TW201729832A - Immune modulation and treatment of solid tumors with antibodies that specifically bind CD38 - Google Patents

Immune modulation and treatment of solid tumors with antibodies that specifically bind CD38 Download PDF

Info

Publication number
TW201729832A
TW201729832A TW105134914A TW105134914A TW201729832A TW 201729832 A TW201729832 A TW 201729832A TW 105134914 A TW105134914 A TW 105134914A TW 105134914 A TW105134914 A TW 105134914A TW 201729832 A TW201729832 A TW 201729832A
Authority
TW
Taiwan
Prior art keywords
seq
antibody
cells
specifically binds
cell
Prior art date
Application number
TW105134914A
Other languages
Chinese (zh)
Other versions
TWI742008B (en
Inventor
塔翰唐 阿瑪迪
堤內克 卡司內夫
漢克 諾克豪斯特
圖那 木堤斯
艾咪 薩瑟
拉魯卡 維羅納
Original Assignee
健生生物科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/191,808 external-priority patent/US20160376373A1/en
Application filed by 健生生物科技公司 filed Critical 健生生物科技公司
Publication of TW201729832A publication Critical patent/TW201729832A/en
Application granted granted Critical
Publication of TWI742008B publication Critical patent/TWI742008B/en

Links

Abstract

The present invention relates to methods of immunomodulation and treating patients having solid tumors with antibodies that specifically bind CD38.

Description

使用特異性結合CD38之抗體免疫調節及治療固態腫瘤 Immunomodulation and treatment of solid tumors using antibodies that specifically bind to CD38 【相關申請案之交互參照】[Reciprocal Reference of Related Applications]

本申請案主張2016年6月24日申請之美國申請案第15/191808號、2016年6月24日申請之國際申請案第US16/39165號、2016年5月4日申請之美國臨時申請案第62/331,489號、2015年12月4日申請之美國臨時申請案第62/263,307號、及2015年11月4日申請之美國臨時申請案第62/250,566號、以及2015年11月2日申請之美國臨時申請案第62/249,546號之權益,其全部內容以引用的方式併入本文中。 The present application claims US Application No. 15/191808, filed on Jun. 24, 2016, and International Application No. US/J. U.S. Provisional Application No. 62/263,307, filed on December 4, 2015, and U.S. Provisional Application No. 62/250,566, filed on November 4, 2015, and November 2, 2015 The benefit of U.S. Provisional Application Serial No. 62/249,546, the entire contents of which is incorporated herein by reference.

本發明係關於用特異性結合CD38之抗體免疫調節及治療固態腫瘤之方法。 The present invention relates to a method for immunomodulating and treating solid tumors with antibodies that specifically bind to CD38.

免疫系統係受共刺激及共抑制配位體及受體之網路嚴密控制。這些分子為T細胞活化提供二級訊號,且提供正訊號及負訊號之平衡網路,以最大化針對感染及腫瘤之免疫反應,同時限制對自身的免疫性(Wang等人,(Epub Mar.7,2011)J Exp Med 208(3):577-92;Lepenies等人,(2008)Endocr Metab Immune Disord Drug Targets 8:279-288)。 The immune system is tightly controlled by the network of co-stimulation and co-suppression of ligands and receptors. These molecules provide a secondary signal for T cell activation and provide a balanced network of positive and negative signals to maximize immune responses to infections and tumors while limiting immunity to themselves (Wang et al., (Epub Mar.). 7, 2011) J Exp Med 208(3): 577-92; Lepenies et al. (2008) Endocr Metab Immune Disord Drug Targets 8: 279-288 ).

治療固態腫瘤之免疫檢查點療法(其靶向T細胞中之共抑制途徑以促進抗瘤免疫反應)在核准抗CTLA-4及抗PD-1抗體 YERVOY®(伊匹單抗(ipilimumab))、KEYTRUDA®(派立珠單抗(pembrolizumab))、及OPDIVO®(尼沃魯單抗(nivolumab))之情況下導致了癌症病患之臨床照護的進步。儘管抗PD-1/PD-L1抗體展示了促進患有多種固態腫瘤之病患之臨床反應,但是反應率仍然相當低,其在經預治療的病患中係15%至20%(Swaika等人,(2015)Mol Immunol doi:10.1016/j.molimm.2015.02.009)。 Immunological checkpoint therapy for solid tumors, which targets the co-suppressor pathway in T cells to promote anti-tumor immune response, is approved for anti-CTLA-4 and anti-PD-1 antibody YERVOY ® (ipilimumab), The case of KEYTRUDA ® (pembrolizumab) and OPDIVO ® (nivolumab) has led to advances in clinical care for cancer patients. Although the anti-PD-1/PD-L1 antibody demonstrates a clinical response that promotes patients with multiple solid tumors, the response rate is still quite low, ranging from 15% to 20% in pre-treated patients (Swaika et al. Person, (2015) Mol Immunol doi: 10.1016/j.molimm.2015.02.009).

儘管自然殺手細胞(NK)、樹突細胞(DC)、及效應T細胞能夠驅動強力的抗瘤反應,但腫瘤細胞時常誘導免疫抑制性微環境,其有利於免疫抑制性免疫細胞群之發展,諸如骨髓衍生抑制細胞(MDSC)、調節T細胞(Treg)、或調節B細胞(Breg),其等導致癌症病患及實驗腫瘤模型中之腫瘤免疫耐受性及免疫療法方案之失敗。 Although natural killer cells (NK), dendritic cells (DC), and effector T cells can drive potent anti-tumor responses, tumor cells often induce an immunosuppressive microenvironment that favors the development of immunosuppressive immune cell populations. For example, bone marrow-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or regulatory B cells (Breg), which cause tumor immunotolerance and immunotherapy regimens in cancer patients and experimental tumor models.

因此,仍需要發展新的癌症免疫療法,其等誘導針對腫瘤之適應性免疫反應或靶向免疫抑制性免疫細胞。 Therefore, there is still a need to develop new cancer immunotherapies that induce adaptive immune responses against tumors or target immunosuppressive immune cells.

本發明提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體。 The present invention provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38.

本發明亦提供一種用於治療患有調節T細胞(Treg)媒介之疾病的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體。 The invention also provides a method for treating a disease having a regulatory T cell (Treg) vector comprising administering to a patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38.

本發明亦提供一種用於治療患有骨髓衍生抑制細胞(MDSC)媒介之疾病的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體。 The invention also provides a method for treating a disease having a bone marrow-derived suppressor cell (MDSC) vector comprising administering to a patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38.

本發明亦提供一種用於治療患有調節B細胞(Breg)媒介之疾病的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體。 The invention also provides a method for treating a disease having a regulatory B cell (Breg) vector comprising administering to a patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38.

本發明亦提供一種抑制調節T細胞(Treg)之活性的方法,其包含使該Treg接觸特異性結合CD38之抗體。 The invention also provides a method of inhibiting the activity of a regulatory T cell (Treg) comprising contacting the Treg with an antibody that specifically binds to CD38.

本發明亦提供一種抑制骨髓衍生抑制細胞(MDSC)之活性的方法,其包含使該MDSC接觸特異性結合CD38之抗體。 The invention also provides a method of inhibiting the activity of a bone marrow-derived suppressor cell (MDSC) comprising contacting the MDSC with an antibody that specifically binds to CD38.

本發明亦提供一種抑制調節B細胞(Breg)之活性的方法,其包含使該Breg接觸特異性結合CD38之抗體。 The invention also provides a method of inhibiting the activity of a regulatory B cell (Breg) comprising contacting the Breg with an antibody that specifically binds to CD38.

本發明亦提供一種增強病患之免疫反應的方法,其包含向該病患投予特異性結合CD38之抗體。 The invention also provides a method of enhancing an immune response in a patient comprising administering to the patient an antibody that specifically binds to CD38.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含藉由向該病患投予特異性結合CD38之抗體來減少該病患中Treg細胞之數目。 The invention also provides a method of treating a patient having a solid tumor comprising reducing the number of Treg cells in the patient by administering to the patient an antibody that specifically binds to CD38.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含藉由向該病患投予特異性結合CD38之抗體來減少該病患中骨髓衍生抑制細胞(MDSC)之數目。 The present invention also provides a method of treating a patient having a solid tumor comprising reducing the number of bone marrow-derived suppressor cells (MDSCs) in the patient by administering to the patient an antibody that specifically binds to CD38.

本發明亦提供一種抑制免疫抑制細胞之活性的方法,其包含使該免疫抑制細胞接觸特異性結合CD38之抗體。 The present invention also provides a method of inhibiting the activity of an immunosuppressive cell comprising contacting the immunosuppressive cell with an antibody that specifically binds to CD38.

本發明亦提供一種治療患有病毒感染之病患的方法,其包含向有彼之需要之該病患投予特異性結合CD38之抗體。 The invention also provides a method of treating a patient suffering from a viral infection comprising administering to a patient in need thereof an antibody that specifically binds to CD38.

圖1顯示,病患中淋巴球數目之中位數係對以8mg/kg(上方線)或16mg/kg(下方線)劑量的DARZALEXTM(達拉單抗)治療反應隨時間推移而增加,並在治療結束後淋巴球數目返回至基期。研究:SIRIUS。X軸指示時間,其係以治療週期及在各治療週期內之給藥天數表示(C1D1:第1週期第1天;C1D4:第1週期第4天等等)。SCR:基期;EOT:治療結束;WK:週;POST-WK:在治療後之指定週數;post-PD FU:進展後之追蹤(follow-up)。以灰色陰影強調的範圍指示反應者之各訪視之數據點的四分位數間距(IQR)係25至27%。 Figure 1 shows that the median number of lymphocytes in patients increased the response to DARZALEXTM (dalacil ) at 8 mg/kg (upper line) or 16 mg/kg (lower line) over time. And the number of lymphocytes returned to the base period after the end of treatment. Research: SIRIUS. The X-axis indicates time, which is expressed in terms of the treatment period and the number of days of administration in each treatment cycle (C1D1: Day 1 of the first cycle; C1D4: Day 4 of the first cycle, etc.). SCR: base period; EOT: end of treatment; WK: week; POST-WK: designated weeks after treatment; post-PD FU: follow-up after progression. The range highlighted by the shades of gray indicates that the interquartile range (IQR) of the data points of each visitor's visit is 25 to 27%.

圖2顯示針對各個別病患(淺灰色線)經DARZALEXTM(達拉單抗)治療的病患之周邊血液中CD3+ T細胞之絕對計數自基期的變 化百分比(%)。研究:SIRIUS(MMY2002)。X軸指示時間,其係以治療週期及在各治療週期內之給藥天數表示(C1D1:第1週期第1天;C1D4:第1週期第4天等等)。WK:週;POST-WK:在治療後之指定週數;POST-PD FU:進展後之追蹤。黑色線顯示所有病患之中位數變化%。 Figure 2 shows the percentage change (%) from the base period of absolute counts of CD3 + T cells in peripheral blood of patients treated with DARZALEX (TM) (darlazumab ) for each individual patient (light gray line). Research: SIRIUS (MMY 2002). The X-axis indicates time, which is expressed in terms of the treatment period and the number of days of administration in each treatment cycle (C1D1: Day 1 of the first cycle; C1D4: Day 4 of the first cycle, etc.). WK: Week; POST-WK: designated weeks after treatment; POST-PD FU: Tracking after progression. The black line shows the % change in the median of all patients.

圖3顯示針對各個別病患(淺灰色線)經DARZALEXTM(達拉單抗)治療的病患之周邊血液中CD4+ T細胞之絕對計數自基期的變化百分比(%)。研究:SIRIUS。X軸指示時間,其係以治療週期及在各治療週期內之給藥天數表示(C1D1:第1週期第1天;C1D4:第1週期第4天等等)。WK:週;POST-TMT:治療後。黑色線顯示所有病患之中位數變化%。 Figure 3 shows the percentage change (%) of absolute counts of CD4 + T cells from peripheral blood in peripheral blood of patients treated with DARZALEX (TM) (darlazumab ) for each individual patient (light gray line). Research: SIRIUS. The X-axis indicates time, which is expressed in terms of the treatment period and the number of days of administration in each treatment cycle (C1D1: Day 1 of the first cycle; C1D4: Day 4 of the first cycle, etc.). WK: Week; POST-TMT: After treatment. The black line shows the % change in the median of all patients.

圖4顯示針對各個別病患(淺灰色線)經DARZALEXTM(達拉單抗)治療的病患之周邊血液中CD8+ T細胞之絕對計數自基期的變化百分比(%)。研究:SIRIUS。X軸指示時間,其係以治療週期及在各治療週期內之給藥天數表示(C1D1:第1週期,第1天;C1D4:第1週期第4天等等)。WK:週;Pre-PD FU:進展前之追蹤;Post-PD FU:進展後之追蹤。黑色線顯示所有病患之中位數變化%。 Figure 4 shows the percentage change (%) of absolute counts of CD8 + T cells from the peripheral phase of peripheral blood of patients treated with DARZALEX (TM) (darlazumab ) for each individual patient (light gray line). Research: SIRIUS. The X-axis indicates time, which is expressed in terms of the treatment period and the number of days of administration in each treatment cycle (C1D1: first cycle, day 1; C1D4: day 4 of the first cycle, etc.). WK: Week; Pre-PD FU: Tracking before progress; Post-PD FU: Tracking after progress. The black line shows the % change in the median of all patients.

圖5顯示骨髓抽出物中CD45+CD3+細胞之數目(測量為淋巴球之百分比)在以劑量8mg/kg或16mg/kg的DARZALEXTM(達拉單抗)治療期間隨時間推移而增加。該圖表包括如所指示的反應者及無反應者。研究:SIRIUS。X軸指示時間,其係以治療週期及在各治療週期內之給藥天數表示(C2D22:第2週期第22天;等等)。SCR:基期;Post-PD FU1:進展後之追蹤。以灰色陰影強調的範圍指示針對以8mg/kg給藥的無反應者、以16mg/kg給藥的反應者、或以16mg/kg給藥的無反應者,各訪視之數據點的四分位數間距(IQR)分別係25至27%。NR:無反應者;R:反應者。 Figure 5 shows that the number of CD45 + CD3 + cells in bone marrow extracts (measured as a percentage of lymphocytes) increased over time during treatment with DARZALEX (TM) (dalabizumab) at a dose of 8 mg/kg or 16 mg/kg. The chart includes responders and non-responders as indicated. Research: SIRIUS. The X-axis indicates time, expressed as the treatment cycle and the number of days of dosing in each treatment cycle (C2D22: Day 22, Day 22; etc.). SCR: Base period; Post-PD FU1: Tracking after progress. The range highlighted by shades of gray indicates four points for data points for each visit to non-responders administered at 8 mg/kg, responders administered at 16 mg/kg, or non-responders administered at 16 mg/kg. The number of bits (IQR) is 25 to 27%, respectively. NR: no responder; R: responder.

圖6顯示骨髓抽出物中CD45+CD3+ CD8+細胞之數目(呈淋巴球之百分比測量)在以劑量8mg/kg或16mg/kg的DARZALEXTM (達拉單抗)治療期間隨時間推移而增加。該圖表包括如所指示的反應者及無反應者。研究:SIRIUS。X軸指示時間,其係以治療週期及在各治療週期內之給藥天數表示(C2D22:第2週期第22天等等)。SCR:基期;Post-PD FU1:進展後之追蹤。以灰色陰影強調的範圍指示針對以8mg/kg給藥的無反應者、以16mg/kg給藥的反應者、或以16mg/kg給藥的無反應者,各訪視之數據點的四分位數間距(IQR)分別係25至27%。NR:無反應者;R:反應者。 Figure 6 shows that the number of CD45 + CD3 + CD8 + cells (measured as a percentage of lymphocytes) in bone marrow aspirate increased over time during treatment with DARZALEX TM (dalacil) at a dose of 8 mg/kg or 16 mg/kg. . The chart includes responders and non-responders as indicated. Research: SIRIUS. The X-axis indicates time, expressed as the treatment cycle and the number of days of dosing in each treatment cycle (C2D22: Day 22, Day 22, etc.). SCR: Base period; Post-PD FU1: Tracking after progress. The range highlighted by shades of gray indicates four points for data points for each visit to non-responders administered at 8 mg/kg, responders administered at 16 mg/kg, or non-responders administered at 16 mg/kg. The number of bits (IQR) is 25 to 27%, respectively. NR: no responder; R: responder.

圖7A顯示在DARZALEXTM(達拉單抗)治療期間,以所有治療病患之中位數值所表示的周邊血液中CD8+/Treg及CD8+/CD4+細胞之比率增加。時間點:C1D1:第1週期第1天;C3D1:第3週期第1天;C4D1:第4週期第1天。研究:SIRIUS。SRC:基期。 Figure 7A shows an increase in the ratio of CD8 + /Treg and CD8 + /CD4 + cells in peripheral blood as indicated by the median value of all treated patients during DARZALEX (TM) (duracil) treatment. Time point: C1D1: Day 1 of the first cycle; C3D1: Day 1 of the 3rd cycle; C4D1: Day 1 of the 4th cycle. Research: SIRIUS. SRC: Base period.

圖7B顯示在DARZALEXTM(達拉單抗)治療期間,以所有經治療病患之中位數值所表示的骨髓抽出物中CD8+/Treg細胞之比率隨時間推移而增加。時間點:C1D1:第1週期第1天;C3D1:第3週期第1天;C4D1:第4週期第1天。研究:SIRIUS。 Figure 7B shows that the ratio of CD8 + /Treg cells in bone marrow aspirate expressed as a median value for all treated patients increased over time during DARZALEX (TM) (darabizumab) treatment. Time point: C1D1: Day 1 of the first cycle; C3D1: Day 1 of the 3rd cycle; C4D1: Day 1 of the 4th cycle. Research: SIRIUS.

圖8A顯示當相較於無反應者時,反應者之CD8+ T細胞純系性增加,如使用特定純系細胞之豐度變化(CIA)%所測量。研究:GEN501 17病患子集。 Figure 8A shows that the responder's CD8 + T cells are purely increased when compared to non-responders, as measured by % abundance change (CIA) of specific pure lineage cells. Study: GEN501 17 subset of patients.

圖8B顯示DARZALEXTM(達拉單抗)治療之前之於之後,個別病患中CD8+ T細胞純系性之倍數變化。反應者係經星號指示。純系性係測量為特定純系細胞之豐度變化(CIA)倍數。研究:GEN501 17病患子集。 Figure 8B shows the fold change in CD8 + T cell pureness in individual patients after DARZALEX (TM) (dalabizumab) treatment. Responders are indicated by an asterisk. The pure lineage is measured as a multiple of the abundance change (CIA) of a particular lineage of cells. Study: GEN501 17 subset of patients.

圖8C顯示當相較於無反應者(B組)時,反應者(A組)在TCR貯庫中總擴增較大,其係使用CIA(豐度變化)測量。P=0.037。研究:GEN501 17病患子集。 Figure 8C shows that when compared to non-responders (Group B), the responders (Group A) had a larger total amplification in the TCR depot, which was measured using CIA (abundance change). P=0.037. Study: GEN501 17 subset of patients.

圖8D顯示反應者及無反應者中各擴增T細胞殖株之絕對豐度變化(CIA)之和。反應者(A組)與無反應者(B組)之間的P=0.035。研究:GEN501 17病患子集。 Figure 8D shows the sum of absolute abundance changes (CIA) of each expanded T cell colony in the responder and non-responder. P = 0.035 between the responder (group A) and the non-responder (group B). Study: GEN501 17 subset of patients.

圖8E顯示反應者(A組)及無反應者(B組)中之單個細胞殖株的最大CIA。研究:GEN501 17病患子集。 Figure 8E shows the maximum CIA for individual cell lines in the responders (Group A) and non-responders (Group B). Study: GEN501 17 subset of patients.

圖8F顯示當相較於無反應者(B組)時,反應者(A組)之單一殖株之最大擴增較大,其係使用最大CIA%測量。P=0.0477。研究:GEN501 17病患子集。 Figure 8F shows that the maximum amplification of a single colony of responders (Group A) was greater when compared to non-responders (Group B), which was measured using the maximum CIA%. P = 0.0477. Study: GEN501 17 subset of patients.

圖9A顯示在基期、或在治療2週、4週、或8週、或復發後,無反應者(NR,黑色方形)及對DARZALEXTM(達拉單抗)具有至少最小反應之病患(MR,白色方形)的周邊血液中之CD8+初始細胞(nave cell)的百分比(%)。研究:GEN501 17病患子集。**p=1.82×10-4 Figure 9A shows non-responders (NR, black squares) and patients with at least minimal response to DARZALEX (TM) (dalabizumab ) at the base period, or after 2 weeks, 4 weeks, or 8 weeks of treatment, or after relapse ( MR8, white square) peripheral blood CD8 + initial cells (na The percentage (%) of ve cell). Study: GEN501 17 subset of patients. **p=1.82×10 -4 .

圖9B顯示在基期、或在治療2週、4週、或8週、或復發後,無反應者(NR,黑色方形)及對DARZALEXTM(達拉單抗)具有至少最小反應之病患(MR,白色方形)的周邊血液中之CD8+中央記憶細胞(Tem)之百分比。研究:GEN501 17病患子集。*p=4.88×10-2 Figure 9B shows non-responders (NR, black squares) and patients with at least minimal response to DARZALEX (TM) (darazumab ) at the base period, or after 2 weeks, 4 weeks, or 8 weeks of treatment, or after relapse ( MR, white square) Percentage of CD8 + central memory cells (Tem) in peripheral blood. Study: GEN501 17 subset of patients. *p=4.88×10 -2 .

圖9C顯示在基期、或在治療第1、4、或8週、或復發後,周邊血液中HLA I類限制性CD8+ T細胞之增加百分比。研究:GEN501 17病患子集。 Figure 9C shows the percent increase in HLA class I-restricted CD8 + T cells in peripheral blood at the base period, or at 1, 4, or 8 weeks of treatment, or after relapse. Study: GEN501 17 subset of patients.

圖9D顯示在基期或治療中,CD38在周邊血液之CD8+初始T細胞及CD8+中央記憶細胞(Tem)中以低水平表現。研究:GEN501 17病患子集。MFI:平均螢光強度。 Figure 9D shows that CD38 is expressed at low levels in peripheral blood CD8 + naive T cells and CD8 + central memory cells (Tem) during the base phase or treatment. Study: GEN501 17 subset of patients. MFI: Average fluorescence intensity.

圖10A顯示FACS分析之分佈圖,其顯示在基期,多發性骨髓瘤病患中Treg(CD3+ CD3+CD4+CD25+CD127dim)之頻率(上分佈圖,P4細胞群)及CD38+ Treg在Treg群內之頻率(下分佈圖,P5細胞群)。研究:GEN501 17病患子集。 Figure 10A shows a FACS analysis showing the frequency of Treg (CD3 + CD3 + CD4 + CD25 + CD127 dim ) in multiple myeloma patients (upper profile, P4 cell population) and CD38 + Treg in the basal phase Frequency within the Treg group (lower profile, P5 cell population). Study: GEN501 17 subset of patients.

圖10B顯示FACS分析之分佈圖,其顯示在DARZALEXTM(達拉單抗)治療之後,多發性骨髓瘤病患中Treg(CD3+ CD3+CD4+CD25+CD127dim)之頻率(上分佈圖,P4細胞群)及CD38+ Treg在Treg群內之頻率(下分佈圖,P5細胞群)。 DARZALEXTM(達拉單抗)治療使CD38+ Treg損耗。研究:GEN501 17病患子集。 Figure 10B shows a profile of FACS analysis showing the frequency of Treg (CD3 + CD3 + CD4 + CD25 + CD127 dim ) in multiple myeloma patients after DARZALEX TM (duracil) treatment (upper profile, P4 cell population) and the frequency of CD38 + Treg in the Treg population (lower profile, P5 cell population). DARZALEX TM (Dara mAb) therapy to CD38 + Treg loss. Study: GEN501 17 subset of patients.

圖10C顯示在基期、或在1週、4週、8週、復發之後、或在6個月治療結束(EOT)時,經DARZALEXTM(達拉單抗)治療的病患中CD38CD3+CD4+CD25+CD127dim Treg之頻率。CD38Treg之頻率隨著DARZALEXTM(達拉單抗)治療減少,並在EOT時返回至基期。Y軸:CD3+ T細胞之CD38CD3+CD4+CD25+CD127dim Treg的%。研究:GEN501 17病患子集。 Figure 10C shows CD38 high CD3 + in patients treated with DARZALEX (TM) (dalacil ) at the base period, or at 1 week, 4 weeks, 8 weeks, after relapse, or at the end of 6 months of treatment (EOT). Frequency of CD4 + CD25 + CD127 dim Treg. As the frequency of the CD38 high Treg DARZALEX TM (Dara mAb) treatment reduces, and returns to the base of at EOT. Y-axis: % of CD38 high CD3 + CD4 + CD25 + CD127 dim Treg of CD3 + T cells. Study: GEN501 17 subset of patients.

圖10D顯示在基期、在治療1週、4週、及8週,反應者及無反應者中之CD8+/Treg細胞比率。在治療第8週時,反應者之於無反應者之CD8+/Treg細胞比率顯著地較高(p=0.00955)。研究:GEN501 17病患子集。 Figure 10D shows CD8 + /Treg cell ratios in responders and non-responders at baseline, at 1 week, 4 weeks, and 8 weeks of treatment. At the 8th week of treatment, the CD8 + /Treg cell ratio of the responders to non-responders was significantly higher (p = 0.00955). Study: GEN501 17 subset of patients.

圖10E顯示當相較於CD38- Treg或陰性對照時,在CD38+ Treg存在下更有效地抑制效應細胞的增生。誤差條代表標準誤差。星號標示顯著變化。樣本係自多個健康供體獲得。透過羧基螢光素琥珀醯亞胺酯(CFSE)之稀釋評估細胞增生。 Figure 10E shows that effector cell proliferation is more effectively inhibited in the presence of CD38 + Treg when compared to CD38 - Treg or a negative control. Error bars represent standard errors. The asterisk indicates a significant change. Samples were obtained from multiple healthy donors. Cell proliferation was assessed by dilution of carboxyfluorescein amber imidate (CFSE).

圖11顯示骨髓衍生抑制細胞(MDSC)存在於多發性骨髓瘤病患中(上圖表,加框的細胞),且約一半的細胞表現CD38(中間圖表,加框的細胞)。CD38高MDSC群於經一次DARZALEXTM(達拉單抗)輸液治療的病患中損耗(下圖表,加框的細胞)。研究:GEN501 17病患子集。 Figure 11 shows the presence of bone marrow-derived suppressor cells (MDSCs) in multiple myeloma patients (top panel , boxed cells), and about half of the cells exhibit CD38 (middle panel, boxed cells). CD38 high population of MDSC in the primarily DARZALEX TM (Dara mAb) infusion therapy in patients loss (lower graph, boxed cells). Study: GEN501 17 subset of patients.

圖12顯示當相較於基期時,在經DARZALEXTM(達拉單抗)治療1週、4週、或8週之後,病患中之CD38高MDSC(CD11b+HLADR-CD14-CD33+CD15+)之數目減少,並在治療結束(EOT)後返回至接近基期。復發病患仍展示CD38高MDSC減少。黑色方形:無反應者;白色方形:對DARZALEXTM(達拉單抗)治療具有至少最小反應的病患。垂直線指示各組中之中位數值。病患2、4、15、16、及17展示出高的最初CD38高MDSC群。研究:GEN501 17病患子集。 Figure 12 shows CD38 high MDSC (CD11b + HLADR - CD14 - CD33 + CD15 + ) in patients after 1 week, 4 weeks, or 8 weeks of treatment with DARZALEX TM (dalabiza ) compared to the base phase. The number is reduced and returns to near the base period after the end of treatment (EOT). Relapsed patients still showed a reduction in CD38 high MDSC. Black squares: no response; open square: patients having at least a minimum of reaction DARZALEX TM (Dara mAb) therapy. The vertical line indicates the median value in each group. Patients 2, 4, 15, 16, and 17 exhibited a high initial CD38 high MDSC population. Study: GEN501 17 subset of patients.

圖13顯示具最高CD38高MDSC的病患(病患2、4、15、16、及17)具有最高的無進展存活期(PFS)。這些病患對DARZALEXTM(達拉單抗)治療具有部分反應(PR)或最小反應(MR)。SD:疾病穩定;PD:疾病進展。X軸顯示各個別編號病患之PFS。 Figure 13 shows that patients with the highest CD38 high MDSC (patients 2, 4, 15, 16, and 17) had the highest progression free survival (PFS). These patients had a partial response (PR) or minimum reaction (MR) of DARZALEX TM (Dara mAb) therapy. SD: stable disease; PD: disease progression. The X-axis shows the PFS for each patient with a different number.

圖14顯示MDSC對DARZALEXTM(達拉單抗)誘導之ADCC敏感。道迪細胞(Daudi cell)在測定中用作目標細胞之陽性對照。測量細胞裂解%。 Figure 14 shows MDSC sensitivity to DARZALEX (TM) (dalabizumab) induced ADCC. Daudi cells were used as positive controls for the target cells in the assay. The % cell lysis was measured.

圖15A顯示在治療之第1週、第4週、及第8週時,CD38+ Breg在經DARZALEXTM(達拉單抗)治療的病患中損耗。 Figure 15A shows that CD38 + Breg was depleted in patients treated with DARZALEX (TM) (dalacil ) at weeks 1st, 4th, and 8th week of treatment.

圖15B顯示CD38+ Breg在刺激後分泌IL-10。 Figure 15B shows that CD38 + Breg secretes IL-10 after stimulation.

圖16A顯示在基期及在治療期間的指定時間,透過具有VGPR的經DARZALEXTM(達拉單抗)治療的病患之PBMC中CMV、EBV、及流感病毒特異性(CEF)IFN-γ的產生所測量之抗病毒反應。OD:光學密度。白色條:陰性對照;黑色條:添加CEF;短劃條:僅同種異體PBMC。星號指示統計學顯著的變化。Pre 4,8,10=治療之第4、8、或10週。 Figure 16A shows the production of CMV, EBV, and influenza virus specific (CEF) IFN-γ in PBMCs of patients treated with DARZALEX (TM) (Dalabiza ) with VGPR at the base phase and at specified times during the treatment period. The antiviral response measured. OD: optical density. White bars: negative control; black bars: added CEF; short bars: only allogeneic PBMC. Asterisks indicate statistically significant changes. Pre 4, 8, 10 = 4, 8, or 10 weeks of treatment.

圖16B顯示在基期及在治療期間的指定時間,透過具有CR的經DARZALEXTM(達拉單抗)治療的病患之PBMC中CMV、EBV、及流感病毒特異性(CEF)IFN-γ的產生所測量之抗病毒反應。OD:光學密度。白色條:陰性對照;黑色條:添加CEF;短劃條:僅同種異體PBMC。星號指示統計學顯著的變化。Pre 4,8,10=治療之第4、8、或10週。 Figure 16B shows the production of CMV, EBV, and influenza virus specific (CEF) IFN-γ in PBMCs of patients treated with DARZALEXTM (Dalabiza ) with CR at the base phase and at specified times during the treatment period. The antiviral response measured. OD: optical density. White bars: negative control; black bars: added CEF; short bars: only allogeneic PBMC. Asterisks indicate statistically significant changes. Pre 4, 8, 10 = 4, 8, or 10 weeks of treatment.

圖16C顯示在基期及在治療期間的指定時間,透過具有PD的經DARZALEXTM(達拉單抗)治療的病患之PBMC中CMV、EBV、及流感病毒特異性(CEF)IFN-γ的產生所測量之抗病毒反應。OD:光學密度。白色條:陰性對照;黑色條:添加CEF;短劃條:僅同種異體PBMC。Ns:不顯著。Pre 4,8=治療之第4或8週。 Figure 16C shows the production of CMV, EBV, and influenza virus specific (CEF) IFN-γ in PBMCs of patients treated with DARZALEXTM (dalabizumab ) with PD at the base phase and at specified times during treatment. The antiviral response measured. OD: optical density. White bars: negative control; black bars: added CEF; short bars: only allogeneic PBMC. Ns: Not significant. Pre 4, 8 = 4 or 8 weeks of treatment.

圖16D顯示在基期及在治療期間的指定時間,透過具有MR的經DARZALEXTM(達拉單抗)治療的病患之PBMC中CMV、EBV、及流感病毒特異性(CEF)IFN-γ的產生所測量之抗病毒反應。OD:光學密度。白色條:陰性對照;黑色條:添加CEF;短劃條:僅同種異體PBMC。Ns:不顯著。Pre 4,8=治療之第4或8週。 Figure 16D shows the production of CMV, EBV, and influenza virus specific (CEF) IFN-[gamma] in PBMCs treated with DARZALEX (TM) (Dalabizumab ) with MR at baseline and at specified times during treatment. The antiviral response measured. OD: optical density. White bars: negative control; black bars: added CEF; short bars: only allogeneic PBMC. Ns: Not significant. Pre 4, 8 = 4 or 8 weeks of treatment.

圖16E顯示在基期及在治療期間所指定的時間,具有VGPR的經DARZALEXTM(達拉單抗)治療的病患之PBMC中增生病毒反應性T細胞之百分比(%)。白色條:陰性對照;黑色條:添加CEF。星號指示統計學顯著的變化。Pre 4,8,10=治療之第4、8、或10週。 Figure 16E shows the percentage (%) of proliferating virus-reactive T cells in PBMC of patients treated with DARZALEX (TM) (Dalabiza ) with VGPR at the base period and at the time indicated during treatment. White bars: negative control; black bars: add CEF. Asterisks indicate statistically significant changes. Pre 4, 8, 10 = 4, 8, or 10 weeks of treatment.

圖16F顯示在基期及在治療期間所指定的時間,具有CR的經DARZALEXTM(達拉單抗)治療的病患之PBMC中增生病毒反應性T細胞之百分比(%)。白色條:陰性對照;黑色條:添加CEF。 星號指示統計學顯著的變化。Pre 4,8,10=治療之第4、8、或10週。 Figure 16F shows the percentage (%) of proliferating virus-reactive T cells in PBMCs of patients treated with DARZALEX (TM) (darabumab ) with CR at the base period and at the time indicated during treatment. White bars: negative control; black bars: add CEF. Asterisks indicate statistically significant changes. Pre 4, 8, 10 = 4, 8, or 10 weeks of treatment.

圖17A顯示FACS分析之分佈圖,其顯示CD38在健康供體之自然殺手細胞(NK)、單核球、B細胞、及T細胞上的表現水平。 Figure 17A shows a profile of FACS analysis showing the level of performance of CD38 on natural donor killer cells (NK), monocytes, B cells, and T cells.

圖17B顯示FACS分析之分佈圖,其顯示CD38在多發性骨髓瘤病患之漿細胞、自然殺手細胞(NK)、單核球、B細胞、及T細胞上的表現水平。 Figure 17B shows a profile of FACS analysis showing the level of expression of CD38 on plasma cells, natural killer cells (NK), monocytes, B cells, and T cells in multiple myeloma patients.

圖17C顯示復發性及難治性多發性骨髓瘤病患之CD38+ Treg、Breg、NK、B細胞、及T細胞中CD38之平均螢光強度(MFI)的比較。當相較於CD38+Treg、Bregs、及NK細胞時,CD38以較低水平表現於B細胞及T細胞中。 Figure 17C shows a comparison of mean fluorescence intensity (MFI) of CD38 in CD38+ Treg, Breg, NK, B cells, and T cells in patients with relapsed and refractory multiple myeloma. When compared to CD38+Treg, Bregs, and NK cells, CD38 is expressed at lower levels in B cells and T cells.

圖18顯示PD-L1蛋白隨時間推移在反應者(R)之PBMC樣本中下調且在無反應者(NR)中上調。SD:疾病穩定。C1D1:第1週期第1天;C3D1:第3週期第1天。Y軸顯示log2蛋白濃度值。 Figure 18 shows that PD-L1 protein is down-regulated in the PBMC sample of responder (R) over time and upregulated in non-responder (NR). SD: The disease is stable. C1D1: Day 1 of the first cycle; C3D1: Day 1 of the third cycle. The Y axis shows the log2 protein concentration value.

於本說明書及隨附的申請專利範圍中,除非內文另有明確說明,否則單數形式的「一(a/an)」及「該(the)」皆包括複數指稱。因此,例如對於「一細胞(a cell)」之指稱包括兩或更多個細胞之組合、及類似者。 In the specification and the appended claims, the singular forms "a" and "the" Thus, for example, reference to "a cell" includes a combination of two or more cells, and the like.

「CD38」係指人類CD38蛋白(同義字:ADP核糖基環化酶1、cADPr水解酶1、環ADP核糖水解酶1)。人類CD38具有GenBank登錄號NP_001766及SEQ ID NO:1所示之胺基酸序列。熟知的是,CD38係一種II型單次跨膜蛋白,其具有:胺基酸殘基1至21,其等代表胞質域;胺基酸殘基22至42,其等代表跨膜域;及殘基43至300,其等代表CD38之胞外域。 "CD38" refers to human CD38 protein (synonym: ADP ribosyl cyclase 1, cADPr hydrolase 1, ring ADP ribose hydrolase 1). Human CD38 has the amino acid sequence shown in GenBank Accession No. NP_001766 and SEQ ID NO: 1. It is well known that CD38 is a type II single-transmembrane protein having: amino acid residues 1 to 21, which represent the cytoplasmic domain; amino acid residues 22 to 42, which represent the transmembrane domain; And residues 43 to 300, which represent the extracellular domain of CD38.

SEQ ID NO:1 SEQ ID NO: 1

本文中所用之「抗體(antibody)」係以廣義的方式意指並包括免疫球蛋白(immunoglobulin)分子,其包括單株抗體(包括鼠類、人類、人化(humanized)、及嵌合單株抗體)、抗體片段、雙特異性或多特異性抗體、二聚體、四聚體、或多聚體抗體、單鏈抗體、域抗體、以及任何其他包含具有所需特異性之抗原結合部位(antigen binding site)的免疫球蛋白之修飾組態。 As used herein, "antibody" means, in a broad sense, and includes immunoglobulin molecules, including monoclonal antibodies (including murine, human, humanized, and chimeric individuals). Antibody, antibody fragment, bispecific or multispecific antibody, dimer, tetramer, or multimeric antibody, single chain antibody, domain antibody, and any other antigen binding site comprising the desired specificity ( The antigen binding site is a modified configuration of immunoglobulin.

免疫球蛋白可分派為五大類,即IgA、IgD、IgE、IgG及、IgM,取決於重鏈恆定域(constant domain)胺基酸序列。IgA及IgG被進一步細分為同型IgA1、IgA2、IgG1、IgG2、IgG3、及IgG4。任何脊椎動物物種的抗體輕鏈可分派為兩種截然不同類型(即kappa(κ)及lambda(λ))之一者,視其等恆定域的胺基酸序列而定。 Immunoglobulins can be assigned to five major classes, namely IgA, IgD, IgE, IgG and IgM, depending on the heavy chain constant domain amino acid sequence. IgA and IgG are further subdivided into isotypes IgA1, IgA2, IgG1, IgG2, IgG3, and IgG4. The antibody light chain of any vertebrate species can be assigned to one of two distinct types (ie, kappa (κ) and lambda (λ)), depending on the amino acid sequence of the constant domains.

「抗體片段(Antibody fragment)」係指免疫球蛋白分子的一個部分,其保留重鏈及/或輕鏈抗原結合部位,諸如重鏈互補決定區(HCDR)1、2、及3、輕鏈互補決定區(LCDR)1、2、及3、重鏈可變區(VH)、或輕鏈可變區(VL)。抗體片段包括Fab片段,即由VL、VH、CL、及CH1域所組成之單價片段;F(ab)2片段,即二價片段,包含在絞鏈區域(hinge region)藉由二硫橋連結的兩個Fab片段;Fd片段,由VH及CH1域所組成;Fv片段,由抗體單臂的VL及VH域所組成;域抗體(dAb)片段(Ward等人,Nature 341:544-6,1989),其係由VH域所組成。VH及VL域可經工程改造並經由合成連接子連接在一起以形成各種類型的單鏈抗體設計,其中VH/VL域會進行分子內配對,或者在VH及VL域係由分開之單鏈抗體建構體所表現之情況下則會進行分子間配對,以形成單價抗原結合部位,諸如單鏈Fv(scFv)或雙價抗體(diabody);例如描述於PCT國際公開第WO1998/44001號、第WO1988/01649號、第WO1994/13804號、及第WO1992/01047號中者。這些抗體片段係使用所屬技術領域中具有通常知識者所知悉的熟知技術而獲得,且該些片段係經篩選具有如全長抗體相同方式之效用。 "Antibody fragment" refers to a portion of an immunoglobulin molecule that retains heavy and/or light chain antigen binding sites, such as heavy chain complementarity determining regions (HCDRs) 1, 2, and 3, and light chain complementation. Decision regions (LCDR) 1, 2, and 3, heavy chain variable region (VH), or light chain variable region (VL). Antibody fragments include Fab fragments, ie, monovalent fragments consisting of VL, VH, CL, and CH1 domains; F(ab) 2 fragments, ie, bivalent fragments, contained in the hinge region linked by a disulfide bridge Two Fab fragments; the Fd fragment consists of the VH and CH1 domains; the Fv fragment consists of the VL and VH domains of the antibody's one-arm; the domain antibody (dAb) fragment (Ward et al, Nature 341:544-6, 1989), which consists of the VH domain. The VH and VL domains can be engineered and linked together via synthetic linkers to form various types of single-chain antibody designs in which the VH/VL domain is subjected to intramolecular pairing, or in the VH and VL domains by separate single-chain antibodies In the case of constructs, intermolecular pairing is performed to form a monovalent antigen binding site, such as a single chain Fv (scFv) or a diabody; for example, as described in PCT International Publication No. WO 1998/44001, WO 1988 No. /01649, WO1994/13804, and WO1992/01047. These antibody fragments are obtained using well-known techniques known to those of ordinary skill in the art, and these fragments are screened for utility in the same manner as full length antibodies.

「經單離之抗體(isolated antibody)」係指實質上不含其他具有不同抗原特異性之抗體的抗體或抗體片段(例如,特異性結合CD38的經單離之抗體實質上不含特異性結合人類CD38以外之抗原的抗體)。然而,特異性結合CD38的經單離之抗體可能會與其他抗原有交叉反應,諸如人類CD38的異種同源物,諸如食蟹獼猴(Macaca fascicularis,cynomolgus)CD38。在雙特異性抗體之情況下,雙特異性抗體特異性結合兩種感興趣的抗原,且實質上不含特異性結合非為兩種感興趣抗原之抗原的抗體。此外,經單離之抗體可實質上不含其他細胞材料和/或化學物。「經單離之抗體」涵蓋經單離至較高純度的抗體,諸如係80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%純的抗體。 By "isolated antibody" is meant an antibody or antibody fragment that is substantially free of other antibodies having different antigenic specificities (eg, an isolated antibody that specifically binds to CD38 is substantially free of specific binding) An antibody to an antigen other than human CD38). However, isolated antibodies that specifically bind to CD38 may cross-react with other antigens, such as heterologs of human CD38, such as macaca fascicularis (cynomolgus) CD38. In the case of a bispecific antibody, the bispecific antibody specifically binds to two antigens of interest and is substantially free of antibodies that specifically bind to antigens that are not two antigens of interest. Furthermore, the isolated antibodies can be substantially free of other cellular materials and/or chemicals. "Isolated antibodies" encompass antibodies that are isolated to higher purity, such as 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% pure antibody.

