TW201724731A - Real-time fault detector of photovoltaic module array and method thereof - Google Patents
Real-time fault detector of photovoltaic module array and method thereof Download PDFInfo
- Publication number
- TW201724731A TW201724731A TW104142728A TW104142728A TW201724731A TW 201724731 A TW201724731 A TW 201724731A TW 104142728 A TW104142728 A TW 104142728A TW 104142728 A TW104142728 A TW 104142728A TW 201724731 A TW201724731 A TW 201724731A
- Authority
- TW
- Taiwan
- Prior art keywords
- solar photovoltaic
- photovoltaic module
- fault
- shading
- module array
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
本發明是有關於一種太陽光電模組陣列之最佳化線上即時故障檢測器及其故障檢測方法,且特別是有關於一種可精確判斷故障及遮蔭太陽光電模組位置之最佳化線上即時故障檢測器及其故障檢測方法。 The invention relates to an optimized on-line fault detector for a solar photovoltaic module array and a fault detection method thereof, and particularly relates to an optimized online instant that can accurately determine the fault and the position of the shading solar photovoltaic module. Fault detector and its fault detection method.
通常為了提高太陽光電模組陣列之發電效率,系統必需設置於空曠無遮蔭之場所。然而,遮蔭情況在所難免,且系統長時間置於戶外,亦可能受自然環境之影響,如颱風、雷擊等,而導致太陽光電模組系統劣化而故障,且一旦發生遮蔭或故障之情形,不僅使得系統之輸出功率大幅下降,且需使用大量人工排除的方式來獲取遮蔭或故障的太陽光電模組區域及位置。 Usually, in order to improve the power generation efficiency of the solar photovoltaic module array, the system must be placed in an open and unshaded place. However, the shading situation is inevitable, and the system is placed outdoors for a long time, and may also be affected by the natural environment, such as typhoons, lightning strikes, etc., causing the solar photovoltaic module system to deteriorate and malfunction, and once the shading or malfunction occurs. In this case, not only the output power of the system is greatly reduced, but also a large number of manual elimination methods are needed to obtain the shaded or faulty solar photovoltaic module area and position.
目前已有許多專家學者從事太陽光電模組陣列之故障診斷研究,而太陽光電模組陣列之輸出功率深受太陽日照強度及模組溫度之影響,因此有許多專家學者從事 太陽光電模組陣列之故障診斷時,仍僅以模擬之太陽光電模組陣列的發電資料方式進行。 At present, many experts and scholars have been engaged in the fault diagnosis research of solar photovoltaic module arrays, and the output power of solar photovoltaic module arrays is deeply affected by solar sunlight intensity and module temperature, so many experts and scholars are engaged. When the fault diagnosis of the solar photovoltaic module array is still performed, only the power generation data of the simulated solar photovoltaic module array is used.
然而模擬太陽光電模組陣列故障或遮蔭的軟體必須考慮眾多參數並建構複雜的數學模型,藉此接近實際太陽光電模組陣列,其模擬方法之數據量測與計算不僅複雜,實驗人員亦需具備相當程度之專業知識。但實際上太陽光電模組陣列發生故障時,其等效電路中之參數將會隨之改變,所以當太陽光電模組陣列發生故障時,其改變的參數將難以推算,使得其故障輸出特性不夠準確易造成判斷錯誤。 However, software for simulating solar photovoltaic module array failure or shading must consider many parameters and construct complex mathematical models, which is close to the actual solar photovoltaic module array. The data measurement and calculation of the simulation method is not only complicated, but also the experimental personnel need Have a considerable degree of expertise. However, when the solar photovoltaic module array fails, the parameters in the equivalent circuit will change accordingly. Therefore, when the solar photovoltaic module array fails, its changed parameters will be difficult to calculate, making its fault output characteristics insufficient. Accurate and easy to cause judgment errors.
而到目前為止鮮少有專家提出有關太陽光電模組陣列故障診斷之研究,僅有瑞士、德國及荷蘭已執行PVSAT(Photovoltaic Satellite)計畫多年,此計畫之架構係利用氣象衛星所傳遞之氣象資料與地面氣象站所量測之資料進行交叉比對以當作模擬太陽光電發電系統之大氣參數,再使用電腦模擬太陽光電發電系統發電數據並與其實測之發電數據作比較,用以判斷系統是否發生模組遮蔭或故障。然而,PVSAT計畫之方法需使用氣象衛星,故建置成本極高,且PVSAT計畫之方法僅可對於市電併網型(grid-connected)之太陽光電發電系統進行診斷,若將其應用於獨立型太陽光電發電系統將更耗費成本。 So far, few experts have proposed research on fault diagnosis of solar photovoltaic module arrays. Only Switzerland, Germany and the Netherlands have implemented PVSAT (Photovoltaic Satellite) projects for many years. The architecture of this project is transmitted by meteorological satellites. The meteorological data is cross-matched with the measured data of the ground meteorological station to be used as the atmospheric parameters of the simulated solar photovoltaic power generation system, and then the computer simulates the solar photovoltaic power generation system power generation data and compares it with the measured power generation data to determine the system. Whether module shading or malfunction occurs. However, the PVSAT project requires the use of meteorological satellites, so the cost of construction is extremely high, and the PVSAT program can only be used for the diagnosis of grid-connected solar photovoltaic systems. A stand-alone solar photovoltaic system will be more costly.
以上模擬與發電數據進行比較之方法也僅是判斷太陽光電模組陣列有無故障或遮蔭。因此,有專家學者應用微電腦技術量測太陽光電模組陣列各支路之電流與電 壓作為太陽光電系統故障診斷之特徵,再比較每一支路之電壓及電流,即可診斷出太陽光電模組陣列發生故障之區域。但此技術在太陽光電模組陣列中之每一串列故障情形皆相同時,則其所量測之電壓及電流亦會相同,故無法正確判斷出其故障之區域及模組位置。 The method of comparing the above simulation with the power generation data is only to judge whether the solar photovoltaic module array has fault or shade. Therefore, some experts and scholars use microcomputer technology to measure the current and electricity of each branch of the solar photovoltaic module array. As a feature of solar photovoltaic system fault diagnosis, and comparing the voltage and current of each branch, it can diagnose the fault area of the solar photovoltaic module array. However, when the fault condition of each series in the solar photovoltaic module array is the same, the measured voltage and current will be the same, so the fault area and the module position cannot be correctly determined.
例如,專利號CN202171616U所揭露的光伏陣列匯流測控裝置,其內文揭露在電流檢測模塊每一支路均設置一個電流感測器,能同時針對每一支路的太陽光電模組串列進行電流量測。此專利僅能判斷出是哪一支路的太陽光電模組串列發生故障,顯然無法精確判斷其故障位置。 For example, the photovoltaic array confluence measuring and controlling device disclosed in Patent No. CN202171616U discloses that a current sensor is disposed in each branch of the current detecting module, and current can be simultaneously applied to the tandem solar module of each branch. Measure. This patent can only determine which branch of the solar photovoltaic module has failed, and it is obviously impossible to accurately determine the fault location.
因此,依現有技術而言,其所採用之太陽光電模組陣列故障診斷方法,均無法準確診斷出故障模組所在位置,故其診斷結果僅能提供故障訊息。若要排除故障處,仍須藉由人力檢測才能找出故障點位置。 Therefore, according to the prior art, the solar photovoltaic module array fault diagnosis method used by the solar photovoltaic module array cannot accurately diagnose the location of the faulty module, so the diagnosis result can only provide the fault message. To troubleshoot the problem, the manpower detection is still necessary to find the location of the fault point.
本發明之目的是在於提供一種太陽光電模組陣列之最佳化線上即時故障檢測器及其故障檢測方法,其可精確地判斷出故障模組位置。 The object of the present invention is to provide an instant fault detector for fault optimization on a solar photovoltaic module array and a fault detection method thereof, which can accurately determine the location of the faulty module.
