TW201716445A - 免疫球蛋白融合蛋白質 - Google Patents

免疫球蛋白融合蛋白質 Download PDF

Info

Publication number
TW201716445A
TW201716445A TW104136283A TW104136283A TW201716445A TW 201716445 A TW201716445 A TW 201716445A TW 104136283 A TW104136283 A TW 104136283A TW 104136283 A TW104136283 A TW 104136283A TW 201716445 A TW201716445 A TW 201716445A
Authority
TW
Taiwan
Prior art keywords
amino acid
polypeptide
hfc
human
terminus
Prior art date
Application number
TW104136283A
Other languages
English (en)
Inventor
成永喆
梁世涣
Original Assignee
格納西尼有限公司
浦項工科大學校產學協力團
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格納西尼有限公司, 浦項工科大學校產學協力團 filed Critical 格納西尼有限公司
Priority to TW104136283A priority Critical patent/TW201716445A/zh
Publication of TW201716445A publication Critical patent/TW201716445A/zh

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

所揭露者為包括生物活性分子及連接至該生物活性分子的免疫球蛋白(Ig)Fc結構域的融合蛋白質。該Fc結構域為(i)IgG1、IgG2或IgG4或(ii)IgG4及IgD之雜合人類Fc結構域。該雜合Fc適用作為生物活性分子的載體。