「特異性結合(specific binding,specific bind)」或「結合(bind)」係指抗體以大於其他抗原的親和力結合至一抗原或該抗原內之表位。通常,抗體以約1×10-8M或更小(例如約1×10-9M或更小、約1×10-10M或更小、約1×10-11M或更小、或約1×10-12M或更小)的平衡解離常數(KD),結合至抗原或抗原內之表位,通常係以其結合至非特異性抗原(例如,BSA、酪蛋白)之KD小至少一百倍的KD結合。解離常數可使用標準程序來測量。然而,特異性結合至抗原或抗原內之表位的抗體可能對於其他相關抗原具有交叉反應性,例如對於來自其他物種(諸如人類或猴)的相同抗原(同源物(homolog)),該猴例如食蟹獼猴(Macaca fascicularis,cynomolgus,cyno)、黑猩猩(Pan troglodytes,chimpanzee,chimp)、或狨(Callithrix jacchus,common marmoset,marmoset)。儘管單特異性抗體特異性結合一種抗原或一種表位,但雙特異性抗體特異性結合兩種不同抗原或兩種不同表位。 "Specific binding (specific binding)" or "bind" refers to an antibody that binds to an antigen or an epitope within the antigen with greater affinity than other antigens. Typically, the antibody is at about 1 x 10 -8 M or less (e.g., about 1 x 10 -9 M or less, about 1 x 10 -10 M or less, about 1 x 10 -11 M or less, or An equilibrium dissociation constant (K D ) of about 1 × 10 -12 M or less, bound to an epitope within an antigen or antigen, usually with its binding to a non-specific antigen (eg, BSA, casein) D is at least a hundred times more K D combined. Dissociation constants can be measured using standard procedures. However, an antibody that specifically binds to an epitope within an antigen or antigen may be cross-reactive with other related antigens, such as for the same antigen (homolog) from other species, such as humans or monkeys, the monkey. For example, Crab Macaque ( Macaca fascicularis , cynomolgus, cyno), chimpanzee ( Pan troglodytes , chimpanzee, chimp), or ( Calithrix jacchus , common marmoset, marmoset). Although a monospecific antibody specifically binds to one antigen or one epitope, a bispecific antibody specifically binds two different antigens or two different epitopes.

抗體可變區係由被三個「抗原結合部位(antigen binding site)」中斷的「架構(framework)」區所組成。該等抗原結合部位係使用各種用語定義:互補決定區(CDR)(三個在VH(HCDR1,HCDR2,HCDR3)且三個在VL(LCDR1,LCDR2,LCDR3))係基於序列變異性(Wu及Kabat(1970)J Exp Med 132:211-50;Kabat等人Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service,National Institutes of Health,Bethesda,Md.,1991);「高度變異區(Hypervariable region)」、「HVR」、或「HV」(三個在VH(H1,H2,H3)且三個在VL(L1,L2,L3))係指如Chothia及Lesk所定義般在結構上係高度變異(hypervariable)之抗體可變域中的區域(Chothia及Lesk(1987)Mol Biol 196:901-17)。其他用語包括「IMGT-CDR」(Lefranc等人,(2003)Dev Comparat Immunol 27:55-77)及「特異性決定殘基用途(Specificity Determining Residue Usage)」(SDRU)(Almagro(2004)Mol Recognit 17:132-43)。國際免疫遺傳學(International ImMunoGeneTics,IMGT)數據庫(http://www_imgt_org)提供了標準化編號及抗原結合部位的定義。CDR、HV、及IMGT描 繪之間的對應性係描述於Lefranc等人,(2003)Dev Comparat Immunol 27:55-77中。 The antibody variable region consists of a "framework" region interrupted by three "antigen binding sites". These antigen binding sites are defined in various terms: complementarity determining regions (CDRs) (three in VH (HCDR1, HCDR2, HCDR3) and three in VL (LCDR1, LCDR2, LCDR3)) based on sequence variability (Wu and Kabat (1970) J Exp Med 132:211-50; Kabat et al. Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991); "Hypervariable region" ), "HVR", or "HV" (three in VH (H1, H2, H3) and three in VL (L1, L2, L3)) are structural heights as defined by Chothia and Lesk The region of the variable variable domain of the hypervariable (Chothia and Lesk (1987) Mol Biol 196:901-17). Other terms include "IMGT-CDR" (Lefranc et al. (2003) Dev Comparat Immunol 27: 55-77) and "Specificity Determining Residue Usage" (SDRU) (Almagro (2004) Mol Recognit 17:132-43). The International ImMunoGeneTics (IMGT) database (http://www_imgt_org) provides definitions of standardized numbers and antigen binding sites. Correspondence between CDR, HV, and IMGT delineation is described in Lefranc et al. (2003) Dev Comparat Immunol 27: 55-77.

本文中所用之「Chothia殘基(Chothia residue)」為根據Al-Lazikani所編號的抗體VL及VH殘基(Al-Lazikani等人,(1997)J Mol Biol 273:927-48)。 As used herein, "Chothia residue" is an antibody VL and VH residue numbered according to Al-Lazikani (Al-Lazikani et al., (1997) J Mol Biol 273: 927-48).

「架構(framwork)」或「架構序列(framwork sequence)」為可變區中被定義為抗原結合部位以外的其餘序列。因為抗原結合部位可用如上所述之各種用語來定義,架構之確切胺基酸序列取決於如何定義抗原結合部位。 A "framwork" or "framwork sequence" is defined as a sequence other than an antigen binding site in a variable region. Since the antigen binding site can be defined by various terms as described above, the exact amino acid sequence of the architecture depends on how the antigen binding site is defined.

「人化抗體(humanized antibody)」係指抗原結合部位係衍生自非人類物種且可變區架構係衍生自人類免疫球蛋白序列的抗體。人化抗體可在架構區中包括取代,所以該架構可能不是所表現人類免疫球蛋白或生殖系基因序列的確切複本。 "Humanized antibody" refers to an antibody whose antigen binding site is derived from a non-human species and whose variable region architecture is derived from a human immunoglobulin sequence. Humanized antibodies may include substitutions in the framework regions, so the framework may not be an exact replica of the human immunoglobulin or germline gene sequences.

「人類抗體(human antibody)」係指具有重鏈及輕鏈可變區的抗體,其中架構及抗原結合部位兩者皆衍生自人源序列。若該抗體含有恆定區,則該恆定區亦衍生自人源序列。 "Human antibody" refers to an antibody having a heavy chain and a light chain variable region, wherein both the framework and the antigen binding site are derived from a human sequence. If the antibody contains a constant region, the constant region is also derived from a human sequence.

人類抗體包含「衍生自(derived from)」人源序列的重或輕鏈可變區,其中該抗體的可變區係獲自使用人類生殖系免疫球蛋白或重排(rearranged)免疫球蛋白基因的系統。該等系統包括經呈現在噬菌體上的人類免疫球蛋白基因庫(gene library)、及基因轉殖非人類動物(諸如帶有人類免疫球蛋白基因座的小鼠)。「人類抗體」在與人類生殖系免疫球蛋白或重排免疫球蛋白基因比較時可能含有胺基酸差異,此係因於例如天然發生之體細胞突變、或在架構或抗原結合部位中刻意引入取代、或兩者。通常,「人類抗體」係在胺基酸序列上與由人類生殖系免疫球蛋白或重排免疫球蛋白基因所編碼的胺基酸序列具有至少約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%同一性。在一些情況下,「人類抗體」可能含有自人類架構序列分析導出的共有架構序列,例如Knappik等人,(2000)J Mol Biol 296:57-86中所述,或合併至經呈現在噬菌體上的人類免疫球 蛋白基因庫中的合成HCDR3,例如Shi等人,(2010)J Mol Biol 397:385-96及國際專利公開第WO2009/085462號中所述。 Human antibodies comprise a heavy or light chain variable region derived from a human derived sequence, wherein the variable region of the antibody is obtained from the use of a human germline immunoglobulin or a rearranged immunoglobulin gene. system. Such systems include human immunoglobulin gene libraries presented on phage, and gene transfer non-human animals (such as mice bearing human immunoglobulin loci). "Human antibodies" may contain amino acid differences when compared to human germline immunoglobulin or rearranged immunoglobulin genes due to, for example, naturally occurring somatic mutations, or deliberate introduction in architecture or antigen binding sites. Replace, or both. Typically, a "human antibody" has at least about 80%, 81%, 82%, 83% of the amino acid sequence encoded by an amino acid sequence encoded by a human germline immunoglobulin or a rearranged immunoglobulin gene. 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100 % identity. In some cases, a "human antibody" may contain a consensus framework sequence derived from human architecture sequence analysis, as described, for example, by Knappik et al., (2000) J Mol Biol 296: 57-86, or incorporated into a phage. The synthetic HCDR3 in the human immunoglobulin gene library is described, for example, in Shi et al., (2010) J Mol Biol 397:385-96 and International Patent Publication No. WO 2009/085462.

衍生自人類免疫球蛋白序列的人類抗體可使用諸如合併有合成CDR及/或合成架構之噬菌體呈現(phage display)的系統來產生,或者可在體外進行突變誘發以改良抗體性質,從而得到在體內人類抗體生殖系貯庫(repertoire)內不會天然存在的抗體。 Human antibodies derived from human immunoglobulin sequences can be produced using systems such as phage displays incorporating synthetic CDRs and/or synthetic frameworks, or can be induced in vitro to improve antibody properties, thereby obtaining in vivo An antibody that does not naturally occur in the human antibody reproductive system repertoire.

抗原結合部位衍生自非人類物種的抗體不包括在人類抗體的定義中。 Antibodies whose antigen binding sites are derived from non-human species are not included in the definition of human antibodies.

「重組抗體(recombinant antibody)」包括所有藉由重組手段製備、表現、創建、或單離之抗體。諸如自基因轉殖或染色體轉殖有人類免疫球蛋白基因的動物(例如小鼠或大鼠)或由其製備的融合瘤(於以下進一步描述)單離之抗體;自經轉形(transform)以表現抗體之宿主細胞單離之抗體;自重組、組合抗體庫單離之抗體;及藉由任何涉及將人類免疫球蛋白基因序列剪接到其他DNA序列的其他手段製備、表現、創建、或單離之抗體;或在體外使用Fab臂交換所產生的抗體諸如雙特異性抗體。 "Recombinant antibody" includes all antibodies produced, expressed, created, or isolated by recombinant means. An isolated animal, such as a mouse or a rat having a human immunoglobulin gene (such as a mouse or a rat), or a fusion tumor prepared therefrom (described further below); a self-transformed transform An antibody that is isolated from a host cell expressing the antibody; an antibody that is isolated from the recombinant antibody pool; and prepared, expressed, created, or singulated by any other means involved in splicing the human immunoglobulin gene sequence to other DNA sequences An antibody that is isolated; or an antibody produced by Fab arm exchange in vitro, such as a bispecific antibody.

「單株抗體(monoclonal antibody)」係指由單一分子組成之抗體分子的製劑。單株抗體組成物對特定表位呈現出單一結合特異性及親和力,或者在雙特異性單株抗體的情況下,對兩個不同的表位有雙結合特異性。「單株抗體」因此係指在各重鏈及各輕鏈中具有單一胺基酸組成之抗體群,除了可能熟知的變更,諸如自抗體重鏈移除C端離胺酸。在抗體群內,單株抗體可具有異質性醣基化。單株抗體可係單特異性或多特異性,或單價、二價、或多價。雙特異性抗體係包括在用語單株抗體中。 A "monoclonal antibody" refers to a preparation of an antibody molecule consisting of a single molecule. The monoclonal antibody composition exhibits a single binding specificity and affinity for a particular epitope, or dual binding specificity for two different epitopes in the case of a bispecific monoclonal antibody. "Single antibody" thus refers to a population of antibodies having a single amino acid composition in each heavy chain and in each light chain, except for changes that may be well known, such as removal of the C-terminal amide acid from the antibody heavy chain. Within the antibody population, monoclonal antibodies can have heterogeneous glycosylation. Individual antibodies can be monospecific or multispecific, or monovalent, bivalent, or multivalent. Bispecific anti-systems are included in the term monoclonal antibodies.

「表位(epitope)」意指與抗體特異性結合的抗原部分。表位經常係由分子部分(諸如胺基酸或多醣側鏈)之化學活性(諸如極性、非極性、或疏水性)表面分組(grouping)所組成,並且可具有特定三維結構特性,以及特定電荷特性。表位可由形成構形空間單元之鄰接(contiguous)及/或非鄰接(noncontiguous)胺基酸所構成。針對非 鄰接表位,來自抗原線性序列之相異部分的胺基酸會透過蛋白質分子的摺疊而在3維空間中緊密靠近。 "Epitope" means an antigenic moiety that specifically binds to an antibody. Epitopes often consist of chemically active (such as polar, non-polar, or hydrophobic) surface grouping of molecular moieties such as amino acids or polysaccharide side chains, and may have specific three dimensional structural properties, as well as specific charges. characteristic. An epitope can be composed of contiguous and/or noncontiguous amino acids that form a conformational spatial unit. Against non Adjacent epitopes, amino acids from distinct portions of the linear sequence of antigens are in close proximity in a 3-dimensional space by folding of the protein molecules.

「變異體(variant)」係指藉由一或多個修改(例如取代、插入、或刪除)而不同於參考多肽或參考多核苷酸的多肽或多核苷酸。 "Variant" refers to a polypeptide or polynucleotide that differs from a reference polypeptide or a reference polynucleotide by one or more modifications (eg, substitutions, insertions, or deletions).

「組合(in combination with)」意指二或更多種治療劑一起以混合物形式投予至對象,同時以單劑投予或以任何順序以單劑依序投予。一般而言,各藥劑將以一劑量及/或按照針對該藥劑所判定之時間表投予。 "In combination with" means that two or more therapeutic agents are administered together in a mixture to a subject, while being administered in a single dose or sequentially in a single dose in any order. Generally, each agent will be administered in a single dose and/or in accordance with a schedule determined for the agent.

「治療(treat或treatment)」係指治療性處理,其中目的係在於減緩(減輕)非所欲的生理變化或疾病,諸如腫瘤或腫瘤細胞的發展或蔓延,或在治療過程中提供有益或所欲的臨床結果。有益或所欲的臨床結果包括症狀的減輕、疾病程度的減小、疾病狀態的穩定化(即,不惡化)、疾病進程的延緩或減慢、不發生轉移、疾病狀態的改善或緩和、及緩解(無論部分或完全),無論是可偵測或不可偵測的。「治療」亦可意指相較於未接受治療之對象的預期存活期,延長存活期。那些需要治療的對象包括那些已經患有非所欲的生理變化或疾病的對象,以及那些易患有該生理變化或疾病的對象。 "treat or treatment" means a therapeutic treatment in which the purpose is to slow (reduce) undesired physiological changes or diseases, such as the development or spread of tumors or tumor cells, or to provide benefits or benefits during treatment. The clinical outcome of the desire. Beneficial or desirable clinical outcomes include a reduction in symptoms, a reduction in the extent of the disease, stabilization of the disease state (ie, no deterioration), delay or slowing of the progression of the disease, no metastasis, improvement or mitigation of the disease state, and Mitigation (whether partial or complete), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to the expected survival of a subject who has not received treatment. Those in need of treatment include those who have had unwanted physiological changes or diseases, as well as those who are susceptible to the physiological changes or diseases.

「治療有效量(therapeutically effective amount)」係指達到所欲治療成果所需之劑量及時間的有效量。治療有效量可根據不同因素而異,諸如對象之疾病狀態、年齡、性別、及體重、以及治療劑或治療劑的組合在對象中引發所欲反應的能力。有效治療劑或治療劑組合的例示性指標包括例如病患幸福感的改善、腫瘤負荷的減少、腫瘤生長的減緩或停止、及/或癌細胞未轉移至身體的其他位置。 "therapeutically effective amount" means an effective amount of the dose and time required to achieve the desired therapeutic result. The therapeutically effective amount can vary depending on factors such as the disease state of the subject, age, sex, and weight, and the ability of the therapeutic agent or combination of therapeutic agents to elicit a desired response in the subject. Exemplary indicators of an effective therapeutic or combination of therapeutic agents include, for example, an improvement in patient well-being, a reduction in tumor burden, a slowing or cessation of tumor growth, and/or other locations where cancer cells have not metastasized to the body.

「抑制生長(inhibit growth)」(例如,提及腫瘤細胞時)係指當相較於在治療劑或治療藥品之組合不存在的情況下相同腫瘤細胞或腫瘤組織之生長的降低或延緩時,當與治療劑或治療劑或藥品之組合接觸時,在體外或體內的腫瘤細胞生長或腫瘤組織有可測量的降低或延緩。在體外或體內的腫瘤細胞或腫瘤組織之生長的抑制可 係至少約10%、20%、30%、40%、50%、60%、70%、80%、90%、99%、或100%。 "Inhibit growth" (for example, when referring to a tumor cell) means when the growth of the same tumor cell or tumor tissue is reduced or delayed as compared to the absence of a combination of a therapeutic agent or a therapeutic drug, When contacted with a therapeutic or therapeutic agent or combination of drugs, there is a measurable decrease or delay in tumor cell growth or tumor tissue in vitro or in vivo. Inhibition of growth of tumor cells or tumor tissues in vitro or in vivo may At least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99%, or 100%.

「調節T細胞(regulatory T cell)」、或「Tregs」、或「Treg」係指調節(一或多種)其他T細胞及/或其他免疫細胞之活性(經常藉由抑制其等活性)之T淋巴球。Treg可係CD3+CD4+CD25+CD127dim T細胞。應瞭解,Treg可不完全限於此表型,且可表現Foxp3。 "regulatory T cell", or "Tregs", or "Treg" refers to the regulation of the activity of one or more other T cells and/or other immune cells (often by inhibiting their activity) Lymphocytes. Treg can be a CD3 + CD4 + CD25 + CD127 dim T cell. It should be understood that Treg may not be completely limited to this phenotype and may exhibit Foxp3.

「效應T細胞(effector T cell)」、或「Teffs_」、或「Teff」係指執行免疫反應之功能的T淋巴球,諸如殺滅腫瘤細胞及/或活化抗瘤免疫反應,其可導致腫瘤細胞自身體清除。Teff可係CD3+與CD4+或CD8+。Teff可分泌、含有、或表現諸如IFN-γ、顆粒酶B、及ICOS之標誌。應瞭解,Teffs可不完全限於這些表型。 "Effector T cell", or "Teffs_", or "Teff" refers to a T lymphocyte that performs the function of an immune response, such as killing tumor cells and/or activating an anti-tumor immune response, which can cause tumors. The cells are cleared by themselves. Teff can be CD3 + with CD4 + or CD8 + . Teff can secrete, contain, or exhibit markers such as IFN-[gamma], granzyme B, and ICOS. It should be understood that Teffs may not be completely limited to these phenotypes.

「Treg之功能(Function of Tregs)」或「Treg功能(Treg function)」係指Treg之抑制性功能,其係關於宿主免疫反應之調節及/或自體免疫之預防。Treg之功能可係抑制由CD8+ T細胞、自然殺手(NK)細胞、MØ細胞、B細胞、或樹突細胞(DC)所引發之抗瘤反應,或抑制效應T細胞之增生。 "Function of Tregs" or "Treg function" refers to the inhibitory function of Treg, which is related to the regulation of host immune response and/or prevention of autoimmunity. The function of Treg can inhibit the anti-tumor response elicited by CD8 + T cells, natural killer (NK) cells, MØ cells, B cells, or dendritic cells (DC), or inhibit the proliferation of effector T cells.

「抑制Treg之功能(Inhibit function of Tregs)」或「抑制Treg功能(inhibit Treg function)」係指降低在體外或在動物或人類對象體內的Treg之功能的水平,其可藉由所屬技術領域中已知的習知技術判定。Treg之功能的水平可降低例如至少約1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%、或100%。「抑制Treg之功能」包括減少Treg之數目,例如藉由經由抗體效應功能(諸如抗體依賴性細胞毒性(ADCC))來殺滅Treg。 "Inhibit function of Tregs" or "inhibit Treg function" refers to reducing the level of Treg function in vitro or in an animal or human subject, which can be used in the art. Known prior art decisions. The level of function of the Treg can be reduced, for example, by at least about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100%. "Inhibiting the function of Treg" includes reducing the number of Tregs, for example by killing Treg via antibody effector functions such as antibody-dependent cellular cytotoxicity (ADCC).

「骨髓衍生抑制細胞(myeloid-derived suppressor cell)」、或「MDSCs」、或「MDSC」係指為造血譜系且表現巨噬細胞/單核球標誌CD11b及顆粒球標誌Gr-1/Ly-6G之特化細胞群。MDSC之表型可係例如CD11b+HLA-DR-CD14-CD33+CD15+。MDSC表現成熟抗原呈遞細胞標誌MHC II類及F480之低或不可偵測的表現。MDSC係骨髓譜系之未成熟細胞,且可進一步分化成若干細胞型,包 括巨噬細胞、嗜中性球、樹突細胞、單核球、或顆粒球。MDSC可天然地發現於人類及動物之正常成人骨髓中或正常造血之部位(諸如脾)中。 "myeloid-derived suppressor cell", or "MDSCs", or "MDSC" refers to the hematopoietic lineage and exhibits macrophage/mononuclear marker CD11b and particle marker Gr-1/Ly-6G. Specialized cell population. The phenotype of MDSC can be, for example, CD11b + HLA-DR - CD14 - CD33 + CD15 + . MDSC exhibits low or undetectable expression of mature antigen presenting cell markers MHC class II and F480. MDSC is an immature cell of the myeloid lineage and can be further differentiated into several cell types, including macrophages, neutrophils, dendritic cells, mononuclear spheres, or granules. MDSC can be found naturally in normal adult bone marrow of humans and animals or in areas of normal hematopoiesis such as the spleen.

「抑制MDSC之功能(Inhibit function of MDSCs)」或「抑制MDSC功能(inhibit MDSC function)」係指降低在體外或在動物或人類對象體內的MDSC之功能的水平,其可藉由所屬技術領域中已知的習知技術判定。MDSC之功能的水平可降低例如至少約1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%、或100%。「抑制MDSC之功能」包括減少MDSC之數目,例如藉由經由抗體效應功能(諸如ADCC)來殺滅MDSC。MDSC可藉由各種機制(諸如活性氧化物過氧化亞硝酸鹽的產生、因高水平精胺酸酶所致的精胺酸酶代謝的增加、及氧化亞氮合成酶的增加)抑制T細胞反應諸如增生、純系擴增、或細胞介素產生。MDSC可對IFN-γ及若干細胞介素(諸如IL-4及IL-13)反應。IFN-γ可活化MDSC,其誘導一氧化氮合成酶2(NOS2)之活性。可替代地,Th2細胞介素諸如介白素-4(IL-4)及IL-13可活化MDSC,其可引起誘導精胺酸酶-1(ARG1)之活性。藉由NOS2或ARG1代謝L-精胺酸可引起抑制T細胞的增生,且兩種酶的活性一起可透過產生活性氮氧化物而導致T細胞的細胞凋亡。 "Inhibit function of MDSCs" or "inhibit MDSC function" refers to a level of reducing the function of MDSC in vitro or in an animal or human subject, which can be used in the art. Known prior art decisions. The level of functionality of the MDSC can be reduced, for example, by at least about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100%. "Suppressing the function of MDSC" includes reducing the number of MDSCs, for example by killing MDSC via antibody effector functions such as ADCC. MDSC can inhibit T cell responses by various mechanisms such as the production of active oxide peroxynitrite, an increase in arginase metabolism due to high levels of arginase, and an increase in nitrous oxide synthase. Such as hyperplasia, pure lineage amplification, or interleukin production. MDSC can react with IFN-γ and several interleukins such as IL-4 and IL-13. IFN-γ activates MDSC, which induces the activity of nitric oxide synthase 2 (NOS2). Alternatively, Th2 interleukins such as interleukin-4 (IL-4) and IL-13 activate MDSC, which can induce the activity of arginase-1 (ARG1). Metabolism of L-arginine by NOS2 or ARG1 can cause inhibition of T cell proliferation, and the activity of the two enzymes together can cause apoptosis of T cells by producing reactive nitrogen oxides.

「Treg相關疾病(Treg related disease)」係指關係到T調節細胞(Treg)之疾病或病症。Treg相關疾病可由Treg功能(例如,抑制抗瘤反應或抑制效應T細胞增生)造成。Treg媒介之疾病可係癌症。「Treg相關疾病」及「Treg媒介之疾病(Treg mediated disease)」在本文中可互換使用。 "Treg related disease" refers to a disease or condition associated with T regulatory cells (Treg). Treg-associated diseases can be caused by Treg function (eg, inhibition of anti-tumor response or inhibition of effector T cell proliferation). The disease of the Treg medium can be cancer. "Treg-related diseases" and "Treg mediated diseases" are used interchangeably herein.

「增強效應T細胞之反應(Enhance response of effector T cells)」或「增強T細胞之反應(enhance T cell responses)」係指在體外或在動物或人類對象體內增強或刺激效應T細胞以具有持續的或放大的生物功能,或更新或再活化耗盡的或非活性的T細胞。例示性T細胞反應係增生、γ-干擾素自CD 8+ T細胞分泌、抗原反應性、或 純系擴增。測量此增強之方式對於所屬技術領域中具有通常知識者係已知的。 "Enhance response of effector T cells" or "enhanced T cell responses" means enhancing or stimulating effector T cells in vitro or in an animal or human subject to have persistence Or amplify biological functions, or renew or reactivate depleted or inactive T cells. Exemplary T cell response is proliferative, gamma-interferon secretion from CD8 + T cells, antigenic reactivity, or pure lineage amplification. The manner in which this enhancement is measured is known to those of ordinary skill in the art.

「MDSC相關疾病(MDSC related disease)」係指關係到骨髓衍生抑制細胞(MDSC)之疾病或病症。MDSC相關疾病可由MDSC功能(例如,抑制抗瘤反應或效應T細胞增生)造成。MDSC媒介之疾病可係癌症。「MDSC相關疾病」及「MDSC媒介之疾病(Treg mediated disease)」在本文中可互換使用。 "MDSC related disease" refers to a disease or condition associated with bone marrow-derived suppressor cells (MDSC). MDSC-associated diseases can be caused by MDSC function (eg, inhibition of anti-tumor response or effector T cell proliferation). The disease of the MDSC vector can be cancer. "MDSC-related diseases" and "MDG mediated diseases" are used interchangeably herein.

「調節B細胞(Regulatory B cell)」、或「Breg」、或「Bregs」係指抑制免疫反應之B淋巴球。Breg可係CD19+CD24+CD38+細胞,且可藉由抑制由Breg所分泌之IL-10所媒介之T細胞增生來抑制免疫反應。應瞭解,存在其他Breg子集,且描述於例如Ding等人,(2015)Human Immunology 76:615-621中。 "Regulatory B cell", or "Breg" or "Bregs" refers to a B lymphocyte that suppresses an immune response. Breg can be a CD19 + CD24 + CD38 + cell and can suppress the immune response by inhibiting the proliferation of T cells mediated by IL-10 secreted by Breg. It should be appreciated that other Breg subsets exist and are described, for example, in Ding et al. (2015) Human Immunology 76:615-621.

「Breg相關疾病(Breg related disease)」係指關係到調節B細胞之疾病或病症。Breg相關疾病可由例如Breg媒介之抗瘤反應的抑制或效應T細胞增生造成。Breg媒介之疾病可係癌症。「Breg相關疾病」及「Breg媒介之疾病(Breg mediated disease)」在本文中可互換使用。 "Breg related disease" refers to a disease or condition related to the regulation of B cells. Breg-associated diseases can be caused by, for example, inhibition of an anti-tumor response by Breg vectors or effector T cell proliferation. The disease of the Breg vector can be cancer. "Breg-related diseases" and "Breg mediated diseases" are used interchangeably herein.

「病患(Patient)」包括任何人類或非人類動物(nonhuman animal)。「非人類動物」包括所有脊椎動物,例如,哺乳動物及非哺乳動物,諸如非人類靈長類、綿羊、狗、貓、馬、牛、雞、兩棲類、爬蟲類、等等。「病患」及「對象(subject)」在本文中可互換使用。 "Patient" includes any human or nonhuman animal. "Non-human animals" include all vertebrates, such as mammals and non-mammals, such as non-human primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, and the like. "Patient" and "subject" are used interchangeably herein.

本發明提供一種用特異性結合CD38之抗體治療患有固態腫瘤之病患的方法,不管腫瘤細胞是否表現CD38。本發明進一步提供用於治療患有調節T細胞(Treg)、骨髓衍生抑制細胞(MDSC)、或調節B細胞(Breg)媒介之疾病之病患的方法。本發明進一步提供用於調節Treg、MDSC、或Breg活性以治療固態腫瘤的方法,該等固態腫瘤係CD38陽性及/或與這些免疫抑制性細胞之高水平相關聯。 The present invention provides a method of treating a patient having a solid tumor with an antibody that specifically binds to CD38, regardless of whether the tumor cell exhibits CD38. The invention further provides methods for treating a condition having a disease modifying T cell (Treg), bone marrow derived suppressor cell (MDSC), or a disease modulating B cell (Breg) vector. The invention further provides methods for modulating Treg, MDSC, or Breg activity to treat solid tumors that are CD38 positive and/or associated with high levels of these immunosuppressive cells.

本發明係至少部分地基於以下發現,即抗CD38抗體DARZALEXTM(達拉單抗(daratumumab))在病患中具有免疫調節活 性,其減少免疫抑制性Treg、MDSC、及Breg之數目,增加CD8+ T細胞之數目及CD8+對Treg之比率,促進CD8+中央記憶細胞形成,及增加T細胞純系性。 The present invention is based, at least in part, on the discovery that the anti-CD38 antibody DARZALEX (TM) (daratumumab) has immunomodulatory activity in patients, which reduces the number of immunosuppressive Tregs, MDSCs, and Bregs, increases CD8 the number of + and CD8 + T cells to Treg ratio, the facilitate formation of CD8 + central memory cells, and increased T cell clonal.

臨床上正評估DARZALEXTM(達拉單抗)及其他抗CD38抗體治療血基質惡性腫瘤及漿細胞病症之功效,包括多發性骨髓瘤,其係藉由該抗體藉由抗體效應功能(諸如ADCC、CDC、ACDP、及細胞凋亡)消除CD38-陽性細胞之能力,但是其等在促進適應性免疫反應中之免疫調節活性尚未被認識。其他免疫調節抗體(抗PD1、抗CTLA4)透過靶向免疫系統之抑制抗瘤反應的組分起作用。例如,抗PD1抗體已被展示增加T細胞增生,刺激抗原特異性記憶反應,且部分減輕在體外Treg媒介之效應T細胞的抑制(例如參見,美國專利第8,779,105號)。兩種抗PD-1抗體目前被核准用於黑色素瘤的治療,OPDIVO®(尼沃魯單抗(nivolumab))及KEYTRUDA®(派立珠單抗(pembrolizumab)),且這些抗體處於各種固態腫瘤之臨床開發中,諸如非小細胞肺癌、前列腺癌、頭部及頸部癌、胃腸癌、胃癌、前列腺癌、輸卵管癌、卵巢癌、胰腺癌、乳癌及腦癌、腎癌、膀胱癌、尿道癌、食管癌、及結腸直腸癌。抗CTLA-4抗體YERVOY®(伊匹單抗(ipilimumab))已被核准用於黑色素瘤的治療。YERVOY®(伊匹單抗)及另一個抗CTLA-4抗體(曲美木單抗(tremelimumab))亦正開發用於前列腺癌、非小細胞肺癌、卵巢癌、胃腸癌、胃癌、結腸直腸癌、腎癌、食管癌、及泌尿生殖癌。 Positive clinical evaluation DARZALEX TM (Dara mAb) anti-CD38 antibody therapy and other heme and plasma cell tumor efficacy of disorders, including multiple myeloma, by which lines the antibody by antibody effector functions (such as the ADCC, CDC, ACDP, and apoptosis) have the ability to eliminate CD38-positive cells, but their immunomodulatory activity in promoting adaptive immune responses has not been recognized. Other immunomodulatory antibodies (anti-PD1, anti-CTLA4) act by targeting components of the immune system that inhibit anti-tumor responses. For example, anti-PD1 antibodies have been shown to increase T cell proliferation, stimulate antigen-specific memory responses, and partially alleviate the inhibition of effector T cells in vitro Treg vectors (see, e.g., U.S. Patent No. 8,779,105). Two anti-PD-1 antibodies are currently approved for the treatment of melanoma, OPDIVO® (nivolumab) and KEYTRUDA® (pembrolizumab), and these antibodies are in various solid tumors Clinical development, such as non-small cell lung cancer, prostate cancer, head and neck cancer, gastrointestinal cancer, stomach cancer, prostate cancer, fallopian tube cancer, ovarian cancer, pancreatic cancer, breast cancer and brain cancer, kidney cancer, bladder cancer, urethra Cancer, esophageal cancer, and colorectal cancer. The anti-CTLA-4 antibody YERVOY® (ipilimumab) has been approved for the treatment of melanoma. YERVOY® (ipimumab) and another anti-CTLA-4 antibody (tremelimumab) are also being developed for prostate cancer, non-small cell lung cancer, ovarian cancer, gastrointestinal cancer, gastric cancer, colorectal cancer. , kidney cancer, esophageal cancer, and genitourinary cancer.

不希望受任何特定理論束縛,基於用本文所述之DARZALEXTM(達拉單抗)觀察到之免疫調節效應,DARZALEXTM(達拉單抗)及其他抗CD38抗體可能在固態腫瘤之治療中係有效的。因在經DARZALEXTM(達拉單抗)治療之病患中觀察到免疫反應之一般活化,患有CD38-陰性固態腫瘤之病患可能同樣會對抗CD38抗體療法反應。 Without wishing to be bound by any particular theory, based on the immunomodulatory effects observed with the herein DARZALEX TM (Dara mAb), DARZALEX TM (Dara mAb) and other anti-CD38 antibodies may be tied in the treatment of solid tumors Effective. Patients with CD38-negative solid tumors may also respond to CD38 antibody therapy responses due to the general activation of the immune response observed in patients treated with DARZALEXTM (dalacil ) .

本發明提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該固態腫瘤的時間。 The present invention provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a period of time sufficient to treat the solid tumor.

本發明亦提供一種治療患有調節T細胞(Treg)媒介之疾病之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該Treg媒介之疾病的時間。 The invention also provides a method of treating a patient having a disease modulating a T cell (Treg) vector, comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a period of time sufficient to treat The time of the disease in the Treg medium.

本發明亦提供一種治療患有骨髓衍生抑制細胞(MDSC)媒介之疾病之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該MDSC媒介之疾病的時間。 The invention also provides a method of treating a condition of a disease having a bone marrow-derived suppressor cell (MDSC) vector, comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a sufficient period of time The time to treat the disease of the MDSC vector.

本發明亦提供一種治療患有調節B細胞(Breg)媒介之疾病之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該Breg媒介之疾病的時間。 The invention also provides a method of treating a patient having a disease modulating a B cell (Breg) vector comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a period of time sufficient to treat The time of the disease in the Breg medium.

本發明亦提供一種抑制調節T細胞(Treg)之活性的方法,其包含使該調節T細胞接觸特異性結合CD38之抗體。 The invention also provides a method of inhibiting the activity of a regulatory T cell (Treg) comprising contacting the regulatory T cell with an antibody that specifically binds to CD38.

本發明亦提供一種抑制骨髓衍生抑制細胞(MDSC)之活性的方法,其包含使該MDSC接觸特異性結合CD38之抗體。 The invention also provides a method of inhibiting the activity of a bone marrow-derived suppressor cell (MDSC) comprising contacting the MDSC with an antibody that specifically binds to CD38.

本發明亦提供一種抑制調節B細胞(Breg)之活性的方法,其包含使該Breg接觸特異性結合CD38之抗體。 The invention also provides a method of inhibiting the activity of a regulatory B cell (Breg) comprising contacting the Breg with an antibody that specifically binds to CD38.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含藉由向該病患投予特異性結合CD38之抗體來減少該病患中調節T細胞(Treg)之數目。 The present invention also provides a method of treating a patient having a solid tumor comprising reducing the number of regulatory T cells (Tregs) in the patient by administering to the patient an antibody that specifically binds to CD38.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含藉由向該病患投予特異性結合CD38之抗體來減少該病患中骨髓衍生抑制細胞(MDSC)之數目。 The present invention also provides a method of treating a patient having a solid tumor comprising reducing the number of bone marrow-derived suppressor cells (MDSCs) in the patient by administering to the patient an antibody that specifically binds to CD38.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含藉由向該病患投予特異性結合CD38之抗體來減少該病患中調節B細胞(Breg)之數目。 The present invention also provides a method of treating a patient having a solid tumor comprising reducing the number of regulatory B cells (Breg) in the patient by administering to the patient an antibody that specifically binds to CD38.

本發明亦提供一種增強病患之免疫反應的方法,其包含向有彼之需要之該病患投予特異性結合CD38之抗體達一段足以增強該免疫反應的時間。 The invention also provides a method of enhancing an immune response in a patient comprising administering to the patient in need thereof an antibody that specifically binds to CD38 for a time sufficient to enhance the immune response.

在一些實施例中,該病患患有病毒感染。 In some embodiments, the patient has a viral infection.

本發明亦提供一種治療患有病毒感染之病患的方法,其包含向有彼之需要之該病患投予特異性結合CD38之抗體達一段足以治療該病毒感染的時間。 The invention also provides a method of treating a patient suffering from a viral infection comprising administering to the patient in need thereof an antibody that specifically binds to CD38 for a time sufficient to treat the viral infection.

在一些實施例中,該免疫反應係效應T細胞(Teff)反應。 In some embodiments, the immune response is an effector T cell (Teff) response.

在一些實施例中,該Teff反應係由CD4+ T細胞或CD8+ T細胞媒介。 In some embodiments, the Teff reaction is by CD4 + T cells or CD8 + T cells.

在一些實施例中,該Teff反應係由CD4+ T細胞媒介。 In some embodiments, the Teff reaction is mediated by CD4 + T cells.

在一些實施例中,該Teff反應係由CD8+ T細胞媒介。 In some embodiments, the Teff reaction is mediated by CD8 + T cells.

在一些實施例中,該Teff反應係CD8+ T細胞之數目的增加、CD8+ T細胞增生的增加、T細胞純系擴增的增加、CD8+記憶細胞形成的增加、抗原依賴性抗體產生的增加、或細胞介素、趨化介素、或介白素產生的增加。 In some embodiments, the Teff response is an increase in the number of CD8 + T cells, an increase in CD8 + T cell proliferation, an increase in T cell pure line expansion, an increase in CD8 + memory cell formation, an increase in antigen-dependent antibody production. , or an increase in the production of interleukins, chemokines, or interleukins.

T細胞之增生可例如藉由使用氚化胸苷測量DNA合成之速率,或測量體外干擾素-γ(IFN-γ)之產生,或使用已知方法測量病患樣本之細胞群中T細胞之絕對數目或百分比來評估。 The proliferation of T cells can be measured, for example, by measuring the rate of DNA synthesis using tritiated thymidine, or measuring the production of interferon-γ (IFN-γ) in vitro, or measuring T cells in a cell population of a patient sample using known methods. The absolute number or percentage is evaluated.

純系擴增可藉由例如使用已知方法定序T細胞池之TCR來評估。 Pure lineage amplification can be assessed by, for example, sequencing the TCR of a T cell pool using known methods.

記憶細胞之形成可藉由使用例如FACS測量初始(nave)T細胞(CD45RO-/CD62L+)對記憶T細胞(CD45RO+/CD62L)之比率來評估。 The formation of memory cells can be measured by using, for example, FACS (na Ve) T cells (CD45RO - /CD62L + ) were evaluated for the ratio of memory T cells (CD45RO + /CD62L high ).

細胞介素、趨化介素、或介白素之產生(諸如干擾素-γ(IFN-γ)、腫瘤壞死因子-α(TNF-α)、IL-1、IL-2、IL-3、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-16、IL-18、及IL-23、MIP-1α、MIP-1β、RANTES、CCL4的產生)可使用標準方法諸如ELISA或ELLISPOT測定評估。 Production of interleukins, chemokines, or interleukins (such as interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), IL-1, IL-2, IL-3, IL- 4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-16, IL-18, and IL-23, MIP-1α, MIP-1β, RANTES, CCL4 production) Evaluation is performed using standard methods such as ELISA or ELLISPOT assays.

抗原特異性抗體之產生可使用標準方法(諸如ELISA或放射免疫測定(RIA))從衍生自病患之樣本評估。 The production of antigen-specific antibodies can be assessed from samples derived from patients using standard methods such as ELISA or radioimmunoassay (RIA).

「增加(increase或increasing)」各種Teff反應之含義係易於理解的。在測試樣本中或在對象中當相較於對照時,舉例而 言,例如在經抗CD38抗體治療的病患中當相較於治療之前的相同病患時,或在對抗CD38抗體治療作出反應之病患或病患之群組中當相較於對相同治療未作出反應之病患或病患之群組中,增加可係增加至少約5%、至少約10%、25%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、100%、110%、120%、130%、140%、150%、200%、250%、300%、350%、400%、或更多。通常,增加係統計學顯著的。 The meaning of "increase or increasing" various Teff reactions is easy to understand. In the test sample or in the object when compared to the control, for example For example, in patients treated with anti-CD38 antibodies, when compared to the same patients before treatment, or in groups of patients or patients who respond to anti-CD38 antibody therapy, compared to the same treatment In a group of patients or patients who have not responded, the increase may be increased by at least about 5%, at least about 10%, 25%, 50%, 51%, 52%, 53%, 54%, 55%, 56. %, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89% , 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, 110%, 120%, 130%, 140%, 150%, 200 %, 250%, 300%, 350%, 400%, or more. Generally, the increase is statistically significant.

類似地,「減少(reduce或reducing)」或「降低(decreasing或decrease)」Treg、MDSC、及/或Breg之數目之含義係易於理解的。在測試樣本中或在對象中當相較於對照時,舉例而言,例如在經抗CD38抗體治療的病患中當相較於治療之前的相同病患時,或在對抗CD38抗體治療作出反應之病患或病患之群組中當相較於對相同治療未作出反應之病患或病患之群組中,降低可係至少約10%、25%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、100%、110%、120%、130%、140%、150%、200%、250%、300%、350%、400%、或更多。一般而言,降低係統計學顯著的。 Similarly, the meaning of "reduce or reducing" or "decreasing or decrease" the number of Treg, MDSC, and/or Breg is readily understood. In a test sample or in a subject when compared to a control, for example, in a patient treated with an anti-CD38 antibody, when compared to the same patient prior to treatment, or in response to anti-CD38 antibody therapy In a group of patients or patients, the reduction may be at least about 10%, 25%, 50%, 51%, 52% compared to a group of patients or patients who have not responded to the same treatment. , 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69 %, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, 110%, 120% , 130%, 140%, 150%, 200%, 250%, 300%, 350%, 400%, or more. In general, the reduction is statistically significant.

在一些實施例中,特異性結合CD38之抗體抑制免疫抑制細胞之功能。 In some embodiments, an antibody that specifically binds to CD38 inhibits the function of an immunosuppressive cell.

在一些實施例中,免疫抑制細胞係調節T細胞(Treg)、骨髓衍生抑制細胞(MDSC)、或調節B細胞(Breg)。 In some embodiments, the immunosuppressive cell line modulates T cells (Tregs), bone marrow derived suppressor cells (MDSCs), or modulates B cells (Bregs).

在一些實施例中,Treg係CD3+CD4+CD25+CD127dim T細胞。 In some embodiments, the Treg is a CD3 + CD4 + CD25 + CD127 dim T cell.

在一些實施例中,CD3+CD4+CD25+CD127dim細胞表現Foxp3。 In some embodiments, the CD3 + CD4 + CD25 + CD127 dim cells exhibit Foxp3.

在一些實施例中,CD3+CD4+CD25+CD127dim T細胞表現CD38。 In some embodiments, the CD3 + CD4 + CD25 + CD127 dim T cells exhibit CD38.