根據本發明一實施方式是在提供一種太陽光電模組陣列之最佳化線上即時故障檢測器,其包含一太陽光電模組陣列、複數連接開關、複數電流感測器、一升壓型轉換器、一最大功率追蹤器、一最佳化配置控制器以及一 模組遮蔭及故障位置診斷器。太陽光電模組陣列包含複數太陽光電模組串列及複數太陽光電模組並列,且各太陽光電模組串列及各太陽光電模組並列分別包含複數太陽光電模組,且各太陽光電模組並列依照太陽光電模組陣列中由上而下之順序進行編號。連接開關連接各太陽光電模組串列,且連接開關依照太陽光電模組陣列中由上而下且由左而右之順序進行編號。各電流感測器分別連接於各太陽光電模組串列,以感測太陽光電模組串列而產生複數太陽光電模組串列電流。升壓型轉換器電性連接太陽光電模組陣列。最大功率追蹤器電性連接升壓型轉換器及太陽光電模組陣列,最大功率追蹤器控制升壓型轉換器並追蹤太陽光電模組陣列之一最大功率點。最佳化配置控制器電性連接太陽光電模組陣列、最大功率追蹤器及各連接開關,最佳化配置控制器檢測太陽光電模組陣列之一太陽光電模組陣列輸出電壓及一太陽光電模組陣列輸出電流以計算一輸出功率,且最佳化配置控制器比對輸出功率及最大功率點並輸出一開關控制訊號對應控制連接開關進行排列組合,其中開關控制訊號包含多數閉合開關編號組,且各閉合開關編號組包含複數閉合開關編號。模組遮蔭及故障位置診斷器電性連接各電流感測器及最佳化配置控制器,模組遮蔭及故障位置診斷器接收太陽光電模組串列電流及開關控制訊號,並以一故障位置判斷關係式n+1=m找出故障或遮蔭之一太陽光電模組,其中n代表其中一閉合開關編號組內 一最小閉合開關編號,m代表包含故障或遮蔭之一太陽光電模組之一太陽光電模組並列編號。 An embodiment of the present invention provides an instant fault detector for optimizing an array of solar photovoltaic modules, comprising a solar photovoltaic module array, a plurality of connection switches, a complex current sensor, and a boost converter. , a maximum power tracker, an optimized configuration controller, and a Module shading and fault location diagnostics. The solar photovoltaic module array comprises a plurality of solar photovoltaic module series and a plurality of solar photovoltaic modules juxtaposed, and each solar photovoltaic module series and each solar photovoltaic module juxtaposed respectively comprise a plurality of solar photovoltaic modules, and each solar photovoltaic module The parallel numbering is performed in the order from top to bottom in the solar photovoltaic module array. The connection switch is connected to each series of solar photovoltaic modules, and the connection switches are numbered according to the top-down and left-to-right order of the solar photovoltaic module array. Each current sensor is connected to each of the solar photovoltaic module series to sense a series of solar photovoltaic modules to generate a plurality of solar photovoltaic module serial currents. The boost converter is electrically connected to the solar photovoltaic module array. The maximum power tracker is electrically connected to the boost converter and the solar photovoltaic module array, and the maximum power tracker controls the boost converter and tracks the maximum power point of one of the solar photovoltaic module arrays. The optimal configuration controller electrically connects the solar photovoltaic module array, the maximum power tracker and the connection switches, and optimizes the configuration controller to detect the output voltage of the solar photovoltaic module array and the solar photovoltaic module. The array output current is calculated to calculate an output power, and the optimized configuration controller compares the output power and the maximum power point and outputs a switch control signal corresponding to the control connection switch, wherein the switch control signal includes a plurality of closed switch number groups. And each closed switch number group contains a plurality of closed switch numbers. The module shading and fault location diagnostic device is electrically connected to each current sensor and the optimal configuration controller, and the module shading and fault location diagnostic device receives the tandem current and switch control signals of the solar photovoltaic module, and The fault position judgment relationship n+1=m finds one of the faulty or shaded solar photovoltaic modules, where n represents one of the closed switch number groups A minimum closed switch number, m represents the parallel number of one of the solar photovoltaic modules containing one of the solar modules of the fault or shade.
根據前述太陽光電模組陣列之最佳化線上即時故障檢測器之一實施例,其中各太陽光電模組並列依照太陽光電模組陣列中由上而下之順序進行編號使太陽光電模組陣列依序包含一第一太陽光電模組並列及一第二太陽光電模組並列。且若n=1時,m=2,代表第一太陽光電模組並列或第二太陽光電模組並列可能產生故障或遮蔭,則模組遮蔭及故障位置診斷器額外判斷閉合開關編號組內除最小閉合開關編號外剩餘閉合開關編號,以判斷第一太陽光電模組並列或第二太陽光電模組並列產生故障或遮蔭。更詳細地說,當太陽光電模組串列及電流感測器之數量分別為三,各太陽光電模組串列包含四太陽光電模組,且連接開關之數量為十且其編號為S0到S9,使太陽光電模組陣列呈四串三並結構。則若第一太陽光電模組並列產生故障或遮蔭,則閉合開關編號組內之閉合開關編號可為(S1,S6)、(S1,S2,S6)、(S1,S3,S6)、(S1,S2,S3,S6)、(S1,S6,S7)及(S1,S2,S7),若第二太陽光電模組並列產生故障或遮蔭,閉合開關編號組內之閉合開關編號可為(S1,S2,S6,S7)、(S1,S2,S3,S6,S7)、(S1,S2,S6,S7,S8)及(S1,S2,S3,S6,S7,S8),故當n=1,m=2時,代表第一太陽光電模組並列或第二太陽光電模組並列可能產生故障或遮蔭,則模組遮蔭及故障位置診斷器額外判斷閉合開關編號組內之閉合開關編號是否同時包含S2及S7,則可判斷出係 屬第一太陽光電模組並列或第二太陽光電模組並列產生故障或遮蔭。 According to an embodiment of the above-mentioned instant fault detector for optimizing the solar photovoltaic module array, wherein the solar photovoltaic modules are juxtaposed in the order of the top-down order of the solar photovoltaic module array, so that the solar photovoltaic module array is The sequence includes a first solar photovoltaic module juxtaposed and a second solar photovoltaic module juxtaposed. And if n=1, m=2, which means that the juxtaposition of the first solar photovoltaic module or the second solar photovoltaic module may cause fault or shading, the module shading and fault location diagnostic device additionally judges the closed switch number group. The remaining closed switch number is deleted except for the minimum closed switch number to determine whether the first solar photovoltaic module is juxtaposed or the second solar photovoltaic module is juxtaposed to generate fault or shade. In more detail, when the number of solar photovoltaic module series and current sensor is three, each solar photovoltaic module series includes four solar photovoltaic modules, and the number of connection switches is ten and its number is S 0 to S 9, showed that the photovoltaic module array structure and three four strings. If the first solar photovoltaic module is faulty or shaded in parallel, the closed switch numbers in the closed switch number group may be (S 1 , S 6 ), (S 1 , S 2 , S 6 ), (S 1 , S 3 , S 6 ), (S 1 , S 2 , S 3 , S 6 ), (S 1 , S 6 , S 7 ) and (S 1 , S 2 , S 7 ), if the second solar photovoltaic module The faults or shades are generated in parallel, and the closed switch numbers in the closed switch number group can be (S 1 , S 2 , S 6 , S 7 ), (S 1 , S 2 , S 3 , S 6 , S 7 ), ( S 1 , S 2 , S 6 , S 7 , S 8 ) and (S 1 , S 2 , S 3 , S 6 , S 7 , S 8 ), so when n=1, m=2, it represents the first If the solar photovoltaic module is juxtaposed or the second solar photovoltaic module is juxtaposed to cause malfunction or shading, the module shading and fault location diagnostic device additionally determines whether the closed switch number in the closed switch number group includes both S 2 and S 7 . Then, it can be determined that the first solar photovoltaic module is juxtaposed or the second solar photovoltaic module is juxtaposed to generate fault or shade.