Description

免疫球蛋白融合蛋白質
本發明係關於雜合人類Fc及免疫球蛋白融合蛋白質其中雜合人類Fc係與生物活性分子連接。特別地,本發明係關於雜合人類Fc,其係衍生自人類免疫球蛋白G(IgG)亞類的組合或人類IgD及IgG的組合,及融合蛋白質其中此種Fc經由共價鍵與生物活性分子偶合。
生物活性分子在治療上可能有重大意義。然而,因為彼等在體內的穩定性低,所以可能不利於作為治療劑。因為在活體內受到各種酵素的分解所以彼等之循環半衰期或血清半衰期短。因此,一直希望能改善生物活性分子的循環半衰期。
已知增加蛋白質的大小可防止該蛋白質被腎臟除去而增長其半衰期(Knauf et al.,J.Biol.Chem.1988.263:15064-15070)。例如,已報告經由偶合活性蛋白質與人類白蛋白而增加蛋白質穩定性(Kinstler et al.,Pharm.Res.1995.12:1883-1888)。然而,因為偶合活性蛋白質與人類白蛋白只稍微增加其滯留時間,所以其並非係發展含有與人類白蛋白偶合之活性蛋白質之有效藥物配方的有效 方法。
其他報告的方法為調控蛋白質的糖基化。附加於蛋白質的糖基化及導入唾液酸至蛋白質導致防止肝中蛋白質的降解。但是,增加蛋白質的糖基化亦導致蛋白質生物活性的降低。
為了穩定蛋白質及防止腎臟清除作用,使蛋白質與聚乙二醇(PEG)共軛。與PEG共價共軛一直廣泛用於使藥物有延長的半衰期(Delgado et al.,1992.9:249-304)。然而,有報告指出PEG與細胞介素或激素共軛時由於共軛造成的立體阻礙而導致受體結合親和力降低。
近來,一直在研究及發展使用免疫球蛋白(Ig)製造的融合蛋白質。Ig為血液的主要成分。人類Ig(hIg)包含各種類別諸如IgG、IgM、IgA、IgD及IgE(Roitt et al.,"Immunology" 1989,Gower Medical Publishing,London,U.K.;New York,N.Y.)。人類IgGs可進一步分類成稱為人類IgG1(hIgG1)、人類IgG2(hIgG2)、人類IgG3(hIgG3)及人類IgG4(hIgG4)的各種亞型。
免疫球蛋白由4個多肽鏈組成,2個重鏈及2個輕鏈,其係經由二硫鍵結合而形成四聚體。各鏈係由可變區及恆定區組成。重鏈恆定區取決於同型而進一步分為3個或4個區(CH1、CH2、CH3及CH4)。重鏈恆定區的Fc部分,取決於Ig同型,包含鉸鏈、CH2、CH3及/或CH4結構域。
就血清半衰期而言,IgG1、IgG2及IgG4具 有21天的長半衰期,而其他免疫球蛋白則具有少於1星期的相對短半衰期。與IgG的Fc部分融合的嵌合蛋白質顯示增加的穩定性及增長的血清半衰期(Capon et al.,Nature 1989.337:525-531)。生物活性蛋白質與IgGs CH1區的N-端、Fc區的N-端或CH3區的C-端融合。
初期,以細胞表面受體諸如CD4(Capon et al.,Nature 1989.327:525-531)、TNFR(Mohler et al.,J.Immunology 1993.151:1548-1561)、CTLA4(Linsley et al.,J Exp.Med.1991.173:721-730)、CD86(Morton et al.,J.Immunology 1996.156:1047-1054)的胞外結構域而創造IgG融合蛋白質。並且,使一些細胞介素及生長激素與IgG結構域融合。然而,與細胞表面受體之胞外結構域的融合不同,相較於非融合細胞介素或生長激素,融合可溶性蛋白質與IgGs導致生物活性降低。嵌合蛋白質以二聚體存在,由於存在兩個彼此緊靠的活性蛋白質,而導致與彼等之目標分子像是受體間因相互作用所致的立體阻礙。因此,必須克服此問題而製造有效的融合蛋白質。
Fc融合技術的其他限制為不良免疫反應之存在。免疫球蛋白的Fc結構域亦具有效用功能,諸如抗體依賴型细胞介導的細胞毒殺作用(ADCC)或補體依賴型細胞毒殺作用(CDC)。一般透過Ig的Fc區與效應細胞上的FcRs間的相互作用或透過補體結合而獲得這種效用功能。因此,必須進行Fc效用功能阻斷而降低不良反應,諸如細胞殺傷、細胞介素釋放或發炎。
總而言之,仍需要有最少生物活性損失及較少不良免疫反應風險之改良Fc融合蛋白質。
本發明提供雜合Fc,其係衍生自人類IgG亞類的組合或人類IgD及IgG的組合。與生物活性分子連接時,雜合Fc對增長生物活性分子的血清半衰期以及在表現編碼Fc-多肽融合蛋白質之核苷酸時,對增加多肽的表現水平是有效的。
本發明亦提供雜合Fc融合多肽,其中該雜合Fc係與生物活性分子連接。融合蛋白質有時稱為“生物活性分子-Fc融合蛋白質”或簡稱“融合蛋白質”。融合蛋白質在Fc及生物活性分子間可具有連接子。Fc可在其N-端與生物活性分子的C-端偶合。
可經由製造編碼及能夠表現融合蛋白質的核苷酸建構物,在寄主細胞中表現該建構物,然後收獲融合蛋白質,藉此製造融合蛋白質。或者,可用常用方式表現編碼Fc的核苷酸並使其與生物活性分子偶合而製造融合蛋白質。
下列式可表示根據本發明一具體實施例的多肽:N’-(Z1)p-Y-Z2-Z3-Z4-C’
其中N’為多肽的N-端及C’為多肽的C-端; Z1表明胺基酸序列,其包含至少SEQ ID NO:7位置90至98之胺基酸殘基C-端的一部分;Y表明胺基酸序列,其包含至少SEQ ID NO:7位置99至162之胺基酸殘基C-端的一部分;Z2表明胺基酸序列,其包含至少SEQ ID NO:7位置163至199之胺基酸殘基N-端的一部分;Z3表明胺基酸序列,其包含至少SEQ ID NO:6位置115至220之胺基酸殘基C-端的一部分;Z4表明胺基酸序列,其包含至少SEQ ID NO:6位置221至327之胺基酸殘基N-端的一部分;及p為0或1之整數,其中Z2及Z3的胺基酸殘基總數在80及140間,包含80及140。
另一個具體實施例中,Z1為包含SEQ ID NO:7位置90至98之胺基酸殘基的胺基酸序列。Z1可為由SEQ ID NO:7位置90至98之5至9個胺基酸殘基組成的胺基酸序列。Z1亦可為由SEQ ID NO:7位置90至98之胺基酸殘基組成的胺基酸序列。
Y可為包含SEQ ID NO:7位置99至162之胺基酸殘基C-端的5或更多個,或10或更多個連續(consecutive)胺基酸殘基的胺基酸序列。某些具體實施例中,Y可為包含SEQ ID NO:7位置158至162之胺基酸殘基、SEQ ID NO:7位置153至162之胺基酸殘基、SEQ ID NO:7位置143至162之胺基酸殘基、SEQ ID NO:7位置 133至162之胺基酸殘基或SEQ ID NO:7位置99至162之胺基酸殘基的胺基酸序列。
Z2可為包含SEQ ID NO:7位置163至199之胺基酸殘基N-端的4至37個,或6至30個連續胺基酸殘基的胺基酸序列(hIgD)。某些具體實施例中,Z2可為人類IgG2 CH2結構域的6個N-端胺基酸殘基或人類IgD CH2結構域的8個N-端胺基酸殘基。
Z2及Z3的胺基酸殘基總數可在80及140間。具體實施例中,Z2及Z3的胺基酸殘基總數在90及120間,包含90及120。另一個具體實施例中,Z2及Z3的胺基酸殘基總數在105及115間,包含105及115。在一個具體實施例中,Z2及Z3的胺基酸殘基總數為108。在另一個具體實施例中,Z2及Z3的胺基酸殘基總數為109。
Z4可為包含SEQ ID NO:6位置221至327的90或更多個,或100或更多個連續胺基酸殘基的胺基酸序列(hIgG4)。Z4可為SEQ ID NO:6位置221至327之胺基酸殘基的胺基酸序列。
根據具體實施例,Z3-Z4為選自SEQ ID NO:6位置115至220之胺基酸殘基的C-端部分及SEQ ID NO:6位置221至327之胺基酸殘基的N-端部分之連續胺基酸序列的胺基酸序列。
根據本發明具體實施例的多肽之胺基酸殘基總數為154至288。
在一個具體實施例中,Y可為包含至少SEQ ID NO:7位置99至162之胺基酸殘基的一部分的胺基酸序列,p可為1或0(零),Z2可為包含至少SEQ ID NO:7位置163至199之胺基酸殘基的一部分的胺基酸序列,及Z3可為包含至少SEQ ID NO:6位置121至220之胺基酸殘基的一部分的胺基酸序列。此具體實施例中,p為1時,Z1可為包含SEQ ID NO:7位置90至98之胺基酸殘基的胺基酸序列。
另一個具體實施例中,Y可為SEQ ID NO:7位置99至162之胺基酸殘基C-端的20或更多個連續胺基酸殘基、30或更多個連續胺基酸殘基、40或更多個連續胺基酸殘基、50或更多個連續胺基酸殘基或60或更多個連續胺基酸殘基。Z2可為SEQ ID NO:7位置163至170之胺基酸殘基,Z3可包括SEQ ID NO:6位置121至220之胺基酸殘基C-端的71至100個連續胺基酸殘基。Z2及Z3的胺基酸殘基總數可為108。
在一個具體實施例中,可經由SEQ ID NO:1組成的核苷酸序列編碼多肽。該多肽為由SEQ ID NO:11組成的胺基酸序列。
具體實施例中,使多肽的N-端與生物活性分子融合,相較於所述生物活性分子之天然形式的循環半衰期,顯示增長的循環半衰期。生物活性分子可為多肽、蛋白質或肽。生物活性分子可為多肽、肽或蛋白質藥物。生物活性分子可為可溶性蛋白質諸如,但不限於,激素、細胞介素、生長因子、共激分子,激素受體、細胞介素受 體、生長因子受體或短肽。生物活性分子可為EPO或其變異體/片段、p40或其變異體/片段(如,含有Asn303Gln取代的p40變異體)、G-CSF或其變異體/片段、TNF受體、GM-CSF、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-10、IL-10受體、TGF-β、TGF-β受體、IL-17、IL-17受體、VII因子、CXCL-11、FSH、人類生長激素、骨形成蛋白-1(BMP-1)、CTLA4、PD-1、GLP-1、β細胞素、OPG、RNAK、α干擾素、β干擾素或彼等之變異體/片段。生物活性分子可為分泌性蛋白質,其可為成熟的形式。
在一個具體實施例中,提供製造根據申請專利範圍第1項中所述之多肽的方法,其中該方法包括步驟:(i)將編碼多肽的DNA分子導入哺乳動物寄主細胞、(ii)使該細胞在可表現多肽的條件下於生長培養基中生長、(iii)收獲經表現的多肽。哺乳動物寄主細胞可為CHO、COS或BHK細胞。
另一個具體實施例中,提供(i)降低自體免疫疾病的症狀、預防或治療自體免疫疾病、(ii)抑制移植排斥反應或(iii)治療或預防內毒素誘發之休克的方法,該方法包含給藥治療有效量的上述多肽,其中該多肽係與生物活性分子融合。
在一個具體實施例中,提供編碼根據本發明具體實施例所述之多肽的單離核酸分子。多肽可具有由SEQ ID NO:11組成的胺基酸序列。核酸分子可具有如SEQ ID NO:1所示之核苷酸序列。核酸分子可進一步包含訊號 序列或先導序列。
根據本發明所述之具體實施例,提供包含核酸分子的表現載體及含有該載體之寄主細胞。表現載體的實例可包含,而不限於,pAD11 EPO-hFc-1、pAD11 G-CSF-hFc-1、pAD11 p40N303Q-hFc-1、pAD11 EPO-hFc-6、pAD11 G-CSF-hFc-6、pAD11 p40N303Q-hFc-6、pAD11 EPO-hFc-5、pAD11 G-CSF-hFc-5、pAD11 p40N303Q-hFc-5及pAD11 TNFR-hFc-5。
在一個具體實施例中,提供將生物活性分子投予哺乳動物的方法,該方法包含將核酸分子給藥有需要的哺乳動物之步驟。
另一個具體實施例中,多肽包含Fc結構域,其係以N-端至C-端的方向由鉸鏈區、CH2結構域及CH3結構域組成,其中所述鉸鏈區包含至少人類IgD鉸鏈區或人類IgG1鉸鏈區之胺基酸殘基的一部分;所述CH2結構域包含至少人類IgG4 CH2結構域之胺基酸殘基的一部分,其中人類IgG4 CH2結構域N-端的4至37個連續胺基酸殘基經至少人類IgG2 CH2結構域N-端區或人類IgD CH2結構域N-端區之胺基酸殘基的一部分置換,所述CH3結構域包含至少人類IgG4 CH3結構域之胺基酸殘基的一部分。
鉸鏈區可包含至少人類IgG1鉸鏈區之胺基酸殘基的一部分,所述CH2結構域包含至少人類IgG4 CH2結構域之胺基酸殘基的一部分,其中人類IgG4 CH2結構域 N-端的4至37個胺基酸殘基至少經人類IgG2 CH2結構域N-端區之胺基酸殘基的一部分置換。
鉸鏈區可包含至少人類IgD鉸鏈區之胺基酸殘基的一部分,所述CH2結構域包含至少人類IgG4 CH2結構域之胺基酸殘基的一部分,其中人類IgG4 CH2結構域N-端的4至37個胺基酸殘基至少經人類IgD CH2結構域N-端區之胺基酸殘基的一部分置換。
多肽可進一步包含CH1結構域,其中所述CH1結構域包含至少人類IgG1 CH1結構域之胺基酸殘基的一部分,及其中所述CH1結構域係與所述鉸鏈區之N-端偶合。多肽可進一步包含CH1結構域,其中所述CH1結構域包含至少人類IgD CH1結構域之胺基酸殘基的一部分,及其中所述CH1結構域係與所述鉸鏈區之N-端偶合。多肽可進一步包含與所述鉸鏈區之N-端偶合的第二多肽,其中該第二多肽為生物活性非免疫球蛋白多肽。多肽可進一步包含經由連接子與所述CH1結構域之N-端或與所述CH4結構域之C-端偶合的生物活性分子,其中所述生物活性分子不是免疫球蛋白多肽。多肽及生物活性分子可經由連接子彼此偶合。連接子分子為白蛋白連接子或合成連接子。白蛋白連接子包括胺基酸序列EMP、ENDEMPAD、EENDEMPADLPS、CIAEVENDEMPADLPSLA、SHCIAEVENDEMPADLPSLA或PLLEKSHCIAEVENDEMPADLPSLAADFVESKD。合成連接子可為由Glv及Ser殘基組成的10至20個胺基酸殘基的肽。 在一個具體實施例中,這種Gly-Ser連接子為GGGGSGGGGSGGGSG。
本發明亦包含包括重組Fc區的抗體分子,該重組Fc區如上文所說明。
第1圖顯示雜合Fcs(hFcs)的示意圖,該Fcs可使用作為指定為“X”之生物活性分子的載體蛋白質。
第2圖顯示hFcs的圖示隨後詳細說明衍生自IgG1、IgG2、IgG4及IgD的胺基酸位置。除非另有指明,於說明書全文中,應用相同規則指示多肽中胺基酸的位置。
第3圖顯示hFcs的圖示,各hFcs經由指示為“AL”的白蛋白連接肽在C-端與稱為“X”的生物活性分子共軛。
第4圖顯示與連接子共軛之hFcs的圖示隨後詳細說明衍生自人類白蛋白之白蛋白連接子的胺基酸位置。