Treg功能,諸如其等抑制Teff細胞之能力,可使用已知方法評估,諸如評估混合淋巴球反應(MLR)中Treg抑制Teff增生之能力。 The ability of the Treg function, such as its ability to inhibit Teff cells, can be assessed using known methods, such as assessing the ability of Treg to inhibit Teff proliferation in mixed lymphocyte response (MLR).

Treg功能可藉由例如透過直接殺滅Treg或Treg之亞群(諸如CD38+ Treg)減少Treg當相較於Teff時的相對數目(例如增加CD8+/Treg細胞之比率)來抑制。 The Treg function can be inhibited by, for example, reducing the relative number of Tregs when compared to Teff (e.g., increasing the ratio of CD8 + /Treg cells) by directly killing a subset of Treg or Treg (such as CD38 + Treg).

在一些實施例中,Treg功能係藉由殺滅Treg細胞來抑制。 In some embodiments, the Treg function is inhibited by killing Treg cells.

在一些實施例中,Treg殺滅係藉由抗體誘導之抗體依賴性細胞毒性(ADCC)、抗體依賴性細胞吞噬作用(ADCP)、補體依賴性細胞毒性(CDC)、或特異性結合CD38之抗體所誘導的細胞凋亡來媒介。 In some embodiments, Treg killing is by antibody-induced antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), or antibody that specifically binds to CD38 The induced apoptosis is mediated.

在一些實施例中,Treg殺滅係藉由ADCC媒介。 In some embodiments, Treg killing is by ADCC medium.

在一些實施例中,CD38+ Treg係被殺滅的。 In some embodiments, the CD38 + Treg is killed.

在一些實施例中,1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、或60%的Treg係被殺滅的。 In some embodiments, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15% , 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32 %, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, or 60% of the Treg were killed.

由於CD38僅在Treg及MDSC之一部分中表現,所以預期治療患有固態腫瘤之病患將不會導致Treg及MDSC之全身性損耗,因此可能提供改善的安全概況。 Since CD38 is only expressed in one part of Treg and MDSC, it is expected that treatment of patients with solid tumors will not result in systemic loss of Treg and MDSC and thus may provide an improved safety profile.

在一些實施例中,MDSC係CD11b+HLA-DR-CD14- CD33+CD15+細胞。 In some embodiments, the MDSC is a CD11b + HLA-DR - CD14 - CD33 + CD15 + cell.

在一些實施例中,CD11b+HLA-DR-CD14-CD33+CD15+ MDSC表現CD38。 In some embodiments, CD11b + HLA-DR - CD14 - CD33 + CD15 + MDSC represents CD38.

MDSC功能可例如藉由透過直接殺滅該等細胞減少MDSC之數目來抑制。 The MDSC function can be inhibited, for example, by reducing the number of MDSCs by directly killing the cells.

在一些實施例中,MDSC功能係藉由殺滅CD38+ MDSC來抑制。 In some embodiments, the MDSC function is inhibited by killing CD38 + MDSC.

在一些實施例中,MDSC殺滅係藉由抗體誘導之抗體依賴性細胞毒性(ADCC)、抗體依賴性細胞吞噬作用(ADCP)、補體依賴性細胞毒性(CDC)、或特異性結合CD38之抗體所誘導的細胞凋亡來媒介。 In some embodiments, MDSC killing is by antibody-induced antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), or antibodies that specifically bind to CD38 The induced apoptosis is mediated.

在一些實施例中,MDSC殺滅係藉由ADCC媒介。 In some embodiments, the MDSC kill is by the ADCC medium.

在一些實施例中,1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、或60%的MDSC係被殺滅的。 In some embodiments, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15% , 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32 %, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, or 60% of the MDSC lines were killed.

在一些實施例中,Breg係CD19+CD24+CD38+細胞。 In some embodiments, the Breg is a CD19 + CD24 + CD38 + cell.

Breg功能可例如藉由透過直接殺滅Breg減少Breg之數目來抑制。 The Breg function can be inhibited, for example, by reducing the number of Bregs by directly killing Breg.

在一些實施例中,Breg功能係藉由殺滅CD38+ Breg來抑制。 In some embodiments, the Breg function is inhibited by killing CD38 + Breg.

在一些實施例中,Breg殺滅係藉由抗體誘導之抗體依賴性細胞毒性(ADCC)、抗體依賴性細胞吞噬作用(ADCP)、補體依賴性細胞毒性(CDC)、或特異性結合CD38之抗體所誘導的細胞凋亡來媒介。 In some embodiments, Breg killing is by antibody-induced antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), or antibodies that specifically bind to CD38 The induced apoptosis is mediated.

在一些實施例中,Breg殺滅係藉由ADCC媒介。 In some embodiments, Breg killing is by ADCC medium.

在一些實施例中,1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、或60%的Breg係被殺滅的。 In some embodiments, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15% , 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32 %, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, or 60% of the Breg were killed.

Treg在維持周邊身耐受性中起關鍵作用。天然發生之CD4+CD25hi Treg係產生於胸腺中,並表現Foxp3,其係用於建立及維持Treg譜系鑑別及抑制功能所需的轉錄因子。Treg可聚積在疾病部位(例如在腫瘤內),在該處其等抑制腫瘤抗原特異性T細胞之效應功能,導致抗瘤反應不足。腫瘤浸潤Foxp3+ Treg之增加的密度與各種固態腫瘤(包括胰腺癌、卵巢癌、及肝細胞癌)中之不良預後相關聯。Treg之損耗導致鼠類模型中之抗瘤免疫及腫瘤排斥增強,但亦可導致自體免疫疾病之發展。 Treg plays a key role in maintaining peripheral tolerance. The naturally occurring CD4 + CD25 hi Treg is produced in the thymus and exhibits Foxp3, which is used to establish and maintain transcription factors required for Treg lineage identification and inhibition. Treg can accumulate in disease sites (eg, in tumors) where it inhibits the effector function of tumor antigen-specific T cells, resulting in an insufficient anti-tumor response. The increased density of tumor infiltrating Foxp3 + Treg is associated with poor prognosis in various solid tumors, including pancreatic cancer, ovarian cancer, and hepatocellular carcinoma. The loss of Treg leads to enhanced anti-tumor immunity and tumor rejection in the murine model, but can also lead to the development of autoimmune diseases.

骨髓衍生抑制細胞(MDSC)係在不同分化階段之早期骨髓前驅細胞、未成熟顆粒球、巨噬細胞、及樹突細胞之異質性族群。其等大量聚積於癌症病患中,且其等具有強力的免疫抑制性功能,抑制自然殺手細胞(NK)及自然殺手T細胞(NKT)兩者之細胞毒性活性、及由CD8+ T細胞媒介之適應性免疫反應。儘管NK細胞抑制之機制目前未被很好地理解,但MDSC媒介之T細胞抑制係由多個途徑負責,包括精胺酸酶1/ARG1之產生及一氧化氮合成酶2(NOS2)之上調。ARG1及NOS2代謝L-精胺酸,且係一起或分開地阻斷T細胞CD3ζ鏈之轉譯,抑制T細胞增生,及促進T細胞凋亡。此外,MDSC分泌免疫抑制性細胞介素並誘導調節T細胞發展。 Bone marrow-derived suppressor cells (MDSCs) are heterogeneous populations of early bone marrow precursor cells, immature granule cells, macrophages, and dendritic cells at different stages of differentiation. They are abundantly accumulated in cancer patients, and they have potent immunosuppressive functions, inhibiting the cytotoxic activity of both natural killer cells (NK) and natural killer T cells (NKT), and by CD8 + T cell media. Adaptive immune response. Although the mechanism of NK cell inhibition is currently not well understood, the T cell inhibition of MDSC vectors is responsible for multiple pathways, including the production of arginase 1/ARG1 and upregulation of nitric oxide synthase 2 (NOS2). . ARG1 and NOS2 metabolize L-arginine and block the translation of T cell CD3 ζ chain together, or separately, inhibit T cell proliferation, and promote T cell apoptosis. In addition, MDSC secretes immunosuppressive interleukins and induces regulation of T cell development.

MDSC係由促發炎細胞介素誘導,且在感染性及發炎性病理狀態中發現數目增加。其等聚積於荷瘤小鼠之血液、骨髓、及次級淋巴器官中,且其等在腫瘤微環境中的存在表明在促進腫瘤相關之免疫抑制中起致病作用。 MDSC is induced by proinflammatory cytokines and is found to increase in infectious and inflammatory pathological conditions. They accumulate in the blood, bone marrow, and secondary lymphoid organs of tumor-bearing mice, and their presence in the tumor microenvironment indicates a pathogenic role in promoting tumor-associated immunosuppression.

MDSC已描述於患有結腸癌、黑色素瘤、肝細胞癌、頭部及頸部鱗狀細胞癌、非小細胞肺癌、腎細胞癌、胰腺癌、及乳癌之病患中(Mandruzzato等人,(2009)J Immunol 182:6562-6568;Liu等人,(2009)J Cancer Res Clin Oncol 136:35-45;Ko等人,(2009)Clin Cancer Res 15:2148-2157;Morse等人,(2009)Expert Opin Biol Ther 9:331-339;Diaz-Montero等人,(2009)Cancer Immunol Immunother 58:49-59;Corzo等人,(2009)J Immunol 182:5693-5701)。在癌症病患中,Diaz等人(Diaz-Montero等人,(2009)Cancer Immunol Immunother 58:49-59)提出MDSC之聚積與更加嚴重的疾病及不良的預後相關。 MDSC has been described in patients with colon cancer, melanoma, hepatocellular carcinoma, squamous cell carcinoma of the head and neck, non-small cell lung cancer, renal cell carcinoma, pancreatic cancer, and breast cancer (Mandruzzato et al., ( 2009) J Immunol 182:6562-6568; Liu et al, (2009) J Cancer Res Clin Oncol 136: 35-45; Ko et al, (2009) Clin Cancer Res 15: 2148-2157; Morse et al, (2009) Expert Opin Biol Ther 9: 331-339; Diaz-Montero et al, (2009) Cancer Immunol Immunother 58: 49-59; Corzo et al, (2009) J Immunol 182: 5693-5701). In cancer patients, Diaz et al. (Diaz-Montero et al. (2009) Cancer Immunol Immunother 58: 49-59) suggest that the accumulation of MDSC is associated with more severe disease and poor prognosis.

腫瘤浸潤Breg已在固態腫瘤中鑑定出,且Breg可藉由各種機制促進腫瘤生長及轉移,諸如抑制CD8+ T細胞及NK細胞之抗瘤活性,如例如Ding等人,(2015)Human Immunology 76:615-62中所述。 Tumor infiltrating Breg has been identified in solid tumors, and Breg can promote tumor growth and metastasis by various mechanisms, such as inhibiting the antitumor activity of CD8 + T cells and NK cells, as for example, Ding et al., (2015) Human Immunology 76 :615-62.

「抗體依賴性細胞毒性」、「抗體依賴性細胞媒介的細胞毒性」、或「ADCC」是一種誘導細胞死亡的機制,其取決於抗體包覆的目標細胞與具有裂解活性的效應細胞(諸如自然殺手細胞、單核球、巨噬細胞、及嗜中性球)之間經由效應細胞上表現的Fcγ受體(FcγR)的相互作用。例如,NK細胞表現FcγRIIIa,而單核球表現FcγRI、FcγRII、及FcvRIIIa。抗體包覆的目標細胞(諸如CD38表現細胞)的死亡會發生是由於效應細胞活性,其係透過分泌膜孔形成蛋白(membrane pore-forming protein)及蛋白酶。為了評估特異性結合CD38之抗體的ADCC活性,可將該抗體加入至CD38表現細胞與免疫效應細胞的組合,該等免疫效應細胞可被抗原抗體複合物活化而導致目標細胞的細胞裂解。細胞裂解一般是透過從裂解細胞中釋放的標記(例如放射性基質、螢光染料、或天然的細胞內蛋白質)來偵測。用於該等測定之例示性效應細胞包括周邊血液單核細胞(PBMC)及NK細胞。例示性目標細胞包括表現CD38之Treg或MDSC。在一例示性測定中,將目標細胞以20μCi的51Cr標記2小時並徹底清洗。可將該等目標細胞的細胞濃度調整至1×106細胞/ml,並加入各種濃度的抗 CD38抗體。以效應:目標細胞比率為40:1加入目標細胞以開始測定。於37℃培養3小時後,以離心停止測定,並在閃爍計數器中測量從裂解細胞中釋放出的51Cr。細胞毒性百分比可計算為加入3%過氯酸至目標細胞中可誘導的最大裂解百分比。 "Antibody-dependent cytotoxicity", "antibody-dependent cellular cytotoxicity", or "ADCC" is a mechanism for inducing cell death depending on the antibody-coated target cells and effector cells having lytic activity (such as nature). Interaction between Fcγ receptors (FcγR) expressed on effector cells between killer cells, monocytes, macrophages, and neutrophils. For example, NK cells express FcγRIIIa, while monocytes exhibit FcγRI, FcγRII, and FcvRIIIa. The death of antibody-coated target cells (such as CD38-expressing cells) occurs due to effector cell activity through the secretion of membrane pore-forming proteins and proteases. To assess the ADCC activity of an antibody that specifically binds to CD38, the antibody can be added to a combination of CD38 expressing cells and immune effector cells that can be activated by the antigen-antibody complex to cause cell lysis of the target cell. Cell lysis is typically detected by a label (eg, a radioactive matrix, a fluorescent dye, or a native intracellular protein) released from the lysed cells. Exemplary effector cells for such assays include peripheral blood mononuclear cells (PBMC) and NK cells. Exemplary target cells include Tregs or MDSCs that express CD38. In an exemplary assay, target cells were labeled with 20 μCi of 51 Cr for 2 hours and washed thoroughly. The cell concentration of these target cells can be adjusted to 1 × 10 6 cells/ml, and various concentrations of anti-CD38 antibodies are added. Effect: The target cell ratio was 40:1 added to the target cells to start the assay. After incubation at 37 ° C for 3 hours, the assay was stopped by centrifugation and 51 Cr released from the lysed cells was measured in a scintillation counter. The percent cytotoxicity can be calculated as the maximum percentage of lysis that can be induced by the addition of 3% perchloric acid to the target cells.

「抗體依賴性細胞吞噬作用」(「ADCP」)係指一種透過吞噬細胞(諸如巨噬細胞或樹突細胞)內化(internalization)以消滅抗體包覆的目標細胞的機制。ADCP可藉由使用表現CD38之Treg或MDSC作為目標細胞(其等經工程改造以表現GFP或其他標記分子)來評估。效應:目標細胞比率可為例如4:1。可將效應細胞與目標細胞在抗CD38抗體存在或不存在的情況下一起培養4小時。培養後,可使用細胞剝離液(accutase)將細胞分離。巨噬細胞可用偶接螢光標記的抗CD11b及抗CD14抗體來鑑定,且吞噬作用百分比可基於在該等CD11+CD14+巨噬細胞中的GFP螢光%使用標準方法判定。 "Antibody-dependent cellular phagocytosis"("ADCP") refers to a mechanism by which internal cells of phagocytic cells, such as macrophages or dendritic cells, are internalized to destroy antibody-coated target cells. ADCP can be assessed by using Treg or MDSCs that express CD38 as target cells (which are engineered to express GFP or other marker molecules). Effect: The target cell ratio can be, for example, 4:1. The effector cells can be cultured together with the target cells for 4 hours in the presence or absence of anti-CD38 antibodies. After the culture, the cells can be separated using an accutase. Macrophages can be identified by conjugated fluorescently labeled anti-CD11b and anti-CD14 antibodies, and the percentage of phagocytosis can be determined using standard methods for GFP fluorescence in such CD11 + CD14 + macrophages.

「補體依賴性細胞毒性(complement-dependent cytotoxicity)」或「CDC」係指一種誘導細胞死亡的機制,其中與目標結合之抗體的Fc效應域結合並活化補體成分C1q,其轉而再活化補體級聯反應而引起目標細胞死亡。補體的活化亦可導致補體成分沉積在該目標細胞表面上,藉由結合白血球上的補體受體(例如CR3)而促進ADCC。 "Complement-dependent cytotoxicity" or "CDC" refers to a mechanism that induces cell death in which the Fc effector domain of an antibody that binds to a target binds to and activates the complement component C1q, which in turn reactivates the complement level. The reaction causes the target cell to die. Activation of complement can also result in the deposition of complement components on the surface of the target cell, which promotes ADCC by binding to complement receptors (e.g., CR3) on white blood cells.

單株抗體誘導ADCC之能力可藉由工程改造其寡醣成分來增強。人類IgG1或IgG3係在Asn297處經N-醣基化並且大部分聚醣係呈熟知之雙觸角(biantennary)G0、G0F、G1、G1F、G2、或G2F形式。由未經工程改造之CHO細胞所生產之抗體通常具有約至少85%之聚醣海藻糖(glycan fucose)含量。自附接至Fc區之雙觸角複合型寡醣移除核心海藻糖經由改善FcγRIIIa結合且不改變抗原結合或CDC活性來增強抗體之ADCC。該等mAb可使用已報導會引起成功表現相對高量去海藻糖基化(defucosylated)抗體(帶有雙觸角複合型之Fc寡醣)的不同方法來達成,諸如控制培育滲透壓(Konno等人,(2012)Cytotechnology 64:249-65)、應用變異體CHO株Lec13作為宿主細胞系(Shields等人,(2002)J Biol Chem 277:26733-26740)、 應用變異體CHO株EB66作為宿主細胞系(Olivier等人,(2010)MAbs 2(4),Epub ahead of print;PMID:20562582)、應用大鼠融合瘤細胞系YB2/0作為宿主細胞系(Shinkawa等人,(2003)J Biol Chem 278:3466-3473)、引入專門針對α1,6-岩藻糖基轉移酶(1,6-fucosyltrasferase,FUT8)基因之短小干擾RNA(Mori等人,(2004)Biotechnol Bioeng 88:901-908)、或共表現β-1,4-N-乙醯葡糖胺基轉移酶III(β-1,4-N-acetylglucosaminyltransferase III)及高基氏α-甘露糖苷酶II(Golgi α-mannosidase II)或基夫鹼(kifunensine)(一種強效α-甘露糖苷酶I抑制劑)(Ferrara等人,(2006)J Biol Chem 281:5032-5036;Ferrara等人,(2006)Biotechnol Bioeng 93:851-861;Xhou等人,(2008)Biotechnol Bioeng 99:652-65)。由在本發明之方法中,以及在以下每一個編號實施例的一些實施例中所使用的抗CD38抗體所引發的ADCC亦可藉由在抗體Fc中的某些取代來增強。例示性取代例如為在胺基酸位置256、290、298、312、356、330、333、334、360、378、或430處之取代(殘基編號根據EU索引),如美國專利第6,737,056號中所述。 The ability of a single antibody to induce ADCC can be enhanced by engineering its oligosaccharide component. The human IgGl or IgG3 line is N-glycosylated at Asn297 and most of the glycans are in the well-known biantennary G0, G0F, G1, G1F, G2, or G2F form. Antibodies produced from unengineered CHO cells typically have a glycan fucose content of at least about 85%. The dual-antennary complex oligosaccharide attached to the Fc region removes core trehalose to enhance the ADCC of the antibody by improving FcγRIIIa binding without altering antigen binding or CDC activity. Such mAbs can be achieved using different methods that have been reported to result in successful performance of relatively high amounts of defucosylated antibodies (Fc oligosaccharides with a biantennary complex), such as control of osmotic pressure (Konno et al. (2012) Cytotechnology 64: 249-65), using the variant CHO strain Lec13 as a host cell line (Shields et al. (2002) J Biol Chem 277:26733-26740), and using variant CHO strain EB66 as a host cell line (Olivier et al., (2010) MAbs 2(4), Epub ahead of print; PMID: 20562582), using the rat fusion tumor cell line YB2/0 as a host cell line (Shinkawa et al., (2003) J Biol Chem 278) :3466-3473), introducing a short interfering RNA specific for the α1,6-fucosyltrasferase ( FUT8 ) gene (Mori et al. (2004) Biotechnol Bioeng 88:901-908), co-expression or β-1,4- N - acetyl glucosaminyl transferase III (β-1,4-N- acetylglucosaminyltransferase III) and the group's high α- mannosidase II (Golgi α-mannosidase II) or Keefe Kifunensine (a potent alpha-mannosidase I inhibitor) (Ferrara et al., (2006) J Biol Chem 281:503 2-5036; Ferrara et al, (2006) Biotechnol Bioeng 93: 851-861; Xhou et al, (2008) Biotechnol Bioeng 99: 652-65). The ADCC elicited by the anti-CD38 antibodies used in the methods of the invention, as well as in some of the examples of each of the following numbering examples, can also be enhanced by certain substitutions in the antibody Fc. Exemplary substitutions are, for example, substitutions at positions 256, 290, 298, 312, 356, 330, 333, 334, 360, 378, or 430 of the amino acid (residue numbering according to the EU index), such as U.S. Patent No. 6,737,056 Said in the middle.

在一些實施例中,特異性結合CD38之抗體包含在抗體Fc中的一個取代。 In some embodiments, an antibody that specifically binds to CD38 comprises a substitution in an antibody Fc.

在一些實施例中,特異性結合CD38之抗體包含在抗體Fc中胺基酸位置256、290、298、312、356、330、333、334、360、378、或430處的一個取代(殘基編號根據EU索引)。 In some embodiments, the antibody that specifically binds to CD38 comprises a substitution (residue) at amino acid position 256, 290, 298, 312, 356, 330, 333, 334, 360, 378, or 430 in antibody Fc. The number is based on the EU index).

在一些實施例中,特異性結合CD38之抗體具有雙觸角聚醣結構,其海藻糖含量係約介於0%至約15%之間,例如15%、14%、13%、12%、11% 10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、或0%。 In some embodiments, the antibody that specifically binds to CD38 has a biantennary glycan structure with a trehalose content of between about 0% and about 15%, such as 15%, 14%, 13%, 12%, 11 % 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0%.

在一些實施例中,特異性結合CD38之抗體具有雙觸角聚醣結構,其海藻糖含量係約50%、40%、45%、40%、35%、30%、25%、20%、15%、14%、13%、12%、11% 10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、或0%。 In some embodiments, the antibody that specifically binds to CD38 has a biantennary glycan structure with a trehalose content of about 50%, 40%, 45%, 40%, 35%, 30%, 25%, 20%, 15 %, 14%, 13%, 12%, 11% 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0%.

Fc中的取代及減少的海藻糖含量可增強該特異性結合CD38之抗體的ADCC活性。 Substitutions in Fc and reduced trehalose content enhance the ADCC activity of this antibody that specifically binds to CD38.

「海藻糖含量(Fucose content)」意指Asn297處糖鏈中海藻糖單醣的量。海藻糖的相對量係含海藻糖的結構相對於所有醣類結構的百分比。這些可藉由多種方法來表徵及定量,例如:1)使用經N-醣苷酶F處理過的樣本(例如複合、雜合、及寡與高甘露糖(oligo-and high-mannose)結構)的MALD1-TOF,如在國際專利公開號WO2008/077546中所述;2)酶促釋放Asn297聚醣,隨後衍生化並藉由HPLC(UPLC)以螢光偵測及/或HPLC-MS(UPLC-MS)來偵測/定量;3)天然或還原mAb的完整蛋白質分析,將Asn297聚醣以Endo S或其他會在第一與第二GlcNAc單醣之間切割而留下連接至第一GlcNAc的海藻糖的酵素處理或不經處理;4)以酶消化法(enzymatic digestion)(例如胰蛋白酶或內肽酶Lys-C)將mAb消化成構成分(constituent)肽,隨後以HPLC-MS(UPLC-MS)分離、偵測及定量;或5)用PNGase F在Asn 297處進行特異性酶促去醣基化(specific enzymatic deglycosylation)以將mAb寡醣自mAb蛋白分離。該等釋放出的寡醣可用螢光團標記,藉由各種互補的技術分離和鑑定,該等技術允許:藉由基質輔助雷射脫附遊離(MALDI)質譜術比較實驗質量與理論質量以精細表徵聚醣結構、藉由離子交換HPLC(GlycoSep C)判定唾液酸化(sialylation)程度、藉由正相HPLC(GlycoSep N)根據親水性標準(hydrophilicity criteria)分離及定量寡醣形式、及藉由高效毛細管電泳-雷射誘導螢光(HPCE-LIF)分離及定量寡醣。 "Fucose content" means the amount of trehalose monosaccharide in the sugar chain at Asn297. The relative amount of trehalose is the percentage of the structure containing trehalose relative to all saccharide structures. These can be characterized and quantified by a variety of methods, for example: 1) using N-glycosidase F treated samples (eg, complex, heterozygous, and oligo-and high-mannose structures) MALD1-TOF, as described in International Patent Publication No. WO 2008/077546; 2) Enzymatic release of Asn297 glycan, followed by derivatization and detection by fluorescence (HPLC) and/or HPLC-MS (UPLC-PLC) MS) to detect/quantify; 3) complete protein analysis of native or reduced mAbs, cleavage of Asn297 glycans with Endo S or others between the first and second GlcNAc monosaccharides leaving a link to the first GlcNAc The trehalose is treated with or without treatment; 4) the mAb is digested into constituent peptides by enzymatic digestion (eg trypsin or endopeptidase Lys-C) followed by HPLC-MS (UPLC) -MS) isolation, detection and quantification; or 5) specific enzymatic deglycosylation at Asn 297 with PNGase F to separate the mAb oligosaccharide from the mAb protein. The released oligosaccharides can be labeled with fluorophores and separated and identified by a variety of complementary techniques that allow for the comparison of experimental mass and theoretical mass by matrix-assisted laser desorption free (MALDI) mass spectrometry. Characterizing the glycan structure, determining the degree of sialylation by ion exchange HPLC (GlycoSep C), separating and quantifying the oligosaccharide form by normal phase HPLC (GlycoSep N) according to hydrophilicity criteria, and by efficient Capillary electrophoresis-laser induced fluorescence (HPCE-LIF) was used to separate and quantify oligosaccharides.

本文中所使用之「低海藻糖(Low fucose)」或「低海藻糖含量(low fucose content)」係指抗體的海藻糖含量為約0%至15%。 As used herein, "low fucose" or "low fucose content" refers to an antibody having a trehalose content of from about 0% to about 15%.

本文中使用之「正常海藻糖(Normal fucose)」或「正常海藻糖含量(normal fucose content)」係指抗體的海藻糖含量約超過50%,通常約超過60%、70%、80%、或超過85%。 As used herein, "normal fucose" or "normal fucose content" means that the antibody has a trehalose content of more than about 50%, usually more than about 60%, 70%, 80%, or More than 85%.

在一些實施例中,特異性結合CD38之抗體可藉由細胞凋亡來誘導Treg、MDSC、及/或Breg之殺滅。評估細胞凋亡的方法係熟知的,且包括例如使用標準方法進行膜聯蛋白IV(annexin IV)染 色。在本發明之方法中所使用之抗CD38抗體可在約20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、或100%的細胞中誘導細胞凋亡。 In some embodiments, an antibody that specifically binds to CD38 can induce killing of Treg, MDSC, and/or Breg by apoptosis. Methods for assessing apoptosis are well known and include, for example, Annexin IV staining using standard methods. color. The anti-CD38 antibody used in the method of the present invention may be at about 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% Apoptosis was induced in 80%, 85%, 90%, 95%, or 100% of cells.

在一些實施例中,Teff或免疫抑制細胞存在於骨髓中或周邊血液中。 In some embodiments, Teff or immunosuppressive cells are present in the bone marrow or in peripheral blood.

在一些實施例中,Teff或免疫抑制細胞存在於骨髓中。 In some embodiments, Teff or immunosuppressive cells are present in the bone marrow.

在一些實施例中,Teff或免疫抑制細胞存在於周邊血液中。 In some embodiments, Teff or immunosuppressive cells are present in the peripheral blood.

在一些實施例中,特異性結合CD38之抗體增加CD8+ T細胞對Treg之比率。 In some embodiments, an antibody that specifically binds to CD38 increases the ratio of CD8 + T cells to Treg.

在一些實施例中,特異性結合CD38之抗體增加CD8+中央記憶細胞對CD8+初始細胞之比率。CD8+中央記憶細胞可鑑定為CD45RO+/CD62L+高細胞。CD8+初始細胞可鑑定為CD45RO-/CD62L+細胞。 In some embodiments, an antibody that specifically binds to CD38 increases the ratio of CD8 + central memory cells to CD8 + naive cells. CD8 + central memory cells can be identified as CD45RO + /CD62L + high cells. CD8 + naive cells can be identified as CD45RO-/CD62L + cells.

在一些實施例中,特異性結合CD38之抗體係非促效性抗體。 In some embodiments, an anti-system non-promoting antibody that specifically binds to CD38.

特異性結合CD38之非促效性抗體係指在結合至CD38之後,當相較於由同型對照抗體或僅有介質所誘導的增生時,不會誘導體外周邊血液單核細胞樣本之顯著增生的抗體。 A non-agonistic anti-system that specifically binds to CD38 means that after binding to CD38, it does not induce significant proliferation of peripheral peripheral blood mononuclear cell samples when compared to proliferation induced by isotype control antibodies or media alone. antibody.

在一些實施例中,特異性結合CD38之非促效性抗體以統計學不顯著的方式誘導周邊血液單核細胞(PBMC)之增生。PBMC增生可藉由自健康供體單離之PBMC並於200μl RPMI中在測試抗體存在或不存在之情況下以1×105個細胞/孔於平底96孔盤中培育該等細胞來評估。於37℃培養4天後,可添加30μl 3H-胸苷(16.7μCi/ml),且可繼續培育過夜。3H-胸苷併入可使用Packard Cobra加馬計數器(Packard Instruments,Meriden,DT,USA),根據製造商之說明評估。數據可計算為從若干供體獲得之PBMC的平均cpm(±SEM)。介於在測試抗體存在或不存在之情況下所培育之樣本間的統計學顯著性或不顯著性係使用標準方法來計算。 In some embodiments, a non-potentiating antibody that specifically binds to CD38 induces proliferation of peripheral blood mononuclear cells (PBMC) in a statistically insignificant manner. PBMC proliferation can be assessed by culturing the cells from healthy donor-isolated PBMCs in 200 μl RPMI at 1 x 10 5 cells/well in flat-bottom 96-well plates in the presence or absence of test antibodies. After 4 days of culture at 37 ° C, 30 μl of 3 H-thymidine (16.7 μCi/ml) may be added, and incubation may continue for overnight. 3 H-thymidine incorporation can be assessed using a Packard Cobra Plus Horse Counter (Packard Instruments, Meriden, DT, USA) according to the manufacturer's instructions. Data can be calculated as the mean cpm (± SEM) of PBMC obtained from several donors. Statistical significance or insignificance between samples incubated in the presence or absence of a test antibody is calculated using standard methods.

可用於本發明之方法中的例示性抗CD38抗體係DARZALEXTM(達拉單抗)。DARZALEXTM(達拉單抗)包含分別顯示於SEQ ID NO:4及5的重鏈可變區(VH)及輕鏈可變區(VL)胺基酸序列、分別為SEQ ID NO:6、7、及8的重鏈互補決定區1(HCDR1)、HCDR2、及HCDR3、及分別為SEQ ID NO:9、10、及11的輕鏈互補決定區1(LCDR1)、LCDR2、及LCDR3,且係IgG1/κ亞型並描述於美國專利第7,829,693號中。DARZALEXTM(達拉單抗)的重鏈胺基酸序列係顯示於SEQ ID NO:12,且輕鏈胺基酸序列係顯示於SEQ ID NO:13。 An exemplary anti-CD38 anti-system DARZALEX (TM) (dalabiza ) useful in the methods of the invention. DARZALEX TM (Dara mAb) contained are shown in SEQ ID NO: heavy chain variable region (VH) 4 and 5 and a light chain variable region (VL) amino acid sequence, respectively, SEQ ID NO:. 6, The heavy chain complementarity determining region 1 (HCDR1), HCDR2, and HCDR3 of 7, and 8, and the light chain complementarity determining region 1 (LCDR1), LCDR2, and LCDR3 of SEQ ID NOS: 9, 10, and 11, respectively, and The IgG1/κ subtype is described in U.S. Patent No. 7,829,693. The heavy chain amino acid sequence of DARZALEX (TM) (dalacil ) is shown in SEQ ID NO: 12 and the light chain amino acid sequence is shown in SEQ ID NO: 13.

在一些實施例中,特異性結合CD38之抗體與包含SEQ ID NO:4之重鏈可變區(VH)及SEQ ID NO:5之輕鏈可變區(VL)的抗體競爭結合至CD38。 In some embodiments, an antibody that specifically binds to CD38 competes for binding to CD38 with an antibody comprising the heavy chain variable region (VH) of SEQ ID NO: 4 and the light chain variable region (VL) of SEQ ID NO: 5.

在一些實施例中,特異性結合CD38之抗體至少結合至人類CD38(SEQ ID NO:1)之SKRNIQFSCKNIYR(SEQ ID NO:2)區及EKVQTLEAWVIHGG(SEQ ID NO:3)區。 In some embodiments, an antibody that specifically binds to CD38 binds at least to the region of SKRNIQFSCKNIYR (SEQ ID NO: 2) and EKVQTLEAWVIHGG (SEQ ID NO: 3) of human CD38 (SEQ ID NO: 1).

SEQ ID NO:1 SEQ ID NO: 1

SEQ ID NO:2 SKRNIQFSCKNIYR SEQ ID NO: 2 SKRNIQFSCKNIYR

SEQ ID NO:3 EKVQTLEAWVIHGG SEQ ID NO: 3 EKVQTLEAWVIHGG

SEQ ID NO:4 SEQ ID NO: 4

SEQ ID NO:5 SEQ ID NO: 5

SEQ ID NO:6 SFAMS SEQ ID NO:6 SFAMS

SEQ ID NO:7 AISGSGGGTYYADSVKG SEQ ID NO: 7 AISGSGGGTYYADSVKG

SEQ ID NO:8 DKILWFGEPVFDY SEQ ID NO:8 DKILWFGEPVFDY

SEQ ID NO:9 RASQSVSSYLA SEQ ID NO: 9 RASQSVSSYLA

SEQ ID NO:10 DASNRAT SEQ ID NO: 10 DASNRAT

SEQ ID NO:11 QQRSNWPPTF SEQ ID NO: 11 QQRSNWPPTF

SEQ ID NO:12 SEQ ID NO: 12

SEQ ID NO:13 SEQ ID NO: 13

可使用熟知的體外方法來評估抗體與參考抗體(諸如具有SEQ ID NO:4之VH及SEQ ID NO:5之VL的DARZALEXTM(達拉單抗))對CD38的競爭結合。在一例示性方法中,可將重組表現CD38的CHO細胞與未標記的參考抗體於4℃培養15分鐘,然後與過量的螢光標記測試抗體於4℃培養45分鐘。於PBS/BSA中清洗後,可藉由流動式細胞測量術(flow cytometry)使用標準方法來測量螢光。在另一例示性方法中,可將人類CD38的細胞外部分塗覆在ELISA盤的表面上。可將過量的未標記參考抗體加入約15分鐘,且隨後可加入經生物素化的測試抗體。在PBS/Tween中清洗後,可使用 共軛辣根過氧化酶(horseradish peroxidase,HRP)的鏈黴親和素(streptavidin)來偵測該測試生物素化抗體的結合並使用標準方法來偵測訊號。在該等競爭性測定(competition assay)中,顯而易見的是參考抗體可係標記的且該測試抗體可係未標記的。當參考抗體抑制測試抗體結合至CD38,或測試抗體抑制參考抗體結合至CD38達至少80%,例如81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%時,測試抗體與參考抗體競爭。該測試抗體的表位可進一步藉由例如胜肽圖譜技術(peptide mapping)或氫/氘保護測定使用已知方法來定義,或者藉由晶體結構判定來定義。 A well-known in vitro method can be used to assess competitive binding of an antibody to a reference antibody, such as DARZALEX (TM) (Dalimab ) having VL of SEQ ID NO: 4 and VL of SEQ ID NO: 5, for CD38. In an exemplary method, recombinant C38 cells expressing CD38 can be incubated with an unlabeled reference antibody for 15 minutes at 4 °C and then incubated with an excess of fluorescently labeled test antibody for 45 minutes at 4 °C. After washing in PBS/BSA, fluorescence can be measured by standard methods using flow cytometry. In another exemplary method, the extracellular portion of human CD38 can be coated onto the surface of an ELISA plate. An excess of unlabeled reference antibody can be added for about 15 minutes, and then the biotinylated test antibody can be added. After washing in PBS/Tween, conjugated horseradish peroxidase (HRP) streptavidin can be used to detect the binding of the test biotinylated antibody and detect the signal using standard methods. . In such competitive assays, it will be apparent that the reference antibody can be labeled and the test antibody can be unlabeled. When the reference antibody inhibits the binding of the test antibody to CD38, or the test antibody inhibits binding of the reference antibody to CD38 by at least 80%, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89 At %, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, the test antibody competes with the reference antibody. The epitope of the test antibody can be further defined by known methods such as peptide mapping or hydrogen/hydrazine protection assays, or by crystal structure determination.

結合至人類CD38(SEQ ID NO:1)之SKRNIQFSCKNIYR(SEQ ID NO:2)區及EKVQTLEAWVIHGG(SEQ ID NO:3)區的抗體可例如藉由下列產生:使用標準方法及本文中所述之方法利用具有顯示於SEQ ID NO:2及3中之胺基酸序列的胜肽免疫小鼠,且使用例如ELISA或突變誘發研究以定性用於結合至胜肽的所得抗體。 Antibodies that bind to the SKRNIQFSCKNIYR (SEQ ID NO: 2) region of human CD38 (SEQ ID NO: 1) and the EKVQTLEAWVIHGG (SEQ ID NO: 3) region can be produced, for example, by using standard methods and methods described herein. Mice were immunized with a peptide having the amino acid sequences shown in SEQ ID NOS: 2 and 3, and using, for example, an ELISA or mutation-inducing study to characterize the resulting antibody for binding to the peptide.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予抗CD38抗體,其結合至人類CD38(SEQ ID NO:1)之SKRNIQFSCKNIYR(SEQ ID NO:2)區及EKVQTLEAWVIHGG(SEQ ID NO:3)區。本發明之方法中所使用之抗體的表位包括具有顯示於SEQ ID NO:2或SEQ ID NO:3之序列的殘基中的一些或全部。在一些實施例中,抗體表位包含人類CD38(SEQ ID NO:1)之SKRNIQFSCKNIYR(SEQ ID NO:2)區中至少一個胺基酸及EKVQTLEAWVIHGG(SEQ ID NO:3)區中至少一個胺基酸。在一些實施例中,抗體表位包含人類CD38(SEQ ID NO:1)之SKRNIQFSCKNIYR(SEQ ID NO:2)區中至少兩個胺基酸及EKVQTLEAWVIHGG(SEQ ID NO:3)區中至少兩個胺基酸。在一些實施例中,抗體表位包含人類CD38(SEQ ID NO:1)之SKRNIQFSCKNIYR(SEQ ID NO:2)區中至少三個胺基酸及EKVQTLEAWVIHGG(SEQ ID NO:3)區中至少三個胺基酸。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof an anti-CD38 antibody that binds to the human CD38 (SEQ ID NO: 1) SKRNIQFSCKNIYR (SEQ ID NO: 2) region and EKVQTLEAWVIHGG (SEQ ID NO: 3) region. The epitope of the antibody used in the method of the present invention includes some or all of the residues having the sequence shown in SEQ ID NO: 2 or SEQ ID NO: 3. In some embodiments, the antibody epitope comprises at least one amino acid in the region of SKRNIQFSCKNIYR (SEQ ID NO: 2) of human CD38 (SEQ ID NO: 1) and at least one amine group in the region of EKVQTLEAWVIHGG (SEQ ID NO: 3) acid. In some embodiments, the antibody epitope comprises at least two amino acids in the region of SKRNIQFSCKNIYR (SEQ ID NO: 2) of human CD38 (SEQ ID NO: 1) and at least two of the regions of EKVQTLEAWVIHGG (SEQ ID NO: 3) Amino acid. In some embodiments, the antibody epitope comprises at least three of at least three amino acids in the region of SKRNIQFSCKNIYR (SEQ ID NO: 2) of human CD38 (SEQ ID NO: 1) and EKVQTLEAWVIHGG (SEQ ID NO: 3) Amino acid.

在一些實施例中,特異性結合CD38之抗體包含分別為SEQ ID NO:6、7、及8之HCDR1、HCDR2、及HCDR3胺基酸序列。 In some embodiments, the antibody that specifically binds to CD38 comprises the HCDR1, HCDR2, and HCDR3 amino acid sequences of SEQ ID NOs: 6, 7, and 8, respectively.

在一些實施例中,特異性結合CD38之抗體包含分別為SEQ ID NO:9、10、及11之LCDR1、LCDR2、及LCDR3胺基酸序列。 In some embodiments, the antibody that specifically binds to CD38 comprises the LCDR1, LCDR2, and LCDR3 amino acid sequences of SEQ ID NOS: 9, 10, and 11, respectively.

在一些實施例中,特異性結合CD38之抗體包含分別為SEQ ID NO:6、7、8、9、10、及11之HCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及LCDR3胺基酸序列。 In some embodiments, the antibody that specifically binds to CD38 comprises the HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 amino acid sequences of SEQ ID NOS: 6, 7, 8, 9, 10, and 11, respectively.

在一些實施例中,特異性結合CD38之抗體包含VH與VL,該VH係與SEQ ID NO:4具有95%、96%、97%、98%、99%、或100%同一性,且該VL係與SEQ ID NO:5具有95%、96%、97%、98%、99%、或100%同一性。 In some embodiments, the antibody that specifically binds to CD38 comprises VH and VL, the VH line having 95%, 96%, 97%, 98%, 99%, or 100% identity with SEQ ID NO: 4, and The VL line has 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:5.

在一些實施例中,特異性結合CD38之抗體包含SEQ ID NO:4之VH及SEQ ID NO:5之VL。 In some embodiments, the antibody that specifically binds to CD38 comprises VH of SEQ ID NO:4 and VL of SEQ ID NO:5.

在一些實施例中,特異性結合CD38之抗體包含SEQ ID NO:12之重鏈及SEQ ID NO:13之輕鏈。 In some embodiments, the antibody that specifically binds to CD38 comprises the heavy chain of SEQ ID NO: 12 and the light chain of SEQ ID NO: 13.

可用於本發明之任何實施例中的其他例示性抗CD38抗體係:mAb003,其包含分別為SEQ ID NO:14及15的VH及VL序列並描述於美國專利第7,829,693號中。mAb003的該VH及該VL可被表示為IgG1/κ。 Other exemplary anti-CD38 anti-systems that can be used in any of the embodiments of the invention: mAb003, which comprises the VH and VL sequences of SEQ ID NOS: 14 and 15, respectively, and are described in U.S. Patent No. 7,829,693. This VH of mAb003 and the VL can be expressed as IgG1/κ.

SEQ ID NO:14 SEQ ID NO: 14

SEQ ID NO:15 mAb024,其包含分別為SEQ ID NO:16及17的VH及VL序列並描述於美國專利第7,829,693號中。mAb024的該VH及該VL可被表示為IgG1/κ。 SEQ ID NO: 15 mAb024, which comprises the VH and VL sequences of SEQ ID NOS: 16 and 17, respectively, and is described in U.S. Patent No. 7,829,693. This VH of mAb024 and the VL can be expressed as IgG1/κ.

SEQ ID NO:16 SEQ ID NO: 16

SEQ ID NO:17 SEQ ID NO: 17

MOR-202(MOR-03087),其包含分別為SEQ ID NO:18及19的VH及VL序列並描述於美國專利第8,088,896號中。MOR-202的該VH及該VL可被表示為IgG1/κ。 MOR-202 (MOR-03087), which contains the VH and VL sequences of SEQ ID NOS: 18 and 19, respectively, and is described in U.S. Patent No. 8,088,896. This VH of MOR-202 and the VL can be expressed as IgG1/κ.

