TW201727869A - Thin film resistor, semiconductor device and method of fabricating the same - Google Patents

Thin film resistor, semiconductor device and method of fabricating the same Download PDF

Info

Publication number
TW201727869A
TW201727869A TW105101490A TW105101490A TW201727869A TW 201727869 A TW201727869 A TW 201727869A TW 105101490 A TW105101490 A TW 105101490A TW 105101490 A TW105101490 A TW 105101490A TW 201727869 A TW201727869 A TW 201727869A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
region
semiconductor device
conductor
Prior art date
Application number
TW105101490A
Other languages
Chinese (zh)
Other versions
TWI606572B (en
Inventor
魯夫 陳
陳柏安
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW105101490A priority Critical patent/TWI606572B/en
Priority to CN201610394947.4A priority patent/CN106981455A/en
Publication of TW201727869A publication Critical patent/TW201727869A/en
Application granted granted Critical
Publication of TWI606572B publication Critical patent/TWI606572B/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Provided is a semiconductor device having a thin film resistor. The semiconductor device includes a substrate having a first region and a second region. At least one MOS transistor is disposed on the second region. The first region includes a plurality of first conductive structures, a first dielectric layer, a resistor layer, a second dielectric layer, and a plurality of contacts. The first conductive structures are located on the substrate of the first region. The first dielectric layer overlays the first conductive structures, so that the first conductive structures are electrically isolated from each other. The resistor layer is located on the first dielectric layer. The second dielectric layer is located on the resistor layer. The contacts at least pass through the second dielectric layer and electrically connect with the resistor layer respectively.

Description

薄膜電阻器、半導體元件及其製造方法Thin film resistor, semiconductor element and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種具有薄膜電阻器的半導體元件及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor device having a thin film resistor and a method of fabricating the same.

一般而言,電子元件可簡單分為主動元件與被動元件。在電路中能夠執行資料運算、資料處理的元件被稱為主動元件。而被動元件則泛指沒有訊號放大功能的元件,其可包括電阻(Resister)、電容(Capacitor)以及電感(Inductor)。In general, electronic components can be easily divided into active components and passive components. An element capable of performing data operations and data processing in a circuit is referred to as an active element. A passive component generally refers to a component that does not have a signal amplification function, and may include a resistor, a capacitor, and an inductor.

隨著半導體技術的演進,各類電子元件皆朝向高速、高效能、且輕薄短小的趨勢發展,而在這趨勢之下,上述被動元件的微型化,以薄膜電阻器(Thin film resister,TFR)為例,將逐漸受到重視。然而,由於薄膜電阻的厚度過薄,習知的蝕刻製程難以精準控制接觸窗開口的深度,使得後續形成的接觸窗與薄膜電阻器之間的電性連接不佳,其導致良率下降與不穩定的電阻溫度係數(Temperature co-efficient of resistivity,TCR)。因此,如何在提升良率與保持電阻溫度係數的前提下,形成具有薄膜電阻器的半導體元件,將是未來重要的課題之一。With the evolution of semiconductor technology, various electronic components are moving toward high speed, high efficiency, and light and thin, and under this trend, the miniaturization of the above passive components is based on Thin Film Resistors (TFR). For example, it will gradually receive attention. However, since the thickness of the thin film resistor is too thin, it is difficult to precisely control the depth of the contact window opening by the conventional etching process, so that the electrical connection between the subsequently formed contact window and the thin film resistor is poor, which leads to a decrease in yield and no Steady co-efficient of resistivity (TCR). Therefore, how to form a semiconductor device having a thin film resistor under the premise of improving the yield and maintaining the temperature coefficient of resistance will be one of the important issues in the future.

本發明提供一種具有薄膜電阻器的半導體元件及其製造方法,其具有較低的電阻溫度係數,且可應用在較廣泛的溫度範圍的電子產品。The present invention provides a semiconductor element having a thin film resistor and a method of manufacturing the same, which have a low temperature coefficient of resistance and can be applied to electronic products in a wide temperature range.

本發明提供一種具有薄膜電阻器的半導體元件及其製造方法,其可在不增加製程步驟與製程成本的情況下,增加製程廣域度(Process window)並提升半導體元件的良率。The present invention provides a semiconductor device having a thin film resistor and a method of fabricating the same, which can increase the process window and improve the yield of the semiconductor element without increasing the manufacturing process and process cost.

本發明提供一種具有薄膜電阻器的半導體元件,其包括具有第一區與第二區的基底。第二區配置有至少一金氧半場效電晶體。第一區包括多個第一導體結構、第一介電層、電阻層、第二介電層以及多個接觸窗。第一導體結構位於第一區的基底上。第一介電層覆蓋第一導體結構,以電性隔離第一導體結構。電阻層位於第一介電層上。第二介電層位於電阻層上。接觸窗至少貫穿第二介電層,並分別與電阻層電性連接。The present invention provides a semiconductor component having a thin film resistor including a substrate having a first region and a second region. The second zone is provided with at least one gold oxide half field effect transistor. The first region includes a plurality of first conductor structures, a first dielectric layer, a resistive layer, a second dielectric layer, and a plurality of contact windows. The first conductor structure is located on the substrate of the first zone. The first dielectric layer covers the first conductor structure to electrically isolate the first conductor structure. The resistive layer is on the first dielectric layer. The second dielectric layer is on the resistive layer. The contact window extends through at least the second dielectric layer and is electrically connected to the resistive layer.

本發明提供一種薄膜電阻器,其包括至少兩個第一導體結構、介電層、電阻層以及至少兩個接觸窗。第一導體結構位於基底上。第一導體結構具有第一電阻值。介電層覆蓋第一導體結構,以電性隔離第一導體結構。電阻層嵌入介電層中,且未與第一導體結構接觸。電阻層具有第二電阻值,且第二電阻值與第一電阻值不同。接觸窗貫穿部分介電層與電阻層,以分別與第一導體結構接觸。接觸窗之一藉由電阻層與接觸窗之另一電性連接。The present invention provides a thin film resistor comprising at least two first conductor structures, a dielectric layer, a resistive layer, and at least two contact windows. The first conductor structure is on the substrate. The first conductor structure has a first resistance value. The dielectric layer covers the first conductor structure to electrically isolate the first conductor structure. The resistive layer is embedded in the dielectric layer and is not in contact with the first conductor structure. The resistance layer has a second resistance value, and the second resistance value is different from the first resistance value. The contact window penetrates a portion of the dielectric layer and the resistive layer to respectively contact the first conductor structure. One of the contact windows is electrically connected to the other of the contact windows by a resistive layer.