第5圖顯示hFc-6之疏水性作圖結果。
第6(a)圖顯示使用特定ELISA檢測之MabThera®(利妥昔(Rituximab))、hIgG1、Enbrel®(恩博(etanercept))、EPO-hFc-5、G-CSF-hFc-5、p40N303Q-hFc-5之Fc γ RI結合活性的結果;第6(b)圖顯示使用特定ELISA檢測之MabThera®(利妥昔)、hIgG1、Enbrel®(恩博)、EPO-hFc-5、G-CSF-hFc-5、p40N303Q-hFc-5之C1q結合活性的結果。
第7(a)圖顯示與人類F36E細胞株中EPO比較的 EPO-IgG1 Fc、EPO-hFc-1、EPO-hFc-5、EPO-hFc-6及Aranesp®(阿法達貝泊汀(darbepoetin alfa))之生物活性的結果;第7(b)圖顯示小鼠造血細胞株(NFS-60)中Neulasta®(培非格司亭(pegfilgrastim))及G-CSF-hFc-5之體外生物活性的結果;第7(c)圖顯示人類PBMCs中p40及p40N303Q-hFc-5之體外生物活性的結果;第7(d)圖顯示鼠L929細胞中Enbrel®(恩博)及TNFR-hFc-5之體外生物活性的結果;及第7(e)圖顯示人類WISH細胞中thFc-1-AL(0)-IFN-β及thFc-1-AL(3)-IFN-β之體外生物活性的結果。
第8(a)圖顯示經由SC途徑(左框面)及IV途徑(右框面)給藥石蟹獼猴之Aranesp®(α達貝泊汀(darbepoetin alfa))、EPO-hFc-1或EPO-hFc-5之體內半衰期的結果;第8(b)圖顯示經由SC途徑(左框面)及IV途徑(右框面)給藥Sprague Dawley大鼠之LEUCOSTIM®(惠爾血添(filgrastim))及G-CSF-hFc-1之藥物動力學的結果;第8(c)圖顯示經由SC途徑給藥石蟹獼猴之p40N303Q-hFc-5及Enbrel®(恩博)之藥物動力學的結果;第8(d)圖顯示經由SC途徑給藥Sprague Dawley大鼠之TNFR-hFc-5及Enbrel®(恩博)之藥物動力學的結果。
第9(a)圖顯示經由SC途徑(上框面)及IV途徑(下框面)給藥石蟹獼猴之Aranesp®(α達貝泊汀(darbepoetin alfa))及EPO-hFc-5之體內生物活性的結果及第9(b)圖顯示經由SC途徑(上框面)及IV途徑(下框面)給藥潑累格.多雷(Sprague Dawley)大鼠之LEUCOSTIM®(惠爾血添)及G-CSF-hFc-1之 體內生物活性的結果。
本發明提供雜合人類免疫球蛋白Fc片段,其包含從N-端至C-端方向之鉸鏈區、CH2結構域及CH3結構域,其中鉸鏈區為至少人類IgD鉸鏈區或人類IgG1鉸鏈區的部分胺基酸序列;及CH2結構域為人類IgG4 CH2結構域,其一部分,在N-端區,經人類IgG2 CH2或人類IgD CH2結構域N-端區的4至37個胺基酸殘基置換。此雜合Fc片段,與生物活性分子,諸如生物活性分子連接時,產生Fc融合蛋白質,最小化Fc融合蛋白質的非特異性免疫反應、延長生物活性分子的血清半衰期及最優化生物活性分子的活性。
根據本發明之一個具體實施例的Fc融合蛋白質中,IgD CH2結構域N-端與IgG4 CH2結構域剩下部分的組合係設計為所形成之融合蛋白質的2個不同Ig次單元重組的區域為疏水性。所形成之融合蛋白質的疏水性區域將位於折疊蛋白質內部,而最小化不良之非特異性免疫反應。
如本文所使用,術語“Fc片段”或“Fc”意指包含免疫球蛋白之重鏈恆定區1(CH1)、重鏈恆定區2(CH2)及重鏈恆定區3(CH3),而不包含免疫球蛋白之重鏈及輕鏈之可變區及輕鏈恆定區1(CL1)的蛋白質。Fc可進一步包含重鏈恆定區的鉸鏈區。本文中雜合Fc或雜合Fc片段有時稱為“hFc”。
此外,本發明Fc片段可為具有天然糖鏈、比天然形式增長的糖鏈或比天然形式減短的糖鏈之形式,或可為去糖基化形式。可用所屬領域的普通方法而達到增加、減少或移除免疫球蛋白Fc糖鏈,諸如化學方法、酵素方法及使用微生物的遺傳工程方法。從Fc片段移除糖鏈造成與第一補體成分C1的C1q部分之結合親和力的顯著減少及抗體依賴型细胞介導的細胞毒殺作用(ADCC)或補體依賴型細胞毒殺作用(CDC)的減少或喪失,因此不會在體內誘發不必要的免疫反應。在這方面,去糖基化或非糖基化形式的免疫球蛋白Fc片段在一些情況下可能更適合本發明之目的而作為藥物載體。
如本文所使用,術語“去糖基化”意指從Fc片段酵素性移除糖部分,而術語“非糖基化”意指Fc片段係經由原核生物,較佳為E.coli.所製造的未糖基化的形式。
術語“雜合”,如本文所使用,意指編碼不同源的2個或更多個免疫球蛋白Fc片段的序列存在於單鏈免疫球蛋白Fc片段中。
具體實施例中,雜合人類Fc包含從N-端至C-端方向的鉸鏈區、CH2結構域及CH3結構域,其中鉸鏈區為至少人類IgD鉸鏈區或人類IgG1鉸鏈區的部分胺基酸序列;及CH2結構域為人類IgG4 CH2結構域,其一部分,在N-端區,經人類IgG2 CH2或人類IgD CH2結構域N-端區的4至37個胺基酸殘基置換。雜合人類Fc可經由共價 鍵在其N-端與生物活性分子的C-端連合。
另一個具體實施例中,生物活性分子-雜合Fc融合多肽可以下列式表示:N’-X-(Z1)p-Y-Z2-Z3-Z4-C’,或N’-(Z1)p-Y-Z2-Z3-Z4-(連接子)q-X-C’
其中N’為多肽N-端及C’為多肽C-端;Z1表明包含至少SEQ ID NO:7位置90至98的胺基酸殘基之C-端一部分的胺基酸序列;Y表明包含至少SEQ ID NO:7位置99至162的胺基酸殘基之C-端一部分的胺基酸序列;Z2表明包含至少SEQ ID NO:7位置163至199的胺基酸殘基之N-端一部分的胺基酸序列;Z3表明包含至少SEQ ID NO:6位置115至220的胺基酸殘基之C-端一部分的胺基酸序列;Z4表明包含至少SEQ ID NO:6位置221至327的胺基酸殘基之N-端一部分的胺基酸序列;p及q各為0或1之整數,其中Z2及Z3的胺基酸殘基總數在80至140間,包含80及140。連接子為連接子分子,及X為有興趣的生物活性分子。
在一個具體實施例中,Z3-Z4為由SEQ ID NO:6位置115至220之胺基酸殘基C-端部分及SEQ ID NO:6位置221至327之胺基酸殘基N-端部分的連續胺基酸序列組成的胺基酸序列。
根據本發明之一具體實施例,多肽的胺基酸殘基總數為154至288。
給藥予個體時,式N’-X-(Z1)p-Y-Z2-Z3-Z4- C’及N’-(Z1)p-Y-Z2-Z3-Z4-(連接子)q-X-C’之多肽相較於單獨使用生物活性分子X,增長生物活性分子X的循環半衰期。
連接子可衍生自人類白蛋白(CAA00606)。連接子可包括胺基酸序列EMP、ENDEMPAD、EENDEMPADLPS、CIAEVENDEMPADLPSLA、SHCIAEVENDEMPADLPSLA或PLLEKSHCIAEVENDEMPADLPSLAADFVESKD。或者,連接子可為合成連接子。合成連接子可為由總共10至20個Gly及Ser殘基組成的肽。在一個具體實施例中,這種Gly-Ser連接子為GGGGSGGGGSGGGSG。
Z1可包括至少IgD(SEQ ID NO:7)CH1結構域的一部分。Z1可包括IgD CH1結構域C-端區的5至9個或7至9個連續胺基酸殘基(SEQ ID NO:7位置90至98)。一些具體實施例中,Z1可為IgG1 CH1結構域或IgD CH1結構域的5、6、7、8或9個C-端胺基酸殘基。
一些具體實施例中,Z1為包含SEQ ID NO:7位置90至98的胺基酸殘基的胺基酸序列。Z1可為由SEQ ID NO:7位置90至98的5至9個胺基酸殘基組成的胺基酸序列。Z1亦可為由SEQ ID NO:7位置90至98的胺基酸殘基組成的胺基酸序列。
Y可包括至少人類IgG1或IgD鉸鏈區的一部分。Y可包括IgG1鉸鏈區或IgD鉸鏈區C-端的5或更多個,或10或更多個連續胺基酸殘基。某些具體實施例中, Y可為包含SEQ ID NO:7位置158至162之胺基酸殘基、SEQ ID NO:7位置153至162之胺基酸殘基、SEQ ID NO:7位置143至162之胺基酸殘基、SEQ ID NO:7位置133至162之胺基酸殘基或SEQ ID NO:7位置99至162之胺基酸殘基的胺基酸序列。
Z2可包括人類IgG2 CH2結構域N-端區或IgD CH2結構域N-端區的4至37個、6至30個、6至12個、6至8個、8個或6個連續胺基酸殘基。某些具體實施例中,Z2可為人類IgD CH2結構域的8個N-端胺基酸殘基(SEQ ID NO:7位置163至170的胺基酸殘基)。
Z2及Z3的胺基酸殘基總數可在90至120間,包含90及120,或在105至115間,包含105及115。
Z4可為包含IgG4 CH3結構域的90或更多個,或100或更多個連續胺基酸殘基(SEQ ID NO:6位置221至327之胺基酸殘基)的胺基酸序列。Z4可為大於98%或95%之人類IgG1、IgG2、IgG3或IgG4 CH3結構域胺基酸殘基的胺基酸殘基。一個示例性之具體實施例中,Z4為包括完整人類IgG CH3結構域胺基酸序列的胺基酸序列。例如,Z4為人類IgG4 CH3結構域的胺基酸序列,根據Kabat之EU索引編號,相當於人類IgG4胺基酸殘基341至447(相當於SEQ ID NO:6位置221至327的胺基酸殘基)。
在一個具體實施例中,Y可為包含至少人類IgD鉸鏈區C-端區的一部分(SEQ ID NO:7位置99至162之胺基酸殘基)的胺基酸序列,p可為1或0(零),Z2可為 包含至少人類IgD CH2結構域N-端區的一部分(SEQ ID NO:7位置163至199之胺基酸殘基)的胺基酸序列,及Z3可為包含至少人類IgG4 CH2結構域C-端區的一部分(SEQ ID NO:6位置121至220之胺基酸殘基)的胺基酸序列。例如,Y可為SEQ ID NO:7位置158至162、133至162或99至162的胺基酸殘基,Z2可為SEQ ID NO:7位置163至170的胺基酸殘基,及Z3可為SEQ ID NO:6位置121至220的胺基酸殘基。
此具體實施例中,p為1時,Z1可為包含人類IgD CH1結構域C-端區(SEQ ID NO:7位置90至98之胺基酸殘基)的胺基酸序列。例如,Z1可為SEQ ID NO:7位置90至98的胺基酸殘基。
此具體實施例中,Y可為人類IgD鉸鏈區C-端之20個或更多個的連續胺基酸殘基、30個或更多個的連續胺基酸殘基、40個或更多個的連續胺基酸殘基、50個或更多個的連續胺基酸殘基或60個或更多個的連續胺基酸殘基(SEQ ID NO:7位置99至162的胺基酸殘基)。Z3可包括SEQ ID NO:6位置121至220胺基酸殘基C-端的71至100個連續胺基酸殘基。Z2及Z3的胺基酸殘基總數可為108。
具體實施例中,本發明提供雜合Fc,該雜合Fc為hFc-1、hFc-2、hFc-3、hFc-4、hFc-5或hFc-6之一,如第1圖及第2圖所示,或如第3圖及第4圖所示的thFc-1或thFc-2。雖然第1圖及第3圖描繪雙鏈Fcs,惟本發明包 含單鏈雜合Fc分子。本發明亦包含編碼雜合Fc的多核苷酸分子。彼等包含,但不限於,如SEQ ID NO:1(hFc-5)所示之多核苷酸序列。
人類免疫球蛋白的胺基酸序列為所屬領域所習知且儲存於公共可存取的儲存庫。例如,人類IgG1恆定區、人類IgG2恆定區、人類IgG3恆定區、人類IgG4恆定區及人類IgD恆定區的胺基酸序列可分別得自CAA75032、CAC20455、CAC20456、AAH25985及P01880。
生物活性分子X可為可溶性蛋白質。其可包含,但不限於,激素、細胞介素、生長因子、共激分子,激素受體、細胞介素受體、生長因子受體或短肽。例如,X可為EPO、p40、G-CSF、TNF受體或其變異體/片段。X可為GM-CSF、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-10、IL-10受體、TGF-β、TGF-β受體、IL-17、IL-17受體、VII因子、CSCL-11、FSH、人類生長激素、骨形成蛋白-1、CTLA4、PD-1、GLP-1、β細胞素、OPG、RNAK、α干擾素、β干擾素或彼等之變異體/片段。亦可包含,但不限於,抗體之Fab區。生物活性分子亦可為分泌性蛋白質。在一個具體實施例中,生物活性分子不屬於免疫球蛋白家族。
術語“變異體”意指與參考核酸或多肽不同但保有其基本性質的多核苷酸或核酸。一般而言,變異體總體非常類似,而且,在許多區域與參考核酸或多肽相同。而且,術語“變異體”意指生物活性分子藥物的生物 活性部分,其保有至少一種如本文或所屬領域所習知的功能及/或治療性質。一般而言,變異體總體非常類似,而且,在許多區域與有興趣的生物活性多肽的胺基酸序列相同。
本發明亦提供包括或者由至少具有與,例如,多肽的胺基酸序列有80%、85%、90%、95%、96%、97%、98%、99%或100%一致性的胺基酸序列所組成的蛋白質。本發明亦提供這些多肽的片段。本發明包含的另外多肽為多核苷酸編碼的多肽,該多核苷酸在下列條件下與編碼本發明多肽的核酸分子補體雜合:嚴格雜合條件下(如,與和濾膜結合的DNA於約45℃,在6x氯化鈉/檸檬酸鈉(SSC)中雜合,隨後於約50至65℃,在0.2xSSC,0.1%SDS中洗滌1次或多次)、高度嚴格條件下(如,與和濾膜結合的DNA於約45℃,在6x氯化鈉/檸檬酸鈉(SSC)中雜合,隨後於約68℃,在0.1xSSC,0.2% SDS中洗滌1次或多次)或在所屬領域之技術人員習知的其他嚴格雜合條件下(参見,例如,Ausubel,F.M.et al.,eds.,1989 Current protocol in Molecular Biology,Green publishing associates,Inc.,及John Wiley & Sons Inc.,New York,at pages 6.3.1 6.3.6 and 2.10.3)。本發明亦包含編碼這些多肽的多核苷酸。
具有與查詢(query)胺基酸序列有至少,例如,95%“一致性”的胺基酸序列的多肽,意指標的多肽序列(subject polypeptide sequence)可包含查詢胺基酸序列的每100個胺基酸各有達5個胺基酸變化,除此之外與查詢胺基酸序列一致。換言之,為得到具有與查詢胺基酸序 列至少95%一致性的胺基酸序列之多肽,可用另外的胺基酸插入、缺失或取代標的序列中達5%之胺基酸殘基。這些參考序列的改變可發生於參考胺基酸序列的胺基或羧基端位置或這些端點位置間之任何地方,在參考序列的殘基中各自地或呈一個或多個接續群組而散布在參考序列中。