根據前述太陽光電模組陣列之最佳化線上即時故障檢測器之另一實施例,其中升壓型轉換器包含一輸入電容、一電感、一電晶體、一二極體、一輸出電容、一電壓回授電路以及一電晶體驅動電路。輸入電容具有一第一端及一第二端,第一端及第二端電性連接於太陽光電模組陣列。電感具有一第三端及一第四端,第三端電性連接輸入電容的第一端。電晶體具有一驅動端、一第五端及一第六端,第五端電性連接電感的第四端,第六端電性連接輸入電容的第二端。二極體具有一第七端及一第八端,第七端電性連接電晶體的第五端及電感的第四端。輸出電容具有一第九端及一第十端,第九端電性連接二極體之第八端,第十端電性連接於電晶體之第六端及輸入電容之第二端。電壓回授電路具有一回授端、一第十一端及一第十二端,回授端電性連接最大功率追蹤器、最佳化配置控制器以及模組遮蔭及故障位置診斷控制器,第十一端連接輸入電容的第一端,第十二端連接輸入電容的第二端。電晶體驅動電路電性連接電晶體之驅動端及最大功率追蹤器。太陽光電模組陣列之最佳化線上即時故障檢測器更可包含一顯示器、一變流器及一負載端,顯示器電性連接模組遮蔭及故障位置診斷器以顯示太陽光電模組陣列遮蔭及故障情形,變流器電性連接升壓型轉換器,負載電性連接變流器。電流感測器可為霍爾電流感測器。 According to another embodiment of the optimized on-line fault detector of the solar photovoltaic module array, the boost converter includes an input capacitor, an inductor, a transistor, a diode, an output capacitor, and a capacitor. A voltage feedback circuit and a transistor drive circuit. The input capacitor has a first end and a second end, and the first end and the second end are electrically connected to the solar photovoltaic module array. The inductor has a third end and a fourth end, and the third end is electrically connected to the first end of the input capacitor. The transistor has a driving end, a fifth end and a sixth end. The fifth end is electrically connected to the fourth end of the inductor, and the sixth end is electrically connected to the second end of the input capacitor. The diode has a seventh end and an eighth end, and the seventh end is electrically connected to the fifth end of the transistor and the fourth end of the inductor. The output capacitor has a ninth end and a tenth end. The ninth end is electrically connected to the eighth end of the diode, and the tenth end is electrically connected to the sixth end of the transistor and the second end of the input capacitor. The voltage feedback circuit has a feedback end, a tenth end and a twelfth end, and the feedback end is electrically connected to the maximum power tracker, the optimized configuration controller, and the module shading and fault location diagnostic controller. The eleventh end is connected to the first end of the input capacitor, and the twelfth end is connected to the second end of the input capacitor. The transistor driving circuit is electrically connected to the driving end of the transistor and the maximum power tracker. The optimized on-line fault detector of the solar photovoltaic module array may further comprise a display, a converter and a load end, and the display is electrically connected to the module shading and fault location diagnostic device to display the solar photovoltaic module array. In the case of shadow and fault, the converter is electrically connected to the boost converter, and the load is electrically connected to the converter. The current sensor can be a Hall current sensor.
根據本發明另一實施方式是在提供一種故障檢測方法,其係應用於如前述之太陽光電模組陣列之最佳化線上即時故障檢測器,故障檢測方法之步驟包含一電流感測步驟、一故障檢測步驟、一最大功率追蹤步驟、一最佳化配置步驟以及一遮蔭及故障位置診斷步驟。電流感測步驟係感測太陽光電模組串列電流。故障檢測步驟係比對太陽光電模組串列電流以判斷太陽光電模組陣列是否發生遮蔭及故障。最大功率追蹤步驟係根據粒子群演算法計算太陽光電模組陣列之最大功率點。最佳化配置步驟係比較輸出功率及最大功率點以輸出開關控制訊號而開關連接開關進行排列組合,使太陽光電模組陣列以連接開關之開啟或關閉連接成所演算出之一最佳化連接架構。遮蔭及故障位置診斷步驟係以故障位置判斷關係式n+1=m從太陽光電模組串列電流及開關控制訊號找出故障或遮蔭之太陽光電模組。 Another embodiment of the present invention provides a fault detection method for an instant fault detector on an optimized line of a solar photovoltaic module array as described above. The step of the fault detection method includes a current sensing step, A fault detection step, a maximum power tracking step, an optimized configuration step, and a shading and fault location diagnostic step. The current sensing step senses the tandem current of the solar photovoltaic module. The fault detection step compares the tandem current of the solar photovoltaic module to determine whether the solar photovoltaic module array is shaded or faulty. The maximum power tracking step calculates the maximum power point of the solar photovoltaic module array based on the particle swarm algorithm. The optimization configuration step compares the output power and the maximum power point to output the switch control signal and the switch connection switch performs the arrangement and combination, so that the solar photovoltaic module array is connected or connected to the connected switch to optimize the connection. Architecture. The shading and fault location diagnosis steps are to determine the faulty or shading solar photovoltaic module from the solar photovoltaic module serial current and the switch control signal by the fault location judgment relationship n+1=m.
根據前述故障檢測器之另一實施例,其中遮蔭及故障位置診斷步驟中,各太陽光電模組並列依照太陽光電模組陣列中由上而下之順序進行編號使太陽模組陣列依序包含一第一太陽光電模組並列及一第二太陽光電模組並列。且若n=1時,m=2,代表第一太陽光電模組並列或第二太陽光電模組並列可能產生故障或遮蔭,則模組遮蔭及故障位置診斷器額外判斷閉合開關編號組內除最小閉合開關編號外剩餘閉合開關編號,以判斷第一太陽光電模組並列或第二太陽光電模組並列產生故障或遮蔭。 According to another embodiment of the foregoing fault detector, in the step of diagnosing the shading and fault location, the solar photovoltaic modules are juxtaposed in the order of the top-down order of the solar photovoltaic module array, so that the solar module array is sequentially included. A first solar photovoltaic module is juxtaposed and a second solar photovoltaic module is juxtaposed. And if n=1, m=2, which means that the juxtaposition of the first solar photovoltaic module or the second solar photovoltaic module may cause fault or shading, the module shading and fault location diagnostic device additionally judges the closed switch number group. The remaining closed switch number is deleted except for the minimum closed switch number to determine whether the first solar photovoltaic module is juxtaposed or the second solar photovoltaic module is juxtaposed to generate fault or shade.
因此,本發明所提出用於太陽光電模組陣列之最佳化線上即時故障檢測器及其故障檢測方法,在每一串太陽光電模組串列中利用連接開關作為並聯路徑,最佳化功能僅需一組最大功率追蹤器及一最佳配置控制器,且故障位置判斷功能則利用一模組遮蔭及故障位置診斷器來達成。當太陽光電模組陣列受到局部遮蔭或發生故障時,可透過粒子群演算法控制連接開關,藉此改變太陽光電模組陣列之連接架構,以工作在最大功率點下提升發電量。然後,再依據太陽光模組陣列間之連接開關的狀態以及各太陽光電模組串列電流,來判斷出故障太陽光電模組的位置,並輸出至顯示器將其加以顯示。 Therefore, the present invention proposes an optimized on-line fault detector for a solar photovoltaic module array and a fault detection method thereof, and uses a connection switch as a parallel path in each string of solar photovoltaic modules, and optimizes functions. Only one set of maximum power tracker and one optimal configuration controller is required, and the fault location determination function is achieved by using a module shading and fault location diagnostics. When the solar photovoltaic module array is partially shaded or fails, the particle cluster algorithm can be used to control the connection switch, thereby changing the connection structure of the solar photovoltaic module array to work to increase the power generation at the maximum power point. Then, according to the state of the connection switch between the array of solar modules and the serial current of each solar photovoltaic module, the position of the faulty solar photovoltaic module is determined and output to the display to display it.