本發明提供一種半導體元件的製造方法,其步驟如下。提供具有第一區與第二區的基底。形成多個第一導體結構於第一區的基底上。形成第一介電層於第一導體結構上,以電性隔離第一導體結構。形成電阻層於第一介電層上。形成第二介電層於電阻層上。形成至少貫穿第二介電層的多個接觸窗,其中接觸窗分別與電阻層電性連接。The present invention provides a method of manufacturing a semiconductor device, the steps of which are as follows. A substrate having a first zone and a second zone is provided. A plurality of first conductor structures are formed on the substrate of the first region. Forming a first dielectric layer on the first conductor structure to electrically isolate the first conductor structure. A resistive layer is formed on the first dielectric layer. A second dielectric layer is formed on the resistive layer. A plurality of contact windows are formed through at least the second dielectric layer, wherein the contact windows are electrically connected to the resistive layer, respectively.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。The invention will be more fully described with reference to the drawings of the embodiments. However, the invention may be embodied in a variety of different forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar reference numbers indicate the same or similar elements, and the following paragraphs will not be repeated.

圖1是依照本發明第一實施例的半導體元件的剖面示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a semiconductor device in accordance with a first embodiment of the present invention.

請參照圖1,第一實施例之半導體元件10包括具有第一區R1與第二區R2的基底100,其中隔離結構102內埋於第一區R1的基底100中。在一實施例中,第一區R1可例如是非主動元件區,所述非主動元件區包括被動元件(例如是薄膜電阻器)設置區域;而第二區R2可例如是主動元件區,所述主動元件區包括電晶體設置區域。基底100可以是具有導電型的半導體基底,例如N型或P型基底。半導體基底的材料例如是選自於由Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs與InP所組成的群組中的至少一種材料。基底100也可以是非摻雜磊晶(Non-EPI)層、摻雜磊晶層、覆矽絕緣(SOI)基底或其組合。隔離結構102的材料可例如是摻雜或未摻雜的氧化矽、高密度電漿氧化物、氮氧化矽或其組合。在一實施例中,隔離結構102可例如是淺溝渠隔離結構(STI)、場氧化層(FOX)或其組合。Referring to FIG. 1, the semiconductor device 10 of the first embodiment includes a substrate 100 having a first region R1 and a second region R2, wherein the isolation structure 102 is buried in the substrate 100 of the first region R1. In an embodiment, the first region R1 may be, for example, an inactive element region, the inactive element region includes a passive element (eg, a thin film resistor) setting region; and the second region R2 may be, for example, an active device region, The active device region includes a transistor placement region. The substrate 100 may be a semiconductor substrate having a conductivity type, such as an N-type or P-type substrate. The material of the semiconductor substrate is, for example, at least one material selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. Substrate 100 can also be an undoped epitaxial (Non-EPI) layer, a doped epitaxial layer, a blanket insulating (SOI) substrate, or a combination thereof. The material of the isolation structure 102 can be, for example, doped or undoped cerium oxide, high density plasma oxide, cerium oxynitride or a combination thereof. In an embodiment, the isolation structure 102 can be, for example, a shallow trench isolation structure (STI), a field oxide layer (FOX), or a combination thereof.

詳細地說,第一區R1包括多個第一導體結構104、第一介電層106、電阻層108b、第二介電層110、多個接觸窗114a、114b以及多個第二導體結構116a、116b。In detail, the first region R1 includes a plurality of first conductor structures 104, a first dielectric layer 106, a resistance layer 108b, a second dielectric layer 110, a plurality of contact windows 114a, 114b, and a plurality of second conductor structures 116a. , 116b.

第一導體結構104位於第一區R1的基底100上。第一導體結構104彼此分開配置而不互相連接。在一實施例中,第一導體結構104的材料可例如是多晶矽。第一導體結構104具有第一電阻值,其介於2 Ω/至20 Ω/之間,其中,表示為單位面積。The first conductor structure 104 is located on the substrate 100 of the first region R1. The first conductor structures 104 are disposed apart from each other without being connected to each other. In an embodiment, the material of the first conductor structure 104 may be, for example, a polysilicon. The first conductor structure 104 has a first resistance value between 2 Ω/ and 20 Ω/, wherein is expressed as a unit area.

第一介電層106覆蓋第一導體結構104,使得第一導體結構104彼此互相電性隔離。在一實施例中,第一介電層106的材料可例如是四乙氧基矽烷(tetraethosiloxane,TEOS)氧化矽、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、氫化矽倍半氧化物(HSQ)、氟矽玻璃(FSG)、無摻雜矽玻璃(USG)、氮化矽、氮氧化矽、介電常數小於4的低介電材料或其組合。The first dielectric layer 106 covers the first conductor structure 104 such that the first conductor structures 104 are electrically isolated from one another. In an embodiment, the material of the first dielectric layer 106 may be, for example, tetraethoxysilane (TEOS) cerium oxide, borophosphoquinone glass (BPSG), phosphoric bismuth glass (PSG), hydrogenated sesquioxide. (HSQ), fluorocarbon glass (FSG), undoped bismuth glass (USG), tantalum nitride, bismuth oxynitride, low dielectric materials having a dielectric constant of less than 4, or combinations thereof.

電阻層108b位於第一介電層106上,且對應覆蓋第一導體結構104。在本實施例中,電阻層108b可例如是薄膜電阻層,其材料可例如是鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)、矽化鉻(CrSi)、鎳鉻合金(NiCr)或其組合。電阻層108b具有第二電阻值,其介於30 Ω/至120 Ω/之間。但本發明不以此為限,設計者可選用任意電阻值與較低的電阻溫度係數(TCR)的電阻層108b材料,使得本實施例之薄膜電阻器可應用在較廣泛的溫度範圍(可例如介於-25℃至100℃之間或更廣的範圍)的電子產品,例如是電源供應、可充電電池、電子馬達驅動器、LED驅動器等。另外,在本實施例中,電阻層108b的厚度可介於200 Å至800 Å之間。但本發明不以此為限,在其他實施例中,設計者可藉由改變電阻層108b的厚度來調整薄膜電阻器的電阻值。The resistive layer 108b is located on the first dielectric layer 106 and correspondingly covers the first conductor structure 104. In this embodiment, the resistive layer 108b may be, for example, a thin film resistive layer, and the material thereof may be, for example, titanium (Ti), titanium nitride (TiN), tantalum nitride (TaN), chromium telluride (CrSi), nickel-chromium alloy ( NiCr) or a combination thereof. The resistance layer 108b has a second resistance value ranging from 30 Ω/ to 120 Ω/. However, the present invention is not limited thereto, and the designer can select any resistor value and a lower temperature coefficient of resistance (TCR) material of the resistor layer 108b, so that the thin film resistor of the embodiment can be applied to a wider temperature range. For example, electronic products ranging from -25 ° C to 100 ° C or more, such as power supplies, rechargeable batteries, electronic motor drivers, LED drivers, and the like. In addition, in the embodiment, the thickness of the resistance layer 108b may be between 200 Å and 800 Å. However, the present invention is not limited thereto. In other embodiments, the designer can adjust the resistance value of the thin film resistor by changing the thickness of the resistance layer 108b.