任何特別之多肽是否與,例如,本發明白蛋白融合蛋白質或其片段之胺基酸序列至少80%、85%、90%、95%、96%、97%、98%或99%相同,為一個實際問題,而通常可用習知之電腦程式測定。測定查詢序列(本發明序列)及標的序列之間最佳整體配對的較佳方法,亦稱為整體序列排比,可使用以Brutlag et al.(Comp.App.Biosci.6:237 245(1990))計算法為基礎的FASTDB電腦程式測定。序列比對中查詢序列及標的序列兩者皆為核苷酸序列或皆為胺基酸序列。整體序列排比結果以一致性百分比表示。使用於FASTDB胺基酸比對的較佳參數為:矩陣(Matrix)=PAM 0、k-元組(k-tuple)=2、失配罰值(Mismatch Penalty)=1、連結罰值(Joining Penalty)=20、隨機化群組長度(Randomization Group Length)=0、截止評分(Cutoff Score)=1、窗口尺寸(Window Size)=序列長度、缺口罰值(Gap Penalty)=5、缺口尺寸罰值(Gap Size Penalty)=0.05、窗口尺寸=500或任何一個長度較短的標的胺基酸序列長度。
變異體通常具有與該變異體有相同長度之一段正常HA或治療性蛋白質至少75%(較佳至少約80%、90%、95%或99%)之序列一致性。使用特製用於序列相同 性搜索的blastp、blastn、blastx、tblastn及tblastx程式採用的計算法(Karlin et al.,Proc.Natl.Acad.Sci.USA 87:2264 2268(1990)及Altschul,J.Mol.Evol.36:290 300(1993),完全納入參考),經BLAST(基本區域排比搜索工具(Basic Local Alignment Search Tool))分析測定核苷酸或胺基酸序列級別的同源性或一致性。
本發明之多核苷酸變異體可在編碼區、非編碼區或兩者中含有變化。特別佳為含有產生沉默性取代、添加或缺失但不會改變編碼多肽的性質或活性之改變的多核苷酸變異體。以由於遺傳密碼子簡併而經由沉默性取代產生的核苷酸變異體為較佳。再者,多肽變異體其中少於50、少於40、少於30、少於20、少於10個,或5至50、5至25、5至10、1至5或1至2個胺基酸以任何組合經取代、缺失、添加者亦為較佳。可因種種理由而產生多核苷酸變異體,如,為特別的寄主而優化密碼子表現(改變人類mRNA密碼子成為細菌寄主,諸如,酵母菌或E.coli偏好的密碼子)。
為了建構各種Fc融合蛋白質諸如EPO-Fc融合建構物、G-CSF-Fc融合建構物或人類p40-Fc融合建構物,而分別從NP_000790(SEQ ID NO:8)、CAA27291(SEQ ID NO:9)、AAG32620(SEQ ID NO:10)及NP_001057(SEQ ID NO:13)得到人類EPO、人類G-CSF、人類p40及人類TNF受體的胺基酸序列。在一個具體實施例中,位置303之胺基酸殘基Asn經Gln置換的經修飾人類p40係與多肽連接。
根據本發明的另一態樣,提供含有經改造的Fc區之全抗體。
根據一個具體實施例,本發明提供製造融合蛋白質的方法,該方法包括:(i)將編碼融合蛋白質的DNA分子導入哺乳動物寄主細胞、(ii)使該細胞在表現融合蛋白質的生長培養基條件下生長、(iii)收獲經產生的融合蛋白質。
另一個示例性之具體實施例中,提供包括上述融合蛋白質或抗體分子或抗體片段的醫藥組成物。亦提供經由給予該醫藥組成物而治療或預防某些症狀的方法。例如,提供一種方法,該方法(i)降低自體免疫疾病的症狀/預防或治療自體免疫疾病、(ii)抑制移植排斥反應、(iii)治療/預防內毒素誘發之休克,包括給予治療有效量的雜合Fc及p40蛋白質或其變異體/片段的融合蛋白質。
組成物可包括藥物載劑。藥物載劑可為任何適合將抗體投予患者的可相容、無毒物質。載劑中可包含無菌水、酒精、脂肪、蠟及惰性固體。藥學上可接受之輔劑(緩衝劑、分散劑)亦可納入醫藥組成物中。
可用多種方式將抗體組成物給藥予個體。例如,可經腸外給藥醫藥組成物,如,皮下、肌肉內或靜脈。可依慣用、熟知的滅菌技術將這些組成物滅菌。如需要使接近生理條件,組成物可含有藥學上可接受之輔助物質,諸如pH調節及緩衝劑、毒性調節劑等,例如乙酸鈉、氯化鈉、氯化鉀、氯化鈣、乳酸鈉等。這些配方中融合蛋 白質、抗體或抗體片段的濃度可有很大變化,如,以重量計,從少於約0.5%,通常約1%或至少約1%,到差不多15或20%,且主要依照所選擇的特定給藥模式,基於流體體積、黏度等而選擇。
本發明亦提供編碼融合蛋白質的單離核酸分子及承載該核酸分子的表現載體。此等核酸可直接投予需要經該核酸編碼之多肽的個體。或者,在培養基中表現該核酸而製造多肽然後給藥予個體。
術語“肽”、“多肽”或“蛋白質”意指有2至40個胺基酸的分子,較佳為有3至20個胺基酸者及最佳為有6至15個胺基酸者。示例性的肽可隨機經由上文引證之任何方法而產生、從肽庫中取得(如,噬菌體展示庫)或經由蛋白質分解而衍生。
術語“生理活性多肽”、“生物活性分子”、“生理活性蛋白質”、“活性多肽”、“多肽藥物”及“蛋白質藥物”,如本文所使用,彼等之意義是可以互換的,且特點為彼等以生理活性形式展現各種體內生理功能。
由於其容易被體內之蛋白質分解酵素變性或降解的性質,多肽具有不能長時間持續生理作用的缺點。然而,當多肽藥物與根據本發明具體實施例的免疫球蛋白Fc片段連接(或偶合)而形成融合蛋白質時,該藥物增加結構穩定性及血清半衰期。而且,相較於其他已知多肽藥物配方,連接Fc片段的多肽在生理活性上少降低很多。 因此,相較於傳統多肽藥物的體內生物可利用性,根據本發明包括多肽藥物及Fc片段或多肽藥物及Fc片段的共軛物之融合多肽具有明顯改善體內生物可利用性的特點。此亦在本發明具體實施例中有清楚說明。即,與本發明Fc片段連接時,相較於彼等之天然形式或其他傳統融合形式,IFN-α、G-CSF、EPO、p40、TNF受體及其他蛋白質藥物展現增加之體內生物可利用性。
應瞭解本發明係利用傳統重組DNA方法學產生Fc融合蛋白質、含有根據本發明之改造Fc區的抗體及在實踐本發明中有效用的抗體片段。Fc融合建構物較佳產生在DNA級別,將形成的DNAs整合至表現載體,並表現而製造本發明之融合蛋白質、抗體或抗體片段。
如本文所使用,瞭解術語“載體”意指任何核酸,該核酸包含能夠納入寄主細胞並與寄主細胞基因體重組及整合,或如游離基因體(episome)自主複製的核苷酸序列。此等載體包含線狀核酸、質體、噬菌質體、黏質體、RNA載體、病毒載體等。病毒載體的非限制實例包含反轉錄病毒、腺病毒及腺相關病毒。如本文所使用,瞭解術語“基因表現”或目標蛋白質“表現”意指DNA序列轉錄、mRNA轉錄本的轉譯及Fc融合蛋白質產物或抗體或抗體片段的分泌。
適用的表現載體為RcCMV(Invitrogen,Carlsbad)或其變異體。適用的表現載體應攜帶人類巨細胞病毒(CMV)啟動子而啟動建構哺乳動物細胞中目的基因的 轉錄及攜帶牛生長激素多腺苷酸化訊號序列而增加轉錄後RNA的穩定狀態程度。本發明的具體實施例中,表現載體為pAD11,其係RcCMV的修飾載體。攜帶編碼生物活性分子藥物的核苷酸序列之表現載體的實例可包含,而不限於,pAD11 EPO-hFc-1、pAD11 G-CSF-hFc-1、pAD11 p40N303Q-hFc-1、pAD11 EPO-hFc-6、pAD11 G-CSF-hFc-6、pAD11 p40N303Q-hFc-6、pAD11 EPO-hFc-5、pAD11 G-CSF-hFc-5、pAD11 p40N303Q-hFc-5或pAD11 TNFR-hFc-5,如實例中更詳細之說明。
可用本發明DNA序列轉化或轉染適當的寄主細胞,並利用於表現及/或分泌目標蛋白質。目前使用於本發明的較佳寄主細胞包含不死融合瘤細胞、NS/0骨髓瘤細胞、293細胞、中國倉鼠卵巢細胞、HeLa細胞及COS細胞。
一直使用於哺乳動物細胞中製造高程度表現的融合蛋白質或抗體或抗體片段之一種表現系統為DNA建構物,該DNA建構物從5'至3'之方向編碼分泌盒(secretion cassette),包含訊號序列及免疫球蛋白Fc區,及目標蛋白質諸如p40、EPO、G-CSF、TNF受體。在這樣的系統中成功地表現數種目標蛋白質包含,例如,IL2、CD26、Tat、Rev、OSF-2、ss;IG-H3、IgE受體、PSMA及gp120。這些表現建構物揭露於Lo等人之U.S.專利申請號5,541,087及5,726,044,其內容以參考方式併入本文中。
發明之融合蛋白質或抗體分子或抗體片段 在表現時可能或可能不包含訊號序列。如本文所使用,瞭解術語“訊號序列”意指指導生物活性分子藥物分泌的節段;融合蛋白質在寄主細胞中轉譯後裂解。發明之訊號序列為多核苷酸,該多核苷酸編碼起始傳輸蛋白質穿過內質網膜的胺基酸序列。適用於本發明的訊號序列包含抗體輕鏈訊號序列,如,抗體14.18(Gillies et al.,J.Immunol.Meth.1989.125:191-202),抗體重鏈訊號序列,如,MOPC141抗體重鏈訊號序列(Sakano et al.,Nature 1980.286:676-683),及任何其他所屬領域習知的訊號序列(參見,如Watson et al.,Nucleic Acids Research 1984.12:5145-5164)。
如所屬領域之技術人員所明白的,使用於分泌盒之特別訊號序列的合適性需要一些常規試驗。
免疫球蛋白Fcyl基因的Fcyl區較佳包含至少免疫球蛋白鉸鏈結構域的一部分及至少CH3結構域,或更佳地至少鉸鏈結構域的一部分、CH2結構域及CH3結構域。如本文所使用,瞭解免疫球蛋白鉸鏈區的“部分”意指含有至少1個,較佳2個能夠形成鍵間二硫鍵的半胱胺酸之免疫球蛋白鉸鏈的一部分。編碼分泌盒的DNA可為其基因體組態或其cDNA組態。某些情況下,從人類免疫球蛋白Fcy2重鏈序列製造Fc區為有利。雖然基於人類免疫球蛋白y1及y2序列的Fc融合體在小鼠中作用相似,但是基於y2序列的Fc融合體可在人類中展現優異藥物動力學。
再者,這些恆定區建構物的取代或缺失(其中恆定區結構域的一個或多個胺基酸殘基經取代或缺失) 亦是有用的。實例之一是將胺基酸取代導入上CH2區而創建有減低之Fc受體親和力的Fc變異體(Cole et al.(1997)J.Immunol.159:3613)。所屬領域普通之技術人員可使用熟知的分子生物技術而製備這些建構物。
能夠與本發明免疫球蛋白Fc片段共軛的蛋白質藥物的非限制實例包含人類生長激素、骨形成蛋白-1、生長激素釋放激素、生長激素釋放肽、干擾素及干擾素受體、白血球生長刺激因子(G-CSF)、顆粒單核球群落刺激生長因子(GM-CSF)、類升糖素胜肽、G蛋白偶聯受體、介白素及介白素受體、酵素、T細胞因子、紅血球生成素、高糖基化紅血球生成素、血管生成素、VII因子、VIIa因子、VIII因子、IX因子、XIII因子、胞漿素原活化因子、血纖維蛋白結合肽、脲激酶、上皮細胞生長因子、表皮細胞生長因子、濾泡刺激素、黃體激素、黃體激素釋放激素、神經生長因子、細胞表面抗原、病毒疫苗抗原、單株抗體、多株抗體、抗體片段。特別地,較佳作為生物活性分子者係包含人類生長激素、干擾素(α-、β-及γ-干擾素等)、白血球生長刺激因子(G-CSF)、紅血球生成素(EPO)、TFN受體、p40及抗體片段,其在治療或預防疾病而給藥於身體時需頻繁給藥。此外,某些衍生物只要相較於天然生物活性分子彼等實質上具有相同或改進的功能、結構、活性或穩定性者亦包含在本發明生物活性分子的範疇內。本發明中,最佳多肽藥物為α-干擾素。
本發明的另一態樣,IgG-Fc及IgG-CH融合 蛋白質,例如,係合成為可組合形成二聚體之單體。通常,在IgG鉸鏈區藉由二硫鍵連接二聚體。分泌IgG融合蛋白質之細胞的條件培養基可含有IgG融合蛋白質單體及二聚體的混合物。作為人類治療之用途,最好使用IgG融合蛋白質單體或二聚體其一的同質群體,但不是兩種形式的混合物。
本發明亦提供得到本質上為純製劑的二聚體活性多肽-IgG融合蛋白質的方法。一般經由得到能夠表現IgG融合蛋白質的寄主細胞、收集條件培養基及經由管柱層析程序從單體融合蛋白質、聚集體及汙染蛋白質而純化二聚體融合蛋白質而完成該方法。表現IgG融合蛋白質的適當寄主細胞包含酵母菌、昆蟲、哺乳動物或其他真核細胞。具體實施例中,寄主細胞可為哺乳動物細胞,特別是COS、CHO或BHK細胞。
本發明亦提供多肽藥物及Fc片段的新穎融合蛋白質。在一個具體實施例中,多肽藥物諸如EPO、p40、G-CSF或TNF受體不經介於其間的肽連接子而直接與雜合Fc片段連接。另一個具體實施例中,多肽藥物經由1至50個胺基酸的肽連接子而彼此連接,及更佳為經由1至7個胺基酸的肽連接子。為此目的,特別適用的連接子包含由Gly及Ser殘基(如,Gly Gly Ser Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser)組成或由衍生自人類白蛋白的胺基酸組成的免疫非活性肽。
當使用連接子時,可以特定方向製作該連 接子及多肽藥物。即,可使該連接子與雜合Fc片段的N-端、C-端或游離基連接,亦可連接多肽藥物的N-端、C-端或游離基。當連接子為肽連接子時,連結可發生於特定連接位點。
本發明亦提供製造多肽藥物-雜合Fc片段的方法。
本發明亦提供治療經由給藥多肽藥物而減緩之症狀的方法。這些方法包含將有效量的本發明多肽給藥予具有症狀的哺乳動物,而該症狀可能是或可能不是直接與目的疾病有關。例如,可將編碼所需多肽藥物-雜合Fc片段融合蛋白質的核酸,諸如DNA或RNA,給藥予個體(較佳為哺乳動物)作為治療劑。此外,可將含有編碼多肽藥物-雜合Fc片段融合蛋白質的核酸之細胞給藥予個體(較佳為哺乳動物)作為治療劑。再者,可將多肽藥物-雜合Fc片段融合建構物給藥予個體,較佳為哺乳動物,作為治療劑。此等嵌合多肽可經靜脈、皮下、口服、口腔、舌下、鼻內、腸外、直腸、陰道或經肺部途徑而給藥。
白血球生長刺激因子(G-CSF)為對顆粒細胞的增殖及分化很重要的蛋白質,特別是中性粒細胞。顆粒細胞吞噬微生物侵入者及細胞碎片及因此對感染反應至關重要。化學療法破壞顆粒細胞及/或降低顆粒細胞製造。因此,本發明G-CSF(包含其變異體/片段)-fc融合蛋白質可適用於治療/預防/改善化學療法誘導之骨髓移植後的嗜中性白血球缺乏骨髓抑制症、急性白血病、再生不良性貧血、 骨髓造血不良症候群、嚴重慢性嗜中性白血球缺乏症或移植之周邊血液先驅細胞移動的症狀。
