RAN 104使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用E-UTRA無線電技術的RAN 104連接之外,核心網路106還可以與別的使用GSM無線電技術的RAN(未顯示)通信。The RAN 104 can be in communication with a core network 106, which can be configured to provide voice, data, applications, and/or Voice over Internet Protocol (VoIP) services to one or more of the WTRUs 102a, 102b, 102c, 102d. Any type of network. For example, core network 106 can provide call control, billing services, mobile location based services, prepaid calling, internet connectivity, video distribution, etc., and/or perform high level security functions such as user authentication. Although not shown in FIG. 1A, it should be appreciated that the RAN 104 and/or the core network 106 can communicate directly or indirectly with other RANs that use the same RAT or a different RAT with the RAN 104. For example, in addition to being connected to the RAN 104 using the E-UTRA radio technology, the core network 106 can also communicate with other RANs (not shown) that use GSM radio technology.

核心網路106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通信協定的全球性互聯電腦網路裝置系統,該協定可以是TCP/IP互連網協定族中的傳輸控制協定(TCP)、使用者資料包通訊協定(UDP)和網際網路協定(IP)。網路112可以包括由其他服務供應者擁有及/或操作的有線或無線通訊網路。例如,網路112可以包括與一個或多個RAN相連的另一個核心網路,該一個或多個RAN可以與RAN 104使用相同RAT或不同RAT。The core network 106 can also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global interconnected computer network device system using a public communication protocol, which may be the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet in the TCP/IP Internet Protocol suite. Network Protocol (IP). Network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs that may use the same RAT or a different RAT as RAN 104.

通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力,換言之,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器。例如,第1A圖所示的WTRU 102c可以被配置為與使用基於蜂巢的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, in other words, the WTRUs 102a, 102b, 102c, 102d may include multiple transceivers that communicate with different wireless networks over different wireless links. For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that uses a cellular-based radio technology, and with a base station 114b that can use an IEEE 802 radio technology.

第1B圖是示例WTRU 102的系統圖。示例WTRU 102是出於闡述說明的目的而被提供,而非用於對所揭露的實施例進行限制。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、數位鍵盤126、顯示器/觸控板128、非可移式記憶體130、可移式記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊裝置138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。FIG. 1B is a system diagram of an example WTRU 102. The example WTRU 102 is provided for purposes of illustration and not for limitation of the disclosed embodiments. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a digit keypad 126, a display/touchpad 128, a non-removable memory 130, and The shift memory 132, the power source 134, the global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be appreciated that the WTRU 102 may also include any sub-combination of the aforementioned elements while remaining consistent with the embodiments.

處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)、狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理及/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述為是獨立元件,但是應該瞭解,處理器118和收發器120可以集成在一個電子元件或晶片中。The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a microcontroller , Dedicated Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) circuits, any other type of integrated circuit (IC), state machine, and more. The processor 118 can perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although FIG. 1B depicts processor 118 and transceiver 120 as separate components, it should be understood that processor 118 and transceiver 120 can be integrated into one electronic component or wafer.

傳輸/接收元件122可以被配置為經由空氣介面116來傳輸或接收去往或來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。在另一個實施例中,作為示例,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的發射器/偵測器。在再一個實施例中,傳輸/接收元件122可以被配置為傳輸和接收RF和光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。The transmit/receive element 122 can be configured to transmit or receive signals to or from a base station (e.g., base station 114a) via the air interface 116. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, as an example, the transmit/receive element 122 can be a transmitter/detector configured to transmit and/or receive IR, UV, or visible light signals. In still another embodiment, the transmit/receive element 122 can be configured to transmit and receive RF and optical signals. It should be appreciated that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.

此外,雖然在第1B圖中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括經由空氣介面116來傳輸和接收無線電信號的兩個或多個傳輸/接收元件122(例如多個天線)。Moreover, although the transmit/receive element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) that transmit and receive radio signals via the air interface 116.

收發器120可以被配置為對傳輸/接收元件122將要傳輸的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102經由諸如UTRA和IEEE 802.11之類的多種RAT來進行通信的多個收發器。The transceiver 120 can be configured to modulate a signal to be transmitted by the transmission/reception element 122 and to demodulate a signal received by the transmission/reception element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Accordingly, transceiver 120 may include multiple transceivers that allow WTRU 102 to communicate via multiple RATs, such as UTRA and IEEE 802.11.

WTRU 102的處理器118可以耦合至揚聲器/麥克風124、數位鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、數位鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從任何適當的記憶體(例如非可移式記憶體106及/或可移式記憶體132)中存取資訊、以及將資料存入這些記憶體。該非可移式記憶體106可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移式記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料存入這些記憶體,其中舉例來說,該記憶體可以位於伺服器或家用電腦(未顯示)。The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a digit keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and may Receive user input from these components. The processor 118 can also output user profiles to the speaker/microphone 124, the digit keypad 126, and/or the display/trackpad 128. In addition, processor 118 can access information from any suitable memory (eg, non-removable memory 106 and/or removable memory 132) and store the data in such memory. The non-removable memory 106 can include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from, and store data in, memory that is not physically located in the WTRU 102, for example, the memory may be located on a server or a home computer (not display).

處理器118可以接收來自電源134的電力、並且可以被配置分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當的裝置。舉例來說,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池、燃料電池等等。The processor 118 can receive power from the power source 134 and can be configured to distribute and/or control power for other elements in the WTRU 102. Power source 134 may be any suitable device that powers WTRU 102. For example, the power source 134 may include one or more dry battery packs (such as nickel-cadmium (Ni-Cd), nickel-zinc (Ni-Zn), nickel-hydrogen (NiMH), lithium-ion (Li-ion), etc., solar energy Batteries, fuel cells, etc.

處理器118還可以與GPS晶片組136耦合,該晶片組可以被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度和緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空氣介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。The processor 118 can also be coupled to a GPS chipset 136 that can be configured to provide location information (e.g., longitude and latitude) related to the current location of the WTRU 102. Additionally or alternatively to the information from the GPS chipset 136, the WTRU 102 may receive location information from a base station (e.g., base station 114a, 114b) via air interface 116 and/or upon receiving from two or more nearby base stations. Signal timing to determine its position. It should be appreciated that the WTRU 102 may obtain location information using any suitable positioning method while remaining consistent with the embodiments.

處理器118還可以耦合到其他週邊裝置138,這其中可以包括提供附加特徵、功能及/或有線或無線連接的一個或多個軟體及/或硬體模組。例如,週邊裝置138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、Bluetooth®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器等等。The processor 118 can also be coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photo and video), a universal serial bus (USB) port, a vibrating device, a television transceiver, a hands-free headset, a Bluetooth® mode. Group, FM radio unit, digital music player, media player, video game console module, internet browser, etc.

第1C圖是根據一個實施例的RAN 104和核心網路106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術並經由空氣介面116來與WTRU 102a、102b、102c進行通信。並且RAN 104還可以與核心網路106通信。如第1C圖所示,RAN 104可以包括節點B 140a、140b、140c,其中每一個節點B都可以包括經由空氣介面115而與WTRU 102a、102b、102c通信的一個或多個收發器。節點B 140a、140b、140c中的每一個都可以關聯於RAN 104內的特定胞元(未顯示)。RAN 104還可以包括RNC 142a、142b。應該瞭解的是,在保持與實施例相符的同時,RAN 104可以包括任何數量的節點B和RNC。1C is a system diagram of RAN 104 and core network 106, in accordance with one embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c via the air interface 116 using E-UTRA radio technology. And the RAN 104 can also communicate with the core network 106. As shown in FIG. 1C, RAN 104 may include Node Bs 140a, 140b, 140c, each of which may include one or more transceivers in communication with WTRUs 102a, 102b, 102c via air interface 115. Each of Node Bs 140a, 140b, 140c may be associated with a particular cell (not shown) within RAN 104. The RAN 104 may also include RNCs 142a, 142b. It should be appreciated that the RAN 104 may include any number of Node Bs and RNCs while remaining consistent with the embodiments.

如第1C圖所示,節點B 140a、140b可以與RNC 142a進行通信。此外,節點B 140c還可以與RNC 142b進行通信。節點B 140a、140b、140c可以經由Iub介面來與對應的RNC 142a、142b進行通信。RNC 142a、142b可以經由Iur介面彼此通信。每一個RNC 142a、142b都可以被配置為控制與之相連的對應節點B 140a、140b、140c。另外,每一個RNC 142a、142b都可被配置為執行或支援其他功能,例如外環功率控制、負載控制、許可控制、封包排程、切換控制、巨集分集、安全功能、資料加密等等。As shown in FIG. 1C, Node Bs 140a, 140b can communicate with RNC 142a. In addition, Node B 140c can also communicate with RNC 142b. Node Bs 140a, 140b, 140c may communicate with corresponding RNCs 142a, 142b via an Iub interface. The RNCs 142a, 142b can communicate with each other via the Iur interface. Each RNC 142a, 142b can be configured to control a corresponding Node B 140a, 140b, 140c to which it is connected. In addition, each RNC 142a, 142b can be configured to perform or support other functions, such as outer loop power control, load control, admission control, packet scheduling, handover control, macro diversity, security functions, data encryption, and the like.

第1C圖所示的核心網路106可以包括媒體閘道(MGW)144、行動交換中心(MSC)146、服務GPRS節點交換中心(SGSN)148、及/或閘道GPRS支援節點(GGSN)150。雖然前述每個元件都被描述為是核心網路106的一部分,但是應該瞭解,核心網路操作者之外的其他實體也可以擁有及/或操作這其中的任一元件。The core network 106 shown in FIG. 1C may include a media gateway (MGW) 144, a mobile switching center (MSC) 146, a serving GPRS node switching center (SGSN) 148, and/or a gateway GPRS support node (GGSN) 150. . While each of the foregoing elements is described as being part of the core network 106, it should be understood that other entities than the core network operator may also own and/or operate any of these elements.

RAN 104中的RNC 142a可以經由IuCS介面而連接到核心網路106中的MSC 146。MSC 146則可以連接到MGW 144。MSC 146和MGW 144可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以促成WTRU 102a、102b、102c與傳統陸線通信裝置間的通信。The RNC 142a in the RAN 104 can be connected to the MSC 146 in the core network 106 via an IuCS interface. The MSC 146 can then be connected to the MGW 144. MSC 146 and MGW 144 may provide WTRUs 102a, 102b, 102c with access to circuit switched networks such as PSTN 108 to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices.

RAN 104中的RNC 142a還可以經由IuPS介面而連接到核心網路106中的SGSN 148。該SGSN 148則可以連接到GGSN 150。SGSN 148和GGSN 150可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包交換網路的存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。The RNC 142a in the RAN 104 can also be connected to the SGSN 148 in the core network 106 via an IuPS interface. The SGSN 148 can then be connected to the GGSN 150. The SGSN 148 and GGSN 150 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate communication between the WTRUs 102a, 102b, 102c and IP-enabled devices.

如上所述,核心網路106還可以連接到網路112,該網路可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。As noted above, the core network 106 can also be connected to the network 112, which can include other wired or wireless networks owned and/or operated by other service providers.

第1D圖是根據另一個實施例的RAN 104以及核心網路106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術並經由空氣介面116來與WTRU 102a、102b、102c進行通信。此外,RAN 104還可以與核心網路106通信。FIG. 1D is a system diagram of RAN 104 and core network 106 in accordance with another embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c via the air interface 116 using E-UTRA radio technology. In addition, the RAN 104 can also communicate with the core network 106.

RAN 104可以包括e節點B 160a、160b、160c,但是應該瞭解,在保持與實施例相符的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c可以包括一個或多個收發器,以經由空氣介面116而與WTRU 102a、102b、102c通信。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線信號,以及接收來自WTRU 102a的無線信號。The RAN 104 may include eNodeBs 160a, 160b, 160c, but it should be appreciated that the RAN 104 may include any number of eNodeBs while remaining consistent with the embodiments. Each eNodeB 160a, 160b, 160c may include one or more transceivers to communicate with the WTRUs 102a, 102b, 102c via the air interface 116. In one embodiment, the eNodeBs 160a, 160b, 160c may implement MIMO technology. Thus, for example, eNodeB 160a may use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a.

每一個e節點B 160a、160b、160c可以關聯於特定胞元(未顯示),並且可以被配置為處理無線電資源管理決策、切換決策、上鏈及/或下鏈中的使用者排程等等。如第1D圖所示,e節點B 160a、160b、160c彼此可以在X2介面上進行通信。Each eNodeB 160a, 160b, 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, user scheduling in the uplink and/or downlink, etc. . As shown in FIG. 1D, the eNodeBs 160a, 160b, 160c can communicate with each other on the X2 interface.

第1D圖所示的核心網路106可以包括移動性管理閘道(MME)162、服務閘道164以及封包資料網路(PDN)閘道166。雖然上述每一個元件都被描述為是核心網路106的一部分,但是應該瞭解,核心網路操作者之外的其他實體同樣可以擁有及/或操作這其中的任一元件。The core network 106 shown in FIG. 1D may include a mobility management gateway (MME) 162, a service gateway 164, and a packet data network (PDN) gateway 166. While each of the above elements is described as being part of the core network 106, it should be understood that other entities than the core network operator may also own and/or operate any of these elements.

MME 162可以經由S1介面來與RAN 104中的每一個e節點B 160a、160b、160c相連,並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、啟動/停用承載,在WTRU 102a、102b、102c的初始連結期間選擇特定服務閘道等等。該MME 162還可以提供控制平面功能,以在RAN 104與使用了GSM或WCDMA之類的其他無線電技術的其他RAN(未顯示)之間執行切換。The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface and may act as a control node. For example, MME 162 may be responsible for verifying the users of WTRUs 102a, 102b, 102c, initiating/deactivating bearers, selecting particular service gateways during initial connection of WTRUs 102a, 102b, 102c, and the like. The MME 162 may also provide control plane functionality to perform handover between the RAN 104 and other RANs (not shown) that employ other radio technologies such as GSM or WCDMA.

服務閘道164可以經由S1介面而連接到RAN 104中的每一個e節點B 160a、160b、160c。該服務閘道164通常可以路由和轉發去往/來自WTRU 102a、102b、102c的使用者資料封包。此外,服務閘道164還可以執行其他功能,例如在e節點B間的切換過程中錨定使用者平面、在下鏈資料可供WTRU 102a、102b、102c使用時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文等等。The service gateway 164 can be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface. The service gateway 164 can typically route and forward user data packets to/from the WTRUs 102a, 102b, 102c. In addition, the service gateway 164 can perform other functions, such as anchoring the user plane during handover between eNodeBs, triggering paging, managing and storing the WTRU 102a when the downlink information is available to the WTRUs 102a, 102b, 102c, The context of 102b, 102c, and the like.

服務閘道164還可以連接到PDN閘道166,該PDN閘道可以為WTRU 102a、102b、102c提供針對諸如網際網路110之類的封包交換網路的存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。The service gateway 164 can also be coupled to a PDN gateway 166 that can provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate the WTRUs 102a, 102b, Communication between 102c and IP-enabled devices.

核心網路106可以促成與其他網路的通信。例如,核心網路106可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。作為示例,核心網路106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之通信,其中該IP閘道充當了核心網路106與PSTN 108之間的介面。此外,核心網路106還可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。The core network 106 can facilitate communication with other networks. For example, core network 106 may provide WTRUs 102a, 102b, 102c with access to circuit-switched networks such as PSTN 108 to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. As an example, core network 106 may include or be in communication with an IP gateway, such as an IP Multimedia Subsystem (IMS) server, where the IP gateway acts as an interface between core network 106 and PSTN 108. In addition, core network 106 may also provide WTRUs 102a, 102b, 102c with access to network 112, which may include other wired or wireless networks owned and/or operated by other service providers.

第1E圖是根據另一個實施例的RAN 104和核心網路106的系統圖。RAN 104可以是使用IEEE 802.16無線電技術而在空氣介面116上與WTRU 102a、102b、102c通信的存取服務網路(ASN)。如以下進一步論述的那樣,WTRU 102a、102b、102c,RAN 104以及核心網路106的不同功能實體之間的通信鏈路可被定義為參考點。FIG. 1E is a system diagram of RAN 104 and core network 106 in accordance with another embodiment. The RAN 104 may be an Access Service Network (ASN) that communicates with the WTRUs 102a, 102b, 102c over the air interface 116 using IEEE 802.16 radio technology. As discussed further below, the communication links between the different functional entities of the WTRUs 102a, 102b, 102c, RAN 104, and core network 106 may be defined as reference points.

如第1E圖所示,RAN 104可以包括基地台170a、170b、170c以及ASN閘道172,但是應該瞭解,在保持與實施例相符的同時,RAN 104可以包括任何數量的基地台及ASN閘道。每一個基地台170a、170b、170c都可以關聯於RAN 104中的特定胞元(未顯示),並且每個基地台都可以包括一個或多個收發器,以經由空氣介面116而與WTRU 102a、102b、102c進行通信。在一個實施例中,基地台170a、170b、170c可以實施MIMO技術。由此,舉例來說,基地台170a可以使用多個天線以向WTRU 102a傳輸無線信號、以及接收來自WTRU 102a的無線信號。基地台170a、170b、170c還可以提供移動性管理功能,例如切換觸發、隧道建立、無線電資源管理、訊務分類、服務品質(QoS)策略實施等等。ASN閘道172可以充當訊務聚合點、並且可以負責實施傳呼、使用者特性檔快取、針對核心網路106的路由等等。As shown in FIG. 1E, the RAN 104 may include base stations 170a, 170b, 170c and ASN gateway 172, but it should be understood that the RAN 104 may include any number of base stations and ASN gateways while remaining consistent with the embodiment. . Each of the base stations 170a, 170b, 170c may be associated with a particular cell (not shown) in the RAN 104, and each base station may include one or more transceivers to communicate with the WTRU 102a via the air interface 116, 102b, 102c communicate. In one embodiment, base stations 170a, 170b, 170c may implement MIMO technology. Thus, for example, base station 170a can use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a. Base stations 170a, 170b, 170c may also provide mobility management functions such as handover triggering, tunnel establishment, radio resource management, traffic classification, quality of service (QoS) policy enforcement, and the like. The ASN gateway 172 can act as a traffic aggregation point and can be responsible for implementing paging, user profile cache, routing to the core network 106, and the like.

WTRU 102a、102b、102c與RAN 104之間的空氣介面116可被定義為是實施IEEE 802.16規範的R1參考點。另外,每一個WTRU 102a、102b、102c都可以與核心網路106建立邏輯介面(未顯示)。WTRU 102a、102b、102c與核心網路106之間的邏輯介面可被定義為R2參考點,該參考點可以用於驗證、許可、IP主機配置管理及/或移動性管理。The air interface 116 between the WTRUs 102a, 102b, 102c and the RAN 104 may be defined as an Rl reference point that implements the IEEE 802.16 specification. In addition, each of the WTRUs 102a, 102b, 102c can establish a logical interface (not shown) with the core network 106. The logical interface between the WTRUs 102a, 102b, 102c and the core network 106 can be defined as an R2 reference point that can be used for authentication, licensing, IP host configuration management, and/or mobility management.

每一個基地台170a、170b、170c之間的通信鏈路可被定義為R8參考點,該參考點包含了用於促成WTRU切換以及基地台之間的資料傳送的協定。基地台170a、170b、170c與ASN閘道172之間的通信鏈路可被定義為R6參考點。該R6參考點可以包括用於促成基於與每一個WTRU 102a、102b、180c相關聯的移動性事件的移動性管理的協定。The communication link between each of the base stations 170a, 170b, 170c can be defined as an R8 reference point that contains protocols for facilitating WTRU handover and data transfer between base stations. The communication link between the base stations 170a, 170b, 170c and the ASN gateway 172 can be defined as an R6 reference point. The R6 reference point can include an agreement to facilitate mobility management based on mobility events associated with each of the WTRUs 102a, 102b, 180c.

如第1E圖所示,RAN 104可以連接到核心網路106。RAN 104與核心網路106之間的通信鏈路可以被定義為R3參考點,作為示例,該參考點包含了用於促成資料傳送和移動性管理能力的協定。核心網路106可以包括行動IP家用代理(MIP-HA)174、驗證、許可、記帳(AAA)伺服器176以及閘道178。雖然前述每個元件都被描述為是核心網路106的一部分,但是應該瞭解,核心網路操作者以外的實體也可以擁有及/或操作這其中的任一元件。As shown in FIG. 1E, the RAN 104 can be connected to the core network 106. The communication link between the RAN 104 and the core network 106 can be defined as an R3 reference point, which, by way of example, includes protocols for facilitating data transfer and mobility management capabilities. The core network 106 may include a Mobile IP Home Agent (MIP-HA) 174, a Authentication, Licensing, Accounting (AAA) server 176, and a gateway 178. While each of the foregoing elements is described as being part of the core network 106, it should be understood that entities other than the core network operator may also own and/or operate any of these elements.

MIP-HA174可以負責實施IP位址管理、並且可以允許WTRU 102a、102b、102c在不同的ASN及/或不同的核心網路之間漫遊。MIP-HA 174可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包交換網路的存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。AAA伺服器176可以負責實施使用者驗證以及支援使用者服務。閘道178可以促成與其他網路的互作。例如,閘道178可以為WTRU 102a、102b、102c提供對於PSTN 108之類的電路切換式網路的存取,以促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。另外,閘道178還可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。The MIP-HA 174 may be responsible for implementing IP address management and may allow the WTRUs 102a, 102b, 102c to roam between different ASNs and/or different core networks. The MIP-HA 174 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate communication between the WTRUs 102a, 102b, 102c and IP-enabled devices. The AAA server 176 can be responsible for implementing user authentication and supporting user services. Gateway 178 can facilitate interaction with other networks. For example, gateway 178 may provide WTRUs 102a, 102b, 102c with access to a circuit switched network such as PSTN 108 to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. In addition, gateway 178 may also provide WTRUs 102a, 102b, 102c with access to network 112, which may include other wired or wireless networks owned and/or operated by other service providers.

雖然在第1E圖中沒有顯示,但是應該瞭解,RAN 104可以連接到其他ASN,並且核心網路106可以連接到其他核心網路。RAN 104與其他ASN之間的通信鏈路可被定義為R4參考點,該參考點可以包括用於協調WTRU 102a、102b、102c在RAN 104與其他ASN之間的移動的協定。核心網路106與其他核心網路之間的通信鏈路可以被定義為R5參考點,該參考點可以包括用於促成歸屬核心網路與被訪核心網路之間互作的協定。Although not shown in FIG. 1E, it should be appreciated that the RAN 104 can be connected to other ASNs and the core network 106 can be connected to other core networks. The communication link between the RAN 104 and the other ASNs may be defined as an R4 reference point, which may include a protocol for coordinating the movement of the WTRUs 102a, 102b, 102c between the RAN 104 and other ASNs. The communication link between the core network 106 and other core networks may be defined as an R5 reference point, which may include protocols for facilitating interaction between the home core network and the visited core network.

第2圖示出了一個可以實踐或實施這裡的實施例的示例通信系統200。該通信系統200僅僅是出於例證目的提供的,並且不對所揭露的實施例構成限制。如第2圖所示,通信系統200包括基地台202和WTRU 240a、204b。本領域中具有通常知識者將會理解,該通信系統200可以包括第2圖中沒有顯示的附加元件。FIG. 2 illustrates an example communication system 200 in which embodiments herein may be practiced or implemented. The communication system 200 is provided for illustrative purposes only and does not limit the disclosed embodiments. As shown in FIG. 2, communication system 200 includes a base station 202 and WTRUs 240a, 204b. Those of ordinary skill in the art will appreciate that the communication system 200 can include additional components not shown in FIG.

作為示例,基地台202可以是基地台114(第1A圖)、節點B 140(第1C圖)、e節點B 160(第1D圖)和基地台170(第1E圖)中的任何一個。基地台202也可以包括與基地台114、節點B 140、e節點B 160以及基地台170相似及/或不同的功能。舉例來說,基地台202可以包括用於支援5G特徵以及實施這裡包含的程序、技術等等的功能。As an example, base station 202 may be any of base station 114 (FIG. 1A), Node B 140 (FIG. 1C), eNode B 160 (FIG. 1D), and base station 170 (FIG. 1E). Base station 202 may also include similar and/or different functions as base station 114, Node B 140, eNodeB 160, and base station 170. For example, base station 202 can include functionality for supporting 5G features and implementing the programs, techniques, and the like included herein.

基地台202可被配置為用於小型胞元操作及/或部署。基地台202可被配置為支援任何的釐米波(cmW)和毫米波(mmW)操作。為了簡化描述,在這裡可以使用術語“x mW”來指cmW和mmW中的任一個。作為補充及/或替代,基地台202還可以被配置為支援與3GPP 系統版本12規定的小型胞元操作及/或部署有關的各種(例如所有或一些)功能及/或特徵。關於這一點,基地台202能夠平行、同時及/或採用其他與LTE、LTE-A或類似類型(統稱為“LTE”)的空氣介面相關聯的方式來操作x mW空氣介面。基地台202可以配備各種先進天線配置和波束成形技術中的至少一種,例如可以允許基地台202同時在寬波束場型中傳送LTE下鏈頻道以及在一個或多個窄波束場型中傳送x mW頻道的技術。基地台202還可以被配置為使用被適配為具有用於支援不具有或者未使用x mW上鏈傳輸能力的WTRU的特徵和過程(例如這裡揭露的特徵和過程)的LTE上鏈配置。Base station 202 can be configured for small cell operation and/or deployment. The base station 202 can be configured to support any centimeter wave (cmW) and millimeter wave (mmW) operation. To simplify the description, the term may be used herein "x mW" refers to any of a cmW and mmW. Additionally and/or alternatively, base station 202 may also be configured to support various (eg, all or some) functions and/or features related to small cell operations and/or deployment as specified by 3GPP system version 12. In this regard, the base station 202 can be parallel, simultaneously and / or using other with LTE, LTE-A type or the like (collectively referred to as "LTE") associated with the air interface manner to operate x mW air interface. The base station 202 can be equipped with at least one of various advanced antenna configurations and beamforming techniques, for example, can allow the base station 202 to simultaneously transmit LTE downlink channels in a wide beam pattern and transmit x mW in one or more narrow beam patterns. Channel technology. The base station 202 LTE may also be arranged on the chain configuration is adapted to the features and processes (e.g., processes and features disclosed herein) has no support for having WTRU x mW or unused transport capacity of the chain is used.

作為示例,WTRU 204a、204b中的每一個可以是WTRU 102(第1A-1E圖)中的任何一個。WTRU 204a、204b中的每一個同樣可以包含與WTRU 102相似及/或不同的功能。WTRU 204a、204b可以包含用於支援5G特徵以及實施這裡所包含的過程、技術等等的功能。為了簡化描述,當在這裡使用“WTRU 204”時,其可以指WTRU 204a、204b中的任一個。As an example, each of the WTRUs 204a, 204b may be any of the WTRUs 102 (FIGS 1A-1E). Each of the WTRUs 204a, 204b may also include similar and/or different functions as the WTRU 102. The WTRUs 204a, 204b may include functionality for supporting 5G features and implementing the processes, techniques, and the like included herein. For simplicity of description, when "WTRU 204" is used herein, it may refer to any of the WTRUs 204a, 204b.

WTRU 204a、204b中的每一個都可以被配置為支援x mW操作。WTRU 204a、204b可以進一步被配置為支援與3GPP系統版本12規定的使用者設備操作及/或部署有關的各種(例如全部或一些)功能及/或特徵。WTRU 204a、204b中的每一個都能平行、同時及/或以其他相互關聯的方式來操作LTE和x mW空氣介面。每一個WTRU 204a、204b都可以具有兩組天線以及附帶的RF鏈;其中一組被配置為在LTE波段中操作,並且另一組被配置為在x mW頻段中操作。然而,本揭露並不限於此,並且WTRU可以具有任何數量的天線組以及附帶的RF鏈。每一個WTRU 204a、204b都可以包括一個或多個基帶處理器,並且這些基帶處理器可以包括與LTE頻段以及x mW頻段的基帶處理有關的單獨或者至少部分組合的功能。作為示例,這些基帶處理功能可以共用用於x mW和LTE空氣介面的硬體結構。WTRU 204a, 204b each of which can be configured to support operation x mW. The WTRUs 204a, 204b may be further configured to support various (eg, all or some) functions and/or features related to user equipment operation and/or deployment as specified by the 3GPP system Release 12. WTRU 204a, 204b are each capable of parallel, simultaneously and / or otherwise interconnected to operate LTE air interface and x mW. Each WTRU 204a, 204b may have two sets of antennas and RF chains incidental; wherein a group is configured to operate in the LTE band, and the other set is configured to operate in the band x mW. However, the disclosure is not limited in this respect, and the WTRU may have any number of antenna groups and accompanying RF chains. Each WTRU 204a, 204b may include one or more baseband processors, and these may include a separate baseband processor or at least partially related to the combination of functions and x mW LTE baseband frequency band. As an example, these functions may share a baseband processor hardware architecture x mW and LTE air interface.

最初的x mW存取鏈路系統設計關注的是能將x mW資料傳輸(例如至少是下鏈傳輸)追加到諸如小型胞元LTE網路之類的現有網路的蜂巢系統程序。x mW頻道可以作為LTE載波聚合擴展來進行部署。作為示例,在x mW頻段中可以使用新的載波類型,及/或可以使用與LTE空氣介面不同的空氣介面。x mW頻道支援伺機用於高輸送量及/或低潛時的訊務資料應用。The initial x mW link access system design is concerned x mW can transmit data (e.g., at least a downlink transmission) is added to the existing network such as a Cellular System utilities small cell LTE network element or the like. The x mW channel can be deployed as an LTE carrier aggregation extension. As an example, x mW band can use the new carrier type, and / or may use different air interfaces LTE air interface. The x mW channel supports opportunistic applications for high traffic and/or low latency traffic data applications.

在LTE頻道及/或x mW頻道中可以運載控制傳訊。作為示例,在LTE頻道中可以運載系統資訊、傳呼、無線電資源控制(RRC)、網路存取層(NAS)傳訊(傳訊無線電承載)以及多播訊務。用於x mW操作的實體層(PHY)或“L1”控制傳訊可以在LTE頻道及/或x mW頻道中運載。In LTE, the channel and / or x mW channel may carry control messaging. As an example, system information, paging, radio resource control (RRC), network access layer (NAS) messaging (communication radio bearers), and multicast traffic can be carried in the LTE channel. X mW for the operation of physical layer (PHY) or "L1" in the LTE control channel may carry communications and / or x mW channels.

由於在x mW頻段、尤其是非視距(NLOS)環境中的傳播損失很高,因此,舉例來說,基地台202及/或WTRU 204可以使用窄波束成形來確保高輸送量和低潛時的資料傳輸具有足夠的鏈路預算。Since x mW when the band, in particular a non-line of sight propagation loss is high (the NLOS) environments, and therefore, for example, the base station 202 and / or the WTRU 204 may use the narrow beam forming to ensure high potential and low delivery Data transmission has sufficient link budget.

傳輸和接收窄波束配對可以被使用並且可以很好地適合於任何數量的環境。舉個例子,如果在市區於28吉赫(GHz)和38 GHz中的任一者操作,那麼使用對應的可導引的10°波束寬度和24.5 dBi的喇叭天線,基地台202(WTRU 204)的傳輸器和WTRU 204(基地台202)的接收器可以實現胞元半徑達到200公尺的一致的覆蓋範圍。在一個實施例中,接收波束成形可被認為是窄空間濾波。Transmission and reception narrow beam pairing can be used and can be well adapted to any number of environments. For example, if operating in any of the 28 GHz and 38 GHz cities, use a corresponding steerable 10° beamwidth and 24.5 dBi horn antenna, base station 202 (WTRU 204 The transmitter and the receiver of the WTRU 204 (base station 202) can achieve a consistent coverage with a cell radius of up to 200 meters. In one embodiment, receive beamforming can be considered as narrow spatial filtering.

除了基地台202及/或WTRU 204使用的窄波束之外,還可以使用寬波束場型。該寬波束場型可以應用在(例如傳統的)LTE操作,其中包括胞元搜尋、隨機存取、胞元選擇/重選等等中的任何一項。In addition to the narrow beams used by base station 202 and/or WTRU 204, a wide beam pattern can also be used. The wide beam pattern can be applied to (eg, conventional) LTE operations, including cell search, random access, cell selection/reselection, and the like.

在下表1中揭露的是與可以實踐或實施這裡的實施例的典型mmW系統有關的示例參數及/或假設。該典型的mmw系統可以在通信系統200中實施,並且為了簡化描述,該系統可以參考示例的通信系統200來描述。與該典型mmw系統有關的參數及/或假設只是出於例證目的提供的,並且不會對所揭露的實施例構成限制。 表1Disclosed in Table 1 below are example parameters and/or assumptions relating to a typical mmW system in which embodiments herein can be practiced or implemented. This typical mmw system can be implemented in communication system 200, and for simplicity of description, the system can be described with reference to example communication system 200. The parameters and/or assumptions relating to the typical mmw system are provided for illustrative purposes only and do not limit the disclosed embodiments. Table 1

該典型mmW系統可以支援各種傳輸時間間隔(TTI)和各種系統頻寬中的任何一種。特別地,所支援的TTI具有100微秒(us)的持續時間或是用於實現低潛時的其他數值。特別地,所支援的系統頻寬處於50兆赫茲(MHz)到2 GHz的範圍之中,或者是用於實現高資料速率的其他數值。The typical mmW system can support any of a variety of transmission time intervals (TTIs) and various system bandwidths. In particular, the supported TTI has a duration of 100 microseconds (us) or other value for achieving low latency. In particular, the supported system bandwidth is in the range of 50 megahertz (MHz) to 2 GHz, or other values used to achieve high data rates.

在該典型mmw系統中可以使用所應用的波形的一種訊框結構。而其他各種訊框結構同樣也是可以使用的。基於OFDM的波形的訊框結構(“基於OFDM的訊框結構”)可以在LTE與mmW頻道之間的協作中提供靈活性、及/或可以在WTRU 204中賦能公共功能塊共用。在下文中提供了關於使用基於OFDM的訊框結構的基礎。A frame structure of the applied waveform can be used in the typical mmw system. Other various frame structures are also available. The frame structure of the OFDM-based waveform ("OFDM-based frame structure") may provide flexibility in cooperation between LTE and mmW channels, and/or may enable common function block sharing in the WTRU 204. The basis for using an OFDM-based frame structure is provided below.

mmW取樣頻率可被設置為是1.92 MHz的LTE最小取樣頻率的整數倍。而mmW OFDM子載波間距Δf轉而可被設置為是15千赫茲(kHz)的LTE子載波間距的整數倍K ,即Δf = 15*K kHz。關於整數倍K 以及由此產生的mmW OFDM子載波間距Δf的設定可以顧及對於都普勒頻移的敏感性、不同類型的頻率誤差以及用於移除頻道時間分散的能力。The mmW sampling frequency can be set to an integer multiple of the LTE minimum sampling frequency of 1.92 MHz. The mmW OFDM subcarrier spacing Δf may instead be set to be an integer multiple K of the LTE subcarrier spacing of 15 kilohertz (kHz), ie Δf = 15*K kHz. The setting of the integer multiple K and the resulting mmW OFDM subcarrier spacing Δf may account for sensitivity to Doppler shift, different types of frequency errors, and the ability to remove channel time dispersion.