第二介電層110位於電阻層108b上。第二介電層110的材料可例如是硼磷矽玻璃(BPSG)、四乙氧基矽烷(TEOS)氧化矽、磷矽玻璃(PSG)、氫化矽倍半氧化物(HSQ)、氟矽玻璃(FSG)、無摻雜矽玻璃(USG)、氮化矽、氮氧化矽、介電常數小於4的低介電材料或其組合。在一實施例中,第二介電層110與第一介電層106的材料可以相同亦或不同,本發明不以此為限。The second dielectric layer 110 is on the resistive layer 108b. The material of the second dielectric layer 110 may be, for example, borophosphoquinone glass (BPSG), tetraethoxy decane (TEOS) cerium oxide, phosphoric silicate glass (PSG), hydrogenated sesquioxide (HSQ), fluorinated glass. (FSG), undoped bismuth glass (USG), tantalum nitride, bismuth oxynitride, low dielectric materials having a dielectric constant of less than 4, or combinations thereof. In an embodiment, the materials of the second dielectric layer 110 and the first dielectric layer 106 may be the same or different, and the invention is not limited thereto.

接觸窗114a、114b貫穿第二介電層110、電阻層108b以及部分第一介電層106,並分別與第一導體結構104接觸。值得注意的是,由於第一導體結構104彼此不連接,其電阻值大於電阻層108b的第二電阻值,因此,即便接觸窗114a、114b與第一導體結構104接觸,接觸窗114a仍會藉由電阻層108b與接觸窗114b電性連接。在一實施例中,接觸窗114a、114b的材料可例如是鎢、鈦、鉭、鋁、銅或其合金。The contact windows 114a, 114b penetrate the second dielectric layer 110, the resistive layer 108b, and a portion of the first dielectric layer 106, and are in contact with the first conductor structure 104, respectively. It is noted that since the first conductor structures 104 are not connected to each other, the resistance value thereof is greater than the second resistance value of the resistance layer 108b. Therefore, even if the contact windows 114a, 114b are in contact with the first conductor structure 104, the contact window 114a will still be borrowed. The resistor layer 108b is electrically connected to the contact window 114b. In an embodiment, the material of the contact windows 114a, 114b may be, for example, tungsten, titanium, tantalum, aluminum, copper, or alloys thereof.

第二導體結構116a、116b位於第二介電層110上,以分別與接觸窗114a、114b電性連接。在一實施例中,第二導體結構116a、116b的材料可例如是鋁、銅或其合金。The second conductor structures 116a, 116b are located on the second dielectric layer 110 to be electrically connected to the contact windows 114a, 114b, respectively. In an embodiment, the material of the second conductor structures 116a, 116b may be, for example, aluminum, copper, or alloys thereof.

另一方面,第二區R2配置有至少一金氧半場效電晶體202。值得注意的是,金氧半場效電晶體202的閘極結構204可與第一導體結構104同時形成。因此,在一實施例中,金氧半場效電晶體202的閘極結構204與第一導體結構104可例如是在同一水平高度(the same level)。在另一實施例中,金氧半場效電晶體202的閘極結構204的材料可與第一導體結構104的材料相同。舉例來說,在一示範實施例中,可藉由在第二區R2中形成金氧半場效電晶體202的閘極結構204的步驟,同時在第一區R1中形成第一導體結構104,藉此簡化製程步驟與成本。此時,所述閘極結構204與第一導體結構104的材料皆可例如是多晶矽。On the other hand, the second region R2 is provided with at least one MOS field effect transistor 202. It is noted that the gate structure 204 of the gold oxide half field effect transistor 202 can be formed simultaneously with the first conductor structure 104. Thus, in one embodiment, the gate structure 204 of the gold oxide half field effect transistor 202 and the first conductor structure 104 can be, for example, at the same level. In another embodiment, the material of the gate structure 204 of the gold oxide half field effect transistor 202 may be the same as the material of the first conductor structure 104. For example, in an exemplary embodiment, the first conductor structure 104 may be formed in the first region R1 by the step of forming the gate structure 204 of the gold oxide half field effect transistor 202 in the second region R2. This simplifies process steps and costs. At this time, the material of the gate structure 204 and the first conductor structure 104 may be, for example, polysilicon.