本發明之融合蛋白質不僅適用作為治療劑,而且所屬領域之技術人員理解該融合蛋白質適用於製造用於診斷的抗體。同樣地,使用本發明的方法亦包含為此用途而適當地以如載體或其他投遞系統給藥DNA或RNA。
再者,可考量本發明融合蛋白質亦可與多數不同生物活性分子一起給予有意的接受者。然而可考量由所屬領域技術人員技術水平內的常規實驗測定融合蛋白質與其他分子的最優組合、給藥模式、劑量。
[實施例]
經由下列非限制實例進一步說明本發明。
<實施例1>製備hFc-1、hFc-2、hFc-3、hFc-4、hFc-5及hFc-6融合蛋白質的表現載體
hFc-1包含IgG1 CH1區C-端的9個胺基酸(90至98)、IgG1鉸鏈區(99至113)、IgG2 CH2區N-端的6個胺基酸(111至116)、IgG4 CH2區的103個胺基酸(118至220)及IgG4 CH3區的107個胺基酸(221至327)(第1及2圖)。為得到各自編碼人類EPO(SEQ ID NO:2)、人類G-CSF(SEQ ID NO:3)及人類p40N303Q(衍生自人類p40次單元第303個胺基酸之Asn經Gln取代的突變體)(顯示p40N303Q之核苷酸序列為SEQ ID NO:4,及顯示人類p40之胺基酸序列為SEQ ID NO:10)的密碼子優化核苷酸,分別地,經由TOP Gene Technologies(Quebec,Canada)(www.topgenetech.com)的客製化服務合成這些核苷酸分子。優化基因的密碼子使用對增加蛋白質表現水平是很有幫助的。密碼子使用模式在生物體間是不同的。一些密碼子在一種生物體內使用很頻繁但是在另一種生物體內卻很少使用。這種密碼使用的偏差歸因於轉譯效率,生物體合成編碼蛋白質的能力。在EPO、G-CSF及p40N303Q之ATG序列的5'端造出EcoR I位點及在hFc-1之末端密碼子的3'端造出Xba I位點,而將各融合基因插入表現載體pAD11(SEQ ID NO:5)。從RcCMV骨架(得自Invitrogen,Carlsbad)得到表現載體pAD11。pAD11包含衍生自巨細胞病毒(CMV)的啟動子、衍生自牛生長激素的多腺核苷酸化(poly(A))序列、衍生自兔β球蛋白的球蛋白間插序列(gIVS)(Mol Cell Biol,1988 8:4395)等。有一些從RcCMV載體(Invitrogen)的修飾而製作pAD11載體。用Xho I酵素處理而移除新黴素抗性區及在CMV啟動子區的3'添加gIVS。此外,在CMV啟動子的5'添加小鼠二氫葉酸還原酶(DHFR)基因(Pubmed,NM 010049)。組合包含上述數種要素的許多表現試驗之後研製成pAD11載體。吾等未發表的結果中,相較於RcCMV載體(Invitrogen),pAD11載體顯示增加約12倍表現水平。在EPO、G-CSF及p40N303Q編碼序列的3'端及hFc-1編碼序列的5'端造出Nhe I位點而製作框內EPO、G-CSF及p40N303Q的3'端及hFc-1的5'端間的連接位點。使用各自限制酶位點而次選殖後,產生hFc-1融合EPO、G-CSF或p40N303Q的最後表現載體,然 後分別指明為pAD11 EPO-hFc-1、pAD11 G-CSF-hFc-1及pAD11 p40N303Q-hFc-1。
hFc-6包含IgD CH1結構域C-端的9個胺基酸(90至98)、IgD鉸鏈區的64個胺基酸(99至162)、IgD CH2結構域N-端的8個胺基酸(SHTQPLGV;163至170)、IgG4 CH2結構域的100個胺基酸(121至220)及IgG4 CH3結構域的107個胺基酸(221至327)(第1及2圖)。為得到編碼hFc-6的密碼子優化核苷酸分子,而由TOP Gene Technologies(www.topgenetech.com)的客製化服務合成該基因。使用包含於hFc-6編碼區N-端(90及91胺基酸)的NheI位點(gctagc:Ala-Ser)而製作框內EPO、G-CSF或p40N303Q的3'端及hFc-6的5'端間的融合。而且,在hFc-6基因的3'端造出Xba I位點而將各hFc-6融合基因插入pAD11載體。使用各自限制酶位點而次選殖後,產生hFc-6融合EPO、G-CSF及p40N303Q的最後表現載體,然後分別指定為pAD11 EPO-hFc-6、pAD11 G-CSF-hFc-6及pAD11 p40N303Q-hFc-6。hFc-2、hFc-3、hFc-4及hFc-5具有相同的CH2及CH3區,但具有不同大小的IgD鉸鏈(第1及2圖)。hFc-2、hFc-3、hFc-4及hFc-5分別包含IgD鉸鏈C-端的5個胺基酸(158至162)、10個胺基酸(153至162)、20個胺基酸(143至162)、30個胺基酸(133-162)(第1及2圖)。由TOP Gene Technologies(www.topgenetech.com)的客製化服務合成融合基因總尺寸的最小基因片段而製作EPO、G-CSF、p40N303Q或TNFR(腫瘤壞死因子受體II)(SEQ ID NO:12)及編碼這 些hFcs的核酸分子間的融合基因。與編碼鉸鏈及各hFc-2、hFc-3、hFc-4或hFc-5 CH2區N-端的核苷酸分子融合的各EPO、G-CSF、p40N303Q或TNFR合成片段包含從全部EPO、G-CSF、p40N303Q或TNFR序列至相同酵素位點,位於IgG4(SEQ ID NO:6)CH2區第138至140胺基酸殘基的BstE II位點(GGTGACC)的序列。分別用位於5'端及3'端的EcoR I及BstE II切割包含數個基因片段的次選殖載體,然後接合hFc-6的CH2-CH3區。最後,用EcoR I及Xba I位點次選殖各融合基因至pAD11,然後分別指定為pAD11 EPO-hFc-2、pAD11 EPO-hFc-3、pAD11 EPO-hFc-4、pAD11 EPO-hFc-5、pAD11 G-CSF-hFc-2、pAD11 G-CSF-hFc-3、pAD11 G-CSF-hFc-4、pAD11 G-CSF-hFc-5、pAD11 p40N303Q-hFc-2、pAD11 p40N303Q-hFc-3、pAD11 p40N303Q-hFc-4、pAD11 p40N303Q-hFc-5及pAD11 TNFR-hFc-5。
<實施例2>製備偶合IFN-β之thFc-1及thFc-2的表現載體
thFc-1包含人類組織血漿素原活化因子(tPA)訊號序列的23個胺基酸(MDAMLRGLCCVLLLCGAVFVSPS)、IgG1鉸鏈區的15個胺基酸(99至113)、IgG2 CH2區N-端的6個胺基酸(111至116)、IgG4 CH2區的103個胺基酸(118至220)及IgG4 CH3區的107個胺基酸(221至327)(第3圖)。thFc-2包含tPA訊號序列的23個胺基酸(MDAMLRGLCCVLLLCGAVFVSPS)、IgD鉸鏈區的15個胺 基酸(148至162)、IgD CH2區N-端的8個胺基酸(163至170)、IgG4 CH2區的100個胺基酸(121至220)及IgG4 CH3區的107個胺基酸(221至327)(第3圖)。為得到編碼與缺失訊號序列的人類IFN-β之N-端偶合的thFc-1或thFc-2的密碼子優化核苷酸,而由TOP Gene Technologies(Quebec,Canada)(www.topgenetech.com)的客製化服務合成這些核苷酸分子。在thFc-1或thFc-2的5'端造出EcoR I位點及在IFN-β末端密碼子的3'端造出Not I位點而將各融合基因插入表現載體pAD11(SEQ ID NO:5)。使用各自限制酶位點而次選殖後,分別指定最後表現載體為pAD11 thFc-1-AL(0)-IFN-β及pAD11 thFc-2-AL(0)-IFN-β。
由TOP Gene Technologies(www.topgenetech.com)的客製化服務合成從thFc-1 CH3區Pst I位點經由不同尺寸的白蛋白連接子(3aa、8aa、13aa、18aa、23aa及33aa)或Gly-Ser連接子(15aa)而與缺失訊號序列的IFN-β偶合之基因片段(第4圖),藉此製作經由不同尺寸的白蛋白連接子或Gly-Ser連接子而與IFN-β偶合的thFc。為了將7個不同的基因片段插入表現載體pAD11 thFc-1-AL(0)-IFN-β及pAD11 thFc-2-AL(0)-IFN-β,而在彼等之5'端造出Pst I位點及在IFN-β末端密碼子的3'端造出Not I位點。使用各自限制酶位點而次選殖後,指定最後表現載體為pAD11 thFc-1-AL(1)-IFN-β、pAD11 thFc-1-AL(2)-IFN-β、pAD11 thFc-1-AL(3)-IFN-β、pAD11 thFc-1-AL(4)-IFN-β、pAD11 thFc-1-AL(5)-IFN-β、pAD11 thFc-1-AL(6)-IFN-β、pAD11 thFc-1-GS-IFN-β、pAD11 thFc-2-AL(1)-IFN-β、pAD11 thFc-2-AL(2)-IFN-β、pAD11 thFc-2-AL(3)-IFN-β、pAD11 thFc-2-AL(4)-IFN-β、pAD11 thFc-2-AL(5)-IFN-β、pAD11 thFc-2-AL(6)-IFN-β及pAD11 thFc-2-GS-IFN-β。
<實施例3>表現人類EPO-hFcs、人類G-CSF-hFcs、人類p40N303Q-hFcs、人類TNFR-hFc-5及thFcs-IFN-β蛋白質
使用COS-7細胞進行表現試驗並使用補充10%胎牛血清(Hyclone,South Logan)及抗生素(Invitrogen,Carlsbad)的DMEM培養基(Invitrogen,Carlsbad)培養。使用常規電穿孔法將編碼EPO-hFcs、G-CSF-hFcs、p40N303Q-hFcs、TNFR-hFc-5、thFcs-IFN-β的載體轉染至5X106 COS-7細胞。轉染後48小時,收取上清液及細胞。用數種試劑盒使用所有樣本做ELISA檢測(EPO用R&D system,Minneapolis,#DEP00;G-CSF用Biosource,Camarillo,#KHC2032;p40N303Q用R&D system,Minneapolis,#DY1240;TNFR用R&D system,Minneapolis,#DRT200;IFN-β用PBL Biomedical Laboratories,#41410-1A)及用抗人類IgG抗體(Santa Cruz Biotechnology,Santa Cruz)做西方墨點法分析,而檢查各載體融合蛋白質的表現。結果,上清液及細胞溶解產物中的所有載體均顯示正確表現模式(數據未顯示)。
<實施例4>hFc-融合蛋白質的純化
用α-MEM(Invitrgen,Carlsbad)、10%透析胎牛血清 (JRH Biosciences,Kansas)、HT添加物(Invitrogen,Carlsbad)及抗生素(Invitrogen,Carlsbad)培養CHO/DHFR-/-細胞(中國倉鼠卵巢細胞,DG44,ATCC)。依照常規CaPO4共沉澱法將表現載體轉染至CHO細胞。轉染後48小時,使CHO細胞從盤中脫離並稀釋數倍(1/2、1/5、1/20、1/50、1/100、1/200、1/500)。將稀釋細胞舖佈於100mm培養皿並用沒有HT添加物的培養基培養。篩選過程中,不用繼代而補充不含HT添加物的新鮮培養基至細胞。舖佈後2至3週產生群落並將個別的群落移至48孔盤。ELISA檢測後篩選陽性群落做EPO、G-CSF、p40N303Q及TNFR檢測。將顯示最高表現的各群落使用無血清的培養基(JRH Biosciences,Kansas)進行大規模(5L)培養。使用收取的無血清上清液進行各融合蛋白質的純化。於純化,用20mM磷酸鈉緩衝液(pH 7.0)平衡HiTrap重組蛋白質A FF(Amersham biosciences,Piscataway)管柱。將過濾的上清液加入管柱中並用0.1M檸檬酸鈉(pH 3.0)洗提。用膜(MWCO 12-14K,Spectrapor,Rancho Dominguez)透析超過3次後,最後得到洗提蛋白質。所有蛋白質樣本濃度均用BCA試劑盒(Pierce Biotechnology,Rockford)做總蛋白質的測量及用ELISA試劑盒做EPO-hFcs、G-CSF-hFcs、p40N303Q-hFcs、TNFR-hFc-5及thFcs-IFN-beta的測量。
<實施例5>Fc γ RI及C1q結合檢測
為了探討hFc-5-融合蛋白質是否結合Fc γ RI及C1q,而將MabThera®(利妥昔,Roche)、hIgG1(Calbiochem,Cat#, 400120)、Enbrel®(恩博,Amgen)、EPO-hFc-5、G-CSF-hFc-5及p40N303Q-hFc-5系列稀釋(2倍,從2ug/ml到16ng/ml)並塗布於8孔條帶(COSTAR,New York)於4℃過夜。製作標準曲線,亦將Fc γ RI(R&D,cat# BAF1257)或C1q(AbD serotech,Cat#.2221-5504)系列稀釋(2倍,從2ug/ml到32ng/ml)並塗布於8孔條帶(COSTAR,New York)於4℃過夜。用洗滌緩衝液(含0.05% Tween的PBS)洗滌各條帶之樣本並於RT用10% FBS的PBS溶液阻斷1小時後,將2ug/ml Fc γ RI或C1q加入各孔中隨後在室溫(RT)培養2小時。用洗滌緩衝液洗滌所有條帶。於C1q結合試驗,將2.5ug/mlHRP共軛抗C1q(AbD serotech,cat#.2221-5004P)加入各孔中隨後在黑暗條件下於RT培養30分鐘。於Fc γ RI結合試驗,將2ug/ml生物素標記抗Fc γ RI(R&D,cat#.1257-FC)加入各孔中隨後在RT培養1小時。用洗滌緩衝液洗滌後,將稀釋3,000倍的鏈親和素-HRP(BD,cat#.554066)加至各條帶隨後在黑暗條件下於RT培養30分鐘。洗滌條帶後,添加TMB溶液(TMB過氧化酶基質及過氧化酶基質溶液B的1:1混合物,KPL,cat#.50-76-01,cat#,50-65-00)而顯色並添加2N H2SO4終止顯色。如第6(a)及6(b)圖所示,MabThera®、Enbrel®及hIgG1與Fc γ RI及C1q結合良好,但EPO-hFc-5、G-CSF-hFc-5及p40N303Q-hFc-5則否。