當都普勒頻移以與子載波間距成比例的方式增大時,子載波之間的正交性有可能會劣化,並且子載波之間的干擾有可能會增大。舉例來說,在30 km/h和28 GHz上的最大都普勒頻移是778 Hz。此外,紐約大學(NYU)Polytechnic近期在密集市區所做的28 GHz頻道時間分散測量表明,在200公尺(m )的胞元半徑,RMS延遲擴展σ介於100與200ns 之間。在100 kHz的1/50σ可以估計90%的相干頻寬,而在1 MHz的1/5σ則可以估計50%的相干頻寬。介於100 kHz與1 MHz之間的子載波間距Δf是合理的。300 kHz(K=20)的子載波間距對於都普勒頻移和其他類型的頻率誤差而言是非常強健的,並且可以大大地降低實施複雜度。對應的符號長度(1/ Δf)則是3.33μsWhen the Doppler shift is increased in proportion to the subcarrier spacing, the orthogonality between subcarriers may be degraded, and interference between subcarriers may increase. For example, the maximum Doppler shift at 30 km/h and 28 GHz is 778 Hz. In addition, New York University (NYU) Polytechnic's recent 28 GHz channel time dispersion measurements in dense urban areas indicate that the RMS delay spread σ is between 100 and 200 ns at a cell radius of 200 meters ( m ). A coherence bandwidth of 90% can be estimated at 1/50 sigma at 100 kHz, while a coherent bandwidth of 50% can be estimated at 1/5 sigma at 1 MHz. A subcarrier spacing Δf between 100 kHz and 1 MHz is reasonable. The subcarrier spacing of 300 kHz (K=20) is very robust for Doppler shift and other types of frequency errors and can greatly reduce implementation complexity. The corresponding symbol length (1/ Δf) is 3.33 μs .

循環前綴(CP)長度通常需要跨越頻道時間分散的整個長度,以估計符號間干擾。然而,由於CP沒有運載有用的資料,因此,持續時間很長的CP有可能會導致產生過多的CP負荷,對於3.33μs 的Tsymbol 來說,考慮到要消除ISI以及避免CP負荷過多,CP長度可以是Tsymbol 的1/14,即0.24μs 。在這種情況下,如由TCP / (TCP + Tsymbol )計算的那樣,對應的CP負荷是7%。The cyclic prefix (CP) length typically requires the entire length of the channel time to be spread across to estimate intersymbol interference. However, since the CP does not carry useful data, a CP with a long duration may cause excessive CP load. For the 3.33 μs T symbol , considering the need to eliminate ISI and avoid excessive CP load, CP length It can be 1/14 of the T symbol , which is 0.24 μs . In this case, the corresponding CP load is 7% as calculated by T CP / (T CP + T symbol ).

為了實現低潛時,mmW傳輸的TTI長度可以明顯小於LTE系統的1ms TTI長度。將1ms 的mmW子訊框長度與LTE的1ms 子訊框時序校準是非常有益的。mmW子訊框可以包含多個mmW TTI,其中該TTI的長度與其他參數相聯繫,例如子載波間距、符號長度、CP長度、快速傅利葉變換(FFT)大小等等。In order to achieve low latency, the TTI length of the mmW transmission can be significantly smaller than the 1 ms TTI length of the LTE system. It is very beneficial to calibrate the 1 ms mmW subframe length with the 1 ms subframe timing of LTE. The mmW subframe can contain multiple mmW TTIs, where the length of the TTI is related to other parameters, such as subcarrier spacing, symbol length, CP length, fast Fourier transform (FFT) size, and the like.

考慮到上述考慮因素,在表2中概述了具有使用4倍頻道延遲擴展的保守CP長度的示例。應該指出的是,CP長度選擇是基於所有潛在mmW頻段上的延遲擴展低於200ns 表2 (示例mmW下鏈OFDM參數(numerology))In view of the above considerations, an example with a conservative CP length using 4x channel delay spread is summarized in Table 2. It should be noted that the CP length selection is based on a delay spread of less than 200 ns on all potential mmW bands. Table 2 (Example mmW downlink OFDM parameters (numerology))

第3A圖至第3B圖示出了示例的基於OFDM的訊框結構300。如所示,基於OFDM的訊框結構300可以在該典型的mmW系統中使用,作為示例,其系統頻寬是1 GHz,子載波間距是300 kHz,符號長度是3.33μs ,以及CP長度是Tsymbol 的1/4(或0.833μs )。An OFDM-based frame structure 300 is illustrated in FIGS. 3A-3B. As shown, the OFDM-based frame structure 300 can be used in this typical mmW system, as an example, with a system bandwidth of 1 GHz, a subcarrier spacing of 300 kHz, a symbol length of 3.33 μs , and a CP length of T. 1/4 of the symbol (or 0.833 μs ).

基於OFDM的訊框結構300採用了一種基於OFDM的mmW波形,並且該波形很容易引入到基於OFDM的LTE(例如小型胞元)網路之中。然而,該基於OFDM的訊框結構300只是出於例證目的提供的,並且不會對所揭露的實施例構成限制。舉例來說,這裡揭露的系統程序並不受該特定訊框結構限制,並且還可以應用於其他波形。The OFDM-based frame structure 300 employs an OFDM-based mmW waveform, and the waveform is easily introduced into an OFDM-based LTE (e.g., small cell) network. However, the OFDM-based frame structure 300 is provided for illustrative purposes only and does not limit the disclosed embodiments. For example, the system programs disclosed herein are not limited by this particular frame structure and can be applied to other waveforms as well.

在該典型mmW系統中可以使用與mmW操作有關的新的參考信號、PHY頻道及/或較高層(例如傳輸層)頻道。除了現有的LTE參考信號、PHY頻道及/或較高層頻道之外,也可以使用該mmW參考信號、PHY頻道及/或較高層頻道。該mmW參考信號可以包括波束特定參考信號(BSRS)、適應性天線參考信號(AARS)以及解調參考信號(DMRS)中的任何一種。該mmW PHY頻道可以包括實體下鏈定向控制頻道(PDDCCH)和實體下鏈定向資料頻道(PDDDCH)中的任何一種。該mmW較高層頻道可以包括下鏈定向資料頻道(DL-DDCH)。在第4圖中示出了使用mmW頻道的示例頻道映射。New reference signals, PHY channels, and/or higher layer (e.g., transport layer) channels associated with mmW operation can be used in this typical mmW system. The mmW reference signal, PHY channel, and/or higher layer channel may be used in addition to existing LTE reference signals, PHY channels, and/or higher layer channels. The mmW reference signal may include any one of a beam specific reference signal (BSRS), an adaptive antenna reference signal (AARS), and a demodulation reference signal (DMRS). The mmW PHY channel may include any one of a Physical Downlink Directional Control Channel (PDDCCH) and a Physical Downlink Directional Data Channel (PDDDCH). The mmW higher layer channel may include a downlink oriented data channel (DL-DDCH). An example channel map using mmW channels is shown in FIG.

BSRS可以是在每傳輸波束上傳送的唯一序列、並且可以用於波束獲取、時序/頻率同步、關於PDDCCH的頻道估計、波束追蹤和測量等等中的任何一項。BSRS可以運載(例如隱性地)波束識別碼資訊。該波束識別碼資訊可以包括BSRS序列索引。BSRS可以使用不同類型的BSRS。用於傳送BSRS的資源(例如時間和頻率資源)可以是預先定義並為裝置所知的。The BSRS may be a unique sequence transmitted on each transmission beam and may be used for any of beam acquisition, timing/frequency synchronization, channel estimation with respect to PDDCCH, beam tracking and measurement, and the like. The BSRS can carry (e.g., implicitly) beam identification code information. The beam identification code information may include a BSRS sequence index. BSRS can use different types of BSRS. Resources for transmitting BSRS (e.g., time and frequency resources) may be predefined and known to the device.

AARS可以是動態排程和傳送的唯一序列、並且可以用於特定於天線埠的波束配對測量。該AARS可以將波束識別碼資訊嵌入到(例如隱性地)序列索引中、及/或可以運載包括了相同資訊的小酬載。The AARS can be a unique sequence of dynamic scheduling and transmission, and can be used for antenna pairing-specific beam pairing measurements. The AARS may embed beam identification code information into (eg, implicitly) a sequence index, and/or may carry a small payload that includes the same information.

PDDCCH可以運載與資料相關(例如所有)的控制資訊,以供WTRU正確地識別、解調和解碼相關聯的PDDDCH。該PDDDCH可以在mmW窄波束或寬波束中運載、並且可以應用不同的多重存取(例如TDD、FDD等等)。舉例來說,在進行WTRU特定的資料傳輸時,在覆蓋了扇區或胞元的下鏈mmW寬波束中可以傳送公共PDDCCH,而在窄波束配對中則僅僅傳送專用PDDCCH。該專用PDDCCH可以用每TTI為基礎來運載與其關聯的PDDDCH的排程資訊,並且不會運載波束特定資訊。公共PDDCCH可以包括胞元特定資訊,胞元特定資訊包括扇區/分段識別碼或波束識別碼。此外,WTRU可以讀取公共PDDCCH來確定其是否是為窄波束配對過程所排程,從而開始(例如執行)窄波束資料傳輸。The PDDCCH may carry control information related to the data (eg, all) for the WTRU to correctly identify, demodulate, and decode the associated PDDDCH. The PDDDCH can be carried in a mmW narrow beam or a wide beam, and different multiple accesses (eg, TDD, FDD, etc.) can be applied. For example, when performing WTRU-specific data transmission, a common PDDCCH can be transmitted in a downlink mmW wide beam covering a sector or cell, while in a narrow beam pair, only a dedicated PDDCCH is transmitted. The dedicated PDDCCH can carry schedule information for its associated PDDDCH on a per TTI basis and does not carry beam specific information. The common PDDCCH may include cell-specific information, and the cell-specific information includes a sector/segment identification code or a beam identification code. In addition, the WTRU may read the common PDDCCH to determine if it is scheduled for the narrow beam pairing process to begin (eg, perform) narrow beam data transmission.

PDDDCH可以運載以MAC PDU的形式從mmW媒體存取控制(MAC)層接收的酬載資訊。此頻道的完整資源分配是由PDDCCH中運載的下鏈排程資訊確定的。用於WTRU的PDDDCH可以在窄傳輸(Tx)波束中傳送、並且可以在恰當配對的窄接收(Rx)波束(例如窄波束配對)中被接收。由於窄Tx和Rx波束之間的這種空間隔離,處於不同波束配對之中且用於不同WTRU的PDDDCH可以重新使用任何時間、頻率以及碼資源。在時域、頻域或碼域中使用多重存取技術,多個PDDDCH還可以在一個波束配對中操作。此外,公共PDDDCH可以用於在與公共PDDCCH相關聯的寬mmW天線場型中運載資料。The PDDDCH can carry payload information received from the mmW Media Access Control (MAC) layer in the form of MAC PDUs. The complete resource allocation for this channel is determined by the downlink scheduling information carried in the PDDCCH. The PDDDCH for the WTRU may be transmitted in a narrow transmission (Tx) beam and may be received in a properly paired narrow receive (Rx) beam (e.g., narrow beam pairing). Due to this spatial isolation between the narrow Tx and Rx beams, the PDDDCHs that are in different beam pairs and used for different WTRUs can reuse any time, frequency, and code resources. Multiple access techniques are used in the time, frequency or code domain, and multiple PDDDCHs can also operate in one beam pairing. In addition, the common PDDDCH can be used to carry data in a wide mmW antenna pattern associated with a common PDDCCH.

DMRS可以包括在用於PDDDCH的頻道估計的傳輸中嵌入的符號。這些符號可以依照(預先)定義的場型而被置於時域和頻域之中,以確保正確地解釋和重建該頻道。The DMRS may include symbols embedded in the transmission for channel estimation of the PDDDCH. These symbols can be placed in the time and frequency domains in accordance with the (pre-defined) field pattern to ensure that the channel is correctly interpreted and reconstructed.

窄波束(或窄波束配對)中的所有頻道和參考符號都可以等同地被波束成形、並且可被考慮經由一個實體天線埠來傳送。考慮到傳輸的方向性,在窄波束上運載廣播或多播資訊未必是最佳的。All channels and reference symbols in a narrow beam (or narrow beam pairing) can be equally beamformed and can be considered to be transmitted via a physical antenna. Carrying broadcast or multicast information over a narrow beam is not necessarily optimal considering the directionality of the transmission.

在該典型的mmW系統中,可以由/在WTRU 204及/或基地台202實施各種波束成形技術及/或架構。WTRU 204可以使用相位天線陣列(PAA)。該PAA可以提供波束成形增益來補償mmW頻率上的高路徑損耗;該mmW頻率的短波長允許為該PAA使用小型成形因數。PAA的元件之間的間距可以是0.5λ(如通常在理論性能分析中使用的那樣)或更大,例如0.7λ,其中λ是與mmW波段的載波/中心頻率對應的波長。該PAA可以用不同的方式實施,例如第5圖至第9圖中所示。In this typical mmW system, various beamforming techniques and/or architectures may be implemented by/at the WTRU 204 and/or base station 202. The WTRU 204 may use a phase antenna array (PAA). The PAA can provide beamforming gain to compensate for high path loss at the mmW frequency; the short wavelength of the mmW frequency allows for a small form factor for the PAA. The spacing between the elements of the PAA can be 0.5 λ (as commonly used in theoretical performance analysis) or greater, such as 0.7 λ, where λ is the wavelength corresponding to the carrier/center frequency of the mmW band. The PAA can be implemented in different ways, such as shown in Figures 5 through 9.

參考第5圖,該圖顯示的是在使用了全數位化波束成形方法的收發器500中實施的示例PAA 502。收發器500可以包括用於PAA 502中的每一個天線元件504的專用RF鏈506。每一個專用RF鏈506都可以包括RF處理元件508和類比數位轉換器(ADC)510。每一個天線元件504所處理的信號都可以在相位和振幅上被獨立控制,以最佳化頻道容量。Referring to Figure 5, there is shown an example PAA 502 implemented in a transceiver 500 that uses a full digitized beamforming method. The transceiver 500 can include a dedicated RF chain 506 for each of the antenna elements 504 in the PAA 502. Each dedicated RF chain 506 can include an RF processing component 508 and an analog digital converter (ADC) 510. The signals processed by each antenna element 504 can be independently controlled in phase and amplitude to optimize channel capacity.

第6圖示出的是在使用模擬波束成形方法的收發器600中實施的示例PAA 602。該收發器600可以包括用於整個PAA 602的單一RF鏈606。PAA  602的每一個天線元件604都可通信地耦合到移相器612。每一個移相器612都可以用於設定關於波束成形及/或導引的加權。與收發器500(第5圖)的全數位化波束成形方法相比,由於RF鏈數量相對較少,收發器600的模擬波束成形方法的成本和複雜度相對較低,並且其在操作中具有較低的能耗。Figure 6 shows an example PAA 602 implemented in a transceiver 600 using an analog beamforming method. The transceiver 600 can include a single RF chain 606 for the entire PAA 602. Each antenna element 604 of PAA 602 is communicatively coupled to phase shifter 612. Each phase shifter 612 can be used to set weighting for beamforming and/or steering. Compared to the fully digitized beamforming method of transceiver 500 (Fig. 5), the analog beamforming method of transceiver 600 is relatively low in cost and complexity due to the relatively small number of RF chains, and it has Lower energy consumption.

在所顯示的示例中,在波束成形中會調整(例如移動)每一個天線元件上的信號相位。這種相位移動和組合處理可以在不同的階段實施,包括RF、基帶(BB)模擬和本地振盪器(LO)中的任何一個。In the example shown, the phase of the signal on each antenna element is adjusted (e.g., moved) in beamforming. This phase shifting and combining process can be implemented at different stages, including any of RF, baseband (BB) analog, and local oscillator (LO).

第7圖示出了在使用模擬波束成形方法的收發器700中實施的示例PAA 702。收發器700的模擬波束成形方法與收發器600的模擬波束成形方法相似,只不過其包括兩個可通信地耦合到單一PAA 702的RF鏈706A-B。第8圖示出了在使用模擬波束成形方法的收發器800中實施的示例PAA 802A-B。該收發器800的模擬波束成形方法與收發器700的模擬波束成形方法相似,其相似之處在於PAA 802A-B具有對應的專用RF鏈806A-B。第9圖示出了在使用模擬波束成形方法的收發器900中實施的多個PAA 902A-N的示例。該收發器900的模擬波束成形方法與收發器600的模擬波束成形方法相似,其相似之處在於中多個PAA 802A-B具有單一RF鏈906。FIG. 7 shows an example PAA 702 implemented in a transceiver 700 using an analog beamforming method. The analog beamforming method of transceiver 700 is similar to the analog beamforming method of transceiver 600 except that it includes two RF chains 706A-B that are communicatively coupled to a single PAA 702. Figure 8 shows an example PAA 802A-B implemented in a transceiver 800 using an analog beamforming method. The analog beamforming method of the transceiver 800 is similar to the analog beamforming method of the transceiver 700, which is similar in that the PAA 802A-B has a corresponding dedicated RF chain 806A-B. FIG. 9 shows an example of a plurality of PAAs 902A-N implemented in a transceiver 900 using an analog beamforming method. The analog beamforming method of the transceiver 900 is similar to the analog beamforming method of the transceiver 600, which is similar in that a plurality of PAAs 802A-B have a single RF chain 906.

類比波束成形演算法可以包括基於固定碼簿的波束成形和連續相移波束成形。使用基於固定碼簿的波束成形,可以產生關於波束的網格或固定集合。每一個波束都是藉由應用從預先定義的碼簿中選擇的波束成形加權向量形成的,其中N表示固定波束的數量。每一個向量可以包括關於所有移相器的預校準相移,並且可以代表唯一的模擬波束方向,也就是“波束”。波束的數量可以取決於波束成形以及期望覆蓋範圍的半功率波束寬度(HPBW)。Analog beamforming algorithms may include fixed codebook based beamforming and continuous phase shift beamforming. Using fixed codebook based beamforming, a grid or fixed set of beams can be generated. Each beam is applied from a predefined codebook by application Beamforming weighting vector selected Formed, where N represents the number of fixed beams. Each vector may include a pre-calibrated phase shift for all phase shifters and may represent a unique analog beam direction, ie, a "beam." The number of beams may depend on beamforming and the half power beamwidth (HPBW) of the desired coverage.

使用連續相移波束成形,可以基於所估計的短期頻道資訊以計算每一個移相器的期望加權,以及使用高解析度的數位類比轉換器(DAC)來轉換該期望加權,以將其應用於移相器。連續相移波束成形可以提供連續和適應性的波束成形,以追蹤頻道狀況。在增加的多徑、大角度擴展且低WTRU移動性的場景中,連續相移波束成形會有很好的表現。Using continuous phase shift beamforming, the expected weighting of each phase shifter can be calculated based on the estimated short-term channel information, and the desired weighting can be converted using a high-resolution digital analog converter (DAC) to apply it. Phase shifter. Continuous phase shift beamforming provides continuous and adaptive beamforming to track channel conditions. Continuous phase shift beamforming will perform well in scenarios with increased multipath, wide angle spread, and low WTRU mobility.

雖然沒有顯示,但是混合波束成形方法同樣是可以使用的。該混合方法可以組合數位和類比波束成形方法的一些要素。這種混合波束成形方法可以包括在與對應移相器相關聯的PAA天線元件上執行的類比波束成形,並且所有的PAA天線元件以及相關聯的移相器都可以可通信地耦合到一個或多個RF鏈。該方法可以進一步包括在RF鏈多於一個時在每一個RF鏈的基帶信號上應用的數位預編碼。作為示例,MIMO實施方式可以用數位預編碼處理來實現。Although not shown, the hybrid beamforming method is equally usable. This hybrid approach can combine some of the elements of the digital and analog beamforming methods. Such a hybrid beamforming method can include analog beamforming performed on a PAA antenna element associated with a corresponding phase shifter, and all PAA antenna elements and associated phase shifters can be communicatively coupled to one or more RF chain. The method can further include digital precoding applied on the baseband signal of each RF chain when there is more than one RF chain. As an example, a MIMO implementation can be implemented with digital precoding processing.

混合波束成形的基本系統參數可以包括以下的任何一個:資料流數量NDATA 、RF鏈(TRX)數量NTRX 、天線埠(AP)數量NAP 、天線元件(AE)數量NAE 以及PAA數量NPAA 。作為示例,如在這裡揭露的那樣,這些參數的配置有可能會影響系統的功能和性能。The basic system parameters for hybrid beamforming may include any of the following: number of data streams N DATA , number of RF chains (TRX) N TRX , number of antennas (AP) N AP , number of antenna elements (AE) N AE, and number of PAAs N PAA . As an example, as disclosed herein, the configuration of these parameters may affect the functionality and performance of the system.

在一個實施例中, In one embodiment,

一個PAA可以包括多個天線元件,例如具有16個天線元件的尺寸為4×4的PAA。天線埠可被定義為使得可以從傳遞一個天線埠上的符號的頻道推斷出在傳遞相同天線埠上的另一個符號的頻道。每天線埠都可以有一個資源網格。胞元特定參考信號可以支援一個、兩個或四個天線埠的配置、並且可以分別在天線埠以及上發送。MBSFN參考信號可以在天線埠上發送。與PDSCH相關聯的WTRU特定參考信號可以在一個或多個天線埠或是中的或一個或數個埠上發送。與EPDCCH相關聯的解調參考信號可以在中的一個或數個埠上傳送。定位參考信號可以在天線埠上發送。CSI參考信號可以支援一個、兩個、四個或八個天線埠的配置,並且可以分別在天線埠以及上發送。每一個天線埠都可以攜帶與該天線埠唯一關聯的波束成形參考信號。該波束成形參考信號可以用於識別天線埠。在TRX的數量等於天線元件的數量(例如每天線元件一個RF鏈)時,天線配置將會變為完全數位化的解決方案(如第5圖所示)。A PAA may include multiple antenna elements, such as a 4x4 PAA having 16 antenna elements. The antenna 埠 can be defined such that the channel of another symbol on the same antenna 埠 can be inferred from the channel transmitting the symbol on one antenna 。. There can be one resource grid per antenna. The cell-specific reference signal can support one, two or four antenna configurations, and can be in the antenna respectively , as well as Send on. MBSFN reference signal can be in the antenna埠 Send on. The WTRU-specific reference signal associated with the PDSCH may be in one or more antennas埠 , , Or Sent in one or several or one. The demodulation reference signal associated with the EPDCCH can be One or several of the links are transmitted. Positioning reference signal can be in the antenna埠 Send on. The CSI reference signal can support one, two, four or eight antenna ports and can be placed in the antenna respectively. , , as well as Send on. Each antenna 可以 can carry a beamforming reference signal that is uniquely associated with the antenna 。. The beamforming reference signal can be used to identify the antenna frame. When the number of TRXs is equal to the number of antenna elements (for example, one RF chain per day line component), the antenna configuration will become a fully digital solution (as shown in Figure 5).

依照第6圖,一個PAA可以連接到一個RF鏈,或者可以依照系統需求和配置連接到多個RF鏈。作為示例,依照第7圖,一個大小為4×4的PAA可以連接到兩個RF鏈,並且每一個RF鏈都具有一組16個移相器。該PAA可以在方位平面中的+45°和-45°的覆蓋範圍內形成兩個窄波束場型。在此配置中,According to Figure 6, a PAA can be connected to an RF chain or can be connected to multiple RF chains according to system requirements and configurations. As an example, according to Fig. 7, a PA of size 4x4 can be connected to two RF chains, and each RF chain has a set of 16 phase shifters. The PAA can form two narrow beam patterns in the coverage of +45° and -45° in the azimuthal plane. In this configuration, .

作為示例,依照第8圖,兩個PAA中的每一個都可以可通信地耦合到專用RF鏈,例如。此配置可以藉由將PAA置於不同的方位(例如方位平面中的不同方位)來允許兩個同時波束之間的空間獨立性。與第7圖中的配置相比,經過校準的PAA設置可以提供更大的聚合覆蓋。具有兩個RF鏈的配置可以應用具有兩個資料流的MIMO。As an example, in accordance with Figure 8, each of the two PAAs can be communicatively coupled to a dedicated RF chain, such as . This configuration can allow spatial independence between two simultaneous beams by placing the PAA in different orientations (eg, different orientations in the azimuthal plane). The calibrated PAA settings provide greater aggregate coverage than the configuration in Figure 7. A configuration with two RF chains can apply MIMO with two data streams.

在一個實施例中,。多個PAA可以藉由使用依照第9圖的開關而被可通信地耦合到單一RF鏈。每一個PAA都會在方位平面中形成覆蓋了從+45°到-45°的窄波束場型。每一個PAA可被單獨定向,因此,單波束解決方案可以藉由在不同時刻使用處於不同方向的窄波束來提供良好的覆蓋。In one embodiment, . Multiple PAAs can be communicatively coupled to a single RF chain by using a switch in accordance with FIG. Each PAA forms a narrow beam pattern covering from +45° to -45° in the azimuth plane. Each PAA can be individually oriented, so a single beam solution can provide good coverage by using narrow beams in different directions at different times.

在一個實施例中,。當時,會使用單波束配置,並且可以一次使用一個波束來執行操作。該波束成形處理會在最強的角度方向上(例如在從波束測量獲得的視距(LOS)路徑上)形成窄波束場型。替代地,該波束成形處理可形成寬波束場型,例如,覆蓋了包括強角度方向和弱角度方向在內的連續角度方向範圍的寬主瓣。In one embodiment, . when A single beam configuration is used and one beam can be used at a time to perform the operation. This beamforming process forms a narrow beam pattern in the strongest angular direction, such as on a line of sight (LOS) path obtained from beam measurements. Alternatively, the beamforming process can form a wide beam pattern, for example, a wide main lobe covering a range of continuous angular directions including a strong angular direction and a weak angular direction.

時,例如當時,可以使用兩個同時的波束場型,這些波束場型可以是不同的,及/或可以用於不同應用的。在不同的角度進入方向上可以形成兩個窄波束場型,以接收一個資料流。舉例來說,使用相干波束組合可以利用空間分集以及緩解阻塞效應及/或弱LOS狀況。替代地,可形成一個窄波束和一個寬波束。舉例來說,該窄波束可以用於資料傳輸,該寬波束可以用於控制傳訊。when When, for example, when Two simultaneous beam patterns can be used, these beam patterns can be different, and/or can be used for different applications. Two narrow beam patterns can be formed at different angles of entry to receive a data stream. For example, using coherent beam combining can utilize spatial diversity and mitigate blocking effects and/or weak LOS conditions. Alternatively, a narrow beam and a wide beam can be formed. For example, the narrow beam can be used for data transmission, which can be used to control communication.

作為示例,當時,該傳輸可以應用MIMO來增加容量,例如在高SNR頻道狀況中。在不同的角度進入方向可以形成兩個窄波束場型,以平行地接收兩個資料流。As an example, when The transmission can apply MIMO to increase capacity, such as in high SNR channel conditions. Two narrow beam patterns can be formed at different angles of entry to receive two streams in parallel.

雖然參考了WTRU來進行描述,但是示例的波束成形方法也可以由基地台來執行。關於基地台波束成形的實施例還可以包括固定波束,諸如基於碼簿和不基於碼簿的適應性波束成形,以及典型波束成形,例如到達方向(DoA)估計。每一個實施例會需要不同的程序,並且在某些場景中會很好地運作。舉例來說, DoA估計可能需要較小的角度擴展,並且WTRU可能需要發送LTE上鏈參考信號來確保DoA精確度。固定波束系統可能需要波束循環和切換程序。Although described with reference to a WTRU, an exemplary beamforming method can also be performed by a base station. Embodiments for base station beamforming may also include fixed beams, such as codebook based and codebook based adaptive beamforming, and typical beamforming, such as direction of arrival (DoA) estimation. Each embodiment will require a different program and will work well in some scenarios. For example, the DoA estimate may require a small angular spread, and the WTRU may need to transmit an LTE uplink reference signal to ensure DoA accuracy. Fixed beam systems may require beam cycling and switching procedures.

以下描述中的天線配置和波束成形是以第6圖所示的具有模擬波束成形的單波束天線配置為基礎的。The antenna configuration and beamforming in the following description are based on the single beam antenna configuration with analog beamforming as shown in FIG.

這裡使用的術語“波束”可以指天線陣列的傳輸輻射場型及/或接收增益場型中的一個波瓣,例如主瓣/側瓣/閘瓣。術語“波束”可以表示由所設定的波束加權所代表的空間方向。波束可以用參考信號、天線埠、波束識別碼(ID)、加擾序號來識別及/或與之關聯,並且可以在特定的時間及/或頻率及/或碼及/或空間資源上被傳送及/或接收。波束可以用數位的方式、類比的方式或是同時使用所有這兩種方式(混合波束成形)來形成。模擬波束成形可以基於固定的碼簿或是連續相移。The term "beam" as used herein may refer to one of the transmitted radiation pattern and/or the received gain pattern of the antenna array, such as a main lobe/side lobe/gate lobe. The term "beam" can refer to the spatial direction represented by the set beam weighting. The beam may be identified and/or associated with a reference signal, an antenna frame, a beam identification code (ID), a scrambling sequence number, and may be transmitted at a particular time and/or frequency and/or code and/or spatial resource. And / or receive. The beam can be formed in a digital manner, analogously, or both using both methods (mixed beamforming). Analog beamforming can be based on a fixed codebook or continuous phase shift.

資料頻道波束可以用於傳送以下的任一項:資料頻道、資料頻道波束、PDSCH、mmW PDSCH(mPDSCH)、mmW資料頻道、定向PDSCH、波束成形資料頻道、空間資料頻道、資料頻道切片或高頻資料頻道。資料頻道波束可以用參考信號、天線埠、波束識別碼(ID)、加擾序號中的任一個識別或與之關聯,並且可以在特定時間及/或頻率及/或碼及/或空間資源上被傳送及/或接收。The data channel beam can be used to transmit any of the following: data channel, data channel beam, PDSCH, mmW PDSCH (mPDSCH), mmW data channel, directional PDSCH, beamforming data channel, spatial data channel, data channel slice or high frequency Data channel. The data channel beam can be identified or associated with any of the reference signal, antenna frame, beam identification code (ID), scrambling sequence number, and can be at a particular time and/or frequency and/or code and/or space resource. Transmitted and/or received.

控制頻道波束可以用於傳送下列中的任一項:控制頻道、控制頻道波束、PDCCH、mPDCCH、mmW PDCCH、mmW控制頻道、定向PDCCH、波束成形控制頻道、空間控制頻道、控制頻道切片或高頻控制頻道。控制頻道波束可以用參考信號、天線埠、波束識別碼(ID)、加擾序號所識別或者與之關聯,並且可以在特定的時間及/或頻率及/或碼及/或空間資源上被傳送及/或接收。The control channel beam can be used to transmit any of the following: control channel, control channel beam, PDCCH, mPDCCH, mmW PDCCH, mmW control channel, directional PDCCH, beamforming control channel, spatial control channel, control channel slice or high frequency Control channel. The control channel beam may be identified by or associated with a reference signal, antenna frame, beam identification code (ID), scrambling sequence number, and may be transmitted at a particular time and/or frequency and/or code and/or spatial resource. And / or receive.

控制頻道波束持續時間可以是被一個控制頻道波束佔用的TTI中的OFDM符號的數量。The control channel beam duration may be the number of OFDM symbols in the TTI that are occupied by one control channel beam.

控制區域可以是被在該TTI中傳送的所有控制頻道波束所佔用的TTI中的OFDM符號的數量。The control region may be the number of OFDM symbols in the TTI occupied by all control channel beams transmitted in the TTI.

測量波束可以用來傳送用於波束測量的信號或頻道,包括以下的任一項:波束參考信號、波束測量參考信號、CRS、CSI-RS、CSI-IM等等。測量波束可以用參考信號、天線埠、波束識別碼(ID)、加擾序號所識別或與之關聯,並且可以在特定的時間及/或頻率及/或碼及/或空間資源上被傳送及/或接收。The measurement beam can be used to transmit signals or channels for beam measurement, including any of the following: beam reference signals, beam measurement reference signals, CRS, CSI-RS, CSI-IM, and the like. The measurement beam can be identified or associated with a reference signal, an antenna frame, a beam identification code (ID), a scrambling sequence number, and can be transmitted at a particular time and/or frequency and/or code and/or space resource and / or receive.

在這裡描述的實施例中,基地台、eNB、mmW基地台/eNB(mB)、胞元、小型胞元、PCell、SCell是可以互換使用的。術語“操作”可以與傳輸及/或接收互換使用。術語“分量載波”及/或術語“mmW載波”可以與服務胞元互換使用。In the embodiments described herein, the base station, eNB, mmW base station/eNB (mB), cell, small cell, PCell, SCell are used interchangeably. The term "operation" can be used interchangeably with transmission and/or reception. The term "component carrier" and/or the term "mmW carrier" can be used interchangeably with a serving cell.

在一些實施例中,術語WTRU可以取代eNB,反之亦然,並且這樣做仍舊符合本揭露。在一些實施例中,UL可以取代DL,反之亦然,並且這樣做仍然是符合本揭露。In some embodiments, the term WTRU may replace an eNB, and vice versa, and doing so still conforms to the disclosure. In some embodiments, the UL may replace the DL and vice versa, and doing so is still in accordance with the present disclosure.

術語“頻道”可以指具有中心或載波頻率和頻寬的頻段。頻譜可以包括一個或多個可以重疊或不重疊的頻道。頻道、頻率頻道、無線頻道以及mmW頻道是可以互換使用的。作為示例,存取一個頻道與使用該頻道是相同,例如在該頻道上執行傳送及/或接收。The term "channel" can refer to a frequency band having a center or carrier frequency and bandwidth. The spectrum may include one or more channels that may or may not overlap. Channels, frequency channels, wireless channels, and mmW channels are interchangeable. As an example, accessing a channel is the same as using the channel, for example performing transmission and/or reception on the channel.

術語“頻道”可以指mmW頻道及/或信號,例如上鏈頻道及/或信號及/或下鏈頻道或信號。下鏈頻道和信號可以包括以下的一項或多項:mmW同步信號、mmW廣播頻道、mmW胞元參考信號、mmW波束參考信號、mmW波束控制頻道、mmW波束資料頻道、mmW混合ARQ指示符頻道、mmW解調參考信號、PSS、SSS、DMRS、CRS、CSI-RS、PBCH、PDCCH、PHICH、EPDCCH和PDSCH。上鏈頻道和信號可以包括以下的一項或多項:mmW PRACH、mmW控制頻道、mmW資料頻道、mmW波束參考信號、mmW解調參考信號、PRACH、PUCCH、SRS、DMRS和PUSCH。頻道和mmW頻道是可以互換使用的。頻道和信號是可以互換使用的。PRACH與前導碼是可以互換使用的。The term "channel" may refer to an mmW channel and/or signal, such as an uplink channel and/or a signal and/or a downlink channel or signal. The downlink channel and signal may include one or more of the following: mmW synchronization signal, mmW broadcast channel, mmW cell reference signal, mmW beam reference signal, mmW beam control channel, mmW beam data channel, mmW hybrid ARQ indicator channel, mmW demodulation reference signal, PSS, SSS, DMRS, CRS, CSI-RS, PBCH, PDCCH, PHICH, EPDCCH, and PDSCH. The uplink channel and signal may include one or more of the following: mmW PRACH, mmW control channel, mmW data channel, mmW beam reference signal, mmW demodulation reference signal, PRACH, PUCCH, SRS, DMRS, and PUSCH. Channels and mmW channels are interchangeable. Channels and signals are used interchangeably. PRACH and preamble are used interchangeably.