SEQ ID NO:18 SEQ ID NO:18

SEQ ID NO:19 伊沙妥昔單抗(Isatuximab);其包含分別為SEQ ID NO:20及21的VH及VL序列並描述於美國專利第8,153,765號中。伊沙妥昔單抗之VH及VL可被表示為IgG1/κ。 SEQ ID NO: 19 Isaximab (Isatuximab); which comprises the VH and VL sequences of SEQ ID NOS: 20 and 21, respectively, and is described in U.S. Patent No. 8,153,765. VH and VL of exetoximab can be expressed as IgG1/κ.

SEQ ID NO 20: SEQ ID NO 20:

SEQ ID NO:21: SEQ ID NO: 21:

可用於本發明之方法中的其他例示性抗CD38抗體包括描述於國際專利公開號WO05/103083、國際專利公開號WO06/125640、國際專利公開號WO07/042309、國際專利公開號WO08/047242、或國際專利公開號WO14/178820中者。 Other exemplary anti-CD38 antibodies that can be used in the methods of the present invention include those described in International Patent Publication No. WO05/103083, International Patent Publication No. WO06/125640, International Patent Publication No. WO07/042309, International Patent Publication No. WO 08/047242, or International Patent Publication No. WO 14/178820.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該固態腫瘤的時間,該抗體包含SEQ ID NO:4之VH及SEQ ID NO:5之VL。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a time sufficient to treat the solid tumor, The antibody comprises VH of SEQ ID NO: 4 and VL of SEQ ID NO: 5.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該固態腫瘤的時間,該抗體包含SEQ ID NO:14之VH及SEQ ID NO:15之VL。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a time sufficient to treat the solid tumor, The antibody comprises VH of SEQ ID NO: 14 and VL of SEQ ID NO: 15.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該固態腫瘤的時間,該抗體包含SEQ ID NO:16之VH及SEQ ID NO:17之VL。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a time sufficient to treat the solid tumor, The antibody comprises VH of SEQ ID NO: 16 and VL of SEQ ID NO: 17.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該固態腫瘤的時間,該抗體包含SEQ ID NO:18之VH及SEQ ID NO:19之VL。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a time sufficient to treat the solid tumor, The antibody comprises VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該固態腫瘤的時間,該抗體包含SEQ ID NO:20之VH及SEQ ID NO:21之VL。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a time sufficient to treat the solid tumor, The antibody comprises VH of SEQ ID NO: 20 and VL of SEQ ID NO: 21.

在一些實施例中,固態腫瘤係黑色素瘤。 In some embodiments, the solid tumor is melanoma.

在一些實施例中,固態腫瘤係肺癌。 In some embodiments, the solid tumor is a lung cancer.

在一些實施例中,固態腫瘤係鱗狀非小細胞肺癌(NSCLC)。 In some embodiments, the solid tumor is squamous non-small cell lung cancer (NSCLC).

在一些實施例中,固態腫瘤係非鱗狀NSCLC。 In some embodiments, the solid tumor is a non-squamous NSCLC.

在一些實施例中,固態腫瘤係肺腺癌。 In some embodiments, the solid tumor is a lung adenocarcinoma.

在一些實施例中,固態腫瘤係腎細胞癌(RCC)(例如,腎臟透明細胞癌或腎臟乳突細胞癌)、或其轉移性病變。 In some embodiments, the solid tumor is renal cell carcinoma (RCC) (eg, renal clear cell carcinoma or renal papillary cell carcinoma), or a metastatic disease thereof.

在一些實施例中,固態腫瘤係間皮瘤。 In some embodiments, the solid tumor is a mesothelioma.

在一些實施例中,固態腫瘤係鼻咽癌(NPC)。 In some embodiments, the solid tumor is nasopharyngeal carcinoma (NPC).

在一些實施例中,固態腫瘤係結腸直腸癌。 In some embodiments, the solid tumor is colorectal cancer.

在一些實施例中,固態腫瘤係前列腺癌或去勢抗性前列腺癌。 In some embodiments, the solid tumor is prostate cancer or castration resistant prostate cancer.

在一些實施例中,固態腫瘤係胃癌(stomach cancer)。 In some embodiments, the solid tumor is gastric cancer.

在一些實施例中,固態腫瘤係卵巢癌。 In some embodiments, the solid tumor is ovarian cancer.

在一些實施例中,固態腫瘤係胃癌(gastric cancer)。 In some embodiments, the solid tumor is gastric cancer.

在一些實施例中,固態腫瘤係肝癌。 In some embodiments, the solid tumor is liver cancer.

在一些實施例中,固態腫瘤係胰腺癌。 In some embodiments, the solid tumor is pancreatic cancer.

在一些實施例中,固態腫瘤係甲狀腺癌。 In some embodiments, the solid tumor is thyroid cancer.

在一些實施例中,固態腫瘤係頭部及頸部鱗狀細胞癌。 In some embodiments, the solid tumor is a head and neck squamous cell carcinoma.

在一些實施例中,固態腫瘤係食道或胃腸道癌。 In some embodiments, the solid tumor is an esophageal or gastrointestinal cancer.

在一些實施例中,固態腫瘤係乳癌。 In some embodiments, the solid tumor is a breast cancer.

在一些實施例中,固態腫瘤係輸卵管癌。 In some embodiments, the solid tumor is a fallopian tube cancer.

在一些實施例中,固態腫瘤係腦癌。 In some embodiments, the solid tumor is a brain cancer.

在一些實施例中,固態腫瘤係尿道癌。 In some embodiments, the solid tumor is urethral cancer.

在一些實施例中,固態腫瘤係泌尿生殖癌。 In some embodiments, the solid tumor is a genitourinary cancer.

在一些實施例中,固態腫瘤係子宮內膜異位。 In some embodiments, the solid tumor is endometriosis.

在一些實施例中,固態腫瘤係子宮頸癌。 In some embodiments, the solid tumor is cervical cancer.

在一些實施例中,固態腫瘤係癌症之轉移性病變。 In some embodiments, the solid tumor is a metastatic disease of cancer.

在一些實施例中,固態腫瘤缺乏可偵測的CD38表現。 In some embodiments, solid tumors lack detectable CD38 performance.

當相較於對照,例如使用熟知方法以抗CD38抗體偵測的表現之於以同型對照抗體偵測的表現時,當固態腫瘤組織中或單離自固態腫瘤之細胞上的CD38表現係統計學不顯著的時候,固態腫瘤缺乏可偵測的CD38表現。 When compared to controls, such as those detected by anti-CD38 antibodies using well-known methods for performance detected by isotype control antibodies, CD38 expression is statistically present in solid tumor tissue or on cells isolated from solid tumors. Insignificant, solid tumors lack detectable CD38 performance.

本發明之方法中所使用之抗CD38抗體亦可重新選自例如噬菌體呈現庫,其中噬菌體係經工程改造以表現人類免疫球蛋白或其部分,諸如Fab、單鏈抗體(scFv)、或未配對或配對抗體可變區(Knappik等人,(2000)J Mol Biol 296:57-86;Krebs等人,(2001)J Immunol Meth 254:67-84;Vaughan等人,(1996)Nature Biotechnology 14:309-314;Sheets等人,(1998)PITAS(USA)95:6157-6162;Hoogenboom及Winter,(1991)J Mol Biol 227:381;Marks等人,(1991)J Mol Biol 222:581)。CD38結合可變域可自例如噬菌體呈現庫(表現抗體重鏈及輕鏈可變區)單離為具有噬菌體pIX外殼蛋白的融合蛋白,如描述於Shi等人,(2010)J Mol Biol 397:385-96及國際專利公開號WO09/085462中。抗體庫可用對於人類CD38細胞外域之結合進行篩選,所獲得之陽性殖株進一步表徵,自殖株溶解物(lysate)單離出Fab,且隨後選殖為全長抗體。此種用於單離人類抗體之噬菌體呈現法已於本領域中建立。參見例如:美國專 利第5,223,409號、美國專利第5,403,484號、美國專利第5,571,698號、美國專利第5,427,908號、美國專利第5,580,717號、美國專利第5,969,108號、美國專利第6,172,197號、美國專利第5,885,793號、美國專利第6,521,404號、美國專利第6,544,731號、美國專利第6,555,313號、美國專利第6,582,915號、及美國專利第6,593,081號。 The anti-CD38 antibody used in the methods of the invention may also be re-selected from, for example, a phage display library in which the phage system is engineered to express human immunoglobulin or a portion thereof, such as a Fab, single chain antibody (scFv), or unpaired Or paired antibody variable regions (Knappik et al, (2000) J Mol Biol 296: 57-86; Krebs et al, (2001) J Immunol Meth 254: 67-84; Vaughan et al, (1996) Nature Biotechnology 14: 309-314; Sheets et al., (1998) PITAS (USA) 95: 6157-6162; Hoogenboom and Winter, (1991) J Mol Biol 227: 381; Marks et al., (1991) J Mol Biol 222: 581). The CD38 binding variable domain can be isolated from, for example, a phage display library (expressing antibody heavy and light chain variable regions) as a fusion protein having a phage pIX coat protein, as described in Shi et al., (2010) J Mol Biol 397: 385-96 and International Patent Publication No. WO 09/085462. The antibody library can be screened for binding to the human CD38 extracellular domain, and the positive strain obtained is further characterized, the lysate is isolated from the Fab, and subsequently cloned into a full length antibody. Such phage display methods for isolated human antibodies have been established in the art. See, for example, U.S. Patent No. 5,223,409, U.S. Patent No. 5,403,484, U.S. Patent No. 5,571,698, U.S. Patent No. 5,427,908, U.S. Patent No. 5,580,717, U.S. Patent No. 5,969,108, U.S. Patent No. 6,172,197, U.S. Patent No. 5,885,793 U.S. Patent No. 6,521,404, U.S. Patent No. 6,544,731, U.S. Patent No. 6,555,313, U.S. Patent No. 6,582,915, and U.S. Patent No. 6,593,081.

在一些實施例中,抗CD38抗體係IgG1、IgG2、IgG3、或IgG4同型。 In some embodiments, the anti-CD38 anti-system is isotype of IgGl, IgG2, IgG3, or IgG4.

該抗體的Fc部份可媒介抗體的效應功能(effector function),諸如抗體依賴性細胞媒介的細胞毒性(ADCC)、抗體依賴性細胞吞噬作用(ADCP)、或補體依賴性細胞毒性(CDC)。該功能可藉由Fc效應域(effector domain)與具有吞噬或裂解活性的免疫細胞上Fc受體的結合來媒介,或藉由Fc效應域與補體系統成分的結合來媒介。通常,由與Fc結合的細胞或補體成分所媒介的效應會導致目標細胞(例如CD38表現細胞)的抑制或損耗(depletion)。人類IgG同型IgG1、IgG2、IgG3、及IgG4在效應功能上顯示出差別能力。ADCC可由IgG1及IgG3媒介,ADCP可由IgG1、IgG2、IgG3、及IgG4媒介,且CDC可由IgG1及IgG3媒介。 The Fc portion of the antibody can mediate an effector function of the antibody, such as antibody-dependent cellular mediator cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), or complement dependent cytotoxicity (CDC). This function can be mediated by binding of an Fc effector domain to an Fc receptor on immune cells having phagocytic or lytic activity, or by binding of an Fc effector to a complement system component. In general, effects mediated by cells or complement components that bind to Fc result in inhibition or depletion of target cells, such as CD38 expressing cells. Human IgG isotypes IgG1, IgG2, IgG3, and IgG4 showed differential ability in effector function. ADCC can be mediated by IgGl and IgG3, ADCP can be mediated by IgGl, IgG2, IgG3, and IgG4, and CDC can be mediated by IgGl and IgG3.

與包含SEQ ID NO:4之VH及SEQ ID NO:5之VL的抗體實質上同一的抗體可在本發明之方法中使用。本文中所使用之用語「實質上同一(substantially identical)」意指所比較的兩個抗體VH或VL胺基酸序列係同一或具有「無實質差異(insubstantial differences)」。無實質差異係在抗體重鏈或輕鏈中1、2、3、4、5、6、7、8、9、10、11、12、13、14、或15個不會對抗體性能產生不利影響的胺基酸取代。同一性百分比可例如藉由使用Vector NTI v.9.0.0(Invitrogen,Carlsbad,CA)之AlignX模組的預設設定進行成對比對來判定。本發明的蛋白質序列可被用作查詢序列(query sequence)來執行針對公開或專利數據庫的檢索以(例如)鑑定相關序列。用來執行該等檢索之例示性程式係XBLAST或BLASTP程式(http_//www_ncbi_nlm/nih_gov),或使用預設設定的GenomeQuestTM (GenomeQuest,Westborough,MA)套件。可對特異性結合CD38的抗體進行的例示性取代係例如以具有類似電荷、疏水性、或立體化學特性的胺基酸進行的保守型取代(conservative substitution)。亦可進行保守型取代以改良抗體性質(例如穩定性或親和力),或改良抗體的效應功能。例如可對該抗CD38抗體的重鏈或輕鏈中進行1、2、3、4、5、6、7、8、9、10、11、12、13、14、或15個胺基酸取代。此外,該VH或VL中的任何天然殘基亦可經丙胺酸取代,如先前已針對丙胺酸掃描式突變誘發(alanine scanning mutagenesis)所描述者(MacLennan等人,Acta Physiol Scand Suppl 643:55-67,1998;Sasaki等人,Adv Biophys 35:1-24,1998)。所欲之胺基酸取代可在此等取代係所欲時由所屬領域中具有通常知識者判定。胺基酸取代可例如藉由PCR突變誘發(美國專利第4,683,195號)來進行。變異體庫可使用熟知方法來產生,例如使用隨機(NNK)或非隨機密碼子(例如DVK密碼子),其編碼11種胺基酸(Ala、Cys、Asp、Glu、Gly、Lys、Asn、Arg、Ser、Tyr、Trp),然後篩選變異體庫以找出具有所欲性質之變異體。所產生的變異體可使用本文所述之方法體外測試其等與CD38的結合、其等誘導ADCC、ADCP、或細胞凋亡、或調節CD38酶活性的能力。 An antibody substantially identical to the antibody comprising VH of SEQ ID NO: 4 and VL of SEQ ID NO: 5 can be used in the methods of the invention. As used herein, the term "substantially identical" means that the two antibody VH or VL amino acid sequences being compared are identical or have "insubstantial differences". No substantial difference in antibody heavy or light chain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 does not adversely affect antibody performance Affected amino acid substitution. The percent identity can be determined, for example, by pairwise alignment using the preset settings of the AlignX module of Vector NTI v.9.0.0 (Invitrogen, Carlsbad, CA). The protein sequences of the invention can be used as a query sequence to perform searches against published or patent databases to, for example, identify related sequences. To perform the exemplary system XBLAST program BLASTP program or such Retrieval (http _ // www_ncbi_nlm / nih_gov) , or use the default setting of GenomeQuest TM (GenomeQuest, Westborough, MA ) kit. Exemplary substitutions that can be made to an antibody that specifically binds to CD38 are, for example, conservative substitutions with amino acids having similar charge, hydrophobicity, or stereochemical properties. Conservative substitutions can also be made to improve antibody properties (eg, stability or affinity), or to improve the effector function of the antibody. For example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 amino acid substitutions can be made in the heavy or light chain of the anti-CD38 antibody. . In addition, any natural residue in the VH or VL can also be substituted with alanine, as previously described for alanine scanning mutagenesis (MacLennan et al, Acta Physiol Scand Suppl 643: 55- 67, 1998; Sasaki et al., Adv Biophys 35: 1-24, 1998). The desired amino acid substitution can be determined by one of ordinary skill in the art when such substitutions are desired. Amino acid substitution can be carried out, for example, by PCR mutation induction (U.S. Patent No. 4,683,195). Variant libraries can be generated using well-known methods, such as using random (NNK) or non-random codons (eg, DVK codons), which encode 11 amino acids (Ala, Cys, Asp, Glu, Gly, Lys, Asn, Arg, Ser, Tyr, Trp), then screen the library of variants to find variants of the desired nature. The resulting variants can be tested in vitro for their ability to bind to CD38, such as to induce ADCC, ADCP, or apoptosis, or to modulate CD38 enzymatic activity, using methods described herein.

在一些實施例中,特異性結合CD38之抗體可以一範圍之親和力(KD)結合人類CD38。在根據本發明之一實施例中,以及在以下每一個編號實施例的一些實施例中,特異性結合CD38之抗體以高親和力結合至CD38,例如KD等於或小於約10-7M,諸如但不限於,1至9.9(或其中任何範圍或值,諸如1、2、3、4、5、6、7、8、或9)x 10-8M、10-9M、10-10M、10-11M、10-12M、10-13M、10-14M、10-15M、或其中任何範圍或值,如藉由表面電漿共振或Kinexa方法所判定,如所屬技術領域中具有通常知識者所實踐。一例示性親和力係等於或小於1×10-8M。另一例示性親和力係等於或小於1×10-9M。 In some embodiments, the antibody that specifically binds CD38 may be a range of affinities (K D) binds human CD38. In accordance with one embodiment of the invention, and in some embodiments each of the following numbered embodiments, the CD38 antibody that specifically binds to CD38 with high affinity, e.g. K D equal to or less than about 10 -7 M, such as But not limited to, 1 to 9.9 (or any range or value such as 1, 2, 3, 4, 5, 6, 7, 8, or 9) x 10 -8 M, 10 -9 M, 10 -10 M , 10 -11 M, 10 -12 M, 10 -13 M, 10 -14 M, 10 -15 M, or any range or value thereof, as determined by surface plasma resonance or Kinexa method, as in the technical field Those who have the usual knowledge practice. An exemplary affinity is equal to or less than 1 x 10 -8 M. Another exemplary affinity is equal to or less than 1 x 10 -9 M.

在一些實施例中,特異性結合CD38之抗體係雙特異性抗體。現有的抗CD38抗體之VL及/或VH區或如本文所述重新鑑定 之VL及VH區可被工程改造至雙特異性全長抗體中。該等雙特異性抗體可藉由調節介於單特異性抗體重鏈間的CH3相互作用來製造以形成雙特異性抗體,其係使用諸如在以下文獻中所述之技術:美國專利第7,695,936號;國際專利公開號WO04/111233;美國專利公開號US2010/0015133;美國專利公開號US2007/0287170;國際專利公開號WO2008/119353;美國專利公開號US2009/0182127;美國專利公開號US2010/0286374;美國專利公開號US2011/0123532;國際專利公開號WO2011/131746;國際專利公開號WO2011/143545;或美國專利公開號US2012/0149876。可合併本發明之抗體之VL及/或VH區的另外雙特異性結構係例如雙可變域免疫球蛋白(國際專利公開號WO2009/134776)、或包括各種二聚化域以連接具有不同特異性的兩個抗體臂的結構,諸如白胺酸拉鍊(leucine zipper)或膠原蛋白二聚化域(國際專利公開號WO2012/022811、美國專利第5,932,448號;美國專利第6,833,441號)。 In some embodiments, an anti-system bispecific antibody that specifically binds to CD38. VL and/or VH regions of existing anti-CD38 antibodies or re-identified as described herein The VL and VH regions can be engineered into bispecific full length antibodies. Such bispecific antibodies can be made by modulating the CH3 interaction between the monospecific antibody heavy chains to form bispecific antibodies using techniques such as those described in U.S. Patent No. 7,695,936. International Patent Publication No. WO 04/111233; U.S. Patent Publication No. US2010/0015133; U.S. Patent Publication No. US2007/0287170; International Patent Publication No. WO2008/119353; U.S. Patent Publication No. US2009/0182127; U.S. Patent Publication No. US2010/0286374; Patent Publication No. US 2011/0123532; International Patent Publication No. WO 2011/131746; International Patent Publication No. WO 2011/143545; or US Patent Publication No. US 2012/0149876. Additional bispecific structures that can incorporate the VL and/or VH regions of the antibodies of the invention, such as dual variable domain immunoglobulins (International Patent Publication No. WO 2009/134776), or include various dimerization domains to link differently The structure of the two antibody arms, such as the leucine zipper or the collagen dimerization domain (International Patent Publication No. WO 2012/022811, U.S. Patent No. 5,932,448; U.S. Patent No. 6,833,441).

例如,雙特異性抗體可在無細胞環境中體外產生,此係藉由在兩個單特異性同二聚體抗體之CH3區中引入非對稱突變,且在還原條件中(以讓雙硫鍵異構化)以兩個親體單特異性同二聚體抗體形成該雙特異性異二聚體抗體,其係根據描述於國際專利公開號WO2011/131746中之方法。在該等方法中,第一單特異性雙價抗體(例如,抗CD38抗體)及第二單特異性雙價抗體係經工程改造以在CH3域具有某些促進異二聚體穩定性之取代;該等抗體係在足以讓絞鏈區中之半胱胺酸進行雙硫鍵異構化的還原條件下一起培養;從而藉由Fab臂交換來產生該雙特異性抗體。培養條件可最佳地被回復為非還原性(non-reducing)。可使用之例示性還原劑係2-巰基乙胺(2-MEA)、二硫蘇糖醇(dithiothreitol,DTT)、二硫赤蘚醇(dithioerythritol,DTE)、麩胱甘肽、參(2-羧乙基)膦(TCEP)、L-半胱胺酸及β-巰基乙醇,還原劑較佳係選自由下列所組成之群組:2-巰基乙胺、二硫蘇糖醇及參(2-羧乙基)膦。例如,可使用在至少20℃之溫度且有至少25mM之2-MEA存在下或於至少0.5mM之二硫蘇糖醇 存在且在5至8之pH下(例如在7.0之pH下或在7.4之pH下)培養至少90分鐘。 For example, bispecific antibodies can be produced in vitro in a cell-free environment by introducing asymmetric mutations in the CH3 region of two monospecific homodimeric antibodies, and in reducing conditions (to allow disulfide bonds) Isomerization) The bispecific heterodimeric antibody is formed as two parental monospecific homodimeric antibodies according to the method described in International Patent Publication No. WO 2011/131746. In such methods, the first monospecific bivalent antibody (eg, an anti-CD38 antibody) and the second monospecific bivalent antibody system are engineered to have some substitution in the CH3 domain that promotes heterodimer stability. The anti-systems are incubated together under reducing conditions sufficient for the disulfide isomerization of the cysteine in the hinge region; such that the bispecific antibody is produced by Fab arm exchange. The culture conditions are optimally restored to non-reducing. Exemplary reducing agents that can be used are 2-mercaptoethylamine (2-MEA), dithiothreitol (DTT), dithioerythritol (DTE), glutathione, ginseng (2- Carboxyethyl)phosphine (TCEP), L-cysteine and β-mercaptoethanol, the reducing agent is preferably selected from the group consisting of 2-mercaptoethylamine, dithiothreitol and ginseng (2) - Carboxyethyl) phosphine. For example, disulfethitol at a temperature of at least 20 ° C and at least 25 mM of 2-MEA or at least 0.5 mM of dithiothreitol may be used It is present and incubated for at least 90 minutes at a pH of 5 to 8 (for example at a pH of 7.0 or at a pH of 7.4).

可在該雙特異性抗體之第一重鏈中及在第二重鏈中使用的例示性CH3突變係K409R及/或F405L。 An exemplary CH3 mutant line K409R and/or F405L that can be used in the first heavy chain of the bispecific antibody and in the second heavy chain.

本發明之方法可用來治療屬於任何分類之動物病患。此等動物之實例包括哺乳動物,諸如人類、鼠、犬、貓、及農畜(farm animal)。 The method of the invention can be used to treat animal patients belonging to any classification. Examples of such animals include mammals such as humans, rats, dogs, cats, and farm animals.

投予/醫藥組成物Investment/pharmaceutical composition

特異性結合CD38之抗體可以本發明之方法以合適的醫藥組成物之形式提供,該等醫藥組成物包含特異性結合CD38之抗體及醫藥上可接受之載劑。該載劑可係與特異性結合CD38之抗體一起投予之稀釋劑、佐劑、賦形劑、或媒劑。此等媒劑可為液體如水及油,包括來自石油、動物、蔬菜、或合成來源者,諸如花生油、大豆油、礦物油、芝麻油、及類似者。例如,可使用0.4%鹽水及0.3%甘胺酸。這些溶液係無菌且一般不含顆粒物質。其等可藉由習知、熟知的滅菌技術(例如過濾)來滅菌。該等組成物可含有如用以接近生理條件所需之醫藥上可接受的輔助物質,諸如pH調整及緩衝劑、穩定劑、增稠劑、潤滑劑、及著色劑等。在此類醫藥配方中特異性結合CD38之抗體的濃度可有廣泛變化,即從以重量計小於約0.5%,常達以重量計至少約1%至多達以重量計15或20%、25%、30%、35%、40%、45%、或50%,並且將主要基於所需劑量、流體體積、黏度等,根據所選擇之特定投予模式來選擇。合適的媒劑及調配物(包含其他的人類蛋白質,例如人類血清白蛋白),舉例而言,係被描述於例如Remington:The Science and Practice of Pharmacy,21st Edition,Troy,D.B.ed.,Lipincott Williams and Wilkins,Philadelphia,PA 2006,Part 5,Pharmaceutical Manufacturing pp 691-1092中,請特別參見pp.958-989。 Antibodies that specifically bind to CD38 can be provided in the form of a suitable pharmaceutical composition comprising an antibody that specifically binds to CD38 and a pharmaceutically acceptable carrier. The carrier can be a diluent, adjuvant, excipient, or vehicle with which the antibody that specifically binds to CD38 is administered. Such vehicles can be liquids such as water and oils, including those from petroleum, animal, vegetable, or synthetic sources, such as peanut oil, soybean oil, mineral oil, sesame oil, and the like. For example, 0.4% saline and 0.3% glycine can be used. These solutions are sterile and generally free of particulate matter. They can be sterilized by conventional, well known sterilization techniques such as filtration. The compositions may contain pharmaceutically acceptable auxiliary substances such as pH adjusting and buffering agents, stabilizers, thickeners, lubricants, and color formers, as needed to approximate physiological conditions. The concentration of an antibody that specifically binds to CD38 in such pharmaceutical formulations can vary widely, from less than about 0.5% by weight, often from at least about 1% by weight up to 15 or 20%, 25% by weight. 30%, 35%, 40%, 45%, or 50%, and will be selected based primarily on the desired dosage, fluid volume, viscosity, etc., depending on the particular mode of administration selected. Suitable media agent formulation (comprising other human proteins, such as human serum albumin), for example, are described in, for example, based Remington:. The Science and Practice of Pharmacy, 21 st Edition, Troy, DBed, Lipincott Williams And Wilkins, Philadelphia, PA 2006, Part 5, Pharmaceutical Manufacturing pp 691-1092, see especially pp. 958-989.

在本發明之方法中的特異性結合CD38的抗體之投予模式可係任何合適之路徑,諸如腸胃外投予,例如皮內、肌肉內、腹膜 內(intraperitoneal)、靜脈內或皮下、肺臟、經黏膜(口腔、鼻腔、陰道內、直腸)、或技藝人士所瞭解以及在所屬技術領域中所熟知之其他手段。特異性結合CD38的抗體可使用已知方法瘤內投予至淋巴結引流部位,用以局部遞送至腫瘤中。 The mode of administration of the antibody that specifically binds to CD38 in the method of the present invention may be in any suitable route, such as parenteral administration, such as intradermal, intramuscular, and peritoneal. Intraperitoneal, intravenous or subcutaneous, pulmonary, transmucosal (oral, nasal, intravaginal, rectal), or other means known to those skilled in the art and well known in the art. Antibodies that specifically bind to CD38 can be administered intratumorally to lymph node drainage sites using known methods for local delivery into tumors.

特異性結合CD38的抗體可藉由任何合適的路徑投予至病患,例如非經腸道(parentally)投予(其藉由靜脈(i.v.)輸液或推注注射(bolus injection))、肌內或皮下或腹膜內。i.v.輸液可在例如15、30、60、90、120、180、240分鐘內給予,或者在1、2、3、4、5、6、7、8、9、10、11或12小時內給予。 An antibody that specifically binds to CD38 can be administered to a patient by any suitable route, such as parenterally (by intravenous (iv) infusion or bolus injection), intramuscularly Or subcutaneous or intraperitoneal. The iv infusion can be administered, for example, within 15, 30, 60, 90, 120, 180, 240 minutes, or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours. .

給予病患之劑量係足以減輕或至少部分遏止所要治療之疾病(「治療有效量」)並且有時可係0.005mg至約100mg/kg,例如約0.05mg至約30mg/kg或約5mg至約25mg/kg、或約4mg/kg、約8mg/kg、約16mg/kg、或約24mg/kg,或者例如約1、2、3、4、5、6、7、8、9、或10mg/kg,但可甚至更高,例如約15、16、17、18、19、20、21、22、23、24、25、30、40、50、60、70、80、90、或100mg/kg。 The dosage administered to the patient is sufficient to alleviate or at least partially arrest the condition to be treated ("therapeutically effective amount") and can sometimes be from 0.005 mg to about 100 mg/kg, such as from about 0.05 mg to about 30 mg/kg or from about 5 mg to about 25 mg/kg, or about 4 mg/kg, about 8 mg/kg, about 16 mg/kg, or about 24 mg/kg, or for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mg/ Kg, but may be even higher, such as about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 40, 50, 60, 70, 80, 90, or 100 mg/kg .

亦可給予固定單位劑量,例如50、100、200、500、或1000mg,或者劑量可基於病患之表面積,例如500、400、300、250、200、或100mg/m2。經常可投予介於1與8次間的劑量(例如1、2、3、4、5、6、7、或8次),但亦可給予9、10、11、12、13、14、15、16、17、18、19、20、或更多次劑量。 Fixed unit dose may also be administered, e.g. 50,100,200,500, or lOOOmg, or the dose may be based on the patient's surface area, e.g. 500,400,300,250,200, or 100mg / m 2. A dose between 1 and 8 times (eg 1, 2, 3, 4, 5, 6, 7, or 8 times) can often be administered, but 9, 10, 11, 12, 13, 14 can also be administered. 15, 16, 17, 18, 19, 20, or more doses.

本發明之方法中之特異性結合CD38之抗體的投予可在一天、兩天、三天、四天、五天、六天、一週、兩週、三週、一個月、五週、六週、七週、兩個月、三個月、四個月、五個月、六個月、或更久之後重覆進行。重覆治療過程亦為可能者,如為慢性投予。重覆投予可在相同劑量或在不同劑量下。例如,本發明之方法中之特異性結合CD38之抗體可在8mg/kg或在16mg/kg下以每週間隔投予持續8週,接著在8mg/kg或在16mg/kg下每兩週投予持續另外16週,接著在8mg/kg或在16mg/kg下藉由靜脈輸液每四週投予。 Administration of antibodies that specifically bind to CD38 in the methods of the invention can be administered on one, two, three, four, five, six, one, two, three, one, five, and six weeks Repeatedly, seven weeks, two months, three months, four months, five months, six months, or more. It is also possible to repeat the treatment process, such as chronic administration. Repeated administration can be at the same dose or at different doses. For example, an antibody that specifically binds to CD38 in the methods of the invention can be administered at 8 mg/kg or at 16 mg/kg at weekly intervals for 8 weeks, followed by biweekly at 8 mg/kg or at 16 mg/kg. The administration was continued for another 16 weeks, followed by intravenous infusion at 8 mg/kg or at 16 mg/kg every four weeks.

特異性結合CD38之抗體可在本發明之方法中藉由維持療法投予,諸如(例如)一週一次,持續6個月或更長時間。 An antibody that specifically binds to CD38 can be administered by maintenance therapy in the methods of the invention, such as, for example, once a week for 6 months or longer.

例如,本發明之方法中之特異性結合CD38的抗體可以約0.1至100mg/kg的量作為日劑量,諸如0.5、0.9、1.0、1.1、1.5、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、40、45、50、60、70、80、90、或100mg/kg,每天提供、於開始治療後的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、或40天中之至少一天提供、或者可替代地,於開始治療後的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、或20週中之至少一週提供、或其任何組合,並使用每24、12、8、6、4、或2小時之單次或分次劑量、或其任何組合。 For example, an antibody that specifically binds to CD38 in the method of the present invention may be used as a daily dose in an amount of about 0.1 to 100 mg/kg, such as 0.5, 0.9, 1.0, 1.1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 45, 50, 60, 70, 80, 90, or 100 mg/kg, provided daily, at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, Provided at least one of 39, or 40 days, or alternatively, at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 after initiation of treatment, Provided at least one of 15, 16, 18, 19, or 20 weeks, or any combination thereof, and using a single or divided dose every 24, 12, 8, 6, 4, or 2 hours, or Any combination.

本發明之方法中之特異性結合CD38的抗體亦可預防性投予以減少發展癌症之風險、延緩癌症進展事件之開始發生、及/或當癌症處於緩解時減少復發之風險。這可能在已知存在有腫瘤但因其他生物因素而很難定位腫瘤的病患中特別有用。 Antibodies that specifically bind to CD38 in the methods of the invention may also be administered prophylactically to reduce the risk of developing cancer, delay the onset of cancer progression events, and/or reduce the risk of recurrence when the cancer is in remission. This may be particularly useful in patients who are known to have tumors but are difficult to locate tumors due to other biological factors.

本發明之方法中之特異性結合CD38之抗體可凍乾貯存,並在使用前於合適的載劑中重構。此技術已顯示對於習知蛋白質製劑為有效者並且可使用熟知之凍乾及重構技術。 Antibodies that specifically bind to CD38 in the methods of the invention can be stored lyophilized and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective for conventional protein formulations and well known freeze-drying and reconstitution techniques can be used.

本發明之方法中之特異性結合CD38之抗體可與第二治療劑組合投予。 An antibody that specifically binds to CD38 in the methods of the invention can be administered in combination with a second therapeutic agent.

在本發明之方法中,特異性結合CD38之抗體可與化學治療藥品或所屬技術領域中具有通常知識者已知的其他抗癌治療劑中之任何一或多者一起投予。化學治療劑係可用於治療癌症的化學化合物,且包括生長抑制劑或其他細胞毒性劑,並包括烷化劑、抗代謝藥、抗微管抑制劑、拓樸異構酶抑制劑(topoisomerase inhibitor)、受體酪胺酸激酶抑制劑、血管生成抑制劑、及類似者。化學治療劑之實例包括:烷化劑,諸如噻替派(thiotepa)及環磷醯胺(CYTOXAN®); 磺酸烷基酯,諸如白消安(busulfan)、英丙舒凡(improsulfan)、及哌泊舒凡(piposulfan);氮丙啶類(aziridine),諸如苯佐替派(benzodopa)、卡波醌(carboquone)、美妥替派(meturedopa)、及烏瑞替派(uredopa);乙烯亞胺(ethylenimine)及甲基三聚氰胺(methylamelamine),包括六甲蜜胺(altretamine)、三亞乙基密胺(triethylenemelamine)、三亞乙基磷醯胺(trietylenephosphoramide)、三亞乙基硫代磷醯胺(triethylenethiophosphaoramide)、及三羥甲基密胺(trimethylolomelamine);氮芥(nitrogen mustard),諸如氮芥苯丁酸(chlorambucil)、萘氮芥(chlornaphazine)、膽磷醯胺(cholophosphamide)、雌莫司汀(estramustine)、異環磷醯胺(ifosfamide)、雙氯乙基甲胺(mechlorethamine)、鹽酸雙氯乙基甲胺氧化物(mechlorethamine oxide hydrochloride)、黴法蘭(melphalan)、新氮芥(novembichin)、膽固醇苯乙酸氮芥(phenesterine)、松龍苯芥(prednimustine)、氯乙環磷醯胺(trofosfamide)、尿嘧啶氮芥(uracil mustard);硝基脲類(nitrosureas),諸如卡莫司汀(carmustine)、吡葡亞硝脲(chlorozotocin)、福莫司汀(fotemustine)、洛莫司汀(lomustine)、尼莫司汀(nimustine)、雷莫司汀(ranimustine);抗生素,諸如阿克拉黴素(aclacinomysin)、放線菌黴素(actinomycin)、氨茴黴素(authramycin)、偶氮絲胺酸(azaserine)、博萊黴素(bleomycin)、放線菌素(cactinomycin)、卡奇黴素(calicheamicin)、卡拉比黴素(carabicin)、洋紅黴素(carminomycin)、嗜癌黴素(carzinophilin)、色黴素(chromomycin)、更生黴素(dactinomycin)、道諾黴素(daunorubicin)、地托比星(detorubicin)、6-重氮基-5-側氧基-L-正白胺酸、多柔比星(doxorubicin)、表柔比星(epirubicin)、依索比星(esorubicin)、艾達魯比星(idarubicin)、麻西羅黴素(marcellomycin)、絲裂黴素(mitomycin)、黴酚酸(mycophenolic acid)、諾加黴素(nogalamycin)、橄欖黴素(olivomycin)、培洛黴素(peplomycin)、潑非黴素(potfiromycin)、嘌呤黴素(puromycin)、三鐵阿黴素(quelamycin)、羅多比星(rodorubicin)、鏈黑菌素(streptonigrin)、鏈脲黴素(streptozocin)、殺結核菌素(tubercidin)、烏苯美司 (ubenimex)、淨司他汀(zinostatin)、佐柔比星(zorubicin);抗代謝藥,諸如胺甲喋呤(methotrexate)及5-FU;葉酸類似物,諸如二甲葉酸(denopterin)、胺甲喋呤、蝶羅呤(pteropterin)、三甲曲沙(trimetrexate);嘌呤類似物,諸如氟達拉濱(fludarabine)、6-巰基嘌呤(6-mercaptopurine)、硫咪嘌呤(thiamiprine)、硫鳥嘌呤(thioguanine);嘧啶類似物,諸如環胞苷(ancitabine)、阿紮胞苷(azacitidine)、6-氮雜尿苷(6-azauridine)、卡莫氟(carmofur)、阿糖胞苷(cytarabine)、二脫氧尿苷(dideoxyuridine)、去氧氟尿苷(doxifluridine)、依諾他濱(enocitabine)、氟尿苷(floxuridine);雄性激素,諸如卡普睾酮(calusterone)、丙酸甲雄烷酮(dromostanolone propionate)、環硫雄醇(epitiostanol)、美雄烷(mepitiostane)、睾內酯(testolactone);抗腎上腺劑,諸如氨魯米特(aminoglutethimide)、米托坦(mitotane)、曲洛司坦(trilostane);葉酸補充劑,諸如亞葉酸(frolinic acid);醋葡醛內酯(aceglatone);醛磷醯胺糖苷(aldophosphamide glycoside);胺基酮戊酸(aminolevulinic acid);安吖啶(amsacrine);貝塔布辛(bestrabucil);比生群(bisantrene);依達曲沙(edatraxate);得弗伐胺(defofamine);地美可辛(demecolcine);亞胺醌(diaziquone);依洛尼塞(elfornithine);依利醋銨(elliptinium acetate);依託格魯(etoglucid);硝酸鎵;羥基脲(hydroxyurea);香菇多糖(lentinan);氯尼達明(lonidamine);米托胍腙(mitoguazone);米托蒽醌(mitoxantrone);莫匹丹莫(mopidanmol);二胺硝吖啶(nitracrine);噴司他汀(pentostatin);苯來美特(phenamet);吡柔比星(pirarubicin);鬼臼酸(podophyllinic acid);2-乙基醯肼(2-ethylhydrazide);丙卡巴肼(procarbazine);PSK®;雷佐生(razoxane);西索菲蘭(sizofiran);螺旋鍺(spirogermanium);細交鏈孢菌酮酸(tenuazonic acid);三亞胺醌(triaziquone);2,2',2"-三氯三乙胺;胺甲酸酯;長春地辛(vindesine);達卡巴嗪(dacarbazine);甘露醇氮芥(mannomustine);二溴甘露醇(mitobronitol);二溴衛矛醇(mitolactol);哌泊溴烷(pipobroman);格塞圖辛(gacytosine);阿拉伯糖苷(arabinoside)(「Ara-C」);環磷醯胺;噻替派(thiotepa);類紫杉 醇或紫杉烷家族之成員,諸如紫杉醇(TAXOL®)、剋癌易(docetaxel,TAXOTERE®)、及其類似物;氮芥苯丁酸(chlorambucil);吉西他濱(gemcitabine);6-硫鳥嘌呤;巰基嘌呤;胺甲喋呤;鉑類似物,諸如順氯氨鉑(cisplatin)及卡鉑(carboplatin);長春花鹼(vinblastine);鉑;依妥普賽(etoposide,VP-16);異環磷醯胺;絲裂黴素C;邁杜蔥酮(mitoxantrone);長春新鹼(vincristine);長春瑞濱(vinorelbine);溫諾平(navelbine);諾安托(novantrone);坦尼坡賽(teniposide);道紅鏈絲菌素(daunomycin);胺蝶呤(aminopterin);截瘤達(xeloda);伊班膦酸鹽(ibandronate);CPT-11;拓樸異構酶抑制劑RFS 2000;二氟甲基鳥胺酸(DMFO);視黃酸;埃斯培拉黴素(esperamicin);卡培他濱(capecitabine);受體酪胺酸激酶抑制劑及/或血管生成抑制劑,包括NEXAVAR®(索拉非尼(sorafenib))、SUTENT®(舒尼替尼(sunitinib))、VOTRIENTTM(帕唑帕尼(pazopanib))、PALLADIATM(托西尼布(toceranib))、ZACTIMATM(凡德他尼(vandetanib))、RECENTIN®(西地尼布(cediranib))、瑞格非尼(regorafenib)(BAY 73-4506)、阿西替尼(axitinib)(AG013736)、來他替尼(lestaurtinib)(CEP-701)、TARCEVA®(厄洛替尼(erlotinib))、IRESSATM(吉非替尼(gefitinib))、Gilotrif®(阿法替尼(afatinib))、TYKERB®(拉帕替尼(lapatinib))、來那替尼(neratinib)、及類似者、以及上述中任一者之醫藥上可接受之鹽、酸、或衍生物。此定義中亦包括用於調節或抑制激素對腫瘤作用之抗激素劑,諸如抗雌激素,包括例如他莫昔芬(tamoxifen)、雷洛昔芬(raloxifene)、芳香酶抑制性4(5)-咪唑、4-羥基他莫昔芬、曲沃昔芬(trioxifene)、雷洛昔芬(keoxifene)、LY 117018、奧那司酮(onapristone)、及FARESTON®(托瑞米芬(toremifene));及抗雄激素,諸如氟他胺(flutamide)、尼魯米特(nilutamide)、比卡魯胺(bicalutamide)、亮丙瑞林(leuprolide)、及戈舍瑞林(goserelin);及上述中任一者之醫藥上可接受之鹽、酸、或衍生物。如那些在Wiemann等人,1985,在Medical Oncology(Calabresi等人,eds.)中,Chapter 10,McMillan Publishing中所揭露的其他習知細胞毒性化合物亦可適用於本發明之方法。 In the methods of the invention, an antibody that specifically binds to CD38 can be administered with any one or more of a chemotherapeutic drug or other anti-cancer therapeutic known to those of ordinary skill in the art. Chemotherapeutic agents are chemical compounds that are useful in the treatment of cancer, and include growth inhibitors or other cytotoxic agents, and include alkylating agents, antimetabolites, anti-microtubule inhibitors, topoisomerase inhibitors (topoisomerase inhibitors). , receptor tyrosine kinase inhibitors, angiogenesis inhibitors, and the like. Examples of chemotherapeutic agents include: alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan, And piposulfan; aziridine, such as benzodopa, carboquone, meturedopa, and uredopa; Ethylenimine and methylamelamine, including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphonamide Triethylenethiophosphaoramide), and trimethylolomelamine; nitrogen mustard, such as chlorambucil, chlornaphazine, cholophosphamide, estramustine (estramustine), ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, neonitrogen mustard (novembichin) ), cholesterol phenyl b Phenosterine, prednimustine, trofosfamide, uracil mustard; nitrosureas, such as carmustine, Chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as aclacinomysin ), actinomycin, authramycin, azaserine, bleomycin, cactinomycin, calicheamicin, Carabincin, carminomycin, carzinophilin, chromomycin, dactinomycin, daunorubicin, tertinopyridin ( Detorubicin), 6-diazo-5-oxo-L-normal leucine, doxorubicin, epirubicin, esorubicin, edabubi Star (idarubicin), marcellomycin, mitomycin, mycophenolic acid, nocardia Nogalamycin, olivomycin, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin ), streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; Metabolic drugs, such as methotrexate and 5-FU; folic acid analogs such as denopterin, amine methotrexate, pteropterin, trimetrexate; , such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine (azacitidine), 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enoxa Otacitabine, floxuridine; androgen, such as calpressone, Dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenal agents, such as aminoglutethimide, mitotane , trolostane; folic acid supplements, such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; Amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone ); elfornithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoxantrone Mit (mitoguazone); mitoxantrone; mopidanmol; nitracrine; pentostatin; phenamet; pirarubicin ( Pirarubicin); podophyllinic acid; 2-ethyl 2-ethylhydrazide; procarbazine; PSK®; razoxane; sizofiran; spirogermanium; tenuazonic acid; Triaziquone; 2,2',2"-trichlorotriethylamine;carbamate;vindesine;dacarbazine;mannomustine; dibromomannose Alcohol (mitobronitol); mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C");cyclophosphamide; thiophene Thietepa; member of the paclitaxel or taxane family, such as paclitaxel (TAXOL®), docetaxel (TAXOTERE®), and its analogues; chlorambucil; gemcitabine ; 6-thioguanine; guanidinium; amidoxime; platinum analogues, such as cisplatin and carboplatin; vinblastine; platinum; etoposide (etoposide, VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine (vi Norelbine); novelbine; nonovantrone; teniposide; daunomycin; aminopterin; xeloda; Ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoic acid; esperamicin; capecita Bin (capecitabine); receptor tyrosine kinase inhibitors and / or angiogenesis inhibitors, including Nexavar® (sorafenib (sorafenib)), SUTENT® (sunitinib (sunitinib)), VOTRIENT TM (Pa pazopanib (pazopanib)), PALLADIA TM (Tosi Neeb (toceranib)), ZACTIMA TM (vandetanib (vandetanib)), RECENTIN® (cediranib (cediranib)), regorafenib (regorafenib ) (BAY 73-4506), axitinib (axitinib) (AG013736), to he erlotinib (lestaurtinib) (CEP-701) , TARCEVA® ( erlotinib (erlotinib)), IRESSA TM (gefitinib Medicine (gefitinib), Gilotrif ® (afatinib), TYKERB® (lapatinib), neratinib, and the like, and any of the above Acceptable salt Acid, or derivative thereof. Also included in this definition are anti-hormonal agents for modulating or inhibiting the action of hormones on tumors, such as anti-estrogens, including, for example, tamoxifen, raloxifene, aromatase inhibitory 4 (5) -imidazole, 4-hydroxytamoxifen, trioxifene, keoxifene, LY 117018, onapristone, and FARESTON® (toremifene) And anti-androgens, such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; A pharmaceutically acceptable salt, acid, or derivative of either. Other conventional cytotoxic compounds as disclosed in Wiemann et al., 1985, in Medical Oncology (Calabresi et al., eds.), Chapter 10, McMillan Publishing, may also be suitable for use in the methods of the present invention.