100‧‧‧太陽光電模組陣列 100‧‧‧Solar Photovoltaic Module Array
110‧‧‧太陽光電模組串列 110‧‧‧Solar Photovoltaic Modules
120、130‧‧‧太陽光電模組並列 120, 130‧‧‧ solar photovoltaic modules juxtaposed
200‧‧‧升壓型轉換器 200‧‧‧Boost converter
300‧‧‧最大功率追蹤器 300‧‧‧Max Power Tracker
400‧‧‧最佳化配置控制器 400‧‧‧Optimized configuration controller
500‧‧‧模組遮蔭及故障位置診斷器 500‧‧‧Modular Shading and Fault Location Diagnostics
600‧‧‧顯示器 600‧‧‧ display
700‧‧‧變流器 700‧‧‧Converter
800‧‧‧負載 800‧‧‧load
910‧‧‧電流感測步驟 910‧‧‧ Current sensing steps
920‧‧‧故障檢測步驟 920‧‧‧Fault detection steps
930‧‧‧最大功率追蹤步驟 930‧‧‧Maximum power tracking steps
940‧‧‧最佳化配置步驟 940‧‧‧Optimization configuration steps
950‧‧‧遮蔭及故障位置診斷步驟 950‧‧‧ Shade and fault location diagnostic steps
H0~H2‧‧‧電流感測器 H 0 ~ H 2 ‧‧‧ current sensor
S0~S9‧‧‧連接開關 S 0 ~S 9 ‧‧‧Connecting switch
L‧‧‧電感 L‧‧‧Inductance
Cin‧‧‧輸入電容 Cin‧‧‧ input capacitor
D‧‧‧二極體 D‧‧‧ diode
M‧‧‧電晶體 M‧‧‧O crystal
FC‧‧‧電壓回授電路 F C ‧‧‧voltage feedback circuit
Cout‧‧‧輸出電容 Cout‧‧‧ output capacitor
VPV‧‧‧太陽光電模組陣列 輸出電壓 V PV ‧‧‧Solar Photovoltaic Module Array Output Voltage
DC‧‧‧電晶體驅動電路 D C ‧‧‧Cell crystal drive circuit
IPV‧‧‧太陽光電模組陣列輸出電流 I PV ‧‧‧Solar Photovoltaic Module Array Output Current
SW‧‧‧開關控制訊號 S W ‧‧‧ switch control signal
IS‧‧‧太陽光電模組串列電流 I S ‧‧‧Solar Photovoltaic Module Tandem Current
S01~S09、S10~S18‧‧‧步驟 S01~S09, S10~S18‧‧‧ steps
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示依照本發明一實施方式的一種太陽光電模組陣列之最佳化線上即時故障檢測器的電路示意圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A circuit diagram that optimizes the on-line fault detector.
第2圖係繪示第1圖中太陽光電模組陣列之電路示意圖。 Figure 2 is a schematic diagram showing the circuit of the solar photovoltaic module array in Figure 1.
第3圖係繪示第1圖中太陽光電模組陣列之最佳化線上即時故障檢測器進行故障檢測方法的流程圖。 Figure 3 is a flow chart showing the method for detecting the fault of the instant fault detector on the optimized line of the solar photovoltaic module array in Figure 1.
第4A圖至第4B圖係繪示第3圖中故障檢測方法的詳細流程圖。 4A to 4B are detailed flowcharts showing the failure detecting method in FIG. 3.
第5A圖係繪示第2圖中第一太陽光電模組並列故障時之第一種連接開關之最佳化配置電路示意圖。 FIG. 5A is a schematic diagram showing an optimized configuration circuit of the first type of connection switch when the first solar photovoltaic module is in parallel failure in FIG. 2 .
第5B圖係繪示第2圖中第一太陽光電模組並列故障時之第二種連接開關之最佳化配置電路示意圖。 FIG. 5B is a schematic diagram showing an optimized configuration circuit of the second type of connection switch when the first solar photovoltaic module is in parallel failure in FIG. 2 .
第5C圖係繪示第2圖中第一太陽光電模組並列故障時之第三種連接開關之最佳化配置電路示意圖。 FIG. 5C is a schematic diagram showing an optimized configuration circuit of a third type of connection switch when the first solar photovoltaic module is in parallel failure in FIG. 2 .
第5D圖係繪示第2圖中第一太陽光電模組並列故障時之第四種連接開關之最佳化配置電路示意圖。 FIG. 5D is a schematic diagram showing an optimized configuration circuit of a fourth type of connection switch when the first solar photovoltaic module is in parallel failure in FIG. 2 .
第5E圖係繪示第2圖中第一太陽光電模組並列故障時之第五種連接開關之最佳化配置電路示意圖。 FIG. 5E is a schematic diagram showing the optimal configuration circuit of the fifth type of connection switch when the first solar photovoltaic module is in parallel failure in FIG. 2 .
第6A圖係繪示第2圖中第二太陽光電模組並列故障時之第一種連接開關之最佳化配置電路示意圖。 FIG. 6A is a schematic diagram showing an optimized configuration circuit of the first type of connection switch when the second solar photovoltaic module is in parallel failure in FIG. 2 .
第6B圖係繪示第2圖中第二太陽光電模組並列故障時之第二種連接開關之最佳化配置電路示意圖。 FIG. 6B is a schematic diagram showing an optimized configuration circuit of the second type of connection switch when the second solar photovoltaic module is in parallel failure in FIG. 2 .
第6C圖係繪示第2圖中第二太陽光電模組並列故障時之第三種連接開關之最佳化配置電路示意圖。 FIG. 6C is a schematic diagram showing an optimized configuration circuit of a third type of connection switch when the second solar photovoltaic module is in parallel failure in FIG. 2 .
第6D圖係繪示第2圖中第二太陽光電模組並列故障時之第四種連接開關之最佳化配置電路示意圖。 FIG. 6D is a schematic diagram showing an optimized configuration circuit of a fourth type of connection switch when the second solar photovoltaic module is in parallel failure in FIG. 2 .
請參照第1圖及第2圖,其中第1圖係繪示太陽光電模組陣列之最佳化線上即時故障檢測器的電路示意圖。第2圖係繪示第1圖中太陽光電模組陣列之電路示意圖。太陽光電模組陣列之最佳化線上即時故障檢測器整體架構包含一太陽光電模組陣列100、複數連接開關S0~S9、複數電流感測器H0~H2、一升壓型轉換器200、一最大功 率追蹤器300、一最佳化配置控制器400、一模組遮蔭及故障位置診斷器500、一顯示器600、一變流器700及一負載800。本實施方式內太陽光電模組陣列100以及複數連接開關S0~S9連接成四串三並之結構,其與電流感測器H0~H2之數目僅為舉例說明使用,本實施方式並不限定於此。 Please refer to FIG. 1 and FIG. 2 , wherein FIG. 1 is a schematic circuit diagram of an instant fault detector on the optimized line of the solar photovoltaic module array. Figure 2 is a schematic diagram showing the circuit of the solar photovoltaic module array in Figure 1. The overall structure of the instantaneous fault detector on the solar photovoltaic module array includes a solar photovoltaic module array 100, a plurality of connection switches S 0 ~ S 9 , a complex current sensor H 0 ~ H 2 , a boost conversion The device 200, a maximum power tracker 300, an optimized configuration controller 400, a module shading and fault location diagnostic device 500, a display 600, a converter 700, and a load 800. In the present embodiment, the solar photovoltaic module array 100 and the plurality of connection switches S 0 to S 9 are connected in a four-string triple structure, and the number of the current sensors H 0 to H 2 is used for illustrative purposes only. It is not limited to this.
太陽光電模組陣列100由複數太陽光電模組串列110並聯而成,而每一太陽光電模組串列110包含四太陽光電模組。 The solar photovoltaic module array 100 is formed by paralleling a plurality of solar photovoltaic module series 110, and each solar photovoltaic module serial 110 comprises four solar photovoltaic modules.