術語“資料/控制”可以指資料及/或控制信號及/或頻道。該控制可以包括同步。資料/控制可以是mmW資料/控制。資料/控制以及資料/控制頻道及/或信號是可以互換使用的。頻道與信號是可以互換使用的。術語控制頻道,控制頻道波束、PDCCH、mPDCCH、mmW PDCCH、mmW控制頻道、定向PDCCH、波束成形控制頻道、空間控制頻道、控制頻道切片、高頻控制頻道是可以互換使用的。術語資料頻道、資料頻道波束、PDSCH、mPDSCH、mmW PDSCH、mmW資料頻道、定向PDSCH、波束成形資料頻道、空間資料頻道、資料頻道切片、高頻資料頻道是可以互換使用的。The term "data/control" may refer to data and/or control signals and/or channels. This control can include synchronization. The data/control can be mmW data/control. Data/control and data/control channels and/or signals are used interchangeably. Channels and signals are used interchangeably. The terms control channel, control channel beam, PDCCH, mPDCCH, mmW PDCCH, mmW control channel, directional PDCCH, beamforming control channel, spatial control channel, control channel slice, high frequency control channel are interchangeable. The term data channel, data channel beam, PDSCH, mPDSCH, mmW PDSCH, mmW data channel, directional PDSCH, beamforming data channel, spatial data channel, data channel slice, and high frequency data channel are interchangeable.

術語“頻道資源”可以指任何時間、頻率、碼及/或空間資源(例如3GPP LTE或LTE-A資源)。該頻道資源可以運載一個或多個頻道及/或信號。術語“頻道資源”可以與頻道及/或信號互換使用。The term "channel resource" can refer to any time, frequency, code, and/or spatial resource (eg, 3GPP LTE or LTE-A resources). The channel resource can carry one or more channels and/or signals. The term "channel resource" can be used interchangeably with channels and/or signals.

術語mmW波束參考信號、用於波束測量的mmW參考資源、mmW測量參考信號、mmW頻道狀態測量參考信號、mmW解調參考信號、mmW探測參考信號、參考信號、CSI-RS、CRS、DM-RS、DRS、測量參考信號、用於測量的參考資源、CSI-IM和測量RS是可以互換使用的。mmW胞元、mmW小型胞元、SCell、輔助胞元、授權輔助胞元、非授權胞元以及LAA胞元是可以互換使用的。mmW胞元、mmW小型胞元、PCell、主胞元、LTE胞元以及授權胞元是可以互換使用的。The term mmW beam reference signal, mmW reference resource for beam measurement, mmW measurement reference signal, mmW channel state measurement reference signal, mmW demodulation reference signal, mmW sounding reference signal, reference signal, CSI-RS, CRS, DM-RS , DRS, measurement reference signals, reference resources for measurement, CSI-IM and measurement RS are used interchangeably. The mmW cell, the mmW small cell, the SCell, the helper cell, the authorized helper cell, the unlicensed cell, and the LAA cell are used interchangeably. The mmW cell, the mmW small cell, the PCell, the host cell, the LTE cell, and the authorized cell are used interchangeably.

術語干擾與干擾加雜訊是可以互換使用的。The terms interference and interference plus noise are used interchangeably.

WTRU可以根據一個或多個接收及/或配置的TDD UL/DL配置來確定一個或多個子訊框的UL及/或DL方向。UL/DL和UL-DL是可以互換使用的。The WTRU may determine the UL and/or DL direction of one or more subframes based on one or more received and/or configured TDD UL/DL configurations. UL/DL and UL-DL are used interchangeably.

術語傳輸功率、功率、天線陣列傳輸功率是可以互換使用的。術語x mW、cmW和mmW可以互換使用。The terms transmission power, power, and antenna array transmission power are used interchangeably. The terms x mW, cmW and mmW are used interchangeably.

作為背景,藉由在LTE和Wi-Fi中引入的新的技術,已顯著提升無線通訊系統的輸送量。然而,這些技術並不足以滿足未來的應用的要求,並且這些應用將會需要千兆位元/秒的輸送量以及大小為1毫秒的潛時。因此,關於名為5G的新RAT的研究業已開始進行。As a background, the amount of transmission of wireless communication systems has been significantly increased by the introduction of new technologies in LTE and Wi-Fi. However, these technologies are not sufficient for future applications, and these applications will require a gigabit/second throughput and a latency of 1 millisecond. Therefore, research on a new RAT named 5G has begun.

5G RAT的一個非常關鍵的組成部分是無線電波形。OFDM已經並且目前正被用於LTE和Wi-Fi。OFDM的益處包括其在將頻率選擇性頻道轉換成更小的平坦衰落的子頻道方面是非常簡單的,由此允許每一個子頻道進行一次分接頭等化。離散傅立葉轉換擴展OFDM(DFT-s-OFDM)則是在將擴展信號載入到子頻道上之前使用DFT擴展資料序列來提高OFDM的峰均功率比(PAPR)。A very critical component of the 5G RAT is the radio waveform. OFDM has been and is currently being used for LTE and Wi-Fi. The benefits of OFDM include its simplicity in converting a frequency selective channel to a subchannel with a smaller flat fading, thereby allowing one sub-equalization of each sub-channel. Discrete Fourier Transform Extended OFDM (DFT-s-OFDM) uses a DFT extended data sequence to improve the peak-to-average power ratio (PAPR) of OFDM before loading the spread signal onto the subchannel.

OFDM和DFT-s-OFDM會將CP連結到每一個OFDM符號。CP可以作為針對有可能因為頻道延遲擴展所引發的符號間干擾(ISI)的防範,並且由此可以確保週期性。CP長度通常是固定的,並且其尺寸會依照頻道的最大延遲擴展而被調整。然而,當頻道的實際延遲擴展小於CP長度時,頻譜效率將會出現損耗。在頻道的RMS延遲擴展的方差很大時,損耗將會非常顯著。舉例來說,在mmW頻道中,對於在LOS狀況的室內頻道,延遲擴展有可能低於4ns ,而對於在非LOS(NLOS)狀況的室內頻道,延遲擴展可能會高達70ns 。由於改變CP長度將會改變子訊框中的OFDM符號的數量,因此,對於固定的子訊框持續時間,配置眾多不同的CP大小通常是不可行的。OFDM and DFT-s-OFDM will link the CP to each OFDM symbol. The CP can serve as a precaution against inter-symbol interference (ISI) that may be caused by channel delay spread, and thus can ensure periodicity. The CP length is usually fixed and its size is adjusted according to the channel's maximum delay spread. However, when the actual delay spread of the channel is less than the CP length, spectral efficiency will suffer. When the variance of the RMS delay spread of the channel is large, the loss will be very significant. For example, in an mmW channel, the delay spread may be less than 4 ns for indoor channels in LOS conditions, and up to 70 ns for indoor channels in non-LOS (NLOS) conditions. Since changing the length of the CP will change the number of OFDM symbols in the subframe, it is generally not feasible to configure a number of different CP sizes for a fixed subframe duration.

基於零尾(ZT)OFDM的波形可以用來取代基於附加CP的OFDM的波形。基於ZT OFDM的波形會將參數與頻道特性分離。在基於ZT OFDM的波形中,每一個OFDM符號都具有給定持續時間的零尾。零尾的持續時間可以動態地適配於頻道延遲擴展,而不會改變OFDM符號持續時間。此外,該零尾還可以用作波束切換、DL/UL切換和mmW頻道中的干擾測量的間隙。A zero-tailed (ZT) OFDM based waveform can be used to replace the waveform of the additional CP based OFDM. Waveforms based on ZT OFDM separate the parameters from the channel characteristics. In a ZT OFDM based waveform, each OFDM symbol has a zero tail for a given duration. The duration of the zero tail can be dynamically adapted to the channel delay spread without changing the OFDM symbol duration. In addition, the zero tail can also be used as a gap for beam switching, DL/UL switching, and interference measurement in the mmW channel.

第10圖是示出了被配置為產生ZT DFT-s-OFDM波形的傳輸器的示例脈波成形單元1000的方塊圖。該脈波成形單元1000可以包括M點DFT單元1010、子載波映射(SM)單元1012以及N點快速傅利葉逆變換(IFFT)單元1014。從NIFFT 點IFFT單元1014輸出的具有零尾及/或零頭部(zero head)的OFDM符號可以包括M個資料符號樣本以及介於該M個資料符號中的每一個之間的(NIFFT 點/M-1)個內插樣本。形成從NIFFT 點IFFT單元1014所輸出的OFDM符號的樣本可以藉由將Nh 和Nt 個零值饋送到位於M點DFT單元1010的頭部和尾部的輸入以及藉由將Nd 個資料符號饋送到M點DFT單元1010的頭部和尾部之間的輸入來產生。Figure 10 is a block diagram showing an example pulse shaping unit 1000 of a transmitter configured to generate a ZT DFT-s-OFDM waveform. The pulse shaping unit 1000 may include an M-dot DFT unit 1010, a subcarrier mapping (SM) unit 1012, and an N-point fast Fourier inverse transform (IFFT) unit 1014. An OFDM symbol having a zero tail and/or a zero head output from the N IFFT point IFFT unit 1014 may include M data symbol samples and between each of the M data symbols (N IFFT Point / M-1) Interpolated samples. Forming the samples of the OFDM symbols output from the N IFFT point IFFT unit 1014 may be performed by feeding N h and N t zero values to the input at the head and tail of the M point DFT unit 1010 and by n d data The symbol is fed to the input between the head and the tail of the M-point DFT unit 1010 to be generated.

藉由M點DFT單元1010、SM單元1012和NIFFT 點IFFT單元1014的組合操作,饋送到M點DFT單元1010的輸入端的Nh 和Nt 個零值會導致在該NIFFT 點IFFT單元1014的頭端及/或尾部產生零值、幾乎為零的值或是所有兩種數值的組合的樣本(統稱為“~零數值樣本”)。通常,饋送至SM單元1012的M點DFT單元1010的輸出會映射到子載波的子集,並且從SM單元輸入端1012輸出至與子載波子集對應的NIFFT 點IFFT單元1014的連續輸入集合。NIFFT 點IFFT單元1014可對該輸入集合進行處理並將處理後的輸入傳遞至其輸出端。With an M-point DFT unit 1010, SM unit 1012 and N IFFT-point IFFT combined operation 1014, is fed to the input of the M-point DFT unit 1010 N h and N t zero value causes the N IFFT -point IFFT unit 1014 The head and/or tail produces samples of zero, almost zero, or a combination of all two values (collectively referred to as "~zero value samples"). In general, the output of the M-point DFT unit 1010 fed to the SM unit 1012 is mapped to a subset of subcarriers and output from the SM unit input 1012 to a continuous input set of N IFFT point IFFT units 1014 corresponding to the subset of subcarriers. . The N IFFT point IFFT unit 1014 can process the input set and pass the processed input to its output.

饋送到位於M點DFT單元1010的頭端的輸入的Nh 個零值會導致在NIFFT 點IFFT單元1014的頭端輸出Nzh 個~零數值樣本。饋送至位於M點DFT單元1010的尾部的輸入端的Nt 個樣本會導致在NIFFT 大小的IFFT單元1014的尾端輸出Nzt 個~零數值樣本。雖然從NIFFT 點IFFT單元1014輸出的OFDM符號包括了與饋送到M點DFT單元1010中的Nh 個零值和Nt 個零值對應的Nzh 個~零數值樣本以及Nzt 個~零數值樣本,但是OFDM符號的尾部/頭部未必是完全為零的,這是因為(至少一些)內插樣本是取決於資料的。此外,由於內插樣本取決於資料,因此,零頭部/尾部會隨著一個DFT-s符號到下一個DFT-s符號而不同。ZT DFT-s OFDM信號的一個缺點在於:不完美的零尾部將會中斷OFDM信號的循環特性、並且會並產生ISI。而在高延遲擴展頻道中,在處於高SNR時,這將會導致產生位元錯誤率層(BER floor)。 H zero values fed to an M-point DFT unit located at the head end of the N input 1010 result in N-point IFFT IFFT outputs N headend ~ ZH a zero value sample 1014. Feeding N t samples at the input of the tail of the M-point DFT unit 1010 results in the output of N zt ~ zero value samples at the tail end of the I IFFT size IFFT unit 1014. Although the OFDM symbol output from the N IFFT point IFFT unit 1014 includes N zh to zero value samples corresponding to N h zero values and N t zero values fed to the M point DFT unit 1010, and N zt ~ zero Numerical samples, but the tail/head of the OFDM symbol is not necessarily completely zero, since (at least some) the interpolated samples are data dependent. Furthermore, since the interpolated samples depend on the data, the zero head/tail will differ from one DFT-s symbol to the next DFT-s symbol. One disadvantage of the ZT DFT-s OFDM signal is that an imperfect zero tail will interrupt the cyclic nature of the OFDM signal and will produce ISI. In high latency extended channels, this will result in a bit error rate floor (BER floor) at high SNR.

雖然第10圖中顯示的零尾部/頭部產生機制針對的是DFT-s OFDM波形,然而對本領域中具有通常知識者來說,從在前描述中可以清楚瞭解對用於其他OFDM波形的高複雜度的零頭部/尾部產生解決方案所做的修改。Although the zero tail/head generation mechanism shown in FIG. 10 is directed to a DFT-s OFDM waveform, it is clear to those skilled in the art from the foregoing description that the waveforms for other OFDM waveforms are high. The zero head/tail of the complexity produces the modifications made by the solution.

第11圖是示出了被配置為產生唯一字OFDM(UW-OFDM)波形的傳輸器1100的示例的方塊圖。傳輸器1100產生的OFDM符號包括稱為“唯一字”的固定引示。該唯一字可以用於同步、頻道估計以及相位追蹤目的。該唯一字可以用作防範ISI的保護間隔,並且可以保持週期性,從而消除對於CP的需要。Figure 11 is a block diagram showing an example of a transmitter 1100 configured to generate a unique word OFDM (UW-OFDM) waveform. The OFDM symbols generated by transmitter 1100 include a fixed reference called a "unique word." This unique word can be used for synchronization, channel estimation, and phase tracking purposes. This unique word can be used as a guard interval against ISI and can be kept periodic, eliminating the need for a CP.

傳輸器1100可以包括冗餘資料產生單元1108、置換單元1110、B單元1112、NIFFT 點IFFT單元1114、唯一字插入(UW插入)單元1116以及平行轉串列轉換器1118。冗餘資料產生單元1108可以接收Nd 個調變資料符號d。冗餘資料產生單元1108可以將Nr 個冗餘資料信號r輸出到置換單元1110。冗餘資料產生單元1108可以藉由預編碼Nd 個調變資料符號來產生Nr 個冗餘資料信號。The transmitter 1100 may include a redundancy data generating unit 1108, a permutation unit 1110, a B unit 1112, a N IFFT point IFFT unit 1114, a unique word insertion (UW insertion) unit 1116, and a parallel to serial converter 1118. The redundant data generating unit 1108 can receive N d modulated data symbols d. The redundant data generating unit 1108 can output the N r redundant material signals r to the replacing unit 1110. The redundant data generating unit 1108 can generate N r redundant data signals by precoding N d modulated data symbols.

置換單元1110可以接收Nd 調變資料符號和Nr 個冗餘資料信號。該置換單元1110可以應用置換矩陣以將Nd 個調變資料符號和Nr 個冗餘資料信號映射到適當的子載波。可以選擇Nr 個冗餘資料信號所映射的子載波使得冗餘資料的功率不會變得過大。The permutation unit 1110 can receive the N d modulated data symbols and the N r redundant data signals. The permutation unit 1110 can apply a permutation matrix to map N d modulated data symbols and N r redundant data signals to appropriate subcarriers. The subcarriers mapped by the N r redundant data signals can be selected such that the power of the redundant data does not become excessive.

B單元1112可以接收映射到子載波的Nd 個調變資料符號和Nr 個冗餘資料信號。B單元1112可以插入一個或多個空值子載波,以用於保護波段。該B單元1112可以向NIFFT 點IFFT單元1114輸出信號NIFFT ,該信號包括映射到子載波的Nd 個調變資料符號、Nr 個冗餘資料信號以及空值。該NIFFT 點IFFT單元1114可以接收該信號NIFFT 、並且可以產生與該信號NIFFT 對應的樣本。從空值產生的樣本可被強制為零、並且可以從NIFFT 點IFFT單元1114的尾部輸出,以形成OFDM符號的尾部。UW插入單元1116可以接收來自NIFFT 點IFFT單元1114的輸出。該UW插入單元1116可以在OFDM符號的零值尾部中插入確定的唯一序列(唯一字)。該確定的唯一序列可用於推進任務,例如同步、頻道估計等等。The B unit 1112 can receive N d modulated data symbols and N r redundant data signals mapped to the subcarriers. The B unit 1112 can insert one or more null subcarriers for protecting the band. The B unit 1112 may output a signal N IFFT to the N IFFT point IFFT unit 1114, the signal including N d modulated data symbols mapped to subcarriers, N r redundant data signals, and null values. The N IFFT point IFFT unit 1114 can receive the signal N IFFT and can generate a sample corresponding to the signal N IFFT . Samples generated from null values may be forced to zero and may be output from the tail of the N IFFT point IFFT unit 1114 to form the tail of the OFDM symbol. UW insertion unit 1116 can receive the output from N IFFT point IFFT unit 1114. The UW insertion unit 1116 can insert a determined unique sequence (unique word) in the zero value tail of the OFDM symbol. This determined unique sequence can be used to advance tasks such as synchronization, channel estimation, and the like.

所傳送的具有零尾部的信號可被寫作,其中B插入零子載波以用於保護波段。可寫作,冗餘資料可以被計算為,其中The transmitted signal with zero tail can be written Where B inserts a zero subcarrier for protection of the band. Writable , redundant data can be calculated as ,among them .

UW OFDM信號的缺陷包括:(i)很高的Tx和Rx複雜度;(ii)針對每一個資源分配,置換矩陣P需要被最佳化以最小化冗餘子載波的功率(這會導致傳輸器上的計算複雜以及導致產生傳訊負荷,因為在接收器上需要知道該置換矩陣以解碼資料);以及(iii)由於需要針對每一個資源分配來最佳化置換矩陣,因此使用UW-OFDM來支援頻域排程和多使用者是非常困難的。初始胞元同步綜述 Defects of UW OFDM signals include: (i) high Tx and Rx complexity; (ii) per matrix allocation, permutation matrix P needs to be optimized to minimize the power of redundant subcarriers (this leads to transmitters) Computational complexity and resulting in a traffic load because the permutation matrix needs to be known at the receiver to decode the data); and (iii) UW-OFDM is used to support the permutation matrix for each resource allocation. Frequency domain scheduling and multiple users are very difficult. Initial cell synchronization review

初始胞元同步(ICS)可被定義為是確定胞元的下鏈時序和識別碼。ICS可以在打開WTRU以搜尋適合預占的胞元時執行。該胞元搜尋可以提供用於確定諸如UMTS中的PCPICH和LTE中的CRS之類的特定頻道的信號功率位準的功能,以及用於確定接收信號強度指示符(RSSI)等級的功能,以為例如切換和胞元重選之類的觸發事件提供幫助。Initial cell synchronization (ICS) can be defined to determine the downlink timing and identification code of the cell. The ICS may perform when the WTRU is turned on to search for cells that are suitable for camping. The cell search may provide a function for determining a signal power level of a specific channel such as PCPICH in UMTS and CRS in LTE, and a function for determining a received signal strength indicator (RSSI) level, for example, Triggering events such as switching and cell reselection help.

第12圖示出了用於主同步頻道(P-SCH)、輔助同步頻道(S-SCH)以及公共引示頻道(CPICH)的示例UMTS傳訊結構1200。如第12圖所示,SYNCH(P-SCH和S-SCH)以及PBCH頻道使用的是分離的資源。Figure 12 shows an example UMTS communication structure 1200 for a primary synchronization channel (P-SCH), a secondary synchronization channel (S-SCH), and a common pilot channel (CPICH). As shown in Fig. 12, SYNCH (P-SCH and S-SCH) and PBCH channels use separate resources.

同步可以用三個階段執行。第一個階段可以包括在P-SCH上執行時槽偏移偵測。第二個階段可以包括在S-SCH上執行群組編號偵測(64個群組中的每一個都具有16個碼,其構成了512個主胞元ID)、以及在S-SCH上執行訊框時序偵測。第三個階段可以包括使用P-CPICH來執行胞元ID偵測。在第三個階段之後,主區塊(MIB)和系統區塊(SIB)可被讀取。可偵測的胞元包括那些P-SCH和SCH SNIR> -20 dB以及P-CPICH SNIR > -20 dB的胞元。在已知的頻道中,初始同步時間小於5秒、並且其包含了用於執行該三個同步階段、讀取MIB和SIB以及用於執行RACH前序碼傳輸的時段。Synchronization can be performed in three phases. The first phase may include performing time slot offset detection on the P-SCH. The second phase may include performing group number detection on the S-SCH (each of the 64 groups has 16 codes, which constitute 512 primary cell IDs), and is executed on the S-SCH Frame timing detection. The third phase may include performing cell ID detection using the P-CPICH. After the third phase, the main block (MIB) and the system block (SIB) can be read. The detectable cells include those with P-SCH and SCH SNIR > -20 dB and P-CPICH SNIR > -20 dB. In known channels, the initial synchronization time is less than 5 seconds and it includes periods for performing the three synchronization phases, reading the MIB and SIB, and for performing RACH preamble transmission.

第13圖示出了用於主同步信號(PSS)、輔助同步信號(SSS)以及實體廣播頻道(PBCH)的示例LTE傳訊結構1300。如第13圖所示,SYNCH(PSS和SSS)以及PBCH頻道可以使用分離的資源、並且可以擴展到6個資源塊(RB)以及62個中心子載波上。Figure 13 shows an example LTE communication structure 1300 for a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH). As shown in Figure 13, the SYNCH (PSS and SSS) and PBCH channels can use separate resources and can be spread over 6 resource blocks (RBs) and 62 central subcarriers.

同步可以用三個階段執行。第一個階段可以包括使用PSS來執行符號時序偏移偵測以及確定是否Nid(2)= {0, 1, 2}。第二個階段可以包括使用SSS來執行訊框時序偵測、確定是否CP長度={正常,擴展}、確定是否Nid(1)={0, 1, … , 168}以及確定是否Cell_ID = f(Nid(1), Nid(2))。第三個階段可以包括讀取MIB和SIB,以及確定頻寬、天線數量等等。可偵測的胞元包括那些PSS以及SSS SNIR > -3 dB的胞元。在已知的頻道中,初始同步時間小於5秒、並且包括用於執行三個同步階段、讀取MIB和SIB以及執行RACH前序碼傳輸的時段。示例的高效率的基於 OFDM 的波形 Synchronization can be performed in three phases. The first phase may include performing a symbol timing offset detection using PSS and determining whether Nid(2) = {0, 1, 2}. The second phase may include using SSS to perform frame timing detection, determining whether CP length = {normal, extended}, determining whether Nid(1) = {0, 1, ..., 168}, and determining whether Cell_ID = f ( Nid(1), Nid(2)). The third stage can include reading the MIB and SIB, as well as determining the bandwidth, number of antennas, and so on. The detectable cells include those with PSS and SSS SNIR > -3 dB. In known channels, the initial synchronization time is less than 5 seconds and includes periods for performing three synchronization phases, reading MIBs and SIBs, and performing RACH preamble transmission. Example high efficiency OFDM based waveform

基於零尾的波形以及其他基於OFDM的高效波形(統稱為“基於he -OFDM的波形”)可以將參數與頻道特性解耦。在不改變OFDM符號持續時間下,零尾持續時間可以動態適配於頻道延遲擴展。此外,零尾可被用作mmW頻道中的波束切換、DL/UL切換以及干擾測量的間隙。Zero-tailed waveforms and other high-efficiency waveforms based on OFDM (collectively referred to as " he -OFDM-based waveforms") can decouple parameters from channel characteristics. The zero tail duration can be dynamically adapted to the channel delay spread without changing the OFDM symbol duration. In addition, the zero tail can be used as a gap for beam switching, DL/UL switching, and interference measurement in the mmW channel.

為了提高資源分配效率,目前業已建議了諸如ZT DFT-s OFDM、UW OFDM及其變型之類的基於he -OFDM的波形,以在OFDM符號內部賦能可變的循環前綴長度。在諸如UMTS和LTE之類的現今通信標準中,為SYNCH和PBCH頻道分配了獨立的資源。藉由利用所提出的波形,可取的是在相同符號上進行SYNCH和PBCH頻道的同時傳輸,以提高資源使用效率。In order to improve resource allocation efficiency, he -OFDM-based waveforms such as ZT DFT-s OFDM, UW OFDM, and variations thereof have been proposed to enable variable cyclic prefix lengths within OFDM symbols. In today's communication standards such as UMTS and LTE, separate resources are allocated for the SYNCH and PBCH channels. By utilizing the proposed waveform, it is desirable to perform simultaneous transmission of SYNCH and PBCH channels on the same symbol to improve resource utilization efficiency.

在為cmW和mmW頻帶設計的基於高度定向天線波束成形的蜂巢系統中,由於波束成形增益,在初始系統獲取(ICA)與常規的使用者資料交換操作(例如後置ICA)之間發生覆蓋失配。藉由利用寬波束來擴展ICA覆蓋範圍,有可能需要很長的同步序列以及繁重的系統資訊(SI)位元編碼。這樣轉而會縮短初始獲取時間(IAT),但可能降低資源使用效率。使用窄波束可以增大用於SYNCH和PBCH之類的控制平面頻道的胞元半徑,並且可能減小對於長同步序列以及繁重的SI位元編碼處理的需要。然而,與寬波束相比,在使用這種窄波束下,搜尋空間有可能會很大,並且有可能會錯過目標。在這種情況下,使用窄波束的影響將會變成整體的IAT的增大。因此需要針對初始同步來最佳化和適配設計系統。In a honeycomb system based on highly directional antenna beamforming designed for the cmW and mmW bands, coverage loss occurs between initial system acquisition (ICA) and conventional user data exchange operations (eg, post ICA) due to beamforming gain. Match. By extending the ICA coverage with wide beams, it is possible to require very long synchronization sequences and heavy system information (SI) bit coding. This in turn will shorten the initial acquisition time (IAT), but may reduce resource usage efficiency. The use of narrow beams can increase the cell radius for control plane channels such as SYNCH and PBCH, and may reduce the need for long synchronization sequences and heavy SI bit encoding processing. However, compared to wide beams, with such a narrow beam, the search space is likely to be large and it is possible to miss the target. In this case, the effect of using a narrow beam will become an increase in the overall IAT. It is therefore necessary to optimize and adapt the design system for initial synchronization.

本揭露尤其涉及針對高度定向的系統以及高度定向的系統中的初始同步的方法、裝置、系統、裝置以及電腦程式產品。在一個實施例中,基於he -OFDM的波形可被用於(適配於)初始同步。例如,這種基於he -OFDM的波形可以是以下的任一個:零尾(ZT)離散傅立葉轉換(DFT)擴展OFDM(“ZT DFT-s-OFDM”)波形;唯一字(UW)DFT-s-OFDM波形;增強型ZT(eZT)DFT-s-OFDM波形;基於eZT OFDM的波形;ZT DFT-s-OFDM、UW DFT-s-OFDM、eZT DFT-s-OFDM以及基於eZT OFDM的波形中的任何一個的變型;以及別的相似類型的波形。The present disclosure relates, inter alia, to methods, apparatus, systems, apparatus, and computer program products for highly synchronized systems and initial synchronization in highly oriented systems. In one embodiment, a he -OFDM based waveform can be used (adapted to) the initial synchronization. For example, such a he -OFDM based waveform may be any of the following: a zero tail (ZT) discrete Fourier transform (DFT) extended OFDM ("ZT DFT-s-OFDM") waveform; a unique word (UW) DFT-s -OFDM waveform; enhanced ZT (eZT) DFT-s-OFDM waveform; eZT OFDM-based waveform; ZT DFT-s-OFDM, UW DFT-s-OFDM, eZT DFT-s-OFDM, and eZT OFDM-based waveforms Any of the variants; and other similar types of waveforms.

在一個實施例中,初始同步可以藉由使用至少在每一個OFDM符號的一個或多個調變符號的尾部中攜帶了同步資訊的OFDM信號來執行。舉例來說,一個或多個調變符號可被集中在單一子帶內(也就是處於單一子載波或是多個連續子載波中)。這種單一子帶可以映射到可用頻道的特定子帶,例如可用頻道的中心子帶。替代地,調變符號可以分散在多個子帶之中,並且這樣的多個子帶可以例如映射到中心子帶以及其他子帶。該其他子帶可被選擇,以避免調變符號的功率變得過大。In one embodiment, the initial synchronization may be performed by using an OFDM signal carrying synchronization information in at least the tail of one or more modulation symbols of each OFDM symbol. For example, one or more modulation symbols can be concentrated within a single sub-band (ie, in a single subcarrier or in multiple consecutive subcarriers). Such a single sub-band can be mapped to a particular sub-band of the available channels, such as the central sub-band of the available channels. Alternatively, the modulation symbols may be spread among multiple sub-bands, and such multiple sub-bands may, for example, be mapped to a central sub-band as well as other sub-bands. The other sub-bands can be selected to avoid the power of the modulated symbols becoming too large.

在一個實施例中,在調變符號的尾部攜帶的同步資訊可以包括符號時序同步資訊。在一個實施例中,在調變符號的非尾部分攜帶的同步資訊可以包括用於識別胞元識別碼(ID)的序列及/或實體廣播頻道(PBCH)。In one embodiment, the synchronization information carried at the end of the modulation symbol may include symbol timing synchronization information. In one embodiment, the synchronization information carried in the non-tailed portion of the modulated symbol may include a sequence for identifying a cell identifier (ID) and/or a physical broadcast channel (PBCH).

根據這裡提供的新方法及/或技術,OFDM信號可以藉由使用(適配)基於he -OFDM的波形產生的信號來產生。作為示例,具有零尾的時域信號(“零尾時域信號”)可以使用以下各項來產生:(i)基於he -OFDM的波形產生器,以及(ii)作為此類產生器的輸入的同步資訊及/或資料以及零值。此後,諸如符號時序同步資訊之類的同步資訊可被插入零尾時域信號的零尾,以將零尾時域信號適配到尾部插入了同步資訊的時域信號資訊(“同步尾部時域信號”)中。該同步尾部時域信號可被轉換到頻域,然後則被映射到一組子載波,並且隨後會被轉換回到時域。此後,同步尾部時域信號可以經歷平行轉串列轉換及/或其他處理,以形成OFDM符號。該OFDM符號可以在波束成形的波束上傳送。In accordance with the new methods and/or techniques provided herein, an OFDM signal can be generated by using (adaptive) a signal generated based on a he -OFDM based waveform. As an example, a time domain signal with a zero tail ("zero tail time domain signal") can be generated using: (i) a he -OFDM based waveform generator, and (ii) an input as such a generator Synchronization information and / or information and zero value. Thereafter, synchronization information such as symbol timing synchronization information can be inserted into the zero tail of the zero-tailed time domain signal to adapt the zero-tail time domain signal to the time domain signal information in which the synchronization information is inserted at the end ("synchronous tail time domain"Signal"). The sync tail time domain signal can be converted to the frequency domain and then mapped to a set of subcarriers and then converted back to the time domain. Thereafter, the sync tail time domain signal may undergo parallel to serial train conversion and/or other processing to form an OFDM symbol. The OFDM symbol can be transmitted on a beamformed beam.

根據這裡提供的新方法及/或技術,在相同OFDM符號中可以傳送多種類型的同步資訊。例如,OFDM符號可以具有尾部以及至少一個其他部分。該尾部可以依照這種在時域上將此類符號時序同步資訊插入OFDM符號尾部(例如,如上所述)來攜帶符號時序同步資訊。該其他部分則可以依照頻域插入來攜帶實體廣播頻道(PBCH)及/或同步資訊,例如用於識別胞元識別碼(ID)的序列。該頻域插入處理可以依照使用此類資訊作為輸入來產生零尾時域信號來執行。According to the new methods and/or techniques provided herein, multiple types of synchronization information can be transmitted in the same OFDM symbol. For example, an OFDM symbol can have a tail and at least one other portion. The trailer may carry symbol timing synchronization information in accordance with such insertion of such symbol timing synchronization information into the OFDM symbol trailer (e.g., as described above) in the time domain. The other portion may carry a physical broadcast channel (PBCH) and/or synchronization information, such as a sequence for identifying a cell identifier (ID), in accordance with frequency domain insertion. The frequency domain insertion process can be performed in accordance with the use of such information as input to generate a zero tail time domain signal.

根據這裡提供的新方法及/或技術,單獨的波束可用於同步資訊和資料頻道傳輸。在一個實施例中,寬波束可以用於同步資訊傳輸,窄波束則可以用於資料頻道傳輸。在寬波束上攜帶的同步資訊傳輸可被映射在可用頻道的中心子帶上。在窄波束上攜帶的資料頻道可被映射到與中心子帶正交的子帶上(例如未被同步波束使用的子帶)。According to the new methods and/or techniques provided herein, separate beams can be used for simultaneous information and data channel transmission. In one embodiment, a wide beam can be used for simultaneous information transmission and a narrow beam can be used for data channel transmission. The isochronous information transmission carried on the wide beam can be mapped on the central subband of the available channels. The data channel carried on the narrow beam can be mapped onto sub-bands that are orthogonal to the central sub-band (eg, sub-bands that are not used by the sync beam).

根據這裡提供的新方法及/或技術,相鄰胞元之間的協調可以結合同步資訊傳輸來執行。在一個實施例中,同步頻道(“SYNCH”)和PBCH傳輸多工可以在多個分區上執行、並且可以增加SYNCH偵測和PBCH解碼的可能性。According to the new methods and/or techniques provided herein, coordination between adjacent cells can be performed in conjunction with synchronous information transmission. In one embodiment, Synchronous Channel ("SYNCH") and PBCH transmission multiplexing may be performed on multiple partitions and may increase the likelihood of SYNCH detection and PBCH decoding.

根據這裡提供的新方法及/或技術,可以執行目標胞元輔助切換。在一個實施例中,可以使用定向區域聚焦(directed area focus)和SYNCH功率提升。Target cell-assisted switching can be performed in accordance with the new methods and/or techniques provided herein. In one embodiment, directed area focus and SYNCH power boost can be used.