可與本發明之方法中之特異性結合CD38之抗體組合使用的例示性藥劑包括酪胺酸激酶抑制劑及標靶抗癌療法,諸如IRESSATM(吉非替尼)及Tarceva®(厄洛替尼)、以及HER2、HER3、HER4、或VEGF之其他拮抗劑。例示性HER2拮抗劑包括CP-724-714、HERCEPTINTM(曲妥珠單抗(trastuzumab))、OMNITARGTM(帕妥珠單抗(pertuzumab))、TAK-165、TYKERB®(拉帕替尼)(EGFR及HER2抑制劑)、及GW-282974。例示性HER3拮抗劑包括抗Her3抗體(參見例如,美國專利公開號2004/0197332)。例示性HER4拮抗劑包括抗HER4 siRNA(參見例如,Maatta等人,Mol Biol Cell 17:67-79,2006)。例示性VEGF拮抗劑係AvastinTM(貝伐單抗(bevacizumab))。 The CD38 binding antibody may be in combination with the method of the present invention are used in a specific exemplary agents include tyrosine kinase inhibitors and anticancer therapy target, such as IRESSA TM (gefitinib) and Tarceva ® (erlotinib Other antagonists of HER2, HER3, HER4, or VEGF. Exemplary HER2 antagonists include CP-724-714, HERCEPTIN TM (trastuzumab (trastuzumab)), OMNITARG TM (pertuzumab (pertuzumab)), TAK-165 , TYKERB® ( lapatinib) (EGFR and HER2 inhibitors), and GW-282974. Exemplary HER3 antagonists include anti-Her3 antibodies (see, e.g., U.S. Patent Publication No. 2004/0197332). Exemplary HER4 antagonists include anti-HER4 siRNA (see, eg, Maatta et al, Mol Biol Cell 17: 67-79, 2006). Exemplary VEGF antagonist based Avastin TM (bevacizumab (bevacizumab)).

可與本發明之方法中之特異性結合CD38之抗體組合使用的例示性藥劑包括用於固態腫瘤之標準照護藥品、或免疫檢查點抑制劑。 Exemplary agents that can be used in combination with antibodies that specifically bind CD38 in the methods of the invention include standard care drugs for solid tumors, or immunological checkpoint inhibitors.

本發明之方法中之第二治療劑可係免疫檢查點抑制劑。 The second therapeutic agent in the methods of the invention may be an immunological checkpoint inhibitor.

在一些實施例中,免疫檢查點抑制劑係抗PD-1抗體、抗PD-L1抗體、抗PD-L2抗體、抗LAG3抗體、抗TIM3抗體、或抗CTLA-4抗體。 In some embodiments, the immunological checkpoint inhibitor is an anti-PD-1 antibody, an anti-PD-L1 antibody, an anti-PD-L2 antibody, an anti-LAG3 antibody, an anti-TIM3 antibody, or an anti-CTLA-4 antibody.

在一些實施例中,免疫檢查點抑制劑係拮抗性抗PD-1抗體、拮抗性抗PD-L1抗體、拮抗性抗PD-L2抗體、拮抗性抗LAG3抗體、或拮抗性抗TIM3抗體。 In some embodiments, the immunological checkpoint inhibitor is an antagonist anti-PD-1 antibody, an antagonist anti-PD-L1 antibody, an antagonist anti-PD-L2 antibody, an antagonist anti-LAG3 antibody, or an antagonist anti-TIM3 antibody.

在一些實施例中,免疫檢查點抑制劑係抗PD-1抗體。 In some embodiments, the immunological checkpoint inhibitor is an anti-PD-1 antibody.

在一些實施例中,免疫檢查點抑制劑係抗PD-L1抗體。 In some embodiments, the immunological checkpoint inhibitor is an anti-PD-L1 antibody.

在一些實施例中,免疫檢查點抑制劑係抗PD-L2抗體。 In some embodiments, the immunological checkpoint inhibitor is an anti-PD-L2 antibody.

在一些實施例中,免疫檢查點抑制劑係抗LAG3抗體。 In some embodiments, the immunological checkpoint inhibitor is an anti-LAG3 antibody.

在一些實施例中,免疫檢查點抑制劑係抗TIM3抗體。 In some embodiments, the immunological checkpoint inhibitor is an anti-TIM3 antibody.

在一些實施例中,免疫檢查點抑制劑係抗CTLA-4抗體。 In some embodiments, the immunological checkpoint inhibitor is an anti-CTLA-4 antibody.

任何拮抗性抗PD-1抗體均可用於本發明之方法中。可使用之例示性抗PD-1抗體係OPVIDO®(尼沃魯單抗)及KEYTRUDA®(派立珠單抗)。OPVIDO®(尼沃魯單抗)係描述於例如美國專利第8,008,449號中(抗體5C4)且包含SEQ ID NO:24之VH及SEQ ID NO:25之VL。KEYTRUDA®(派立珠單抗)係描述於例如美國專利第8,354,509號中且包含SEQ ID NO:22之VH及SEQ ID NO:23之VL。尼沃魯單抗及派立珠單抗之胺基酸序列亦可透過CAS登錄取得。可使用之另外的PD-1抗體係描述於美國專利第7,332,582號、美國專利公開號2014/0044738、國際專利公開號WO2014/17966、及美國專利公開號2014/0356363中。 Any antagonistic anti-PD-1 antibody can be used in the methods of the invention. An exemplary anti-PD-1 anti-system, OPVIDO® (Nivoruzumab) and KEYTRUDA® (Pacliizumab) can be used. OPVIDO® (Nivoruzumab) is described, for example, in U.S. Patent No. 8,008,449 (Antibody 5C4) and comprises VH of SEQ ID NO: 24 and VL of SEQ ID NO: 25. KEYTRUDA® (Pacliizumab) is described, for example, in U.S. Patent No. 8,354,509 and includes VL of SEQ ID NO: 22 and VL of SEQ ID NO: 23. The amino acid sequence of nivoluzumab and paclizumab can also be obtained by CAS registration. Additional PD-1 anti-systems that can be used are described in U.S. Patent No. 7,332,582, U.S. Patent Publication No. 2014/0044738, International Patent Publication No. WO 2014/17966, and U.S. Patent Publication No. 2014/035636.

「拮抗劑(Antagonist)」係指當結合至細胞蛋白質時抑制至少一種該蛋白質之天然配位體所誘導之反應或活性的分子。一分子,當至少一種反應或活性受到的抑制比該至少一種反應或活性在不存在拮抗劑之情況下(例如,陰性對照)受到的抑制多至少約30%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、或100%時,或當相較於在不存在拮抗劑之情況下的抑制,抑制係統計學顯著的時,係拮抗劑。拮抗劑可係抗體、可溶性配位體、小分子、DNA、或RNA諸如siRNA。例如藉由PD-1結合至其受體PD-L1或PD-L2所誘導之典型反應或活性可係抗原特異性CD4+或CD8+細胞增生的減少或T細胞之干擾素-γ(IFN-γ)產生的減少,其導致抑制針對例如腫瘤的免疫反應。藉由TIM-3結合至其受體(諸如半乳糖凝集素-9)所誘導之典型反應或活性可係抗原特異性CD4+或CD8+細胞增生的減少、T細胞之IFN-γ產生的減少、或CD4+或CD8+細胞上之CD137表面表現的減少,其導致抑制針對例如腫瘤的免疫反應。因此,特異性結合PD-1的拮抗性PD-1抗體、拮抗性PD-L2、特異性結合TIM-3的拮抗性抗體藉由對於抑制劑途徑加以抑制來誘導免疫反應。 "Antagonist" refers to a molecule that, when bound to a cellular protein, inhibits the reaction or activity induced by at least one natural ligand of the protein. In one molecule, at least one of the reactions or activities is inhibited by at least about 30%, 40%, 45%, 50% more than the at least one reaction or activity is inhibited in the absence of an antagonist (eg, a negative control). , 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, or when compared to inhibition in the absence of an antagonist, inhibition When the statistics are statistically significant, they are antagonists. Antagonists can be antibodies, soluble ligands, small molecules, DNA, or RNA such as siRNA. For example, a typical response or activity induced by PD-1 binding to its receptor PD-L1 or PD-L2 may be a reduction in antigen-specific CD4 + or CD8 + cell proliferation or T cell interferon-gamma (IFN- A decrease in gamma production, which results in inhibition of an immune response against, for example, a tumor. A typical response or activity induced by binding of TIM-3 to its receptor (such as Galectin-9) can result in a decrease in antigen-specific CD4 + or CD8 + cell proliferation and a decrease in T cell IFN-γ production. , or a decrease in the surface manifestation of CD137 on CD4 + or CD8 + cells, which results in inhibition of an immune response against, for example, a tumor. Therefore, an antagonist PD-1 antibody that specifically binds to PD-1, an antagonist PD-L2, an antagonist antibody that specifically binds to TIM-3 induces an immune response by inhibiting the inhibitor pathway.

SEQ ID NO:22 SEQ ID NO: 22

SEQ ID NO:23 SEQ ID NO: 23

SEQ ID NO:24 SEQ ID NO:24

SEQ ID NO:25 SEQ ID NO: 25

增強免疫反應的抗PD-L1抗體可用於本發明之方法中(例如拮抗性抗PD-L1抗體)。可使用之例示性抗PD-L1抗體係德瓦魯單抗(durvalumab)、阿替珠單抗(atezolizumab)、及艾維路單抗(avelumab)、以及描述於例如美國專利公開號2009/0055944、美國專利第美國專利第8,552,154號、美國專利第8,217,149號、及美國專利第8,779,108號中者。 An anti-PD-L1 antibody that enhances the immune response can be used in the methods of the invention (e.g., antagonist anti-PD-L1 antibodies). Exemplary anti-PD-L1 anti-systems, dvvalumab, etezolizumab, and avelumab, and are described, for example, in U.S. Patent Publication No. 2009/0055944 U.S. Patent No. 8,552,154, U.S. Patent No. 8,217,149, and U.S. Patent No. 8,779,108.

德瓦魯單抗包含SEQ ID NO:26之VH及SEQ ID NO:27之VL。 Devaluzumab comprises VH of SEQ ID NO: 26 and VL of SEQ ID NO: 27.

阿替珠單抗包含SEQ ID NO:28之VH及SEQ ID NO:29之VL。 Alitizumab comprises VH of SEQ ID NO: 28 and VL of SEQ ID NO: 29.

艾維路單抗包含SEQ ID NO:30之VH及SEQ ID NO:31之VL。 Iviral mAb comprises VH of SEQ ID NO: 30 and VL of SEQ ID NO: 31.

SEQ ID NO:26 SEQ ID NO:26

SEQ ID NO:27 SEQ ID NO:27

SEQ ID NO:28 SEQ ID NO:28

SEQ ID NO:29 SEQ ID NO:29

SEQ ID NO:30 SEQ ID NO: 30

SEQ ID NO:31 SEQ ID NO: 31

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-1抗體(其包含SEQ ID NO:24之VH及SEQ ID NO:25之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and The combination of VL of SEQ ID NO: 5 with an anti-PD-1 antibody comprising VH of SEQ ID NO: 24 and VL of SEQ ID NO: 25 for a period of time sufficient to treat the solid tumor.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-1抗體(其包含SEQ ID NO:22之VH及SEQ ID NO:23之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and The combination of VL of SEQ ID NO: 5 with an anti-PD-1 antibody comprising VH of SEQ ID NO: 22 and VL of SEQ ID NO: 23 for a period of time sufficient to treat the solid tumor.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-L1抗體(其包含SEQ ID NO:26之VH及SEQ ID NO:27之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and The combination of VL of SEQ ID NO: 5 with an anti-PD-L1 antibody comprising VH of SEQ ID NO: 26 and VL of SEQ ID NO: 27 for a period of time sufficient to treat the solid tumor.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗 體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-L1抗體(其包含SEQ ID NO:28之VH及SEQ ID NO:29之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of a specific binding to CD38 The combination of the VH of SEQ ID NO: 4 and the VL of SEQ ID NO: 5 with an anti-PD-L1 antibody comprising VH of SEQ ID NO: 28 and VL of SEQ ID NO: 29 for a sufficient period of time The time to treat the solid tumor.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-L1抗體(其包含SEQ ID NO:30之VH及SEQ ID NO:31之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and The combination of VL of SEQ ID NO: 5 with an anti-PD-L1 antibody comprising VH of SEQ ID NO: 30 and VL of SEQ ID NO: 31 for a period of time sufficient to treat the solid tumor.

本發明亦提供一種增強病患之免疫反應的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-1抗體(其包含SEQ ID NO:24之VH及SEQ ID NO:25之VL)之組合達一段足以增強免疫反應的時間。 The invention also provides a method of enhancing an immune response in a patient comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH and SEQ ID of SEQ ID NO:4) The combination of NO: 5 VL) with an anti-PD-1 antibody comprising VH of SEQ ID NO: 24 and VL of SEQ ID NO: 25 for a period of time sufficient to enhance the immune response.

本發明亦提供一種增強病患之免疫反應的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-1抗體(其包含SEQ ID NO:22之VH及SEQ ID NO:23之VL)之組合達一段足以增強免疫反應的時間。 The invention also provides a method of enhancing an immune response in a patient comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH and SEQ ID of SEQ ID NO:4) The combination of NO: 5 VL) with an anti-PD-1 antibody comprising VH of SEQ ID NO: 22 and VL of SEQ ID NO: 23 for a period of time sufficient to enhance the immune response.

本發明亦提供一種增強病患之免疫反應的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-L1抗體(其包含SEQ ID NO:26之VH及SEQ ID NO:27之VL)之組合達一段足以增強免疫反應的時間。 The invention also provides a method of enhancing an immune response in a patient comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH and SEQ ID of SEQ ID NO:4) The combination of NO: 5 VL) with an anti-PD-L1 antibody comprising VH of SEQ ID NO: 26 and VL of SEQ ID NO: 27 for a period of time sufficient to enhance the immune response.

本發明亦提供一種增強病患之免疫反應的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-L1抗體(其包含SEQ ID NO:28之VH及SEQ ID NO:29之VL)之組合達一段足以增強免疫反應的時間。 The invention also provides a method of enhancing an immune response in a patient comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH and SEQ ID of SEQ ID NO:4) The combination of NO: 5 VL) with an anti-PD-L1 antibody comprising VH of SEQ ID NO: 28 and VL of SEQ ID NO: 29 for a period of time sufficient to enhance the immune response.

本發明亦提供一種增強病患之免疫反應的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體 (其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-L1抗體(其包含SEQ ID NO:30之VH及SEQ ID NO:31之VL)之組合達一段足以增強免疫反應的時間。 The invention also provides a method of enhancing an immune response in a patient comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and VL of SEQ ID NO: 5) and a combination of an anti-PD-L1 antibody comprising VH of SEQ ID NO: 30 and VL of SEQ ID NO: 31 for a period of time sufficient to enhance The time of the immune response.

本發明亦提供一種治療患有結腸直腸癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PID-1抗體之組合達一段足以治療該結腸直腸癌的時間。 The invention also provides a method of treating a patient having colorectal cancer comprising administering to the patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds CD38 and an antagonist anti-ID-1 antibody. A period of time sufficient to treat the colorectal cancer.

本發明亦提供一種治療患有結腸直腸癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PD-L1抗體之組合達一段足以治療該結腸直腸癌的時間。 The invention also provides a method of treating a patient suffering from colorectal cancer comprising administering to a patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds CD38 and an antagonist anti-PD-L1 antibody. A period of time sufficient to treat the colorectal cancer.

本發明亦提供一種治療患有結腸直腸癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PD-L2抗體之組合達一段足以治療該結腸直腸癌的時間。 The invention also provides a method of treating a patient having colorectal cancer comprising administering to the patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds CD38 and an antagonist anti-PD-L2 antibody. A period of time sufficient to treat the colorectal cancer.

本發明亦提供一種治療患有肺癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PD-1抗體之組合達一段足以治療該肺癌的時間。 The invention also provides a method for treating a patient suffering from lung cancer, comprising administering to a patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds CD38 and an antagonist anti-PD-1 antibody for a period of time A time sufficient to treat the lung cancer.

本發明亦提供一種治療患有肺癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PD-L1抗體之組合達一段足以治療該肺癌的時間。 The invention also provides a method for treating a patient suffering from lung cancer, comprising administering to a patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds CD38 and an antagonist anti-PD-L1 antibody for a period of time A time sufficient to treat the lung cancer.

本發明亦提供一種治療患有肺癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PD-L2抗體之組合達一段足以治療該肺癌的時間。 The invention also provides a method for treating a patient suffering from lung cancer, comprising administering to a patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds CD38 and an antagonist anti-PD-L2 antibody for a period of time A time sufficient to treat the lung cancer.

本發明亦提供一種治療患有前列腺癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PD-1抗體之組合達一段足以治療該前列腺癌的時間。 The present invention also provides a method of treating a patient suffering from prostate cancer comprising administering to a patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds to CD38 and an antagonistic anti-PD-1 antibody. A period of time sufficient to treat the prostate cancer.

本發明亦提供一種治療患有前列腺癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PD-L1抗體之組合達一段足以治療該前列腺癌的時間。 The present invention also provides a method of treating a patient suffering from prostate cancer comprising administering to a patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds CD38 and an antagonist anti-PD-L1 antibody. A period of time sufficient to treat the prostate cancer.

本發明亦提供一種治療患有前列腺癌之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體與拮抗性抗PD-L2抗體之組合達一段足以治療該前列腺癌的時間。 The present invention also provides a method of treating a patient suffering from prostate cancer comprising administering to a patient in need thereof a therapeutically effective amount of a combination of an antibody that specifically binds CD38 and an antagonist anti-PD-L2 antibody. A period of time sufficient to treat the prostate cancer.

增強免疫反應的抗LAG-3抗體可用於本發明之方法中。可使用之例示性抗LAG-3抗體係描述於例如國際專利公開號WO2010/019570中者。 An anti-LAG-3 antibody that enhances the immune response can be used in the methods of the invention. Exemplary anti-LAG-3 anti-systems that can be used are described, for example, in International Patent Publication No. WO 2010/019570.

增強免疫反應的抗CTLA-4抗體可用於本發明之方法中。可使用之例示性抗CTLA-4抗體係伊匹單抗。 An anti-CTLA-4 antibody that enhances the immune response can be used in the methods of the invention. An exemplary anti-CTLA-4 anti-system, ipilimumab, can be used.

可用於本發明之方法中之抗PD-1、抗PD-L1、抗PD-L2、抗LAG3、抗TIM3、及抗CTLA-4抗體亦可使用本文中所述之方法重新產生。 Anti-PD-1, anti-PD-L1, anti-PD-L2, anti-LAG3, anti-TIM3, and anti-CTLA-4 antibodies useful in the methods of the invention can also be regenerated using the methods described herein.

在一些實施例中,可使用包含SEQ ID NO:32之VH及SEQ ID NO:33之VL的抗PD1抗體。 In some embodiments, an anti-PD1 antibody comprising VH of SEQ ID NO: 32 and VL of SEQ ID NO: 33 can be used.

在一些實施例中,可使用包含SEQ ID NO:34之VH及SEQ ID NO:35之VL的抗PD1抗體。 In some embodiments, an anti-PD1 antibody comprising VH of SEQ ID NO: 34 and VL of SEQ ID NO: 35 can be used.

在一些實施例中,可使用包含SEQ ID NO:36之VH及SEQ ID NO:37之VL的抗TIM-3抗體。 In some embodiments, an anti-TIM-3 antibody comprising VH of SEQ ID NO: 36 and VL of SEQ ID NO: 37 can be used.

在一些實施例中,可使用包含SEQ ID NO:38之VH及SEQ ID NO:39之VL的抗TIM-3抗體。 In some embodiments, an anti-TIM-3 antibody comprising VH of SEQ ID NO: 38 and VL of SEQ ID NO: 39 can be used.

SEQ ID NO:32 SEQ ID NO:32

SEQ ID NO:33 SEQ ID NO:33

SEQ ID NO:34 SEQ ID NO: 34

SEQ ID NO:35 SEQ ID NO: 35

SEQ ID NO:36 SEQ ID NO:36

SEQ ID NO:37 SEQ ID NO:37

SEQ ID NO:38 SEQ ID NO:38

SEQ ID NO:39 SEQ ID NO:39

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-1抗體(其包含SEQ ID NO:32之VH及SEQ ID NO:33之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and The combination of VL of SEQ ID NO: 5 with an anti-PD-1 antibody comprising VH of SEQ ID NO: 32 and VL of SEQ ID NO: 33 for a period of time sufficient to treat the solid tumor.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗PD-1抗體(其包含SEQ ID NO:34之VH及SEQ ID NO:35之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and The combination of VL of SEQ ID NO: 5 with an anti-PD-1 antibody comprising VH of SEQ ID NO: 34 and VL of SEQ ID NO: 35 for a period of time sufficient to treat the solid tumor.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗TIM-3抗體(其包含SEQ ID NO:36之VH及SEQ ID NO:37之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and VL of SEQ ID NO: 5) is combined with an anti-TIM-3 antibody comprising VH of SEQ ID NO: 36 and VL of SEQ ID NO: 37 for a time sufficient to treat the solid tumor.

本發明亦提供一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體(其包含SEQ ID NO:4之VH及SEQ ID NO:5之VL)與抗TIM-3抗體(其包含SEQ ID NO:38之VH及SEQ ID NO:39之VL)之組合達一段足以治療該固態腫瘤的時間。 The invention also provides a method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 (which comprises VH of SEQ ID NO: 4 and The combination of VL of SEQ ID NO: 5 with an anti-TIM-3 antibody comprising VH of SEQ ID NO: 38 and VL of SEQ ID NO: 39 for a period of time sufficient to treat the solid tumor.

在本發明之方法中,特異性結合CD38之抗體與第二治療劑之組合可在任何習知時段內投予。例如,特異性結合CD38之抗體及第二治療劑可在同一天,且甚至以同一靜脈輸液投予至病患。然而,特異性結合CD38之抗體及第二治療劑亦可在交替的日子、或交替的週或月、等等投予。在一些方法中,特異性結合CD38之抗體及第二治療劑可在足夠接近的時間投予,使其等在可偵測的水平下同時存在(例如,在血清中)於經治療的病患中。在一些方法中,以特異性結合CD38之抗體(其在一段時間內由數個劑量組成)治療之整個過程係在以第二治療劑(其由數個劑量組成)治療之過程之前或之 後。介於投予特異性結合CD38之抗體與第二治療劑之間可使用1、2、或若干天或週之恢復期。 In the methods of the invention, a combination of an antibody that specifically binds to CD38 and a second therapeutic agent can be administered for any given period of time. For example, an antibody that specifically binds to CD38 and a second therapeutic agent can be administered to a patient on the same day, and even in the same intravenous infusion. However, the antibody that specifically binds to CD38 and the second therapeutic agent can also be administered on alternate days, or alternate weeks or months, and the like. In some methods, an antibody that specifically binds to CD38 and a second therapeutic agent can be administered at a time close enough to allow simultaneous (eg, in serum) treatment of the patient at a detectable level (eg, in serum). in. In some methods, the entire process of treatment with an antibody that specifically binds to CD38, which consists of several doses over a period of time, is preceded by or during the course of treatment with a second therapeutic agent (which consists of several doses) Rear. A recovery period of 1, 2, or several days or weeks may be used between administration of an antibody that specifically binds to CD38 and a second therapeutic agent.

特異性結合CD38之抗體或特異性結合CD38之抗體與第二治療劑之組合可與任何形式的放射療法(包括體外放射(external beam radiation),強度調控放射療法(IMRT)、聚焦放射、及任何形式的放射手術(包括γ刀(Gamma Knife)、射波刀(Cyberknife)、直線加速器(Linac)、及間質放射(例如植入的放射性種粒、GliaSite氣球)))、及/或與手術一起施用。 An antibody that specifically binds to CD38 or a combination of an antibody that specifically binds to CD38 and a second therapeutic agent can be combined with any form of radiation therapy (including external beam radiation, intensity modulated radiation therapy (IMRT), focused radiation, and any Forms of radiosurgery (including Gamma Knife, Cyberknife, Linear Accelerator (Linac), and interstitial radiation (eg implanted radioactive seeds, GliaSite balloons)), and/or with surgery Apply together.

可使用的聚焦放射法包括立體定位放射手術、分次立體定位放射手術、及強度調控放射療法(IMRT)。顯而易見的是,立體定位放射手術涉及精確地遞送輻射至腫瘤組織(例如腦腫瘤),同時避開周圍的非腫瘤、正常組織。使用立體定位放射手術所施加的輻射劑量可能會變化,通常為1Gy至約30Gy,且可包含中間範圍,包括例如1至5、10、15、20、25、高至30Gy的劑量。因為非侵入性固定裝置的緣故,立體定位放射不需要在單次治療中被遞送。治療計劃可以日復一日確實地重複,藉此使多個分次輻射劑量得以被遞送。當用來在一段時間內治療腫瘤時,該放射手術被稱為「分次立體定位放射手術(fractionated stereotactic radiosurgery)」或FSR。相比之下,立體定位放射手術係指單次治療(one-session treatment)。分次立體定位放射手術可能導致高治療比率,即腫瘤細胞殺滅率高且對正常組織低影響。腫瘤及正常組織對高單次劑量輻射之於多次小劑量輻射的反應不同。單次大劑量輻射比起若干次小劑量輻射可能會殺滅更多的正常組織。因此,多次小劑量輻射可以殺滅更多的腫瘤細胞而不傷害正常組織。使用分次立體定位放射所施加的輻射劑量可能會在1Gy至約50Gy的範圍內變化,且可包含中間範圍,包括例如1至5、10、15、20、25、30、40、直到50Gy的低分次劑量。也可使用強度調控放射療法(IMRT)。IMRT係高精度三維順形放射療法(3DCRT)的進階模式,其使用電腦控制的直線加速器以遞送精確的輻射劑量至惡性腫瘤或腫瘤內的特定範圍。在3DCRT中,使用多葉式準直儀(MLC)將每個輻射束的輪廓成形為適合目標的輪廓(來自射束透視(beam's eye view, BEV)觀點),藉此產生若干光束。IMRT以多個小量來調節該輻射束的強度,使輻射劑量得以更精確地符合腫瘤的三維(3-D)形狀。因此,IMRT使更高的輻射劑量能集中到腫瘤內的區域,同時盡量減少對周圍正常關鍵結構的劑量。IMRT提高了使治療量符合凹腫瘤形狀的能力,例如,當腫瘤係纏繞在諸如脊髓或主要器官或血管的脆弱結構上。 Focused radiation methods that can be used include stereotactic radiosurgery, fractional stereotactic radiosurgery, and intensity modulated radiation therapy (IMRT). It is apparent that stereotactic radiosurgery involves accurately delivering radiation to tumor tissue (eg, brain tumors) while avoiding surrounding non-tumor, normal tissue. The dose of radiation applied using stereotactic radiosurgery may vary, typically from 1 Gy to about 30 Gy, and may include intermediate ranges including, for example, 1 to 5, 10, 15, 20, 25, up to 30 Gy. Because of the non-invasive fixation device, stereotactic radiation does not need to be delivered in a single treatment. The treatment plan can be repeated day after day, whereby a plurality of fractionated radiation doses are delivered. When used to treat a tumor over a period of time, the radiosurgery is referred to as "fractionated stereotactic radiosurgery" or FSR. In contrast, stereotactic radiosurgery refers to a one-session treatment. Fractional stereotactic radiosurgery may result in a high therapeutic rate, ie, a high rate of tumor cell killing and a low impact on normal tissues. Tumors and normal tissues respond differently to high single dose radiation to multiple small doses of radiation. A single high dose of radiation may kill more normal tissue than several small doses of radiation. Therefore, multiple small doses of radiation can kill more tumor cells without harming normal tissue. The dose of radiation applied using fractional stereotactic radiation may vary from 1 Gy to about 50 Gy and may include intermediate ranges including, for example, 1 to 5, 10, 15, 20, 25, 30, 40, up to 50 Gy. Low fractionated dose. Intensity modulated radiation therapy (IMRT) can also be used. IMRT is an advanced mode of high precision three dimensional conformal radiation therapy (3DCRT) that uses a computer controlled linear accelerator to deliver precise radiation doses to a specific range within a malignant tumor or tumor. In the 3DCRT, the contour of each radiation beam is shaped into a contour suitable for the target using a multi-leaf collimator (MLC) (from the beam's eye view). BEV) viewpoint, whereby several beams are generated. The IMRT adjusts the intensity of the radiation beam in multiple small quantities so that the radiation dose more precisely conforms to the three-dimensional (3-D) shape of the tumor. Therefore, IMRT enables higher radiation doses to be concentrated into areas within the tumor while minimizing doses to surrounding normal critical structures. IMRT increases the ability to conform a therapeutic amount to the shape of a concave tumor, for example, when the tumor is entangled in a fragile structure such as the spinal cord or major organs or blood vessels.

包含特異性結合CD38之抗體及玻尿酸酶的醫藥組成物之皮下投予Subcutaneous administration of a pharmaceutical composition comprising an antibody that specifically binds to CD38 and a hyaluronanase

特異性結合CD38之抗體可以醫藥組成物之形式皮下投予,該醫藥組成物包含特異性結合CD38之抗體及玻尿酸酶。 The antibody that specifically binds to CD38 can be administered subcutaneously in the form of a pharmaceutical composition comprising an antibody that specifically binds to CD38 and a hyaluronidase.

特異性結合CD38之抗體在皮下投予之醫藥組成物中的濃度可係約20mg/ml。 The concentration of the antibody that specifically binds to CD38 in the pharmaceutical composition administered subcutaneously may be about 20 mg/ml.

皮下投予之醫藥組成物可包含介於約1,200mg至1,800mg之間的特異性結合CD38之抗體。 The pharmaceutical composition for subcutaneous administration may comprise between about 1,200 mg and 1,800 mg of an antibody that specifically binds to CD38.

皮下投予之醫藥組成物可包含約1,200mg的特異性結合CD38之抗體。 The pharmaceutical composition for subcutaneous administration may comprise about 1,200 mg of an antibody that specifically binds to CD38.

皮下投予之醫藥組成物可包含約1,600mg的特異性結合CD38之抗體。 The pharmaceutical composition for subcutaneous administration may comprise about 1,600 mg of an antibody that specifically binds to CD38.

皮下投予之醫藥組成物可包含約1,800mg的特異性結合CD38之抗體。 The pharmaceutical composition for subcutaneous administration may comprise about 1,800 mg of an antibody that specifically binds to CD38.

皮下投予之醫藥組成物可包含介於約30,000U至45,000U之間的玻尿酸酶。 The pharmaceutical composition administered subcutaneously can comprise a hyaluronidase between about 30,000 U and 45,000 U.

皮下投予之醫藥組成物可包含約1,200mg的特異性結合CD38之抗體及約30,000U的玻尿酸酶。 The pharmaceutical composition for subcutaneous administration may comprise about 1,200 mg of an antibody that specifically binds to CD38 and about 30,000 U of hyaluronidase.

皮下投予之醫藥組成物可包含約1,800mg的特異性結合CD38之抗體及約45,000U的玻尿酸酶。 The pharmaceutical composition for subcutaneous administration may comprise about 1,800 mg of an antibody that specifically binds to CD38 and about 45,000 U of hyaluronidase.

皮下投予之醫藥組成物可包含約1,600mg的特異性結合CD38之抗體及約30,000U的玻尿酸酶。 The pharmaceutical composition for subcutaneous administration may comprise about 1,600 mg of an antibody that specifically binds to CD38 and about 30,000 U of hyaluronidase.

皮下投予之醫藥組成物可包含約1,600mg的特異性結合CD38之抗體及約45,000U的玻尿酸酶。 The pharmaceutical composition for subcutaneous administration may comprise about 1,600 mg of an antibody that specifically binds to CD38 and about 45,000 U of hyaluronidase.

皮下投予之醫藥組成物可包含玻尿酸酶rHuPH20,其具有SEQ ID NO:40之胺基酸序列。 The pharmaceutical composition for subcutaneous administration may comprise hyaluronan rHuPH20 having the amino acid sequence of SEQ ID NO:40.

rHuPH20係重組玻尿酸酶(HYLENEX®重組體),且描述於國際專利公開號WO2004/078140中。 rHuPH20 is a recombinant hyaluronic acid enzyme (HYLENEX® recombinant) and is described in International Patent Publication No. WO 2004/078140.

玻尿酸酶係降解玻尿酸(EC 3.2.1.35)的酶,並減低在細胞外基質中玻尿酸之黏度,從而增加組織滲透性。 Hyaluronanase degrades the enzyme of hyaluronic acid (EC 3.2.1.35) and reduces the viscosity of hyaluronic acid in the extracellular matrix, thereby increasing tissue permeability.

SEQ ID NO:40 SEQ ID NO:40

包含特異性結合CD38之抗體及玻尿酸酶的醫藥組成物之投予可在一天、兩天、三天、四天、五天、六天、一週、兩週、三週、四週、五週、六週、七週、兩個月、三個月、四個月、五個月、六個月、或更久之後重覆進行。重覆治療過程亦為可能者,如為慢性投予。重覆投予可在相同劑量或在不同劑量下。例如,包含特異性結合CD38之抗體及玻尿酸酶之醫藥組成物可每週投予一次持續八週,接著兩週投予一次持續16週,接著四週投予一次。待投予之醫藥組成物可包含約1,200mg的特異性結合CD38之抗體及約30,000U的玻尿酸酶,其中特異性結合CD38之抗體在醫藥組成物中之濃度係約20mg/ml。待投予之醫藥組成物可包含約1,800mg的特異性結合CD38 之抗體及約45,000U的玻尿酸酶。待投予之醫藥組成物可包含約1,600mg的特異性結合CD38之抗體及約30,000U的玻尿酸酶。待投予之醫藥組成物可包含約1,600mg的特異性結合CD38之抗體及約45,000U的玻尿酸酶。 The pharmaceutical composition comprising the antibody that specifically binds to CD38 and the hyaluronidase can be administered on one day, two days, three days, four days, five days, six days, one week, two weeks, three weeks, four weeks, five weeks, six Repeatedly after weeks, seven weeks, two months, three months, four months, five months, six months, or longer. It is also possible to repeat the treatment process, such as chronic administration. Repeated administration can be at the same dose or at different doses. For example, a pharmaceutical composition comprising an antibody that specifically binds to CD38 and a hyaluronan can be administered once a week for eight weeks, followed by two weeks for a period of 16 weeks, followed by four weeks. The pharmaceutical composition to be administered may comprise about 1,200 mg of an antibody that specifically binds to CD38 and about 30,000 U of hyaluronidase, wherein the concentration of the antibody that specifically binds to CD38 is about 20 mg/ml in the pharmaceutical composition. The pharmaceutical composition to be administered may comprise about 1,800 mg of specific binding to CD38 The antibody and about 45,000 U of hyaluronidase. The pharmaceutical composition to be administered may comprise about 1,600 mg of an antibody that specifically binds to CD38 and about 30,000 U of hyaluronidase. The pharmaceutical composition to be administered may comprise about 1,600 mg of an antibody that specifically binds to CD38 and about 45,000 U of hyaluronidase.

包含特異性結合CD38之抗體及玻尿酸酶之醫藥組成物可皮下投予至腹部區域。 A pharmaceutical composition comprising an antibody that specifically binds to CD38 and a hyaluronan can be administered subcutaneously to the abdominal region.

包含特異性結合CD38之抗體及玻尿酸酶之醫藥組成物可以約80ml、90ml、100ml、110ml、或120ml之總體積投予。 The pharmaceutical composition comprising the antibody that specifically binds to CD38 and the hyaluronidase can be administered in a total volume of about 80 ml, 90 ml, 100 ml, 110 ml, or 120 ml.

投予時,可將20mg/ml的特異性結合CD38之抗體(於25mM乙酸鈉、60mM氯化鈉、140mM D-甘露醇、0.04%聚山梨醇酯20,pH 5.5)與rHuPH20(1.0mg/mL(75-150kU/mL),於10mM L-組胺酸、130mM NaCl、10mM L-甲硫胺酸、0.02%聚山梨醇酯80,pH 6.5)混合,之後將該混合物投予至對象。 At the time of administration, 20 mg/ml of an antibody that specifically binds to CD38 (in 25 mM sodium acetate, 60 mM sodium chloride, 140 mM D-mannitol, 0.04% polysorbate 20, pH 5.5) and rHuPH20 (1.0 mg/) can be administered. mL (75-150 kU/mL) was mixed with 10 mM L-histamine, 130 mM NaCl, 10 mM L-methionine, 0.02% polysorbate 80, pH 6.5), after which the mixture was administered to the subject.

雖然已用一般術語描述了本發明,本發明之實施例將進一步揭露於下列實例中,但其不應被解釋為限制權利要求的範圍。 Although the present invention has been described in terms of general terms, the embodiments of the present invention are further disclosed in the following examples, which should not be construed as limiting the scope of the claims.

實例1。一般材料及方法Example 1. General materials and methods 樣本收集及處理Sample collection and processing

緊接在第一輸液之前的基期及在治療期間內指明的時間點,將周邊血液及骨髓抽出物收集於肝素化管(heparinized tube)中。大部分樣本係當其等到達中央實驗室時,在收集後24至48小時,使用即時流動式細胞測量術評估。周邊血液單核細胞(PBMC)係獲自全血,藉由密度梯度離心來單離,且冷凍儲存直至分析。針對T細胞活化、純系性、及CD38+ Treg抑制測定,使用冷凍PBMC樣本,同時對治療前及治療後之樣本進行分析。 Peripheral blood and bone marrow aspirate were collected in a heparinized tube immediately following the base period prior to the first infusion and the time point indicated during the treatment period. Most of the samples were evaluated using real-time flow cytometry 24 to 48 hours after collection when they arrived at the central laboratory. Peripheral blood mononuclear cells (PBMC) were obtained from whole blood, isolated by density gradient centrifugation, and stored frozen until analysis. For T cell activation, homozygous, and CD38 + Treg inhibition assays, frozen PBMC samples were used and samples were analyzed before and after treatment.

在BARC全球中心實驗室(BARC global central laboratory),對這些樣本進行流動式細胞測量分析,使用預先驗證的免疫分型測定來評估NK細胞、T細胞、B細胞、骨髓瘤細胞(CD138+)、及CD38表現。簡言之,將血液樣本及骨髓樣本利用下列多螢光染料抗體組染色:細胞譜系組:PerCPCy5.5α-CD19(純系 HIB19;Becton Dickinson[BD])、APCα-CD24(SN3;eBioscience)、PC7α-CD3(UCHT-1;Beckman Coulter)、V500α-CD16(3G8;BD)、及PEα-CD56(MY;BD);調節T細胞(Treg)組:APCα-CD25(2A3;BD)、PEα-CD127(HIL-7R-M21;BD)、APC-H7α-HLA-DR(G46-6;BD)、及PerCPα-CD4(L200;BD);初始(naive)/記憶T細胞組:APC-H7α-CD4(RPA-T4;BD)、PerCP-Cy5.5α-CD8(RPA-T4 BD)、PEα-CD62L(SK11;BD)、及APCα-CD45RA(HI100;BD)。CD38表現係使用Alexa 647標記之抗體mAb 003評估,其描述於美國專利第7,829,693號中,具有SEQ ID NO:14及SEQ ID NO:15之VH及VL序列。血液樣本係使用不同的裂解-清洗方法製備。利用各種抗體對骨髓抽出物樣本進行膜或細胞內染色。Becton Dickinson FACS裂解溶液用於裂解周邊血液樣本中之紅血球,且來自Invitrogen之Fix與Perm細胞滲透試劑用於骨髓抽出物樣本之細胞內染色。染色樣本係在FACS Canto II流動式細胞測量儀上獲得,且數據係使用FacsDiva軟體分析。在所測試之所有時間點判定免疫細胞群在血液樣本中的絕對計數及淋巴球在骨髓樣本中之百分比。 Flow cytometry analysis of these samples was performed at the BARC global central laboratory using pre-validated immunophenotyping assays to assess NK cells, T cells, B cells, myeloma cells (CD138 + ), And CD38 performance. Briefly, blood samples and bone marrow samples were stained with the following multi-fluorescent dye antibody groups: cell lineage group: PerCPCy5.5α-CD19 (pure line HIB19; Becton Dickinson [BD]), APCα-CD24 (SN3; eBioscience), PC7α -CD3 (UCHT-1; Beckman Coulter), V500α-CD16 (3G8; BD), and PEα-CD56 (MY; BD); regulatory T cells (T reg ) group: APCα-CD25 (2A3; BD), PEα- CD127 (HIL-7R-M21; BD), APC-H7α-HLA-DR (G46-6; BD), and PerCPα-CD4 (L200; BD); initial (naive)/memory T cell group: APC-H7α- CD4 (RPA-T4; BD), PerCP-Cy5.5α-CD8 (RPA-T4 BD), PEα-CD62L (SK11; BD), and APCα-CD45RA (HI100; BD). The CD38 expression was assessed using Alexa 647-labeled antibody mAb 003, which is described in U.S. Patent No. 7,829,693, having the VH and VL sequences of SEQ ID NO: 14 and SEQ ID NO: 15. Blood samples were prepared using different lysis-cleaning methods. Bone marrow extract samples were subjected to membrane or intracellular staining using various antibodies. Becton Dickinson FACS lysis solution was used to lyse red blood cells in peripheral blood samples, and the Fix and Perm cell permeation reagent from Invitrogen was used for intracellular staining of bone marrow extract samples. Stained samples were obtained on a FACS Canto II flow cytometer and the data was analyzed using FacsDiva software. The absolute count of the immune cell population in the blood sample and the percentage of lymphocytes in the bone marrow sample were determined at all time points tested.