<實施例6>純化hFc-融合蛋白質的體外生物活性
為了探討EPO-hFc蛋白質的體外生物活性,將 人類F35E細胞株培養於補充10%FBS、抗生素及5IU/ml重組人類EPO(DongA,Republic of Korea)的RPMI1640培養基(Cambrex,Charles City)。將2X104細胞接種到96孔細胞培養盤(Corning,Netherlands)的測試孔而建立生物測定。將系列稀釋(5倍,從0、0.064mIU/ml到25IU/ml)的EPO、EPO-hFc-1、EPO-hFc-5、EPO-hFc-6、EPO-IgG1 Fc或Aranesp®(α達貝泊汀,Amgen)樣本加到這些孔中然後將孔盤在加濕的5%CO2培養箱中於37℃培養72小時。根據製造商規程,使用細胞生長比色檢測試劑盒(Sigma-Aldrich.Korea)進行MTT檢測。人類F35E細胞株對rEPO顯示強烈增殖反應,在細胞數目及吸光值的劑量依賴性方式上得到證明。如第7(a)圖所示,相較於EPO蛋白質,偶合IgG1 Fc或hFcs的Aranesp®及EPO蛋白質顯示失去生物活性。然而,EPO-hFc-1、EPO-hFc-5及EPO-hFc-6明顯顯示比EPO-IgG1 Fc高的生物活性。此外,EPO-hFc-5及EPO-hFc-6比Aranesp®顯示稍高的生物活性,指明這些hFc-融合蛋白質就維持EPO蛋白質而言顯現比Aranesp®較好。
為了探討G-CSF-hFc蛋白質的體外生物活性,將小鼠造血細胞株NFS-60培養於補充10%FBS、抗生素及100units/ml重組小鼠IL-3(R&D system,Minneapolis)的RPMI1640培養基(Cambrex,Charles City)。將2X104細胞接種到96孔細胞培養盤(Corning,Netherlands)的孔中而準備開始生物測定。將系列稀釋(3倍,從0到10,000pg/ml)的G-CSF-hFc-5及Neulasta®(培非格司亭(pegfilgrastim), Amgen)樣本加到這些孔中然後將孔盤在加濕的5%CO2培養箱中於37℃培養72小時。在3重複孔中檢測蛋白質樣本並將實驗重複進行5次。培養後72小時,根據製造商規程,使用細胞生長比色檢測試劑盒(Sigma-Aldrich.Korea)進行MTT檢測。如第7(b)圖中說明,G-CSF-hFc-5比Neulasta®顯示稍高的體外生物活性。
為了探討p40N303Q-hFc蛋白質的體外生物活性,在補充有10%FBS及抗生素的RPMI1640培養基(Cambrex,Charles City)中將類風溼性關節炎患者的人周邊血液單核細胞(PBMCs)與有或無10ng/ml人類p40(R&D system)或p40N303Q-hFc-5之2ug/ml抗人類CD3抗體(R&D system,# MAB100)培養。6天後,經FACS分析測量CD4及IL-17陽性的細胞。如第7(c)圖所示,p40N303Q-hFc-5顯示比p40蛋白質較強烈的CD4+/IL-17+細胞產生抑制效應,指明p40N303Q-hFc-5對Th17極化的抑制功能。
為了探討TNFR-hFc蛋白質的體外生物活性,在補充10% FBS及抗生素的RPMI1640培養基(Cambrex,Charles City)中培養鼠L929細胞。將3 X 104細胞接種到96孔細胞培養盤(Corning,Netherlands)的孔中,然後用1ng/ml的TNF-α處理而建立細胞病變抑制檢測。將系列稀釋(2倍,從15.6到1,000ng/ml)的TNFR-hFc-5及Enbrel®(恩博,Amgen)樣本加到這些孔中然後將孔盤在加濕的5% CO2培養箱中於37℃培養48小時。培養後,根據製造商規程,使用細胞生長比色檢測試劑盒(Sigma-Aldrich.Korea)進行 MTT檢測。如第7(d)圖中說明,TNFR-hFc-5比Enbrel®顯示稍高的體外生物活性。
為了探討thFc-1-AL(0)-IFN-β及thFc-1-AL(3)IFN-β蛋白質的體外生物活性,將WISH細胞(ATCC,CCL-25)培養於補充10%FBS及抗生素的DMEM/F12(Cambrex,Charles City)。將3 X 104細胞接種到96孔細胞培養盤(Corning,Netherlands)的孔中,然後用1,500PFU/孔的VSV(ATCC,VR-158)處理而建立細胞病變抑制檢測。將系列稀釋(2倍,從40IU/ml)的重組IFN-β(WHO standard,NIBSC 00/572)、thFc-1-AL(0)-IFN-β及thFc-1-AL(3)-IFN-β蛋白質樣本加到這些孔中然後將孔盤在加濕的5% CO2培養箱中於37℃培養48小時。培養後,根據製造商規程,使用細胞生長比色檢測試劑盒(Sigma-Aldrich.Korea)進行MTT檢測。如第7(e)圖中說明,thFc-1-AL(3)-IFN-β比thFc-1-AL(0)-IFN-β顯示20倍高的體外生物活性,顯示白蛋白連接子在維持INF-β融合Fc之生物活性上的重要性。
<實施例7>純化hFc-融合蛋白質的體內半衰期
比較EPO-hFc-1、EPO-hFc-5及Aranesp®的半衰期,用這些蛋白質以2,400IU/kg劑量經由單次皮下(SC)注射或單次靜脈(IV)注射處理15隻石蟹獼猴。在注射前及注射後1、3、6、12、24、30、48、54、72、78、96、120、168、336、504及672h取得各獼猴的血液樣本。將血液樣本於室溫培養30min使凝結。於3000rpm離心10min後,取 得各樣本的血清並貯存於低溫冷凍箱。用EPO ELISA試劑盒(R&D,cat #.DEP00)測試得自各點之所有樣本的EPO定量。如第8(a)圖中所示,經由SC或IV途徑注射EPO-hFc-1或EPO-hFc-5的所有個別獼猴比經由SC或IV途徑注射Aranesp®的個別獼猴顯示較長半衰期。
為了探討G-CSF-hFc-1的藥物動力學,將100ug/kg作為對照組的LEUCOSTIM®(惠爾血添,DongA,Republic of Korea)及G-CSF-hFc-1經SC或IV途徑給藥每組2隻的雄性Sprague Dawley大鼠(Charles River Laboratories,Wilmington)。在注射前及注射後1、2、3、4、8、12、24、48、72、96、120及192h取得血液。於室溫培養30min後於3000rpm離心10min,取得血清並貯存於低溫冷凍箱。將樣本稀釋數種倍數諸如1/2、1/5、1/50、1/250、1/500,使用G-CSF試劑盒(Biosource,Camarillo,#KHC2032)定量。如第8(b)圖中所示,經由SC或IV途徑注射的G-CSF-hFc-1比LEUCOSTIM®顯示較長半衰期。G-CSF-hFc-1及G-CSF分別具有於SC給藥後的8.76h及2.36h體內t1/2及IV給藥後的10.42h及1.78h。因此,與LEUCOSTIM®比較,G-CSF-hFc-1顯示於SC注射後增強3.7倍及於IV注射後增強5.9倍。
為了探討p40N303Q-hFc-5及Enbrel®的藥物動力學,以100ug/kg劑量單次SC注射處理每組3隻的石蟹獼猴。在注射前及注射後8、24、48、72、96、120、168、336、504及672h取得各獼猴的血液樣本。將血液樣本於 室溫培養30min使凝結。於3000rpm離心10min後,取得各樣本的血清並貯存於低溫冷凍箱。用ELISA試劑盒(分別為R&D system,Minneapolis,#DY1240及#DRT200)測試得自各點之所有樣本的人類p40及人類TNFR II定量。如第8(c)圖中所示,雖然p40N303Q-hFc-5的Cmax值比Enbrel®低(平均3ng/ml對7ng/ml),p40N303Q-hFc-5顯示比Enbrel®長的半衰期(平均199h對127h)。
為了探討TNFR-hFc-5及Enbrel®的藥物動力學,以500ug/kg劑量單次SC注射處理每組3隻的雄性Sprague Dawley大鼠(Charles River Laboratories,Wilmington)。在注射前及注射後2、4、8、12、24、30、48、72及120h取得各大鼠的血液樣本。將血液樣本於室溫培養30min使凝結。於3000rpm離心10min後,取得各樣本的血清並貯存於低溫冷凍箱。用ELISA試劑盒(R&D system,Minneapolis,#DRT200)測試得自各點之所有樣本的人類TNFR II定量。如第8(d)圖中所示,雖然TNFR-hFc-5與Enbrel®有同樣的半衰期(平均28.6h對29.4h),TNFR-hFc-5顯示比Enbrel®稍高的AUC水平(平均198.1對172.9ug*h/ml)。
<實施例8>純化hFc-融合蛋白質的體內生物活性
為了比較EPO-hFc-5及Aranesp®的體內生物活性,以2,400IU/kg劑量用SC注射或單次IV注射處理每組3隻的石蟹獼猴。在注射前及注射後1、3、6、12、24、30、48、 54、72、78、96、120、168、336、504及672h取得各獼猴的血液樣本。測量包含網狀紅血球的各種血液細胞數目而評估EPO-hFc-5及Aranesp®的體內生物活性。如第9(a)圖中所示,就獼猴網狀紅血球的增加而言,以SC及IV途徑EPO-hFc-5均顯示比Aranesp®稍高的體內效力。
為了探討G-CSF-hFc-1的體內生物活性,以100ug/kg劑量將作為對照組的LEUCOSTIM®(惠爾血添,DongA,Republic of Korea)及G-CSF-hFc-1經SC或IV途徑給藥每組2隻的雄性Sprague Dawley大鼠(Charles River Laboratories,Wilmington)。在注射前及注射後1、2、3、4、8、12、24、48、72、96、120及192h用EDTA管取得血液。用RBC溶解緩衝液(BD Bioscience,Korea)處理各血液樣本4分鐘並使用血球計3次重複計數用FACS緩衝液稀釋的總WBCs(白血球)數。使用流式細胞儀(FACS caliber)用FSC(前散射光)測定細胞大小及用SSC(側散射光)測定顆粒而測量顆粒細胞數目。如第9(b)圖中所示,經SC或IV途徑處理的LEUCOSTIM®導致WBC及顆粒細胞的數目高峰係在注射後24小時,而G-CFS-hFc-1則導致WBC及顆粒細胞的數目高峰係在SC注射後72小時及IV注射後48小時。從注射後24h至120h,相較於LEUCOSTIM®,G-CSF-hFc-1具有更持續的體內生物活性。
雖然參照示例之具體實施例特別地顯示並說明本發明,但所屬領域技術人員應瞭解,在不脫離由下列申請專利範圍所限定的本發明精神及範圍的情況下,可 以做形式和細節上的各種變化。
<110> 格納西尼有限公司(Genexine,Inc.) 浦項工科大學校產學協力團(POSTECH Academy-Industry Foundation)
<120> 免疫球蛋白融合蛋白質(IMMUNOGLOBULIN FUSION PROTEINS)
<160> 32
<170> KopatentIn 1.71
<210> 1
<211> 735
<212> DNA
<213> 人工序列
<220>
<223> 雜合Fc片段5(hFC-5)
<400> 1
<210> 2
<211> 579
<212> DNA
<213> 人工序列
<220>
<223> 根據密碼子優化合成之人類EPO基因
<400> 2
<210> 3
<211> 612
<212> DNA
<213> 人工序列
<220>
<223> 根據密碼子優化合成之人類G-CSF基因
<400> 3
<210> 4
<211> 984
<212> DNA
<213> 人工序列
<220>
<223> 根據密碼子優化合成之人類p40基因
<400> 4
<210> 5
<211> 5698
<212> DNA
<213> 人工序列
<220>
<223> pAD11
<400> 5
<210> 6
<211> 327
<212> PRT
<213> 智人
<220>
<221> PEPTIDE
<222> (1)..(327)
<223> 人類IgG4恆定區部分(Genbank登錄號No.AAH25985)
<400> 6
<210> 7
<211> 383
<212> PRT
<213> 智人
<220>
<221> PEPTIDE
<222> (1)..(383)
<223> 人類IgD恆定區(Genbank登錄號No.P01880)
<400> 7
<210> 8
<211> 193
<212> PRT
<213> 智人
<220>
<221> PEPTIDE
<222> (1)..(193)
<223> 人類EPO前驅物(Genbank登錄號No.NP_000790)
<400> 8
<210> 9
<211> 207
<212> PRT
<213> 智人
<220>
<221> PEPTIDE
<222> (1)..(207)
<223> 人類G-CSF(Genbank登錄號No.CAA27291)
<400> 9
<210> 10
<211> 328
<212> PRT
<213> 智人
<220>
<221> PEPTIDE
<222> (1)..(328)
<223> 人類IL12 p40次單元(Genbank登錄號No.AAG32620)
<400> 10
<210> 11
<211> 245
<212> PRT
<213> 人工序列
<220>
<223> hFc-5之胺基酸序列
<400> 11
<210> 12
<211> 771
<212> DNA
<213> 人工序列
<220>
<223> 根據密碼子優化合成之人類可溶性TNF受體2基因
<400> 12
<210> 13
<211> 257
<212> PRT
<213> 人工序列
<220>
<223> 由根據密碼子優化合成之基因編碼之人類可溶性TNF受體2
<400> 13
由於本案的圖僅為說明用,並非本案的代表圖。
故本案無指定代表圖。