這裡使用的術語“SYNCH”可以指包括S1和S2這兩種不同類型的序列的同步信號及/或同步資訊。S1可以用於時域初始獲取。該S1可以用於符號及/或時槽時序建立。該S1主要可以用於時域處理。S1可以識別一個或多個S2的開端。The term "SYNCH" as used herein may refer to a synchronization signal and/or synchronization information including two different types of sequences, S1 and S2. S1 can be used for initial acquisition in the time domain. This S1 can be used for symbol and/or time slot timing setup. This S1 can be mainly used for time domain processing. S1 can identify the beginning of one or more S2s.

S2可以用於識別胞元ID。該S2可以用於訊框時序建立。並且該S2可以識別PBCH的開端。S2可被插入到資料和時域中、並且可被充分編碼以滿足偵測需要。S2 can be used to identify the cell ID. This S2 can be used for frame timing establishment. And the S2 can identify the beginning of the PBCH. S2 can be inserted into the data and time domain and can be fully encoded to meet the detection needs.

PBCH可以攜帶MIB、並且可以攜帶來自SIB的附加參數。The PBCH can carry the MIB and can carry additional parameters from the SIB.

這裡使用的術語“SYNCH波束”以及“同步波束”可以指用於傳輸SYNCH的波束,包括S1、S2、PBCH以及一個或多個SIB中的任何一個。這裡使用的術語“非同步波束”可以指用於發送除了SYNCH之外的其他資訊(例如資料及/或控制頻道)的波束。這裡使用的術語“扇區”可以指全向覆蓋區域中的角度部分。每一個扇區都可以代表唯一的胞元。這裡使用的術語“分區”可以指扇區中的角度部分。高度定向系統中的示例傳輸 The terms "SYNCH beam" and "synchronous beam" as used herein may refer to a beam used to transmit SYNCH, including any of S1, S2, PBCH, and one or more SIBs. The term "asynchronous beam" as used herein may refer to a beam used to transmit other information than SYNCH, such as data and/or control channels. The term "sector" as used herein may refer to an angular portion of an omnidirectional coverage area. Each sector can represent a unique cell. The term "partition" as used herein may refer to an angular portion of a sector. Example transfer in a highly oriented system

這裡提供的方法及/或技術可以允許高度定向的系統中的同步信號傳輸。這裡提供的方法及/或技術能夠匹配關於同步頻道和資料頻道的覆蓋。The methods and/or techniques provided herein may allow for synchronous signal transmission in highly directional systems. The methods and/or techniques provided herein are capable of matching coverage with respect to synchronized channels and data channels.

第14圖示出了使用基於he -OFDM的波形產生的OFDM信號1400的示例。該OFDM信號1400包括兩個OFDM符號1402a、1402b,其中每一個OFDM符號都具有各自的資料部分1404a、1404b以及尾部1406a、1406b。該尾部1406a、1406b可以是零尾、唯一字或是其組合。藉由使用尾部1406a、1406b傳輸同步信號可以利用基於he -OFDM的波形來實現有效同步。Figure 14 shows an example of an OFDM signal 1400 generated using a he -OFDM based waveform. The OFDM signal 1400 includes two OFDM symbols 1402a, 1402b, each of which has a respective data portion 1404a, 1404b and tails 1406a, 1406b. The tails 1406a, 1406b can be zero tails, unique words, or a combination thereof. Effective synchronization can be achieved with he -OFDM based waveforms by using the tails 1406a, 1406b to transmit the synchronization signal.

尾部1406a、1406b可被配置為攜帶有助於符號時序獲取的同步資訊,例如S1。資料部分1404a、1404b中的一個或所有的兩個可以攜帶同步資訊,例如S2,以促成訊框/子訊框時序及/或胞元ID之類的其他一些資訊的獲取。The tails 1406a, 1406b can be configured to carry synchronization information that facilitates symbol timing acquisition, such as S1. One or both of the data portions 1404a, 1404b may carry synchronization information, such as S2, to facilitate acquisition of other information such as frame/subframe timing and/or cell ID.

第15圖示出了起因於在單獨的波束1502a、1502b上傳輸同步資訊和資料頻道資訊的示例OFDM信號1500。該單獨的波束1502a、1502b可以由能夠同時產生至少兩個Tx波束的基地台產生並從該基地台傳送。該基地台可以配備有多個RF鏈,以同時產生該Tx波束。Figure 15 shows an example OFDM signal 1500 resulting from the transmission of synchronization information and data channel information on separate beams 1502a, 1502b. The separate beams 1502a, 1502b may be generated by a base station capable of simultaneously generating at least two Tx beams and transmitted from the base station. The base station can be equipped with multiple RF chains to simultaneously generate the Tx beam.

如所示,在波束1502a上可以攜帶同步資訊(例如S1/S2/PBCH),並且在波束1502b上可以執行資料頻道傳輸。波束1502a可以具有寬波束寬度。波束1502b可以具有窄波束寬度(至少與波束1502a相比)。As shown, synchronization information (e.g., S1/S2/PBCH) can be carried on beam 1502a, and data channel transmission can be performed on beam 1502b. Beam 1502a can have a wide beamwidth. Beam 1502b can have a narrow beamwidth (at least compared to beam 1502a).

基地台可以週期性地在分區內拂掠波束1502a(同步波束)(例如第31圖)。拂掠波束1502a可以允許同步信號的胞元寬度覆蓋。例如依照針對所排程的WTRU的資料頻道傳輸的需要,基地台可以將波束1502b(資料波束)指向特定區域。The base station can periodically swept the beam 1502a (synchronous beam) within the partition (e.g., Figure 31). The swept beam 1502a may allow cell width coverage of the sync signal. The base station can direct the beam 1502b (data beam) to a particular area, for example, in accordance with the need for data channel transmission for the scheduled WTRU.

由於這兩個波束1502a、1502b有可能在空間域中重疊,在(拂掠/掃描)波束1502a上傳送的同步信號和在窄波束1502b上傳送的資料/控制信號可以使用頻域處理來保持分離。作為示例,在頻域中可以限制在同步波束1502a上傳送的信號,例如將其限制到子載波或子頻道集合。該子載波/子頻道集合可以是預先定義及/或指定的。子載波/子頻道集合的示例是n 個中心子載波。在非同步波束1502b上傳送的信號(該信號可以包括資料、控制等等)可被映射到未被分派給同步波束1502a/未被同步波束1502a使用的一個或多個子載波。Since the two beams 1502a, 1502b are likely to overlap in the spatial domain, the synchronization signal transmitted on the (plick/scan) beam 1502a and the data/control signal transmitted on the narrow beam 1502b can be separated using frequency domain processing. . As an example, signals transmitted on sync beam 1502a may be limited in the frequency domain, for example, to subcarriers or subchannel sets. The set of subcarriers/subchannels may be pre-defined and/or specified. An example of a subcarrier/subchannel set is n central subcarriers. The signal transmitted on the asynchronous beam 1502b (which may include data, control, etc.) may be mapped to one or more subcarriers that are not assigned to the sync beam 1502a/not used by the sync beam 1502a.

第16圖示出了起因於在同步和非同步波束1602a、1602b上傳輸同步資訊和資料頻道資訊的示例OFDM信號1600。如所示,在同步波束1602a上傳送的信號可映射到中心子載波,在非同步波束1602b上傳送的信號可映射到除中心子載波之外的其他子載波(否則不會被分派給同步波束/被同步波束使用)。Figure 16 shows an example OFDM signal 1600 resulting from the transmission of synchronization information and data channel information on synchronous and non-synchronized beams 1602a, 1602b. As shown, the signals transmitted on the sync beam 1602a can be mapped to the center subcarrier, and the signals transmitted on the asynchronous beam 1602b can be mapped to other subcarriers than the center subcarrier (otherwise not assigned to the sync beam) / is used by the sync beam).

第17圖示出了起因於在分開的波束1702a、1702b上傳輸同步資訊和資料頻道資訊的示例OFDM信號1700。如所示,同步波束(波束1702a)可以在未被用於攜帶同步資訊的OFDM符號中攜帶包括使用者資料的資料。這樣做可以允許有效地使用與同步波束1702a對應的資源。在所顯示的示例中,在時域中,該TTI的前x個OFDM符號攜帶同步(用“s”表示),並且該TTI的下y個OFDM符號攜帶資料(用“sd”表示),其中x+y=每一個TTI的OFDM符號總數。Figure 17 shows an example OFDM signal 1700 resulting from the transmission of synchronization information and data channel information on separate beams 1702a, 1702b. As shown, the sync beam (beam 1702a) can carry data including user data in OFDM symbols that are not used to carry synchronization information. Doing so may allow efficient use of resources corresponding to sync beam 1702a. In the example shown, in the time domain, the first x OFDM symbols of the TTI carry synchronization (represented by "s"), and the next y OFDM symbols of the TTI carry data (represented by "sd"), where x+y = total number of OFDM symbols per TTI.

第18圖示出了起因於在同步波束上傳輸同步資訊的示例OFDM信號1800。在同步波束上傳送的每一個同步符號s 和資料符號sd 都可以使用相同的UW,即syUW 。如所示,每一個同步符號s 都可以包括同步資訊sync-ch 以及UW,即syUW ;並且每一個資料符號sd 都可以包括資料頻道資訊data-ch 和UW,即syUW 。資料頻道資訊可以是在頻域中映射的公共或專用的資料頻道、並且可以在OFDM符號的資料部分上傳送。UW即syUW 可以是在OFDM符號的尾部傳輸的同步資訊。示例的同步程序及 / 或技術 Figure 18 shows an example OFDM signal 1800 resulting from the transmission of synchronization information over a sync beam. The same UW, syUW , can be used for each sync symbol s and data symbol sd transmitted on the sync beam. As shown, each sync symbol s may include sync information sync-ch and UW, ie syUW ; and each data symbol sd may include data channel information data-ch and UW, ie syUW . The data channel information may be a public or dedicated data channel mapped in the frequency domain and may be transmitted on the data portion of the OFDM symbol. The UW, syUW, may be synchronization information transmitted at the end of the OFDM symbol. Example synchronization procedures and / or techniques

在後續描述中,同步資訊和資料頻道資訊的傳輸可以在單獨的波束上進行。為了簡明起見,一個波束可以用於同步目的,並且其他任何數量的波束都用於將資料頻道傳輸至一個或多個使用者(作為示例,該其他波束可以是窄波束,以提供高增益)。這些波束可以由能夠藉由諸如使用混合波束成形而同時產生至少兩個Tx波束的基地台來產生,並且可以從該基地台傳送。該基地台可以配備多個RF鏈,以同時產生此類Tx波束。In the subsequent description, the transmission of the synchronization information and the data channel information can be performed on a separate beam. For the sake of simplicity, one beam can be used for synchronization purposes, and any other number of beams are used to transmit the data channel to one or more users (as an example, the other beams can be narrow beams to provide high gain) . These beams can be generated by base stations that can simultaneously generate at least two Tx beams, such as using hybrid beamforming, and can be transmitted from the base station. The base station can be equipped with multiple RF chains to simultaneously generate such Tx beams.

為了簡明起見,在同步波束上攜帶的OFDM信號可以包括(i)在時域中在OFDM符號的尾部插入的符號時序同步資訊(例如S1),以及(ii)TTI/訊框時序資訊,及/或在頻域中在一個或多個資料子載波上插入的其它同步資訊。For the sake of brevity, the OFDM signal carried on the synchronization beam may include (i) symbol timing synchronization information (eg, S1) inserted at the end of the OFDM symbol in the time domain, and (ii) TTI/frame timing information, and / or other synchronization information inserted in one or more data subcarriers in the frequency domain.

第19圖示出了被配置為產生用於在單獨的波束上傳輸同步資訊和資料頻道資訊的OFDM信號的示例傳輸器1900。該傳輸器1900可以包括第一和第二波形產生器1901a、1901b。該第一波形產生器1901a可以產生可在同步波束上傳送的OFDM信號。第二波形產生器1901b可以產生可在資料波束上傳送的OFDM信號。Figure 19 shows an example transmitter 1900 configured to generate an OFDM signal for transmitting synchronization information and data channel information on separate beams. The transmitter 1900 can include first and second waveform generators 1901a, 1901b. The first waveform generator 1901a can generate an OFDM signal that can be transmitted on a sync beam. The second waveform generator 1901b can generate an OFDM signal that can be transmitted on the data beam.

第一波形產生器1901a可以包括脈波成形單元1903a、時域插入單元1905a、子頻道映射單元1907a、平行轉串列轉換器1909a以及波束成形單元1911a。該脈波成形單元1903a可被配置為是ZT DFT-s-OFDM波形產生器、並且可以包括M點DFT單元1910a、子載波映射(SM)單元1912a以及N點逆DFT(IDFT)單元1914a。子頻道映射單元1907a可以包括N點DFT單元1920a、子載波映射(SM)單元1922a以及NIFFT 點IFFT單元1924a。The first waveform generator 1901a may include a pulse wave shaping unit 1903a, a time domain insertion unit 1905a, a subchannel mapping unit 1907a, a parallel to serial train converter 1909a, and a beamforming unit 1911a. The pulse shaping unit 1903a may be configured to be a ZT DFT-s-OFDM waveform generator, and may include an M-dot DFT unit 1910a, a subcarrier mapping (SM) unit 1912a, and an N-dot inverse DFT (IDFT) unit 1914a. The subchannel mapping unit 1907a may include an N point DFT unit 1920a, a subcarrier mapping (SM) unit 1922a, and an N IFFT point IFFT unit 1924a.

零尾(或近似零尾)時域OFDM信號可以基於逐個符號以使用脈波成形單元1903a來產生。如所示,Nt和Nh個零樣本可分別被饋送到M點DFT單元1910a的尾部和頭部輸入。諸如S2及/或PBCH之類的公共及/或同步資訊可被饋送到M點DFT單元1910a的一個或多個剩餘輸入端。M點DFT單元1910a的輸出可被映射到N點IDFT單元1914a,其中N>M可以是M的整數倍。N點IDFT單元1914a的得到的輸出可以是在尾部具有Nzt個近似零值的樣本以及在頭部具有Nzh個近似零值的樣本的時域OFDM符號,其中:等式(1) ..等式(2)A zero tail (or approximately zero tail) time domain OFDM signal may be generated on a symbol by symbol basis using pulse shaping unit 1903a. As shown, Nt and Nh zero samples can be fed to the tail and head inputs of M-point DFT unit 1910a, respectively. Common and/or synchronization information such as S2 and/or PBCH may be fed to one or more remaining inputs of M-point DFT unit 1910a. The output of M-point DFT unit 1910a may be mapped to N-point IDFT unit 1914a, where N>M may be an integer multiple of M. The resulting output of the N-point IDFT unit 1914a may be a time-domain OFDM symbol having Nzt approximate zero values at the tail and samples having Nzh approximate zero values at the head, where: Equation (1) .. Equation (2)

從N點IDFT單元1914a輸出的每一個時域OFDM符號都會被饋送到時域插入單元1905a的輸入端。該時域插入單元1905a可以將符號級同步序列(例如S1)插入(添加)到時域OFDM符號中,以替代尾部的Nzt個近似零值樣本及/或頭部的Nzh個近似零值樣本;其結果是產生了攜帶了多種類型的同步資訊的時域OFDM符號(“SYNC類型的OFDM符號”)。該同步序列可以是固定序列、並且可以具有預先定義的長度。替代地,該同步序列可以是動態或半靜態地被配置的,及/或其長度可以是可配置的。一旦確定了同步序列的期望長度,那麼脈波成形單元1903a可以設定如使用等式(1)及/或等式(2)計算的要在M點DFT單元1910a的輸入端饋送的所需數量(Nt)的零尾樣本,其中對於任何指定的資源分派而言,N和M都是已知的。Each time domain OFDM symbol output from the N-point IDFT unit 1914a is fed to the input of the time domain insertion unit 1905a. The time domain insertion unit 1905a may insert (add) a symbol level synchronization sequence (eg, S1) into the time domain OFDM symbol to replace the Nzt approximate zero value samples of the tail and/or the Nzh approximate zero value samples of the header; The result is a time domain OFDM symbol ("SYNC type OFDM symbol") that carries multiple types of synchronization information. The synchronization sequence can be a fixed sequence and can have a predefined length. Alternatively, the synchronization sequence may be dynamically or semi-statically configured, and/or its length may be configurable. Once the desired length of the synchronization sequence is determined, the pulse shaping unit 1903a can set the required number to be fed at the input of the M-point DFT unit 1910a as calculated using equations (1) and/or equation (2) ( A zero-tailed sample of Nt) where N and M are known for any given resource assignment.

時域插入單元1905a可以將所產生的SYNC類型的OFDM符號饋送到子頻道映射單元1907a。子頻道映射單元1907a可以將SYNC類型的OFDM符號映射到與用於資料波束上的資料頻道傳輸的其他子載波正交的可用頻道的中心子帶及/或其他子帶。作為示例,該SYNC類型的OFDM符號可被映射到總的NIFFT 個子載波中的N個中心子載波(例如一個或多個子帶)(其中總NIFFT 子載波可以包括所使用的子載波以及保護子載波)。作為示例,子頻道映射單元1907a可以在NIFFT 點IFFT單元1924a上使用頻域保護頻帶插入,以遮蔽與中心的N個子載波(及/或其他期望的子載波)正交的所有NIFFT 個子載波。NIFFT 點IFFT單元1924a可以將子帶映射的SYNC類型的OFDM符號饋送到平行轉串列轉換器1909a,以對其進行轉換並輸出到波束成形單元1911a,該波束成形單元1911a執行波束成形,以在同步波束上進行傳輸。The time domain insertion unit 1905a may feed the generated OFDM type OFDM symbol to the subchannel mapping unit 1907a. Subchannel mapping unit 1907a may map OFDM type OFDM symbols to a central subband and/or other subbands of available channels that are orthogonal to other subcarriers used for data channel transmission on the data beam. As an example, the SYNC type OFDM symbols may be mapped to N subcarriers centers (e.g. one or more sub-band) (where N total subcarriers may comprise the IFFT subcarriers used and the protection of the N total subcarriers in the IFFT Subcarrier). As an example, subchannel mapping unit 1907a may use frequency domain guard band insertion on N IFFT point IFFT unit 1924a to mask all N IFFT subcarriers orthogonal to the center of N subcarriers (and/or other desired subcarriers). . The N IFFT point IFFT unit 1924a may feed the subband mapped OFDM type OFDM symbols to the parallel to serial train converter 1909a to convert and output to the beamforming unit 1911a, which performs beamforming to The transmission is performed on the sync beam.

第二波形產生器1901b可以包括脈波成形單元1903b、1903c、時域插入單元1905b、1905c、子頻道映射單元1907b、1907c、平行轉串列轉換器1909b以及波束成形單元1911b。脈波成形單元1903b、1903c可以包括各自的M點DFT單元1910b、1910c、子載波映射(SM)單元1912b、1912c以及N點IDFT單元1914b、1914c。子頻道映射單元1907b、1907c可以包括各自的N點DFT單元1920b、1920c、子載波映射(SM)單元1922b、1922c以及公共NIFFT 點IFFT單元1924b。雖然沒有示出,但是作為公共NIFFT 點IFFT單元1924b的替代,子頻道映射單元1907b、1907c可以包括各自的NIFFT 點IFFT單元。為了簡明起見,“M點”和“N點”可以用術語“M1點”和“N1點”取代,以表示與關於使用者1的使用者資料的關聯。同樣,“M點”和“N點”可以用“M2點”和“N2點”來取代,以表示與關於使用者2的使用者資料的關聯。儘管具有不同的名稱,但是“M”、“M1”和“M2”可以是相同的數字,及/或“N”、“N1”和“N2”中的一個或多個可以是相同的數字。The second waveform generator 1901b may include pulse wave shaping units 1903b, 1903c, time domain insertion units 1905b, 1905c, subchannel mapping units 1907b, 1907c, parallel to serial train converter 1909b, and beamforming unit 1911b. The pulse wave shaping units 1903b, 1903c may include respective M-point DFT units 1910b, 1910c, subcarrier mapping (SM) units 1912b, 1912c, and N-point IDFT units 1914b, 1914c. Subchannel mapping units 1907b, 1907c may include respective N-point DFT units 1920b, 1920c, subcarrier mapping (SM) units 1922b, 1922c, and a common N IFFT point IFFT unit 1924b. Although not shown, instead of the common N IFFT point IFFT unit 1924b, the subchannel mapping units 1907b, 1907c may include respective N IFFT point IFFT units. For the sake of brevity, "M point" and "N point" may be replaced with the terms "M1 point" and "N1 point" to indicate association with user data about user 1. Similarly, "M point" and "N point" may be replaced with "M2 point" and "N2 point" to indicate association with user data about user 2. Although having different names, "M", "M1", and "M2" may be the same number, and/or one or more of "N", "N1", and "N2" may be the same number.

與第一波形產生器1901a相似,零尾(或近似於零尾)時域OFDM信號可以以逐個符號為基礎以使用脈波成形單元1903b來產生。Nt和Nh個零樣本可被分別饋送至M1點DFT單元1910b的尾部和頭部輸入端。使用者1的資料可被饋送到M1點DFT單元1910b的剩餘輸入端中的一個或多個輸入端。M1點DFT單元1910b的輸出可被映射到N1點IDFT單元1914b,其中N1>M1可以是M1的整數倍。根據等式(1)及/或(2),N1點IDFT單元1914a的所得到的輸出可以是在尾部具有Nzt個近似零值的樣本以及在頭部具有Nzh個近似零值的樣本的時域OFDM符號。Similar to the first waveform generator 1901a, a zero tail (or approximately zero tail) time domain OFDM signal can be generated on a symbol by symbol basis using the pulse shaping unit 1903b. Nt and Nh zero samples may be fed to the tail and head inputs of M1 point DFT unit 1910b, respectively. User 1's profile can be fed to one or more of the remaining inputs of M1 point DFT unit 1910b. The output of the M1 point DFT unit 1910b may be mapped to the N1 point IDFT unit 1914b, where N1 > M1 may be an integer multiple of M1. According to equations (1) and/or (2), the resulting output of the N1 point IDFT unit 1914a may be a time domain having samples of Nzt approximate zero values at the tail and samples having Nzh approximate zero values at the head. OFDM symbol.

從N1點IDFT單元1914b輸出的每一個時域OFDM符號都可以被饋送到時域插入單元1905b的輸入端。時域插入單元1905b可以將符號級同步序列(例如S1)插入(添加)到時域OFDM符號中,以替代尾部中的Nzt個近似零值的樣本及/或頭部中的Nzh個近似零值的樣本;其結果可以是攜帶了使用者1的資料以及同步資訊的時域OFDM符號(“SYNC-tail OFDM符號”)。同步序列可以是固定序列並具有預先定義的長度。替代地,該同步序列可以是動態或半靜態地被配置,及/或其長度可以是可配置的。一旦確定了同步序列的期望長度,那麼脈波成形單元1903b可以設定如使用等式(1)及/或等式(2)所計算的要在M1點DFT單元1910b的輸入端饋送的所需數量(Nt)的零尾樣本,其中N=N1,M=M1,並且對於任何指定的資源分派而言,N1和M1都是已知的。Each of the time domain OFDM symbols output from the N1 point IDFT unit 1914b can be fed to the input of the time domain insertion unit 1905b. Time domain insertion unit 1905b may insert (add) a symbol level synchronization sequence (eg, S1) into the time domain OFDM symbol to replace Nzt samples of approximately zero value in the tail and/or Nzh approximate zero values in the header. The result may be a time domain OFDM symbol ("SYNC-tail OFDM symbol") carrying the data of User 1 and the synchronization information. The synchronization sequence can be a fixed sequence and has a predefined length. Alternatively, the synchronization sequence may be dynamically or semi-statically configured, and/or its length may be configurable. Once the desired length of the synchronization sequence is determined, the pulse shaping unit 1903b can set the required number to be fed at the input of the M1 point DFT unit 1910b as calculated using equations (1) and/or equation (2). A zero-tailed sample of (Nt), where N = N1, M = M1, and N1 and M1 are known for any given resource assignment.

時域插入單元1905b可以將由此得到的SYNC-tail OFDM符號饋送到子頻道映射單元1907b。子頻道映射單元1907b藉由N1點DFT單元1920b、SM單元1922b和NIFFT 點IFFT單元1924b的組合操作可以將SYNC-tail OFDM符號映射到可用頻道的一個或多個子帶。可以使用NIFFT 點IDFT單元1924b的輸入端處的SM單元1922b以將資料符號映射在未被用於同步符號的正交子載波上。使用者1可被分派頻域中的M1資源(包括零尾和頭部,如果使用的話)。該M1資源可以用大小為M1的DFT單元1910b來擴展,並且可以使用N1點IDFT單元1914b而被轉換到時域,其中N1可以是M1的整數倍。為使用者1產生的SYNC-tail OFDM可被映射到不與供同步符號使用的N個子載波重疊的所分派的頻率資源上(N1個子載波)。NIFFT 點IFFT單元1924b可以將映射到N1個子帶的SYNC-tail OFDM符號饋送到平行轉串列轉換器1909b以用於轉換、以及將其輸出至波束成形單元1911b,其中該波束成形單元1911b執行波束成形,以在(窄)資料波束上進行傳輸。The time domain insertion unit 1905b can feed the thus obtained SYNC-tail OFDM symbol to the subchannel mapping unit 1907b. The subchannel mapping unit 1907b may map the SYNC-tail OFDM symbols to one or more subbands of the available channels by a combination operation of the N1 point DFT unit 1920b, the SM unit 1922b, and the N IFFT point IFFT unit 1924b. The SM unit 1922b at the input of the N IFFT point IDFT unit 1924b may be used to map the data symbols on orthogonal subcarriers that are not used for the synchronization symbols. User 1 can be assigned M1 resources (including zero tails and headers, if used) in the frequency domain. The M1 resource may be extended with DFT unit 1910b of size M1 and may be converted to the time domain using N1 point IDFT unit 1914b, where N1 may be an integer multiple of M1. The SYNC-tail OFDM generated for User 1 can be mapped to the assigned frequency resources (N1 subcarriers) that do not overlap with the N subcarriers used for the synchronization symbols. N IFFT point IFFT unit 1924b may feed SYNC-tail OFDM symbols mapped to N1 subbands to parallel to serial train converter 1909b for conversion and output to beamforming unit 1911b, where the beamforming unit 1911b performs Beamforming to transmit on (narrow) data beams.

可以使用脈波成形單元1903c和時域插入單元1905c而以與攜帶使用者1的資料的SYNC-tail OFDM符號相同的方式來產生攜帶使用者2的資料的SYNC-tail OFDM符號。子頻道映射單元1907c可以將SYNC-tail OFDM符號映射到不與供同步符號使用的N個子載波以及供攜帶了使用者1的資料的SYNC-tail OFDM符號使用的N1個子載波重疊的所分派的頻率資源(N2個子載波)上。NIFFT 點IFFT單元1924b可以將映射到N2個子載波(例如子帶)的SYNC-tail OFDM符號饋送到平行轉串列轉換器1909b以用於轉換、以及將其輸出到波束成形單元1911b,其中該波束成形單元1911b執行波束成形,以在(窄)資料波束上進行傳輸。The SYNC-tail OFDM symbol carrying the data of the user 2 can be generated in the same manner as the SYNC-tail OFDM symbol carrying the data of the user 1 using the pulse shaping unit 1903c and the time domain insertion unit 1905c. The subchannel mapping unit 1907c may map the SYNC-tail OFDM symbol to an assigned frequency that does not overlap with the N subcarriers used for the synchronization symbol and the N1 subcarriers used for the SYNC-tail OFDM symbol carrying the data of the user 1. Resources (N2 subcarriers). N IFFT point IFFT unit 1924b may feed SYNC-tail OFDM symbols mapped to N2 subcarriers (eg, subbands) to parallel to serial train converter 1909b for conversion and output to beamforming unit 1911b, where Beamforming unit 1911b performs beamforming to transmit on the (narrow) data beam.

下表3列出了針對資料和同步資訊的資源分配的可能大小的示例。 表3Table 3 below gives an example of the possible sizes of resource allocations for data and synchronization information. table 3

第20圖示出了被配置為產生用於在單獨的波束上傳輸同步資訊和資料頻道資訊的OFDM信號的示例傳輸器2000。該傳輸器2000可以包括第一和第二波形產生器2001a、2001b。第一波形產生器2001a可以產生能在同步波束上傳送的OFDM信號。第二波形產生器2001b可以產生能在資料波束上傳送的OFDM信號。Figure 20 illustrates an example transmitter 2000 configured to generate an OFDM signal for transmitting synchronization information and data channel information on separate beams. The transmitter 2000 can include first and second waveform generators 2001a, 2001b. The first waveform generator 2001a can generate an OFDM signal that can be transmitted on the sync beam. The second waveform generator 2001b can generate an OFDM signal that can be transmitted on the data beam.

第一波形產生器2001a與第19圖中的第一波形產生器1901a相似,但是該第一波形產生器2001a可以包括被配置為是eZT DFT-s-OFDM波形產生器而不是ZT DFT-s-OFDM波形產生器的脈波成形單元2a。該脈波成形單元2003a可以包括M點DFT單元2010a、SM單元2012a、N點IDFT單元2014a以及在N點IDFT單元2014a的輸出端處的時域尾部消除單元2016a。該時域尾部消除單元2016a可被饋送從N點IDFT單元2014a輸出的時域OFDM符號。時域尾部消除單元2016a可以消除時域OFDM符號的尾部及/或頭部中的樣本(例如設定為零),並且可以將消除了尾部的OFDM符號饋送到時域插入單元2005a。剩餘的處理可以與第19圖中的第一波形產生器1901a執行的處理類似。The first waveform generator 2001a is similar to the first waveform generator 1901a in FIG. 19, but the first waveform generator 2001a may include an eZT DFT-s-OFDM waveform generator instead of ZT DFT-s- Pulse wave shaping unit 2a of the OFDM waveform generator. The pulse shaping unit 2003a may include an M-point DFT unit 2010a, an SM unit 2012a, an N-point IDFT unit 2014a, and a time domain tail elimination unit 2016a at the output of the N-point IDFT unit 2014a. The time domain tail elimination unit 2016a can be fed with the time domain OFDM symbol output from the N point IDFT unit 2014a. The time domain tail elimination unit 2016a may eliminate samples (eg, set to zero) in the tail and/or header of the time domain OFDM symbol, and may feed the tailed OFDM symbols to the time domain insertion unit 2005a. The remaining processing can be similar to the processing performed by the first waveform generator 1901a in Fig. 19.

第二波形產生器2001b與第19圖中的第二波形產生器1901b類似,但是該第二波形產生器2001b可以包括被配置為eZT DFT-s-OFDM波形產生器而不是ZT DFT-s-OFDM波形產生器的脈波成形單元2003b、2003c。該脈波成形單元2003b、2003c分別可以包括M1 / M2點DFT單元2010b、2010c、SM單元2012b、2012c、N1 / N2點IDFT單元2014b、2014c以及位於N1 / N2點IDFT單元2014b、2014c的輸出端的時域尾部消除單元2016b、2016c。時域尾部消除單元2016b(2016c)可被饋送從IDFT單元2014b(2014c)輸出的時域OFDM符號。該時域尾部消除單元2016b(2016c)可以消除時域OFDM符號的尾部及/或頭部中的樣本、並且可以將消除了尾部的OFDM符號饋送到時域插入單元2005b(2005c)。剩餘的處理可以與第19圖中的第二波形產生器1901b執行的處理類似。The second waveform generator 2001b is similar to the second waveform generator 1901b in FIG. 19, but the second waveform generator 2001b may include an eZT DFT-s-OFDM waveform generator instead of ZT DFT-s-OFDM Pulse wave shaping units 2003b, 2003c of the waveform generator. The pulse shaping units 2003b, 2003c may respectively include M1 / M2 point DFT units 2010b, 2010c, SM units 2012b, 2012c, N1 / N2 point IDFT units 2014b, 2014c, and outputs at the N1 / N2 point IDFT units 2014b, 2014c. Time domain tail elimination unit 2016b, 2016c. The time domain tail elimination unit 2016b (2016c) can be fed with the time domain OFDM symbols output from the IDFT unit 2014b (2014c). The time domain tail elimination unit 2016b (2016c) may eliminate samples in the tail and/or header of the time domain OFDM symbol, and may feed the tailed OFDM symbols to the time domain insertion unit 2005b (2005c). The remaining processing can be similar to the processing performed by the second waveform generator 1901b in Fig. 19.

第21圖示出了被配置為產生用於在單獨的波束上傳輸同步資訊和資料頻道資訊的OFDM信號的示例傳輸器2100。該傳輸器2100可以包括第一和第二UW DFT-s ODFM波形產生器2101a、2101b。該第一UW DFT-s ODFM波形產生器2101a可以包括冗餘資料產生單元2108、M點DFT單元2110a、SM單元2122a、NIFFT 點IFFT單元2124a、平行轉串列轉換器2109a以及波束成形單元2111a。Figure 21 shows an example transmitter 2100 configured to generate an OFDM signal for transmitting synchronization information and data channel information on separate beams. The transmitter 2100 can include first and second UW DFT-s ODFM waveform generators 2101a, 2101b. The first UW DFT-s ODFM waveform generator 2101a may include a redundant data generating unit 2108, an M-point DFT unit 2110a, an SM unit 2122a, an N IFFT point IFFT unit 2124a, a parallel-to-serial converter 2109a, and a beamforming unit 2111a. .

SYNCH頻道可以用NIFFT 個子載波中的一組M個子載波來產生。這些子載波可以位於系統頻帶的中心。公共資料可被饋送到冗餘資料產生單元2108。公共資料可以連同從冗餘資料產生單元2108輸出的冗餘資料一起被饋送到M點DFT單元2110a。該冗餘資料可被饋送到M點DFT單元2110a的尾部和頭部,並且可以從公共資料中獲取輸入到M點DFT單元2110a的剩餘樣本。冗餘資料產生單元2108可以使用預編碼以從公共資料中計算冗餘資料。該預編碼允許在M點DFT單元2110a的輸出端的尾部產生唯一字。該資料可被用於同步目的及/或用於攜帶廣播資訊。作為示例,公共資料可以包括PBCH、輔同步序列等等。The SYNCH channel can be generated with a set of M subcarriers of N IFFT subcarriers. These subcarriers can be located at the center of the system band. The public material can be fed to the redundant data generating unit 2108. The public material can be fed to the M-point DFT unit 2110a along with the redundant material output from the redundant material generating unit 2108. This redundant material can be fed to the tail and head of the M-point DFT unit 2110a, and the remaining samples input to the M-point DFT unit 2110a can be acquired from the public material. The redundant data generating unit 2108 can use precoding to calculate redundant data from the public material. This precoding allows a unique word to be generated at the tail of the output of the M-point DFT unit 2110a. This information can be used for synchronization purposes and/or for carrying broadcast information. As an example, the public material may include a PBCH, a secondary synchronization sequence, and the like.