在另一示範實施例中,可藉由在第二區R2中形成金氧半場效電晶體202的虛擬閘極(dummy gate)的步驟,同時在第一區R1中形成第一導體結構104,藉此簡化製程步驟與成本。接著,可藉由置換性金屬閘極(replacement metal gate,RMG)製程將所述虛擬閘極置換成金屬閘極結構204。因此,後續所形成的金氧半場效電晶體202可包括金屬閘極結構204、間隙壁206以及源極/汲極區207(如圖1所示)。詳細地說,金屬閘極結構204包括高介電常數材料所構成的閘介電層204a與金屬材料所構成的閘導體層204b。所謂高介電常數材料可視為介電常數大於4的材料,其包括金屬氧化物。所述金屬氧化物可選自由Li、Be、Mg、Ca、Sr、Sc、Y、Zr、Hf、Al、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu所組成的群組之至少一者的氧化物。在一實施例中,閘導體層204b可例如單層結構,其材料可例如鎢或鋁等的低電阻率的金屬材料。在另一實施例中,閘導體層204b可例如多層結構(未繪示),其包括功函數層、低阻抗金屬層或其組合。功函數層的材料可例如是TiN、TaC、TaCNO、TaCN、TiAlx 、TaN或其組合。低阻抗金屬層的材料可例如是Ti、TiAlx 、富含Ti之TiN、Al或其組合,其中x為任何可能的數值。In another exemplary embodiment, the first conductor structure 104 may be formed in the first region R1 by the step of forming a dummy gate of the metal oxide half field effect transistor 202 in the second region R2. This simplifies process steps and costs. The dummy gate can then be replaced by a metal gate structure 204 by a replacement metal gate (RMG) process. Thus, the subsequently formed gold oxide half field effect transistor 202 can include a metal gate structure 204, a spacer 206, and a source/drain region 207 (shown in FIG. 1). In detail, the metal gate structure 204 includes a gate dielectric layer 204a composed of a high dielectric constant material and a gate conductor layer 204b composed of a metal material. The so-called high dielectric constant material can be regarded as a material having a dielectric constant of more than 4, which includes a metal oxide. The metal oxide may be selected from Li, Be, Mg, Ca, Sr, Sc, Y, Zr, Hf, Al, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, An oxide of at least one of the group consisting of Tm, Yb, and Lu. In an embodiment, the gate conductor layer 204b may be, for example, a single layer structure, and the material thereof may be a low resistivity metal material such as tungsten or aluminum. In another embodiment, the gate conductor layer 204b can be, for example, a multilayer structure (not shown) including a work function layer, a low resistance metal layer, or a combination thereof. The material of the work function layer may be, for example, TiN, TaC, TaCNO, TaCN, TiAl x , TaN, or a combination thereof. The material of the low-impedance metal layer may be, for example, Ti, TiAl x , Ti-rich TiN, Al or a combination thereof, where x is any possible value.

間隙壁206位於金屬閘極結構204的兩側,其材料包括氧化矽、氮化矽或其組合。源極/汲極區207位於金屬閘極結構204的兩側的基底100中。源極/汲極區207可例如是摻雜製程或磊晶製程或其他合適製程所形成的區域。此外,第二區R2更包括介電層210覆蓋金氧半場效電晶體202。介電層210的材料可例如是四乙氧基矽烷(TEOS)氧化矽、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、氫化矽倍半氧化物(HSQ)、氟矽玻璃(FSG)、無摻雜矽玻璃(USG)、氮化矽、氮氧化矽、介電常數小於4的低介電材料或其組合。在一實施例中,介電層210可例如是一層、兩層或多層結構。舉例來說,當介電層210為兩層結構,其可與第一區R1中的第一介電層106以及第二介電層110同時形成。The spacers 206 are located on either side of the metal gate structure 204, and the material thereof includes hafnium oxide, tantalum nitride or a combination thereof. Source/drain regions 207 are located in the substrate 100 on either side of the metal gate structure 204. The source/drain regions 207 can be, for example, regions formed by a doping process or an epitaxial process or other suitable process. In addition, the second region R2 further includes a dielectric layer 210 covering the gold oxide half field effect transistor 202. The material of the dielectric layer 210 may be, for example, tetraethoxy decane (TEOS) cerium oxide, borophosphoquinone glass (BPSG), phosphoric bismuth glass (PSG), hydrogenated sesquioxide (HSQ), fluorocarbon glass (FSG). ), undoped bismuth glass (USG), tantalum nitride, bismuth oxynitride, low dielectric materials having a dielectric constant of less than 4, or combinations thereof. In an embodiment, the dielectric layer 210 can be, for example, a one-, two-, or multi-layer structure. For example, when the dielectric layer 210 is a two-layer structure, it can be formed simultaneously with the first dielectric layer 106 and the second dielectric layer 110 in the first region R1.

由於第二區R2(例如是主動元件區)可配置不同種類的電晶體,且其製造流程為所屬技術領域具有通常知識者所熟知,於此便不再詳述。以下將詳細說明圖1之第一區R1(例如是非主動元件區)的製造流程。Since the second region R2 (e.g., the active device region) can be configured with different kinds of transistors, and the manufacturing process thereof is well known to those skilled in the art, it will not be described in detail herein. The manufacturing flow of the first region R1 of FIG. 1 (for example, an inactive component region) will be described in detail below.

圖2A至圖2G是依照本發明第二實施例的半導體元件的製造流程的剖面示意圖。2A to 2G are schematic cross-sectional views showing a manufacturing process of a semiconductor device in accordance with a second embodiment of the present invention.

請參照圖2A,首先,於基底100中形成隔離結構102。接著,於基底100上形成多個第一導體結構104,其中隔離結構102位於第一導體結構104與基底100之間。基底100、隔離結構102以及第一導體結構104的材料已於上述段落說明過,於此便不再贅述。值得注意的是,本實施例可利用形成圖1之金氧半場效電晶體202的虛擬閘極(dummy gate)的步驟,同時形成第一導體結構104,藉此簡化製程步驟與成本。第一導體結構104的形成方法是先形成第一導體材料層(未繪示)於基底100上。接著,圖案化第一導體材料層,以同時形成第一區R1之第一導體結構104與第二區R2之虛擬閘極(未繪示)。Referring to FIG. 2A, first, an isolation structure 102 is formed in the substrate 100. Next, a plurality of first conductor structures 104 are formed on the substrate 100, wherein the isolation structures 102 are located between the first conductor structures 104 and the substrate 100. The materials of the substrate 100, the isolation structure 102, and the first conductor structure 104 have been described in the above paragraphs and will not be described again. It should be noted that this embodiment can utilize the step of forming a dummy gate of the MOS field-effect transistor 202 of FIG. 1 while forming the first conductor structure 104, thereby simplifying the process steps and costs. The first conductor structure 104 is formed by first forming a first conductive material layer (not shown) on the substrate 100. Next, the first conductive material layer is patterned to simultaneously form the first conductor structure 104 of the first region R1 and the dummy gate (not shown) of the second region R2.

之後,請參照圖2B,於第一導體結構104上形成第一介電層106。第一介電層106覆蓋第一導體結構104的表面,以電性隔離相互分隔的第一導體結構104。第一介電層106的材料可例如是四乙氧基矽烷(TEOS)氧化矽,其形成方法可例如是化學氣相沈積法。Thereafter, referring to FIG. 2B, a first dielectric layer 106 is formed on the first conductor structure 104. The first dielectric layer 106 covers the surface of the first conductor structure 104 to electrically isolate the first conductor structures 104 that are separated from each other. The material of the first dielectric layer 106 may be, for example, tetraethoxy decane (TEOS) ruthenium oxide, which may be formed, for example, by chemical vapor deposition.