Claims (11)

  1. 一種嵌合多肽,包括:雜合人類Fc多肽;及與雜合人類Fc多肽偶合的生物活性多肽、其變異體或片段,其中所述雜合人類Fc多肽係由下列式表示:N'-(Z1)P-Y-Z2-Z3-Z4-C’其中:N'為雜合人類Fc多肽的N-端及C'為雜合人類Fc多肽的C-端;Z1為由SEQ ID NO:7位置90至98序列的C-端開始的5個或更多個連續胺基酸殘基組成的胺基酸序列;Y為由SEQ ID NO:7位置99至162序列的C-端開始的5個或更多個連續胺基酸殘基組成的胺基酸序列;Z2為由SEQ ID NO:7位置163至199序列的N-端開始的4個或更多個連續胺基酸殘基組成的胺基酸序列;Z3為由SEQ ID NO:6位置115至220序列的C-端開始的71個或更多個連續胺基酸殘基組成的胺基酸序列;Z4為由SEQ ID NO:6位置221至327序列的N-端開始的80個或更多個連續胺基酸殘基組成的胺基酸 序列;及p為0或1之整數,其中該生物活性多肽係紅血球生成素(EPO),以及其中該生物活性多肽、其變異體或片段係在雜合人類Fc多肽的N-端或C-端融合,其中與所述雜合人類Fc多肽融合的所述生物活性多肽、其變異體或片段相較於未與雜合人類Fc多肽融合的所述生物活性多肽、其變異體或片段,顯示增長的循環半衰期。
  2. 如申請專利範圍第1項所述之嵌合多肽,其中該雜合人類Fc多肽係經由核苷酸序列SEQ ID NO:1編碼。
  3. 如申請專利範圍第1項所述之嵌合多肽,其中該雜合人類Fc多肽具有胺基酸序列SEQ ID NO:11。
  4. 如申請專利範圍第1項所述之嵌合多肽,其中p為0。
  5. 如申請專利範圍第1項所述之嵌合多肽,其中該雜合人類Fc多肽與該生物活性多肽、其變異體或片段係經由選自白蛋白連接子及合成連接子所組成之群組的連接子而彼此偶合。
  6. 如申請專利範圍第5項所述之嵌合多肽,其中該白蛋白連接子包括胺基酸序列EMP、ENDEMPAD、EENDEMPADLPS、CIAEVENDEMPADLPSLA、SHCIAEVENDEMPADLPSLA或PLLEKSHCIAEVENDEMPADLPSLAADFVESKD。
  7. 如申請專利範圍第6項所述之嵌合多肽,其中該合成連接子為10至20個胺基酸殘基的肽,其中該肽係由 Gly及Ser殘基構成。
  8. 一種核酸分子,其編碼申請專利範圍第1項所述之嵌合多肽。
  9. 一種表現載體,其包括申請專利範圍第8項所述之核酸分子。
  10. 一種製造申請專利範圍第1項所述之嵌合多肽的方法,其中該方法包括步驟:(i)將編碼申請專利範圍第1項所述之嵌合多肽的核酸分子導入哺乳動物寄主細胞、(ii)使該細胞在可表現多肽之條件下的培養基中生長、(iii)從該細胞或該培養基收獲經表現的嵌合多肽。
  11. 一種增長生物活性多肽、其變異體或片段之循環半衰期的方法,包括將申請專利範圍第1項所述之嵌合多肽給藥予個體。
TW104136283A 2015-11-04 2015-11-04 免疫球蛋白融合蛋白質 TW201716445A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104136283A TW201716445A (zh) 2015-11-04 2015-11-04 免疫球蛋白融合蛋白質