藉由M點DFT單元2110a,SM單元2122a以及NIFFT 點IFFT單元2124a的組合操作,可以將所得到的OFDM符號(例如SYNC類型的OFDM符號)映射到可用頻道的中心子帶及/或其他子帶。作為示例,該OFDM符號可被映射到總共NIFFT 個子載波中的N個中心子載波(其中總共NIFFT 個子載波可以包括已被使用的子載波以及同步頻道周圍作為保護子載波所保留且未被用於資料傳輸的子載波)。該NIFFT 點IFFT單元2124a可以使用頻域保護波段插入處理來遮蔽與N個中心子載波(及/或一個或多個其他期望子帶)正交的所有NIFFT 個子載波。該NIFFT 點IFFT單元2124a可以將映射到子帶的OFDM符號饋送到平行轉串列轉換器2109a以用於轉換、以及將其輸出到波束成形單元2111a,該波束成形單元2111a執行波束成形,以在同步波束上進行傳輸。The resulting OFDM symbols (eg, OFDM type OFDM symbols) may be mapped to the center subband of the available channel and/or other sub-combinations by the combined operation of the M-point DFT unit 2110a, the SM unit 2122a, and the N IFFT point IFFT unit 2124a. band. As an example, the OFDM symbol may be mapped to N subcarriers central subcarrier of the IFFT total of N (where N total subcarriers may comprise the IFFT subcarriers has been used as a synchronization channel and a surrounding guard subcarriers are reserved and not Subcarrier used for data transmission). The N IFFT point IFFT unit 2124a may use frequency domain guard band insertion processing to mask all N IFFT subcarriers orthogonal to the N central subcarriers (and/or one or more other desired subbands). The N IFFT point IFFT unit 2124a may feed the OFDM symbols mapped to the subbands to the parallel to serial train converter 2109a for conversion and output to the beamforming unit 2111a, which performs beamforming to The transmission is performed on the sync beam.

如果存在未被分配給同步頻道和保護子載波的子載波,那麼可以將該子載波用於資料傳輸。可以使用第二UW DFT-s OFDM波形產生器2101b來產生資料信號。該第二UW DFT-s ODFM波形產生器2101b可以包括冗餘資料產生單元2108b、2108c、K1/K2點DFT單元2110b、2110c、SM單元2122a、2122b、NIFFT 點IFFT單元2124b、平行轉串列轉換器2109b以及波束成形單元21116。If there are subcarriers that are not allocated to the synchronization channel and the protection subcarrier, then the subcarrier can be used for data transmission. The second UW DFT-s OFDM waveform generator 2101b can be used to generate the data signal. The second UW DFT-s ODFM waveform generator 2101b may include redundant data generating units 2108b, 2108c, K1/K2 dot DFT units 2110b, 2110c, SM units 2122a, 2122b, N IFFT point IFFT unit 2124b, parallel serial columns. Converter 2109b and beamforming unit 21116.

使用者1的資料可被饋送至冗餘資料產生單元2108。該使用者1的資料可以連同從冗餘資料產生單元2108輸出的冗餘資料一起被饋送到K1點DFT單元2110b。該冗餘資料可被饋送到K1點DFT單元2110b的尾部和頭部,並且從使用者1的資料中可以獲取輸入到K1點DFT單元2110b的剩餘樣本。冗餘資料產生單元2108b可以使用預編碼以從公共資料中計算冗餘資料。該預編碼允許在M點DFT單元2110b的輸出端的尾部產生唯一字。User 1's profile can be fed to redundant data generation unit 2108. The data of the user 1 can be fed to the K1 point DFT unit 2110b together with the redundant material output from the redundant material generating unit 2108. This redundant material can be fed to the tail and head of the K1 point DFT unit 2110b, and the remaining samples input to the K1 point DFT unit 2110b can be acquired from the data of the user 1. The redundant data generating unit 2108b can use precoding to calculate redundant data from the public material. This precoding allows a unique word to be generated at the tail of the output of the M-point DFT unit 2110b.

藉由K1點DFT單元2110b、SM單元2122b以及NIFFT 點IFFT單元2124a的組合操作,可以將所得到的OFDM符號(例如SYNC-tail OFDM符號)映射到可用頻道的一個或多個子帶。可以使用在NIFFT 點IDFT單元2124b的輸入端處的SM單元2122b以允許將資料符號映射在未被用於同步頻道及/或保護子載波的正交子載波上。使用者1可被分派頻域中的K1資源(包括零尾和頭部,如果使用的話)。為使用者1產生的OFDM符號可被映射到不與供同步符號使用的N個子載波重疊的所分派的頻率資源(K1個子載波)。 NIFFT 點IFFT單元2124b可以將映射到K1個子帶的SYNC-tail OFDM符號饋送到平行轉串列轉換器2109b以用於轉換、以及將其輸出至波束成形單元21116,該波束成形單元21116執行波束成形處理,以在(窄)資料波束上進行傳輸。The resulting OFDM symbols (e.g., SYNC-tail OFDM symbols) may be mapped to one or more sub-bands of the available channels by a combined operation of K1 dot DFT unit 2110b, SM unit 2122b, and N IFFT point IFFT unit 2124a. The SM unit 2122b at the input of the N IFFT point IDFT unit 2124b may be used to allow mapping of data symbols on orthogonal subcarriers that are not used for synchronization channels and/or guard subcarriers. User 1 can be assigned K1 resources (including zero tails and headers, if used) in the frequency domain. The OFDM symbols generated for User 1 can be mapped to the assigned frequency resources (K1 subcarriers) that do not overlap with the N subcarriers used for the synchronization symbols. The N IFFT point IFFT unit 2124b may feed the SYNC-tail OFDM symbols mapped to the K1 subbands to the parallel to serial train converter 2109b for conversion and output to the beamforming unit 21116, which performs the beam Forming processing to transmit on (narrow) data beams.

攜帶使用者2的資料的OFDM符號(例如SYNC-tail OFDM符號)可以用與攜帶使用者1的資料的OFDM符號相同的方式、使用冗餘資料產生單元2108c和K2點DFT單元2110c來產生。可以使用在NIFFT 點IDFT單元2124b的輸入端處的SM單元2122c以使攜帶了使用者2的資料的OFDM符號能映射到不與用於同步符號的N個子載波以及供攜帶使用者1的資料的OFDM符號使用的N1個子載波重疊的所分派的頻率資源(N2個子載波)。NIFFT 點IFFT單元2124b可以將映射到N2個子帶的OFDM符號饋送到平行轉串列轉換器2109b以用於轉換、以及將其輸出到波束成形單元21116,該單元執行波束成形,以在(窄)資料波束上進行傳輸。The OFDM symbol (e.g., SYNC-tail OFDM symbol) carrying the data of User 2 can be generated in the same manner as the OFDM symbol carrying the data of User 1, using redundant data generating unit 2108c and K2 point DFT unit 2110c. The SM unit 2122c at the input of the N IFFT point IDFT unit 2124b can be used to enable the OFDM symbol carrying the data of the user 2 to be mapped to the N subcarriers not used for the synchronization symbol and the data for carrying the user 1. The allocated frequency resources (N2 subcarriers) in which the N1 subcarriers overlapped by the OFDM symbol. The N IFFT point IFFT unit 2124b may feed the OFDM symbols mapped to the N2 subbands to the parallel to serial train converter 2109b for conversion and output to the beamforming unit 21116, which performs beamforming to The data beam is transmitted on the beam.

在接收器端,嘗試實現初始同步的WTRU可以對進入的信號進行濾波,以區分攜帶了同步資訊的子帶。例如,如果同步頻道使用了波段中心的N個子載波(如第21圖所示),那麼WTRU可以使用低通濾波器。WTRU可以將同步頻道上攜帶的OFDM符號的唯一字用於初始同步。該WTRU可以將資料頻道上攜帶的SYNC-tail OFDM符號的唯一字(如果有的話)用於初始同步。At the receiver end, the WTRU attempting to implement the initial synchronization may filter the incoming signal to distinguish the sub-bands carrying the synchronization information. For example, if the sync channel uses N subcarriers in the center of the band (as shown in Figure 21), the WTRU may use a low pass filter. The WTRU may use the unique word of the OFDM symbol carried on the synchronization channel for initial synchronization. The WTRU may use the unique word (if any) of the SYNC-tail OFDM symbol carried on the data channel for initial synchronization.

第22圖示出了被配置為產生用於在單獨的波束上傳輸同步資訊和資料頻道資訊的OFDM信號的示例傳輸器2200。該傳輸器2200可以包括第一和第二ZT DFT-s OFDM波形產生器2201a、2201b。該第一ZT DFT-s ODFM波形產生器2201a可以包括M點DFT單元2210a、SM單元2212a、NIFFT 點IFFT單元2224a、時域插入單元2205a、平行轉串列轉換器2209a以及波束成形單元2211a。Figure 22 shows an example transmitter 2200 configured to generate an OFDM signal for transmitting synchronization information and data channel information on separate beams. The transmitter 2200 can include first and second ZT DFT-s OFDM waveform generators 2201a, 2201b. The first ZT DFT-s ODFM waveform generator 2201a may include an M-point DFT unit 2210a, an SM unit 2212a, a N IFFT point IFFT unit 2224a, a time domain insertion unit 2205a, a parallel-to-serial converter 2209a, and a beamforming unit 2211a.

使用M點DFT單元2210a、SM單元2212a和NIFFT 點IFFT單元2224a可以在逐個符號的基礎上產生零尾(或近似零尾)時域OFDM信號。Nt和Nh個零樣本可以分別饋送到M點DFT單元2210a的尾部和頭部輸入。諸如S2及/或PBCH之類的公共和同步資訊可被饋送到M點DFT單元2210a的剩餘輸入端中的一個或多個。該M點DFT單元2210a的輸出可被映射到NIFFT 點IFFT單元2224a,其中N> M,並且N可以是M的整數倍。該NIFFT 點IFFT單元2224a可以跨越整個頻道頻寬,如果存在保護子載波,那麼這其中還包括該保護子載波。A zero-tailed (or approximately zero-tailed) time domain OFDM signal can be generated on a symbol-by-symbol basis using M-point DFT unit 2210a, SM unit 2212a, and N IFFT point IFFT unit 2224a. Nt and Nh zero samples may be fed to the tail and head inputs of M-point DFT unit 2210a, respectively. Common and synchronization information such as S2 and/or PBCH may be fed to one or more of the remaining inputs of M-point DFT unit 2210a. The output of the M-point DFT unit 2210a may be mapped to a N IFFT point IFFT unit 2224a, where N > M, and N may be an integer multiple of M. The N IFFT point IFFT unit 2224a may span the entire channel bandwidth, and if there is a guard subcarrier, then the guard subcarrier is also included therein.

NIFFT 點IFFT單元2224a的所得的輸出可以是在尾部具有Nzt個近似零值樣本以及在頭部具有Nz個近似零值樣本的時域OFDM符號,其中該符號被映射到可用頻道的中心子帶及/或其它子帶,並且與資料波束上的資料頻道傳輸所使用的其它子載波正交。例如,OFDM符號可被映射到總共NIFFT 個子載波中的中心的N個子載波。映射到子帶的OFDM符號可被饋送到時域插入單元2205a。該時域插入單元2205a可以在時域中將同步信號(例如S1)直接插入(添加)至時域OFDM符號的零尾,以取代尾部中的Nzt個近似零值樣本及/或頭部的Nzh個近似零值樣本;其結果可以是映射到子帶的SYNC類型的OFDM符號。同步信號可以是固定序列並且具有預先定義的長度。替代地,該同步信號也可以是動態或半靜態地被配置的,及/或其長度可以是可配置的。該同步信號(例如唯一字/同步序列)可被設計及/或配置為使得其在頻域中被包含在用於同步目的的子帶(例如中心子載波),同時保持良好的互相關屬性。一旦確定了同步序列的期望長度,則可以根據等式(1)及/或等式(2)來配置將要在M點DFT單元2210a的輸入端饋送的零尾樣本的數量(Nt)。The resulting output of the N IFFT point IFFT unit 2224a may be a time domain OFDM symbol having Nzt approximate zero value samples at the tail and Nz approximate zero value samples at the head, where the symbol is mapped to the center subband of the available channel And/or other sub-bands, and orthogonal to other sub-carriers used for data channel transmission on the data beam. For example, an OFDM symbol can be mapped to N subcarriers in the center of a total of N IFFT subcarriers. The OFDM symbols mapped to the subbands can be fed to the time domain insertion unit 2205a. The time domain insertion unit 2205a may directly insert (add) a synchronization signal (eg, S1) to the zero tail of the time domain OFDM symbol in the time domain to replace the Nzt approximate zero value samples in the tail and/or the Nzh of the header. An approximate zero value sample; the result may be an OFDM symbol of the SYNC type mapped to the subband. The synchronization signal can be a fixed sequence and have a predefined length. Alternatively, the synchronization signal may also be dynamically or semi-statically configured, and/or its length may be configurable. The synchronization signal (e.g., unique word/synchronization sequence) can be designed and/or configured such that it is included in the frequency domain for subbands (e.g., center subcarriers) for synchronization purposes while maintaining good cross-correlation properties. Once the desired length of the synchronization sequence is determined, the number (Nt) of zero-tail samples to be fed at the input of the M-point DFT unit 2210a can be configured according to equation (1) and/or equation (2).

映射到子帶的SYNC類型OFDM符號可從時域插入單元2205a被饋送到平行轉串列轉換器2209a以用於轉換、並且被輸出到波束成形單元2211a,該波束成形單元2211a執行波束成形,以用於在同步波束進行傳輸。The SYNC type OFDM symbol mapped to the subband may be fed from the time domain insertion unit 2205a to the parallel to serial train converter 2209a for conversion, and output to the beamforming unit 2211a, which performs beamforming to Used to transmit in the sync beam.

第二ZT DFT-s ODFM波形產生器2201b可以包括M1/M2點DFT單元2210b、2210c、SM單元2212b、2212c、NIFFT 點IFFT單元2224b、時域插入單元2205b、平行轉串列轉換器2209b、以及波束成形單元2211b。可以使用M1/M2點DFT單元2210b、2210c,SM單元2212b、2212c以及NIFFT 點IFFT單元2224b以基於逐個符號來產生零尾(或近似零尾)時域OFDM信號。Nt和Nh個零樣本可被分別饋送到M1點DFT單元2210b和M2點DFT單元2210c中的每一個的尾部和頭部輸入。使用者1的資料可被饋送到M1點DFT單元2210b的剩餘輸入端中的一個或多個,並且使用者2的資料可被饋送到M2點DFT單元2210c的剩餘輸入端中的一個或多個。M1/M2點DFT單元2210b、2210c的輸出可被映射到NIFFT 點IFFT單元2224b,其中N>M1+M2並且N可以是M的整數倍。NIFFT 點IFFT單元2224b可以跨越整個頻道頻寬,那麼也包括保護子載波(如果有的話)。The second ZT DFT-s ODFM waveform generator 2201b may include M1/M2 point DFT units 2210b, 2210c, SM units 2212b, 2212c, N IFFT point IFFT unit 2224b, time domain insertion unit 2205b, parallel to serial converter 2209b, And a beamforming unit 2211b. M1/M2 point DFT units 2210b, 2210c, SM units 2212b, 2212c, and N IFFT point IFFT unit 2224b may be used to generate a zero tail (or approximately zero tail) time domain OFDM signal on a symbol by symbol basis. Nt and Nh zero samples may be fed to the tail and head inputs of each of the M1 point DFT unit 2210b and the M2 point DFT unit 2210c, respectively. User 1's profile may be fed to one or more of the remaining inputs of M1 point DFT unit 2210b, and user 2's profile may be fed to one or more of the remaining inputs of M2 point DFT unit 2210c . The output of the M1/M2 point DFT units 2210b, 2210c may be mapped to the N IFFT point IFFT unit 2224b, where N > M1 + M2 and N may be an integer multiple of M. The N IFFT point IFFT unit 2224b may span the entire channel bandwidth, and then also includes guard subcarriers (if any).

NIFFT 點IFFT單元2224a的所得到的輸出可以是第一和第二時域OFDM符號。該第一時域OFDM符號可以包括使用者1的資料、尾部的Nzt個近似零值樣本以及頭部的Nzh個近似零值樣本,並且可以被映射到指派的頻率資源(N1個子載波)。第二時域OFDM符號可以包括使用者2的資料、位於尾部的Nzt個近似零值樣本以及位於頭部的Nzh個近似零值樣本,並且可被映射到所分派的頻率資源(N2個子載波)。映射到N1/N2子帶的OFDM符號可被饋送到時域插入單元2205a。該時域插入單元2205a可以在時域中將同步信號(例如S1)直接插入(添加)到映射到N1/N2子帶的OFDM符號的零尾中的一個或兩個;其結果可以是映射到N1/N2子帶的SYNC-tail OFDM符號。該同步信號可以是固定序列且具有預先定義的長度。替代地,同步信號可以是動態或半靜態地被配置的,及/或其長度可以是可配置的。一旦確定了同步序列的期望長度,則可以依照等式(1)及/或等式(2)來配置在N1/N2點DFT單元2210b、2210c中的每一個的輸入端饋送的零尾樣本的數量(Nt)。The resulting output of the N IFFT point IFFT unit 2224a may be the first and second time domain OFDM symbols. The first time domain OFDM symbol may include user 1 data, Nzt approximate zero value samples of the tail, and Nzh approximate zero value samples of the header, and may be mapped to assigned frequency resources (N1 subcarriers). The second time domain OFDM symbol may include user 2 data, Nzt approximate zero value samples at the tail, and Nzh approximate zero value samples at the head, and may be mapped to the assigned frequency resources (N2 subcarriers) . The OFDM symbols mapped to the N1/N2 subbands may be fed to the time domain insertion unit 2205a. The time domain insertion unit 2205a may directly insert (add) a synchronization signal (eg, S1) into one or both of the zero tails of the OFDM symbols mapped to the N1/N2 subband in the time domain; the result may be mapped to SYNC-tail OFDM symbol for the N1/N2 subband. The synchronization signal can be a fixed sequence and have a predefined length. Alternatively, the synchronization signal may be dynamically or semi-statically configured, and/or its length may be configurable. Once the desired length of the synchronization sequence is determined, the zero-tail samples fed at the input of each of the N1/N2 point DFT units 2210b, 2210c may be configured in accordance with equations (1) and/or equation (2). Quantity (Nt).

映射到子帶的SYNC-tail OFDM符號可被從時域插入單元2205b饋送到平行轉串列轉換器2209b以用於轉換,且被輸出到波束成形單元2211b,該波束成形單元2211b執行波束成形,以在資料波束上進行傳輸。The SYNC-tail OFDM symbols mapped to the subbands may be fed from the time domain insertion unit 2205b to the parallel to serial train converter 2209b for conversion, and output to the beamforming unit 2211b, which performs beamforming, To transmit on the data beam.

第23圖示出了被配置為產生用於在單獨的波束上傳輸同步資訊和資料頻道資訊的OFDM信號的示例傳輸器eZT。傳輸器2300可以包括第一和第二基於eZT OFDM的波形產生器2301、2301b。第一基於eZT OFDM的波形產生器2301可以包括SM單元2312a、M點IDFT單元2314a、位於M點IDFT單元2314a的輸出端的時域尾部消除單元2316a、循環移位單元2318a、時域插入單元2305、子頻道映射單元2307a、平行轉串列轉換器2309a以及波束成形單元2311a。Figure 23 shows an example transmitter eZT configured to generate an OFDM signal for transmitting synchronization information and data channel information on separate beams. Transmitter 2300 can include first and second eZT OFDM based waveform generators 2301, 2301b. The first eZT OFDM-based waveform generator 2301 may include an SM unit 2312a, an M-point IDFT unit 2314a, a time domain tail elimination unit 2316a located at an output end of the M-point IDFT unit 2314a, a cyclic shift unit 2318a, a time domain insertion unit 2305, Subchannel mapping unit 2307a, parallel to serial converter 2309a, and beamforming unit 2311a.

同步頻道可以用NIFFT 個子載波中的一組M個子載波來產生。這些子載波可以位於系統波段的中心。為了產生同步頻道,由饋送至SM單元2312a的零和資料組成的M個輸入可被映射到M點IDFT單元2314a,其中該零可被映射到均勻交錯的子載波。資料可以用於同步目的及/或用於攜帶廣播資訊。例如,公共資料可以包含PBCH、輔同步序列等等。The sync channel can be generated with a set of M subcarriers of N IFFT subcarriers. These subcarriers can be located at the center of the system band. To generate a sync channel, the M inputs consisting of zero sum data fed to SM unit 2312a can be mapped to M point IDFT unit 2314a, where the zero can be mapped to uniformly interleaved subcarriers. The data can be used for synchronization purposes and/or for carrying broadcast information. For example, public materials may include PBCH, secondary synchronization sequences, and the like.

在由時域尾部消除單元2316a執行了時域尾部消除以及由循環移位單元2318a執行了Nh個樣本的循環移位之後,時域插入單元2305可以在該信號的所有或部分零尾部分插入(添加)唯一字(例如確定性序列);這樣做會產生SYNC類型的OFDM符號。子頻道映射單元2307a可以將該SYNC類型的OFDM符號變換到頻域,並且可以將經過變換的SYNC類型的OFDM符號映射到一組子載波,例如位於頻帶中心的一組子載波。NIFFT 點IFFT單元2324a可以將映射到子帶的SYNC類型的OFDM符號饋送到平行轉串列轉換器2309a以用於轉換、以及將其輸出到波束成形單元2311a,其中該波束成形單元2311a執行波束成形,以在同步波束上進行傳輸。After the time domain tail elimination is performed by the time domain tail elimination unit 2316a and the cyclic shift of the Nh samples is performed by the cyclic shift unit 2318a, the time domain insertion unit 2305 can be inserted at all or part of the zero tail portion of the signal ( Add) a unique word (such as a deterministic sequence); doing so produces an OFDM symbol of the SYNC type. Subchannel mapping unit 2307a may transform the OFDM type OFDM symbols into the frequency domain and may map the transformed SYNC type OFDM symbols to a set of subcarriers, such as a set of subcarriers located at the center of the band. The N IFFT point IFFT unit 2324a may feed the OFDM symbol of the SYNC type mapped to the subband to the parallel to serial train converter 2309a for conversion and output to the beamforming unit 2311a, wherein the beamforming unit 2311a performs the beam Formed to transmit on the sync beam.

如果存在未被分配給同步頻道及/或保護波段的子載波,那麼可以將其用於資料傳輸。第二基於eZT OFDM的波形產生器2301b可以包括SM單元2312b、2312c、K1/K2點IDFT單元2314b、2314c、時域尾部消除單元2316b、2316c、循環移位單元2318b、2318c、子頻道映射單元2307b、2307c、平行轉串列轉換器2309b以及波束成形單元2311b。資料信號可以用第二基於eZT OFDM的波形產生器2301b及其為常規eZT OFDM波形方法所配置的元件來產生。If there are subcarriers that are not assigned to the sync channel and/or guard band, they can be used for data transmission. The second eZT OFDM-based waveform generator 2301b may include SM units 2312b, 2312c, K1/K2 dot IDFT units 2314b, 2314c, time domain tail elimination units 2316b, 2316c, cyclic shift units 2318b, 2318c, and subchannel mapping unit 2307b. 2307c, a parallel-to-serial converter 2309b, and a beamforming unit 2311b. The data signal can be generated using a second eZT OFDM based waveform generator 2301b and its components configured for the conventional eZT OFDM waveform method.

在接收器端,嘗試實現初始同步的WTRU可以對進入的信號進行濾波,以區分攜帶了同步資訊的子帶。舉例來說,如果同步頻道使用了頻帶中心的N個子載波(如第23圖所示),那麼WTRU可以使用低通濾波器。該WTRU可以將同步頻道上攜帶的OFDM符號的唯一字用於初始同步。At the receiver end, the WTRU attempting to implement the initial synchronization may filter the incoming signal to distinguish the sub-bands carrying the synchronization information. For example, if the synchronization channel uses N subcarriers in the center of the band (as shown in Figure 23), the WTRU may use a low pass filter. The WTRU may use the unique word of the OFDM symbol carried on the synchronization channel for initial synchronization.

第24圖示出了被配置為產生用於在單獨的波束上傳輸同步資訊和資料頻道資訊的OFDM信號的示例傳輸器2400。該傳輸器2400可以包括第一和第二UW ODFM波形產生器2401a、2401b。第一基於UW ODFM的波形產生器2401a可以包括冗餘資料產生單元2408a、置換單元2410a、SM單元2412a、M點IDFT單元2414a、時域插入單元2405a、子頻道映射單元2407a、平行轉串列轉換器2409a以及波束成形單元2411a。Figure 24 shows an example transmitter 2400 configured to generate an OFDM signal for transmitting synchronization information and data channel information on separate beams. The transmitter 2400 can include first and second UW ODFM waveform generators 2401a, 2401b. The first UW ODFM-based waveform generator 2401a may include a redundancy data generating unit 2408a, a permutation unit 2410a, an SM unit 2412a, an M-point IDFT unit 2414a, a time domain insertion unit 2405a, a sub-channel mapping unit 2407a, and a parallel-to-serial column conversion. 2409a and beamforming unit 2411a.

同步頻道可以是用NIFFT 個子載波中的一組M個子載波產生的。這些子載波可以位於系統波段的中心。為了產生同步頻道,公共資料和從冗餘資料產生單元2408a輸出的冗餘資料可被饋送到M點IDFT單元2414a。該冗餘資料產生單元2408a可以使用預編碼以從公共資料中計算冗餘資料。該預編碼可以允許在M點IDFT單元2414a的輸出端產生零尾。公共資料和冗餘資料可被映射到的子載波是由置換單元2410a確定的。資料可以用於同步目的及/或用於攜帶廣播資訊。例如,公共資料可以包括PBCH、輔同步序列等。The synchronization channel may be generated using a set of M subcarriers of N IFFT subcarriers. These subcarriers can be located at the center of the system band. In order to generate the sync channel, the public material and the redundant material output from the redundant material generating unit 2408a can be fed to the M-point IDFT unit 2414a. The redundant data generating unit 2408a may use precoding to calculate redundant data from the public material. This precoding may allow a zero tail to be generated at the output of the M point IDFT unit 2414a. The subcarriers to which the public material and redundant data can be mapped are determined by the permutation unit 2410a. The data can be used for synchronization purposes and/or for carrying broadcast information. For example, public materials may include PBCH, secondary synchronization sequences, and the like.

OFDM符號可被饋送到時域插入單元2405a。該時域插入單元2405a可以在時域中將同步信號(例如S1)直接插入(添加)至時域OFDM符號的零尾;其結果是產生一個SYNC類型OFDM符號。同步信號可以是固定序列且具有預先定義的長度。替代地,同步信號也可以是動態或半靜態地被配置的,及/或其長度可以是可配置的。該同步信號(例如唯一字/同步序列)可被設計及/或配置為使其(在頻域中)被包含到用於同步目的的子帶(例如中心子載波)中,同時保持良好的互相關性。The OFDM symbols can be fed to the time domain insertion unit 2405a. The time domain insertion unit 2405a may directly insert (add) a synchronization signal (e.g., S1) to the zero tail of the time domain OFDM symbol in the time domain; the result is that a SYNC type OFDM symbol is generated. The synchronization signal can be a fixed sequence and have a predefined length. Alternatively, the synchronization signal can also be dynamically or semi-statically configured, and/or its length can be configurable. The synchronization signal (eg, unique word/synchronization sequence) can be designed and/or configured such that it (in the frequency domain) is included in subbands (eg, central subcarriers) for synchronization purposes while maintaining good mutuality Correlation.

SYNC類型OFDM符號可以由子頻道映射單元2407a映射到可用頻道的中心子帶及/或其他子帶。作為示例,該SYNC類型OFDM符號可以映射到總共NIFFT 個子載波中的中心的N個子載波(其中總共NIFFT 個子載波可以包括已被使用的子載波和位於同步頻道周圍且被保留用作保護子載波和未被用於資料傳輸的子載波)。NIFFT 點IFFT單元2424a可以將映射到子帶的SYNC類型OFDM符號饋送到平行轉串列轉換器2409a以用於轉換、以及將其輸出到波束成形單元2411a,其中該波束成形單元2411a執行波束成形,以在同步波束上進行傳輸。The SYNC type OFDM symbols may be mapped by the subchannel mapping unit 2407a to the central subband of the available channels and/or other subbands. As an example, the type of the SYNC symbol may be mapped to N OFDM subcarriers center N total subcarriers in the IFFT (where N total subcarriers may surrounding the IFFT subcarrier and has been used at the synchronization channel and is reserved for sub-protected Carrier and subcarriers not used for data transmission). The N IFFT point IFFT unit 2424a may feed the SYNC type OFDM symbols mapped to the subbands to the parallel to serial train converter 2409a for conversion and output to the beamforming unit 2411a, wherein the beamforming unit 2411a performs beamforming To transmit on the sync beam.

如果存在未被分配給同步頻道及/或保護頻帶的子載波,那麼可以將其用於資料傳輸。第二UW ODFM波形產生器2301b可以包括冗餘資料產生單元2408b、2408c、置換單元2410b、2410c、SM單元2412b、2412c、K1/K2點IDFT單元2414b、2414c、時域插入單元2405b、2405c、子頻道映射單元2407b、2407c、平行轉串列轉換器2409b以及波束成形單元2411b。使用者1的資料以及從冗餘資料產生單元2408b輸出的冗餘資料可被饋送到置換單元2410b。冗餘資料可被饋送到置換單元2410b的尾部和頭部,並且輸入到置換單元2410b的剩餘樣本可以取自使用者1的資料。該冗餘資料產生單元2408b可以使用預編碼以從使用者1的資料中計算冗餘資料。該預編碼允許在K1點IDFT單元2414b的輸出的尾部產生唯一字。If there are subcarriers that are not assigned to the synchronization channel and/or the guard band, they can be used for data transmission. The second UW ODFM waveform generator 2301b may include redundant data generating units 2408b, 2408c, permuting units 2410b, 2410c, SM units 2412b, 2412c, K1/K2 point IDFT units 2414b, 2414c, time domain inserting units 2405b, 2405c, sub- Channel mapping units 2407b, 2407c, parallel to serial converter 2409b, and beamforming unit 2411b. The data of the user 1 and the redundant material output from the redundant material generating unit 2408b can be fed to the replacement unit 2410b. Redundant data may be fed to the tail and head of the permutation unit 2410b, and the remaining samples input to the permutation unit 2410b may be taken from the data of the user 1. The redundant data generating unit 2408b can use precoding to calculate redundant data from the data of the user 1. This precoding allows a unique word to be generated at the end of the output of the K1 point IDFT unit 2414b.

從K1點IDFT單元2414b輸出的每個時域OFDM符號可被饋送到時域插入單元2405b的輸入端。該時域插入單元2405b可以將同步序列插入(添加)到時域OFDM符號的尾部和頭部;其結果是產生攜帶了使用者1的資料的SYNC-tail OFDM符號。Each time domain OFDM symbol output from the K1 point IDFT unit 2414b can be fed to the input of the time domain insertion unit 2405b. The time domain insertion unit 2405b may insert (add) a synchronization sequence to the tail and header of the time domain OFDM symbol; the result is that a SYNC-tail OFDM symbol carrying the data of the user 1 is generated.

時域插入單元2405b可以將所得到的SYNC-tail OFDM符號饋送到子頻道映射單元2407b。子頻道映射單元2407b可以將SYNC-tail OFDM符號映射到與分派給使用者1的頻率資源(K1個子載波)對應的可用頻道的一個或多個子帶。NIFFT 點IFFT單元2424b可以將映射到K1個子帶的SYNC-tail OFDM符號饋送到平行轉串列轉換器2409b以用於轉換、以及將其輸出到波束成形單元1911b,其中該波束成形單元1911b執行波束成形,以在(窄)資料波束上進行傳輸。The time domain insertion unit 2405b may feed the resulting SYNC-tail OFDM symbol to the subchannel mapping unit 2407b. Subchannel mapping unit 2407b may map the SYNC-tail OFDM symbols to one or more subbands of the available channels corresponding to the frequency resources (K1 subcarriers) assigned to User 1. N IFFT point IFFT unit 2424b may feed SYNC-tail OFDM symbols mapped to K1 subbands to parallel to serial train converter 2409b for conversion and output to beamforming unit 1911b, where the beamforming unit 1911b performs Beamforming to transmit on (narrow) data beams.

攜帶使用者2的資料的SYNC-tail OFDM符號可以使用冗餘資料產生單元2408c、置換單元2410c、SM單元2412c、K2點IDFT單元2414c以及時域插入單元2405c而以與攜帶使用者1的資料的SYNC-tail OFDM符號相同的方式產生。子頻道映射單元2407c可以將SYNC-tail OFDM符號映射到與不與供同步符號使用的N個子載波以及供攜帶了使用者1的資料的SYNC-tail OFDM符號使用的K1個子載波重疊的所分派的頻率資源(K2個子載波)。NIFFT 點IFFT單元2424b可以將映射到K2個子帶的SYNC-tail OFDM符號饋送到平行轉串列轉換器2409b以用於轉換、以及將其輸出到波束成形單元2411b,其中該波束成形單元2411b執行波束成形,以在(窄)資料波束上進行傳輸。The SYNC-tail OFDM symbol carrying the data of the user 2 can use the redundant data generating unit 2408c, the replacing unit 2410c, the SM unit 2412c, the K2 point IDFT unit 2414c, and the time domain inserting unit 2405c to carry the data carrying the user 1. The SYNC-tail OFDM symbol is generated in the same way. Subchannel mapping unit 2407c may map the SYNC-tail OFDM symbols to the assigned ones that do not overlap with the N subcarriers used for the synchronization symbols and the K1 subcarriers used for the SYNC-tail OFDM symbols carrying the data of User1. Frequency resource (K2 subcarriers). The N IFFT point IFFT unit 2424b may feed the SYNC-tail OFDM symbols mapped to the K2 subbands to the parallel to serial train converter 2409b for conversion and output to the beamforming unit 2411b, wherein the beamforming unit 2411b performs Beamforming to transmit on (narrow) data beams.

第25圖示出了被配置為產生用於在單獨的波束上傳輸同步資訊和資料頻道資訊的OFDM信號的示例傳輸器2500。該傳輸器2500是第24圖中的傳輸器2400的替代。傳輸器2500可以包括第一和第二UW ODFM波形產生器2501a、2501b。如所示,在第一UW ODFM波形產生器2501a中,公共資料和對應的預編碼冗餘資料可被直接映射到大小為NIFFT 的IFFT區塊、並且因此不包括如第24圖所示的中間IFFT-FFT配對。同樣,在第二UW ODFM波形產生器2501b中,使用者資料和對應的預編碼冗餘資料可被直接映射到大小為NIFFT 的IFFT塊、並且因此不包括如第24圖所示的中間IFFT-FFT配對。經過預編碼的資料以及各自的置換矩陣可被計算,使得處於大小為NIFFT 的IFFT塊的輸出端上的信號的尾部為零。此外,UW可被設計為使其在頻譜上被包含(例如在頻域中)到該頻道所用的子帶中。作為示例,對於SYNCH頻道來說,UW可以在頻譜上被包含到中心子帶之中。Figure 25 shows an example transmitter 2500 configured to generate an OFDM signal for transmitting synchronization information and data channel information on separate beams. The transmitter 2500 is an alternative to the transmitter 2400 in Fig. 24. Transmitter 2500 can include first and second UW ODFM waveform generators 2501a, 2501b. As shown, in the first UW ODFM waveform generator 2501a, the common material and corresponding precoded redundant data can be directly mapped to an IFFT block of size N IFFT , and thus does not include as shown in FIG. Intermediate IFFT-FFT pairing. Also, in the second UW ODFM waveform generator 2501b, the user profile and the corresponding precoded redundant material can be directly mapped to the IFFT block of size N IFFT , and thus does not include the intermediate IFFT as shown in FIG. - FFT pairing. The precoded data and the respective permutation matrices can be calculated such that the tail of the signal at the output of the IFFT block of size N IFFT is zero. In addition, the UW can be designed such that it is spectrally included (e.g., in the frequency domain) into the subbands used by the channel. As an example, for a SYNCH channel, the UW can be spectrally included into the central subband.