T細胞受體(TCR)定序T cell receptor (TCR) sequencing

T細胞多樣性係藉由使用PBMC樣本之基因體DNA進行TCR重排之深度定序(deep sequencing)以評估CD8+ T細胞純系性來分析。TCR定序係使用Adaptive Biotechnologies市售的ImmunoseqTM測定進行,且分析係使用預審的多重聚合酶連鎖反應(PCR)測定(TR2015CRO-V-019)進行,其等係由正向引子及反向引子所構成,該等正向引子及反向引子直接靶向可變(V)基因(正向引子)及連接(J)基因(反向引子)之家族。各V及J基因引子係作為引導對(priming pair)以放大體細胞重組TCR,且各引子含有特定的通用DNA序列。在最初的PCR放大之後,將各放大物用正向引子及反向引子放大第二次,該等正向引子及反向引子含有通用序列及Illumina的DNA定序所需的轉接序列(adaptor sequence)。 T cell diversity was analyzed by using deep sequencing of TCR rearrangement using the genetic DNA of PBMC samples to assess the pureness of CD8 + T cells. Adaptive Biotechnologies Immunoseq TM measured using a commercially available system for sequencing the TCR, and an analysis system of a multiplex polymerase chain reaction using pre (PCR) assay (TR2015CRO-V-019) for which the like-based primer and reverse by the forward primer The forward and reverse primers directly target the family of variable (V) genes (forward primers) and junction (J) genes (reverse primers). Each of the V and J gene primers serves as a priming pair to amplify the somatic cell recombinant TCR, and each primer contains a specific universal DNA sequence. After the initial PCR amplification, each amplification product is amplified a second time with a forward primer and a reverse primer containing a universal sequence and a transfer sequence required for Illumina DNA sequencing (adaptor) Sequence).

T細胞對病毒抗原及同種異體抗原的反應T cell response to viral antigens and alloantigens

將病患PBMC接種於96孔盤上(2×105個細胞/孔),且用下列刺激5天:23種主要組織相容性基因複合體(MHC)I類限制性病毒胜肽之混合物(cocktail),其係來自人類巨細胞病毒(CMV)、艾司坦-巴爾病毒(EBV)、及流感病毒(2μg/ml;CEF胜肽池;PANATecs®);或相等數目的來自健康供體的25-Gy照射之同種異體PBMC。未經刺激之PBMC及經抗CD3/CD28塗覆珠粒刺激之PBMC分別充當陰性對照及陽性對照。在第5天,藉由三明治酶聯免疫吸附測定(ELISA;人類IFN γ ELISA Ready-SET-Go;eBioscience)測量無細胞上清液之干擾素γ(IFN-γ),且其充當T細胞活化之替代標誌。 The patient's PBMC were plated on a 96-well plate (2 x 10 5 cells/well) and stimulated for 5 days with a mixture of 23 major histocompatibility gene complexes (MHC) class I restricted viral peptides. (cocktail), derived from human cytomegalovirus (CMV), Esplanade-Barr virus (EBV), and influenza virus (2 μg/ml; CEF peptide pool; PANATecs ® ); or an equal number of healthy donors 25-Gy irradiated allogeneic PBMC. Unstimulated PBMC and PBMC stimulated with anti-CD3/CD28 coated beads served as negative controls and positive controls, respectively. On day 5, cell-free supernatant interferon gamma (IFN-γ) was measured by sandwich enzyme-linked immunosorbent assay (ELISA; human IFN gamma ELISA Ready-SET-Go; eBioscience) and it served as T cell activation Alternative sign.

調節T細胞(Treg)對效應細胞功能的抑制:羧基螢光素琥珀醯亞胺酯(CFSE)稀釋測定Regulation of T cell (Treg) inhibition of effector cell function: carboxyluciferin amber imidate (CFSE) dilution assay

將健康供體之PBMC用PerCP-Cy5.5α-CD3(SK7;BD)、KOα-CD45,(J33;Beckman Coulter)、V450α-CD4(SK3;BD)、PEα-CD25(M-A251,BD)、PE Cy7α-CD127(HIL-7R-M21;BD)、及APCα-CD38(HB-7;BD)標記並藉由FACS Aria(BD)分選。將經分選之效應細胞用羧基螢光素琥珀醯亞胺酯(CFSE;eBioscience)標記,並用抗CD3/CD28塗覆珠粒在CD38+Treg或CD38- Treg(Treg對效應細胞之比率係1:1)存在或不存在的情況下,於RPMI加10%胎牛血清中刺激。72小時後,進行流動式細胞測量術,且將CFSE之稀釋百分比用作T細胞增生之替代。 Healthy donor PBMC with PerCP-Cy5.5α-CD3 (SK7; BD), KOα-CD45, (J33; Beckman Coulter), V450α-CD4 (SK3; BD), PEα-CD25 (M-A251, BD) PE Cy7α-CD127 (HIL-7R-M21; BD), and APCα-CD38 (HB-7; BD) were labeled and sorted by FACS Aria (BD). The sorted effector cells were labeled with carboxyfluorescein amber ylide (CFSE; eBioscience) and coated with anti-CD3/CD28 beads in CD38 + Treg or CD38 - Treg (Treg to effector cell ratio 1 :1) Stimulation in RPMI plus 10% fetal calf serum in the presence or absence. After 72 hours, flow cytometry was performed and the dilution percentage of CFSE was used as a surrogate for T cell proliferation.

骨髓衍生抑制細胞(MDSC)表型及DARZALEXBone marrow-derived suppressor cell (MDSC) phenotype and DARZALEX TMTM (達拉單抗)媒介之ADCC(Dalabizumab) Medium ADCC

將三個正常健康供體之PBMC與骨髓瘤細胞系(RPMI8226,U266,H929)共培育六天,並評估顆粒球性MDSC(G-MDSC)之產生(CD11b+CD14-HLA-DR-CD15+CD33+),如Gorgun等人,Blood 121:2975-87,2013中所述。G-MDSC不存在於正常健康 PBMC中,然而在與所有三個骨髓瘤細胞系共培育之後,G-MDSC以總PBMC群之5至25%存在(數據未顯示)。針對G-MDSC之流動式細胞測量評估的圈選(gating)策略包括以CD11b+作為第一圈選,接著進行CD14-及HLA-DR-圈選,然後接著進行CD15+及CD33+圈選。G-MDSC經細胞分選且評估CD38表現水平及對DARZALEXTM(達拉單抗)媒介之ADCC的敏感度。為了評估DARZALEXTM(達拉單抗)對MDSC之ADCC/CDC的效應,將含有補體或同型對照之血清加至ADCC測定中。 Three normal healthy donor PBMCs were co-cultured with myeloma cell lines (RPMI8226, U266, H929) for six days and evaluated for the production of granule globular MDSC (G-MDSC) (CD11b + CD14 - HLA - DR - CD15 + CD33 + ), as described in Gorgun et al., Blood 121: 2975-87, 2013. G-MDSC was not present in normal healthy PBMC, however after co-cultivation with all three myeloma cell lines, G-MDSC was present at 5 to 25% of the total PBMC population (data not shown). For assessment of circling flow measurement of G-MDSC cells (gating is) include CD11b + policy as a first circle, followed by CD14 - and HLA - DR - circle, and then followed by CD15 + and CD33 + circle. G-MDSCs were sorted by cells and assessed for CD38 expression levels and sensitivity to ADCC of DARZALEX (TM) (duracil) media. To assess the effect of DARZALEX (TM) (dalabizumab) on ADCC/CDC of MDSC, serum containing complement or isotype control was added to the ADCC assay.

初始及記憶T細胞分析Initial and memory T cell analysis

自病患獲得肝素化周邊血液樣本,之後各自輸液DARZALEXTM(達拉單抗)。將周邊血液單核細胞(PBMC)藉由Ficoll-Hypaque密度梯度離心來單離,並儲存在液態氮中之冷凍保存(cryopreservation)培養基(添加10%人類血清及10%二甲亞碸之RPMI)。針對FACS分析,將PBMC解凍,且將2×106個細胞/組再懸浮於具有0.05%疊氮化物及0.1% HAS之磷酸鹽緩衝鹽水(PBS)中。 Patients from heparinized peripheral blood samples obtained, after each infusion DARZALEX TM (Dara mAb). Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll-Hypaque density gradient centrifugation and stored in liquid nitrogen in cryopreservation medium (addition of 10% human serum and 10% dimethylidene RPMI) . For FACS analysis, PBMC were thawed, and the 2 × 10 6 cells / group resuspended with 0.05% azide and 0.1% HAS of phosphate buffered saline (PBS).

數據分析data analysis

所有數據分析及關聯圖表之產生僅使用R軟體進行(R:A Language and Environment for Statistical Computing,R Development Core Team,R Foundation for Statistical Computing,Vienna,Austria,2011,ISBN 3-900051-07-0 http_//_www_R-project_org/)。所有具有可評估反應的經治療之對象均包括在數據分析中。通篇一致地,反應者定義為按照IRC具有sCR、VGPR、及PR之最佳反應的對象,且無反應者定義為按照IRC具有MR、SD、及PD之最佳反應的對象。 All data analysis and correlation diagrams are generated using only R software (R: A Language and Environment for Statistical Computing, R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2011, ISBN 3-900051-07-0 http_ //_www_R-project_org/). All treated subjects with evaluable responses were included in the data analysis. Consistently, the responders were defined as subjects that had the best response to sCR, VGPR, and PR according to IRC, and non-responders were defined as subjects that had the best response to MR, SD, and PD according to IRC.

不同的統計學比較包括:(i)反應者與無反應者之間的基期水平,(ii)反應者及無反應者的基期之於治療中,(iii)反應者與無反應者之間的變化百分比,(iv)基期之於治療中的比率變化。各比較首先包括利用夏皮羅-威爾克(Shapiro-Wilk)檢定之常態性檢定(Royston (1995)Remark AS R94:A remark on Algorithm AS 181:The W test for normality.Applied Statistics,44,547-551)。發現到,幾乎所有數據都不具有常態分佈。差異水平檢定包括進行非參數威爾卡森等級和檢定(Wilcox rank sum test)(Hollander及Wolfe(1973),Nonparametric Statistical Methods.New York:John Wiley & Sons.Pages 27-33(單樣本),68-75(雙樣本))及在博克斯-卡克斯(Box Cox)轉換之後的t檢定(Weisberg,S.(2014)Applied Linear Regression,Fourth Edition,Wiley Wiley,Chapter 7)。針對博克斯-卡克斯轉換,將小數(1e-07)加至等於0的值。在所有情況下,兩個檢定一致。除非另外指示,否則威爾卡森等級和檢定p-值係顯示於本說明書通篇的表中。當測試反應者及無反應者之基期之於治療中的差異時,每個對象進行雙組配對測試,在所有其他情況下,進行雙組非配對測試。 Different statistical comparisons include: (i) the base level between the responder and the non-responder, (ii) the base period of the responder and the non-responder, and (iii) between the responder and the non-responder. Percent change, (iv) change in the ratio of the base period to treatment. The comparisons first included the use of the Shapiro-Wilk test for normality verification (Royston). (1995) Remark AS R94: A remark on Algorithm AS 181: The W test for normality. Applied Statistics, 44, 547-551). It was found that almost all data did not have a normal distribution. The difference level test includes a non-parametric Wilcox rank sum test (Hollander and Wolfe (1973), Nonparametric Statistical Methods. New York: John Wiley & Sons. Pages 27-33 (single sample), 68 -75 (two-sample)) and t-test after Box Cox conversion (Weisberg, S. (2014) Applied Linear Regression, Fourth Edition, Wiley Wiley, Chapter 7). For the Box-Kax conversion, the decimal (1e-07) is added to a value equal to zero. In all cases, the two checks are consistent. Unless otherwise indicated, the Wilburson rating and the assay p-value are shown in the table throughout this specification. When testing for differences in the base period of the responders and non-responders, each subject was tested for a two-group pairing test, and in all other cases, a two-group unpaired test was performed.

因為針對不同的給藥排程,分析各種淋巴球群之樣本不是在同一時間點取得的,所以進行族群模型化。模型擬合係對訪視之等級進行。對總體及活化NK細胞的族群模型化涉及擬合折棒模型(broken stick model)(Lutz等人,「Statistical model to estimate a threshold dose and its confidence limits for the analysis of sublinear dose-response relationships,exemplified for mutagenicity data.」Mutation Research/Genetic Toxicology and Environmental Mutagenesis 678.2(2009):118-122.)。將具有隨機截距及斜率之線性混合效應模型對B細胞、T細胞亞群、及白血球、單核球、嗜中性球、及淋巴球病患族群之數據進行擬合(Bates等人,(2014)。「lme4:Linear mixed-effects models using Eigen and S4.」ArXiv e-print;提交至Journal of Statistical Software,http:_//_arxiv_org/abs/_1406.5823)。此線性混合模型化係對治療開始後的相對日子進行(ADY)。此線性混合模型擬合係對經對數轉換的反應變數進行。在反應變數值等於0之情況下,將0.1加至所有反應變數值以允許在對數尺度下的模型化。 Because the samples of the various lymphocyte clusters were not taken at the same time point for different dosing schedules, population modeling was performed. The model fit is performed on the level of the visit. Modeling of the population and the activation of NK cells involves the inclusion of a threshold stick model (Lutz et al., "Statistical model to estimate a threshold dose and its confidence limits for the analysis of sublinear dose-response relationships, exemplified for Mutagenicity data." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 678.2 (2009): 118-122.). A linear mixed-effects model with random intercepts and slopes was fitted to B cells, T cell subsets, and white blood cells, mononuclear spheres, neutrophils, and lymphocytic disease populations (Bates et al., ( 2014). "lme4: Linear mixed-effects models using Eigen and S4." ArXiv e-print; submitted to the Journal of Statistical Software , http:_//_arxiv_org/abs/_1406.5823). This linear mixed modeling system was performed on the relative days after the start of treatment (ADY). This linear mixed model fit is performed on log-transformed reaction variables. In the case where the reaction variable value is equal to 0, 0.1 is added to all reaction variable values to allow modeling on a logarithmic scale.

實例2.研究54767414MMY2002設計(SIRIUS)Example 2. Study 54776414MMY2002 Design (SIRIUS)

研究54767414MMY2002(SIRIUS)之目標族群係患有晚期多發性骨髓瘤之病患,其等之前接受過至少3種療法,包括蛋白酶體抑制劑(PI)及免疫調節藥品(IMiD),或其等對於PI及IMiD而言係雙重難治。主要終點/最終分析之反應評估係基於獨立評審委員會(independent review committee,IRC)及電腦化演算法之評估,其使用2011 IMWG準則(臨床研究報告:一項開放標籤、多中心、第2期試驗,其探究在患有多發性骨髓瘤之對象中DARZALEXTM(達拉單抗)的功效及安全性,該等對象之前已接受至少3種療法(包括蛋白酶體抑制劑及IMiD)或該等對象對於蛋白酶體抑制劑及IMiD而言係雙重難治(EDMS-ERI-92399922;de Weers等人,(2011)J Immunol 186(3):1840-1848))。 The target group of study 54747414MMY2002 (SIRIUS) is a patient with advanced multiple myeloma who has previously received at least 3 therapies, including proteasome inhibitors (PI) and immunomodulatory drugs (IMiD), or Both PI and IMiD are double refractory. The primary endpoint/final analysis response assessment was based on an independent review committee (IRC) and computerized algorithm evaluation using the 2011 IMWG guidelines (clinical research report: an open label, multicenter, phase 2 trial) Exploring the efficacy and safety of DARZALEXTM (Dalabizumab) in subjects with multiple myeloma who have previously received at least 3 therapies (including proteasome inhibitors and IMiD) or Proteasome inhibitors and IMiD are dually refractory (EDMS-ERI-92399922; de Weers et al. (2011) J Immunol 186(3): 1840-1848).

這些評估包括:總體反應率(ORR)、反應持續時間、反應時間及最佳反應、臨床受益率、進展時間(TTP)、無進展存活期(PFS)、及總體存活期(OS)。 These assessments included: overall response rate (ORR), duration of response, response time and optimal response, clinical benefit rate, time to progression (TTP), progression-free survival (PFS), and overall survival (OS).

此研究中,總計124個對象經DARZALEXTM(達拉單抗)治療(de Weers等人,(2011)J Immunol 186(3):1840-1848)。18個對象係以8mg/kg治療,且106個對象係以16mg/kg治療。給藥排程係如下:A組:DARZALEXTM(達拉單抗)16mg/kg:週期1及週期2:第1、8、15、及22天(每週),週期3至週期6:第1及15天(每隔一週),週期7+:第1天(每4週)。各週期係4週。 This study, a total of 124 objects by DARZALEX TM (Dara mAb) therapy (de Weers et al., (2011) J Immunol 186 ( 3): 1840-1848). Eighteen subjects were treated at 8 mg/kg and 106 subjects were treated at 16 mg/kg. Dosing schedule based follows: A Group: DARZALEX TM (Dara mAb) 16mg / kg: Cycle 1 and Cycle 2: a first 1,8,15, and 22 days (weekly), the cycle period of 3 to 6: The first 1 and 15 days (every other week), period 7+: day 1 (every 4 weeks). Each cycle is 4 weeks.

B組:DARZALEXTM(達拉單抗)8mg/kg:週期1+:第1天(每4週)。 Group B: DARZALEX TM (Dara mAb) 8mg / kg: 1+ period: 1 day (every 4 weeks).

研究之主要目標係判定DARZALEXTM(達拉單抗)之2個治療方案的功效,如藉由ORR(CR+PR)所測量,在患有多發性骨髓瘤的對象中,該等對象之前已接受至少3種療法,包括PI及IMiD,或該等對象之疾病對於PI及IMiD而言係雙重難治(臨床研究報告:一項開放標籤、多中心、第2期試驗,其探究在患有多發性骨髓瘤之對象中DARZALEXTM(達拉單抗)的功效及安全性,該等對 象之前已接受至少3種療法(包括蛋白酶體抑制劑及IMiD)或該等對象對於蛋白酶體抑制劑及IMiD而言係雙重難治。EDMS-ERI-92399922)。 The primary goal of the study was to determine the efficacy of two treatment regimens for DARZALEXTM (Dalabizumab ) , as measured by ORR (CR+PR), in subjects with multiple myeloma, who had previously Accepting at least 3 therapies, including PI and IMiD, or the disease of these subjects is dually refractory for PI and IMiD (Clinical Research Report: An Open-label, Multi-Center, Phase 2 trial, which explores multiple cases The efficacy and safety of DARZALEXTM (Dalabiza ) in subjects with myeloma who have previously received at least 3 therapies (including proteasome inhibitors and IMiD) or such subjects for proteasome inhibitors and IMiD In terms of double refractory. EDMS-ERI-92399922).

此研究之次級目標包括評估DARZALEXTM(達拉單抗)之安全性及耐受性、展示功效之額外量度(例如,臨床受益、TTP、PFS、及OS)連同評估藥物動力學、免疫原性、藥效動力學、以及探究預示對DARZALEXTM(達拉單抗)之反應的生物標誌。額外研究相關的資訊可得自臨床研究規程(臨床研究報告:一項開放標籤、多中心、第2期試驗,其探究在患有多發性骨髓瘤之對象中DARZALEXTM(達拉單抗)的功效及安全性,該等對象之前已接受至少3種療法(包括蛋白酶體抑制劑及IMiD)或該等對象對於蛋白酶體抑制劑及IMiD而言係雙重難治。EDMS-ERI-92399922)。 Secondary objectives of this study included assessment of the safety and tolerability of DARZALEXTM (dalalim ) , additional measures of efficacy (eg, clinical benefit, TTP, PFS, and OS) along with assessment of pharmacokinetics, immunogens Sexual, pharmacodynamic, and biomarkers that predict the response to DARZALEXTM (dalabizumab ) . Additional research-related information is available from clinical research protocols (clinical research report: an open-label, multicenter, phase 2 trial exploring DARZALEXTM (dalabizumab ) in subjects with multiple myeloma Efficacy and safety, these subjects have previously received at least 3 therapies (including proteasome inhibitors and IMiD) or these subjects are dually refractory to proteasome inhibitors and IMiD. EDMS-ERI-92399922).

在第1部分之第1階段中,8mg/kg組中1個對象(6%)有反應,且在16mg/kg組中5個對象(31%)有反應。因此,在第1部分之第2階段及第2部分中,僅16mg/kg組擴增。 In the first stage of Part 1, one subject (6%) in the 8 mg/kg group responded, and 5 subjects (31%) responded in the 16 mg/kg group. Therefore, in the second and second portions of the first part, only the 16 mg/kg group was amplified.

在16mg/kg組中,基於IRC評估,31個對象達成PR或更好的反應;ORR係29%(95% CI:21%,39%)。三個對象(3%)達成sCR,且13個對象(12%)達成VGPR或更好。 In the 16 mg/kg group, 31 subjects achieved PR or better response based on IRC assessment; ORR line 29% (95% CI: 21%, 39%). Three subjects (3%) achieved sCR and 13 subjects (12%) achieved VGPR or better.

實例3.DARZALEXExample 3. DARZALEX TMTM (達拉單抗)在登記54767414MMY2002研究(SIRIUS)之病患中對T細胞擴增及活性之效應Effect of (dalalim) on T cell expansion and activity in patients enrolled in the 54747414MMY2002 study (SIRIUS)

CD38表現在多種免疫細胞及造血細胞上。藉由流動式細胞測量術進行廣泛的免疫剖析,以檢驗DARZALEXTM(達拉單抗)對免疫細胞子集的效應及這些細胞的基期水平與臨床反應的關聯。在基期及DARZALEXTM(達拉單抗)治療之後藉由流動式細胞測量術評估周邊血液及骨髓抽出物中之各種細胞群,包括T細胞(CD3+、CD4+、CD8+、及調節T細胞(Treg))、B細胞(CD19+)、NK細胞、單核球(CD14+)、白血球、及嗜中性球,以監測反應者及無反應者中這些細胞群之變化。 CD38 is expressed on a variety of immune cells and hematopoietic cells. Extensive immunodissection was performed by flow cytometry to examine the effect of DARZALEX (TM) (dalacil) on immune cell subsets and the association of baseline levels of these cells with clinical response. Evaluation of various cell populations in peripheral blood and bone marrow extracts, including T cells (CD3 + , CD4 + , CD8 + , and regulatory T cells ) by flow cytometry after baseline and DARZALEX TM treatment (Treg)), B cells (CD19 + ), NK cells, mononuclear spheres (CD14 + ), white blood cells, and neutrophils to monitor changes in these cell populations in responders and non-responders.

淋巴球、白血球、單核球、及嗜中性球Lymphocytes, white blood cells, mononuclear balls, and neutrophils

研究反應者及無反應者中周邊血液中之白血球、淋巴球、單核球、及嗜中性球計數。在以8mg/kg及16mg/kg劑量之病患中均發現總淋巴球隨著DARZALEXTM(達拉單抗)治療而增加(圖1)。線性混合效應模型化揭示每100天在對數尺度下增加0.8×106個細胞/μL(CI=0.06,0.11)。發現單核球及白血球之略微增加,其係於各100天在對數尺度下分別顯著增加0.03×106個細胞/μL(CI=0.01,0.04)及0.03×106個細胞/μL(CI=0.01,0.05)。儘管注意到在一些病患中嗜中性球減少,但是嗜中性球計數中位數與基期一致,且變化不顯著。 White blood cells, lymphocytes, mononuclear spheres, and neutrophil counts in peripheral blood of responders and non-responders were studied. In order to 8mg / kg and 16mg / kg dose of total lymphocytes were found in patients with DARZALEX TM (Dara mAb) therapy (Fig. 1). Linear mixed-effects modeling revealed an increase of 0.8 × 10 6 cells/μL (CI = 0.06, 0.11) on a logarithmic scale every 100 days. A slight increase in mononuclear and white blood cells was found, which was significantly increased by 0.03×10 6 cells/μL (CI=0.01, 0.04) and 0.03×10 6 cells/μL on a logarithmic scale for each 100 days (CI= 0.01, 0.05). Although the neutrophil reduction was noted in some patients, the median neutrophil count was consistent with the baseline and the change was not significant.

比較反應組之間這些細胞群之各者的基期水平。使用威爾卡森符號等級檢定(Wilcoxon signed-rank test)並未發現跨反應組的這些細胞類型之任一者的基期水平不同的證據(表1)。 The baseline levels of each of these cell populations were compared between the reaction groups. The use of the Wilcoxon signed-rank test did not reveal evidence of differences in the base level of any of these cell types across the response group ( Table 1 ).

NK細胞NK cell

總NK細胞(CD16+CD56+)及活化NK細胞(CD16+CD56dim)在DARZALEXTM(達拉單抗)治療之情況下隨著時間推移而減少(數據未顯示)。 Total NK cells (CD16 + CD56 + ) and activated NK cells (CD16 + CD56 dim ) decreased over time in the case of DARZALEXTM (dalacil) treatment (data not shown).

B細胞B cell

在反應者及無反應者中測量周邊血液或骨髓抽出物中之B細胞(CD45+CD3-CD19+)在DARZALEXTM(達拉單抗)治療期間隨時間推移的絕對計數。B細胞在全血中略微增加,且在骨髓抽出物中維持不變。周邊血液中之B細胞的線性混合模型化揭示,在DARZALEXTM(達拉單抗)治療之過程內於各100天在對數尺度下最小增加0.1×106個細胞/μL[CI=0.04,0.16]。在達拉單抗治療期間骨髓抽出物中之B細胞(CD45+CD3-CD19+/淋巴球)之百分比在反應者或無反應者中皆沒有變化(分別係p=0.1及0.4)。另外,在反應者與無反應者之間,沒有發現在基期之B細胞計數不同的證據(p=0.5)。 Absolute counts of B cells (CD45 + CD3 - CD19 + ) in peripheral blood or bone marrow extracts over time during treatment with DARZALEXTM (dalacil ) were measured in responders and non-responders. B cells increased slightly in whole blood and remained unchanged in bone marrow aspirate. Linear mixed modeling of B cells in peripheral blood revealed a minimal increase of 0.1 × 10 6 cells/μL on a logarithmic scale at 100 days in the course of DARZALEX TM treatment [CI=0.04, 0.16 ]. The percentage of B cells (CD45 + CD3 - CD19 + / lymphocytes) in bone marrow aspirate during daramumab treatment did not change in responders or non-responders (p = 0.1 and 0.4, respectively). In addition, no evidence of a different B cell count at the base stage was found between the responder and the non-responder (p=0.5).

T細胞注意到淋巴球在DARZALEXTM(達拉單抗)治療之情況下增加(圖1),即使B細胞僅顯示最小增加(參見上文)。為了進一步調查,研究周邊血液及骨髓兩者中之各種T細胞群(CD3+、CD4+、CD8+T細胞、調節T細胞)。 T cells increased in the case of lymphocytes noted DARZALEX TM (Dara mAb) Healing (FIG. 1), even if the B cells show only a minimal increase (see above). For further investigation, various T cell populations (CD3 + , CD4 + , CD8 + T cells, regulatory T cells) in peripheral blood and bone marrow were studied.

在DARZALEXTM(達拉單抗)治療之後,周邊血液中之CD3+、CD4+、及CD8+ T細胞增加(淋巴球之絕對計數/μl及百分比兩者)。圖2顯示隨時間推移每個病患的周邊血液中之CD3+ T細胞(CD45+CD3+)之絕對計數自基期的變化百分比。圖中之黑色線顯示所有病患之絕對計數中位數×106個細胞/μL。圖中僅包括多於2次觀察的訪視。圖3顯示隨時間推移每個病患的周邊血液中之CD4+ T細胞(CD45+CD3+CD4+)之絕對計數自基期的變化%。圖中之黑色線顯示所有病患之中位數。圖中僅包括多於2次觀察的訪視。圖4顯示隨時間推移每個病患的周邊血液中之CD8+ T細胞(CD45+CD3+CD8+)之絕對計數自基期的變化%。圖中之黑色線顯示所有病患之中位數。圖中僅包括多於2次觀察的訪視。對周邊血液中之絕對計數的線性混合模型化揭示,平均來說,總T細胞(CD45+CD3+)在DARZALEXTM(達拉單抗)治療之後係於各100天在對數尺度下增加0.13×106個細胞/μl (CI=0.1,0.15)。發現CD8+ T細胞於各100天在對數尺度下顯著增加0.16×106個細胞/μl(CI=0.13,0.19)。發現CD4+細胞於各100天在對數尺度下中等增加0.11×106個細胞/μl(CI=0.09,0.13)。 After treatment with DARZALEXTM (dalabizumab ) , CD3 + , CD4 + , and CD8 + T cells in peripheral blood increased (both absolute counts of lymphocytes/μl and percentage). Figure 2 shows the percentage change in absolute counts of CD3 + T cells (CD45 + CD3 + ) from the peripheral phase in peripheral blood of each patient over time. FIG black line shows the absolute count of all patients of median × 10 6 cells / μL. Only more than 2 observations of the visit were included in the figure. Figure 3 shows the % change in absolute count of CD4 + T cells (CD45 + CD3 + CD4 + ) from the peripheral phase in peripheral blood of each patient over time. The black line in the figure shows the median of all patients. Only more than 2 observations of the visit were included in the figure. Figure 4 shows the % change in absolute count of CD8 + T cells (CD45 + CD3 + CD8 + ) from the peripheral phase in peripheral blood of each patient over time. The black line in the figure shows the median of all patients. Only more than 2 observations of the visit were included in the figure. Linear mixed model of absolute counts of the peripheral blood revealed, on average, total T cells (CD45 + CD3 +) after DARZALEX TM (Dara mAb) therapy based on each of 0.13 × 100 days increased in the logarithmic scale 10 6 cells/μl (CI=0.1, 0.15). CD8 + T cells were found to increase significantly by 0.16 × 10 6 cells/μl (CI = 0.13, 0.19) on a logarithmic scale every 100 days. CD4 + cells were found to increase moderately by 0.11 × 10 6 cells/μl (CI = 0.09, 0.13) on a logarithmic scale every 100 days.

對於T細胞亞群之各者,反應者顯示絕對計數自基期的最大變化百分比高於無反應者(CD3+ p=3.2993e-05;CD4+ p=3.486e-05;CD8+ p=2.7172e-05;調節T細胞p=0.002)。表2顯示威爾卡森符號等級檢定結果,用以比較反應者與無反應者之間周邊血液中之各T細胞亞群之絕對計數自基期的變化百分比。 For each of the T cell subsets, the responders showed that the absolute percentage change from the base period was higher than that of the non-responders (CD3 + p = 3.2993e-05; CD4 + p = 3.486e-05; CD8 + p = 2.7172e) -05; regulatory T cells p=0.002). Table 2 shows the results of the Wilburson symbol level check to compare the percentage change from the base period for the absolute count of each T cell subpopulation in the peripheral blood between the responder and the non-responder.

類似地在骨髓中,發現反應者及無反應者之總T細胞(呈淋巴球之百分比的CD45+CD3+)及CD8+ T細胞(呈淋巴球之百分比的CD45+CD3+CD8+)在DARZALEXTM(達拉單抗)治療期間皆顯著地增加(CD3+反應者p=3.8147e-06,無反應者p=9.8225e-05;CD8+反應者p=3.8147e-06,無反應者p=0.0003)。骨髓中之CD4+ T細胞中位數在任一臨床反應組中皆沒有變化。表3顯示呈骨髓中淋巴球%之各種T細胞的威爾卡森符號等級檢定結果。圖5顯示在DARZALEXTM(達拉單抗)治療期間CD45+CD3+細胞隨時間推移的百分比(%)(反應者及無反應者均包括在圖表中)。圖6顯示在 DARZALEXTM(達拉單抗)治療期間CD45+CD3+CD8+細胞隨時間推移的%(反應者及無反應者均包括在圖表中)。 Similarly in the bone marrow, total T cells (CD45 + CD3 + as a percentage of lymphocytes) and CD8 + T cells (CD45 + CD3 + CD8 + as a percentage of lymphocytes) were found in responders and non-responders in DARZALEX TM (dalacil) was significantly increased during treatment (CD3 + responder p = 3.8147e-06, no responder p = 9.8225e-05; CD8 + responder p = 3.8147e-06, no responder p =0.0003). The median CD4 + T cells in the bone marrow did not change in any of the clinical response groups. Table 3 shows the results of Wilburson symbol level determination of various T cells which are % of lymphocytes in the bone marrow. Figure 5 shows the percentage (%) of CD45 + CD3 + cells over time during DARZALEX (TM) (dalabizumab) treatment (reactors and non-responders are included in the graph). Figure 6 shows % of CD45 + CD3 + CD8 + cells over time during DARZALEX TM (dalabizumab) treatment (reactors and non-responders are included in the chart).

儘管反應者及無反應者均展示周邊血液及骨髓中之T細胞增加,但是反應者具有最大的自基期的變化百分比。為了區別在DARZALEXTM(達拉單抗)治療之前,是反應者還是無反應者具有不同水平的CD3+、CD4+、及CD8+ T細胞,比較周邊血液中各亞組之基期測量值。 Although both responders and non-responders showed increased T cells in peripheral blood and bone marrow, responders had the largest percentage change from baseline. In order to distinguish between responders and non-responders with different levels of CD3 + , CD4 + , and CD8 + T cells prior to treatment with DARZALEX (TM ), the base period measurements of each subgroup in peripheral blood were compared.

根據威爾卡森符號等級檢定,在周邊血液中之基期的絕對T細胞計數(表4)或骨髓中之自總淋巴球的T細胞百分比中(表5),反應者與無反應者之間不具有統計學顯著的差異。 According to the Wilkason symbolic level test, the absolute T cell count in the base phase in peripheral blood ( Table 4 ) or the percentage of T cells in the bone marrow from the total lymphocytes ( Table 5 ), between responders and non-responders There are no statistically significant differences.

T調節細胞T regulatory cell

Treg細胞係鑑定為樣本中之CD3+CD4+CD25+CD127dim細胞群。評估經DARZALEXTM(達拉單抗)治療的病患中周邊血液及骨髓中隨時間推移的CD8+ T細胞對Treg之比率。周邊血液及骨髓 中之比率均增加。圖7A顯示每個時間點所有病患之周邊血液中CD8+/Treg及CD8+/CD4+細胞比率之中位數值。圖7B顯示每個時間點所有病患之骨髓中CD8+/Treg及CD8+/CD4+ T細胞比率之中位數值。根據威爾卡森符號等級檢定,周邊血液中隨治療時間推移(表6)及骨髓(表7)中之CD8+Treg及CD8+/CD4+的絕對計數比率之變化係顯著的。 The Treg cell line was identified as a CD3 + CD4 + CD25 + CD127 dim cell population in the sample. The ratio of CD8 + T cells to Treg over time in peripheral blood and bone marrow in patients treated with DARZALEX (TM) (dalacil ) was assessed. The ratio of peripheral blood and bone marrow increased. Figure 7A shows the median value of CD8 + /Treg and CD8 + / CD4 + cell ratios in peripheral blood of all patients at each time point. Figure 7B shows the median value of CD8 + /Treg and CD8 + /CD4 + T cell ratios in the bone marrow of all patients at each time point. The change in the absolute count ratio of CD8 + Treg and CD8 + /CD4 + in peripheral blood as a function of treatment time ( Table 6 ) and bone marrow ( Table 7 ) was significant according to the Wilburson symbol level test.

在SIRIUS及GEN501研究(實例6)之組合數據分析中,周邊血液中之CD8+/CD4+及CD8+/Treg細胞之比率中位數在第8週(CD8+/CD4+之p=5.1×10-5,且CD8+/Treg之p=1.8×10-7)及在第16週(CD8+/CD4+之p=0.00017,且CD8+/Treg之p=4.1×10-7)係增加的。類似地,在骨髓中,CD8+/CD4+及CD8+/Treg細胞之比率中位數在治療中(第12+1週週期)相較於基期係增加的(CD8+/CD4+之p=0.00016,且CD8+/Treg之p=2.8×10-7)。反應者與無反應者之間未觀察到顯著差異。 In the combined data analysis of the SIRIUS and GEN501 studies (Example 6), the median ratio of CD8 + /CD4 + and CD8 + /Treg cells in peripheral blood was at week 8 (CD8 + /CD4 + p = 5.1 ×) 10-5, and the CD8 + / Treg of p = 1.8 × 10 -7) and at 16 weeks (CD8 + / CD4 + sum p = 0.00017, and CD8 + / Treg of p = 4.1 × 10 -7) due to the increase of. Similarly, in the bone marrow, the median ratio of CD8 + /CD4 + and CD8 + /Treg cells was increased during treatment (12 + 1 week cycle) compared to the base phase (CD8 + /CD4 + p = 0.00016, and CD8 + /Treg p = 2.8 × 10 -7 ). No significant differences were observed between responders and non-responders.

實例4.研究設計(GEN501)Example 4. Research Design (GEN501)

研究GEN501(NCT00572488)評估雙重難治MM病患中作為單一療法的DARZALEXTM(達拉單抗)。樣本單離、處理、及統計分析係如實例1及實例2中所述。該研究已描述於Lokhorst等人,N Eng J Med 373:1207-19,2005中。 Research GEN501 (NCT00572488) assessment of double refractory MM patients as monotherapy DARZALEX TM (Dara monoclonal antibody). Sample isolation, processing, and statistical analysis are as described in Example 1 and Example 2. This study has been described in Lokhorst et al., N Eng J Med 373: 1207-19, 2005.

簡言之,研究GEN501係DARZALEXTM(達拉單抗)在患有MM的對象中之首次應用於人類(first-in-human)的臨床研究。其係第1/2期劑量逐步升高的安全性研究,該研究分成2個部分。第1部分係開放標籤劑量逐步升高的研究;第2部分係開放標籤以多個分群的單臂研究,其係基於第1部分中所確立之劑量水平。 Briefly, the GEN501 line DARZALEXTM (Dalabizumab) was first studied in human-first (first-in-human) clinical studies in subjects with MM. It is a safety study in which the 1/2-stage dose is gradually increased. The study is divided into two parts. Part 1 is a study of the progressive increase in open-label doses; Part 2 is an open-label, multi-group, one-arm study based on the dose levels established in Part 1.

在第1部分中,評估DARZALEXTM(達拉單抗)之10個劑量水平:0.005、0.05、0.10、0.50、1、2、4、8、16、及24mg/kg。兩個最低劑量分群各配給1(+3)個對象,且標準3(+3)個對象配給應用至剩餘8個劑量分群。第2部分係開放標籤單研究,其包括兩個劑量水平,8mg/kg及16mg/kg。第1部分包括32個對象,且第2部分包括72個對象。 In Part 1, 10 dose levels of DARZALEX (TM) (dalabizumab ) were evaluated: 0.005, 0.05, 0.10, 0.50, 1, 2, 4, 8, 16, and 24 mg/kg. The two lowest dose populations were each assigned 1 (+3) subjects, and the standard 3 (+3) subjects were dosed to the remaining 8 dose groups. Part 2 is an open label study that includes two dose levels, 8 mg/kg and 16 mg/kg. Part 1 includes 32 objects, and Part 2 includes 72 objects.

實例5. DARZALEXExample 5. DARZALEX TMTM (達拉單抗)治療誘導病患中之T細胞純系性(Dalabizumab) treatment induces T cell purity in patients

鑒於在MY2002研究中在周邊血液及骨髓中注意到的CD8+ T細胞之擴增,使用ImmunoseqTM測定進行T細胞受體(TCR)之高通量次世代定序,以判定擴增CD8+ T細胞是否在本質上係純系的,其係適應性免疫反應之指示。對登記GEN501研究之對象之總計17個病患樣本進行評估(反應者n=6,即,PR;無反應者n=11,即,MR、SD、PD)。 In view of the note in the peripheral blood and bone marrow in MY2002 amplification study CD8 + T cells, the assay used Immunoseq TM T cell receptor (TCR) of the next-generation high-throughput sequencing, to determine amplify CD8 + T Whether the cell is purely intrinsic is an indication of an adaptive immune response. A total of 17 patient samples enrolled in the GEN501 study were evaluated (reaction n=6, ie, PR; no responder n=11, ie, MR, SD, PD).

TCR定序揭示,DARZALEXTM(達拉單抗)治療顯著地增加病患之純系性。圖8A顯示DARZALEXTM(達拉單抗)治療之前之於之後的T細胞純系性之間的相關性(p=0.0056)。圖8B顯示個 體病患中之純系性之倍數變化。反應者係以星標出。此數據表明,在DARZALEXTM(達拉單抗)治療之情況下所注意到的T細胞擴增可在本質上係純系的。 TCR sequencing revealed, DARZALEX TM (Dara mAb) treatment significantly increases the homogenous nature of the disease. Figure 8A shows the correlation between T cell homogeneity after DARZALEX (TM) (dalabizumab) treatment (p=0.0056). Figure 8B shows the fold change in pureness in individual patients. Responders are marked with stars. This data indicates that the T cell expansion noted in the case of DARZALEX (TM) (dalabizumab) treatment can be purely intrinsic.

當相較於無反應者時,反應者在TCR貯庫中具有較大的總擴增(如藉由豐度變化所測量;CIA)。圖8C顯示個別病患之CIA%。A組:反應者,B組:無反應者。於反應者與無反應者之間觀察到統計學顯著的差異(p=0.037)。圖8D顯示反應者及無反應者中各擴增T細胞殖株之絕對豐度變化(CIA)之和。圖8E顯示各個別病患之最大CIA%。A組:反應者,B組:無反應者。於反應者與無反應者之間觀察到統計學顯著的差異(p=0.048)。圖8F顯示反應者(A組)及無反應者(B組)中之單個細胞殖株的最大CIA。 Reactors have greater total amplification in the TCR depot compared to non-responders (as measured by abundance changes; CIA). Figure 8C shows the CIA% of individual patients. Group A: Responders, Group B: No responders. A statistically significant difference was observed between responders and non-responders (p=0.037). Figure 8D shows the sum of absolute abundance changes (CIA) of each expanded T cell colony in the responder and non-responder. Figure 8E shows the maximum CIA% for each individual patient. Group A: Responders, Group B: No responders. A statistically significant difference was observed between responders and non-responders (p=0.048). Figure 8F shows the maximum CIA for individual cell lines in the responders (Group A) and non-responders (Group B).