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104136283A TW201716445A (zh) 2015-11-04 2015-11-04 免疫球蛋白融合蛋白質

Publications (1)

Publication Number Publication Date
TW201716445A true TW201716445A (zh) 2017-05-16

Family

ID=59367166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104136283A TW201716445A (zh) 2015-11-04 2015-11-04 免疫球蛋白融合蛋白質

Country Status (1)

Country Link
TW (1) TW201716445A (zh)

Similar Documents

Publication Publication Date Title
RU2711979C2 (ru) Белковый комплекс интерлейкина 15 и его применение
RU2530168C2 (ru) Слитные белки иммуноглобулинов
RU2708160C2 (ru) Модифицированный белок интерлейкина-7 и способы его применения
US10023624B2 (en) Long-acting recombinant human follicle-stimulating hormone-Fc fusion protein
CA2720628A1 (en) Fusion proteins having mutated immunoglobulin hinge region
EP1201246B1 (en) Use of thrombopoietin as a medicament for the therapy and prevention of thrombocytopenia
US20230340054A1 (en) Interleukin-2 muteins and uses thereof
CN113396163B (zh) 一种融合蛋白及其制法和用途
CN101914161B (zh) 抑制肿瘤生长的融合蛋白HGFα-Fc及其用途
TW201716445A (zh) 免疫球蛋白融合蛋白質
JP2017165713A (ja) 血清アルブミン−20k成長ホルモン融合タンパク質
TW201714894A (zh) 免疫球蛋白融合蛋白質
CN105175553A (zh) 免疫球蛋白融合蛋白