第26圖是示出了用於支援單獨的傳輸波束上的通信的示例流程2600的流程圖。該流程2600可以在這裡揭露及/或第19圖至第25圖所示的傳輸器中實現。Figure 26 is a flow chart showing an example flow 2600 for supporting communication over a separate transmit beam. The process 2600 can be implemented in the transmitter disclosed herein and/or in the 19th to 25th.

參考第26圖,傳輸器可以產生包括了多種類型的同步資訊的第一OFDM符號(2610)。在一個實施例中,該傳輸器可以產生包括了多種類型的同步資訊中的第一種同步資訊的第一符號、執行在時域中將多種類型的同步資訊中的第二種同步資訊插入第一符號、以及進一步處理第一符號以形成第一OFDM符號。第一符號可以包括尾部以及一個或多個非尾部。在產生第一符號時,傳輸器可以在尾部和非尾部之間分配第一符號的持續時間。在一個實施例中,傳輸器可以在時域中將多種類型的同步資訊中的第二種同步資訊插入尾部。在一個實施例中,傳輸器可以產生具有僅僅在尾部攜帶多種類型的同步資訊中的第二種同步資訊的第一符號。在一個實施例中,傳輸器可以產生具有僅僅在一個或多個非尾部部分中的任一部分攜帶了多種類型的同步資訊中的第一種同步資訊的第一符號。該多種類型的同步資訊中的第一種同步資訊可以包括以下任一者:用於識別胞元ID的序列、以及PBCH。該多種類型的同步資訊中的第二種同步資訊可以包括符號時序同步資訊以及時槽時序同步資訊中的任一個。Referring to Figure 26, the transmitter can generate a first OFDM symbol (2610) that includes multiple types of synchronization information. In one embodiment, the transmitter may generate a first symbol including a first one of the plurality of types of synchronization information, and perform a second synchronization information of the plurality of types of synchronization information in the time domain. A symbol, and further processing the first symbol to form a first OFDM symbol. The first symbol can include a tail and one or more non-tails. When generating the first symbol, the transmitter can allocate the duration of the first symbol between the tail and the non-tail. In one embodiment, the transmitter may insert the second synchronization information of the plurality of types of synchronization information into the trailer in the time domain. In one embodiment, the transmitter may generate a first symbol having a second type of synchronization information that only carries multiple types of synchronization information at the tail. In one embodiment, the transmitter may generate a first symbol having a first type of synchronization information that carries only one of a plurality of types of synchronization information in only one or more of the non-tail portions. The first one of the plurality of types of synchronization information may include any one of: a sequence for identifying a cell ID, and a PBCH. The second synchronization information of the plurality of types of synchronization information may include any one of symbol timing synchronization information and time slot timing synchronization information.

傳輸器可以產生包含了資料頻道資訊的第二OFDM符號(2612)。在一個實施例中,傳輸器可以產生包含了資料、控制或其他資料頻道資訊中的任一個的第二符號、執行在時域中將多種類型的同步資訊中的第二種同步資訊插入到第一符號、以及進一步處理第二符號以形成第二OFDM符號。該第二符號可以包括尾部以及一個或多個非尾部。在產生第二符號時,傳輸器可以在尾部與非尾部之間分配第二符號的持續時間。在一個實施例中,傳輸器可以在時域中將多種類型的同步資訊中的第二種同步資訊插入尾部。在一個實施例中,傳輸器可以產生具有只在尾部攜帶了多種類型的同步資訊中的第二種同步資訊的第二符號。在一個實施例中,傳輸器可以產生具有僅僅在一個或多個非尾部的任何一個中攜帶了資料頻道資訊的第二符號。The transmitter can generate a second OFDM symbol (2612) containing the data channel information. In one embodiment, the transmitter may generate a second symbol including any one of data, control or other material channel information, and perform the second synchronization information of the plurality of types of synchronization information in the time domain. A symbol, and further processing the second symbol to form a second OFDM symbol. The second symbol can include a tail and one or more non-tails. When generating the second symbol, the transmitter can allocate the duration of the second symbol between the tail and the non-tail. In one embodiment, the transmitter may insert the second synchronization information of the plurality of types of synchronization information into the trailer in the time domain. In one embodiment, the transmitter may generate a second symbol having a second type of synchronization information that is carried only at the tail of the plurality of types of synchronization information. In one embodiment, the transmitter may generate a second symbol having data channel information carried in only one of the one or more non-tails.

傳輸器可以分別在第一和第二傳輸波束上同時傳輸第一和第二OFDM符號(2614)。第一傳輸波束可以具有寬波束寬度,第二傳輸波束可以具有窄波束寬度。在一個實施例中,傳輸器可以藉由在公共符號時間期間傳輸第一和第二OFDM符號以同時傳輸第一和第二OFDM符號。在一個實施例中,第一和第二傳輸波束可以在空間域中重疊。在一個實施例中,第一OFDM符號可以在第一子載波集合中的一個或多個子載波上傳送,並且第二OFDM符號可以在第二子載波集合中的一個或多個子載波上傳送。在一個實施例中,第一子載波集合可被映射到可用頻道的中心子帶,並且第二子載波集合可以與第一子載波集合正交。The transmitter can simultaneously transmit the first and second OFDM symbols (2614) on the first and second transmission beams, respectively. The first transmission beam may have a wide beamwidth and the second transmission beam may have a narrow beamwidth. In one embodiment, the transmitter may simultaneously transmit the first and second OFDM symbols by transmitting the first and second OFDM symbols during a common symbol time. In one embodiment, the first and second transmission beams may overlap in the spatial domain. In one embodiment, the first OFDM symbol may be transmitted on one or more subcarriers in the first set of subcarriers, and the second OFDM symbol may be transmitted on one or more subcarriers in the second set of subcarriers. In one embodiment, the first set of subcarriers may be mapped to a central subband of the available channels, and the second set of subcarriers may be orthogonal to the first set of subcarriers.

第27圖是示出了用於支援單獨的傳輸波束上的通信的示例流程2700的流程圖。該流程2700可以在本文揭露及/或第19-25圖所示的傳輸器中實施。Figure 27 is a flow diagram showing an example flow 2700 for supporting communication over a separate transmit beam. The process 2700 can be implemented in the transmitters disclosed herein and/or shown in Figures 19-25.

參考第27圖,傳輸器可以使用(i)基於OFDM的波形產生器和(ii)作為此類產生器的輸入的多種類型的同步資訊中的第一種同步資訊以及零值來產生具有零尾的第一符號(2710)。該多種類型的同步資訊中的第一種同步資訊可以包括以下任一者:用於識別胞元ID的序列和PBCH。在一個實施例中,傳輸器可以產生具有僅僅在第一符號的一或多個非尾部的任一個中攜帶多種類型的同步資訊中的第一種同步資訊的第一符號。在產生第一符號時,傳輸器可以在零尾部與非尾部之間分配該第一符號的持續時間。Referring to FIG. 27, the transmitter can generate a zero tail by using (i) an OFDM-based waveform generator and (ii) a first type of synchronization information and zero values of various types of synchronization information as inputs to such a generator. The first symbol (2710). The first one of the plurality of types of synchronization information may include any one of: a sequence for identifying a cell ID and a PBCH. In one embodiment, the transmitter may generate a first symbol having a first type of synchronization information that carries only one of a plurality of types of synchronization information in only one of the one or more non-tails of the first symbol. The transmitter may allocate the duration of the first symbol between the zero tail and the non-tail when the first symbol is generated.

傳輸器可以執行在時域中將多種類型的同步資訊中的第二種同步資訊插入第一符號的零尾(2712)。該多種類型的同步資訊中的第二種同步資訊可以包括符號時序同步資訊以及時槽時序同步資訊中的任何一個。在一個實施例中,傳輸器可以產生具有僅僅具有在零尾中攜帶多種類型的同步資訊中的第二種同步資訊的第一符號。The transmitter may perform inserting the second synchronization information of the plurality of types of synchronization information into the zero tail of the first symbol in the time domain (2712). The second synchronization information of the plurality of types of synchronization information may include any one of symbol timing synchronization information and time slot timing synchronization information. In one embodiment, the transmitter may generate a first symbol having only the second type of synchronization information in the plurality of types of synchronization information carried in the zero tail.

傳輸器可以將第一符號映射到第一子載波集合(2714)。該傳輸器可以將所映射的第一符號轉換為第一OFDM符號(2716)。The transmitter may map the first symbol to the first set of subcarriers (2714). The transmitter may convert the mapped first symbol to a first OFDM symbol (2716).

傳輸器可以使用(i)基於OFDM的第二波形產生器和(ii)作為此類產生器的輸入的使用者資料和零值來產生具有零尾的第二符號(2718)。傳輸器可以可選地執行在時域中將多種類型的同步資訊中的第二種同步資訊插入第二符號的零尾(2720)。該傳輸器可以將第二符號映射到第二子載波集合(2722)。該傳輸器可以將所映射的第二符號轉換為第二OFDM符號(2724)。The transmitter may generate a second symbol (2718) having a zero tail using (i) an OFDM based second waveform generator and (ii) user data and zero values as inputs to such a generator. The transmitter may optionally perform inserting the second synchronization information of the plurality of types of synchronization information into the zero tail of the second symbol in the time domain (2720). The transmitter can map the second symbol to a second set of subcarriers (2722). The transmitter can convert the mapped second symbol to a second OFDM symbol (2724).

傳輸器可以分別在第一和第二傳輸波束上同時傳輸第一和第二OFDM符號(2726)。第一傳輸波束可以具有寬波束寬度。第二傳輸波束可以具有窄波束寬度。在一個實施例中,傳輸器可以藉由在公共符號時間期間傳輸第一和第二OFDM符號以同時傳輸第一和第二OFDM符號。在一個實施例中,第一和第二傳輸波束可以在空間域中重疊。在一個實施例中,第一OFDM符號可以在第一子載波集合中的一個或多個子載波上傳送,並且第二OFDM符號可以在第二子載波集合中的一個或多個子載波上傳送。在一個實施例中,第一子載波集合可被映射到可用頻道的中心子帶,並且第二子載波集合可以與第一子載波集合正交。示例的 SYNCH 設計考慮 The transmitter can simultaneously transmit the first and second OFDM symbols on the first and second transmission beams, respectively (2726). The first transmission beam can have a wide beamwidth. The second transmission beam can have a narrow beamwidth. In one embodiment, the transmitter may simultaneously transmit the first and second OFDM symbols by transmitting the first and second OFDM symbols during a common symbol time. In one embodiment, the first and second transmission beams may overlap in the spatial domain. In one embodiment, the first OFDM symbol may be transmitted on one or more subcarriers in the first set of subcarriers, and the second OFDM symbol may be transmitted on one or more subcarriers in the second set of subcarriers. In one embodiment, the first set of subcarriers may be mapped to a central subband of the available channels, and the second set of subcarriers may be orthogonal to the first set of subcarriers. Example SYNCH design considerations

用於強健系統設計的方法可以允許從初始同步(即SYNCH序列偵測)平滑轉換到廣播頻道資訊解碼,隨後則是成功的RACH處理和認證程序。The method for robust system design can allow smooth transition from initial synchronization (ie SYNCH sequence detection) to broadcast channel information decoding, followed by successful RACH processing and authentication procedures.

SYNCH設計可以考慮多個參數來支援不同的部署場景。可以考慮以下的一項或多項: l  賦能對照一個公共參考(即自由運行的時鐘)的時序偏移偵測 ○ 符號和時槽時序獲取,訊框時序建立 ○ 用於預備WTRU執行初始存取程序中的接下來的步驟的系統資訊解碼 l  賦能嵌入諸如群組ID、碼索引、胞元ID、CP長度、符號、時槽和訊框時序之類的胞元特定資訊的編碼設計 l  允許鄰居搜尋能力 l  藉由鏈路預算分析來實現所需要的胞元覆蓋 ○  調節EIRP限制,波束成形增益考慮 ○  經由使用短序列的長期或頻繁重複來處理增益指數 l  減小SUNCH的資源使用率及其對初始獲取時間的影響 ○  為覆蓋區域部署多個窄波束以及在每一個窄波束上部署同時的SYNCH傳輸可以用減低的資源使用效率為代價以大大地減小IAT。 l  強加的接收器設計複雜性 ○  SYNCH重複週期對於非相干積分緩衝器大小的影響 ○  長週期(例如很長的SYNCH週期)對於實施方式有可能是禁止的 ○  演算法選擇對硬體的影響 ○  使用匹配濾波器 ○  初始頻率偏移估計示例的偵測準則 The SYNCH design can take into account multiple parameters to support different deployment scenarios. One or more of the following can be considered: l Timing offset detection with a common reference (ie free running clock) ○ Symbol and time slot timing acquisition, frame timing setup ○ Used to prepare the WTRU for initial access The system information decoding of the next step in the program enables the embedding of the encoding design of cell-specific information such as group ID, code index, cell ID, CP length, symbol, time slot and frame timing. Search capability l Realize the required cell coverage by link budget analysis ○ Adjust EIRP limits, beamforming gain considerations ○ Process gain index l by using long-term or frequent repetition of short sequences to reduce the resource usage of SUNCH and its Impact on Initial Acquisition Time ○ Deploying multiple narrow beams for coverage areas and deploying simultaneous SYNCH transmissions on each narrow beam can greatly reduce IAT at the expense of reduced resource usage efficiency. l Imposing receiver design complexity ○ Effect of SYNCH repetition period on non-coherent integration buffer size ○ Long period (for example, very long SYNCH period) may be prohibited for the implementation ○ Effect of algorithm selection on hardware ○ Use matched filter ○ Detection criteria for initial frequency offset estimation example

偵測準則能以10^-3的誤警率來實現95%偵測性能,這可以針對最小SNR為13 dB的單一脈衝的無波動目標來實現。13 dB的有效SNR可以藉由單一長序列的相干積分、或是短序列的相干積分以及後續跟隨的多個非相干加法來實現。S1和S2可以處於資料和時間域中,並且可被足夠編碼來滿足偵測需求。MIB資訊可以處於資料域中,或者在時域中由經過編碼的序列來攜帶。關於 SYNCH 的示例範例研究以及 PBCH 訊框時序可行性研究 The detection criteria can achieve 95% detection performance with a false alarm rate of 10^-3, which can be achieved for a single pulse non-fluctuating target with a minimum SNR of 13 dB. The effective SNR of 13 dB can be achieved by a single long sequence of coherent integration, or a short sequence of coherent integration and subsequent multiple non-coherent additions. S1 and S2 can be in the data and time domains and can be adequately encoded to meet the detection needs. The MIB information can be in the data domain or carried in the time domain by an encoded sequence. Example paradigm study on SYNCH and PBCH frame timing feasibility study

以下提供的框架強調的是在這裡供SYNCH和PBCH使用的波形的突出可行性,其中該SYNCH和PBCH是在在相同的符號上組合的。The framework provided below highlights the outstanding feasibility of the waveforms used here for SYNCH and PBCH, where the SYNCH and PBCH are combined on the same symbol.

假設: 胞元規劃: l  扇區:60度 l  分區:無 頻道參數: l  BW:2 GHz l  子載波數=2048 SYNCH和PBCH配置: l  SYNCH和PBCH頻道是以在整個扇區上實施的寬角度波束成形來傳送的 l  SYNCH和PBCH重複週期可以基於獲取時間限度來設定。同步碼S1和S2以及MIB資訊每100μs (假定)重複一次、並且在多個符號上被傳送 l  BCH、S1和S2使用了K=256個中心子載波 l  MIB必須藉由編碼而被嚴格保護 功率和天線增益限制: l  Ptx=每天線10 dBm l  Ntx=2,Nrx=2 ○  2個元件可以產生約60度寬的波束成形 ○  同步和PBCH使用了2個Tx和2個Rx天線 l  各具有4.7 dBi增益的塊狀天線元件 l  具有7 dB雜訊指數的獨立RF鏈 l  最小SNR:-10 dB ○  胞元邊界被限制到用於同步和讀取PBCH(MIB)的最小SNR等級 範圍計算: l  用於Synch和PBCH的波束成形增益 l  總增益(TG)= 陣列增益(2x10log10(2))+元件增益(2x4.7 dBi)=15.4 dB l  有效頻寬=(256/2048)×2 GHz=250 MHz,Synch和PBCH佔用了中心的256個子載波 l  有效本底雜訊(ENF)= -80 dBm n  -174+10log10(250 MHz)+7+10log10(2),NF=每路徑7 dB,Rx=2 l  對於每天線Ptx=10 dBm以及關於同步頻道偵測的LTE需求, l  Rx上的有效同步SNR ≥ -10 dB l  同步頻道功率(SCP)= -90 dBm(ENF+SNR) l  2個Tx天線下,Tx功率聚合(TPA)= 13 dBm l  可容忍的路徑損耗(PL)上限=TPA(13 dBm)+TG(15.4 dB)-SCF(-90 dBm)=最大118.4 dB。 n  對於n=2(n是傳播因數)的自由空間模型來說,基於模型PL = 20log10(wave_length/4pi)+n*10*log10(距離)dB,範圍=300公尺 n  其他一些路徑損耗模型會嚴重影響該範圍,例如n=3,因此,該範圍將會變成只有48公尺,並且對於n=2.5,該範圍將會變為100公尺。 l  同步碼長度計算: ○  如果最小SNR=-10 dB並且具有如上所述的偵測準則,那麼具有10^-3 pfa的95% Pd需要13 dB有效SNR,由此在計算中添加了2 dB的實施餘量, ○  所需要的處理增益(PG)=25 dB(餘量+有效SNR-最小SNR) ○  長度=10^(0.1xPG)=316個樣本Assumptions: Cell planning: l Sector: 60 degrees l Partition: No channel parameters: l BW: 2 GHz l Number of subcarriers = 2048 SYNCH and PBCH configuration: l SYNCH and PBCH channels are implemented wide over the entire sector The l SYNCH and PBCH repetition periods transmitted by angular beamforming can be set based on the acquisition time limit. Synchronization codes S1 and S2 and MIB information are repeated every 100 μs (assumed) and transmitted over multiple symbols. 1 BCH, S1 and S2 use K = 256 central subcarriers. MIB must be strictly protected by coding. Power and antenna gain limits: l Ptx = 10 dBm per day l Ntx = 2, Nrx = 2 ○ 2 components can produce beamforming about 60 degrees wide ○ Synchronization and PBCH use 2 Tx and 2 Rx antennas Block antenna element with 4.7 dBi gain l Independent RF chain with 7 dB noise index l Minimum SNR: -10 dB ○ Cell boundary is limited to the minimum SNR level range calculation for synchronizing and reading PBCH (MIB) : l Beamforming gain for Synch and PBCH l Total gain (TG) = Array gain (2x10log10(2)) + component gain (2x4.7 dBi) = 15.4 dB l Effective bandwidth = (256/2048) × 2 GHz=250 MHz, Synch and PBCH occupy 256 subcarriers in the center. l Effective background noise (ENF) = -80 dBm n -174+10log10 (250 MHz) +7+10log10(2), NF=7 per path dB, Rx=2 l For daily line Ptx=10 dBm and LTE requirements for synchronous channel detection, l effective synchronization SNR ≥ -10 on Rx dB l Synchronous channel power (SCP) = -90 dBm (ENF+SNR) l Tx power aggregation (TPA) = 13 dBm for 2 Tx antennas l Tolerable path loss (PL) upper limit = TPA (13 dBm) + TG (15.4 dB) - SCF (-90 dBm) = maximum 118.4 dB. n For a free-space model with n=2 (n is the propagation factor), based on the model PL = 20log10(wave_length/4pi)+n*10*log10(distance)dB, range=300 m n other path loss models This range will be severely affected, for example n=3, so the range will become only 48 meters, and for n=2.5, the range will become 100 meters. l Synchronization code length calculation: ○ If the minimum SNR = -10 dB and has the detection criteria as described above, 95% Pd with 10^-3 pfa requires 13 dB effective SNR, thus adding 2 dB to the calculation Implementation margin, ○ Required processing gain (PG) = 25 dB (balance + effective SNR - minimum SNR) ○ Length = 10^(0.1xPG) = 316 samples

該設計可以假設在接收器上用於SYNCH偵測和PBCH解碼的低SNR等級,而這會導致316個樣本的同步碼長度。假設僅僅使用了256個中心子載波來傳送SYNCH和PBCH,PBCH資料和SYNCN序列是作為256個中心子載波內的波形的一部分傳送的。以下的任一示例都是可供使用的:(應該指出的是:以下的樣本配置假設使用eZT OFDM方法)。示例 1 This design can assume a low SNR level for SYNCH detection and PBCH decoding at the receiver, which results in a sync code length of 316 samples. Assuming only 256 central subcarriers are used to transmit SYNCH and PBCH, the PBCH data and SYNCN sequences are transmitted as part of the waveforms within the 256 central subcarriers. Any of the following examples are available: (It should be noted that the following sample configurations assume the use of the eZT OFDM method). Example 1

以下內容可以適用於eZT/UW OFDM波形。 l  PBCH資料:128個子載波 l  SYNCH序列:128個時域樣本(對應於128個子載波) ○  128相干積分上的PG=21 dB ○  所需要的非相干積分增益=所需要PG – 21 dB = 4 dB ○  所需要的最小非相干積分數量=3 l  S1和S2分別被插入時域和資料域中。S1必須至少在SYNCH和PBCH重複週期(預設是100 us)以內傳送3次。 ○  S1會在每一個符號重複,以賦能循環冗餘和快速符號時序獲取 ○  S2可以攜帶足夠數量的位元來識別胞元ID和其他資訊。例如,使用9個位元能夠實現512個唯一的胞元ID。編碼和擴展處理可以應用於S2位元。 l  在100μs 重複週期以內可以用足夠的擴展和編碼增益來重複PBCH資料,以對抗解碼誤差。 ○  長度24位元 l  也可以傳送其他頻道 ○  可以用該方案來傳送部分的SIB1和SIB2資訊The following can be applied to eZT/UW OFDM waveforms. l PBCH data: 128 subcarriers l SYNCH sequence: 128 time domain samples (corresponding to 128 subcarriers) ○ PG=21 dB on 128 coherent integration ○ Required non-coherent integration gain = required PG – 21 dB = 4 dB ○ Minimum number of non-coherent integrations required = 3 l S1 and S2 are inserted into the time domain and data field, respectively. S1 must be transmitted 3 times at least within the SYNCH and PBCH repetition periods (preset to 100 us). ○ S1 will repeat at each symbol to enable cyclic redundancy and fast symbol timing acquisition. ○ S2 can carry a sufficient number of bits to identify the cell ID and other information. For example, 512 unique cell IDs can be implemented using 9 bits. Encoding and extension processing can be applied to S2 bits. l The PBCH data can be repeated with sufficient spreading and coding gain within 100 μs repetition period to combat decoding errors. ○ Length 24-bit l can also transmit other channels ○ This scheme can be used to transmit part of SIB1 and SIB2 information.

第28圖示出了用於示例1的示例SYNCH和PBCH訊框結構。示例 2 Figure 28 shows an example SYNCH and PBCH frame structure for Example 1. Example 2

以下內容可以適用於eZT/UW OFDM波形。 l  PBCH資料:192個子載波 l  SYNCH序列:64個時域樣本(對應於64個子載波) ○  64個相干積分上的PG=18 dB ○  所需要的非相干積分增益=所需PG – 18 dB=7 dB ○  所需要的非相干積分的最小數量=6 l  S1和S2分別被插入時域和資料域中。S1必須至少在SYNCH和PBCH重複週期(預設是100 us)內傳送6次。 ○  S1會針對每一個符號重複,以賦能循環冗餘和快速符號時序獲取處理 ○  S2可以攜帶足夠的位元來識別胞元ID和其他資訊。例如,使用9個位元將能夠實現512個唯一胞元ID。編碼和擴展可以應用於S2位元。 l  在100μs 重複週期上可以用足夠的擴展和編碼增益來重複PBCH資料,以對抗解碼誤差。 ○  長度24位元 l  也可以傳送其他頻道 ○  可以用該方案來傳送部分的SIB1和SIB2資訊The following can be applied to eZT/UW OFDM waveforms. l PBCH data: 192 subcarriers l SYNCH sequence: 64 time domain samples (corresponding to 64 subcarriers) ○ PG=18 dB over 64 coherent integrations ○ Required non-coherent integral gain = required PG – 18 dB= 7 dB ○ Minimum number of non-coherent integrations required = 6 l S1 and S2 are inserted into the time domain and data field, respectively. S1 must be transmitted 6 times at least during the SYNCH and PBCH repetition periods (default is 100 us). ○ S1 will repeat for each symbol to enable cyclic redundancy and fast symbol timing acquisition processing. S2 can carry enough bits to identify the cell ID and other information. For example, using 9 bits would enable 512 unique cell IDs. Encoding and extension can be applied to S2 bits. • PBCH data can be repeated with sufficient spreading and coding gain over 100 μs repetition period to combat decoding errors. ○ Length 24-bit l can also transmit other channels ○ This scheme can be used to transmit part of SIB1 and SIB2 information.

第29圖示出了用於示例2的示例SYNCH和PBCH訊框結構。示例 3 Figure 29 shows an example SYNCH and PBCH frame structure for Example 2. Example 3

以下內容可以適用於eZT/UW OFDM波形的PBCH資料:224個子載波 l  SYNCH序列:32個時域樣本(對應於32個子載波) ○  32個相干積分上的PG=15 dB ○  所需要的非相干積分增益=所需PG-15 dB=10 dB ○  所需要的非相干積分的最小數量=14 l  S1和S2分別被插入時域和資料域中。S1必須至少在SYNCH和PBCH重複週期(預設為100 us)以內傳送14次。 ○ S1針對每一個符號重複,以實現循環冗餘和快速符號時序獲取 ○ S2可以攜帶足夠數量的位元來識別胞元ID和其他資訊。例如,使用9位元將能夠賦能512個唯一胞元ID。編碼和擴展可以應用於S2位元。 l  在100μs 重複週期上可以用足夠的擴展和編碼增益來重複PBCH資料,以對抗解碼誤差。 ○  長度24位元 l  也可以傳送其他頻道 ○  可以用該方案來傳送部分的SIB1和SIB2資訊The following can be applied to PBCH data for eZT/UW OFDM waveforms: 224 subcarriers l SYNCH sequence: 32 time domain samples (corresponding to 32 subcarriers) ○ PG=15 dB over 32 coherent integrations ○ Required non-coherent Integral gain = required PG-15 dB = 10 dB ○ Minimum number of non-coherent integrations required = 14 l S1 and S2 are inserted into the time domain and data field, respectively. S1 must be transmitted 14 times at least within the SYNCH and PBCH repetition periods (preset to 100 us). ○ S1 is repeated for each symbol to achieve cyclic redundancy and fast symbol timing acquisition. ○ S2 can carry a sufficient number of bits to identify the cell ID and other information. For example, using 9 bits would enable 512 unique cell IDs to be enabled. Encoding and extension can be applied to S2 bits. • PBCH data can be repeated with sufficient spreading and coding gain over 100 μs repetition period to combat decoding errors. ○ Length 24-bit l can also transmit other channels ○ This scheme can be used to transmit part of SIB1 and SIB2 information.

示例 4 l  以下內容可以適用於ZT/eZT DFT-s OFDM波形SYNCH序列:32個時域樣本,對應於Nzt=32 ○  如以上的選項#3所示,此示例需要最少14個非相干積分。 l  與以上的選項1至3中一樣,假設將256個子載波用於同步目的,那麼對於第19圖和第20圖中的傳輸器結構,N=256。此外,假設DFT大小是M=64,那麼可以得出:在DFT的輸入端的零尾子載波數量是:Nt=Nzt/(N/M)=8。使用最小數量的零頭子載波有助於減少尾部,由此導致Nh=1。 l  此示例給出了在每個OFDM符號中可供PBCH使用的Nd=M-Nt-Nh=64-8-1=55個子載波。 ○  關於以上的選項1至3,藉由在100μs 的重複週期上使用多個OFDM符號來傳送PBCH,這可以提供足夠的擴展和編碼增益,以達到用於PBCH解碼的目標SNR。 Example 4 : l The following can be applied to the ZT/eZT DFT-s OFDM waveform SYNCH sequence: 32 time domain samples, corresponding to Nzt=32 ○ As shown in option #3 above, this example requires a minimum of 14 non-coherent integrations. . l As in the above options 1 to 3, assuming 256 subcarriers are used for synchronization purposes, then N = 256 for the transmitter structure in Figs. 19 and 20. Furthermore, assuming that the DFT size is M=64, it can be concluded that the number of zero-tail subcarriers at the input of the DFT is: Nt=Nzt/(N/M)=8. Using a minimum number of fractional subcarriers helps to reduce the tail, thereby resulting in Nh=1. l This example gives Nd = M - Nt - Nh = 64 - 8 - 1 = 55 subcarriers available for PBCH in each OFDM symbol. Regarding options 1 to 3 above, by transmitting PBCH using multiple OFDM symbols over a repetition period of 100 μs , this can provide sufficient spreading and coding gain to achieve the target SNR for PBCH decoding.

第30圖示出了用於示例3的示例SYNCH和PBCH訊框結構。示例的相鄰胞元之間的 SYNCH PBCH 傳輸協調 Figure 30 shows an example SYNCH and PBCH frame structure for Example 3. SYNCH and PBCH transmission coordination between adjacent neighbors

在扇區化以及進一步分區的系統的情況中,在多個分區上同時傳送SYNCH頻道和PBCH可能會產生很大的負荷,而這可能會導致資源利用效率降低。如果提供適當的拂掠時序和相鄰胞元協調,那麼用於每一個分區的SYNCH和PBCH傳輸的各自的排程(例如每次一個)可以提升資源分配效率,並且可以在縮短初始獲取時間的同時實現範圍擴展。具有非重疊區域的簡單排程方案可以有助於提高偵測性能,並且因此縮短獲取時間。舉例來說,該排程會提供來自相鄰胞元的SYNCH頻道和PBCH傳輸,以免同時在相鄰胞元之間的相同區域上對準。作為示例,扇區1和10是如第31圖所示的具有60°扇區和30°分區的系統的對應物。SYNCH和PBCH傳輸可以在如第31圖所示的同步週期上在{S1P1}、{S10P1}以及{S1P2}、{S10P2}配對之間交替,其中Si和Pi分別代表第i個扇區和分區。假設SYNCH和PBCH頻道可以在100μs 的同步週期上傳送,並且WTRU在O1重疊位置開始掃描,如果存在相鄰胞元協調,那麼WTRU會在200μs 以內(這其中的間隔是100μs )獲得兩倍的接收同步叢發的機會。如果不存在相鄰胞元協調,那麼WTRU可以每200us 同時接收兩個傳輸。在這種場景中,網路協調可以將初始獲取時間減半。相鄰胞元協調還可以提升位於重疊區域中的WTRU的胞元邊緣初始同步性能,其中該WTRU很有可能會遭遇到低SNR狀況。In the case of sectorized and further partitioned systems, simultaneous transmission of SYNCH channels and PBCHs over multiple partitions can create significant loads, which can result in reduced resource utilization efficiency. If appropriate sweep timing and neighbor cell coordination are provided, the respective schedules for SYNCH and PBCH transmissions for each partition (eg, one at a time) can improve resource allocation efficiency and can reduce initial acquisition time. At the same time, the scope is extended. A simple scheduling scheme with non-overlapping regions can help improve detection performance and therefore shorten acquisition time. For example, the schedule will provide SYNCH channel and PBCH transmissions from neighboring cells to avoid simultaneous alignment on the same area between adjacent cells. By way of example, sectors 1 and 10 are the counterparts of a system having a 60° sector and a 30° partition as shown in FIG. The SYNCH and PBCH transmissions may alternate between {S1P1}, {S10P1}, and {S1P2}, {S10P2} pairs on the synchronization period as shown in FIG. 31, where Si and Pi represent the i-th sector and partition, respectively. . It is assumed that the SYNCH and PBCH channels can be transmitted over a 100 μs synchronization period, and the WTRU starts scanning at the O1 overlap position. If there is adjacent cell coordination, the WTRU will get two within 200 μs (the interval is 100 μs ). Double the chance of receiving synchronous bursts. If there is no adjacent cell coordination, the WTRU can receive two transmissions simultaneously every 200 us . In this scenario, network coordination can halve the initial acquisition time. Neighbor cell coordination may also improve the cell edge initial synchronization performance of the WTRU located in the overlap region, where the WTRU is likely to experience low SNR conditions.

假設每一個扇區構成了如第31圖所示的胞元,相鄰胞元在某個容限(即±10us)下已經同步,並且扇區具有k個分區,那麼頭節點可以在k個分區上開始同步波束拂掠操作。在第31圖中描述了覆蓋相同方向的對應胞元;例如{S1,S10}、{S6,S15}以及{S11,S14}。胞元可以在{0,1,...,k-1}中確定其對應的鄰居的傳輸相位,然後可以使用(k+1 mod N)來識別分區編號,以傳送其自己的SYNCH和PBCH頻道。舉例來說,如果k被選定成3並且SYNCH和PBCH頻道每100μs 重複一次,那麼關於該扇區的整個掃描可能需要300μs 。對應鄰居可以每300μs 將重疊區域掃描至少一次。位於重疊區域的WTRU可以具有較高的偵測對應胞元的機會。示例的輔助切換 Assuming that each sector constitutes a cell as shown in Fig. 31, adjacent cells are synchronized under a certain tolerance (ie, ±10us), and the sector has k partitions, then the head node can be in k Synchronous beam sweeping begins on the partition. Corresponding cells covering the same direction are described in Fig. 31; for example, {S1, S10}, {S6, S15}, and {S11, S14}. The cell can determine the transmission phase of its corresponding neighbor in {0, 1, ..., k-1}, and then use (k+1 mod N) to identify the partition number to transmit its own SYNCH and PBCH. Channel. For example, if k is selected to be 3 and the SYNCH and PBCH channels are repeated every 100 μs , then the entire scan for that sector may require 300 μs . Corresponding neighbors can scan the overlap area at least once every 300 μs . A WTRU located in an overlapping area may have a higher chance of detecting a corresponding cell. Example of auxiliary switching

預期下一代無線通訊系統具有兩個主要設計參數,即高輸送量和低潛時。雖然下一代系統旨在以很低的潛時操作,但是有必要藉由使用目標胞元輔助來改進目前蜂巢網路中採用的目前切換方法。假設相鄰胞元彼此連接並且能夠交換資訊。The next generation of wireless communication systems is expected to have two main design parameters, high throughput and low latency. While next-generation systems are designed to operate at very low latency, it is necessary to improve the current switching methods used in current cellular networks by using target cell assistance. It is assumed that adjacent cells are connected to each other and can exchange information.