接著,請參照圖2C,於第一介電層106上形成電阻材料層108。電阻材料層108的材料可例如是鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)、矽化鉻(CrSi)、鎳鉻合金(NiCr)或其組合,其形成方法可例如是物理氣相沈積法(可例如是濺鍍法)或化學氣相沈積法。Next, referring to FIG. 2C, a resistive material layer 108 is formed on the first dielectric layer 106. The material of the resistive material layer 108 may be, for example, titanium (Ti), titanium nitride (TiN), tantalum nitride (TaN), chromium telluride (CrSi), nickel-chromium alloy (NiCr), or a combination thereof, and the forming method thereof may be, for example, Physical vapor deposition (which can be, for example, sputtering) or chemical vapor deposition.

然後,請參照圖2D,圖案化電阻材料層108,以暴露部分第一介電層106的頂面,藉此形成電阻層108a。此圖案化步驟是用以定義薄膜電阻器的區域,其圖案化步驟可例如是微影製程與蝕刻製程。Then, referring to FIG. 2D, the resistive material layer 108 is patterned to expose a portion of the top surface of the first dielectric layer 106, thereby forming the resistive layer 108a. The patterning step is to define a region of the thin film resistor, and the patterning step can be, for example, a lithography process and an etch process.

請參照圖2E,於基底100上形成第二介電層110。第二介電層110覆蓋部分第一介電層106的頂面以及電阻層108a的表面。第二介電層110的材料可例如是硼磷矽玻璃(BPSG),其形成方法可例如是化學氣相沈積法或旋轉塗佈玻璃法(SOG)。Referring to FIG. 2E, a second dielectric layer 110 is formed on the substrate 100. The second dielectric layer 110 covers a portion of the top surface of the first dielectric layer 106 and the surface of the resistive layer 108a. The material of the second dielectric layer 110 may be, for example, borophosphon glass (BPSG), and the formation method thereof may be, for example, a chemical vapor deposition method or a spin-on-glass method (SOG).

之後,請參照圖2F,於第二介電層110、電阻層108b以及部分第一介電層106中形成多個接觸窗開口112a、112b。接觸窗開口112a、112b暴露第一導體結構104的頂面。在一實施例中,接觸窗開口112a、112b的形成方法包括非等向性蝕刻法,其可以是乾式蝕刻,例如是反應性離子蝕刻法(RIE)。Thereafter, referring to FIG. 2F, a plurality of contact opening 112a, 112b are formed in the second dielectric layer 110, the resistive layer 108b, and a portion of the first dielectric layer 106. Contact window openings 112a, 112b expose the top surface of first conductor structure 104. In one embodiment, the method of forming the contact opening 112a, 112b includes an anisotropic etch, which may be a dry etch, such as reactive ion etching (RIE).

請同時參照圖2F與圖2G,接觸窗開口112a、112b中形成接觸窗(或導電插塞)114a、114b。在一實施利中,接觸窗(或導電插塞)114a、114b包括以下步驟。於基底100上形成導電材料層(未繪示),導電材料層填入接觸窗開口112a、112b中。之後,進行平坦化製程,移除多餘的導電材料層,以暴露第二介電層110的頂面。在一實施例中,平坦化製程可例如是化學機械研磨(CMP)製程、回蝕刻(etch back)製程或其組合。在一實施例中,導電材料層的材料可例如是鎢、鈦、鉭、鋁、銅或其合金,其形成方法可例如是物理氣相沈積法或化學氣相沈積法。Referring to FIG. 2F and FIG. 2G simultaneously, contact windows (or conductive plugs) 114a, 114b are formed in the contact opening 112a, 112b. In an implementation, the contact window (or conductive plug) 114a, 114b includes the following steps. A layer of conductive material (not shown) is formed on the substrate 100, and a layer of conductive material is filled into the contact openings 112a, 112b. Thereafter, a planarization process is performed to remove excess conductive material layers to expose the top surface of the second dielectric layer 110. In an embodiment, the planarization process can be, for example, a chemical mechanical polishing (CMP) process, an etch back process, or a combination thereof. In an embodiment, the material of the conductive material layer may be, for example, tungsten, titanium, tantalum, aluminum, copper or an alloy thereof, and the forming method thereof may be, for example, physical vapor deposition or chemical vapor deposition.

之後,於接觸窗114a、114b上形成第二導體結構116a、116b。在一實施例中,接觸窗114a、114b的形成方法包括以下步驟。於基底100上形成第二導體材料層(未繪示)。然後,利用微影與蝕刻製程圖案化第二導體材料層。在一實施例中第二導體材料層的材料可例如是鋁、銅或其合金,其形成方法可例如是物理氣相沈積法或化學氣相沈積法。Thereafter, second conductor structures 116a, 116b are formed on the contact windows 114a, 114b. In an embodiment, the method of forming the contact windows 114a, 114b includes the following steps. A second conductor material layer (not shown) is formed on the substrate 100. The second layer of conductor material is then patterned using a lithography and etching process. In one embodiment, the material of the second conductor material layer may be, for example, aluminum, copper or an alloy thereof, and the formation method thereof may be, for example, physical vapor deposition or chemical vapor deposition.

值得注意的是,第二實施例之半導體元件20可利用第一導體結構104當作形成接觸窗開口112a、112b時的蝕刻停止層(如圖2F所示),因此,本發明可避免電阻層108a的厚度過薄,導致接觸窗開口無法精準停在電阻層108a上,進而可能損傷隔離結構102或基底100表面的問題;又或者是,避免後續形成的接觸窗114a、114b與電阻層108b之間的電性連接不佳的問題。因此,本發明之第一導體結構104可用以增加製程廣域度並提升半導體元件的良率。另一方面,本發明可藉由在第二區R2中形成金氧半場效電晶體的虛擬閘極的步驟,同時在第一區R1中形成第一導體結構104,藉此簡化製程步驟與成本。It should be noted that the semiconductor device 20 of the second embodiment can utilize the first conductor structure 104 as an etch stop layer when the contact openings 112a, 112b are formed (as shown in FIG. 2F). Therefore, the present invention can avoid the resistance layer. The thickness of 108a is too thin, resulting in the contact window opening not being accurately stopped on the resistance layer 108a, which may damage the surface of the isolation structure 102 or the substrate 100; or, avoiding the subsequent formation of the contact windows 114a, 114b and the resistance layer 108b. The problem of poor electrical connection between the two. Therefore, the first conductor structure 104 of the present invention can be used to increase the process wide range and improve the yield of semiconductor components. On the other hand, the present invention can form the first conductor structure 104 in the first region R1 by the step of forming the dummy gate of the gold oxide half field effect transistor in the second region R2, thereby simplifying the process steps and costs. .