CIA係藉由使用費雪精確檢定(Fisher’s exact test)(DeWit等人J.Virol.2015)鑑定介於兩個樣本之間的純系豐度之顯著差異且對各擴增殖株之絕對豐度變化求和來獲得。 CIA identifies significant differences in pure abundance between two samples and absolute abundance changes for each expanded strain by using Fisher's exact test (DeWit et al. J. Virol. 2015). Summing to get.

實例6.DARZALEXExample 6. DARZALEX TMTM (達拉單抗)在登記GEN501研究之病患中的免疫調節效應(Dalabizumab) immunomodulatory effects in patients enrolled in the GEN501 study

評估登記GEN501之反應者及無反應者中的各種T及B細胞群。 Various T and B cell populations in the responders and non-responders registered with GEN501 were evaluated.

淋巴球Lymphocyte

類似於SIRIUS(MMY2002)研究,在DARZALEXTM(達拉單抗)治療期間,周邊血液及骨髓中之淋巴球均增加。此增加係歸因於CD4+及CD8+細胞兩者的數目增加。 Similar to SIRIUS (MMY2002) study, during DARZALEX TM (Dara mAb) therapy, peripheral blood and bone marrow of lymphocytes were increased. This increase is due to an increase in the number of both CD4 + and CD8 + cells.

CD8CD8 ++ 中央記憶細胞Central memory cell

在登記GEN 501研究之17個病患之子集中研究經DARZALEXTM(達拉單抗)治療的病患中隨時間推移之CD8+ T細胞表型。使用標準規程,來自病患之CD8+細胞被鑑定為初始(CD45RO-/CD62L+)(TN)細胞或中央記憶(TCM)(CD45RO+/CD62L+高)細胞。 The CD8 + T cell phenotype over time in patients treated with DARZALEX (TM) (dalacil ) was studied in a subset of 17 patients enrolled in the GEN 501 study. CD8 + cells from patients were identified as either initial (CD45RO-/CD62L + ) (T N ) cells or central memory (T CM ) (CD45RO + /CD62L + high ) cells using standard protocols.

圖9A顯示CD8+初始細胞之%(CD8+細胞之%),且圖9B顯示CD8+中央記憶細胞之%。DARZALEXTM(達拉單抗)治療顯著地降低初始CD8+ T細胞之量(第8週之p=1.82×10-4),且增加CD8+記憶T細胞之量(第8週之p=4.88×10-2)。這表明,初始細胞毒性T細胞轉變成記憶T細胞,其可針對特定抗原被活化。白色方形指示至少達成最小反應(MR)之病患,且黑色方形指示疾病穩定或疾病進展之病患。對治療有反應的病患中,CD8+初始T細胞之顯著地較大的降低係明顯的(數據未顯示)。圖9C顯示,DARZALEXTM(達拉單抗)治療增加HLA I類-限制性T細胞之百分比,該等細胞部分驅動病毒特異性及同種反應性T細胞反應。圖9D顯示,擴增效應記憶T細胞表現低水平的CD38。重要的是要注意,這些T細胞呈現正常且甚至增加的針對病毒胜肽及同種抗原的功能活性(參見實例8)。根據這些功能結果,我們推斷,在DARZALEXTM(達拉單抗)治療期間存在針對病毒及同種抗原的經歷抗原之T細胞的擴增、或活性改善。這些數據表明,不同於調節細胞子集,效應T細胞不需要CD38表現以適當地起作用並擴增。 Figure 9A shows % of CD8 + naive cells (% of CD8 + cells), and Figure 9B shows % of CD8 + central memory cells. DARZALEX TM (Dara mAb) therapy significantly reduced the amount of the initial CD8 + T cells of (8 weeks p = 1.82 × 10 -4), and the amount of increase of CD8 + memory T cells (week 8 of p = 4.88 ×10 -2 ). This suggests that the initial cytotoxic T cells are converted to memory T cells, which can be activated against a particular antigen. A white square indicates at least a minimum response ( Patients with MR), and black squares indicate patients with stable disease or disease progression. Significantly greater reductions in CD8 + naive T cells were evident in patients responding to treatment (data not shown). Figure 9C shows that DARZALEX (TM) (dalacil) treatment increases the percentage of HLA class I-restricted T cells that drive viral-specific and alloreactive T cell responses. Figure 9D shows that amplifying effector memory T cells exhibit low levels of CD38. It is important to note that these T cells exhibit normal and even increased functional activity against viral peptides and alloantigens (see Example 8 ). Based on these functional results, we conclude that there is an amplification of the antigen-producing T cells against the virus and alloantigen, or an improvement in activity during the treatment of DARZALEX (TM) (dalabizumab ) . These data indicate that, unlike regulatory cell subsets, effector T cells do not require CD38 expression to function properly and expand.

CD38陽性調節T細胞CD38 positive regulatory T cells

細胞毒性T細胞之穩健擴增及活性增加之觀察,連同指示若干免疫抑制性細胞子集表現CD38的最近文獻一起,促進檢驗DARZALEXTM(達拉單抗)對調節細胞群調節T細胞(Treg)、骨髓衍生抑制細胞(MDSC)、及調節B細胞(Breg)的效應。 Robust cytotoxic T cells of the cell expansion and increased activity was observed, along with several subsets of immunosuppressive CD38 cell indicates performance with recent literature, facilitates verifying DARZALEX TM (Dara mAb) regulatory cell population of regulatory T (Treg) cells , bone marrow-derived suppressor cells (MDSC), and the effects of regulating B cells (Breg).

使用標準規程單離調節T細胞(Treg)(CD3+CD4+CD25+CD127dim)。使用流動式細胞測量術分析Treg之頻率。 T cells (Treg) (CD3 + CD4 + CD25 + CD127 dim ) were isolated using standard procedures. The frequency of Treg was analyzed using flow cytometry.

在Treg活化之前,周邊Treg之亞群(10%+10%)表現高水平的CD38。圖10A,上圖顯示在基期時Treg在CD3+CD4+細胞群(P4細胞群)中之頻率。圖10A,下圖顯示表現高CD38之Treg之子集(P5細胞群)。這些CD38+ Treg對DARZALEXTM(達拉單抗)治療高度敏感,且在DARZALEXTM(達拉單抗)之第一劑量之 後展現出顯著的且幾乎即時的衰退(病患n=17;第1週之於基期P=8.88×10-16)。DARZALEXTM(達拉單抗)治療之後Treg之頻率顯示於圖10B,上圖(P4細胞群)中。圖10B,下圖顯示,在第一(1st)DARZALEXTM(達拉單抗)輸液之後,CD38Treg(P5細胞)係最顯著損耗的Treg群。這些CD38+ Treg在整個DARZALEXTM(達拉單抗)治療中係維持損耗的(在第1、4、及8週之於基期分別係p=8.88×10-16、1.11×10-15、及1.50×10-11)。圖10C顯示在基期、第1週、第4週、第8週、復發、及治療結束(EOT)6個月後的總CD3+細胞之CD38Treg之%。CD38Treg在該時間點恢復至基期。對治療有反應與沒有反應之病患之間的CD38+ Treg之變化係類似的,然而,顯示對DARZALEXTM(達拉單抗)治療有反應的病患在第8週的CD8+ T細胞:Treg比率顯著地較高(P=0.00955;圖10D)。 Prior to Treg activation, a subset of peripheral Tregs (10% + 10%) exhibited high levels of CD38. Figure 10A, the top panel shows the frequency of Treg in the CD3 + CD4 + cell population (P4 cell population) at the base phase. Figure 10A , the lower panel shows a subset of Tregs (P5 cell population) that exhibit high CD38. These CD38 + Tregs are highly sensitive to DARZALEX (TM) (Dalabizumab) treatment and exhibit a significant and almost immediate decline after the first dose of DARZALEX (TM) (dazumab ) (patient n=17; first Week at the base period P = 8.88 × 10 -16 ). The frequency of Treg after DARZALEX (TM) (dalabizumab) treatment is shown in Figure 10B , top panel (P4 cell population). 10B, the following figure shows, after the first (1 st) DARZALEX TM (Dara mAb) infusion, CD38 high Treg (P5 Cells) Treg population of most significant line losses. These CD38 + Tregs were depleted throughout the treatment of DARZALEX TM (dalabizumab ) ( p = 8.88 × 10 -16 , 1.11 × 10 -15 at the bases of days 1, 4, and 8 respectively), and 1.50×10 -11 ). Figure 1OC shows % of CD38 high Treg in total CD3 + cells after 6 months of base phase, week 1, week 4, week 8, relapse, and end of treatment (EOT). The CD38 high Treg returned to the base phase at this point in time. Changes in CD38 + Treg were similar between patients who responded to treatment and those who did not respond, however, CD8 + T cells at week 8 were shown to respond to patients treated with DARZALEX TM (dalacil ) : The Treg ratio was significantly higher ( P = 0.00955; Figure 10D ).

為了評估CD38+ Treg之損耗與DARZALEXTM(達拉單抗)治療之可能的生物相關性,對自體CD3+ T細胞上的CD38+ Treg之於CD38- Treg的抑制能力進行評估。在利用多個健康供體的樣本進行的一系列實驗中,CD38+ Treg對T細胞增生的抑制(觀察到9.9%細胞增生)比CD38- Treg(觀察到53.2%細胞增生)或陰性對照(觀察到74.9%細胞增生)更穩健(圖10E)。 In order to assess the loss of CD38 + Treg DARZALEX TM (Dara mAb) therapy of possible biological relevance, autologous CD3 + CD38 + Treg of CD38 on T cells in - assessment of Treg suppression. In a series of experiments using samples from multiple healthy donors, CD38 + Treg inhibited T cell proliferation (9.9% cell proliferation was observed) than CD38 - Treg (53.2% cell proliferation observed) or negative control (observation) To 74.9% cell proliferation) is more robust ( Fig. 10E ).

因為MDSC在冷凍PBMC樣本中不易偵測,所以CD38+顆粒球性MDSC(CD11b+CD14-HLA-DR-CD15+CD33+)係自PBMC體外產生,該等PBMC係從在基期的病患及已接受一次DARZALEXTM(達拉單抗)輸液的病患而單離。圖11顯示經鑑定之MDSC之流動式細胞測量術分佈圖(圖11,上方分佈圖,加框的細胞群)。大約一半的MDSC表現CD38(圖11,中間圖表;圈起來的P7細胞群)。在經DARZALEXTM(達拉單抗)治療的病患中,CD38MDSC係幾乎耗盡的(圖11,下方圖表;圈起來的P7細胞群)。 Because MDSCs are not easily detectable in frozen PBMC samples, CD38 + granule globular MDSCs (CD11b + CD14 - HLA-DR - CD15 + CD33 + ) are produced in vitro from PBMCs from patients at the base stage and have patients receiving a DARZALEX TM (Dara mAb) infusion and isolated. Figure 11 shows the flow cytometry profile of the identified MDSC ( Figure 11 , upper profile, boxed cell population). About half of the MDSCs showed CD38 ( Figure 11 , middle panel ; circled P7 cell population). In patients treated with DARZALEXTM (dalacil ) , the CD38 high MDSC line was almost depleted ( Figure 11 , lower panel ; circled P7 cell population).

在無反應者及對治療有至少最小休止(Minimal Repose)的病患中,CD38譜系非特異性MDSC在DARZALEXTM(達拉單抗)治療之情況下隨著時間推移而損耗。圖12顯示,在治療1週、4 週、或8週時,在病患中CD38MDSC之百分比減少至接近0%。CD38譜系非特異性MDSC在治療結束後返回至基期。 Patients and in non-responders to treatment with at least a minimum rest (Minimal Repose) in, CD38 high lineage nonspecific MDSC in the case DARZALEX TM (Dara mAb) treatment of the loss over time. Figure 12 shows that at 1 week, 4 weeks, or 8 weeks of treatment, the percentage of CD38 high MDSC was reduced to nearly 0% in patients. The CD38 high line non-specific MDSC returns to the base phase after the end of treatment.

具有在譜系非特異性MDSC內的最大CD38+群的病患展示對DARZALEXTM(達拉單抗)治療的最佳且最持久的反應。圖13顯示,具有最高百分比的CD38MDSC(如圖11中所示)且分類為具有PR或MR之病患的病患2、4、15、16、或17具有至少8個月的無進展存活期(Progression-Free Survival,PFS)。 Patients with the largest CD38 + population within lineage non-specific MDSCs demonstrated the best and most durable response to DARZALEX (TM) (dalacil) treatment. Figure 13 shows that patients with the highest percentage of CD38 high MDSC (as shown in Figure 11) and classified as patients with PR or MR have no progression of at least 8 months for patients 2, 4, 15, 16, or 17 Progression-Free Survival (PFS).

CD38譜系非特異性MDSC亦對體外DARZALEXTM(達拉單抗)誘導的ADCC敏感。使用來自兩個供體的CD38MDSC及道迪細胞作為對照目標細胞進行ADCC測定,其中效應細胞:目標細胞比率係50:1。圖14顯示來自一個供體的實驗之結果。DARZALEXTM(達拉單抗)誘導MDSC細胞之裂解。 The CD38 high lineage non-specific MDSC is also sensitive to in vitro DARZALEX (TM) (dalabizum)-induced ADCC. The ADCC assay was performed using CD38 high MDSC and Doddy cells from two donors as control target cells with an effector:target cell ratio of 50:1. Figure 14 shows the results of an experiment from a donor. DARZALEX TM (Dara mAb) induced dissociation of the MDSC cell.

在DARZALEXTM(達拉單抗)治療的病患(n=16)中測量CD38+ Breg,且類似於CD38+ Treg,CD38+ Breg在DARZALEXTM(達拉單抗)之第一劑量之後係損耗的(第1週與基期比較,p=0.0018;成對威爾卡森等級檢定)且當病患在治療中時持續係低的(圖15A)。當刺激時,FACS分選之Breg產生IL-10(圖15B)。 CD38 + Breg was measured in DARZALEX TM (dalacil) treated patients (n=16) and similar to CD38 + Treg, CD38 + Breg was depleted after the first dose of DARZALEX TM (dalabiza ) (Phase 1 vs. base period, p = 0.0018; paired Wilcardson grades) and continued low when the patient was under treatment ( Figure 15A ). When stimulated, FACS sorted Breg produced IL-10 ( Fig. 15B ).

總而言之,這些觀察表明,免疫抑制性CD38+ MDSC、Breg、及Treg之損耗係DARZALEXTM(達拉單抗)誘導的T細胞群及純系性之變化的顯著促成機制。 Taken together, these observations indicate that the loss of immunosuppressive CD38 + MDSC, Breg, and Treg is a significant contributor to changes in T cell populations and pure lineage induced by DARZALEXTM (dalabizumab ) .

實例7. CD38Example 7. CD38 ++ MDSC細胞存在於癌症病患中 MDSC cells are present in cancer patients

使用流動式細胞測量術研究患有NSCLC或前列腺癌之病患之周邊血液中MDSC(Lin-CD14-HLADR低/-)及其等CD38表現之百分比。 Flow cytometry was used to study the percentage of MDSC (Lin - CD14 - HLADR low / - ) and its equivalent CD38 performance in peripheral blood of patients with NSCLC or prostate cancer.

在來自NSCLC及前列腺癌病患之分析樣本中,MDSC之百分比分別係PBMC之介於約10%至37%之間及介於約10%至27%之間。CD38表現在NSCLC病患之PBMC之80至100%的Lin- CD14+HLADR-/低MDSC中、且在前列腺癌病患的PBMC之70至100%的MDSC中經鑑定。 In the analysis samples from NSCLC and prostate cancer patients, the percentage of MDSC was between about 10% and 37% and between about 10% and 27%, respectively, of PBMC. CD38 is expressed in 80 to 100% of Lin - CD14 + HLADR - / low MDSC of PBMC of NSCLC patients, and is identified in 70 to 100% of MDSCs of PBMC of prostate cancer patients.

實例8. DARZALEXExample 8. DARZALEX TMTM (達拉單抗)增強抗病毒T細胞反應(Dalabizumab) enhances antiviral T cell responses

為了進一步評估DARZALEXTM(達拉單抗)對T細胞活化及功能性的效應,在DARZALEXTM(達拉單抗)治療的具有一定範圍臨床結果之病患(n=7)中,測量反應於病毒及同種抗原中之周邊T細胞的IFN-γ產生。具有PR或更佳反應的病患在DARZALEXTM(達拉單抗)治療之後,相較於基期展示出反應於病毒及同種抗原的IFN-γ分泌之顯著增加,至少在治療期間的一個時間點係如此,其表明T細胞功能不受低CD38表現而受損(參見實例6,圖9C)。類似於TCR純系性數據,此增加在對DARZALEXTM(達拉單抗)有反應的病患中,比在那些沒有反應的病患中更加明顯。圖16A顯示具有VGPR的一個代表性病患之抗病毒反應。圖16B顯示具有CR的一個代表性病患之抗病毒反應。圖16C顯示具有PD的一個代表性病患之抗病毒反應。圖16D顯示具有MR的一個代表性病患之抗病毒反應。在圖式中,誤差條代表雙份培育物之平均值之標準誤差。星號標示介於所指比較之間統計學顯著的變化。顯示按照獨立評審委員會標準的最佳反應。與這些結果一致,具有VGPR(圖16E)或CR(圖16F)之病患中之病毒反應性T細胞展示出在DARZALEXTM(達拉單抗)治療期間增生能力的增加。 To further assess the effect DARZALEX TM (Dara mAbs) on T cell activation and functionality, in patients with a range of clinical outcomes DARZALEX TM (Dara mAb) therapy (n = 7), the reaction is measured in IFN-γ production by peripheral T cells in viruses and alloantigens. Patients with PR or better response show a significant increase in IFN-γ secretion in response to viral and alloantigens after treatment with DARZALEXTM (dalacil ) , at least one point during the treatment period As such, it indicates that T cell function is impaired by low CD38 expression (see Example 6, Figure 9C). Similar to TCR pure lineage data, this increase was more pronounced in patients who responded to DARZALEXTM (dalabizumab ) than in those who did not respond. Figure 16A shows the antiviral response of a representative patient with VGPR. Figure 16B shows the antiviral response of a representative patient with CR. Figure 16C shows the antiviral response of a representative patient with PD. Figure 16D shows the antiviral response of a representative patient with MR. In the figure, the error bars represent the standard error of the mean of the duplicate cultures. The asterisk indicates a statistically significant change between the indicated comparisons. Shows the best response according to the criteria of the Independent Review Board. Consistent with these results, viral-reactive T cells in patients with VGPR (Fig. 16E) or CR (Fig. 16F) exhibited an increase in proliferative capacity during treatment with DARZALEX (TM) (dalabizumab ) .

實例9。表現CD38的免疫細胞亞型對DARZALEXExample 9. Immune Cell Subtypes Expressing CD38 to DARZALEX TMTM (達拉單抗)的敏感度之機制Mechanism of sensitivity of (dalabizumab)

GEN501及SIRIUS研究之數據指示,在DARZALEXTM(達拉單抗)療法下,有一些表現CD38的免疫細胞係損耗的(NK細胞、調節T細胞(Treg)、調節B細胞(Breg)、及骨髓衍生抑制細胞(MDSC)),然而其他表現CD38的免疫細胞之數目卻是增加的(細胞毒性T細胞及輔助T細胞)。 Data indicating GEN501 SIRIUS and research, in DARZALEX TM (Dara mAb) therapy, immune cell lines showed some loss of CD38 (NK cells, regulatory T cells (of Treg), modulation of B cell (Breg), and bone marrow Derived inhibitory cells (MDSC), however, the number of other immune cells that express CD38 is increased (cytotoxic T cells and helper T cells).

為了解決敏感度之機制,評估健康供體中及GEN501或SIRIUS研究中所登記之多發性骨髓瘤病患中之各種免疫細胞亞群中之CD38的表現水平。圖17A顯示健康供體之免疫細胞中CD38表現之分佈圖,且圖17B顯示多發性骨髓瘤病患之免疫細胞中CD38表現之分佈圖。在健康供體中,CD38表現在NK細胞上係最高,接著係單核球、B細胞、及T細胞。在多發性骨髓瘤病患中,CD38表現在漿細胞上最高,接著係B細胞之一子集、NK細胞、單核球、B細胞、及T細胞。圖17C顯示復發性及難治性骨髓瘤病患之NK細胞、Treg、Breg、B細胞、及T細胞之CD38的平均螢光強度(MFI)的比較,其展示在漿細胞之後,NK細胞表現最高水平的CD38,接著係調節T細胞(Treg)及調節B細胞(Breg)。 To address the mechanism of sensitivity, assess the level of CD38 expression in various immune cell subsets in healthy donors and in multiple myeloma patients enrolled in the GEN501 or SIRIUS study. Figure 17A shows a distribution map of CD38 expression in immune cells of healthy donors, and Figure 17B shows a distribution map of CD38 expression in immune cells of multiple myeloma patients. In healthy donors, CD38 is most expressed on NK cells, followed by mononuclear spheres, B cells, and T cells. In patients with multiple myeloma, CD38 is highest on plasma cells, followed by a subset of B cells, NK cells, monocytes, B cells, and T cells. Figure 17C shows a comparison of the mean fluorescence intensity (MFI) of CD38 of NK cells, Treg, Breg, B cells, and T cells in patients with relapsed and refractory myeloma, showing that NK cells are highest after plasma cells. Horizontal CD38, followed by regulation of T cells (Treg) and regulation of B cells (Breg).

除了CD38表現,其他細胞表面蛋白諸如補體抑制蛋白(CIP;CD46,CD55,CD59)亦可能導致對DARZALEXTM(達拉單抗)的敏感性或抗性。體外評估免疫細胞亞群中之CIP發現到,NK細胞表現非常低水平的CD59及CD55,而其他T細胞群及B細胞群則表現出遠高得多的水平。這也可能導致免疫細胞亞型之DARZALEXTM(達拉單抗)敏感性之變異性(數據未顯示)。 In addition to CD38 expression, other cell surface proteins such as complement inhibitory proteins (CIP; CD46, CD55, CD59) may also result in sensitivity or resistance to DARZALEX (TM) (dalabizumab ) . In vitro assessment of CIP in immune cell subsets revealed that NK cells exhibited very low levels of CD59 and CD55, while other T cell populations and B cell populations showed much higher levels. This may also result in variability in the sensitivity of the DARZALEXTM (Dalabizumab ) of immune cell subtypes (data not shown).

討論discuss

此研究透過減少CD38+免疫抑制性細胞群及伴隨之誘導輔助及細胞毒性T細胞擴增、反應於病毒胜肽的IFN-γ之產生、及TCR純系性之增加而描述先前未知的DARZALEXTM(達拉單抗)之免疫調節效應,其指示出適應性免疫反應改善。 This study by reducing CD38 + immunosuppressive cell population and accompanying the induced secondary and cytotoxic T cell amplification reaction to produce IFN-γ of virus peptides of and increases TCR homogenous nature of the described previously known DARZALEX TM ( The immunomodulatory effect of daramumab, which indicates an improvement in the adaptive immune response.

此研究展示出,MDSC及Breg表現CD38且易受DARZALEXTM(達拉單抗)治療影響。這些細胞已知存在於腫瘤微環境中,且導致腫瘤生長、免疫逃避(immune evasion)、血管生成、轉移、及抑制性細胞介素之產生。除了這些CD38+抑制性細胞子集,亦鑑定出新穎的調節T細胞亞群(CD4+CD25+CD127dim),其亦表現高水平的CD38且展示優異的自體T細胞抑制性能力。這些細胞亦對DARZALEXTM(達拉單抗)敏感,且在接受治療的病患中,這些細胞 顯著地減少。由DARZALEXTM(達拉單抗)媒介之該些CD38+免疫調節細胞的消除,可減少骨髓瘤微環境內的局部免疫抑制,且允許陽性免疫效應細胞擴增並導致抗瘤反應。 This study demonstrated, MDSC and Breg CD38 expression and vulnerable DARZALEX TM (Dara mAb) therapy on. These cells are known to be present in the tumor microenvironment and result in tumor growth, immune evasion, angiogenesis, metastasis, and the production of inhibitory interleukins. In addition to these CD38 + suppressor cell subsets, a novel regulatory T cell subset (CD4 + CD25 + CD127 dim ) was also identified, which also exhibited high levels of CD38 and demonstrated superior autologous T cell inhibitory ability. These cells are also sensitive to DARZALEX (TM) (dalabizumab ) and these cells are significantly reduced in the treated patients. Elimination of these CD38 + immunoregulatory cells by DARZALEX (TM) (Dalabizumab ) reduces local immunosuppression in the myeloma microenvironment and allows positive immune effector cells to expand and result in an anti-tumor response.

實際上,周邊血液中及骨髓內(即,腫瘤)皆觀察到包括了CD4+及CD8+的廣泛T細胞群之顯著增加。特定CD8+亞群經DARZALEXTM(達拉單抗)療法改變,包括顯著地降低初始T細胞及伴隨的顯著增加之效應記憶CD8+ T細胞,其指示效應T細胞向經歷抗原之表型偏移,該表型保留了免疫記憶且可對腫瘤抗原具有反應性。CD8+:CD4+及CD8+:Treg之比率亦在治療之下顯著增加,其展示出陽性免疫調節物之於陰性免疫調節物的偏移。 In fact, a significant increase in the broad T cell population including CD4 + and CD8 + was observed in peripheral blood and in the bone marrow (i.e., tumor). Specific CD8 + subsets by DARZALEX TM (Dara mAb) therapy changes, including significantly reduced naive T cells and concomitant significant increase of effector memory CD8 + T cells, indicating that effector T cells is shifted to undergo antigen phenotype This phenotype retains immunological memory and is responsive to tumor antigens. The ratio of CD8 + :CD4 + and CD8 + :Treg also increased significantly under treatment, which exhibited a shift in positive immunomodulators to negative immunomodulators.

為了評估擴增CD4+及CD8+ T細胞在本質上係純系的,檢驗病患子集中之T細胞貯庫。即使在具有SD之最佳反應的病患或有進展的病患中,T細胞純系性也在DARZALEXTM(達拉單抗)治療之情況下顯著增加。因此,T細胞純系性增加不能簡單地歸因於腫瘤負荷的減少。然而,T細胞純系性的偏差在具有良好臨床反應的病患中較大,且與CD8+ T細胞增加相關,其表明在DARZALEXTM(達拉單抗)治療之下所觀察到的T細胞擴增係抗原驅動的。這在該病患族群中係顯著的,該病患群體經大量預治療(中位數係5個先前療法數)且不預期能夠建立強烈的抗瘤免疫反應。除了TCR純系性增加,對DARZALEXTM(達拉單抗)具有反應性的病患展示對先前存在的病毒及同種抗原的T細胞反應增加,其表明免疫系統從免疫抑制性狀態回復的救援。 To assess that the amplified CD4 + and CD8 + T cells are essentially pure, the T cell depot of the patient subset is examined. Even in patients with SD of the optimum reaction or progress of patients, T cell clonal exemplary case also DARZALEX (TM) (Dara mAb) treatment of the significant increase. Therefore, the pure increase in T cells cannot be simply attributed to a reduction in tumor burden. However, the deviation of clonal T cells in patients with a good clinical response of the larger, and the associated increase in CD8 + T cells, which indicated that under DARZALEX TM (Dara mAb) therapy was observed T cell expansion Increased antigen driven. This is significant in the patient population, which is pre-treated in large numbers (median number of 5 previous treatments) and is not expected to establish a strong anti-tumor immune response. In addition to the pure increase in TCR, patients responsive to DARZALEX (TM) (Dalabizumab ) showed an increased T cell response to pre-existing viruses and alloantigens, indicating rescue of immune system recovery from immunosuppressive status.

利用DARZALEXTM(達拉單抗)治療造成免疫抑制性MDSC以及調節T細胞及B細胞的減少。這些減少伴隨有CD4+ T輔助細胞及CD8+細胞毒性T細胞的擴增。如藉由IFN-γ產生所測量之T細胞純系性及功能性抗病毒反應亦在DARZALEXTM(達拉單抗)治療之下增加。這些觀察指示,儘管CD38表現低但T細胞仍適當地繼續起作用,且表明T細胞反應增加可能係因為調節細胞之損耗。此外這些T細胞擴增、活性、及純系性變化,在對DARZALEXTM(達拉單抗)有反應的病患中相較於在那些沒有反應的病患中,可能係更顯 著的。從DARZALEXTM(達拉單抗)療法復發與許多這些變化之逆轉相關聯。這表明透過免疫調節的DARZALEXTM(達拉單抗)之額外、先前未表徵機制之作用,其可導致臨床反應及DARZALEXTM(達拉單抗)之功效。 Treatment with DARZALEX (TM) (Dalabizumab) resulted in immunosuppressive MDSC and modulation of T cell and B cell reduction. These reductions are accompanied by amplification of CD4 + T helper cells and CD8 + cytotoxic T cells. T cell homologous and functional antiviral responses as measured by IFN-[gamma] production are also increased under treatment with DARZALEX (TM) (dalabizumab ) . These observations indicate that T cells continue to function properly despite the low performance of CD38, and suggest that an increase in T cell response may be due to the loss of regulatory cells. Furthermore, these T cell expansion, activity, and homologous changes may be more pronounced in patients who respond to DARZALEX (TM) (dalabizumab ) than those who do not respond. Many of these changes with the reversal of the associated recurrence DARZALEX TM (Dara mAb) therapy. This indicates that through additional DARZALEX TM (Dara mAb) of immunomodulation of previously uncharacterized mechanisms of action, which may lead to clinical response and DARZALEX TM (Dara mAb) effect.

最近,促進抗瘤免疫反應(而非直接靶向癌症)的抗體已在一系列環境中展示功效。抑制CTLA-4及PD-1的抗體促進T細胞擴增且增強T細胞活化,其導致在患有晚期固態腫瘤及血液學惡性腫瘤(諸如霍奇金氏淋巴瘤)之病患中延長的存活期且延緩疾病復發。藉由增強抗癌免疫,這些免疫調節抗體可能不僅誘導臨床反應,且亦預防疾病復發。 Recently, antibodies that promote anti-tumor immune responses, rather than directly targeting cancer, have demonstrated efficacy in a range of environments. Antibodies that inhibit CTLA-4 and PD-1 promote T cell expansion and enhance T cell activation, leading to prolonged survival in patients with advanced solid tumors and hematological malignancies such as Hodgkin's lymphoma And delay the recurrence of the disease. By enhancing anti-cancer immunity, these immunomodulatory antibodies may not only induce clinical response, but also prevent disease recurrence.

實例10。在54767414MMY2002(SIRIUS)第2部分臨床研究中與單劑DARZALEXExample 10. In the 54674714MMY2002 (SIRIUS) part 2 clinical study with a single dose of DARZALEX TMTM (達拉單抗)互換的多發性骨髓瘤對象之血清蛋白體分析Serum proteosome analysis of multiple myeloma patients with (dalabizum) exchange 生物標誌樣本收集及處理Biomarker sample collection and processing

將周邊血液樣本收集於標準血清分離管(2.5mL至5mL)中,且將血清試樣等分冷凍運送SomaLogic,Inc(Boulder,CO)以用於多分析物血清蛋白剖析。 Peripheral blood samples were collected in standard serum separation tubes (2.5 mL to 5 mL) and serum samples were aliquoted and shipped to SomaLogic, Inc (Boulder, CO) for multi-analyte serum protein profiling.

血清蛋白剖析係在SomaLogic處使用預先驗證的SOMAscan測定進行,該SOMAscan測定藉由使用以SOMAmer親和力為基礎之分子測量1129種蛋白質分析物。SOMAmer試劑係以單鏈DNA為基礎之蛋白質親和力試劑。該測定使用少量的輸入樣本(150μL血漿)且將蛋白質訊號轉變成SOMAmer訊號,該SOMAmer訊號係藉由客製化DNA微陣列定量。 Serum protein profiling was performed at SomaLogic using a pre-validated SOMAscan assay that measures 1129 protein analytes using molecules based on SOMAmer affinity. The SOMAmer reagent is a single-stranded DNA-based protein affinity reagent. The assay used a small amount of input sample (150 [mu]L plasma) and converted the protein signal to a SOMAmer signal, which was quantified by a custom DNA microarray.

各SOMAmer含有4個功能部分: Each SOMAmer contains 4 functional parts:

1. 一個獨特蛋白質識別序列 1. A unique protein recognition sequence

2. 用於捕捉的生物素 2. Biotin for capture

3. 光可裂解連接子 3. Photocleavable linkers

4. 用於偵測之螢光分子 4. Fluorescent molecules for detection

該獨特蛋白質識別序列使用DNA且併入模擬胺基酸側鏈的化學修飾核苷酸,其擴增標準適體之多樣性且增強蛋白質-核酸相互作用的特異性及親和力(Gold等人,PLoS One 5:e15004,2010)。適體係藉由SELEX來選擇。SOMAmer試劑係使用呈現原始構形的蛋白質來選擇。因為此類SOMAmer試劑需要完整的三級蛋白質結構來結合。未折疊或變性的推測上非活性蛋白質不為SOMAmer試劑所偵測。 This unique protein recognition sequence uses DNA and incorporates chemically modified nucleotides that mimic the side chain of the amino acid, which amplifies the diversity of standard aptamers and enhances the specificity and affinity of protein-nucleic acid interactions (Gold et al., PLoS) One 5: e15004, 2010). The appropriate system is selected by SELEX. The SOMAmer reagent is selected using proteins that exhibit the original configuration. Because such SOMAmer reagents require a complete tertiary protein structure to bind. The unfolded or denatured putatively inactive protein is not detected by the SOMAmer reagent.

針對樣本類型及稀釋,將SOMAmer試劑之主要混合物分組。在樣本培養之前,將試劑預結合至鏈黴親和素珠粒。蛋白質在平衡期間將樣本中之結合至同源SOMAmer、清洗、用NHS-生物素培養、清洗、然後將珠粒暴露於UV光以裂解該光可裂解連接子。洗出液含有SOMAmer試劑,該等試劑結合至其等的生物素所標記之蛋白質。鏈黴親和素捕捉且後續清洗移除未結合的SOMAmer試劑。在最終洗提中,SOMAmer分子透過變性條件從其等之同源蛋白質釋放。將最終洗出液混成至客製化Agilent DNA微陣列,而SOMAmer分子之螢光團係藉由相對螢光單位(RFU)來定量。RFU與樣本中之蛋白質之量成比例。 The primary mixture of SOMAmer reagents was grouped for sample type and dilution. The reagent is pre-bound to the streptavidin beads prior to sample culture. The protein binds to the homologous SOMAmer in the sample during equilibration, washes, is incubated with NHS-biotin, washed, and then the beads are exposed to UV light to cleave the photocleavable linker. The eluate contains a SOMAmer reagent that binds to the protein labeled by biotin. Streptavidin captures and subsequent washing removes unbound SOMAmer reagent. In the final elution, the SOMAmer molecules are released from their homologous proteins by denaturing conditions. The final eluate was mixed into a custom Agilent DNA microarray, while the SOMAmer molecule fluorophore was quantified by relative fluorescence units (RFU). The RFU is proportional to the amount of protein in the sample.

在兩個主要批次中測試MMY2002研究之樣本。第一批次的180個樣本含有來自90個對象的成對第1週期第1天(C1D1,基期)及C3D1(第3週期第1天)之血清樣本。將180個樣本一起在3個分開的SomaScan盤上分析。第二批次樣本包括50個C1D1樣本,其包括來自第1批次的35個重複樣本。 Samples of the MMY2002 study were tested in two major batches. The first batch of 180 samples contained serum samples from 90 subjects on the first day of the first cycle (C1D1, base period) and C3D1 (day 1 of the third cycle). 180 samples were analyzed together on 3 separate SomaScan disks. The second batch of samples included 50 C1D1 samples, including 35 replicate samples from the first batch.

數據分析data analysis 輸入數據集及定義Input data set and definition

具有可評估反應的經治療之對象均包括在數據分析中。在報導全文中,反應者係定義為具有sCR、VGPR、及PR之總體最佳反應(按照IRC,針對MMY2002)的對象,疾病穩定(SD)對象係定義為具有最小反應(MR)或SD的對象,且無反應者係定義為具有疾病進展(PD)之總體最佳反應(按照IRC,針對MMY2002)的對象。 Treated subjects with evaluable responses are included in the data analysis. In the full report, responders were defined as subjects with sCR, VGPR, and PR overall optimal response (according to IRC, for MMY2002), and disease stable (SD) subjects were defined as having minimal response (MR) or SD. Subjects, and non-responders were defined as subjects with overall overall response to disease progression (PD) (according to IRC, for MMY2002).

Somalogic數據預處理Somalogic data preprocessing 批次校準Batch calibration

將第1批及第2批的MMY2002樣本於兩個不同版本的SOMAscan平臺上進行測試。兩個版本間的差異微小,且包括三個SOMAmer序列,該等序列於版本之間有所改變(CTSE:3594-6_1->3594-6_5,FCN1:3613-62_1->3613-62_5,BMPER:3654-27_1->3654-27_4)。該等均自分析移除。 Samples of the first and second batches of MMY2002 were tested on two different versions of the SOMAscan platform. The difference between the two versions is small and includes three SOMAmer sequences that vary from version to version (CTSE: 3594-6_1->3594-6_5, FCN1:3613-62_1->3613-62_5, BMPER: 3654-27_1->3654-27_4). These are all removed from the analysis.

根據SomaLogic之標準盤間校準工作流程,藉由透過計算主混合物(Master-mix)特定整體參考值對7個盤內對照校準物測量值之比率,來定義各SOMAmer之盤寬(plate-wide)校準比例因數,因此校準三個第1批次盤之測量值。將各SOMAmer試劑之盤特定(plate-specific)比例因數同等地應用於盤上的各樣本。 According to SomaLogic's standard inter-disk calibration workflow, the plate-wide of each SOMAmer is defined by calculating the ratio of the measured values of the seven intra-panel calibrators to the specific overall reference value of the Master-mix. The scaling factor is calibrated so the measurements of the three first batches are calibrated. The plate-specific scale factor of each SOMAmer reagent was equally applied to each sample on the disc.

給定第1批次及第2批次之不同的SOMAscan平臺版本,藉由考慮跨批次的35個樣本之重複測量值的比率,利用SomaLogic之標準盤間校準工作流程之修改實施方案,進行系統性批次間變異性校正。針對各SOMAmer,計算35個重複樣本之每一者的第1批次校準後測量值除以第2批次校準前測量值之比率(ri,j)。將這35個比率之中位數用於定義第2批次樣本之修正SOMAmer特定校準比例因數。然後將這些校準比例因數同樣地實施於標準SOMAscan程序。 Given the different SOMAscan platform versions of the first and second batches, using a modified implementation of SomaLogic's standard inter-disk calibration workflow by considering the ratio of repeated measurements across 35 samples across batches Systematic inter-batch variability correction. For each SOMAmer, calculate the ratio of the first batch of post-calibration measurements for each of the 35 replicate samples divided by the pre-calibration measurements for the second batch ( ri,j ). The median of these 35 ratios is used to define the modified SOMAmer specific calibration scale factor for the second batch of samples. . These calibration scaling factors are then similarly implemented in the standard SOMAscan program.

一旦計算出修正校準比例因數,就繪製分析之各批次的所有比例因數之分佈,以評估離群值之存在狀況。由於再現性不良,因此將9個具有極大或極小校準值(>0.25且<3)的SOMAmer從分析移除。 Once the corrected calibration scale factor is calculated, the distribution of all scale factors for each batch of the analysis is plotted to assess the presence of the outliers. Due to poor reproducibility, nine SOMAmers with very large or very small calibration values (> 0.25 and < 3) were removed from the analysis.

在MMY2002之批次校準及SOMAmer過濾完成之後,將log2轉換應用於MMY2002之所有蛋白質濃度值,以使數據更合乎常態分佈且改善參數統計檢定之表現。 After batch calibration and SOMAmer filtration of MMY2002, log2 conversion was applied to all protein concentration values of MMY2002 to make the data more normal and improve the performance of the parametric statistical assay.

混雜變數校正Mixed variable correction

藉由對定中心且成比例的數據集的主成份分析,進行數據集變異數之藉由元變數(meta-variables)所解釋的部分之估計(如人口統計、反應級別、及樣本時間點)及可能混雜因子之鑑定。將簡單的線性模型擬合以鑑定與感興趣的各變數顯著相關聯的最高等級PC。這些關聯之顯著性係使用渥得檢定(Wald test)來判定,且由該模型解釋的PC變異性之部分係藉由擬合之R2估計。針對MMY2002數據,部位ID被發現到與PC1相關,且解釋了數據集變異性之最大部分(7.37%,p-值=3.71×10-9)。為了減少樣本獲得部位相關效應在數據內的影響,利用ComBat28校正部位ID效應。 Estimation of the portion of the data set variability explained by meta-variables (eg demographics, response levels, and sample time points) by principal component analysis of a centered and proportional data set And identification of possible confounding factors. A simple linear model was fitted to identify the highest level of PC that was significantly associated with each variable of interest. The significance of these associations was determined using the Wald test, and the portion of the PC variability explained by the model was estimated by fitting R2. For the MMY2002 data, the site ID was found to be related to PC1 and explained the largest part of the data set variability ( 7.37%, p-value = 3.71 x 10-9). In order to reduce the influence of the sample-derived part-related effects in the data, ComBat28 was used to correct the site ID effect.

重複樣本合併Repeat sample merging

藉由計算各蛋白質之平均值而合併在MMY2002第1批次與第2批次之間重複的35個樣本之數據。 The data of 35 samples repeated between the first batch and the second batch of MMY2002 were combined by calculating the average of each protein.

差異蛋白質濃度分析(Differential Protein Concentration Analysis)反應者之於無反應者Differential Protein Concentration Analysis responders to non-responders

對於在DARZALEXTM(達拉單抗)反應者之於無反應者中於基期以及治療中之蛋白質濃度分佈的統計學比較係使用兩個互補的方法進行:(i)威爾卡森等級和檢定(Hollander及Wolfe,Ninparametirc Statistical Methods.New York:John Wiley & Sons.1973.27-33(一個樣本),68-75(兩個樣本),對各個別SOMAmer進行,及(ii)Limma分析(Ritchie,M.E.等人,Nucleic Acids Res.2015;20:43(7):e47),對所有SOMAmer同時進行。所有p-值係使用針對多假說校正之班傑明-哈克伯格(Benjamini-Hochberg;BH)方法而進行調整(Benjamini及Hochberg,(1995)J.R.Statist.Soc.B.57: 289-300;R:A Language and Environment for Statistical Computing,R Development Core Team,R Foundation for Statistical Computing,Vienna,Austria.2011;ISBN 3-900051-07-0)。當調整的p-值<0.05時,拒絕無差異表現之歸零假說。 A statistical comparison of the distribution of protein concentrations in the base phase and in the treatment of DARZALEXTM responders in non-responders was performed using two complementary methods: (i) Wilkason grades and assays ( Hollander and Wolfe, Ninparametirc Statistical Methods. New York: John Wiley & Sons. 1973.27-33 (one sample), 68-75 (two samples), for each SOMAmer, and (ii) Limma analysis (Ritchie, ME, etc.) Human, Nucleic Acids Res. 2015; 20:43(7):e47), for all SOMAmers simultaneously. All p-values use Benjamini-Hochberg (BH) for multi-hypothesis corrections. Method adjustments (Benjamini and Hochberg, (1995) JRStatist.Soc. B.57: 289-300; R: A Language and Environment for Statistical Computing, R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria.2011 ;ISBN 3-900051-07-0). When the adjusted p-value <0.05, reject the zeroing hypothesis of indifference performance.