使用SYNCH和PBCH頻道有助於加快切換過程。在一個實施例中,目標基地台(e節點B)可以開始朝著預期WTRU的方向和位置發送SYNCH和PBCH波束;並且目標基地台(e節點B)可以發送比正常功率更高的功率來增加WTRU的偵測可能性。Using the SYNCH and PBCH channels helps speed up the switching process. In one embodiment, the target base station (eNodeB) may begin transmitting SYNCH and PBCH beams towards the direction and location of the intended WTRU; and the target base station (eNodeB) may transmit more power than normal power to increase The likelihood of detection by the WTRU.

第32圖是使用SYNCH和PBCH頻道來執行輔助切換的示例控制流程。可以發起切換(HO)決定(3102)。目標胞元選擇和WTRU特定資訊收集處理可被執行(3104)。該WTRU特定資訊可以包括WTRU的位置和方向資訊。Figure 32 is an example control flow for performing assisted handoffs using SYNCH and PBCH channels. A handover (HO) decision can be initiated (3102). Target cell selection and WTRU-specific information collection processing can be performed (3104). The WTRU specific information may include location and direction information for the WTRU.

目前胞元可以(i)向目標胞元通知WTRU特定資訊、HO轉換開始時間和偵測逾時值;及/或(ii)向WTRU通知目標和其他相鄰胞元參數(3106)。該目標和其他相鄰胞元參數可以包括位置(一個或多個)、方向(一個或多個)、HO轉換開始時間和偵測逾時值。The current cell may (i) inform the target cell of the WTRU specific information, the HO transition start time, and the detected timeout value; and/or (ii) notify the WTRU of the target and other neighbor cell parameters (3106). The target and other neighboring cell parameters may include location(s), direction(s), HO transition start time, and detection timeout value.

目標胞元可以(i)在轉換開始時間開始切換處理;(ii)停止常規SYNCH和PBCH傳輸;(iii)在該WTRU方向上執行波束成形;以及(iv)設定偵測逾時計時器(“TDETECT_TC ”)(3108)。WTRU可以(i)在轉換開始時間開始切換處理,(ii)在目標胞元方向執行波束成形;以及(iii)設定偵測逾時計時器(“TDETECT_WTRU ”)(3110)。The target cell may (i) start the handover process at the start of the transition; (ii) stop the normal SYNCH and PBCH transmission; (iii) perform beamforming in the direction of the WTRU; and (iv) set the detection timeout timer (" T DETECT_TC ”) (3108). The WTRU may (i) initiate handover processing at the conversion start time, (ii) perform beamforming in the target cell direction, and (iii) set a detection timeout timer ("T DETECT_WTRU ") (3110).

目標胞元可以在具有增加的功率位準的波束上傳送SYNCH和PBCH信號(3112)。WTRU可以對SYNCH和PBCH信號執行(例如重複執行)偵測處理(3114)。如果WTRU在偵測逾時計時器TDETECT_WTRU 期滿之前未能獲取目標胞元(3116),那麼WTRU可以優先在目標胞元上開始執行初始胞元搜尋程序(3118)。如果WTRU在偵測逾時計時器TDETECT_WTRU 期滿之前獲取目標胞元(3116),那麼WTRU可以向目標胞元通知該獲取(3120)。The target cell can transmit the SYNCH and PBCH signals (3112) on the beam with the increased power level. The WTRU may perform (e.g., repeat) detection processing on the SYNCH and PBCH signals (3114). If the WTRU fails to acquire the target cell (3116) before the detection of the timeout timer T DETECT_WTRU expires, the WTRU may preferentially begin execution of the initial cell search procedure on the target cell (3118). If the WTRU acquires the target cell (3116) before the detection of the timeout timer T DETECT_WTRU expires, the WTRU may notify the target cell of the acquisition (3120).

如果目標胞元在偵測逾時計時器TDETECT_TC 期滿之前已被通告或以其它方式確定其已被WTRU獲取(3122),那麼目標胞元可以向相鄰胞元通知切換成功(3124)。此後,目標胞元可以恢復關於SYNCH和PBCH傳輸的正常處理(3126)。If the target cell has been advertised or otherwise determined to have been acquired by the WTRU before expiration of the detection timeout timer T DETECT_TC (3122), then the target cell may inform the neighboring cell that the handover was successful (3124). Thereafter, the target cell can resume normal processing regarding SYNCH and PBCH transmissions (3126).

如果目標胞元確定其在偵測逾時計時器TDETECT_TC 期滿之前尚未被WTRU獲取(3122),那麼目標胞元可以設定附加計時器TNO_DETECT_TC (或者重置並重用偵測逾時計時器TDETECT_TC )(3128)。此後,目標胞元可以在指向WTRU的位置的所有分區上發送SYNCH和PBCH(3130)。如果目標胞元被通知或以其它方式確定其在附加計時器TNO_DETECT_TC 期滿之前已被WTRU獲取(3132),那麼目標胞元可以向相鄰胞元通知切換成功(3124),並且可以恢復用於SYNCH和PBCH傳輸的正常過程(3126)。如果目標胞元確定其在附加計時器TNO_DETECT_TC 期滿之前未被WTRU獲取(3132),那麼目標胞元可以向相鄰胞元通知切換不成功(3134)。結論 If the target cell determines that it has not been acquired by the WTRU before the expiration of the detection timeout timer T DETECT_TC (3122), then the target cell may set an additional timer T NO_DETECT_TC (or reset and reuse the detection timeout timer T DETECT_TC ) (3128). Thereafter, the target cell may send SYNCH and PBCH (3130) on all partitions that point to the location of the WTRU. If the target cell is notified or otherwise determined that it has been acquired by the WTRU before the expiration of the additional timer T NO_DETECT_TC (3132), the target cell may inform the neighboring cell that the handover was successful (3124) and may be resumed. The normal process of transmission between SYNCH and PBCH (3126). If the target cell determines that it was not acquired by the WTRU before the expiration of the additional timer TNO_DETECT_TC (3132), the target cell may inform the neighboring cell that the handover was unsuccessful (3134). in conclusion

雖然在上文中描述了採用特定組合的特徵和元素,但是本領域中具有通常知識者將會瞭解,每一個特徵或元素既可以單獨使用,也可以與其他特徵和元素進行任何組合。本揭露並不是依照本申請案中描述的特定實施例來限制的,並且這些實施例應該作為關於不同方面的例證。正如本領域中具有通常知識者清楚瞭解的那樣,在不脫離本揭露的實質和範圍的情況下,眾多的修改和變化都是可行的。本申請案的說明書中使用的元件、行為或指令不應被理解成對本發明而言是至關重要或是不可或缺的,除非明確地採用這種方式提供。除了這裡枚舉的方法和裝置之外,本領域中具有通常知識者可以從以上的描述中清楚瞭解處於本揭露的範圍以內的功能等價的方法和裝置。此類修改和變化應該落入附加申請專利範圍的範圍以內。本揭露僅僅依照附加申請專利範圍及其此類申請專利範圍有權保護的等價物的完整範圍而被限制。應該理解的是,本揭露並不局限於特定的方法或系統。Although features and elements of a particular combination are described above, those of ordinary skill in the art will appreciate that each feature or element can be used alone or in any combination with other features and elements. The disclosure is not to be limited in terms of the specific embodiments described herein, and Numerous modifications and variations are possible without departing from the spirit and scope of the disclosure. The elements, acts or instructions used in the description of the present application should not be construed as essential or essential to the invention, unless explicitly provided in this manner. In addition to the methods and apparatus enumerated herein, those skilled in the art will be able to devise a functionally equivalent method and apparatus within the scope of the disclosure. Such modifications and variations are intended to fall within the scope of the appended claims. The disclosure is limited solely by the scope of the appended claims and the full scope of the equivalents It should be understood that the present disclosure is not limited to a particular method or system.

還應該理解的是,這裡使用的術語僅僅是為了描述特定的實施例,其目的並不是進行限制。這裡使用的術語“視訊”可以表示快照、單一圖像及/或在時間基礎上顯示的多個圖像中的任何一個。另舉一例,這裡引用的術語“使用者設備”及其縮寫“UE”可以是指(i)如上所述的無線傳輸及/或接收單元(WTRU);(ii)如上所述的WTRU的多個實施例中的任何一個;(iii)具有無線能力及/或有線能力(例如可連接)的裝置,特別地,該裝置被配置了如上所述的WTRU的一些或所有結構和功能;(iii)被配置了與如上所述的WTRU的所有結構和功能相比相對較少的結構和功能的具有無線能力及/或有線能力的裝置;或(iv)類似裝置。在這裡對照第1A圖至第1E圖提供了可以代表這裡述及的任一WTRU的示例WTRU的細節。It is also understood that the terminology used herein is for the purpose of describing particular embodiments, and is not intended to be limiting. The term "video" as used herein may refer to any of a snapshot, a single image, and/or multiple images displayed on a time basis. As another example, the term "user equipment" and its abbreviation "UE" as referred to herein may refer to (i) a wireless transmission and/or reception unit (WTRU) as described above; (ii) a plurality of WTRUs as described above. Any of the embodiments; (iii) a device having wireless capabilities and/or wired capabilities (e.g., connectable), in particular, the device is configured with some or all of the structures and functions of the WTRU as described above; A wirelessly capable and/or wired capable device configured with relatively few structures and functions compared to all of the structures and functions of the WTRU as described above; or (iv) a similar device. Details of an example WTRU that may represent any of the WTRUs described herein are provided herein with respect to Figures 1A-1E.

此外,這裡描述的方法可以在引入到電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。關於電腦可讀媒體的示例包括電子信號(經由有線或無線連接傳輸)和電腦可讀儲存媒體。關於電腦可讀儲存媒體的示例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體儲存裝置、諸如內部硬碟和可移式磁片之類的磁性媒體、磁光媒體、以及CD-ROM碟片和數位多功能光碟(DVD)之類的光學媒體。與軟體相關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。Moreover, the methods described herein can be implemented in a computer program, software or firmware incorporated into a computer readable medium for use by a computer or processor. Examples of computer readable media include electronic signals (transmitted via wired or wireless connections) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor storage devices, such as internal hard drives and removable Magnetic media such as magnetic sheets, magneto-optical media, and optical media such as CD-ROM discs and digital versatile discs (DVDs). A processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

在不脫離本發明的範圍的情況下,針對以上提供的方法、裝置和系統的各種變化都是可能的。有鑒於可被應用的各種實施例,應該理解的是,所示出的實施例僅僅是一些示例,並且不應被視為是對後續申請專利範圍的範圍進行限制。舉例來說,這裡提供的實施例包括手持裝置,其中該裝置可以包括或是與提供任何適當電壓的任何恰當的電壓源結合使用,例如電池等等。Various changes to the methods, apparatus, and systems provided above are possible without departing from the scope of the invention. In view of the various embodiments that can be applied, it is to be understood that the illustrated embodiments are only a few examples and are not to be construed as limiting the scope of the scope of the claims. For example, embodiments provided herein include a handheld device, where the device can include or be used in conjunction with any suitable voltage source that provides any suitable voltage, such as a battery or the like.

此外,在上述實施例中提到了包含處理器的處理平臺、計算系統、控制器和其他裝置。這些裝置可以包括至少一個中央處理器(“CPU”)和記憶體。依照電腦程式設計領域的技術人員的實踐,對於操作或指令的行為或符號性表示的引用可以由不同的CPU和記憶體來執行。此類行為和操作或指令可被稱為“運行”、“電腦運行”或“CPU運行”。Furthermore, processing platforms, computing systems, controllers, and other devices including processors are mentioned in the above embodiments. These devices may include at least one central processing unit ("CPU") and memory. References to the behavior or symbolic representation of an operation or instruction may be performed by different CPUs and memories in accordance with the practice of those skilled in the art of computer programming. Such behaviors and operations or instructions may be referred to as "running," "computer running," or "CPU running."

本領域中具有通常知識者將會瞭解,行為以及用符號表示的操作或指令包括由CPU來操縱電子信號。電子系統代表的是可能導致電子信號由此變換或減少,以及將資料位元維持在記憶體系統中的記憶體位置,由此重新配置或以其他方式變更CPU操作以及其他信號處理的資料位元。保持資料位元的記憶體位置是具有與資料位元對應或代表資料位元的特定電、磁、光或有機屬性的實體位置。應該理解的是,這裡的實施例並不限於上述平臺或CPU,並且其他平臺和CPU同樣可以支援所描述的方法。Those of ordinary skill in the art will appreciate that behavior and symbolic operations or instructions include manipulation of electronic signals by the CPU. The electronic system represents a data bit that may cause the electronic signal to be transformed or reduced thereby, and maintain the data bit in the memory system, thereby reconfiguring or otherwise altering CPU operations and other signal processing. . The memory location that holds the data bit is the physical location that has a particular electrical, magnetic, optical, or organic property that corresponds to or represents the data bit. It should be understood that the embodiments herein are not limited to the above described platforms or CPUs, and that other platforms and CPUs may also support the described methods.

資料位元還可以保持在電腦可讀媒體上,其中該媒體包括磁片、光碟以及其他任何可由CPU讀取的揮發(例如隨機存取記憶體(“RAM”))或非揮發(例如唯讀記憶體(“ROM”))大量儲存系統。電腦可讀媒體可以包括協作或互連的電腦可讀媒體,這些媒體可以單獨存在於處理系統上、或者可以分佈在位於處理系統本地或遠端的多個互連處理系統中。應該理解的是,這些示例實施例並不限於上述記憶體,其他的平臺和記憶體同樣可以支援所描述的方法。The data bits can also be held on a computer readable medium, including the magnetic disk, the optical disk, and any other volatiles (such as random access memory ("RAM")) that can be read by the CPU, or non-volatile (eg, read only). Memory ("ROM")) mass storage system. The computer readable medium can comprise a cooperating or interconnected computer readable medium that can be present separately on the processing system or can be distributed across multiple interconnected processing systems local or remote to the processing system. It should be understood that these example embodiments are not limited to the above described memory, and other platforms and memories may also support the described methods.

在一個說明性實施例中,這裡描述的任何操作、處理等等都可以作為儲存在電腦可讀媒體上的電腦可讀指令。該電腦可讀指令可以由行動單元、網路元件及/或其他任何計算裝置的處理器來執行。In one illustrative embodiment, any of the operations, processes, and the like described herein can be implemented as computer readable instructions stored on a computer readable medium. The computer readable instructions can be executed by a processor of a mobile unit, a network element, and/or any other computing device.

在關於系統的各個方面的硬體和軟體實施方式之間幾乎是沒有區別的。使用硬體還是軟體通常(但也並不是始終如此,因為在某些上下文中,在硬體和軟體之間做出的選擇有可能會很重要)是代表了成本與效率之間的折衷的設計選擇。這裡描述的處理及/或系統及/或其他技術可以由各種載體來實施(例如硬體、軟體及/或韌體),並且較佳的載體可以隨著部署該處理及/或系統及/或其他技術的上下文而改變。舉例來說,如果實施方案確定速度和精確度是首要的,那麼實施方可以選擇主要採用硬體及/或韌體的實施方式。如果靈活度是首要的,那麼實施方可以傾向於主要採用軟體實施方式。替代地,實施方可以選擇硬體、軟體及/或韌體的某種組合。There is almost no difference between hardware and software implementations in all aspects of the system. Whether using hardware or software is usually (but not always, because in some contexts, the choice between hardware and software may be important) is a compromise that represents a compromise between cost and efficiency. select. The processes and/or systems and/or other techniques described herein can be implemented by a variety of carriers (eg, hardware, software, and/or firmware), and preferred carriers can be deployed with the process and/or system and/or The context of other technologies has changed. For example, if the implementation determines that speed and accuracy are paramount, the implementer may choose an implementation that primarily employs hardware and/or firmware. If flexibility is paramount, then implementers can prefer to primarily adopt software implementations. Alternatively, the implementer may select some combination of hardware, software, and/or firmware.

以上的詳細描述已經借助於使用方塊圖、流程圖及/或示例而對裝置及/或處理的不同實施例進行了描述。就像此類方塊圖、流程圖及/或示例包含了一個或多個功能及/或操作那樣,本領域中具有通常知識者將會理解,此類方塊圖、流程圖或示例內部的每一個功能及/操作可以單獨及/或共同地由範圍廣泛的硬體、軟體、韌體或者近乎其任何組合來實施。在一個實施例中,這裡描述的主題的若干個部分可以經由專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、數位訊號處理器(DSP)及/或其他集成格式來實現。然而,本領域中具有通常知識者將會認識到,這裡揭露的實施例的一些方面可以全部或者部分在積體電路中以等效的方式實施、作為在一個或多個電腦上運行的一個或多個電腦程式(例如作為在一個或多個電腦系統上運行的一個或多個程式)來實施、作為在一個或多個處理器上運行的一個或多個程式(例如作為在一個或多個微處理器上運行的一個或多個程式)來實施、作為韌體來實施、或者作為近乎其任何組合來實施,並且依照本揭露,關於軟體及/或韌體的電路設計及/或代碼編寫同樣落入本領域中具有通常知識者的技術範圍以內。此外,本領域中具有通常知識者將會瞭解,這裡描述的主題的機制可以作為程式產品而以各種形式分發,並且無論使用了何種特定類型的信號承載媒體來實際執行該分發,這裡描述的主題的說明性實施例都是適用的。關於信號承載媒體的示例包括但不限於以下各項:可記錄型媒體,例如軟碟、硬碟驅動器、CD、DVD、數位磁帶、電腦記憶體等等,以及傳輸類型的媒體,例如數位及/或類比通信媒體(例如光纖電纜、波導、有線通信鏈路、無線通訊鏈路等等)。The above detailed description has described various embodiments of the devices and/or processes in the <RTIgt; As such block diagrams, flow diagrams, and/or examples include one or more functions and/or operations, one of ordinary skill in the art will understand that each such block diagram, flowchart, or example The functions and/or operations may be implemented individually and/or collectively by a wide range of hardware, software, firmware, or nearly any combination thereof. In one embodiment, portions of the subject matter described herein may be implemented via a dedicated integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), and/or other integrated formats. However, those of ordinary skill in the art will appreciate that some aspects of the embodiments disclosed herein may be implemented in whole or in part in an integrated circuit as one or more A plurality of computer programs (eg, as one or more programs running on one or more computer systems) implemented as one or more programs running on one or more processors (eg, as one or more One or more programs running on the microprocessor are implemented, implemented as firmware, or implemented in almost any combination thereof, and in accordance with the present disclosure, circuit design and/or code writing for software and/or firmware It is also within the skill of those having ordinary skill in the art. Moreover, those of ordinary skill in the art will appreciate that the mechanisms of the subject matter described herein can be distributed in various forms as a program product, and regardless of the particular type of signal bearing medium used to actually perform the distribution, as described herein. Illustrative embodiments of the subject matter are applicable. Examples of signal bearing media include, but are not limited to, recordable media such as floppy disks, hard disk drives, CDs, DVDs, digital tapes, computer memory, and the like, as well as transmission type media such as digital and/or Or analog communication media (eg fiber optic cables, waveguides, wired communication links, wireless communication links, etc.).

本領域中具有通常知識者將會認識到,在本領域中,以這裡闡述的方式來描述裝置及/或過程以及在此後使用工程實踐來將所描述的此類裝置及/或過程集成到資料處理系統中都是很常見的。也就是說,這裡描述的裝置及/或處理的至少一部分可以經由合理數量的實驗而被集成到資料處理系統中。本領域中具有通常知識者將會認識到,典型的資料處理系統通常可以包括系統單元殼體、視訊顯示裝置、諸如揮發性和非揮發性記憶體之類的記憶體、諸如微處理器和數位訊號處理器之類的處理器、諸如作業系統、驅動器、圖形化使用者介面和應用程式之類的計算實體,諸如觸控板或螢幕之類的一個或多個交互作用裝置、及/或包括回饋迴路和控制馬達的控制系統(例如用於感測位置及/或速度的回饋、用於行動及/或調節元件及/或參量的控制電動機)。典型的資料處理系統可以使用任何合適的商用元件來實現,例如那些通常會在資料計算/通信及/或網路計算/通信系統中發現的元件。Those of ordinary skill in the art will recognize that, in the art, devices and/or processes are described in the manner set forth herein, and thereafter, engineering practices are used to integrate such described devices and/or processes into the materials. Processing systems are very common. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable number of experiments. Those of ordinary skill in the art will recognize that typical data processing systems may typically include system unit housings, video display devices, memory such as volatile and non-volatile memory, such as microprocessors and digital A processor, such as a signal processor, a computing entity such as a work system, a drive, a graphical user interface, and an application, such as one or more interaction devices, such as a trackpad or screen, and/or includes A feedback loop and a control system that controls the motor (eg, feedback for sensing position and/or speed, control motor for acting and/or regulating components and/or parameters). A typical data processing system can be implemented using any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.

這裡描述的主題有時示出被包含在其他不同元件內或是與其相連的不同元件。應該理解的是,如此描述的體系結構僅僅是一些示例,並且用於實施相同功能的其他眾多的架構實際上都是可以實施的。在概念上,實現相同功能的元件的任何設置都被有效地“關聯”,由此可以實現期望的功能。因此,在這裡組合在一起以實現特定功能的任何兩個元件都可被認為是彼此“關聯”的,使得可以實現期望的功能,而不用考慮架構或中間元件。同樣地,以這種方式關聯的任何兩個元件也可以被視為彼此“可操作地連接”或“可操作地耦合”,以實現期望的功能,並且能以這種方式關聯的任何兩個元件也可以被視為彼此“能夠可操作地耦合”,以實現期望的功能。能夠可操作地耦合的特定示例包括但不限於可以在實體上配對及/或在實體上交互作用的元件及/或可以無線地可交互作用及/或無線地交互作用的元件及/或在邏輯上交互作用及/或可在邏輯上可交互作用的元件。The subject matter described herein sometimes shows different elements that are included within or connected to other different elements. It should be understood that the architecture so described is only a few examples, and that many other architectures for implementing the same functionality can be implemented in practice. Conceptually, any setting of an element that achieves the same function is effectively "associated", thereby achieving the desired function. Accordingly, any two components herein combined to achieve a particular function can be considered to be "associated" with each other so that the desired functionality can be implemented without regard to the architecture or the intermediate components. Likewise, any two elements that are associated in this manner can also be seen as "operably connected" or "operably coupled" to each other to achieve the desired function, and any two can be associated in this manner. Elements may also be considered to be "operably coupled" to each other to achieve the desired function. Specific examples that can be operatively coupled include, but are not limited to, elements that can be physically paired and/or physically interacting and/or elements that can interact wirelessly and/or wirelessly and/or in logic Interactions and/or components that can be logically interactable.

至於在這裡使用了實質上任何複數及/或單數術語,本領域中具有通常知識者可以根據上下文及/或應用適當地從複數轉換為單數及/或從單數轉換為複數。為了清楚起見,在這裡可以明確地闡述各種單數/複數置換。Where substantially any plural and/or singular terms are used herein, those of ordinary skill in the art may <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; For the sake of clarity, various singular/plural permutations can be explicitly set forth herein.

本領域中具有通常知識者將會理解,一般來說,在這裡尤其是所附申請專利範圍(例如所附申請專利範圍的主體)中使用的術語通常應該作為“開放式”術語(舉例來說,術語“包括”應被解釋成“包括但不限於”,術語“具有”被解釋成“至少具有”,術語“包含”應被解釋為“包括但不限於”等等)。本領域中具有通常知識者將會進一步理解,如果所引入的申請專利範圍敘述針對的是特定的數量,那麼在該申請專利範圍中應該明確地敘述這種意圖,並且如果沒有這種敘述,那麼此類意圖是不存在的。舉例來說,如果所預期的是僅僅一個項目,那麼可以使用術語“單一”或類似語言。作為理解輔助,後續的所附申請專利範圍及/或這裡的描述可以包括使用介紹性短語“至少一個”以及“一個或多個”來引入申請專利範圍的敘述。然而,使用此類短語不應被解釋成是這樣一種申請專利範圍敘述的引入方式,即藉由不定冠詞“一”或“一個”以將包含以這種方式引入的申請專利範圍敘述的任何特定的申請專利範圍限於只包含一個此類敘述的實施例,即使相同的申請專利範圍包含了介紹性短語“一個或多個”或者“至少一個”以及諸如“一”或“一個”之類的不定冠詞的時候也是如此(例如,“一”及/或“一個”應該被解釋成是指“至少一個”或者“一個或多個”)。對於用於引入申請專利範圍敘述的定冠詞的使用也是如此。此外,即使明確敘述了特定數量的所引入的申請專利範圍敘述,本領域中具有通常知識者也會認識到,這種敘述應被解釋成至少是指所敘述的數量(例如在沒有其他修飾語的情況下的“兩個敘述”的無修飾敘述意味著至少兩個敘述或是兩個或更多敘述)。此外,在這些實例中,其中使用了與“A、B和C等等中的至少一個”類似的規約,那麼此類結構通常應該具有本領域中具有通常知識者所理解的該規約的意義(例如,“具有A、B和C中的至少一個的系統”將會包括但不限於只具有A、只具有B、只具有C、具有A和B、具有A和C、具有B和C及/或具有A、B和C等等的系統)。在使用了與“A、B或C等等中的至少一個”相似的規約的實例中,此類結構通常應該具有本領域中具有通常知識者所理解的該規約的意義(舉例來說,“具有A、B或C中的至少一個的系統”包括但不限於只具有A、只具有B、只具有C、具有A和B、具有A和C、具有B和C及/或具有A、B和C等等的系統)。本領域中具有通常知識者會將進一步理解,無論在說明書,申請專利範圍書還是附圖中,提出兩個或更多替代項的幾乎任何分離性的詞語及/或短語都應被理解成預期了包括這些項中的一個、任一項或是所有兩項的可能性。舉例來說,短語“A或B”將被理解成包括“A”或“B”或“A和B”的可能性。It will be understood by those of ordinary skill in the art that, in general, the terms used herein, particularly in the scope of the appended claims (e.g., the subject matter of the appended claims), should generally be construed as an &quot;open&quot; The term "comprising" is to be interpreted as "including but not limited to", the term "having" is to be interpreted as "having at least" and the term "comprising" is to be construed as "including but not limited to" and the like. It will be further understood by those of ordinary skill in the art that if the stated scope of the patent application is directed to a particular number, such intent should be explicitly recited in the scope of the application and, if not Such intentions do not exist. For example, if only one item is expected, the term "single" or similar language can be used. As an aid to understanding, the scope of the appended claims and/or the description herein may include a description of the scope of the patent application using the introductory phrases "at least one" and "one or more". However, the use of such phrases is not to be construed as a limitation of the scope of the claims. The specific scope of the patent application is limited to embodiments that include only one such description, even if the scope of the same application includes the introductory phrase "one or more" or "at least one" and such as "one" or "one" The same is true for indefinite articles (for example, "a" and/or "a" should be interpreted to mean "at least one" or "one or more". The same is true for the use of definite articles used to introduce the scope of the patent application. In addition, even if a specific number of the recited claims are explicitly recited, those of ordinary skill in the art will recognize that such a description should be construed to mean at least the recited. The unmodified narrative of "two narratives" in the case of means means at least two narratives or two or more narratives). Moreover, in these examples, where a convention similar to "at least one of A, B, and C, etc." is used, such a structure should generally have the meaning of the protocol as understood by those of ordinary skill in the art ( For example, "a system having at least one of A, B, and C" will include, but is not limited to, only having A, only having B, having only C, having A and B, having A and C, having B and C, and/or Or systems with A, B, C, etc.). In instances where a protocol similar to "at least one of A, B, or C, etc." is used, such a structure should generally have the meaning of the protocol as understood by those of ordinary skill in the art (for example, " A system having at least one of A, B or C" includes but is not limited to having only A, only B, only C, having A and B, having A and C, having B and C, and/or having A, B And C and so on). It will be further understood by those of ordinary skill in the art that, in the specification, the scope of the claims, or the drawings, the words and/or The possibility of including one, any or both of these items is contemplated. For example, the phrase "A or B" will be understood to include the possibilities of "A" or "B" or "A and B."

此外,這裡使用的跟隨有一系列的多個項目及/或多個項目類別的術語“任何一個”旨在包括單獨或與其他項目及/或其他項目類別結合的項目及/或項目類別中的“任何一個”、“任何組合”、“任何多個”及/或“任何多個的組合”。此外,這裡使用的術語“集合”旨在包括任何數量的項目,包括零。另外,這裡使用的術語“數量”旨在包括任何數量,其中包括零。In addition, the term "any one" as used herein that is followed by a series of multiple items and/or multiple item categories is intended to include "in a project and/or item category, either alone or in combination with other items and/or other item categories." Any one, any combination, any number, and/or any combination of multiples. Moreover, the term "set" as used herein is intended to include any number of items, including zero. Additionally, the term "amount" as used herein is intended to include any quantity, including zero.

此外,如果本揭露的特徵或方面是依照馬庫西群組的方式描述的,那麼本領域中具有通常知識者將會認識到,本揭露由此是依照馬庫西群組中的任何單一成員或成員子群組描述的。Moreover, if the features or aspects of the present disclosure are described in terms of the Markusi group, those of ordinary skill in the art will recognize that the present disclosure is thus in accordance with any single member of the Markush group. Or a subgroup of members described.

正如本領域中具有通常知識者所理解的那樣,出於任何和所有目的,例如在提供書面描述方面,這裡揭露的所有範圍還包含了任何和所有可能的子範圍以及其子範圍組合。所列出的任何範圍都可以很容易地被認為是充分描述和啟用了被分解成至少兩等分、三等分、四等分、五等分、十等分等等的相同範圍。作為非限制性示例,本文論述的每一個範圍都很容易即可分解成下部的三分之一、中間的三分之一以及上部的三分之一範圍。本領域中具有通常知識者將會理解,諸如“至多”、“至少”、“大於”、“小於”等等的所有語言包含了所敘述的數量,並且指的是隨後可被分解成如上所述的子範圍的範圍。最後,正如本領域中具有通常知識者所理解的那樣,一個範圍會包括每一個單獨的成員。由此,舉例來說,具有1-3個胞元的群組指的是具有1、2或3個胞元的群組。同樣,具有1-5個胞元的組是指具有1、2、3、4或5個胞元的群組,依此類推。All ranges disclosed herein are intended to cover any and all possible sub-ranges and combinations of sub-ranges thereof, for the purpose of providing a written description. Any of the ranges listed can be readily considered to fully describe and enable the same range that is broken down into at least two equal parts, three equal parts, four equal parts, five equal parts, ten equal parts, and the like. As a non-limiting example, each of the ranges discussed herein can be easily broken down into the lower third, the middle third, and the upper third. Those of ordinary skill in the art will appreciate that all languages such as "at most", "at least", "greater than", "less than", etc., include the recited quantities, and are meant to be subsequently decomposed into the above. The range of subranges described. Finally, as will be understood by those of ordinary skill in the art, a range will include each individual member. Thus, for example, a group having 1-3 cells refers to a group having 1, 2, or 3 cells. Likewise, a group having 1-5 cells refers to a group having 1, 2, 3, 4, or 5 cells, and so on.

再者,除非進行說明,申請專利範圍不應該被錯誤地當作僅限於所描述的順序或要素。此外,任何申請專利範圍中使用的術語“用於……的裝置”旨在援引35 U .S .C . §112 , ¶ 6,並且沒有單詞“用於……裝置”的任何申請專利範圍均不具有這種意義。Furthermore, the scope of patent application should not be construed as being limited to the described order or In addition, the term "means for" as used in the scope of any patent application is intended to invoke 35 U.S.C. §112, ¶6, and no patent application scope for the word "for device" Does not have this meaning.