連接開關S0~S9連接太陽光電模組串列110,且連接開關S0~S9依照太陽光電模組陣列100中由上而下且由左而右之順序進行編號。 The connection switches S 0 to S 9 are connected to the solar photovoltaic module series 110, and the connection switches S 0 to S 9 are numbered in order from top to bottom and from left to right in the solar photovoltaic module array 100.
各電流感測器H0~H2分別連接於各太陽光電模組串列110,以感測太陽光電模組串列110而產生複數太陽光電模組串列電流IS,且電流感測器H0~H2互相連接。電流感測器H0~H2可為霍爾電流感測器。 The current sensors H 0 ~ H 2 are respectively connected to the respective solar photovoltaic module series 110 to sense the solar photovoltaic module series 110 to generate a plurality of solar photovoltaic module serial currents I S , and the current sensors H 0 ~ H 2 are connected to each other. The current sensors H 0 ~H 2 can be Hall current sensors.
升壓型轉換器200電性連接太陽光電模組陣列100。本實施方式中,升壓型轉換器200可包含一輸入電容Cin、一電感L、一電晶體M、一二極體D、一輸出電容Cout、一電壓回授電路FC以及一電晶體驅動電路DC,其中本實施方式之升壓型轉換器200電路架構雖如第1圖所繪示,然而升壓型轉換器200為一習知技術,故上述電路之架構可由熟習之技術領域者變動,而不做任何限定。升壓型轉換器200進行直流-直流轉換電源,使得升壓型轉換器200輸出之電壓高於太陽光電模組陣列100輸入升壓型轉換 器200之電壓。其中,電壓回授電路FC將太陽光電模組陣列100之一太陽光電模組陣列輸出電壓VPV回授給最大功率追蹤器300、最佳化配置控制器400以及模組遮蔭及故障位置診斷器500。電晶體驅動電路DC電性連接電晶體M及最大功率追蹤器300。 The boost converter 200 is electrically connected to the solar photovoltaic module array 100. In this embodiment, the boost converter 200 can include an input capacitor Cin, an inductor L, a transistor M, a diode D, an output capacitor Cout, a voltage feedback circuit F C, and a transistor drive. The circuit D C , wherein the circuit structure of the boost converter 200 of the present embodiment is as shown in FIG. 1 , but the boost converter 200 is a conventional technology, and the architecture of the above circuit can be obtained by those skilled in the art. Change without any restrictions. The boost converter 200 performs a DC-DC conversion power supply such that the voltage output from the boost converter 200 is higher than the voltage of the input boost converter 200 of the solar photovoltaic module array 100. The voltage feedback circuit F C returns the solar photovoltaic module array output voltage V PV of the solar photovoltaic module array 100 to the maximum power tracker 300, the optimized configuration controller 400, and the module shading and fault location. Diagnostic 500. The transistor driving circuit D C is electrically connected to the transistor M and the maximum power tracker 300.
最大功率追蹤器300電性連接升壓型轉換器200之電晶體驅動電路DC及太陽光電模組陣列100之電壓回授電路FC且接收太陽光電模組陣列100之太陽光電模組陣列輸出電壓VPV以及一太陽光電模組陣列輸出電流IPV,且最大功率追蹤器300採用一粒子群演算法,藉此追蹤太陽光電模組陣列100之一最大功率點。 The maximum power tracker 300 is electrically connected to the transistor driving circuit D C of the boost converter 200 and the voltage feedback circuit F C of the solar photovoltaic module array 100 and receives the solar photovoltaic module array output of the solar photovoltaic module array 100. The voltage V PV and a solar photovoltaic module array output current I PV , and the maximum power tracker 300 employs a particle swarm algorithm to track one of the maximum power points of the solar photovoltaic module array 100.
最佳化配置控制器400電性連接太陽光電模組陣列100之電壓回授電路FC、最大功率追蹤器300及連接開關S0~S9且接收太陽光電模組陣列100之太陽光電模組陣列輸出電壓VPV以及太陽光電模組陣列輸出電流IPV,最佳化配置控制器400利用太陽光電模組陣列輸出電壓VPV及太陽光電模組陣列輸出電流IPV計算一輸出功率,且最佳化配置控制器400比對輸出功率及最大功率點並輸出一開關控制訊號SW對應控制連接開關S0~S9進行排列組合,開關控制訊號SW包含多數閉合開關編號組,且各閉合開關編號組包含複數閉合開關編號Sn,n=0,1,2,...,9,且最佳化配置控制器400同最大功率追蹤器300般採粒子群演算法。 The optimal configuration controller 400 is electrically connected to the voltage feedback circuit F C of the solar photovoltaic module array 100, the maximum power tracker 300, and the solar photovoltaic module array output that connects the switches S0 to S9 and receives the solar photovoltaic module array 100. The voltage V PV and the solar photovoltaic module array output current I PV , the optimal configuration controller 400 uses the solar photovoltaic module array output voltage V PV and the solar photovoltaic module array output current I PV to calculate an output power, and optimizes The configuration controller 400 compares the output power and the maximum power point and outputs a switch control signal S W corresponding to the control connection switches S 0 to S 9 , and the switch control signal S W includes a plurality of closed switch number groups, and each closed switch number The group includes a plurality of closed switch numbers S n , n = 0, 1, 2, ..., 9, and the optimization configuration controller 400 is the same as the maximum power tracker 300.
模組遮蔭及故障位置診斷器500電性連接電流感測器H0~H2及最佳化配置控制器400,模組遮蔭及故障 位置診斷器500接收各太陽光電模組串列電流IS及開關控制訊號SW,並以一故障位置判斷關係式n+1=m找出故障或遮蔭之太陽光電模組,其中n代表其中一閉合開關編號組內一最小閉合開關編號,m代表包含故障或遮蔭之太陽光電模組之一太陽光電模組並列編號,其中太陽光電模組並列編號係依照太陽光電模組陣列100中由上而下之順序進行編號。 The module shading and fault location diagnostic device 500 is electrically connected to the current sensor H 0 ~ H 2 and the optimized configuration controller 400. The module shading and fault location diagnostic device 500 receives the tandem current of each solar photovoltaic module. I S and the switch control signal S W , and determine the faulty or shading solar photovoltaic module by a fault position judgment relationship n+1=m, where n represents a minimum closed switch number in one of the closed switch number groups, m represents the parallel numbering of the solar photovoltaic modules of one of the solar photovoltaic modules including faults or shades, wherein the solar photovoltaic modules are numbered in parallel according to the top-down order of the solar photovoltaic module array 100.
顯示器600連接模組遮蔭及故障位置診斷器500,用以顯示出故障及遮蔭太陽光電模組位置。 The display 600 is coupled to the module shading and fault location diagnostics 500 for displaying fault and shading solar photovoltaic module locations.
變流器700電性連接升壓型轉換器200,將經由升壓型轉換器200升壓之直流電源轉換為交流電源。 The converter 700 is electrically connected to the boost converter 200, and converts the DC power boosted by the boost converter 200 into an AC power source.
負載800電性連接變流器700,以接收交流電源。 The load 800 is electrically connected to the converter 700 to receive AC power.