根據本發明之第三實施例與第四實施例,其針對接觸窗的深度不同來做說明。圖3是依照本發明第三實施例的半導體元件的剖面示意圖。圖4是依照本發明第四實施例的半導體元件的剖面示意圖。According to the third embodiment and the fourth embodiment of the present invention, the depth of the contact window is different. Figure 3 is a cross-sectional view showing a semiconductor device in accordance with a third embodiment of the present invention. Figure 4 is a cross-sectional view showing a semiconductor device in accordance with a fourth embodiment of the present invention.

請先參照圖3,第三實施例之半導體元件30與第二實施例之半導體元件20基本上相似,兩者差異之處在於:第三實施例之半導體元件30的接觸窗214a、214b僅貫穿第二介電層110,並分別與電阻層208接觸。接觸窗214a、214b的形成方法是先形成多個接觸窗開口212a、212b於第二介電層110中,以暴露電阻層208的頂面。接著,形成導電材料層(未繪示)於基底100上,並填入接觸窗開口212a、212b中。之後,進行平坦化製程,移除多餘的導電材料層,以暴露第二介電層110的頂面。Referring first to FIG. 3, the semiconductor device 30 of the third embodiment is substantially similar to the semiconductor device 20 of the second embodiment, and the difference is that the contact windows 214a, 214b of the semiconductor device 30 of the third embodiment are only penetrated. The second dielectric layer 110 is in contact with the resistive layer 208, respectively. The contact windows 214a, 214b are formed by first forming a plurality of contact openings 212a, 212b in the second dielectric layer 110 to expose the top surface of the resistive layer 208. Next, a layer of conductive material (not shown) is formed on the substrate 100 and filled into the contact openings 212a, 212b. Thereafter, a planarization process is performed to remove excess conductive material layers to expose the top surface of the second dielectric layer 110.

請先參照圖4,第四實施例之半導體元件40與第二實施例之半導體元件20基本上相似,兩者差異之處在於:第四實施例之半導體元件40的接觸窗314a、314b僅貫穿第二介電層110與電阻層308,還有部分沿伸至第一介電層106中,並分別與電阻層308接觸。接觸窗314a、314b的形成方法是先形成多個接觸窗開口312a、312b於第二介電層110與電阻層308中,以暴露電阻層308的頂面。接著,形成導電材料層(未繪示)於基底100上,並填入接觸窗開口312a、312b中。之後,進行平坦化製程,移除多餘的導電材料層,以暴露第二介電層110的頂面。雖然圖4中所繪示的接觸窗314a、314b的底面略低於電阻層308的底面,但本發明不以此為限。在其他實施例中,接觸窗314a、314b的底面與電阻層308的底面可實質上共平面。Referring first to FIG. 4, the semiconductor device 40 of the fourth embodiment is substantially similar to the semiconductor device 20 of the second embodiment, and the difference is that the contact windows 314a, 314b of the semiconductor device 40 of the fourth embodiment are only penetrated. The second dielectric layer 110 and the resistive layer 308, and some portions extend into the first dielectric layer 106 and are in contact with the resistive layer 308, respectively. The contact windows 314a, 314b are formed by first forming a plurality of contact opening 312a, 312b in the second dielectric layer 110 and the resistive layer 308 to expose the top surface of the resistive layer 308. Next, a layer of conductive material (not shown) is formed on the substrate 100 and filled into the contact openings 312a, 312b. Thereafter, a planarization process is performed to remove excess conductive material layers to expose the top surface of the second dielectric layer 110. Although the bottom surfaces of the contact windows 314a, 314b shown in FIG. 4 are slightly lower than the bottom surface of the resistance layer 308, the invention is not limited thereto. In other embodiments, the bottom surfaces of the contact windows 314a, 314b and the bottom surface of the resistive layer 308 can be substantially coplanar.

綜上所述,在一實施例中,可利用第一導體結構當作形成接觸窗開口的蝕刻停止層,其可避免由於電阻層的厚度過薄,而可能損傷其下方的隔離結構或基底表面的問題。因此,本實施例之第一導體結構可用以增加製程廣域度並提升半導體元件的良率。另外,在一實施例可藉由在第二區中形成金氧半場效電晶體的虛擬閘極的步驟,同時在第一區中形成第一導體結構,藉此簡化製程步驟與成本。In summary, in an embodiment, the first conductor structure can be utilized as an etch stop layer for forming a contact opening, which can avoid damage to the isolation structure or substrate surface underneath due to the thickness of the resistance layer being too thin. The problem. Therefore, the first conductor structure of the present embodiment can be used to increase the process wide range and improve the yield of the semiconductor element. In addition, in one embodiment, the first conductor structure can be formed in the first region by the step of forming a dummy gate of the metal oxide half field effect transistor in the second region, thereby simplifying the process steps and costs.