100‧‧‧通信系統
102、102a、102b、102c、102d、240a、204b‧‧‧無線傳輸/接收單元(WTRU)
104‧‧‧無線電存取網路(RAN)
106‧‧‧核心網路
108‧‧‧公共交換電話網路(PSTN)
110‧‧‧網際網路
112‧‧‧其他網路
114a、114b、170a、170b、170c、202‧‧‧基地台
116‧‧‧空氣介面
118‧‧‧處理器
120、500、600、700、800、900‧‧‧收發器
122‧‧‧傳輸/接收元件
124‧‧‧揚聲器/麥克風
126‧‧‧數位鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧非可移式記憶體
132‧‧‧可移式記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧週邊裝置
140a、140b、140c‧‧‧節點B
142a、142b‧‧‧無線電網路控制器(RNC)
144‧‧‧媒體閘道(MGW)
146‧‧‧行動交換中心(MSC)
148‧‧‧服務GPRS節點交換中心(SGSN)
150‧‧‧閘道GPRS支援節點(GGSN)
160a、160b、160c‧‧‧e節點B
162‧‧‧移動性管理閘道(MME)
164‧‧‧服務閘道
166‧‧‧封包資料網路(PDN)閘道
172‧‧‧存取服務網路(ASN)閘道
174‧‧‧行動IP家用代理(MIP-HA)
176‧‧‧驗證、許可、記帳(AAA)伺服器
178‧‧‧閘道
200‧‧‧通信系統
502、602、702、802A-B、902A-N‧‧‧PAA
504、604‧‧‧天線元件
506、806A-B‧‧‧專用RF鏈
508‧‧‧RF處理元件
510‧‧‧類比數位轉換器(ADC)
606、906‧‧‧單一RF鏈
612‧‧‧移相器
706A-B‧‧‧RF鏈
1000、1903a、
1903b、1903c、1911a、2003a、2003b、2003c‧‧‧脈波成形單元
1010、1910a、1910b、1910c、2010a、2110a、2210a、2210b、2210c、2314a、2414a‧‧‧M點DFT單元
1012、1912a、1912b、1912c、1922a、1922b、1922c、2012a、2122a、2122b、2122c、2212a、2212b、2212c、2312a、2312b、2312c、2412a、2412b、2412c‧‧‧子載波映射(SM)單元
1014‧‧‧N點快速傅利葉逆變換(IFFT)單元
1100、1900、2000、2100、2200、2300、2400、2500‧‧‧傳輸器
1108、2108、2108b、2108c、2408a、2408b、2408c‧‧‧冗餘資料產生單元
1110、2410a、2410b、2410c‧‧‧置換單元
1112‧‧‧B單元
1114‧‧‧NIFFT點IFFT單元
1116‧‧‧唯一字插入(UW插入)單元
1118‧‧‧平行轉串列轉換器
1200‧‧‧通用行動電信系統(UMTS)傳訊結構
1300‧‧‧LTE傳訊結構
1600、1700、1800‧‧‧OFDM信號
1602a‧‧‧同步波束
1602b‧‧‧非同步波束
1702a、1702b‧‧‧波束
1901a、1901b、2001a、2001b‧‧‧波形產生器
1905a、1905b、1905c、2005a、2005b、2005c、2205a、2205b、2305、2405a、2405b、2405c‧‧‧時域插入單元
1907a、1907b、1907c、2307a、2307b、2307c、2407a、2407b、2407c‧‧‧子頻道映射單元
1909a、1909b、2109a、2109b、2209a、2209b、2309a、2309b‧‧‧平行轉串列轉換器
1914a、1914b、1914c、1920a‧‧‧N點逆DFT(IDFT)單元
1924a、1924b、1924b、2124a、2124b、2224a、2224b、2324a‧‧‧NIFFT點IFFT單元
1911b、2111a、21116、2211a、2211b、2311a、2311b‧‧‧波束成形單元
1920b、1920c‧‧‧N點DFT單元
2016a、2016c、2316a、2316b、2316c‧‧‧時域尾部消除單元
2101a、2101b‧‧‧UW DFT-s ODFM波形產生器
2110b、2110c、2314b、2314c、2414b、2414c‧‧‧K1/K2點DFT單元
2201a、2201b‧‧‧ZT DFT-s OFDM波形產生器
2301、2301b‧‧‧基於eZT OFDM的波形產生器
2318a、2318b、2318c‧‧‧循環移位單元
2401a、2401b、2501a、2501b‧‧‧唯一字OFDM(UW-OFDM)波形產生器
2600、2700‧‧‧流程
ssync-ch‧‧‧同步符號
data-ch、UW‧‧‧資料頻道資訊
CP‧‧‧循環前綴
CPICH‧‧‧公共引示頻道
DL-DDCH‧‧‧下鏈定向資料頻道
FFT‧‧‧快速傅利葉變換
GHz‧‧‧吉赫
HO‧‧‧切換
IP‧‧‧網際網路協定
Iub、IuCS、IuPS、iur、S1、S2‧‧‧介面
kHz‧‧‧千赫茲
LTE‧‧‧長期演進
MHz‧‧‧兆赫茲
mmW‧‧‧毫米波
ns‧‧‧奈秒
OFDM‧‧‧正交分頻多工
P-SCH‧‧‧主同步頻道
PBCH‧‧‧實體廣播頻道
PDDCCH‧‧‧實體下鏈定向控制頻道
PDDDCH‧‧‧實體下鏈定向資料頻道
PSS‧‧‧主同步信號
R1、R3、R6、R8‧‧‧參考點
RF‧‧‧射頻
Rx‧‧‧接收
S-SCH‧‧‧輔助同步頻道sd‧‧‧資料符號
SSS‧‧‧輔助同步信號
SYNCH‧‧‧同步頻道
TTI‧‧‧傳輸時間間隔
Tx‧‧‧傳輸
UE‧‧‧使用者設備
ZT‧‧‧零尾
100‧‧‧Communication system
102, 102a, 102b, 102c, 102d, 240a, 204b‧‧‧ wireless transmission/reception unit (WTRU)
104‧‧‧Radio Access Network (RAN)
106‧‧‧core network
108‧‧‧Public Switched Telephone Network (PSTN)
110‧‧‧Internet
112‧‧‧Other networks
114a, 114b, 170a, 170b, 170c, 202‧‧‧ base station
116‧‧‧Air interface
118‧‧‧Processor
120, 500, 600, 700, 800, 900‧‧‧ transceivers
122‧‧‧Transmission/receiving components
124‧‧‧Speaker/Microphone
126‧‧‧Digital keyboard
128‧‧‧Display/Touchpad
130‧‧‧ Non-removable memory
132‧‧‧Removable memory
134‧‧‧Power supply
136‧‧‧Global Positioning System (GPS) chipset
138‧‧‧ peripheral devices
140a, 140b, 140c‧‧‧ Node B
142a, 142b‧‧‧ Radio Network Controller (RNC)
144‧‧‧Media Gateway (MGW)
146‧‧‧Mobile Exchange Center (MSC)
148‧‧‧Serving GPRS Node Switching Center (SGSN)
150‧‧‧Gateway GPRS Support Node (GGSN)
160a, 160b, 160c‧‧‧e Node B
162‧‧‧Mobility Management Gateway (MME)
164‧‧‧ service gateway
166‧‧‧ Packet Data Network (PDN) Gateway
172‧‧‧Access Service Network (ASN) Gateway
174‧‧‧Mobile IP Home Agent (MIP-HA)
176‧‧‧Verification, Licensing, Accounting (AAA) Server
178‧‧‧Chute
200‧‧‧Communication system
502, 602, 702, 802A-B, 902A-N‧‧‧PAA
504, 604‧‧‧ antenna elements
506, 806A-B‧‧‧ dedicated RF chain
508‧‧‧RF processing components
510‧‧‧ Analog Digital Converter (ADC)
606, 906‧‧‧ single RF chain
612‧‧‧ phase shifter
706A-B‧‧‧RF chain
1000, 1903a,
1903b, 1903c, 1911a, 2003a, 2003b, 2003c‧‧‧ pulse wave shaping unit
1010, 1910a, 1910b, 1910c, 2010a, 2110a, 2210a, 2210b, 2210c, 2314a, 2414a‧‧‧M point DFT unit
1012, 1912a, 1912b, 1912c, 1922a, 1922b, 1922c, 2012a, 2122a, 2122b, 2122c, 2212a, 2212b, 2212c, 2312a, 2312b, 2312c, 2412a, 2412b, 2412c‧‧‧ subcarrier mapping (SM) unit
1014‧‧‧N-point fast Fourier transform (IFFT) unit
1100, 1900, 2000, 2100, 2200, 2300, 2400, 2500‧‧‧ transmitters
1108, 2108, 2108b, 2108c, 2408a, 2408b, 2408c‧‧‧ redundant data generation unit
1110, 2410a, 2410b, 2410c‧‧‧ replacement unit
1112‧‧‧B unit
1114‧‧‧N IFFT point IFFT unit
1116‧‧‧Unique word insertion (UW insertion) unit
1118‧‧‧Parallel to serial converter
1200‧‧‧General Mobile Telecommunications System (UMTS) communication structure
1300‧‧‧LTE communication structure
1600, 1700, 1800‧‧ ‧ OFDM signals
1602a‧‧‧Synchronous beam
1602b‧‧‧Unsynchronized beam
1702a, 1702b‧‧ beams
1901a, 1901b, 2001a, 2001b‧‧‧ waveform generator
1905a, 1905b, 1905c, 2005a, 2005b, 2005c, 2205a, 2205b, 2305, 2405a, 2405b, 2405c‧‧‧ time domain insertion unit
1907a, 1907b, 1907c, 2307a, 2307b, 2307c, 2407a, 2407b, 2407c‧‧‧ subchannel mapping unit
1909a, 1909b, 2109a, 2109b, 2209a, 2209b, 2309a, 2309b‧‧‧ parallel to serial converters
1914a, 1914b, 1914c, 1920a‧‧‧N point inverse DFT (IDFT) unit
1924a, 1924b, 1924b, 2124a, 2124b, 2224a, 2224b, 2324a‧‧‧N IFFT point IFFT unit
1911b, 2111a, 21116, 2211a, 2211b, 2311a, 2311b‧‧‧ beam forming unit
1920b, 1920c‧‧‧N point DFT unit
2016a, 2016c, 2316a, 2316b, 2316c‧‧‧ time domain tail elimination unit
2101a, 2101b‧‧‧UW DFT-s ODFM waveform generator
2110b, 2110c, 2314b, 2314c, 2414b, 2414c‧‧‧K1/K2 point DFT units
2201a, 2201b‧‧‧ZT DFT-s OFDM waveform generator
2301, 2301b‧‧‧ waveform generator based on eZT OFDM
2318a, 2318b, 2318c‧‧‧ cyclic shifting unit
2401a, 2401b, 2501a, 2501b‧‧‧ unique word OFDM (UW-OFDM) waveform generator
2600, 2700‧‧‧ Process
s , sync-ch ‧‧‧ synchronization symbol
Data-ch , UW‧‧‧ data channel information
CP‧‧‧ cyclic prefix
CPICH‧‧‧Common Channel
DL-DDCH‧‧‧Chain-oriented data channel
FFT‧‧‧fast Fourier transform
GHz‧‧ ‧ GHz
HO‧‧‧Switch
IP‧‧‧Internet Protocol
Iub, IuCS, IuPS, iur, S1, S2‧‧ interface
kHz‧‧ kHz
LTE‧‧‧ Long-term evolution
MHz‧‧ megahertz
mmW‧‧‧mm wave
Ns‧‧‧ nanoseconds
OFDM‧‧ Orthogonal Frequency Division Multiplex
P-SCH‧‧‧ primary sync channel
PBCH‧‧‧ entity broadcast channel
PDDCCH‧‧‧ entity chain-oriented control channel
PDDDCH‧‧‧ entity chain-oriented data channel
PSS‧‧‧ primary sync signal
R1, R3, R6, R8‧‧‧ reference points
RF‧‧‧RF
Rx‧‧‧ Receiving
S-SCH‧‧‧Secondary synchronization channel sd ‧‧‧ data symbol
SSS‧‧‧Auxiliary Synchronization Signal
SYNCH‧‧‧Sync Channel
TTI‧‧‧ transmission time interval
Tx‧‧ transmission
UE‧‧‧User equipment
ZT‧‧‧Zero

更詳細的理解可以從以下結合所附的圖式舉例給出的詳細說明中得到。與詳細說明一樣,附圖中的這些圖形都是示例。如此一來,附圖和詳細說明不應該被認為是限制性的,並且其他同等效用的示例也是可行以及可能的。此外,附圖中的相同元件符號(“ref.”)指示的是相同的要素,並且其中: 第1A圖是可以實施所揭露的一個或多個實施例的示例通信系統的系統圖; 第1B圖是可以在第1A圖所示的通信系統內使用的示例無線傳輸/接收單元(WTRU)的系統圖; 第1C、1D和1E圖是可以在第1A圖示出的通信系統內使用的示例無線電存取網路以及示例核心網路的系統圖; 第2圖示出了一個可以實踐或實施實施例的示例通信系統; 第3A圖至第3B圖示出了示例的基於正交分頻多工(OFDM)的訊框結構; 第4圖示出了下鏈邏輯、傳輸和實體頻道的示例映射; 第5圖示出了被配置用於全數位化波束成形的示例收發器; 第6圖示出了被配置用於類比波束成形的示例收發器; 第7圖示出了被配置用於類比波束成形的示例收發器; 第8圖示出了被配置用於類比波束成形的示例收發器; 第9圖示出了被配置用於類比波束成形的示例收發器; 第10圖是示出了被配置為產生ZT DFT-s-OFDM波形的傳輸器的示例脈波成形單元的方塊圖; 第11圖是示出了被配置為產生唯一字OFDM(UW-OFDM)波形的傳輸器的示例的方塊圖; 第12圖示出了用於主同步頻道(P-SCH)、輔助同步頻道(S-SCH)和公共引示頻道(CPICH)的示例通用行動電信系統(UMTS)傳訊結構; 第13圖示出了用於主同步信號(PSS)、輔助同步信號(SSS)和實體廣播頻道(PBCH)的示例長期演進(LTE)傳訊結構; 第14圖示出了使用基於he -OFDM的波形所產生的示例OFDM信號; 第15圖示出了來源於單獨波束上的同步資訊和資料頻道資訊的傳輸的示例OFDM信號; 第16圖示出了來源於單獨波束上的同步資訊和資料頻道資訊的傳輸的示例OFDM符號; 第17圖示出了來源於單獨頻道上的同步資訊和資料頻道資訊的傳輸的示例OFDM符號; 第18圖示出了來源於同步波束上的同步資訊傳輸的示例OFDM符號; 第19圖示出了被配置為產生用於單獨波束上的同步資訊和資料頻道資訊的傳輸的OFDM信號的示例傳輸器; 第20圖示出了被配置為產生用於單獨波束上的同步資訊和資料頻道資訊的傳輸的OFDM信號的示例傳輸器; 第21圖示出了被配置為產生用於單獨波束上的同步資訊和資料頻道資訊的傳輸的OFDM信號的示例傳輸器; 第22圖示出了被配置為產生用於單獨波束上的同步資訊和資料頻道資訊傳輸的OFDM信號的示例傳輸器; 第23圖示出了被配置為產生用於單獨波束上的同步資訊和資料頻道資訊的傳輸的OFDM信號的示例傳輸器; 第24圖示出了被配置為產生用於單獨波束上的同步資訊和資料頻道資訊的傳輸的OFDM信號的示例傳輸器; 第25圖示出了被配置為產生用於單獨波束上的同步資訊和資料頻道資訊的傳輸的OFDM信號的示例傳輸器; 第26圖是示出了用於支援單獨傳輸波束上的通信的示例流程的流程圖; 第27圖是示出了用於支援單獨傳輸波束上的通信的示例流程的流程圖; 第28圖示出了示例的SYNCH和PBCH訊框結構; 第29圖示出了示例的SYNCH和PBCH訊框結構; 第30圖示出了示例的SYNCH和PBCH訊框結構; 第31圖示出了用於相鄰胞元之間的SYNCH和PBCH的基本的雙分區協作的示例;以及 第32圖是示出了示例的網路輔助切換過程的流程圖。A more detailed understanding can be obtained from the following detailed description given in conjunction with the accompanying drawings. As in the detailed description, the figures in the drawings are examples. In this regard, the drawings and detailed description are not to be considered as limiting, and other equivalent examples are also possible and possible. In addition, the same element symbols ("ref.") in the drawings indicate the same elements, and wherein: FIG. 1A is a system diagram of an example communication system in which one or more embodiments disclosed may be implemented; The figure is a system diagram of an example wireless transmit/receive unit (WTRU) that can be used within the communication system shown in FIG. 1A; the 1C, 1D, and 1E diagrams are examples that can be used within the communication system shown in FIG. 1A A system diagram of a radio access network and an example core network; FIG. 2 shows an example communication system in which embodiments may be practiced or implemented; FIGS. 3A-3B illustrate an example based on orthogonal frequency division. Figure (OFDM) frame structure; Figure 4 shows an example mapping of the downlink logic, transmission and physical channels; Figure 5 shows an example transceiver configured for full digital beamforming; Figure 6 Example transceivers configured for analog beamforming are shown; Figure 7 shows an example transceiver configured for analog beamforming; Figure 8 shows an example transceiver configured for analog beamforming Figure 9 shows the being Example transceiver configured for analog beamforming; FIG. 10 is a block diagram showing an example pulse shaping unit configured to generate a ZT DFT-s-OFDM waveform transmitter; FIG. 11 is a diagram showing Block diagram of an example of a transmitter configured to generate a unique word OFDM (UW-OFDM) waveform; Figure 12 shows a primary synchronization channel (P-SCH), a secondary synchronization channel (S-SCH), and a common pilot Example Universal Mobile Telecommunications System (UMTS) communication structure for Channel (CPICH); Figure 13 shows an example Long Term Evolution (LTE) for Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and Physical Broadcast Channel (PBCH) a communication structure; Figure 14 shows an example OFDM signal generated using a he -OFDM based waveform; Figure 15 shows an example OFDM signal derived from the transmission of synchronization information and data channel information on separate beams; 16 illustrates example OFDM symbols derived from transmission of synchronization information and data channel information on separate beams; Figure 17 illustrates example OFDM symbols derived from transmission of synchronization information and data channel information on separate channels Figure 18 shows an example OFDM symbol derived from synchronous information transmission on a synchronization beam; Figure 19 shows an example transmission of an OFDM signal configured to generate transmission of synchronization information and data channel information on separate beams Figure 20 illustrates an example transmitter configured to generate OFDM signals for transmission of synchronization information and data channel information on separate beams; Figure 21 illustrates configuration for generation on separate beams Example transmitter for OFDM signals for transmission of synchronization information and data channel information; Figure 22 shows an example transmitter configured to generate OFDM signals for synchronization information and data channel information transmission on separate beams; An example transmitter configured to generate OFDM signals for transmission of synchronization information and data channel information on separate beams is shown; Figure 24 illustrates configured to generate synchronization information and data channels for separate beams An example transmitter of an OFDM signal for transmission of information; Figure 25 shows a transmission configured to generate synchronization information and data channel information for individual beams Example transmitter of an OFDM signal; Figure 26 is a flow chart showing an example flow for supporting communication on a separate transmission beam; Figure 27 is a diagram showing an example flow for supporting communication on a separate transmission beam Figure 28 shows an exemplary SYNCH and PBCH frame structure; Figure 29 shows an example SYNCH and PBCH frame structure; Figure 30 shows an example SYNCH and PBCH frame structure; 31 illustrates an example of basic two-partition cooperation for SYNCH and PBCH between adjacent cells; and FIG. 32 is a flow chart showing an example network-assisted handover procedure.

2600‧‧‧流程圖 2600‧‧‧ Flowchart

OFDM‧‧‧正交分頻多工 OFDM‧‧ Orthogonal Frequency Division Multiplex

Claims (28)

一種在一傳輸器中實施以用於支援通信的方法,該方法包括: 產生包括多種類型的同步資訊的一第一正交分頻多工(OFDM)符號; 產生括一資料的一第二OFDM符號;以及 分別在一第一傳輸波束以及一第二傳輸波束上同時傳送該第一OFDM符號以及該第二OFDM符號,其中該第一傳輸波束具有一寬波束寬度,以及其中該第二傳輸波束具有一窄波束寬度。A method implemented in a transmitter for supporting communication, the method comprising: generating a first orthogonal frequency division multiplexing (OFDM) symbol including a plurality of types of synchronization information; generating a second OFDM including a data a symbol; and simultaneously transmitting the first OFDM symbol and the second OFDM symbol on a first transmit beam and a second transmit beam, wherein the first transmit beam has a wide beamwidth, and wherein the second transmit beam Has a narrow beamwidth. 如申請專利範圍第1項所述的方法,其中該第一傳輸波束以及該第二傳輸波束在一空間域中重疊。The method of claim 1, wherein the first transmission beam and the second transmission beam overlap in a spatial domain. 如申請專利範圍第1項至第2項中任一項所述的方法,其中該第一OFDM符號是在一第一子載波集合中的一個子載波上傳送的,以及其中該第二OFDM符號是在一第二子載波集合中的一個子載波上傳送的。The method of any one of clauses 1 to 2, wherein the first OFDM symbol is transmitted on a subcarrier in a first set of subcarriers, and wherein the second OFDM symbol Is transmitted on one subcarrier in a second set of subcarriers. 如申請專利範圍第3項所述的方法,其中該第一子載波集合映射到一可用頻道的一中心子帶,以及其中該第二子載波集合與該第一子載波集合正交。The method of claim 3, wherein the first set of subcarriers is mapped to a central subband of an available channel, and wherein the second set of subcarriers is orthogonal to the first set of subcarriers. 如申請專利範圍第1項至第4項中任一項所述的方法,其中同時傳送該第一和第二OFDM符號包括: 在一公共符號時段期間傳送該第一OFDM符號以及該第二OFDM符號。The method of any of claims 1 to 4, wherein simultaneously transmitting the first and second OFDM symbols comprises: transmitting the first OFDM symbol and the second OFDM during a common symbol period symbol. 如申請專利範圍第1項至第5項中任一項所述的方法,其中產生一第一OFDM符號包括: 產生包括該多種類型的同步資訊中的一第一種同步資訊的一第一符號;以及 執行該多種類型的同步資訊中的一第二種同步資訊插入該第一符號的時域插入。The method of any one of claims 1 to 5, wherein generating a first OFDM symbol comprises: generating a first symbol including a first one of the plurality of types of synchronization information And performing a time domain insertion of the first symbol by performing a second synchronization information of the plurality of types of synchronization information. 如申請專利範圍第6項所述的方法,其中該第一符號包括一尾部,以及其中執行時域插入包括:執行將該多種類型的同步資訊中的該第二種同步資訊插入該第一符號的該尾部的時域插入。The method of claim 6, wherein the first symbol comprises a tail, and wherein performing the time domain insertion comprises: performing the inserting the second synchronization information of the plurality of types of synchronization information into the first symbol The time domain of the tail is inserted. 如申請專利範圍第7項所述的方法,其中產生一第一符號包括在該第一符號的該尾部與非尾部之間分配該第一符號的一持續時間。The method of claim 7, wherein generating a first symbol comprises assigning a duration of the first symbol between the tail and the non-tail of the first symbol. 如申請專利範圍第6項至第7項中任一項所述的方法,其中該多種同步資訊中的該第二種同步資訊僅僅在該第一符號的該尾部中被運載。The method of any one of clauses 6 to 7, wherein the second synchronization information of the plurality of synchronization information is carried only in the tail of the first symbol. 如申請專利範圍第6項至第9項中任一項所述的方法,其中該多種同步資訊中的該第二種同步資訊包括一符號時序同步資訊和一時槽時序同步資訊中的任一個。The method of any one of claims 6 to 9, wherein the second synchronization information of the plurality of synchronization information comprises any one of symbol timing synchronization information and one-time slot timing synchronization information. 如申請專利範圍第6項至第10項中任一項所述的方法,其中該多種類型的同步資訊中的該第一種同步資訊包括下列中的任一個:用於識別一胞元識別碼(ID)的一序列以及一實體廣播頻道(PBCH)。The method of any one of claims 6 to 10, wherein the first type of synchronization information of the plurality of types of synchronization information comprises any one of the following: for identifying a cell identifier A sequence of (ID) and a physical broadcast channel (PBCH). 如申請專利範圍第6項至第11項中任一項所述的方法,其中該第一符號包括一個或多個非尾部,以及其中該多種類型的同步資訊中的該第一種同步資訊僅僅在該第一符號的該一個或多個非尾部中被運載。The method of any one of clauses 6 to 11, wherein the first symbol comprises one or more non-tails, and wherein the first type of synchronization information of the plurality of types of synchronization information is only Being carried in the one or more non-tails of the first symbol. 如申請專利範圍第6項至第12項中任一項所述的方法,其中產生一第二OFDM符號包括: 產生包括了資料以及一控制資訊中的任一個的一第二符號;以及 執行將該多種類型的同步資訊中的該第二種同步資訊插入該第二符號的時域插入。The method of any one of claims 6 to 12, wherein generating a second OFDM symbol comprises: generating a second symbol including any one of data and a control information; and executing The second type of synchronization information in the plurality of types of synchronization information is inserted into the time domain insertion of the second symbol. 一種傳輸器,包括: 一第一波形產生器,被配置為產生包括了多種類型的同步資訊的一第一正交分頻多工(OFDM)符號; 一第二波形產生器,產生包括一資料的一第二OFDM符號;以及 一處理器以及多個相位天線陣列元件,被配置為分別在一第一傳輸波束以及一第二傳輸波束上同時傳送該第一OFDM符號以及該第二OFDM符號,其中該第一傳輸波束具有一寬波束寬度,以及其中該第二傳輸波束具有一窄波束寬度。A transmitter includes: a first waveform generator configured to generate a first orthogonal frequency division multiplexing (OFDM) symbol including a plurality of types of synchronization information; and a second waveform generator to generate a data a second OFDM symbol; and a processor and a plurality of phase antenna array elements configured to simultaneously transmit the first OFDM symbol and the second OFDM symbol on a first transmission beam and a second transmission beam, respectively Wherein the first transmission beam has a wide beamwidth, and wherein the second transmission beam has a narrow beamwidth. 如申請專利範圍第14項所述的傳輸器,其中該處理器和該多個相位天線陣列元件被配置為: 在一公共符號時段中傳送該第一OFDM符號以及該第二OFDM符號。The transmitter of claim 14, wherein the processor and the plurality of phase antenna array elements are configured to: transmit the first OFDM symbol and the second OFDM symbol in a common symbol period. 如申請專利範圍第14項至第15項中任一項所述的傳輸器,其中: 該第一波形產生器被配置為: 產生包括了多種類型的同步資訊中的一第一種同步資訊的一第一符號;以及 執行將該多種類型的同步資訊中的一第二種同步資訊插入該第一符號的時域插入; 該第二波形產生器被配置為: 產生包括了一資料以及一控制資訊中的任一個的一第二符號;以及 執行將該多種類型的同步資訊中的該第二種同步資訊插入該第二符號的時域插入。The transmitter of any one of clauses 14 to 15, wherein: the first waveform generator is configured to: generate a first type of synchronization information including a plurality of types of synchronization information a first symbol; and performing a time domain insertion of inserting a second type of synchronization information of the plurality of types of synchronization information into the first symbol; the second waveform generator is configured to: generate a data and a control a second symbol of any one of the information; and performing a time domain insertion of inserting the second type of synchronization information of the plurality of types of synchronization information into the second symbol. 如申請專利範圍第14項至第16項中任一項所述的傳輸器,其中該多種類型的同步資訊中的該第一種同步資訊包括下列中的任一個:用於識別一胞元識別碼(ID)的一序列以及一實體廣播頻道(PBCH),以及其中該多種同步資訊中的該第二種同步資訊包括下列中的任一個:一符號時序同步資訊以及一時槽時序同步資訊。The transmitter of any one of clauses 14 to 16, wherein the first type of synchronization information of the plurality of types of synchronization information comprises any one of the following: for identifying a cell identification A sequence of code (ID) and a physical broadcast channel (PBCH), and wherein the second synchronization information of the plurality of synchronization information comprises any one of the following: a symbol timing synchronization information and a time slot timing synchronization information. 一種在一傳輸器中實施用於支援通信的方法,該方法包括: 使用(i)一第一基於正交分頻多工(OFDM)的波形產生器以及(ii)作為該產生器的一輸入的多種類型的同步資訊中的一第一種同步資訊和零值,產生具有一零尾的一第一符號; 執行將該多種類型的同步資訊中的一第二種同步資訊插入該第一符號的該零尾的時域插入; 將該第一符號映射到一第一子載波集合; 將所映射的第一符號轉換為一第一OFDM符號; 使用(i)一第二基於OFDM的波形產生器以及(ii)作為該產生器的輸入的一使用者資料和零值,產生具有一零尾的一第二符號; 將該第二符號映射到一第二子載波集合; 將所映射的第二符號轉換為一第二OFDM符號; 分別在一第一傳輸波束以及一第二傳輸波束上同時傳送該第一OFDM符號以及該第二OFDM符號,其中該第一傳輸波束具有一寬波束寬度,以及其中該第二傳輸波束具有一窄波束寬度。A method implemented in a transmitter for supporting communication, the method comprising: using (i) a first orthogonal frequency division multiplexing (OFDM) based waveform generator and (ii) an input as the generator a first type of synchronization information and zero value of the plurality of types of synchronization information, generating a first symbol having a zero tail; performing a second synchronization information of the plurality of types of synchronization information to insert the first symbol The zero-tailed time domain insertion; mapping the first symbol to a first set of subcarriers; converting the mapped first symbol to a first OFDM symbol; using (i) a second OFDM-based waveform generation And (ii) a user profile and a zero value as input to the generator, generating a second symbol having a zero tail; mapping the second symbol to a second set of subcarriers; Converting the two symbols into a second OFDM symbol; simultaneously transmitting the first OFDM symbol and the second OFDM symbol on a first transmission beam and a second transmission beam, wherein the first transmission beam has a wide beam width And wherein the second transmission beam having a narrow beam width. 如申請專利範圍第18項所述的方法,其中該第一傳輸波束以及該第二傳輸波束在一空間域中重疊。The method of claim 18, wherein the first transmission beam and the second transmission beam overlap in a spatial domain. 如申請專利範圍第18項至第19項中任一項所述的方法,其中該第一OFDM符號是在該第一子載波集合中的一個子載波上傳送的,以及其中該第二OFDM符號是在一第二子載波集合中的一個子載波上傳送的。The method of any one of clauses 18 to 19, wherein the first OFDM symbol is transmitted on one of the first subcarrier sets, and wherein the second OFDM symbol Is transmitted on one subcarrier in a second set of subcarriers. 如申請專利範圍第20項所述的方法,其中該第一子載波集合映射到一可用頻道的一中心子帶,以及其中該第二子載波集合與該第一子載波集合正交。The method of claim 20, wherein the first set of subcarriers is mapped to a central subband of an available channel, and wherein the second set of subcarriers is orthogonal to the first set of subcarriers. 如申請專利範圍第18項至第21項中任一項所述的方法,其中同時傳送該第一OFDM符號以及該第二OFDM符號包括: 在一公共符號時段中傳送該第一OFDM符號以及該第二OFDM符號。The method of any one of clauses 18 to 21, wherein simultaneously transmitting the first OFDM symbol and the second OFDM symbol comprises: transmitting the first OFDM symbol in a common symbol period and the Second OFDM symbol. 如申請專利範圍第18項至第22項中任一項所述的方法,其中產生一第一符號包括在該第一符號的該尾部與非尾部之間分配該第一符號的一持續時間。The method of any one of clauses 18 to 22, wherein generating a first symbol comprises assigning a duration of the first symbol between the tail and the non-tail of the first symbol. 如申請專利範圍第18項至第23項中任一項所述的方法,更包括: 執行將該多種類型的同步資訊中的該第二種同步資訊插入該第二符號的該零尾的時域插入。The method of any one of claims 18 to 23, further comprising: performing the insertion of the second synchronization information of the plurality of types of synchronization information into the zero tail of the second symbol The domain is inserted. 如申請專利範圍第18項至第24項中任一項所述的方法,其中該多種同步資訊中的第二種同步資訊包括下列中的任一個:一符號時序同步資訊以及一時槽時序同步資訊。The method of any one of claims 18 to 24, wherein the second synchronization information of the plurality of synchronization information comprises any one of the following: a symbol timing synchronization information and a time slot timing synchronization information . 如申請專利範圍第18項至第25項中任一項所述的方法,其中該多種類型的同步資訊中的該第一種同步資訊包括下列中的任一個:用於一識別胞元識別碼(ID)的一序列以及一實體廣播頻道(PBCH)。The method of any one of claims 18 to 25, wherein the first type of synchronization information of the plurality of types of synchronization information comprises any one of the following: for identifying a cell identifier A sequence of (ID) and a physical broadcast channel (PBCH). 一種傳輸器,包括: 一第一基於正交分頻多工(OFDM)的波形產生器,其被配置為: 使用多種類型的同步資訊中的一第一種同步資訊和零值作為輸入來產生具有一零尾的一第一符號; 執行將該多種類型的同步資訊中的一第二種同步資訊插入該第一符號的該零尾的時域插入; 將該第一符號映射到一第一子載波集合;以及 將所映射的第一符號轉換為一第一OFDM符號; 一第二基於OFDM的波形產生器,其被配置為: 使用一使用者資料和零值作為輸入來產生具有一零尾的一第二符號; 將該第二符號映射到一第二子載波集合; 將所映射的第二符號轉換為一第二OFDM符號;以及 一處理器和多個相位天線陣列的元件,其被配置為分別在一第一傳輸波束以及一第二傳輸波束上同時傳送該第一OFDM符號以及該第二OFDM符號,其中該第一傳輸波束具有一寬波束寬度,以及其中該第二傳輸波束具有一窄波束寬度。A transmitter comprising: a first orthogonal frequency division multiplexing (OFDM) based waveform generator configured to: generate a first one of a plurality of types of synchronization information and zero values as inputs a first symbol having a zero tail; performing a time domain insertion of inserting a second synchronization information of the plurality of types of synchronization information into the zero tail of the first symbol; mapping the first symbol to a first a set of subcarriers; and converting the mapped first symbol to a first OFDM symbol; a second OFDM-based waveform generator configured to: generate a zero with a user data and a zero value as input a second symbol of the tail; mapping the second symbol to a second set of subcarriers; converting the mapped second symbol to a second OFDM symbol; and an element of the processor and the plurality of phase antenna arrays Configuring to simultaneously transmit the first OFDM symbol and the second OFDM symbol on a first transmit beam and a second transmit beam, respectively, wherein the first transmit beam has a wide beamwidth, and The second transmission beam has a narrow beamwidth. 如申請專利範圍第27項所述的傳輸器,其中該處理器和該多個相位天線陣列元件被配置為: 在一公共符號時段中傳送該第一OFDM符號以及該第二OFDM符號。The transmitter of claim 27, wherein the processor and the plurality of phase antenna array elements are configured to: transmit the first OFDM symbol and the second OFDM symbol in a common symbol period.
TW105140026A 2015-12-04 2016-12-02 Methods, apparatuses and systems directed to initial synchronization and/or initial acquisition for highly directional systems TW201731251A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562263592P 2015-12-04 2015-12-04

Publications (1)

Publication Number Publication Date
TW201731251A true TW201731251A (en) 2017-09-01

Family

ID=57589218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105140026A TW201731251A (en) 2015-12-04 2016-12-02 Methods, apparatuses and systems directed to initial synchronization and/or initial acquisition for highly directional systems

Country Status (2)

Country Link
TW (1) TW201731251A (en)
WO (1) WO2017096121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772513B (en) * 2017-09-11 2022-08-01 美商高通公司 Pbch scrambling design

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10645660B2 (en) * 2017-06-09 2020-05-05 Qualcomm Incorporated Signaling of synchronization block patterns
US10925091B2 (en) 2017-08-16 2021-02-16 Qualcomm Incorporated Listen-before-talk (LBT) with new radio-spectrum sharing (NR-SS) discovery signal transmission
WO2019100374A1 (en) * 2017-11-27 2019-05-31 华为技术有限公司 Synchronization method and apparatus
US11863259B2 (en) 2021-10-22 2024-01-02 Lenovo (Singapore) Pte. Ltd. Determining a precoder for wireless communications
US11616611B1 (en) 2021-10-22 2023-03-28 Lenovo (Singapore) Pte. Ltd. Precoding wireless communications
US11962448B2 (en) * 2022-01-11 2024-04-16 Qualcomm Incorporated Techniques for improving waveform reliability in wireless communications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512008B2 (en) * 2014-01-17 2019-12-17 Idac Holdings, Inc. 3GPP MMW access link system architecture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772513B (en) * 2017-09-11 2022-08-01 美商高通公司 Pbch scrambling design

Also Published As

Publication number Publication date
WO2017096121A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
TWI767306B (en) Downlink control channel design and signaling for beamformed systems
CN113630167B (en) Method and apparatus for beam steering within a beamforming system
TWI674015B (en) Broadcast channel transmission and demodulation
CN109155659B (en) System and method for beamformed uplink transmission
CN107211451B (en) Initial access in high frequency wireless systems
JP6746698B2 (en) Use of both cyclic prefix and zero tail in DFT-SPREAD-OFDM
US20220109996A1 (en) Secure communication link establishment for a ue-to-ue relay
TW201731251A (en) Methods, apparatuses and systems directed to initial synchronization and/or initial acquisition for highly directional systems
JP6243066B2 (en) Method and apparatus for connection point discovery and association in directional wireless networks
TW201906466A (en) Flexible srs-based uplink beam management
TW201922026A (en) System and method for selecting resources to transmit a beam failure recovery request
JP2021503224A (en) Phase tracking reference signal transmission
JP2020509651A (en) Uplink beam management
CN111052625A (en) Downlink synchronization
TWI805568B (en) Wireless transmit/receive unit (wtru) and method associated with wireless communications
TWI739912B (en) Nr synchronization in beamformed systems
BR112019013179A2 (en) terminal apparatus, base station apparatus and communication method
US20230171009A1 (en) Over-the-air (ota) channel equalization in millimeter wave testing
WO2021087790A1 (en) Over-the-air (ota) channel equalization in millimeter wave testing
WO2023129674A2 (en) Dynamic multi-carrier uplink operations
WO2023129719A1 (en) Uplink transmission-channels switching capability