請參照第3圖、第4A圖及第4B圖,其中第3圖係繪示第1圖中太陽光電模組陣列100之最佳化線上即時故障檢測器進行故障檢測方法的流程圖。第4A圖及第4B圖係繪示第3圖中故障檢測方法的詳細流程圖。故障檢測方法之步驟包含一電流感測步驟910、一故障檢測步驟920、一最大功率追蹤步驟930、一最佳化配置步驟940以及一遮蔭及故障位置診斷步驟950。電流感測步驟910:係感測太陽光電模組串列電流。故障檢測步驟920:係比對太陽光電模組串列電流以判斷太陽光電模組陣列是否發生遮蔭及故障。最大功率追蹤步驟930:係根據粒子群演算法計算太陽光電模組陣列之最大功率點。最佳化配置步驟940: 係比較輸出功率及最大功率點以輸出開關控制訊號而啟閉連接開關進行排列組合,使太陽光電模組陣列以連接開關之開啟或關閉連接成所演算出之一最佳化連接架構。遮蔭及故障位置診斷步驟950:係以故障位置判斷關係式n+1=m從太陽光電模組串列電流及開關控制訊號找出故障或遮蔭之太陽光電模組。 Please refer to FIG. 3, FIG. 4A and FIG. 4B. FIG. 3 is a flow chart showing a method for detecting faults by an instant fault detector on the optimized line of the solar photovoltaic module array 100 in FIG. 1 . 4A and 4B are detailed flowcharts showing the fault detecting method in FIG. 3. The steps of the fault detection method include a current sensing step 910, a fault detecting step 920, a maximum power tracking step 930, an optimization configuration step 940, and a shading and fault location diagnostic step 950. Current sensing step 910: sensing the tandem current of the solar photovoltaic module. Fault detection step 920: comparing the tandem currents of the solar photovoltaic modules to determine whether the solar photovoltaic module array is shaded or faulty. The maximum power tracking step 930 is to calculate the maximum power point of the solar photovoltaic module array according to the particle swarm algorithm. Optimization configuration step 940: Comparing the output power and the maximum power point to output the switch control signal and opening and closing the connection switch to perform the arrangement and combination, so that the solar photovoltaic module array is connected or connected to the connected switch to optimize the connection structure. Shading and fault location diagnosis step 950: judging the relationship n+1=m from the fault position to find the faulty or shading solar photovoltaic module from the solar photovoltaic module serial current and the switch control signal.
更詳細地敘述前述故障檢測方法之步驟如下。步驟S01,初始化粒子群相關參數,如粒子數、開關控制訊號、個體最佳化適應值Pbest以及群體最佳化適應值Gbest,並將開關控制訊號設為粒子之位置,建立欲求之最佳目標函數為太陽光電模組陣列之最大輸出功率。步驟S02,設定粒子群演算法之粒子為i,其中i=1,2,3...N,由i=1開始計算。步驟S03,亂數產生粒子i之開關控制訊號。步驟S04,輸出粒子i之開關控制訊號至連接開關,使連接開關開啟或關閉。步驟S05,確認最大功率追蹤是否完成。步驟S06,若是則擷取太陽光電模組陣列之輸出電壓及輸出電流並計算輸出功率。步驟S07,確認當前粒子i之輸出功率是否大於個體最佳化適應值Pbest。步驟S08,若是則更新個體最佳適應值Pbest。步驟S09,確認當前粒子i之輸出功率是否大於群體最佳適應值Gbest。步驟S10,若是則更新群體最佳適應值Gbest。步驟S11,若步驟S07及步驟S09為否則確認所有粒子是否完成評估。步驟S12,若所有粒子未完成評估則進行下個粒子i=i+1之評估。步驟S13,若所有粒子完成評估則更新粒子速度及粒子位 置。步驟S14,接著確認是否已滿足疊代次數條件。步驟S15,若否則回到粒子i之設定進行下一次疊代。步驟S16,若是則輸出符合群體最佳適應值Gbest之開關控制訊號。步驟S17,傳送開關控制訊號及太陽光電模組陣列之輸出電流並推算故障模組所在位置加以顯示。步驟S18,判斷太陽光電模組陣列之遮蔭或故障情形是否改變,若是則重新進行初始化相關參數之步驟,若否則維持步驟S17。 The steps of the aforementioned failure detecting method will be described in more detail as follows. Step S01, initializing the particle group related parameters, such as the number of particles, the switch control signal, the individual optimized fitness value P best, and the group optimization adaptation value G best , and setting the switch control signal to the position of the particle, thereby establishing the most desired The good objective function is the maximum output power of the solar photovoltaic module array. In step S02, the particle of the particle swarm algorithm is set to i , where i =1, 2, 3...N, and is calculated by i =1. In step S03, the random number generates a switch control signal of the particle i . In step S04, the switch control signal of the particle i is outputted to the connection switch to turn the connection switch on or off. In step S05, it is confirmed whether the maximum power tracking is completed. Step S06, if yes, extract the output voltage and output current of the solar photovoltaic module array and calculate the output power. In step S07, it is confirmed whether the output power of the current particle i is greater than the individual optimized adaptation value P best . Step S08, if yes, update the individual best fitness value P best . In step S09, it is confirmed whether the output power of the current particle i is greater than the optimal group fitness value G best . Step S10, if yes, update the group optimal fitness value G best . In step S11, if step S07 and step S09 are otherwise, it is confirmed whether all the particles have been evaluated. In step S12, if all the particles are not evaluated, the evaluation of the next particle i = i +1 is performed. In step S13, the particle velocity and the particle position are updated if all the particles are evaluated. In step S14, it is next confirmed whether the number of iterations has been met. In step S15, if it is returned to the setting of the particle i, the next iteration is performed. Step S16, if yes, output a switch control signal that meets the best fitness value G best of the group. Step S17, transmitting the switch control signal and the output current of the solar photovoltaic module array and estimating the position of the faulty module for display. In step S18, it is determined whether the shading or fault condition of the solar photovoltaic module array is changed, and if so, the step of initializing the relevant parameters is re-executed, otherwise the step S17 is maintained.
前述太陽光電模組陣列100之最佳化線上即時故障檢測器如何利用粒子群演算法來進行最大功率追蹤以及最佳化配置為本技術領域已公開之技術,故在本實施方式當中僅針對故障檢測方法進行舉例說明。 How to optimize the on-line fault detector of the solar photovoltaic module array 100 using the particle swarm algorithm for maximum power tracking and optimization configuration is a technology disclosed in the technical field, so in the present embodiment, only the fault is targeted. The detection method is illustrated by way of example.
請同時參照第1圖、第2圖、第5A圖至第5F圖以及第6A圖至第6D圖。其中第5A圖至第5F圖係分別敘述第2圖中第一太陽光電模組並列120故障時之連接開關S0~S9之最佳化配置電路示意圖。第6A圖至第6D圖係分別敘述第2圖中第二太陽光電模組並列130故障時之連接開關S0~S9之最佳化配置電路示意圖。而特別說明的是,在圖面上太陽光電模組陣列100除了包含第一太陽光電模組並列120及第二太陽光電模組並列130,根據由上而下之順序進行編號時,陽光電模組陣列100當然亦包含一第三太陽光電模組並列及一第四太陽光電模組並列(未標號)。 Please refer to FIG. 1 , FIG. 2 , FIG. 5A to FIG. 5F , and FIGS. 6A to 6D simultaneously. 5A to 5F are schematic diagrams respectively showing an optimized configuration circuit of the connection switches S 0 to S 9 when the first solar photovoltaic module is in the failure of the parallel arrangement in FIG. 2 . 6A to 6D are diagrams respectively showing an optimized configuration circuit of the connection switches S 0 to S 9 when the parallel arrangement of the second solar photovoltaic module in FIG. 2 is broken. Specifically, in the drawing, the solar photovoltaic module array 100 includes the first solar photovoltaic module juxtaposition 120 and the second solar photovoltaic module juxtaposition 130, and is numbered according to the order from top to bottom. The array 100 of course also includes a third solar photovoltaic module juxtaposed and a fourth solar photovoltaic module juxtaposed (not labeled).