此外,在一實施例之薄膜電阻器不僅可結合半導體製程的薄膜、微影以及蝕刻等方法來形成,還具有較低的電阻溫度係數(TCR)。換言之,在一實施例之薄膜電阻器可應用在較廣泛的溫度範圍(可例如介於-25℃至100℃之間或更廣的範圍)的電子產品,例如是電源供應、可充電電池、電子馬達驅動器、LED驅動器等。In addition, the thin film resistor of an embodiment can be formed not only in combination with a thin film, lithography, and etching of a semiconductor process, but also has a low temperature coefficient of resistance (TCR). In other words, the thin film resistor of an embodiment can be applied to an electronic product in a wide temperature range (which can be, for example, between -25 ° C and 100 ° C or more), such as a power supply, a rechargeable battery, Electronic motor driver, LED driver, etc.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10、20、30、40‧‧‧半導體元件
100‧‧‧基底
102‧‧‧隔離結構
104‧‧‧第一導體結構
106‧‧‧第一介電層
108‧‧‧電阻材料層
108a、108b、208、308‧‧‧電阻層
110‧‧‧第二介電層
112a、112b、212a、212b、312a、312b‧‧‧接觸窗開口
114a、114b、214a、214b、314a、314b‧‧‧接觸窗
116a、116b、216a、216b、316a、316b‧‧‧第二導體結構
202‧‧‧金氧半場效電晶體
204‧‧‧金屬閘極結構
204a‧‧‧閘介電層
204b‧‧‧閘導體層
206‧‧‧間隙壁
207‧‧‧源極/汲極區
210‧‧‧介電層
R1‧‧‧第一區
R2‧‧‧第二區
10, 20, 30, 40‧‧‧ semiconductor components
100‧‧‧Base
102‧‧‧Isolation structure
104‧‧‧First conductor structure
106‧‧‧First dielectric layer
108‧‧‧Resistive material layer
108a, 108b, 208, 308‧‧‧ resistance layer
110‧‧‧Second dielectric layer
112a, 112b, 212a, 212b, 312a, 312b‧‧‧ contact window opening
114a, 114b, 214a, 214b, 314a, 314b‧‧‧ contact windows
116a, 116b, 216a, 216b, 316a, 316b‧‧‧ second conductor structure
202‧‧‧Gold oxygen half-field effect transistor
204‧‧‧Metal gate structure
204a‧‧‧gate dielectric layer
204b‧‧‧ gate conductor layer
206‧‧‧ spacer
207‧‧‧Source/Bungee Area
210‧‧‧Dielectric layer
R1‧‧‧ first district
R2‧‧‧Second District

圖1是依照本發明第一實施例的半導體元件的剖面示意圖。 圖2A至圖2G是依照本發明第二實施例的半導體元件的製造流程的剖面示意圖。 圖3是依照本發明第三實施例的半導體元件的剖面示意圖。 圖4是依照本發明第四實施例的半導體元件的剖面示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a semiconductor device in accordance with a first embodiment of the present invention. 2A to 2G are schematic cross-sectional views showing a manufacturing process of a semiconductor device in accordance with a second embodiment of the present invention. Figure 3 is a cross-sectional view showing a semiconductor device in accordance with a third embodiment of the present invention. Figure 4 is a cross-sectional view showing a semiconductor device in accordance with a fourth embodiment of the present invention.

10‧‧‧半導體元件 10‧‧‧Semiconductor components

100‧‧‧基底 100‧‧‧Base

102‧‧‧隔離結構 102‧‧‧Isolation structure

104‧‧‧第一導體結構 104‧‧‧First conductor structure

106‧‧‧第一介電層 106‧‧‧First dielectric layer

108b‧‧‧電阻層 108b‧‧‧resistance layer

110‧‧‧第二介電層 110‧‧‧Second dielectric layer

114a、114b‧‧‧接觸窗 114a, 114b‧‧‧Contact window

116a、116b‧‧‧第二導體結構 116a, 116b‧‧‧second conductor structure

202‧‧‧金氧半場效電晶體 202‧‧‧Gold oxygen half-field effect transistor

204‧‧‧金屬閘極結構 204‧‧‧Metal gate structure

204a‧‧‧閘介電層 204a‧‧‧gate dielectric layer

204b‧‧‧閘導體層 204b‧‧‧ gate conductor layer

206‧‧‧間隙壁 206‧‧‧ spacer

207‧‧‧源極/汲極區 207‧‧‧Source/Bungee Area

210‧‧‧介電層 210‧‧‧Dielectric layer

R1‧‧‧第一區 R1‧‧‧ first district

R2‧‧‧第二區 R2‧‧‧Second District

Claims (12)