治療中之於基期The base period of treatment

使用三個替代統計學方法來比較基期蛋白質水平之於治療中蛋白質水平:(i)雙向重複測量ANOVA6、(ii)威爾卡森符號等級檢定、及(iii)傅里德曼檢定(Friedman test)(Johnson等人,(2007)Biostatistics 8(1):118-127)。所有p-值係經調整以控制FDR,該調整係使用針對多假說校正之BH方法(Benjamini及Hochberg,J.R.Statist.Soc.B.57:289-300,1995)。除了治療顯著性,雙向重複測量ANOVA(Chambers等人,Analysis of variance;designed experiments:Chapter 5.Statistical Models in S,Editors J.M Chambers and T.J Hastie.Wadsworth & Brookes/Cole.1992)亦應用於判定各SOMAmer是否發生顯著的時間點:反應級別相互作用。將修改的威爾卡森等級和檢定作為事後測試應用,以明確判定反應者及無反應者是否顯示不同的治療效應,其藉由計算每個對象之治療中蛋白質濃度值與基期蛋白質濃度值間的差異且進行威爾卡森等級和檢定。使用BH方法調整顯著性值,且當調整的p-值<0.05時,拒絕歸零假說。 Three alternative statistical methods were used to compare base protein levels to therapeutic protein levels: (i) bidirectional repeated measures ANOVA6, (ii) Wilcardson symbol level assay, and (iii) Friedman test ( Johnson et al. (2007) Biostatistics 8(1): 118-127). All p-values were adjusted to control FDR using the BH method for multiple hypothesis corrections (Benjamini and Hochberg, JRStatist. Soc. B. 57: 289-300, 1995). In addition to treatment significance, two-way repeated measures ANOVA (Chambers et al, Analysis of variance; designed experiments: Chapter 5. Statistical Models in S, Editors JM Chambers and TJ Hastie. Wadsworth & Brookes/Cole. 1992) are also used to determine each SOMAmer Whether a significant point in time occurs: reaction level interaction. The modified Wilburson ratings and assays are used as post-test applications to clearly determine whether responders and non-responders exhibit different therapeutic effects by calculating the protein concentration value and the base protein concentration value for each subject. The difference and the Will Carson level and verification. The significance value was adjusted using the BH method, and the zero return hypothesis was rejected when the adjusted p-value was <0.05.

分級系統訓練Grading system training

將基期蛋白質水平MMY2002數據用於建立反應預測分級系統。巢套迴路分層的10折交叉驗證方法(10-fold cross-validation approach)重複30次,其使用4個不同的機器學習者:支持向量機(Support Vector Machine,SVM)、隨機森林(Random Forest,RF)、單純貝氏(Naïve Baye;NB)、及j48決策樹。針對各學習者,訓練程序以產生數據集之平衡的10個折開始(外迴路)。這些折之一者提供為測試分群,而剩餘的9個傳至內迴路作為訓練分群。在內迴路內,訓練分群被再次被分成平衡的10個折,其產生訓練內集及測試內集。對這 些訓練內集之各者進行學習者訓練,且針對外迴路內之各分群重複此程序30次。各內迴路學習者在預測測試內集時之準確度係用於選擇特徵及最佳化模型參數。一旦各訓練分組之30次(30x)內循環完成,就對各對應的測試分群進行外迴路之表現(使用最佳化的參數及特徵)之評估。然後將整個外循環程序重複30次,針對數據集內之每一樣本產生30次反應預測。獲自此循環方法的AUC、靈敏度、及特異度統計學係最終模型(以完整原始數據集所訓練)對新測試案例之表現的近似值。 Baseline protein level MMY2002 data was used to establish a reaction prediction grading system. The 10-fold cross-validation approach is repeated 30 times using four different machine learners: Support Vector Machine (SVM), Random Forest (Random Forest) , RF), Naïve Baye (NB), and j48 decision tree. For each learner, the training program begins with a 10 fold of the balance of the data set (outer loop). One of these folds is provided as a test subgroup, while the remaining nine are passed to the inner loop as a training subgroup. Within the inner loop, the training subgroup is again divided into balanced 10 folds, which produce a training inner set and a test inner set. For this Each of the training episodes performs learner training and repeats the procedure 30 times for each subgroup within the outer loop. The accuracy of each inner loop learner in predicting the test set is used to select features and optimize model parameters. Once the 30 (30x) internal cycles of each training group are completed, an evaluation of the performance of the outer loop (using optimized parameters and features) is performed for each corresponding test group. The entire outer loop procedure was then repeated 30 times to generate 30 reaction predictions for each sample in the data set. Approximate values for the performance of new test cases from the final model of the AUC, Sensitivity, and Specificity Statistics obtained from this cycle method (trained in the complete raw data set).

MMY2002研究之結果Results of the MMY2002 study

進行各種比較,包括蛋白質表現中治療誘導的反應依賴性變化。在反應者中顯示隨時間推移表現減小的蛋白質中之一者係PD-L1;然而在無反應者中,PD-L1蛋白質表現隨時間推移而增加。PD-L1在T細胞上的接合引起T細胞功能減少及Treg發展增加。圖18顯示在第1週期及第3週期,反應者、無反應者、及疾病穩定的病患中PD-L1之蛋白質表現概況。 Various comparisons were made, including treatment-induced response-dependent changes in protein expression. One of the proteins showing a decrease in performance over time in the responder was PD-L1; however, in the non-responder, the PD-L1 protein expression increased over time. The engagement of PD-L1 on T cells causes a decrease in T cell function and an increase in Treg development. Figure 18 shows the protein expression profiles of PD-L1 in responders, non-responders, and patients with stable disease in the first and third cycles.

PD-L1與其受體PD-1的接合抑制了抗瘤反應,且驅使T細胞無反應性及耗盡。儘管不希望受任何特定理論束縛,但是在CD38治療之後,PD-L1之下調亦可能導致固態腫瘤之抗瘤免疫反應增強之改善。 The binding of PD-L1 to its receptor PD-1 inhibits the anti-tumor response and drives T cells to be non-reactive and depleted. Although not wishing to be bound by any particular theory, a down-regulation of PD-L1 may also result in an improvement in the enhanced anti-tumor immune response of solid tumors following CD38 treatment.

<110> 楊森生技公司(Janssen Biotech,Inc.) 他哈坦阿馬迪(Ahmadi,Tahamtan) 丁南科卡司紐(Casneuf,Tineke) 漢克羅侯特(Lokhorst,Henk) 吐納牧提絲(Mutis,Tuna) 愛咪沙奢(Sasser,Amy) <110> Janssen Biotech, Inc. He Ahmadi, Tahamtan, Casneuf, Tineke, Lokhorst, Henk Silk (Mutis, Tuna) Amisa (Sasser, Amy)

<120> 使用特異性結合CD38之抗體免疫調節及治療固態腫瘤 <120> Immunomodulation and treatment of solid tumors using antibodies that specifically bind to CD38

<130> JBI5067ARNP <130> JBI5067ARNP

<141> 隨同本文 <141> along with this article

<140> 待指派 <140> To be assigned

<150> 15/191808 <150> 15/191808

<151> 2016-06-24 <151> 2016-06-24

<150> PCT/US16/39165 <150> PCT/US16/39165

<151> 2016-06-24 <151> 2016-06-24

<150> 62/331489 <150> 62/331489

<151> 2016-05-04 <151> 2016-05-04

<150> 62/263307 <150> 62/263307

<151> 2015-12-04 <151> 2015-12-04

<150> 62/250566 <150> 62/250566

<151> 2015-11-04 <151> 2015-11-04

<150> 62/249546 <150> 62/249546

<151> 2015-11-02 <151> 2015-11-02

<150> 62/184018 <150> 62/184018

<151> 2015-06-24 <151> 2015-06-24

<160> 40 <160> 40

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 300 <211> 300

<212> PRT <212> PRT

<213> 智人 <213> Homo sapiens

<400> 1 <400> 1

<210> 2 <210> 2

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 智人 <213> Homo sapiens

<400> 2 <400> 2

<210> 3 <210> 3

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 智人 <213> Homo sapiens

<400> 3 <400> 3

<210> 4 <210> 4

<211> 122 <211> 122

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之VH <223> VH against CD38 antibody

<400> 4 <400> 4

<210> 5 <210> 5

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之VL <223> VL of anti-CD38 antibody

<400> 5 <400> 5

<210> 6 <210> 6

<211> 5 <211> 5

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之HCDR1 <223> HCDR1 of anti-CD38 antibody

<400> 6 <400> 6

<210> 7 <210> 7

<211> 17 <211> 17

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之HCDR2 <223> HCDR2 of anti-CD38 antibody

<400> 7 <400> 7

<210> 8 <210> 8

<211> 13 <211> 13

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之HCDR3 <223> HCDR3 of anti-CD38 antibody

<400> 8 <400> 8

<210> 9 <210> 9

<211> 11 <211> 11

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之LCDR1 <223> LCDR1 against CD38 antibody

<400> 9 <400> 9

<210> 10 <210> 10

<211> 7 <211> 7

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之LCDR2 <223> LCDR2 against CD38 antibody

<400> 10 <400> 10

<210> 11 <210> 11

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之LCDR3 <223> LCDR3 against CD38 antibody

<400> 11 <400> 11

<210> 12 <210> 12

<211> 452 <211> 452

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之重鏈 <223> Heavy chain of anti-CD38 antibody

<400> 12 <400> 12

<210> 13 <210> 13

<211> 214 <211> 214

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之輕鏈 <223> Light chain of anti-CD38 antibody

<400> 13 <400> 13

<210> 14 <210> 14

<211> 122 <211> 122

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之VH 003 <223> VH 003 against CD38 antibody

<400> 14 <400> 14

<210> 15 <210> 15

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之VL 003 <223> VL 003 against CD38 antibody

<400> 15 <400> 15

<210> 16 <210> 16

<211> 122 <211> 122

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之VH 024 <223> Anti-CD38 Antibody VH 024

<400> 16 <400> 16

<210> 17 <210> 17

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之VL 024 <223> VL 024 anti-CD38 antibody

<400> 17 <400> 17

<210> 18 <210> 18

<211> 120 <211> 120

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之VH MOR202 <223> VH MOR202 against CD38 antibody

<400> 18 <400> 18

<210> 19 <210> 19

<211> 109 <211> 109

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38抗體之VL MOR202 <223> VL MOR202 against CD38 antibody

<400> 19 <400> 19

<210> 20 <210> 20

<211> 120 <211> 120

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38 mAb之VH伊沙妥昔單抗 <223> VH Ixetuximab against CD38 mAb

<400> 20 <400> 20

<210> 21 <210> 21

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗CD38 mAb之VL伊沙妥昔單抗 <223> VL Isaceptimab against CD38 mAb

<400> 21 <400> 21

<210> 22 <210> 22

<211> 120 <211> 120

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-1 mAb之VH Keytruda <223> VH Keytruda against PD-1 mAb

<400> 22 <400> 22

<210> 23 <210> 23

<211> 111 <211> 111

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-1 mAb之VL Keytruda <223> VL Keytruda against PD-1 mAb

<400> 23 <400> 23

<210> 24 <210> 24

<211> 113 <211> 113

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-1 mAb之VH Opdivo <223> VH Opdivo against PD-1 mAb

<400> 24 <400> 24

<210> 25 <210> 25

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-1 mAb之VL Opdivo <223> VL Opdivo against PD-1 mAb

<400> 25 <400> 25

<210> 26 <210> 26

<211> 121 <211> 121

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-L1 mAb之VH德瓦魯單抗 <223> VH Devaluzumab against PD-L1 mAb

<400> 26 <400> 26

<210> 27 <210> 27

<211> 108 <211> 108

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-L1 mAb之VL德瓦魯單抗 <223> VL Devaluzumab against PD-L1 mAb

<400> 27 <400> 27

<210> 28 <210> 28

<211> 118 <211> 118

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-L1 mAb之VH阿替珠單抗 <223> VH atelizumab against PD-L1 mAb

<400> 28 <400> 28

<210> 29 <210> 29

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-L1 mAb之VL阿替珠單抗 <223> VL altuzumab against PD-L1 mAb

<400> 29 <400> 29

<210> 30 <210> 30

<211> 120 <211> 120

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-L1 mAb之VH艾維路單抗 <223> VH Avizumab against PD-L1 mAb

<400> 30 <400> 30

<210> 31 <210> 31

<211> 110 <211> 110

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-L1 mAb之VL艾維路單抗 <223> VL Iveyimumab against PD-L1 mAb

<400> 31 <400> 31

<210> 32 <210> 32

<211> 123 <211> 123

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-1 mAb之VH <223> VH against PD-1 mAb

<400> 32 <400> 32

<210> 33 <210> 33

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-1 mAb之VL <223> VL against PD-1 mAb

<400> 33 <400> 33

<210> 34 <210> 34

<211> 117 <211> 117

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-1 mAb之VH <223> VH against PD-1 mAb

<400> 34 <400> 34

<210> 35 <210> 35

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗PD-1 mAb之VH <223> VH against PD-1 mAb

<400> 35 <400> 35

<210> 36 <210> 36

<211> 117 <211> 117

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗TIM-3 mAb之VH <223> VH against TIM-3 mAb

<400> 36 <400> 36

<210> 37 <210> 37

<211> 107 <211> 107

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗TIM-3 mAb之VL <223> VL against TIM-3 mAb

<400> 37 <400> 37

<210> 38 <210> 38

<211> 124 <211> 124

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗TIM-3 mAb之VH <223> VH against TIM-3 mAb

<400> 38 <400> 38

<210> 39 <210> 39

<211> 106 <211> 106

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 抗TIM-3 mAb之VL <223> VL against TIM-3 mAb

<400> 39 <400> 39

<210> 40 <210> 40

<211> 509 <211> 509

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 重組玻尿酸酶 <223> Recombinant Hyaluronic Acid

<400> 40 <400> 40

Claims (83)

一種治療患有固態腫瘤之病患的方法,其包含向有彼之需要之該病患投予治療有效量之特異性結合CD38之抗體達一段足以治療該固態腫瘤的時間。 A method of treating a patient having a solid tumor comprising administering to the patient in need thereof a therapeutically effective amount of an antibody that specifically binds to CD38 for a period of time sufficient to treat the solid tumor. 如請求項1所述之方法,其中該特異性結合CD38之抗體引發該病患之免疫反應。 The method of claim 1, wherein the antibody that specifically binds to CD38 elicits an immune response in the patient. 如請求項2所述之方法,其中該免疫反應係效應T細胞(Teff)反應。 The method of claim 2, wherein the immune response is an effector T cell (Teff) reaction. 如請求項3所述之方法,其中該Teff反應係由CD4+ T細胞或CD8+ T細胞媒介。 The method of claim 3, wherein the Teff reaction is by CD4 + T cells or CD8 + T cells. 如請求項4所述之方法,其中該Teff反應係由該等CD8+ T細胞媒介。 The method of claim 4, wherein the Teff reaction is mediated by the CD8 + T cells. 如請求項3所述之方法,其中該Teff反應係該CD8+ T細胞之數目的增加、CD8+ T細胞增生的增加、T細胞純系擴增的增加、CD8+記憶細胞形成的增加、抗原依賴性抗體產生的增加、細胞介素產生的增加、趨化介素產生的增加、或介白素產生的增加。(由該等細胞) The method of claim 3, wherein the Teff reaction is an increase in the number of CD8 + T cells, an increase in CD8 + T cell proliferation, an increase in T cell pure line expansion, an increase in CD8 + memory cell formation, and an antigen dependence. Increased production of sex antibodies, increased production of interleukins, increased production of chemokines, or increased production of interleukins. (by these cells) 如請求項1所述之方法,其中該特異性結合CD38之抗體抑制免疫抑制細胞之功能。 The method of claim 1, wherein the antibody that specifically binds to CD38 inhibits the function of the immunosuppressive cell. 如請求項7所述之方法,其中該免疫抑制細胞係調節T細胞(Treg)。 The method of claim 7, wherein the immunosuppressive cell line modulates T cells (Tregs). 如請求項8所述之方法,其中該Treg係CD3+CD4+CD25+CD127dimT細胞。 The method of claim 8, wherein the Tregs are CD3 + CD4 + CD25 + CD127 dim T cells. 如請求項9所述之方法,其中該Treg表現CD38。 The method of claim 9, wherein the Treg exhibits CD38. 如請求項10所述之方法,其中該Treg之功能係藉由殺滅該Treg來抑制。 The method of claim 10, wherein the function of the Tregs is inhibited by killing the Tregs. 如請求項11所述之方法,其中殺滅該Treg係藉由抗體依賴性細胞毒性(ADCC)來媒介。 The method of claim 11, wherein the killing of the Treg is mediated by antibody-dependent cellular cytotoxicity (ADCC). 如請求項7所述之方法,其中該免疫抑制細胞係骨髓衍生抑制細胞(MDSC)。 The method of claim 7, wherein the immunosuppressive cell line is a bone marrow-derived suppressor cell (MDSC). 如請求項13所述之方法,其中該MDSC係CD11b+HLADR-CD14- CD33+CD15+細胞。 The method of claim 13, wherein the MDSC is a CD11b + HLADR - CD14 - CD33 + CD15 + cell. 如請求項14所述之方法,其中該CD11b+HLADR-CD14- CD33+CD15+細胞表現CD38。 The method of claim 14, wherein the CD11b + HLADR - CD14 - CD33 + CD15 + cells exhibit CD38. 如請求項15所述之方法,其中該MDSC之功能係藉由殺滅該MDSC來抑制。 The method of claim 15, wherein the function of the MDSC is suppressed by killing the MDSC. 如請求項16所述之方法,其中殺滅MDSC係藉由ADCC來媒介。 The method of claim 16, wherein the killing of the MDSC is by the ADCC. 如請求項7所述之方法,其中該免疫抑制細胞係調節B細胞(Breg)。 The method of claim 7, wherein the immunosuppressive cell line modulates B cells (Breg). 如請求項18所述之方法,其中該Breg係CD19+CD24+CD38+細胞。 The method of claim 18, wherein the Breg is a CD19 + CD24 + CD38 + cell. 如請求項19所述之方法,其中該Breg功能係藉由殺滅該Breg來抑制。 The method of claim 19, wherein the Breg function is inhibited by killing the Breg. 如請求項20所述之方法,其中殺滅該Breg係藉由ADCC來媒介。 The method of claim 20, wherein killing the Breg is by means of ADCC. 如請求項7所述之方法,其中該免疫抑制細胞存在於骨髓中或於周邊血液中。 The method of claim 7, wherein the immunosuppressive cells are present in the bone marrow or in peripheral blood. 如請求項1所述之方法,其中該固態腫瘤係黑色素瘤、肺癌、鱗狀非小細胞肺癌(NSCLC)、非鱗狀NSCLC、結腸直腸癌、前列腺癌、去勢抗性前列腺癌、胃癌(stomach cancer)、卵巢癌、胃癌(gastric cancer)、肝癌、胰腺癌、甲狀腺癌、頭部及頸部鱗狀細胞癌、食道或胃腸道癌、乳癌、輸卵管癌、腦癌、尿道癌、泌尿生殖癌、子宮內膜異位、子宮頸癌、或該癌症之轉移性病變。 The method according to claim 1, wherein the solid tumor is melanoma, lung cancer, squamous non-small cell lung cancer (NSCLC), non-squamous NSCLC, colorectal cancer, prostate cancer, castration-resistant prostate cancer, gastric cancer (stomach) Cancer), ovarian cancer, gastric cancer, liver cancer, pancreatic cancer, thyroid cancer, squamous cell carcinoma of the head and neck, esophageal or gastrointestinal cancer, breast cancer, fallopian tube cancer, brain cancer, urinary tract cancer, urogenital cancer , endometriosis, cervical cancer, or metastatic disease of the cancer. 如請求項23所述之方法,其中該固態腫瘤缺乏可偵測的CD38表現。 The method of claim 23, wherein the solid tumor lacks detectable CD38 expression. 如請求項1所述之方法,其中該特異性結合CD38之抗體係非促效性抗體。 The method of claim 1, wherein the specific binding to CD38 is an anti-systemic non-promoting antibody. 如請求項25所述之方法,其中該非促效性抗體以統計學不顯著的方式在體外誘導周邊血液單核細胞之樣本的增生。 The method of claim 25, wherein the non-potentiating antibody induces proliferation of a sample of peripheral blood mononuclear cells in vitro in a statistically insignificant manner. 如請求項1所述之方法,其中該特異性結合CD38之抗體與包含SEQ ID NO:4之重鏈可變區(VH)及SEQ ID NO:5之輕鏈可變區(VL)的抗體競爭結合至CD38。 The method of claim 1, wherein the antibody that specifically binds to CD38 and the antibody comprising the heavy chain variable region (VH) of SEQ ID NO: 4 and the light chain variable region (VL) of SEQ ID NO: Competition is combined with CD38. 如請求項27所述之方法,其中該特異性結合CD38之抗體至少結合至人類CD38(SEQ ID NO:1)之SKRNIQFSCKNIYR(SEQ ID NO:2)區及EKVQTLEAWVIHGG(SEQ ID NO:3)區。 The method of claim 27, wherein the antibody that specifically binds to CD38 binds at least to the region of SKRNIQFSCKNIYR (SEQ ID NO: 2) and EKVQTLEAWVIHGG (SEQ ID NO: 3) of human CD38 (SEQ ID NO: 1). 如請求項28所述之方法,其中該特異性結合CD38之抗體包含分別係SEQ ID NO:6、7、8、9、10、及11之重鏈互補決定區(HCDR)1、HCDR2、HCDR3、輕鏈互補決定區(LCDR)1、LCDR2、及LCDR3胺基酸序列。 The method of claim 28, wherein the antibody that specifically binds to CD38 comprises a heavy chain complementarity determining region (HCDR) 1, HCDR2, HCDR3 of SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively. Light chain complementarity determining region (LCDR) 1, LCDR2, and LCDR3 amino acid sequence. 如請求項29所述之方法,其中該特異性結合CD38之抗體包含SEQ ID NO:4之VH及SEQ ID NO:5之VL。 The method of claim 29, wherein the antibody that specifically binds to CD38 comprises VH of SEQ ID NO: 4 and VL of SEQ ID NO: 5. 如請求項23所述之方法,其中該特異性結合CD38之抗體包含下列之HCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及LCDR3:a)SEQ ID NO:14之VH及SEQ ID NO:15之VL;b)SEQ ID NO:16之VH及SEQ ID NO:17之VL;c)SEQ ID NO:18之VH及SEQ ID NO:19之VL;或d)SEQ ID NO:20之VH及SEQ ID NO:21之VL。 The method of claim 23, wherein the antibody that specifically binds to CD38 comprises HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3: a) VH of SEQ ID NO: 14 and VL of SEQ ID NO: 15. b) VH of SEQ ID NO: 16 and VL of SEQ ID NO: 17; c) VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19; or d) VH and SEQ ID of SEQ ID NO: 20. NO: VL of 21 . 如請求項31所述之方法,其中該特異性結合CD38之抗體包含:a)該SEQ ID NO:14之VH及該SEQ ID NO:15之VL;b)該SEQ ID NO:16之VH及該SEQ ID NO:17之VL;c)該SEQ ID NO:18之VH及該SEQ ID NO:19之VL;或d)該SEQ ID NO:20之VH及該SEQ ID NO:21之VL。 The method of claim 31, wherein the antibody that specifically binds to CD38 comprises: a) the VH of the SEQ ID NO: 14 and the VL of the SEQ ID NO: 15; b) the VH of the SEQ ID NO: 16 and VL of SEQ ID NO: 17; c) VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19; or d) VH of SEQ ID NO: 20 and VL of SEQ ID NO: 21. 如請求項1所述之方法,其中該特異性結合CD38之抗體係與第二治療劑組合投予。 The method of claim 1, wherein the anti-system that specifically binds to CD38 is administered in combination with a second therapeutic agent. 如請求項33所述之方法,其中該第二治療劑係化學治療劑、標靶抗癌療法、用於治療固態腫瘤之標準照護藥品、或免疫檢查點抑制劑。 The method of claim 33, wherein the second therapeutic agent is a chemotherapeutic agent, a target anticancer therapy, a standard care drug for treating solid tumors, or an immunological checkpoint inhibitor. 如請求項34所述之方法,其中該免疫檢查點抑制劑係抗PD-1抗體、抗PD-L1抗體、抗PD-L2抗體、抗LAG3抗體、抗TIM3抗體、或抗CTLA-4抗體。 The method of claim 34, wherein the immunological checkpoint inhibitor is an anti-PD-1 antibody, an anti-PD-L1 antibody, an anti-PD-L2 antibody, an anti-LAG3 antibody, an anti-TIM3 antibody, or an anti-CTLA-4 antibody. 如請求項35所述之方法,其中該免疫檢查點抑制劑係抗PD-1抗體。 The method of claim 35, wherein the immunological checkpoint inhibitor is an anti-PD-1 antibody. 如請求項36所述之方法,其中該抗PD-1抗體包含a)SEQ ID NO:22之VH及SEQ ID NO:23之VL;b)SEQ ID NO:24之VH及SEQ ID NO:25之VL;c)SEQ ID NO:32之VH及SEQ ID NO:33之VL;或d)SEQ ID NO:34之VH及SEQ ID NO:35之VL。 The method of claim 36, wherein the anti-PD-1 antibody comprises a) VH of SEQ ID NO: 22 and VL of SEQ ID NO: 23; b) VH of SEQ ID NO: 24 and SEQ ID NO: VL; c) VL of SEQ ID NO: 32 and VL of SEQ ID NO: 33; or d) VH of SEQ ID NO: 34 and VL of SEQ ID NO: 35. 如請求項35所述之方法,其中該免疫檢查點抑制劑係抗PD-L1抗體。 The method of claim 35, wherein the immunological checkpoint inhibitor is an anti-PD-L1 antibody. 如請求項38所述之方法,其中該抗PD-L1抗體包含a)SEQ ID NO:26之VH及SEQ ID NO:27之VL;b)SEQ ID NO:28之VH及SEQ ID NO:29之VL;或c)SEQ ID NO:30之VH及SEQ ID NO:31之VL。 The method of claim 38, wherein the anti-PD-L1 antibody comprises a) VH of SEQ ID NO: 26 and VL of SEQ ID NO: 27; b) VH of SEQ ID NO: 28 and SEQ ID NO: 29 VL; or c) VH of SEQ ID NO: 30 and VL of SEQ ID NO: 31. 如請求項35所述之方法,其中該免疫檢查點抑制劑係抗PD-L2抗體。 The method of claim 35, wherein the immunological checkpoint inhibitor is an anti-PD-L2 antibody. 如請求項35所述之方法,其中該免疫檢查點抑制劑係抗LAG3抗體。 The method of claim 35, wherein the immunological checkpoint inhibitor is an anti-LAG3 antibody. 如請求項35所述之方法,其中該免疫檢查點抑制劑係抗TIM-3抗體。 The method of claim 35, wherein the immunological checkpoint inhibitor is an anti-TIM-3 antibody. 如請求項42所述之方法,其中該抗TIM-3抗體包含a)SEQ ID NO:36之VH及SEQ ID NO:37之VL;或b)SEQ ID NO:38之VH及SEQ ID NO:39之VL。 The method of claim 42, wherein the anti-TIM-3 antibody comprises a) VH of SEQ ID NO: 36 and VL of SEQ ID NO: 37; or b) VH of SEQ ID NO: 38 and SEQ ID NO: 39 VL. 如請求項33所述之方法,其中該第二治療劑係同時、依序、或分開投予。 The method of claim 33, wherein the second therapeutic agent is administered simultaneously, sequentially, or separately. 如請求項1所述之方法,其中該特異性結合CD38之抗體係經靜脈內投予。 The method of claim 1, wherein the anti-system that specifically binds to CD38 is administered intravenously. 如請求項1所述之方法,其中該特異性結合CD38之抗體係於醫藥組成物中經皮下投予,該醫藥組成物包含該特異性結合CD38的抗體及玻尿酸酶。 The method of claim 1, wherein the anti-CD38-specific anti-system is administered subcutaneously in a pharmaceutical composition comprising the antibody that specifically binds to CD38 and hyaluronan. 如請求項46所述之方法,其中該玻尿酸酶係SEQ ID NO:40之rHuPH20。 The method of claim 46, wherein the hyaluronanase is rHuPH20 of SEQ ID NO:40. 如請求項1所述之方法,其中該病患係以放射療法治療,或已經過放射療法治療。 The method of claim 1, wherein the patient is treated with radiation therapy or has been treated with radiation therapy. 如請求項1所述之方法,其中該病患已經歷過手術,或將經歷手術。 The method of claim 1, wherein the patient has undergone surgery or will undergo surgery. 一種抑制免疫抑制細胞之活性的方法,其包含使該免疫抑制細胞接觸特異性結合CD38之抗體。 A method of inhibiting the activity of an immunosuppressive cell comprising contacting the immunosuppressive cell with an antibody that specifically binds to CD38. 如請求項50所述之方法,其中該免疫抑制細胞係Treg。 The method of claim 50, wherein the immunosuppressive cell line is Treg. 如請求項51所述之方法,其中該Treg係CD3+CD4+CD25+CD127dim T細胞。 The method of claim 51, wherein the Tregs are CD3 + CD4 + CD25 + CD127 dim T cells. 如請求項50所述之方法,其中該免疫抑制細胞係MDSC。 The method of claim 50, wherein the immunosuppressive cell line is MDSC. 如請求項53所述之方法,其中該MDSC係CD11b+HLADR-CD14- CD33+CD15+細胞。 The method of claim 53, wherein the MDSC is a CD11b + HLADR - CD14 - CD33 + CD15 + cell. 如請求項50所述之方法,其中該免疫抑制細胞係Breg。 The method of claim 50, wherein the immunosuppressive cell line is Breg. 如請求項55所述之方法,其中該Breg係CD19+CD24+CD38+細胞。 The method of claim 55, wherein the Breg is a CD19 + CD24 + CD38 + cell. 如請求項50所述之方法,其中該特異性結合CD38之抗體係非促效性抗體。 The method of claim 50, wherein the specific binding to CD38 is an anti-systemic non-promoting antibody. 如請求項57所述之方法,其中該非促效性抗體以統計學不顯著的方式在體外誘導周邊血液單核細胞之樣本的增生。 The method of claim 57, wherein the non-potentiating antibody induces proliferation of a sample of peripheral blood mononuclear cells in vitro in a statistically insignificant manner. 如請求項58所述之方法,其中該特異性結合CD38之抗體與包含SEQ ID NO:4之VH及SEQ ID NO:5之VL的抗體競爭結合至CD38。 The method of claim 58, wherein the antibody that specifically binds to CD38 competes for binding to CD38 with an antibody comprising VL of SEQ ID NO: 4 and VL of SEQ ID NO: 5. 如請求項59所述之方法,其中該特異性結合CD38之抗體至少結合至人類CD38(SEQ ID NO:1)之SKRNIQFSCKNIYR(SEQ ID NO:2)區及EKVQTLEAWVIHGG(SEQ ID NO:3)區。 The method of claim 59, wherein the antibody that specifically binds to CD38 binds at least to the region of SKRNIQFSCKNIYR (SEQ ID NO: 2) and EKVQTLEAWVIHGG (SEQ ID NO: 3) of human CD38 (SEQ ID NO: 1). 如請求項60所述之方法,其中該特異性結合CD38之抗體包含分別係SEQ ID NO:6、7、8、9、10、及11之HCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及LCDR3胺基酸序列。 The method of claim 60, wherein the antibody that specifically binds to CD38 comprises HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 amines of SEQ ID NOS: 6, 7, 8, 9, 10, and 11, respectively. Base acid sequence. 如請求項61所述之方法,其中該特異性結合CD38之抗體包含SEQ ID NO:4之VH及SEQ ID NO:5之VL。 The method of claim 61, wherein the antibody that specifically binds to CD38 comprises VH of SEQ ID NO: 4 and VL of SEQ ID NO: 5. 如請求項50所述之方法,其中該特異性結合CD38之抗體包含下列之HCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及LCDR3:a)SEQ ID NO:14之VH及SEQ ID NO:15之VL;b)SEQ ID NO:16之VH及SEQ ID NO:17之VL;c)SEQ ID NO:18之VH及SEQ ID NO:19之VL;或d)SEQ ID NO:20之VH及SEQ ID NO:21之VL。 The method of claim 50, wherein the antibody that specifically binds to CD38 comprises the following HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3: a) VH of SEQ ID NO: 14 and VL of SEQ ID NO: 15. b) VH of SEQ ID NO: 16 and VL of SEQ ID NO: 17; c) VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19; or d) VH and SEQ ID of SEQ ID NO: 20. NO: VL of 21 . 如請求項63所述之方法,其中該特異性結合CD38之抗體包含:a)該SEQ ID NO:14之VH及該SEQ ID NO:15之VL;b)該SEQ ID NO:16之VH及該SEQ ID NO:17之VL;c)該SEQ ID NO:18之VH及該SEQ ID NO:19之VL;或d)該SEQ ID NO:20之VH及該SEQ ID NO:21之VL。 The method of claim 63, wherein the antibody that specifically binds to CD38 comprises: a) the VH of SEQ ID NO: 14 and the VL of SEQ ID NO: 15; b) the VH of SEQ ID NO: 16 and VL of SEQ ID NO: 17; c) VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19; or d) VH of SEQ ID NO: 20 and VL of SEQ ID NO: 21. 一種增強病患之免疫反應的方法,其包含向該病患投予特異性結合CD38之抗體。 A method of enhancing an immune response in a patient comprising administering to the patient an antibody that specifically binds to CD38. 如請求項65所述之方法,其中該病患患有癌症或病毒感染。 The method of claim 65, wherein the patient has a cancer or a viral infection. 如請求項65所述之方法,其中該特異性結合CD38之抗體係非促效性抗體。 The method of claim 65, wherein the specific binding to CD38 is an anti-systemic non-promoting antibody. 如請求項67所述之方法,其中該非促效性抗體以統計學不顯著的方式在體外誘導周邊血液單核細胞之樣本的增生。 The method of claim 67, wherein the non-potentiating antibody induces proliferation of a sample of peripheral blood mononuclear cells in vitro in a statistically insignificant manner. 如請求項68所述之方法,其中該特異性結合CD38之抗體與包含SEQ ID NO:4之VH及SEQ ID NO:5之VL的抗體競爭結合至CD38。 The method of claim 68, wherein the antibody that specifically binds to CD38 competes for binding to CD38 with an antibody comprising VL of SEQ ID NO: 4 and VL of SEQ ID NO: 5. 如請求項69所述之方法,其中該特異性結合CD38之抗體至少結合至人類CD38(SEQ ID NO:1)之SKRNIQFSCIYR(SEQ ID NO:2)區及EKVQTLEAWVIHGG(SEQ ID NO:3)區。 The method of claim 69, wherein the antibody that specifically binds to CD38 binds at least to the region of SKRNIQFSCIYR (SEQ ID NO: 2) and EKVQTLEAWVIHGG (SEQ ID NO: 3) of human CD38 (SEQ ID NO: 1). 如請求項70所述之方法,其中該特異性結合CD38之抗體包含分別係SEQ ID NO:6、7、8、9、10、及11之HCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及LCDR3胺基酸序列。 The method of claim 70, wherein the antibody that specifically binds to CD38 comprises HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 amines of SEQ ID NOS: 6, 7, 8, 9, 10, and 11, respectively. Base acid sequence. 如請求項71所述之方法,其中該特異性結合CD38之抗體包含SEQ ID NO:4之VH及SEQ ID NO:5之VL。 The method of claim 71, wherein the antibody that specifically binds to CD38 comprises VH of SEQ ID NO: 4 and VL of SEQ ID NO: 5. 如請求項65所述之方法,其中該特異性結合CD38之抗體包含下列之HCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及LCDR3:a)SEQ ID NO:14之VH及SEQ ID NO:15之VL;b)SEQ ID NO:16之VH及SEQ ID NO:17之VL;c)SEQ ID NO:18之VH及SEQ ID NO:19之VL;或d)SEQ ID NO:20之VH及SEQ ID NO:21之VL。 The method of claim 65, wherein the antibody that specifically binds to CD38 comprises the following HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3: a) VH of SEQ ID NO: 14 and VL of SEQ ID NO: 15. b) VH of SEQ ID NO: 16 and VL of SEQ ID NO: 17; c) VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19; or d) VH and SEQ ID of SEQ ID NO: 20. NO: VL of 21 . 如請求項73所述之方法,其中該特異性結合CD38之抗體包含:a)該SEQ ID NO:14之VH及該SEQ ID NO:15之VL;b)該SEQ ID NO:16之VH及該SEQ ID NO:17之VL;c)該SEQ ID NO:18之VH及該SEQ ID NO:19之VL;或d)該SEQ ID NO:20之VH及該SEQ ID NO:21之VL。 The method of claim 73, wherein the antibody that specifically binds to CD38 comprises: a) the VH of SEQ ID NO: 14 and the VL of SEQ ID NO: 15; b) the VH of SEQ ID NO: 16 and VL of SEQ ID NO: 17; c) VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19; or d) VH of SEQ ID NO: 20 and VL of SEQ ID NO: 21. 一種治療患有病毒感染之病患的方法,其包含向該病患投予特異性結合CD38之抗體達一段足以治療該病毒感染的時間。 A method of treating a patient having a viral infection comprising administering to the patient an antibody that specifically binds to CD38 for a time sufficient to treat the viral infection. 如請求項75所述之方法,其中該特異性結合CD38之抗體係非促效性抗體。 The method of claim 75, wherein the specific binding to CD38 is an anti-systemic non-promoting antibody. 如請求項76所述之方法,其中該非促效性抗體以統計學不顯著的方式在體外誘導周邊血液單核細胞之樣本的增生。 The method of claim 76, wherein the non-potentiating antibody induces proliferation of a sample of peripheral blood mononuclear cells in vitro in a statistically insignificant manner. 如請求項77所述之方法,其中該特異性結合CD38之抗體與包含SEQ ID NO:4之VH及SEQ ID NO:5之VL的抗體競爭結合至CD38。 The method of claim 77, wherein the antibody that specifically binds to CD38 competes for binding to CD38 with an antibody comprising VL of SEQ ID NO: 4 and VL of SEQ ID NO: 5. 如請求項78所述之方法,其中該特異性結合CD38之抗體至少結合至人類CD38(SEQ ID NO:1)之SKRNIQFSCIYR(SEQ ID NO:2)區及EKVQTLEAWVIHGG(SEQ ID NO:3)區。 The method of claim 78, wherein the antibody that specifically binds to CD38 binds at least to the region of SKRNIQFSCIYR (SEQ ID NO: 2) and EKVQTLEAWVIHGG (SEQ ID NO: 3) of human CD38 (SEQ ID NO: 1). 如請求項79所述之方法,其中該特異性結合CD38之抗體包含分別係SEQ ID NO:6、7、8、9、10、及11之HCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及LCDR3胺基酸序列。 The method of claim 79, wherein the antibody that specifically binds to CD38 comprises HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 amines of SEQ ID NOS: 6, 7, 8, 9, 10, and 11, respectively. Base acid sequence. 如請求項80所述之方法,其中該特異性結合CD38之抗體包含SEQ ID NO:4之VH及SEQ ID NO:5之VL。 The method of claim 80, wherein the antibody that specifically binds to CD38 comprises VH of SEQ ID NO: 4 and VL of SEQ ID NO: 5. 如請求項75所述之方法,其中該特異性結合CD38之抗體包含下列之HCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及LCDR3:a)SEQ ID NO:14之VH及SEQ ID NO:15之VL;b)SEQ ID NO:16之VH及SEQ ID NO:17之VL;c)SEQ ID NO:18之VH及SEQ ID NO:19之VL;或d)SEQ ID NO:20之VH及SEQ ID NO:21之VL。 The method of claim 75, wherein the antibody that specifically binds to CD38 comprises HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3: a) VH of SEQ ID NO: 14 and VL of SEQ ID NO: 15. b) VH of SEQ ID NO: 16 and VL of SEQ ID NO: 17; c) VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19; or d) VH and SEQ ID of SEQ ID NO: 20. NO: VL of 21 . 如請求項82所述之方法,其中該特異性結合CD38之抗體包含:a)該SEQ ID NO:14之VH及該SEQ ID NO:15之VL;b)該SEQ ID NO:16之VH及該SEQ ID NO:17之VL;c)該SEQ ID NO:18之VH及該SEQ ID NO:19之VL;或d)該SEQ ID NO:20之VH及該SEQ ID NO:21之VL。 The method of claim 82, wherein the antibody that specifically binds to CD38 comprises: a) the VH of SEQ ID NO: 14 and the VL of SEQ ID NO: 15; b) the VH of SEQ ID NO: 16 and VL of SEQ ID NO: 17; c) VH of SEQ ID NO: 18 and VL of SEQ ID NO: 19; or d) VH of SEQ ID NO: 20 and VL of SEQ ID NO: 21.
TW105134914A 2015-11-02 2016-10-28 Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38 TWI742008B (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201562249546P 2015-11-02 2015-11-02
US62/249,546 2015-11-02
US201562250566P 2015-11-04 2015-11-04
US62/250,566 2015-11-04
US201562263199P 2015-12-04 2015-12-04
US201562263307P 2015-12-04 2015-12-04
US62/263,199 2015-12-04
US62/263,307 2015-12-04
US201662331489P 2016-05-04 2016-05-04
US62/331,489 2016-05-04
US15/191,808 2016-06-24
US15/191,808 US20160376373A1 (en) 2015-06-24 2016-06-24 Immune Modulation and Treatment of Solid Tumors with Antibodies that Specifically Bind CD38
WOPCT/US16/39165 2016-06-24
PCT/US2016/039165 WO2016210223A1 (en) 2015-06-24 2016-06-24 Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38

Publications (2)

Publication Number Publication Date
TW201729832A true TW201729832A (en) 2017-09-01
TWI742008B TWI742008B (en) 2021-10-11

Family

ID=60479868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134914A TWI742008B (en) 2015-11-02 2016-10-28 Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38

Country Status (1)

Country Link
TW (1) TWI742008B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133369A (en) * 2020-08-26 2020-12-25 吴安华 System for evaluating tumor patient prognosis based on active oxygen and drug sensitivity evaluation and improvement method
CN113194967A (en) * 2018-09-27 2021-07-30 健诺西生物科学公司 Method of treatment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682143B2 (en) * 2012-08-14 2017-06-20 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113194967A (en) * 2018-09-27 2021-07-30 健诺西生物科学公司 Method of treatment
CN112133369A (en) * 2020-08-26 2020-12-25 吴安华 System for evaluating tumor patient prognosis based on active oxygen and drug sensitivity evaluation and improvement method
CN112133369B (en) * 2020-08-26 2023-09-22 吴安华 System for evaluating prognosis of tumor patient based on active oxygen and drug sensitivity evaluation and improvement method

Also Published As

Publication number Publication date
TWI742008B (en) 2021-10-11

Similar Documents

Publication Publication Date Title
US20210403592A1 (en) Immune Modulation and Treatment of Solid Tumors with Antibodies that Specifically Bind CD38
EP3313441B1 (en) Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38
CN107530428B (en) Antibodies to ICOS
TWI751397B (en) Anti-lag-3 antibodies and uses thereof
US11820824B2 (en) Antibodies to TIGIT
JP2019523636A (en) CD40L-Fc fusion polypeptide and methods of use thereof
CN114630838A (en) Novel anti-CD 25 antibodies
EP3938396A1 (en) Anti-icos antibodies for the treatment of cancer
CN113840842A (en) Combination therapy and patient stratification with bispecific anti-EGFR/c-Met antibodies
KR102416144B1 (en) Methods of Predicting Therapeutic Benefit of Anti-CD19 Therapy in Patients
TWI742008B (en) Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38
KR102487356B1 (en) Antibodies targeting tumor-associated macrophages and uses thereof
JP2023550446A (en) Anti-CD25 antibody
KR20220007087A (en) Anti-CD19 therapeutics in patients with limited numbers of NK cells
EP3800201A1 (en) Cd28h stimulation enhances nk cell killing activities
US20240034803A1 (en) Anti-cd39 antibodies and use thereof
CN117916266A (en) Antibodies for the treatment of AML