在此已針對太陽光電模組陣列100中各太陽光電模組進行編號#01~#12,在此假設第一太陽光電模組並 列120中編號#01之太陽光電模組受到遮蔭30%,則其經最佳化配置之結果如第5A圖至第5F圖所示。也就是說最佳化配置控制器400輸出開關控制訊號SW所包含閉合開關編號組內之閉合開關編號Sn可為(S1,S6)、(S1,S2,S6)、(S1,S3,S6)、(S1,S2,S3,S6)及(S1,S6,S7)等五種連接開關S0~S9之組合。 Here, the solar photovoltaic modules in the solar photovoltaic module array 100 are numbered #01~#12, and it is assumed that the solar photovoltaic module numbered #01 in the first solar photovoltaic module juxtaposed 120 is shaded by 30%. The results of the optimized configuration are shown in Figures 5A through 5F. That is, the closed switch number S n in the closed switch number group included in the output control switch 400 output control switch signal W can be (S 1 , S 6 ), (S 1 , S 2 , S 6 ), A combination of five kinds of connection switches S 0 to S 9 such as (S 1 , S 3 , S 6 ), (S 1 , S 2 , S 3 , S 6 ) and (S 1 , S 6 , S 7 ).
若假設第二太陽光電模組並列130中編號#02之太陽光電模組受到遮蔭30%,則其經最佳化配置之結果如第6A圖至第6D圖所示。也就是說最佳化配置控制器400輸出開關控制訊號SW所包含閉合開關編號組內之閉合開關編號Sn可為(S1,S2,S6,S7)、(S1,S2,S3,S6,S7)、(S1,S2,S6,S7,S8)及(S1,S2,S3,S6,S7,S8)等四種連接開關S0~S9之組合。 If it is assumed that the solar photovoltaic module numbered #02 in the parallel arrangement of the second solar photovoltaic module is 30% shaded, the results of the optimized configuration are as shown in FIGS. 6A to 6D. That is to say, the closed switch number S n in the closed switch number group included in the output control controller 400 output switch control signal S W can be (S 1 , S 2 , S 6 , S 7 ), (S 1 , S 2 , S 3 , S 6 , S 7 ), (S 1 , S 2 , S 6 , S 7 , S 8 ) and (S 1 , S 2 , S 3 , S 6 , S 7 , S 8 ), etc. A combination of connection switches S 0 ~ S 9 .
這時透過故障位置判斷關係式n+1=m找出故障或遮蔭之太陽光電模組,其中n代表其中閉合開關編號組內最小閉合開關編號,m代表包含故障或遮蔭之太陽光電模組之一太陽光電模組並列編號。前述最小閉合開關標號為S1,則1+1=m,m=2,若僅由故障位置關係式來判斷僅會得到第二太陽光電模組並列130產生故障或遮蔭的情況,然而根據第5A圖至第5F圖所示,當最小閉合開關標號為S1,其亦有可能為第一太陽光電模組並列120產生故障或遮蔭的情況。故最小閉合開關標號為S1(即n=1)時,模組遮蔭及故障位置診斷器500必須額外判斷閉合開關編號組內除最小閉合開關編號外之剩餘閉合開關編號Sn,以判 斷出是第一太陽光電模組並列120中編號#01之太陽光電模組或第二太陽光電模組並列130中編號#02之太陽光電模組受到遮蔭。 At this time, the faulty or shading solar photovoltaic module is found through the fault location judgment relationship n+1=m, where n represents the minimum closed switch number in the closed switch number group, and m represents the solar photovoltaic module including the fault or shading. One of the solar photovoltaic modules is numbered side by side. The minimum closed switch is denoted by S 1 , and then 1+1=m, m=2. If only the fault position relationship is judged, only the second solar photovoltaic module juxtaposition 130 may cause fault or shading, but according to FIG. 5A through FIG. 5F, when the designated minimum closing switch S 1, which also may be tied in the case of failure or shade 120 is a first photovoltaic module. Therefore, when the minimum closed switch is labeled S 1 (ie, n=1), the module shading and fault location diagnostic device 500 must additionally determine the remaining closed switch number S n in the closed switch number group except the minimum closed switch number to determine The solar photovoltaic module numbered #02 in the juxtaposition 120 of the first solar photovoltaic module in parallel 120 is shaded.
因此,再根據第5A圖至第5F圖以及第6A圖至第6D圖所繪示連接開關S0~S9之最佳化配置組合,第二太陽光電模組並列130產生故障或遮蔭時,則其開關控制訊號SW所包含閉合開關編號組內之閉合開關編號Sn皆有包含S2及S7。模組遮蔭及故障位置診斷器500判斷閉合開關編號組內之閉合開關編號是否同時包含S2及S7,則可判斷出第一太陽光電模組並列120或第二太陽光電模組並列130產生故障或遮蔭。因此,若閉合開關編號同時包含S2及S7,則為第二太陽光電模組並列130中編號#02之太陽光電模組受到遮蔭30%,若不同時包含S2及S7,則為第一太陽光電模組並列120中編號#01之太陽光電模組受到遮蔭30%。最後再透過比對電流感測器H0~H2所感測之各太陽光電模組串列電流IS之結果,則可即時交叉比對出正確的故障太陽光電模組位置。 Therefore, according to the 5A to 5F and 6A to 6D, the optimal combination of the connection switches S 0 to S 9 is shown, and when the second solar photovoltaic module is in parallel 130, the fault or shading occurs. The closed switch number S n in the closed switch number group included in the switch control signal S W includes S 2 and S 7 . The module shading and fault location diagnostic device 500 determines whether the closed switch number in the closed switch number group includes both S 2 and S 7 , and can determine that the first solar photovoltaic module is juxtaposed 120 or the second solar photovoltaic module is juxtaposed 130 Causes malfunction or shading. Therefore, if the closed switch number includes both S 2 and S 7, the solar photovoltaic module numbered #02 in the parallel array of the second solar photovoltaic module is 30% shaded, if not including S 2 and S 7 The solar photovoltaic module numbered #01 in the first solar photovoltaic module juxtaposed 120 is shaded by 30%. Finally, by comparing the results of the tandem currents I S of the solar photovoltaic modules sensed by the current sensors H0~H2, the correct fault solar photovoltaic module positions can be instantly cross-checked.
以上為最小閉合開關標號為S1(即n=1)時,找出故障太陽光電模組之分析狀況。然而當n為大於1之整數時,透過故障位置判斷關係式n+1=m可直接找出包含故障太陽光電模組之太陽光電模組並列編號,再透過太陽光電模組串列電流IS的比對結果找出包含故障太陽光電模組之太陽光電模組串列110,藉此找出故障太陽光電模組位 置,而不必再分析其餘閉合開關編號組內之剩餘閉合開關編號Sn。 When the minimum closed switch is labeled S 1 (ie, n=1), the analysis status of the faulty solar photovoltaic module is found. However, when n is an integer greater than 1, the relationship n+1=m can be directly found through the fault location to directly find the parallel number of the solar photovoltaic module including the faulty solar photovoltaic module, and then pass through the solar photovoltaic module serial current I S comparison result find fault photovoltaic module comprising the photovoltaic module 110 series, whereby the photovoltaic module to identify the failure location, without having to close the switch within the analysis remaining rest closes the switch No. group No. S n.
在此針對第2圖中四串三並的太陽光電模組陣列100相異太陽光電模組並列產生故障或遮蔭時,各種連接開關S0~S9最佳化配置後的情況表列如下:
表格中之數字1代表導通連接開關S0~S9,使太陽光電模組之電流可通過,數字0則代表連接開關S0~S9未導通。當然本實施方式僅以四串三並的太陽光電模組陣列100作為例子來加以說明,倘若增加串聯及並聯數量同樣可利用本實施方式之太陽光電模組陣列100之最佳化線上即時故障檢測器來加以診斷出故障或遮蔭太陽光電模組的位置。 The number 1 in the table represents the conduction connection switches S 0 ~ S 9 , so that the current of the solar photovoltaic module can pass, and the number 0 represents that the connection switches S 0 ~ S 9 are not turned on. Of course, the embodiment only uses the four-series solar photovoltaic module array 100 as an example. If the number of series and parallel connections is increased, the instantaneous fault detection on the optimized line of the solar photovoltaic module array 100 of the present embodiment can also be utilized. To diagnose the location of the faulty or shaded solar module.