一種半導體元件,包括: 一基底,具有一第一區與一第二區,該第二區配置有至少一金氧半場效電晶體,該第一區包括: 多個第一導體結構,位於該第一區的該基底上; 一第一介電層,覆蓋該些第一導體結構,以電性隔離該些第一導體結構; 一電阻層,位於該第一介電層上; 一第二介電層,位於該電阻層上;以及 多個接觸窗,至少貫穿該第二介電層,並分別與該電阻層電性連接。A semiconductor device comprising: a substrate having a first region and a second region, the second region being configured with at least one MOS field effect transistor, the first region comprising: a plurality of first conductor structures located at the a first dielectric layer covering the first conductor structures to electrically isolate the first conductor structures; a resistive layer on the first dielectric layer; a second a dielectric layer on the resistive layer; and a plurality of contact windows extending through the second dielectric layer and electrically connected to the resistive layer. 如申請專利範圍第1項所述的半導體元件,其中該些接觸窗更貫穿該電阻層。The semiconductor device of claim 1, wherein the contact windows further extend through the resistive layer. 如申請專利範圍第2項所述的半導體元件,其中該些接觸窗更貫穿部分該第一介電層,以分別與該些第一導體結構電性連接。The semiconductor device of claim 2, wherein the contact windows further extend through the portion of the first dielectric layer to be electrically connected to the first conductor structures, respectively. 如申請專利範圍第1項所述的半導體元件,更包括多個第二導體結構位於該第二介電層上,以分別與該些接觸窗電性連接。The semiconductor device of claim 1, further comprising a plurality of second conductor structures on the second dielectric layer for electrically connecting to the contact windows. 如申請專利範圍第1項所述的半導體元件,其中該電阻層為一薄膜電阻層,該薄膜電阻層的材料包括鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)、矽化鉻(CrSi)、鎳鉻合金(NiCr)或其組合。The semiconductor device according to claim 1, wherein the resistive layer is a thin film resistive layer, and the material of the thin film resistive layer comprises titanium (Ti), titanium nitride (TiN), tantalum nitride (TaN), and bismuth. Chromium (CrSi), nickel-chromium alloy (NiCr) or a combination thereof. 如申請專利範圍第1項所述的半導體元件,其中該第一區為非主動元件區,該第二區為主動元件區。The semiconductor device of claim 1, wherein the first region is an inactive device region and the second region is an active device region. 如申請專利範圍第1項所述的半導體元件,其中該些第一導體結構與該金氧半場效電晶體之一閘極結構為同一水平高度。The semiconductor device of claim 1, wherein the first conductor structures are at the same level as one of the gate structures of the MOS field-effect transistor. 如申請專利範圍第1項所述的半導體元件,其中該些第一導體結構的材料與該金氧半場效電晶體之一閘極結構的材料相同。The semiconductor device of claim 1, wherein the material of the first conductor structure is the same as the material of one of the gate structures of the MOS field-effect transistor. 一種薄膜電阻器,包括: 至少兩個第一導體結構,位於一基底上,該些第一導體結構具有一第一電阻值; 一介電層,覆蓋該些第一導體結構,以電性隔離該些第一導體結構; 一電阻層,嵌入該介電層中,且未與該些第一導體結構接觸,其中該電阻層具有一第二電阻值,且該第二電阻值與該第一電阻值不同;以及 至少兩個接觸窗,貫穿部分該介電層與該電阻層,以分別與該些第一導體結構接觸,其中該些接觸窗之一藉由該電阻層與該些接觸窗之另一電性連接。A thin film resistor comprising: at least two first conductor structures on a substrate, the first conductor structures having a first resistance value; a dielectric layer covering the first conductor structures to electrically isolate The first conductor structure; a resistive layer embedded in the dielectric layer and not in contact with the first conductor structures, wherein the resistive layer has a second resistance value, and the second resistance value and the first The resistance values are different; and at least two contact windows penetrate the portion of the dielectric layer and the resistance layer to respectively contact the first conductor structures, wherein one of the contact windows and the contact windows Another electrical connection. 一種半導體元件的製造方法,包括: 提供具有一第一區與一第二區的一基底; 形成多個第一導體結構於該第一區的該基底上; 形成一第一介電層於該些第一導體結構上,以電性隔離該些第一導體結構; 形成一電阻層於該第一介電層上; 形成一第二介電層於該電阻層上;以及 形成至少貫穿該第二介電層的多個接觸窗,其中該些接觸窗分別與該電阻層電性連接。A method of fabricating a semiconductor device, comprising: providing a substrate having a first region and a second region; forming a plurality of first conductor structures on the substrate of the first region; forming a first dielectric layer thereon The first conductor structure electrically isolates the first conductor structures; forms a resistive layer on the first dielectric layer; forms a second dielectric layer on the resistive layer; and forms at least a plurality of contact windows of the two dielectric layers, wherein the contact windows are electrically connected to the resistance layer respectively. 如申請專利範圍第10項所述的半導體元件的製造方法,其中形成該些接觸窗的步驟包括: 形成多個接觸窗開口於該第二介電層中,以暴露該電阻層的頂面;以及 分別填入多個導電插塞於該些接觸窗開口中,以形成貫穿該第二介電層的該些接觸窗。The method of manufacturing the semiconductor device of claim 10, wherein the forming the contact windows comprises: forming a plurality of contact openings in the second dielectric layer to expose a top surface of the resistive layer; And filling a plurality of conductive plugs into the contact window openings respectively to form the contact windows penetrating the second dielectric layer. 如申請專利範圍第10項所述的半導體元件的製造方法,更包括形成一金氧半場效電晶體於該第二區上,其中該金氧半場效電晶體之一閘極結構與該些第一導體結構為同時形成。The method for fabricating a semiconductor device according to claim 10, further comprising forming a MOS field effect transistor on the second region, wherein the gate structure of the MOS field effect transistor and the first A conductor structure is formed simultaneously.
TW105101490A 2016-01-19 2016-01-19 Thin film resistor, semiconductor device and method of fabricating the same TWI606572B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105101490A TWI606572B (en) 2016-01-19 2016-01-19 Thin film resistor, semiconductor device and method of fabricating the same
CN201610394947.4A CN106981455A (en) 2016-01-19 2016-06-06 Thin film resistor, semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105101490A TWI606572B (en) 2016-01-19 2016-01-19 Thin film resistor, semiconductor device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201727869A true TW201727869A (en) 2017-08-01
TWI606572B TWI606572B (en) 2017-11-21

Family

ID=59340780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105101490A TWI606572B (en) 2016-01-19 2016-01-19 Thin film resistor, semiconductor device and method of fabricating the same

Country Status (2)

Country Link
CN (1) CN106981455A (en)
TW (1) TWI606572B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364318B (en) * 2018-03-26 2021-08-17 国巨电子(中国)有限公司 High-frequency resistor and method for manufacturing high-frequency resistor
KR102460719B1 (en) * 2018-07-20 2022-10-31 삼성전자주식회사 Semiconductor device and method of fabricating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860181B2 (en) * 2012-03-07 2014-10-14 United Microelectronics Corp. Thin film resistor structure
US20130277754A1 (en) * 2012-04-20 2013-10-24 Chia-Wen Liang Semiconductor Integrated Structure

Also Published As

Publication number Publication date
CN106981455A (en) 2017-07-25
TWI606572B (en) 2017-11-21

Similar Documents

Publication Publication Date Title
US9111768B2 (en) Semiconductor devices, methods of manufacture thereof, and methods of forming resistors
US8791545B2 (en) Interconnect structures and design structures for a radiofrequency integrated circuit
US8680618B2 (en) Structure and method for integrating front end SiCr resistors in HiK metal gate technologies
US8633520B2 (en) Semiconductor device
TWI639218B (en) Semiconductor device and method for fabricating the same
US8377790B2 (en) Method of fabricating an embedded polysilicon resistor and an embedded eFuse isolated from a substrate
KR20070075018A (en) Method for fabricating semiconductor device
JP2002124639A (en) Semiconductor device and its manufacturing method
JP5388768B2 (en) Semiconductor device with local interconnect
KR101432882B1 (en) Semiconductor test structures
TW200849479A (en) Semiconductor device and method of manufacturing the same
KR100302189B1 (en) semiconductor device having SOI structure and method for fabricating the same
US10840181B2 (en) Semiconductor device and a method for fabricating the same
TWI539531B (en) Semiconductor device and method of manufacturing the same
TWI606572B (en) Thin film resistor, semiconductor device and method of fabricating the same
JP2008205032A (en) Semiconductor device
TWI484592B (en) Metal gate transistor and resistor and method for fabricating the same
TW202147461A (en) Semiconducting metal oxide transistors having a patterned gate and methods for forming the same
TWI512985B (en) Field transistor structure manufactured using gate last process
JP5666354B2 (en) Semiconductor device and manufacturing method thereof
TWI812241B (en) Method of manufacturing semiconductor devices and semiconductor devices
CN109216468B (en) Resistor device and method of manufacturing the same
TWI434424B (en) Bipolar junction transistor integrated with pip capacitor and method for making the same
US20230352399A1 (en) Integrated circuit devices including a via and methods of forming the same
KR101302106B1 (en) Trench structure mim capacitor and method for fabricating the mim capacitor