藉由上述實施方式可知,本實施方式所提出用於太陽光電模組陣列之最佳化線上即時故障檢測器及其故障檢測方法,在每一串太陽光電模組串列中利用連接開關的開啟或關閉決定電流路徑。當太陽光電模組陣列受到局部遮蔭或發生故障時,可透過粒子群演算法控制連接開關之開啟或關閉,藉此使太陽光電模組陣列改變為最佳化配置之連接架構。然後,再依據太陽光模組陣列間之連接開關的最佳化配置狀態判斷出包含故障太陽光電模組的太陽光電模組並列,配合各太陽光電模組串列電流判斷出包含故障太陽光電模組的太陽光電模組串列,串列電流明顯較其他串列低者,代表串列中有模組發生遮蔭或故障,藉此判斷出故障太陽光電模組的位置,並輸出至顯示器將其加 以顯示,以利系統即時修護,而無須再浪費習知人工排除方式的時間及成本。 According to the above embodiment, the instant fault detector for the optimization of the solar photovoltaic module array and the fault detection method thereof are proposed in the embodiment, and the connection switch is opened in each string of solar photovoltaic modules. Or turn off the decision current path. When the solar photovoltaic module array is partially shaded or fails, the particle group algorithm can be used to control the opening or closing of the connection switch, thereby changing the solar photovoltaic module array to an optimal configuration connection structure. Then, according to the optimal configuration state of the connection switch between the arrays of solar modules, the solar photovoltaic modules including the faulty solar photovoltaic modules are juxtaposed, and the faulty solar photovoltaic modes are determined according to the tandem currents of the solar photovoltaic modules. The group of solar photovoltaic modules is in series, and the serial current is significantly lower than other series, indicating that there is a shadow or malfunction of the module in the series, thereby judging the position of the faulty solar photovoltaic module and outputting it to the display. Its plus In order to show, the system can be repaired in real time without wasting the time and cost of the conventional manual elimination method.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.
100‧‧‧太陽光電模組陣列 100‧‧‧Solar Photovoltaic Module Array
200‧‧‧升壓型轉換器 200‧‧‧Boost converter
300‧‧‧最大功率追蹤器 300‧‧‧Max Power Tracker
400‧‧‧最佳化配置控制器 400‧‧‧Optimized configuration controller
500‧‧‧模組遮蔭及故障位置診斷器 500‧‧‧Modular Shading and Fault Location Diagnostics
600‧‧‧顯示器 600‧‧‧ display
700‧‧‧變流器 700‧‧‧Converter
800‧‧‧負載 800‧‧‧load
S0~S9‧‧‧連接開關 S 0 ~S 9 ‧‧‧Connecting switch
L‧‧‧電感 L‧‧‧Inductance
Cin‧‧‧輸入電容 Cin‧‧‧ input capacitor
D‧‧‧二極體 D‧‧‧ diode
M‧‧‧電晶體 M‧‧‧O crystal
FC‧‧‧電壓回授電路 F C ‧‧‧voltage feedback circuit
Cout‧‧‧輸出電容 Cout‧‧‧ output capacitor
VPV‧‧‧太陽光電模組陣列輸 出電壓 V PV ‧‧‧Solar Photovoltaic Module Array Output Voltage
DC‧‧‧電晶體驅動電路 D C ‧‧‧Cell crystal drive circuit
IS‧‧‧太陽光電模組串列電流 I S ‧‧‧Solar Photovoltaic Module Tandem Current
SW‧‧‧開關控制訊號 S W ‧‧‧ switch control signal
IPV‧‧‧太陽光電模組陣列輸出電流 I PV ‧‧‧Solar Photovoltaic Module Array Output Current
H0~H2‧‧‧電流感測器 H0~H2‧‧‧ Current Sensor
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104142728A TWI573385B (en) | 2015-12-18 | 2015-12-18 | Real-time fault detector of photovoltaic module array and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104142728A TWI573385B (en) | 2015-12-18 | 2015-12-18 | Real-time fault detector of photovoltaic module array and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI573385B TWI573385B (en) | 2017-03-01 |
TW201724731A true TW201724731A (en) | 2017-07-01 |
Family
ID=58766110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104142728A TWI573385B (en) | 2015-12-18 | 2015-12-18 | Real-time fault detector of photovoltaic module array and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI573385B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI721864B (en) * | 2020-04-15 | 2021-03-11 | 國立勤益科技大學 | Photovoltaic apparatus and maximum power point tracking method using particle swarm optimization |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI296457B (en) * | 2006-01-18 | 2008-05-01 | Univ Yuan Ze | High-performance power conditioner for solar photovoltaic system |
JP2011522505A (en) * | 2008-05-14 | 2011-07-28 | ナショナル セミコンダクタ コーポレイション | System and method for an array of multiple intelligent inverters |
EP2503427A1 (en) * | 2011-03-23 | 2012-09-26 | ABB Research Ltd. | Method for searching global maximum power point |
CN203965988U (en) * | 2011-10-25 | 2014-11-26 | K·卡梅伦 | Power regulator circuitry is the output with maximum power by non-linear generator |
TWI590025B (en) * | 2012-07-26 | 2017-07-01 | 穆罕默德 帕帕 塔拉 佛 | Energy converting apparatus and method |
TWI524165B (en) * | 2013-08-12 | 2016-03-01 | 國立勤益科技大學 | Photovoltaic module array configuration method and system thereof |
-
2015
- 2015-12-18 TW TW104142728A patent/TWI573385B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI721864B (en) * | 2020-04-15 | 2021-03-11 | 國立勤益科技大學 | Photovoltaic apparatus and maximum power point tracking method using particle swarm optimization |
Also Published As
Publication number | Publication date |
---|---|
TWI573385B (en) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Madeti et al. | Modeling of PV system based on experimental data for fault detection using kNN method | |
Karatepe et al. | Controlling of artificial neural network for fault diagnosis of photovoltaic array | |
Gokmen et al. | Simple diagnostic approach for determining of faulted PV modules in string based PV arrays | |
JP6278912B2 (en) | Photovoltaic power generation system and fault diagnosis method thereof | |
US8446043B1 (en) | Photovoltaic array systems, methods, and devices and improved diagnostics and monitoring | |
KR101930969B1 (en) | Automatic generation and analysis of solar cell iv curves | |
US9506971B2 (en) | Failure diagnosis method for photovoltaic power generation system | |
JP6093465B1 (en) | Power generation diagnosis method and power generation diagnosis apparatus for solar power generation system | |
CN104391189A (en) | Three-stage-diagnosis-based large-scale photovoltaic array fault diagnosis and positioning method | |
TWI595744B (en) | Power generation abnormality detection method and system for photovoltaic panels | |
CN102362360A (en) | Method for detecting failure of photovoltaic power system | |
Hocine et al. | Automatic detection of faults in a photovoltaic power plant based on the observation of degradation indicators | |
JP6172530B2 (en) | Abnormality diagnosis method for photovoltaic power generation system | |
JP7531876B2 (en) | Method and program for diagnosing faults in solar cell modules | |
El Basri et al. | A proposed graphical electrical signatures supervision method to study PV module failures | |
Livera et al. | Failure diagnosis of short-and open-circuit fault conditions in PV systems | |
Qin et al. | The effect of solar cell shunt resistance change on the bus voltage ripple in spacecraft power system | |
CN110729213A (en) | Final test method and automatic detection device for intelligent photovoltaic module | |
TWI573385B (en) | Real-time fault detector of photovoltaic module array and method thereof | |
KR102568590B1 (en) | AI learning data preprocessing system and method for fault diagnosis of PV system | |
KR20200100898A (en) | Fault Diagnosis Method and system for Solar Panel | |
JP6354946B2 (en) | Abnormality diagnosis method for photovoltaic power generation system | |
TW201020569A (en) | Method and portable device for fault diagnosis of photovoltaic power generating system | |
JP2017118645A (en) | Measuring apparatus, measuring system, program, and measuring method | |
Zhang et al. | An I–V characteristic reconstruction-based partial shading diagnosis and quantitative evaluation for photovoltaic strings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |