TW201715745A - Method of producing photovoltaic cell element - Google Patents

Method of producing photovoltaic cell element Download PDF

Info

Publication number
TW201715745A
TW201715745A TW104135692A TW104135692A TW201715745A TW 201715745 A TW201715745 A TW 201715745A TW 104135692 A TW104135692 A TW 104135692A TW 104135692 A TW104135692 A TW 104135692A TW 201715745 A TW201715745 A TW 201715745A
Authority
TW
Taiwan
Prior art keywords
type impurity
diffusion layer
impurity diffusion
forming composition
region
Prior art date
Application number
TW104135692A
Other languages
Chinese (zh)
Inventor
岩室光則
野尻剛
倉田靖
織田明博
清水麻理
佐藤鉄也
Original Assignee
日立化成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成股份有限公司 filed Critical 日立化成股份有限公司
Priority to TW104135692A priority Critical patent/TW201715745A/en
Publication of TW201715745A publication Critical patent/TW201715745A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method of producing a photovoltaic cell element, the method comprising: a step of applying a composition for forming an impurity diffusion layer, on one surface of a semiconductor substrate via a layer comprising a compound, the composition comprising a dispersion medium and glass particles that contain an n-type impurity or a p-type impurity; a step of forming an impurity diffusion layer by performing a thermal treatment to the semiconductor substrate to which the composition for forming an impurity diffusion layer has been applied; and a step of forming an electrode at a region at which the impurity diffusion layer has been formed.

Description

太陽電池元件的製造方法Solar cell component manufacturing method

本發明是有關於一種太陽電池元件的製造方法。The present invention relates to a method of fabricating a solar cell element.

現在所量產的太陽電池元件中,在矽基板的受光面形成有n電極、在背面形成有p電極的兩面電極型太陽電池元件佔多數。然而,在兩面電極型太陽電池元件中,太陽光並不入射至在受光面所形成的n電極正下方的矽基板,因此於該部分中並不產生電流。因此,提出了並未於太陽電池元件的受光面形成電極,於受光面的相反側的背面形成有n++ 電極及p+ 電極此兩者的背面電極型太陽電池元件。於該背面電極型太陽電池元件中,並不因受光面所形成的電極而阻礙太陽光的入射,因此原理上可期待高的轉換效率。Among the solar cell elements currently produced, a n-electrode type solar cell element in which an n-electrode is formed on a light-receiving surface of a tantalum substrate and a p-electrode is formed on the back surface is dominant. However, in the double-sided electrode type solar cell element, sunlight does not enter the germanium substrate directly under the n-electrode formed on the light-receiving surface, and therefore no current is generated in this portion. Therefore, a back electrode type solar cell element in which an electrode is not formed on the light receiving surface of the solar cell element and the n ++ electrode and the p + electrode are formed on the back surface opposite to the light receiving surface has been proposed. In the back electrode type solar cell element, since the incidence of sunlight is not hindered by the electrode formed on the light receiving surface, a high conversion efficiency can be expected in principle.

作為背面電極型太陽電池元件的製造方法,例如已知有以下的製造方法(例如參照專利文獻1)。首先,在矽基板的受光面及背面的整個面形成作為遮罩的擴散控制遮罩。此處,擴散控制遮罩具有抑制雜質擴散至矽基板內的功能。其次,將矽基板背面的擴散控制遮罩的一部分除去而形成開口部。繼而,若使p型雜質自擴散控制遮罩的開口部擴散至矽基板背面,則僅僅於開口部形成p型雜質擴散層。其次,將矽基板背面的擴散控制遮罩全部除去後,再次於矽基板的背面形成擴散控制遮罩。繼而,將矽基板背面的擴散控制遮罩的一部分除去,使n型雜質自開口部擴散至矽基板的背面,形成n型雜質層。繼而,將矽基板背面的擴散控制遮罩全部除去,藉此於背面形成p型雜質擴散層及n型雜質擴散層。進一步形成紋理結構、抗反射膜、鈍化層、電極等,藉此完成背面電極型太陽電池元件。As a method of manufacturing the back electrode type solar cell element, for example, the following production method is known (for example, refer to Patent Document 1). First, a diffusion control mask as a mask is formed on the entire surface of the light-receiving surface and the back surface of the ruthenium substrate. Here, the diffusion control mask has a function of suppressing diffusion of impurities into the germanium substrate. Next, a part of the diffusion control mask on the back surface of the substrate is removed to form an opening. Then, when the p-type impurity is diffused from the opening of the diffusion control mask to the back surface of the germanium substrate, the p-type impurity diffusion layer is formed only in the opening. Next, after all the diffusion control masks on the back surface of the ruthenium substrate are removed, a diffusion control mask is formed on the back surface of the ruthenium substrate again. Then, a part of the diffusion control mask on the back surface of the ruthenium substrate is removed, and the n-type impurity is diffused from the opening to the back surface of the ruthenium substrate to form an n-type impurity layer. Then, all of the diffusion control masks on the back surface of the substrate are removed, whereby a p-type impurity diffusion layer and an n-type impurity diffusion layer are formed on the back surface. Further, a texture structure, an anti-reflection film, a passivation layer, an electrode, or the like is formed, thereby completing the back electrode type solar cell element.

而且揭示了使用包含n型雜質的擴散劑、包含p型雜質的擴散劑而製造背面電極型太陽電池元件的方法(例如參照專利文獻2)。藉由該方法而塗佈包含n型雜質的擴散劑、包含p型雜質的擴散劑後,形成覆蓋包含n型雜質的擴散劑與包含p型雜質的擴散劑的至少一者的保護層。 [現有技術文獻] [專利文獻]Further, a method of producing a back electrode type solar cell element using a diffusing agent containing an n-type impurity or a diffusing agent containing a p-type impurity has been disclosed (for example, see Patent Document 2). By applying a diffusing agent containing an n-type impurity or a diffusing agent containing a p-type impurity by this method, a protective layer covering at least one of a diffusing agent containing an n-type impurity and a diffusing agent containing a p-type impurity is formed. [Prior Art Document] [Patent Literature]

[專利文獻1]美國專利第4927770號 [專利文獻2]日本專利特開2009-76546號公報[Patent Document 1] U.S. Patent No. 4,927,770 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2009-76546

[發明所欲解決之課題][Problems to be solved by the invention]

然而,在專利文獻1中所記載的製造方法中,於背面形成p型雜質擴散層及n型雜質擴散層,因此需要反覆進行擴散控制遮罩的形成、開口部的形成、雜質的擴散、擴散控制遮罩的除去的各步驟等煩雜的步驟。而且,在專利文獻2中所記載的製造方法中,需要設置保護層的步驟及除去保護層的步驟,由於擴散時的熱處理條件,存在將雜質擴散層形成至不需要部位的情況。本發明是鑒於以上現有的問題點而成者,其課題在於提供一種可藉由簡便的製程而形成雜質擴散層的太陽電池元件的製造方法。 [解決課題之手段]However, in the manufacturing method described in Patent Document 1, since the p-type impurity diffusion layer and the n-type impurity diffusion layer are formed on the back surface, it is necessary to repeatedly form the diffusion control mask, form the opening, and diffuse and diffuse the impurities. A cumbersome step such as controlling the steps of removing the mask. Further, in the production method described in Patent Document 2, the step of providing a protective layer and the step of removing the protective layer are required, and the impurity diffusion layer may be formed to an unnecessary portion due to heat treatment conditions during diffusion. The present invention has been made in view of the above conventional problems, and an object thereof is to provide a method for producing a solar cell element in which an impurity diffusion layer can be formed by a simple process. [Means for solving the problem]

本發明包含以下的實施方式。 <1> 一種太陽電池元件的製造方法,其包含: 在半導體基板的一個面上,經由包含化合物的層而賦予雜質擴散層形成組成物的步驟,所述雜質擴散層形成組成物含有包含n型雜質或p型雜質的玻璃粒子、分散介質; 對賦予了所述雜質擴散層形成組成物的半導體基板進行熱處理而形成雜質擴散層的熱擴散步驟; 於形成有所述雜質擴散層的區域形成電極的步驟。The present invention encompasses the following embodiments. <1> A method for producing a solar cell element, comprising: a step of forming a composition by providing an impurity diffusion layer on a surface of a semiconductor substrate via a layer containing a compound containing n-type a glass particle or a dispersion medium of an impurity or a p-type impurity; a thermal diffusion step of heat-treating the semiconductor substrate to which the impurity diffusion layer forming composition is applied to form an impurity diffusion layer; and forming an electrode in a region where the impurity diffusion layer is formed A step of.

<2> 一種太陽電池元件的製造方法,其包含: 在半導體基板的一個面上的第1區域賦予n型雜質擴散層形成組成物的步驟,所述n型雜質擴散層形成組成物含有包含n型雜質的玻璃粉末、分散介質; 在所述半導體基板的設置所述第1區域的面上且所述第1區域以外的第2區域賦予p型雜質擴散層形成組成物的步驟,所述p型雜質擴散層形成組成物含有包含p型雜質的玻璃粉末、分散介質; 對賦予了所述n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的半導體基板進行熱處理而形成n型雜質擴散層及p型雜質擴散層的熱擴散步驟; 分別在形成有所述n型雜質擴散層的第1區域及形成有p型雜質擴散層的第2區域形成電極的步驟;並且 將選自由所述n型雜質擴散層形成組成物及所述p型雜質擴散層形成組成物所組成的群組中的至少一者經由包含化合物的層而賦予至所述半導體基板上。<2> A method for producing a solar cell element, comprising: a step of forming an n-type impurity diffusion layer forming composition on a first region of one surface of a semiconductor substrate, wherein the n-type impurity diffusion layer forming composition contains n a glass powder and a dispersion medium of a type of impurity; a step of forming a composition of a p-type impurity diffusion layer on a surface of the semiconductor substrate on which the first region is provided and a second region other than the first region, wherein the p The impurity-diffusion layer forming composition contains a glass powder containing a p-type impurity and a dispersion medium; and heat-treating the semiconductor substrate to which the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition are applied to form an n-type a thermal diffusion step of the impurity diffusion layer and the p-type impurity diffusion layer; a step of forming an electrode in each of the first region in which the n-type impurity diffusion layer is formed and the second region in which the p-type impurity diffusion layer is formed; and At least one of the group consisting of the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition is imparted to the group via a layer containing a compound On a semiconductor substrate.

<3> 如<1>或<2>所述的太陽電池元件的製造方法,其中,所述包含化合物的層是氧化物或氮化物的層。The method for producing a solar cell element according to the above aspect, wherein the layer containing the compound is a layer of an oxide or a nitride.

<4> 如<1>~<3>中任一項所述的太陽電池元件的製造方法,其中,所述n型雜質包含選自由P(磷)及Sb(銻)所組成的群組中的至少一種元素。The method for producing a solar cell element according to any one of the above aspects, wherein the n-type impurity comprises a group selected from the group consisting of P (phosphorus) and Sb (锑) At least one element.

<5> 如<1>~<4>中任一項所述的太陽電池元件的製造方法,其中,所述p型雜質包含選自由B(硼)、Al(鋁)及Ga(鎵)所組成的群組中的至少一種元素。The method for producing a solar cell element according to any one of the above aspects, wherein the p-type impurity is selected from the group consisting of B (boron), Al (aluminum), and Ga (gallium). At least one element of the group consisting of.

<6> 如<1>~<5>中任一項所述的太陽電池元件的製造方法,其中,包含所述n型雜質的玻璃粉末含有選自由P2 O3 、P2 O5 及Sb2 O3 所組成的群組中的至少一種含有n型雜質的物質,及選自由SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V2 O5 、SnO、ZrO2 、TiO2 及MoO3 所組成的群組中的至少一種玻璃成分物質。The method for producing a solar cell element according to any one of the above aspects, wherein the glass powder containing the n-type impurity is selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb At least one of the group consisting of 2 O 3 containing an n-type impurity, and selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO At least one glass component substance in the group consisting of CdO, V 2 O 5 , SnO, ZrO 2 , TiO 2 and MoO 3 .

<7> 如<1>~<6>中任一項所述的太陽電池元件的製造方法,其中,包含所述p型雜質的玻璃粉末含有選自由B2 O3 、Al2 O3 及Ga2 O3 所組成的群組中的至少一種含有p型雜質的物質,及選自由SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V2 O5 、SnO、ZrO2 、TiO2 及MoO3 所組成的群組中的至少一種玻璃成分物質。 [發明的效果]The method for producing a solar cell element according to any one of the above aspects, wherein the glass powder containing the p-type impurity is selected from the group consisting of B 2 O 3 , Al 2 O 3 and Ga At least one of the groups consisting of 2 O 3 containing a p-type impurity, and selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO At least one glass component substance in the group consisting of CdO, V 2 O 5 , SnO, ZrO 2 , TiO 2 and MoO 3 . [Effects of the Invention]

根據本發明,可提供一種可藉由簡便的製程而形成雜質擴散層的太陽電池元件的製造方法。According to the present invention, it is possible to provide a method for producing a solar cell element which can form an impurity diffusion layer by a simple process.

於本說明書中,「步驟」的用語不僅僅是獨立的步驟,即使於無法與其他步驟明確地區別的情況下,如果達成該步驟的目的,則包含於本用語中。而且,於本說明書中使用「~」而表示的數值範圍表示包含「~」的前後所記載的數值分別作為最小值及最大值的範圍。另外,於本說明書中,作為組成物中的各成分的含量,在組成物中存在多種相當於各成分的物質的情況下,若無特別說明,則表示組成物中所存在的該多種物質的合計量。(甲基)丙烯酸基表示丙烯酸基或甲基丙烯酸基,(甲基)丙烯酸酯表示丙烯酸酯或甲基丙烯酸酯。「層」的用語在作為平面圖而觀察時,除了形成在整個面的形狀的構成,亦包含形成於一部分的形狀的構成。In this specification, the term "step" is not only an independent step, but even if it cannot be clearly distinguished from other steps, it is included in the term if the purpose of the step is achieved. In addition, the numerical range shown using "-" in this specification shows the range which has the minimum value and the maximum value of the numerical value of the before and after the [-. In addition, in the present specification, when a plurality of substances corresponding to the respective components are present in the composition as a content of each component in the composition, unless otherwise specified, the various substances present in the composition are indicated. Total measurement. The (meth)acrylic group means an acrylic group or a methacryl group, and the (meth)acrylate means an acrylate or a methacrylate. When the term "layer" is viewed as a plan view, the configuration of the shape formed on a part of the shape is included in addition to the configuration of the shape of the entire surface.

<太陽電池元件的製造方法> 本發明的太陽電池元件的製造方法的第一實施方式包含:在半導體基板的一個面上,經由包含化合物的層而賦予雜質擴散層形成組成物的步驟,所述雜質擴散層形成組成物含有包含n型雜質或p型雜質的玻璃粒子、分散介質;對賦予了所述雜質擴散層形成組成物的半導體基板進行熱處理而形成雜質擴散層的熱擴散步驟;於形成有所述雜質擴散層的區域形成電極的步驟。<Manufacturing Method of Solar Cell Element> The first embodiment of the method for producing a solar cell element according to the present invention includes the step of forming a composition by providing an impurity diffusion layer on a surface of a semiconductor substrate via a layer containing a compound, The impurity diffusion layer forming composition contains glass particles containing an n-type impurity or a p-type impurity, a dispersion medium, and a heat diffusion step of heat-treating the semiconductor substrate to which the impurity diffusion layer forming composition is applied to form an impurity diffusion layer; The step of forming an electrode with the region of the impurity diffusion layer.

本發明的太陽電池元件的製造方法的第二實施方式包含:在半導體基板的一個面上的第1區域賦予n型雜質擴散層形成組成物的步驟,所述n型雜質擴散層形成組成物含有包含n型雜質的玻璃粉末、分散介質;在所述半導體基板的設置所述第1區域的面上且與所述第1區域不同的第2區域賦予p型雜質擴散層形成組成物的步驟,所述p型雜質擴散層形成組成物含有包含p型雜質的玻璃粉末、分散介質;對賦予了所述n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的半導體基板進行熱處理而形成n型雜質擴散層及p型雜質擴散層的熱擴散步驟;分別在形成有所述n型雜質擴散層的第1區域及形成有p型雜質擴散層的第2區域形成電極的步驟;並且將選自由所述n型雜質擴散層形成組成物及所述p型雜質擴散層形成組成物所組成的群組中的至少一者經由包含化合物的層而賦予至所述半導體基板上。A second embodiment of the method for producing a solar cell element according to the present invention includes the step of providing an n-type impurity diffusion layer forming composition in a first region on one surface of a semiconductor substrate, wherein the n-type impurity diffusion layer forming composition contains a glass powder containing an n-type impurity, a dispersion medium, and a step of forming a composition of a p-type impurity diffusion layer on a surface of the semiconductor substrate on which the first region is provided and different from the first region; The p-type impurity diffusion layer forming composition contains a glass powder containing a p-type impurity and a dispersion medium, and heat-treats the semiconductor substrate to which the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition are applied. a thermal diffusion step of forming an n-type impurity diffusion layer and a p-type impurity diffusion layer; and forming an electrode in each of the first region in which the n-type impurity diffusion layer is formed and the second region in which the p-type impurity diffusion layer is formed; At least one selected from the group consisting of the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition is passed through a layer containing a compound I to the semiconductor substrate.

本發明的太陽電池元件的製造方法包含所述步驟,因此在背面電極型太陽電池元件的製造步驟中,可藉由簡便的製程而形成雜質擴散層。如先前技術所述,在半導體基板的一個面上形成n型雜質或p型雜質的擴散層的情況下,在現有的方法中是將包含化合物的層、亦即保護膜除去,使半導體基板表面露出,於該露出的部位形成雜質擴散層。亦即,在現有的方法中,需要將保護膜部分性除去的步驟(圖案化)。在本發明中,並未除去包含化合物的層,自包含化合物的層上賦予雜質擴散層形成組成物,進行熱擴散,藉此而於半導體基板上形成所期望的雜質擴散層。因此,可藉由比現有的方法更簡便的製程而在半導體基板上形成雜質擴散層。Since the method for producing a solar cell element of the present invention includes the above steps, in the manufacturing step of the back electrode type solar cell element, the impurity diffusion layer can be formed by a simple process. In the case where a diffusion layer of an n-type impurity or a p-type impurity is formed on one surface of a semiconductor substrate as described in the prior art, in the conventional method, a layer containing a compound, that is, a protective film is removed, and the surface of the semiconductor substrate is removed. Exposed, an impurity diffusion layer is formed on the exposed portion. That is, in the conventional method, a step (patterning) in which the protective film is partially removed is required. In the present invention, the layer containing the compound is not removed, and the impurity diffusion layer is formed on the layer containing the compound to form a composition, and thermal diffusion is performed to form a desired impurity diffusion layer on the semiconductor substrate. Therefore, the impurity diffusion layer can be formed on the semiconductor substrate by a process which is simpler than the conventional method.

關於在本發明的太陽電池元件的製造方法中,可並不除去包含化合物的層地在半導體基板上形成雜質擴散層的理由,本發明者等人認為其原因在於:雜質擴散層形成組成物中所含的玻璃粒子的玻璃成分在熱擴散時摻入包含化合物的層,熔融的玻璃與半導體基板接近或接觸,藉此雜質成分可於半導體基板形成雜質擴散層。In the method for producing a solar cell element of the present invention, the reason why the impurity diffusion layer is formed on the semiconductor substrate without removing the layer containing the compound is considered by the inventors to be that the impurity diffusion layer is formed in the composition. The glass component of the glass particles contained therein is doped with a layer containing a compound during thermal diffusion, and the molten glass is in close contact with or in contact with the semiconductor substrate, whereby the impurity component can form an impurity diffusion layer on the semiconductor substrate.

另外,藉由本發明的太陽電池元件的製造方法,與將雜質擴散層形成組成物不經由包含化合物的層而賦予至半導體基板上而形成雜質擴散層的情況相比而言,可更有效地抑制雜質擴散層形成在所期望的區域以外的區域,所述雜質擴散層形成組成物含有包含n型雜質或p型雜質的玻璃粒子、分散介質。Further, according to the method for producing a solar cell element of the present invention, it is possible to suppress the impurity diffusion layer formation composition more efficiently than the case where the impurity diffusion layer forming composition is applied to the semiconductor substrate without passing through the layer containing the compound. The impurity diffusion layer is formed in a region other than a desired region, and the impurity diffusion layer forming composition contains glass particles containing an n-type impurity or a p-type impurity, and a dispersion medium.

另外,在本發明的太陽電池元件的製造方法的第二實施方式中,分別將n型雜質擴散層形成組成物及p型雜質擴散層形成組成物賦予至第1區域及第2區域後,進行熱處理,藉此在第1區域中使n型雜質自n型雜質擴散層形成組成物擴散至半導體基板中而將n型雜質擴散層精度良好地形成為所期望的形狀,而且在第2區域中,使p型雜質自p型雜質擴散層形成組成物擴散至半導體基板中而將p型雜質擴散層精度良好地形成為所期望的形狀。而且,可抑制在與第1區域及第2區域不同的第3區域形成n型雜質擴散層或p型雜質擴散層。In the second embodiment of the method for producing a solar cell device of the present invention, the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition are applied to the first region and the second region, respectively. By heat treatment, the n-type impurity is diffused from the n-type impurity diffusion layer forming composition into the semiconductor substrate in the first region, and the n-type impurity diffusion layer is accurately formed into a desired shape, and in the second region, The p-type impurity is diffused from the p-type impurity diffusion layer forming composition into the semiconductor substrate, and the p-type impurity diffusion layer is accurately formed into a desired shape. Further, formation of an n-type impurity diffusion layer or a p-type impurity diffusion layer in the third region different from the first region and the second region can be suppressed.

以下,關於本發明中的包含化合物的層、n型雜質擴散層形成組成物及p型雜質擴散層形成組成物加以說明,其次關於使用包含化合物的層、n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的太陽電池元件的製造方法加以說明。In the following, the layer containing the compound, the n-type impurity diffusion layer forming composition, and the p-type impurity diffusion layer forming composition in the present invention will be described. Next, the composition including the compound and the n-type impurity diffusion layer are used to form a composition and p. A method of manufacturing a solar cell element in which a type of impurity diffusion layer is formed into a composition will be described.

[包含化合物的層] 本發明的太陽電池元件的製造方法包含:在半導體基板的一個面上,經由包含化合物的層而賦予雜質擴散層形成組成物的步驟,所述雜質擴散層形成組成物含有包含n型雜質或p型雜質的玻璃粒子、分散介質。所謂「經由包含化合物的層」例如是表示在半導體基板的表面所預先形成的包含化合物的層上賦予雜質擴散層形成組成物。[Layer-Containing Layer] The method for producing a solar cell element according to the present invention includes the step of forming a composition by providing an impurity diffusion layer on a surface of a semiconductor substrate via a layer containing a compound containing the composition. A glass particle or a dispersion medium containing an n-type impurity or a p-type impurity. The "layer containing a compound" means an impurity diffusion layer forming composition on a layer containing a compound formed on the surface of a semiconductor substrate, for example.

包含化合物的層的材料若為可如上所述地並不除去包含化合物的層而在半導體基板上形成雜質擴散層的材料,則並無特別限制。具體而言,例如可列舉矽、鋁、釩、鈮、鉭等的氧化物及氮化物等無機化合物。在包含化合物的層例如為矽的氧化物層的情況下,可藉由使用矽烷氣體與氧的常壓化學氣相沈積(Chemical Vapor Deposition,CVD)法等堆積法,乾式熱氧化、濕式熱氧化、蒸氣熱氧化等熱氧化法而形成,在包含化合物的層為矽的氮化物層的情況下,可藉由使用矽烷氣體、氨氣及氮氣的電漿CVD法等而形成。The material of the layer containing the compound is not particularly limited as long as it can form an impurity diffusion layer on the semiconductor substrate without removing the layer containing the compound as described above. Specific examples thereof include inorganic compounds such as oxides and nitrides of cerium, aluminum, vanadium, cerium, and lanthanum. In the case where the layer containing the compound is, for example, an oxide layer of ruthenium, dry heat oxidation or wet heat can be performed by a deposition method such as a normal vapor chemical vapor deposition (CVD) method using decane gas and oxygen. It is formed by a thermal oxidation method such as oxidation or vapor thermal oxidation. When the layer containing the compound is a nitride layer of ruthenium, it can be formed by a plasma CVD method using decane gas, ammonia gas, and nitrogen gas.

包含化合物的層可形成於半導體基板的整個面上,亦可僅僅形成於特定的區域。而且,在半導體基板的同一面上的不同區域分別形成n型雜質擴散層與p型雜質擴散層的情況下,可在與n型雜質擴散層對應的區域及與p型雜質擴散層對應的區域的兩個區域形成包含化合物的層,亦可僅僅於任意一個區域形成包含化合物的層。包含化合物的層的厚度並無特別限制,例如可設為10 nm~2000 nm,較佳的是50 nm~1000 nm,更佳的是100 nm~500 nm。The layer containing the compound may be formed on the entire surface of the semiconductor substrate, or may be formed only in a specific region. Further, when an n-type impurity diffusion layer and a p-type impurity diffusion layer are formed in different regions on the same surface of the semiconductor substrate, a region corresponding to the n-type impurity diffusion layer and a region corresponding to the p-type impurity diffusion layer can be formed. The two regions form a layer containing a compound, and a layer containing a compound may be formed only in any one region. The thickness of the layer containing the compound is not particularly limited and may be, for example, 10 nm to 2000 nm, preferably 50 nm to 1000 nm, and more preferably 100 nm to 500 nm.

[n型雜質擴散層形成組成物] 本發明的太陽電池元件的製造方法中所使用的n型雜質擴散層形成組成物含有包含n型雜質的玻璃粒子的至少一種、分散介質的至少一種。亦可視需要考慮塗佈性等而含有其他添加劑。所謂「n型雜質擴散層形成組成物」是指含有n型雜質,塗佈於矽基板上之後,對該n型雜質進行熱擴散,藉此可形成n型雜質擴散層的材料。藉由使用n型雜質擴散層形成組成物,於所期望的部位形成n型雜質擴散層。而且,玻璃粒子中的n型雜質即使在熱處理(煅燒)中亦難以揮散,因此可抑制如下的現象:由於產生揮散氣體而不僅僅於賦予了n型雜質擴散層形成組成物的部分,於半導體基板的背面或側面亦形成n型雜質擴散層。認為其理由在於:n型雜質與玻璃粒子中的元素鍵結,或摻入至玻璃中,因此難以產生揮散氣體。[N-type impurity diffusion layer forming composition] The n-type impurity diffusion layer forming composition used in the method for producing a solar cell element of the present invention contains at least one of glass particles containing an n-type impurity and at least one of dispersion media. Other additives may be contained as needed in consideration of coatability and the like. The "n-type impurity diffusion layer forming composition" is a material which contains an n-type impurity and is applied to a germanium substrate, and then thermally diffuses the n-type impurity to form an n-type impurity diffusion layer. The composition is formed by using an n-type impurity diffusion layer, and an n-type impurity diffusion layer is formed at a desired portion. Further, since the n-type impurities in the glass particles are hard to be volatilized even in the heat treatment (calcination), it is possible to suppress the phenomenon that the volatilized gas is generated not only the portion where the n-type impurity diffusion layer is formed, but also the semiconductor. An n-type impurity diffusion layer is also formed on the back surface or the side surface of the substrate. The reason is considered to be that the n-type impurity is bonded to the element in the glass particle or incorporated into the glass, so that it is difficult to generate a volatilized gas.

(包含n型雜質的玻璃粒子) 所謂「n型雜質」是可藉由擴散至矽基板中而形成n型雜質擴散層的元素。n型雜質可使用第15族的元素,可列舉P(磷)、Sb(銻)、Bi(鉍)、As(砷)等。自安全性、玻璃化的容易性等觀點考慮,適宜的是P或Sb。用以將n型雜質導入至玻璃粒子的含有n型雜質的物質可列舉P2 O3 、P2 O5 、Sb2 O3 、Bi2 O3 及As2 O3 ,較佳的是使用選自P2 O3 、P2 O5 及Sb2 O3 的至少一種。而且,包含n型雜質的玻璃粒子可藉由視需要調整成分比率而控制熔融溫度、軟化點、玻璃轉移點、化學耐久性等。較佳的是進一步包含以下所記載的玻璃成分物質。(Glass Particles Containing n-Type Impurities) The "n-type impurities" are elements which can form an n-type impurity diffusion layer by being diffused into a germanium substrate. As the n-type impurity, an element of Group 15 can be used, and examples thereof include P (phosphorus), Sb (yttrium), Bi (yttrium), and As (arsenic). From the viewpoints of safety, easiness of vitrification, and the like, P or Sb is suitable. Examples of the substance containing an n-type impurity for introducing an n-type impurity into the glass particles include P 2 O 3 , P 2 O 5 , Sb 2 O 3 , Bi 2 O 3 and As 2 O 3 , preferably used. At least one of P 2 O 3 , P 2 O 5 and Sb 2 O 3 . Further, the glass particles containing the n-type impurities can control the melting temperature, the softening point, the glass transition point, the chemical durability, and the like by adjusting the component ratio as needed. It is preferable to further contain the glass component substance described below.

玻璃成分物質可列舉SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、Tl2 O、V2 O5 、SnO、WO3 、MoO3 、MnO、La2 O3 、Nb2 O5 、Ta2 O5 、Y2 O3 、TiO2 、ZrO2 、GeO2 、TeO2 及Lu2 O3 等,較佳的是使用選自SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V2 O5 、SnO、ZrO2 、TiO2 、及MoO3 中的至少一種。Examples of the glass component substance include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, Tl 2 O, V 2 O 5 , SnO, and WO 3 . MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , ZrO 2 , GeO 2 , TeO 2 and Lu 2 O 3 are preferably selected from the group consisting of At least at least SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , TiO 2 , and MoO 3 One.

包含n型雜質的玻璃粒子可列舉包含含有n型雜質的物質、玻璃成分物質此兩者的系統。具體而言可列舉:P2 O5 -SiO2 系(以含有n型雜質的物質-玻璃成分物質的順序記載,下同)、P2 O5 -K2 O系、P2 O5 -Na2 O系、P2 O5 -Li2 O系、P2 O5 -BaO系、P2 O5 -SrO系、P2 O5 -CaO系、P2 O5 -MgO系、P2 O5 -BeO系、P2 O5 -ZnO系、P2 O5 -CdO系、P2 O5 -PbO系、P2 O5 -V2 O5 系、P2 O5 -SnO系、P2 O5 -GeO2 系、P2 O5 -TeO2 系等包含P2 O5 作為含有n型雜質的物質的系統,在所述包含P2 O5 的系統中,包含Sb2 O3 代替P2 O5 而作為含有n型雜質的物質的系統的玻璃粒子等。另外,亦可使用如P2 O5 -Sb2 O3 系、P2 O5 -As2 O3 系等這樣的包含兩種以上含有n型雜質的物質的玻璃粒子。於上述中例示包含兩種成分的複合玻璃,亦可使用包含P2 O5 -SiO2 -V2 O5 、P2 O5 -SiO2 -CaO等三種成分以上的物質的玻璃粒子。Examples of the glass particles containing an n-type impurity include a system containing both an n-type impurity and a glass component. Specifically, P 2 O 5 -SiO 2 type (described in the order of the substance containing the n-type impurity - the glass component substance, the same applies hereinafter), P 2 O 5 -K 2 O system, P 2 O 5 -Na 2 O system, P 2 O 5 -Li 2 O system, P 2 O 5 -BaO system, P 2 O 5 -SrO system, P 2 O 5 -CaO system, P 2 O 5 -MgO system, P 2 O 5 -BeO system, P 2 O 5 -ZnO system, P 2 O 5 -CdO system, P 2 O 5 -PbO system, P 2 O 5 -V 2 O 5 system, P 2 O 5 -SnO system, P 2 O a system comprising P 2 O 5 as a substance containing an n-type impurity, such as a 5- GeO 2 system, a P 2 O 5 -TeO 2 system, or the like, comprising Sb 2 O 3 instead of P 2 in the system containing P 2 O 5 O 5 is a glass particle or the like of a system containing a substance of an n-type impurity. Further, glass particles containing two or more kinds of substances containing an n-type impurity such as P 2 O 5 -Sb 2 O 3 -based or P 2 O 5 -As 2 O 3 -based may be used. In the above, a composite glass containing two components is exemplified, and glass particles containing three or more components such as P 2 O 5 —SiO 2 —V 2 O 5 and P 2 O 5 —SiO 2 —CaO may be used.

包含n型雜質的玻璃粒子中的玻璃成分物質的含有比率理想的是考慮熔融溫度、軟化點、玻璃轉移點、化學耐久性等而設定。一般情況下較佳的是0.1質量%~95質量%,更佳的是0.5質量%~90質量%。具體而言,在P2 O5 -SiO2 -CaO系玻璃的情況下,CaO的含有比率較佳的是1質量%~30質量%,更佳的是5質量%~20質量%。The content ratio of the glass component in the glass particles containing the n-type impurity is preferably set in consideration of the melting temperature, the softening point, the glass transition point, the chemical durability, and the like. In general, it is preferably 0.1% by mass to 95% by mass, more preferably 0.5% by mass to 90% by mass. Specifically, in the case of P 2 O 5 —SiO 2 —CaO-based glass, the content ratio of CaO is preferably 1% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass.

自擴散處理時的擴散性、抑制滴液等觀點考慮,包含n型雜質的玻璃粒子的軟化點較佳的是200℃~1000℃,更佳的是300℃~900℃。玻璃粒子的形狀可列舉略球狀、扁平狀、塊狀、板狀、鱗片狀等。自製成n型雜質擴散層形成組成物的情況下於基板上的塗佈性、擴散性等觀點考慮,較佳的是略球狀、扁平狀或板狀。玻璃粒子的平均粒徑較佳的是100 μm以下。在使用具有100 μm以下的平均粒徑的玻璃粒子的情況下,存在容易形成平滑的n型雜質擴散層形成組成物層的傾向。玻璃粒子的平均粒徑更佳的是50 μm以下,進一步更佳的是10 μm以下。玻璃粒子的平均粒徑的下限並無特別限制,較佳的是0.01 μm以上。此處,玻璃粒子的平均粒徑表示體積平均粒徑,可藉由雷射散射繞射法粒度分佈測定裝置等而測定。The softening point of the glass particles containing the n-type impurities is preferably from 200 ° C to 1000 ° C, more preferably from 300 ° C to 900 ° C, from the viewpoints of diffusibility at the time of diffusion treatment and suppression of dripping. The shape of the glass particles may be a substantially spherical shape, a flat shape, a block shape, a plate shape, or a scale shape. From the viewpoints of coating properties, diffusibility, and the like on the substrate in the case where the composition is formed into an n-type impurity diffusion layer, it is preferably a spherical shape, a flat shape, or a plate shape. The average particle diameter of the glass particles is preferably 100 μm or less. When glass particles having an average particle diameter of 100 μm or less are used, there is a tendency that a smooth n-type impurity diffusion layer forming composition layer is easily formed. The average particle diameter of the glass particles is more preferably 50 μm or less, and still more preferably 10 μm or less. The lower limit of the average particle diameter of the glass particles is not particularly limited, but is preferably 0.01 μm or more. Here, the average particle diameter of the glass particles means a volume average particle diameter, and can be measured by a laser scattering diffraction particle size distribution measuring apparatus or the like.

包含n型雜質的玻璃粒子例如可藉由以下順序而製作。首先秤量原料,填充至坩鍋中。坩鍋的材質可列舉鉑、鉑-銠、銥、氧化鋁、石英、碳等,可考慮熔融溫度、環境、與熔融物質的反應性、雜質的混入等而適宜選擇。其次,在電爐中以與玻璃組成對應的溫度進行加熱而製成熔融液。此時,理想的是以熔融液變均勻的方式進行攪拌。繼而,使所得的熔融液流出至氧化鋯基板、碳基板等之上而對熔融液進行玻璃化。最後,對玻璃進行粉碎而製成粒子狀。粉碎可使用噴磨機、珠磨機、球磨機等公知的裝置而進行。The glass particles containing an n-type impurity can be produced, for example, by the following procedure. First weigh the raw materials and fill them into the crucible. Examples of the material of the crucible include platinum, platinum-rhodium, iridium, aluminum oxide, quartz, and carbon. The melting temperature, the environment, the reactivity with the molten material, and the incorporation of impurities are appropriately selected. Next, it is heated in an electric furnace at a temperature corresponding to the glass composition to prepare a molten liquid. At this time, it is desirable to stir the melt so that it becomes uniform. Then, the obtained melt is discharged onto a zirconia substrate, a carbon substrate or the like to vitrify the melt. Finally, the glass is pulverized to form a pellet. The pulverization can be carried out using a known device such as a jet mill, a bead mill, or a ball mill.

n型雜質擴散層形成組成物中的包含n型雜質的玻璃粒子的含有比率可考慮塗佈性、n型雜質的擴散性等而決定。一般情況下,n型雜質擴散層形成組成物中的玻璃粒子的含有比率較佳的是0.1質量%~95質量%,更佳的是1質量%~90質量%,進一步更佳的是1.5質量%~85質量%,特佳的是2質量%~80質量%。The content ratio of the glass particles containing the n-type impurity in the n-type impurity diffusion layer forming composition can be determined in consideration of coatability, diffusibility of the n-type impurity, and the like. In general, the content ratio of the glass particles in the n-type impurity diffusion layer forming composition is preferably 0.1% by mass to 95% by mass, more preferably 1% by mass to 90% by mass, still more preferably 1.5% by mass. From % to 85% by mass, particularly preferably from 2% by mass to 80% by mass.

(分散介質) 其次,關於分散介質而加以說明。所謂「分散介質」是在組成物中使所述玻璃粒子分散的介質。具體而言,分散介質可使用黏合劑、溶劑、該些的組合等。(Dispersion Medium) Next, the dispersion medium will be described. The "dispersion medium" is a medium in which the glass particles are dispersed in the composition. Specifically, a binder, a solvent, a combination of these, or the like can be used as the dispersion medium.

-黏合劑- 黏合劑例如可列舉聚乙烯醇、聚丙烯醯胺類、聚乙烯醯胺類、聚乙烯吡咯啶酮、聚(甲基)丙烯酸類、聚環氧乙烷類、聚磺酸、丙烯醯胺烷基磺酸、纖維素醚類、纖維素衍生物、羧甲基纖維素、羥乙基纖維素、乙基纖維素、明膠、澱粉及澱粉衍生物、褐藻酸鈉類、三仙膠及三仙膠衍生物、瓜爾膠(guar gum)及瓜爾膠衍生物、硬葡聚糖及硬葡聚糖衍生物、黃芪膠及黃芪膠衍生物、糊精及糊精衍生物、(甲基)丙烯酸樹脂、(甲基)丙烯酸酯樹脂(例如(甲基)丙烯酸烷基酯樹脂、(甲基)丙烯酸二甲基胺基乙酯樹脂等)、丁二烯樹脂、苯乙烯樹脂、該些樹脂的共聚物、矽氧烷樹脂等。該些黏合劑可單獨使用一種,亦可組合使用兩種以上。黏合劑的重量平均分子量並無特別的限制,可根據n型雜質擴散層形成組成物的所期望的黏度而選擇所期望的重量平均分子量的黏合劑。- Binder - Examples of the binder include polyvinyl alcohol, polypropylene decylamine, polyvinyl decylamine, polyvinylpyrrolidone, poly(meth)acrylic acid, polyethylene oxide, polysulfonic acid, Acrylamide alkyl sulfonic acid, cellulose ethers, cellulose derivatives, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivatives, sodium alginate, Sanxian Gum and Sanxian gum derivatives, guar gum and guar derivatives, scleroglucans and scleroglucan derivatives, tragacanth and tragacanth derivatives, dextrin and dextrin derivatives, (Meth)acrylic resin, (meth) acrylate resin (for example, alkyl (meth) acrylate resin, dimethylaminoethyl methacrylate resin, etc.), butadiene resin, styrene resin And a copolymer of these resins, a decane resin, and the like. These binders may be used alone or in combination of two or more. The weight average molecular weight of the binder is not particularly limited, and a desired weight average molecular weight binder can be selected depending on the desired viscosity of the composition of the n-type impurity diffusion layer.

-溶劑- 溶劑可列舉丙酮、甲基乙基酮、甲基正丙基酮、甲基異丙基酮、甲基正丁基酮、甲基異丁基酮、甲基正戊基酮、甲基正己基酮、二乙基酮、二丙基酮、二異丁基酮、三甲基壬酮、環己酮、環戊酮、甲基環己酮、2,4-戊二酮、丙酮基丙酮等酮溶劑;二乙基醚、甲基乙基醚、甲基-正丙基醚、二異丙基醚、四氫呋喃、甲基四氫呋喃、二噁烷、二甲基二噁烷、乙二醇二甲醚、乙二醇二乙醚、乙二醇二正丙醚、乙二醇二丁醚、二乙二醇二甲醚、二乙二醇二乙醚、二乙二醇甲基乙基醚、二乙二醇甲基-正丙基醚、二乙二醇甲基-正丁基醚、二乙二醇二正丙醚、二乙二醇二正丁醚、二乙二醇甲基-正己基醚、三乙二醇二甲醚、三乙二醇二乙醚、三乙二醇甲基乙基醚、三乙二醇甲基-正丁基醚、三乙二醇二正丁醚、三乙二醇甲基-正己基醚、四乙二醇二甲醚、四乙二醇二乙醚、四乙二醇甲基乙基醚、四乙二醇甲基-正己基醚、四乙二醇二正丁醚、丙二醇二甲醚、丙二醇二乙醚、丙二醇二正丙醚、丙二醇二丁醚、二丙二醇二甲醚、二丙二醇二乙醚、二丙二醇甲基乙基醚、二丙二醇甲基-正丁基醚、二丙二醇二正丙醚、二丙二醇二正丁醚、二丙二醇甲基-正己基醚、三丙二醇二甲醚、三丙二醇二乙醚、三丙二醇甲基乙基醚、三丙二醇甲基-正丁基醚、三丙二醇二正丁醚、三丙二醇甲基-正己基醚、四丙二醇二甲醚、四丙二醇二乙醚、四丙二醇甲基乙基醚、四丙二醇甲基-正己基醚、四丙二醇二正丁醚等醚溶劑;乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙酸第二丁酯、乙酸正戊酯、乙酸第二戊酯、乙酸-3-甲氧基丁酯、乙酸甲基戊酯、乙酸-2-乙基丁酯、乙酸-2-乙基己酯、乙酸-2-(2-丁氧基乙氧基)乙酯、乙酸苄酯、乙酸環己酯、乙酸甲基環己酯、乙酸壬酯、乙醯乙酸甲酯、乙醯乙酸乙酯、二乙二醇甲醚乙酸酯、二乙二醇乙醚乙酸酯、二丙二醇甲醚乙酸酯、二丙二醇乙醚乙酸酯、二醇二乙酸酯、甲氧基三乙二醇乙酸酯、丙酸乙酯、丙酸正丁酯、丙酸異戊酯、草酸二乙酯、草酸二正丁酯、乳酸甲酯、乳酸乙酯、乳酸正丁酯、乳酸正戊酯、乙二醇甲醚丙酸酯、乙二醇乙醚丙酸酯、乙二醇甲醚乙酸酯、乙二醇乙醚乙酸酯、丙二醇甲醚乙酸酯、丙二醇乙醚乙酸酯、丙二醇丙醚乙酸酯、γ-丁內酯、γ-戊內酯等酯溶劑;乙腈、N-甲基吡咯啶酮、N-乙基吡咯啶酮、N-丙基吡咯啶酮、N-丁基吡咯啶酮、N-己基吡咯啶酮、N-環己基吡咯啶酮、N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、二甲基亞碸等非質子性極性溶劑;甲醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第二丁醇、第三丁醇、正戊醇、異戊醇、2-甲基丁醇、第二戊醇、第三戊醇、3-甲氧基丁醇、正己醇、2-甲基戊醇、第二己醇、2-乙基丁醇、第二庚醇、正辛醇、2-乙基己醇、第二辛醇、正壬醇、正癸醇、第二-十一烷醇、三甲基壬醇、第二-十四醇、第二-十七醇、苯酚、環己醇、甲基環己醇、苄醇、乙二醇、1,2-丙二醇、1,3-丁二醇、二乙二醇、二丙二醇、三乙二醇、三丙二醇等醇溶劑;乙二醇單甲醚、乙二醇單乙醚、乙二醇單苯醚、二乙二醇單甲醚、二乙二醇單乙醚、二乙二醇單正丁醚、二乙二醇單正己醚、三乙二醇單乙醚(ethoxy triglycol)、四乙二醇單正丁醚、丙二醇單甲醚、二丙二醇單甲醚、二丙二醇單乙醚、三丙二醇單甲醚等二醇單醚溶劑;α-萜品烯、α-萜品醇等萜品醇、月桂油烯、別羅勒烯、檸檬烯、雙戊烯、α-蒎烯、β-蒎烯、香旱芹酮、羅勒烯、水芹烯等萜烯溶劑;水等。該些溶劑可單獨使用一種,亦可組合使用兩種以上。在製成n型雜質擴散層形成組成物的情況下,自於基板上的塗佈性的觀點考慮,較佳的是萜品醇、二乙二醇單正丁醚、及乙酸-2-(2-丁氧基乙氧基)乙酯。- Solvent - The solvent may, for example, be acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, or Base hexyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, trimethyl fluorenone, cyclohexanone, cyclopentanone, methyl cyclohexanone, 2,4-pentanedione, acetone Ketone solvent such as acetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyl dioxane, ethylene Alcohol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether , diethylene glycol methyl-n-propyl ether, diethylene glycol methyl-n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl- n-Hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl-n-butyl ether, triethylene glycol di-n-butyl ether, Triethylene glycol methyl-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene Alcohol diethyl ether, tetraethylene glycol methyl ethyl ether, tetraethylene glycol methyl-n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol Dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol methyl-n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol Base-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl-n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether , tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl-n-hexyl ether, tetrapropylene glycol di-n-butyl ether and other ether solvents; methyl acetate, ethyl acetate, acetic acid Ester, isopropyl acetate, n-butyl acetate, isobutyl acetate, second butyl acetate, n-amyl acetate, second amyl acetate, 3-methoxybutyl acetate, methyl amyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2-(2-butoxyethyl acetate) Ethyl ester, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, decyl acetate, methyl acetate, ethyl acetate, diethylene glycol methyl ether acetate, diethyl Alcohol ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol diethyl ether acetate, glycol diacetate, methoxy triethylene glycol acetate, ethyl propionate, n-butyl propionate, Isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, ethylene glycol methyl ether propionate, ethylene glycol ether propionate Ester, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol diethyl ether acetate, propylene glycol propyl ether acetate, γ-butyrolactone, γ-valerolactone Ester solvent; acetonitrile, N-methylpyrrolidone, N-ethylpyrrolidone, N-propylpyrrolidone, N-butylpyrrolidone, N-hexyl pyrrolidone, N-cyclohexylpyrrole Aprotic polar solvents such as ketone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylhydrazine; methanol, ethanol, n-propanol, isopropanol, positive Butanol, isobutanol Second butanol, tert-butanol, n-pentanol, isoamyl alcohol, 2-methylbutanol, second pentanol, third pentanol, 3-methoxybutanol, n-hexanol, 2-methyl Pentanol, second hexanol, 2-ethylbutanol, second heptanol, n-octanol, 2-ethylhexanol, second octanol, n-nonanol, n-nonanol, second-undecane Alcohol, trimethyl decyl alcohol, second-tetradecanol, second heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propanediol, 1,3 - an alcohol solvent such as butanediol, diethylene glycol, dipropylene glycol, triethylene glycol or tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl Ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, ethoxy triglycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether a glycol monoether solvent such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether or tripropylene glycol monomethyl ether; terpineol such as α-terpinene or α-terpineol, laurelene, allo-ocimene, limonene, Dipentene, α-pinene, β-pinene, propyl ketone, Luo , Phellandrene other terpene solvent; water and the like. These solvents may be used alone or in combination of two or more. In the case where the n-type impurity diffusion layer is formed into a composition, from the viewpoint of coatability on the substrate, terpineol, diethylene glycol mono-n-butyl ether, and acetic acid-2-(2) are preferred. 2-butoxyethoxy)ethyl ester.

n型雜質擴散層形成組成物中的分散介質的含有比率可考慮塗佈性、n型雜質的濃度等而決定。考慮到塗佈性,n型雜質擴散層形成組成物的黏度較佳的是10 mPa·s~1000000 mPa·s,更佳的是50 mPa·s~500000 mPa·s。The content ratio of the dispersion medium in the n-type impurity diffusion layer forming composition can be determined in consideration of coatability, concentration of n-type impurities, and the like. The viscosity of the n-type impurity diffusion layer forming composition is preferably from 10 mPa·s to 1,000,000 mPa·s, more preferably from 50 mPa·s to 500,000 mPa·s, in view of coatability.

[p型擴散層形成組成物] p型雜質擴散層形成組成物含有包含p型雜質的玻璃粒子的至少一種、分散介質的至少一種。亦可視需要考慮塗佈性等而含有其他添加劑。此處,所謂「p型雜質擴散層形成組成物」是指含有p型雜質,在塗佈於矽基板上之後,對該p型雜質進行熱擴散,藉此可形成p型雜質擴散層的材料。藉由使用p型雜質擴散層形成組成物而於所期望的部位形成p型雜質擴散層。而且,玻璃粒子中的p型雜質即使在煅燒中亦難以揮散,因此可抑制如下的現象:由於產生揮散氣體而不僅僅於賦予了p型雜質擴散層形成組成物的部分,於半導體基板的背面或側面亦形成p型雜質擴散層。認為其理由在於:p型雜質與玻璃粒子中的元素鍵結,或摻入至玻璃中,因此難以產生揮散氣體。[P-type diffusion layer forming composition] The p-type impurity diffusion layer forming composition contains at least one of glass particles containing a p-type impurity and at least one kind of a dispersion medium. Other additives may be contained as needed in consideration of coatability and the like. Here, the "p-type impurity diffusion layer forming composition" means a material which contains a p-type impurity and which is thermally diffused on the p-type impurity after being applied to the germanium substrate, thereby forming a p-type impurity diffusion layer. . A p-type impurity diffusion layer is formed at a desired portion by forming a composition using a p-type impurity diffusion layer. Further, since the p-type impurity in the glass particles is hard to be volatilized even in the calcination, it is possible to suppress the phenomenon that the volatilized gas is generated and not only the portion to which the p-type impurity diffusion layer is formed, but also on the back surface of the semiconductor substrate. A p-type impurity diffusion layer is also formed on the side. The reason is considered to be that the p-type impurity is bonded to the element in the glass particle or incorporated into the glass, so that it is difficult to generate a volatilized gas.

(包含p型雜質的玻璃粒子) 所謂「p型雜質」是可藉由擴散至矽基板中而形成p型雜質擴散層的元素。p型雜質可使用第13族的元素,可列舉B(硼)、Al(鋁)及Ga(鎵)等。含有p型雜質的物質可列舉B2 O3 、Al2 O3 及Ga2 O3 ,較佳的是使用選自B2 O3 、Al2 O3 及Ga2 O3 的至少一種。而且,包含p型雜質的玻璃粒子可藉由視需要調整成分比率而控制熔融溫度、軟化點、玻璃轉移點、化學耐久性等。較佳的是進一步包含以下所記載的玻璃成分物質。(Glass Particles Containing P-Type Impurities) The "p-type impurities" are elements which can form a p-type impurity diffusion layer by being diffused into a germanium substrate. As the p-type impurity, an element of Group 13 can be used, and examples thereof include B (boron), Al (aluminum), and Ga (gallium). Examples of the substance containing a p-type impurity include B 2 O 3 , Al 2 O 3 and Ga 2 O 3 , and at least one selected from the group consisting of B 2 O 3 , Al 2 O 3 and Ga 2 O 3 is preferably used. Further, the glass particles containing the p-type impurities can control the melting temperature, the softening point, the glass transition point, the chemical durability, and the like by adjusting the component ratio as needed. It is preferable to further contain the glass component substance described below.

玻璃成分物質可列舉SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、Tl2 O、V2 O5 、SnO、WO3 、MoO3 、MnO、La2 O3 、Nb2 O5 、Ta2 O5 、Y2 O3 、TiO2 、ZrO2 、GeO2 、TeO2 及Lu2 O3 等,較佳的是使用選自SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V2 O5 、SnO、ZrO2 、TiO2 、及MoO3 的至少一種。Examples of the glass component substance include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, Tl 2 O, V 2 O 5 , SnO, and WO 3 . MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , ZrO 2 , GeO 2 , TeO 2 and Lu 2 O 3 are preferably selected from the group consisting of At least one of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , TiO 2 , and MoO 3 .

包含p型雜質的玻璃粒子可列舉包含含有p型雜質的物質與玻璃成分物質此兩者的玻璃粒子。具體而言可列舉:B2 O3 -SiO2 系(以含有p型雜質的物質-玻璃成分物質的順序記載,下同)、B2 O3 -ZnO系、B2 O3 -PbO系、B2 O3 單獨系等包含B2 O3 作為含有p型雜質的物質的系統,Al2 O3 -SiO2 系等包含Al2 O3 作為含有p型雜質的物質的系統,Ga2 O3 -SiO2 系等包含Ga2 O3 作為含有p型雜質的物質的系統等的玻璃粒子。而且,亦可使用如Al2 O3 -B2 O3 系、Ga2 O3 -B2 O3 系等這樣的包含兩種以上的含有p型雜質的物質的玻璃粒子。於上述中例示了單成分玻璃或包含兩種成分的複合玻璃,亦可使用包含B2 O3 -SiO2 -Na2 O等三種成分以上的物質的玻璃粒子。The glass particles containing a p-type impurity include glass particles containing both a substance containing a p-type impurity and a glass component. Specifically, B 2 O 3 -SiO 2 system (described in the order of a substance containing a p-type impurity - a glass component substance, the same applies hereinafter), a B 2 O 3 -ZnO system, a B 2 O 3 -PbO system, B 2 O 3 alone system including B 2 O 3 as a substance containing a p-type impurity, Al 2 O 3 -SiO 2 system or the like containing Al 2 O 3 as a substance containing a p-type impurity, Ga 2 O 3 - Glass particles such as a system such as a SiO 2 system containing Ga 2 O 3 as a substance containing a p-type impurity. Further, glass particles containing two or more kinds of substances containing p-type impurities such as Al 2 O 3 -B 2 O 3 -based or Ga 2 O 3 -B 2 O 3 -based may be used. In the above, a single-component glass or a composite glass containing two components is exemplified, and glass particles containing three or more components such as B 2 O 3 —SiO 2 —Na 2 O may be used.

包含p型雜質的玻璃粒子中的玻璃成分物質的含有比率較佳的是考慮熔融溫度、軟化點、玻璃轉移點、化學耐久性等而適宜設定。一般情況下較佳的是0.1質量%~95質量%,更佳的是0.5質量%~90質量%。The content ratio of the glass component in the glass particles containing the p-type impurity is preferably set in consideration of the melting temperature, the softening point, the glass transition point, the chemical durability, and the like. In general, it is preferably 0.1% by mass to 95% by mass, more preferably 0.5% by mass to 90% by mass.

自擴散處理時的擴散性、抑制滴液等觀點考慮,包含p型雜質的玻璃粒子的軟化點較佳的是200℃~1000℃,更佳的是300℃~900℃。玻璃粒子的形狀可列舉略球狀、扁平狀、塊狀、板狀、鱗片狀等。自n型雜質擴散層形成組成物於基板上的塗佈性、擴散性等觀點考慮,理想的是略球狀、扁平狀或板狀。包含p型雜質的玻璃粒子的平均粒徑理想的是100 μm以下。在使用具有100 μm以下的平均粒徑的玻璃粒子的情況下,存在容易形成平滑的n型雜質擴散層形成組成物層的傾向。玻璃粒子的平均粒徑更佳的是50 μm以下,進一步更佳的是10 μm以下。玻璃粒子的平均粒徑的下限並無特別限制,較佳的是0.01 μm以上。The softening point of the glass particles containing the p-type impurity is preferably from 200 ° C to 1000 ° C, more preferably from 300 ° C to 900 ° C, from the viewpoints of diffusibility at the time of diffusion treatment and suppression of dripping. The shape of the glass particles may be a substantially spherical shape, a flat shape, a block shape, a plate shape, or a scale shape. From the viewpoints of coating properties, diffusibility, and the like of the composition of the n-type impurity diffusion layer on the substrate, it is preferably a spherical shape, a flat shape, or a plate shape. The average particle diameter of the glass particles containing the p-type impurity is preferably 100 μm or less. When glass particles having an average particle diameter of 100 μm or less are used, there is a tendency that a smooth n-type impurity diffusion layer forming composition layer is easily formed. The average particle diameter of the glass particles is more preferably 50 μm or less, and still more preferably 10 μm or less. The lower limit of the average particle diameter of the glass particles is not particularly limited, but is preferably 0.01 μm or more.

包含p型雜質的玻璃粒子可藉由與所述包含n型雜質的玻璃粒子同樣的順序而製作。The glass particles containing the p-type impurity can be produced in the same order as the glass particles containing the n-type impurity.

p型雜質擴散層形成組成物中的包含p型雜質的玻璃粒子的含有比率可考慮塗佈性、p型雜質的擴散性等而決定。一般情況下,p型雜質擴散層形成組成物中的玻璃粒子的含有比率較佳的是0.1質量%~95質量%,更佳的是1質量%~90質量%,進一步更佳的是1.5質量%~85質量%,特佳的是2質量%~80質量%。The content ratio of the glass particles containing the p-type impurity in the p-type impurity diffusion layer forming composition can be determined in consideration of coatability, diffusibility of the p-type impurity, and the like. In general, the content ratio of the glass particles in the p-type impurity diffusion layer forming composition is preferably 0.1% by mass to 95% by mass, more preferably 1% by mass to 90% by mass, still more preferably 1.5% by mass. From % to 85% by mass, particularly preferably from 2% by mass to 80% by mass.

分散介質可使用與n型雜質擴散層形成組成物同樣者。p型雜質擴散層形成組成物中的分散介質的含有比率可考慮塗佈性、p型雜質的濃度等而決定。考慮到塗佈性,p型雜質擴散層形成組成物的黏度較佳的是10 mPa·S~1000000 mPa·S以下,更佳的是50 mPa·S~500000 mPa·S以下。The dispersion medium can be the same as the n-type impurity diffusion layer forming composition. The content ratio of the dispersion medium in the p-type impurity diffusion layer forming composition can be determined in consideration of coatability, concentration of p-type impurities, and the like. In view of coatability, the viscosity of the p-type impurity diffusion layer forming composition is preferably 10 mPa·s to 1,000,000 mPa·s or less, more preferably 50 mPa·s to 500,000 mPa·s or less.

[太陽電池元件的製造方法] 以下,關於本發明的太陽電池元件的製造方法的一實施方式而加以說明。 首先,使用酸性或鹼性的溶液,將處於矽等半導體基板的表面的損傷層蝕刻除去。其次,於半導體基板的其中一個表面形成包含化合物的層。關於包含化合物的層的詳細,如上所述。[Method of Manufacturing Solar Cell Element] Hereinafter, an embodiment of a method of manufacturing a solar cell element of the present invention will be described. First, a damaged layer on the surface of a semiconductor substrate such as tantalum is removed by etching using an acidic or alkaline solution. Next, a layer containing a compound is formed on one surface of the semiconductor substrate. The details of the layer containing the compound are as described above.

其次,於半導體基板的未形成包含化合物的層之側的表面(受光面)形成被稱為「紋理結構」的微細的凹凸結構。紋理結構例如可藉由將形成有包含化合物的層的半導體基板浸漬於包含氫氧化鉀與異丙醇(isopropyl alcohol,IPA)的約80℃左右的液體中而形成。所述紋理結構的形成步驟亦可於後述的雜質擴散層的形成後進行。Next, a fine uneven structure called a "texture structure" is formed on the surface (light-receiving surface) on the side of the semiconductor substrate on which the layer containing the compound is not formed. The texture structure can be formed, for example, by immersing a semiconductor substrate on which a layer containing a compound is formed in a liquid containing about 60 ° C of potassium hydroxide and isopropyl alcohol (IPA). The step of forming the texture structure may be performed after formation of an impurity diffusion layer to be described later.

其次,分別於半導體基板的同一面內的第1區域選擇性形成n型雜質擴散層,於第2區域選擇性形成p型雜質擴散層。第1區域及第2區域的形狀及大小並無特別的限制,可自背面電極型太陽電池元件中所通常採用的n型雜質擴散層及p型雜質擴散層的形狀及大小中適宜選擇。Next, an n-type impurity diffusion layer is selectively formed in the first region in the same plane of the semiconductor substrate, and a p-type impurity diffusion layer is selectively formed in the second region. The shape and size of the first region and the second region are not particularly limited, and may be appropriately selected from the shapes and sizes of the n-type impurity diffusion layer and the p-type impurity diffusion layer which are generally used in the back electrode type solar cell element.

具體而言,例如在半導體基板的成為受光面之面的相反側的面(以下稱為「背面」)上的第1區域,經由包含化合物的層而賦予n型雜質擴散層形成組成物。第1區域的形狀及大小例如可根據所形成的n型雜質擴散層的形狀及大小而適宜選擇。形狀例如可設為線狀。線寬例如可設為100 μm~300 μm。而且,於半導體基板的背面上的第2區域,經由包含化合物的層而賦予p型雜質擴散層形成組成物。第2區域的形狀及大小例如可根據所形成的p型雜質擴散層的形狀及大小而適宜選擇。形狀例如可設為線狀。線寬例如可設為500 μm~900 μm。Specifically, for example, in the first region on the surface opposite to the surface on the light-receiving surface of the semiconductor substrate (hereinafter referred to as "back surface"), the n-type impurity diffusion layer is formed into a composition via a layer containing a compound. The shape and size of the first region can be appropriately selected depending on, for example, the shape and size of the n-type impurity diffusion layer to be formed. The shape can be set, for example, to be linear. The line width can be set, for example, from 100 μm to 300 μm. Further, a composition is formed in the second region on the back surface of the semiconductor substrate via the layer containing the compound to impart a p-type impurity diffusion layer. The shape and size of the second region can be appropriately selected depending on, for example, the shape and size of the p-type impurity diffusion layer to be formed. The shape can be set, for example, to be linear. The line width can be set, for example, from 500 μm to 900 μm.

第1區域及第2區域較佳的是以互相並不接觸的方式空出規定的間隔而設置。第1區域及第2區域的間隔可根據n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的諸物性而適宜選擇。例如可設為1 mm~3 mm。藉由空出規定的間隔而設置第1區域及第2區域,可使所構成的背面電極型太陽電池元件的發電效率進一步提高。Preferably, the first region and the second region are provided at a predetermined interval so as not to be in contact with each other. The interval between the first region and the second region can be appropriately selected depending on the physical properties of the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition. For example, it can be set to 1 mm to 3 mm. By providing the first region and the second region at a predetermined interval, the power generation efficiency of the configured back electrode type solar cell element can be further improved.

賦予n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的順序並無特別限制。亦即,可將n型雜質擴散層形成組成物賦予至第1區域後,將p型雜質擴散層形成組成物賦予至第2區域;亦可將p型雜質擴散層形成組成物賦予至第2區域後,將n型雜質擴散層形成組成物賦予至第1區域。進一步亦可藉由賦予方法而一併賦予n型雜質擴散層形成組成物及p型雜質擴散層形成組成物。The order in which the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition are imparted is not particularly limited. In other words, the p-type impurity diffusion layer forming composition can be applied to the second region after the n-type impurity diffusion layer forming composition is applied to the first region, and the p-type impurity diffusion layer forming composition can be applied to the second region. After the region, the n-type impurity diffusion layer forming composition is applied to the first region. Further, the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition can be collectively provided by the application method.

n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的賦予方法並無特別的限制,可使用通常所使用的方法。例如可使用絲網印刷法、凹板印刷法等印刷法,旋塗法、毛刷塗裝、噴霧法、刮刀法、輥塗法、噴墨法等而進行。n型雜質擴散層形成組成物的賦予方法與p型雜質擴散層形成組成物的賦予方法可分別相同亦可不同。The method of applying the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition is not particularly limited, and a commonly used method can be used. For example, it can be carried out by a printing method such as a screen printing method or a gravure printing method, a spin coating method, a brush coating method, a spray method, a doctor blade method, a roll coating method, an inkjet method, or the like. The method of applying the n-type impurity diffusion layer forming composition and the method of providing the p-type impurity diffusion layer forming composition may be the same or different.

n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的賦予量並無特別限制。例如玻璃粒子量可設為0.01 g/m2 ~100 g/m2 ,較佳的是0.1 g/m2 ~10 g/m2 。n型雜質擴散層形成組成物的賦予量及p型雜質擴散層形成組成物的賦予量可根據n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的構成、所形成的n型雜質擴散層及p型雜質擴散層中的雜質的濃度等而分別獨立地選擇。The amount of the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition is not particularly limited. For example, the amount of the glass particles may be from 0.01 g/m 2 to 100 g/m 2 , preferably from 0.1 g/m 2 to 10 g/m 2 . The amount of the n-type impurity diffusion layer forming composition and the amount of the p-type impurity diffusion layer forming composition can be formed according to the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition, and the n-type formed. The concentration of impurities in the impurity diffusion layer and the p-type impurity diffusion layer are independently selected.

於半導體基板上賦予n型雜質擴散層形成組成物及p型雜質擴散層形成組成物後,亦可視需要設置加熱步驟,所述加熱步驟是用以將在組成物中作為分散介質而含有的溶劑或黏合劑的至少一部分除去。加熱步驟例如可藉由在100℃~200℃下對半導體基板進行加熱處理而使溶劑的至少一部分揮發。而且,例如亦可藉由在200℃~500℃下對半導體基板進行加熱處理,將黏合劑的至少一部分除去。加熱步驟可在n型雜質擴散層形成組成物的賦予後與p型雜質擴散層形成組成物的賦予後分別進行,亦可在賦予n型雜質擴散層形成組成物與p型雜質擴散層形成組成物此兩者之後一併進行。After the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition are provided on the semiconductor substrate, a heating step may be optionally provided, and the heating step is a solvent for containing the composition as a dispersion medium. Or at least a portion of the binder is removed. In the heating step, for example, at least a part of the solvent can be volatilized by heat-treating the semiconductor substrate at 100 ° C to 200 ° C. Further, for example, at least a part of the binder may be removed by heat-treating the semiconductor substrate at 200 ° C to 500 ° C. The heating step may be performed after the application of the n-type impurity diffusion layer forming composition and the application of the p-type impurity diffusion layer forming composition, or may be performed by imparting an n-type impurity diffusion layer forming composition and a p-type impurity diffusion layer. The two are then carried out together.

其次,藉由對賦予了n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的半導體基板進行熱處理而形成n型雜質擴散層及p型雜質擴散層。藉由熱處理使n型雜質自賦予至第1區域的n型雜質擴散層形成組成物擴散至半導體基板中,使p型雜質自賦予至第2區域的p型雜質擴散層形成組成物擴散至半導體基板中,分別形成n型雜質擴散層及p型雜質擴散層。於本發明中,藉由使用n型雜質擴散層形成組成物及p型雜質擴散層形成組成物而精度良好地將n型雜質擴散層及p型雜質擴散層形成為所期望的形狀。進一步而言,即使不設置後述的保護層,亦可抑制於並不需要形成雜質擴散層的區域形成n型雜質擴散層或p型雜質擴散層。Then, the n-type impurity diffusion layer and the p-type impurity diffusion layer are formed by heat-treating the semiconductor substrate to which the composition is formed by the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer. The n-type impurity is diffused from the n-type impurity diffusion layer forming composition imparted to the first region into the semiconductor substrate by heat treatment, and the p-type impurity is diffused from the p-type impurity diffusion layer forming composition imparted to the second region to the semiconductor An n-type impurity diffusion layer and a p-type impurity diffusion layer are formed in the substrate, respectively. In the present invention, the n-type impurity diffusion layer and the p-type impurity diffusion layer are formed into a desired shape with high precision by using the n-type impurity diffusion layer formation composition and the p-type impurity diffusion layer formation composition. Further, even if a protective layer to be described later is not provided, it is possible to suppress formation of an n-type impurity diffusion layer or a p-type impurity diffusion layer in a region where the impurity diffusion layer is not required to be formed.

若可形成n型雜質擴散層及p型雜質擴散層則熱處理溫度並無特別限制,較佳的是800℃以上、1100℃以下,更佳的是850℃以上、1100℃以下,進一步更佳的是900℃以上、1100℃以下。The heat treatment temperature is not particularly limited as long as the n-type impurity diffusion layer and the p-type impurity diffusion layer can be formed, and is preferably 800° C. or higher and 1100° C. or lower, more preferably 850° C. or higher and 1100° C. or lower. It is 900 ° C or more and 1100 ° C or less.

如上所述地進行而於形成有n型雜質擴散層及p型雜質擴散層的半導體基板殘存有玻璃層,但較佳的是將該玻璃層除去。玻璃層的除去可應用浸漬於氫氟酸等酸中的方法、浸漬於苛性鈉等鹼中的方法等公知的方法。Although the glass layer remains on the semiconductor substrate on which the n-type impurity diffusion layer and the p-type impurity diffusion layer are formed as described above, it is preferable to remove the glass layer. The removal of the glass layer can be carried out by a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda.

較佳的是於形成n型雜質擴散層及p型雜質擴散層之後的半導體基板的背面側形成鈍化層。鈍化層可使用矽的氧化物層、矽的氮化物層、該些層重疊而成的層等。在鈍化層為矽的氧化物層的情況下,可藉由使用矽烷氣體與氧的常壓CVD法等堆積法,乾式熱氧化、濕式熱氧化、蒸氣熱氧化等熱氧化法而形成。在鈍化層為矽的氮化物層的情況下,可藉由使用矽烷氣體、氨氣及氮氣的電漿CVD法等而形成。於鈍化層的形成之前,亦可藉由自先前便公知的方法而對半導體基板的表面進行清洗。It is preferable that a passivation layer is formed on the back side of the semiconductor substrate after the formation of the n-type impurity diffusion layer and the p-type impurity diffusion layer. As the passivation layer, a tantalum oxide layer, a tantalum nitride layer, a layer in which the layers are overlapped, or the like can be used. When the passivation layer is an oxide layer of tantalum, it can be formed by a thermal oxidation method such as dry thermal oxidation, wet thermal oxidation, or vapor thermal oxidation using a deposition method such as a normal pressure CVD method using decane gas and oxygen. In the case where the passivation layer is a nitride layer of tantalum, it can be formed by a plasma CVD method using decane gas, ammonia gas, and nitrogen gas. The surface of the semiconductor substrate may also be cleaned by a method known from the prior art before the formation of the passivation layer.

其次,較佳的是於形成有半導體基板的紋理結構之側的表面形成抗反射膜。抗反射膜例如可使用藉由電漿CVD法而形成的氮化物膜。Next, it is preferable to form an anti-reflection film on the surface on the side on which the texture structure of the semiconductor substrate is formed. As the antireflection film, for example, a nitride film formed by a plasma CVD method can be used.

其次,在如上所述而形成的n型雜質擴散層及p型雜質擴散層上分別形成電極。具體而言,例如首先藉由將形成於半導體基板的背面的鈍化層的一部分除去,使n型雜質擴散層及p型雜質擴散層的各自的表面的一部分露出。鈍化層的除去可藉由自先前便公知的方法而進行。而且,於所露出的n型雜質擴散層的表面上形成n電極,於所露出的p型雜質擴散層的表面上形成p電極,藉此製造背面電極型太陽電池元件。n電極及p電極可藉由如下方式而形成:於n型雜質擴散層及p型雜質擴散層的各自的所露出的表面上塗佈含銀的電極材料,進行乾燥及/或煅燒。或者,亦可使用蒸鍍法而形成n電極及p電極。Next, an electrode is formed on each of the n-type impurity diffusion layer and the p-type impurity diffusion layer formed as described above. Specifically, for example, first, a part of the surface of each of the n-type impurity diffusion layer and the p-type impurity diffusion layer is exposed by removing a part of the passivation layer formed on the back surface of the semiconductor substrate. The removal of the passivation layer can be carried out by a method known from the prior art. Further, an n-electrode is formed on the surface of the exposed n-type impurity diffusion layer, and a p-electrode is formed on the surface of the exposed p-type impurity diffusion layer, thereby producing a back electrode type solar cell element. The n-electrode and the p-electrode can be formed by applying a silver-containing electrode material to each of the exposed surfaces of the n-type impurity diffusion layer and the p-type impurity diffusion layer, followed by drying and/or calcination. Alternatively, an n-electrode and a p-electrode may be formed by a vapor deposition method.

於本發明中,n型雜質及p型雜質與玻璃粒子中的元素鍵結,或摻入至玻璃中,因此可抑制在熱擴散時擴散至無需n型雜質及p型雜質擴散的區域。另外,藉由形成包含化合物的層,可使所述抑制效果進一步提高。 [實施例]In the present invention, since the n-type impurity and the p-type impurity are bonded to the element in the glass particle or incorporated into the glass, it is possible to suppress diffusion to a region where the n-type impurity and the p-type impurity are not diffused during thermal diffusion. Further, by forming a layer containing a compound, the inhibitory effect can be further improved. [Examples]

以下,藉由實施例對本發明加以具體的說明,但本發明並不限定於該些實施例。另外,若無特別說明,則化學藥品均使用試劑。而且「份」及「%」是質量基準。Hereinafter, the invention will be specifically described by way of examples, but the invention is not limited to the examples. In addition, unless otherwise specified, reagents are used for chemicals. And "parts" and "%" are quality benchmarks.

[實施例1] 分別將10 g的粒子形狀為略球狀、平均粒徑為0.25 μm、軟化溫度為約800℃的玻璃粒子(以P2 O5 、SiO2 及CaO為主成分,含有率分別為50%、43%及7%)、4 g乙基纖維素及86 g萜品醇加以混合而進行糊劑化,製作n型雜質擴散層形成組成物。 繼而,分別將20 g的粒子形狀為略球狀、平均粒徑為1.5 μm、軟化溫度為約810℃的玻璃粒子(以B2 O3 、SiO2 、CaO、MgO及BaO為主成分,含有率分別為30%、40%、10%、10%及10%)、4 g乙基纖維素及76 g萜品醇加以混合而進行糊劑化,製作p型雜質擴散層形成組成物。[Example 1] 10 g of glass particles having a spherical shape, an average particle diameter of 0.25 μm, and a softening temperature of about 800 ° C were respectively used (P 2 O 5 , SiO 2 and CaO as main components, and the content ratio) 50%, 43%, and 7%), 4 g of ethyl cellulose, and 86 g of terpineol were mixed and paste-formed to prepare an n-type impurity diffusion layer-forming composition. Then, 20 g of glass particles having a spherical shape, an average particle diameter of 1.5 μm, and a softening temperature of about 810 ° C (including B 2 O 3 , SiO 2 , CaO, MgO, and BaO as main components) were contained. The ratios were 30%, 40%, 10%, 10%, and 10%), 4 g of ethyl cellulose, and 76 g of terpineol were mixed and paste-formed to prepare a p-type impurity diffusion layer-forming composition.

玻璃粒子的形狀可使用掃描式電子顯微鏡(日立高新技術股份有限公司、TM-1000型)進行觀察而判定。玻璃的平均粒徑可使用雷射散射繞射法粒度分佈測定裝置(貝克曼庫爾特(Beckman Coulter)股份有限公司、LS 13 320型、測定波長:632 nm)而算出。玻璃的軟化點可使用示差熱/熱重同步測定裝置(島津製作所股份有限公司、DTG-60H型),藉由示差熱(DTA)曲線而求出。The shape of the glass particles can be determined by observation using a scanning electron microscope (Hitachi High-Tech Co., Ltd., TM-1000 type). The average particle diameter of the glass can be calculated using a laser scattering diffraction particle size distribution measuring apparatus (Beckman Coulter Co., Ltd., LS 13 320 type, measuring wavelength: 632 nm). The softening point of the glass can be determined by a differential heat (DTA) curve using a differential heat/thermal weight synchronous measuring device (Shimadzu Corporation, DTG-60H type).

其次,於矽基板的整個面藉由常壓CVD法將矽的氧化物形成為300 nm的厚度而作為包含化合物的層。繼而,於形成有矽的氧化物的基板表面,藉由絲網印刷將n型雜質擴散層形成組成物塗佈為線狀,於150℃下進行10分鐘乾燥。繼而,於矽基板的塗佈有n型雜質擴散層形成組成物的面相同的面,以並不與塗佈有n型雜質擴散層形成組成物的區域接觸的方式空出間隔,藉由絲網印刷將p型擴散層形成組成物塗佈為線狀,於150℃下進行10分鐘乾燥。繼而,於350℃下進行3分鐘的脫黏合劑處理。其次,於大氣中、950℃下進行10分鐘熱處理,使n型雜質及p型雜質擴散至矽基板中,形成n型雜質擴散層及p型雜質擴散層。繼而,藉由氫氟酸將矽基板的表面所殘存的玻璃層除去。Next, the oxide of cerium was formed into a thickness of 300 nm on the entire surface of the ruthenium substrate by a normal pressure CVD method as a layer containing a compound. Then, on the surface of the substrate on which the cerium oxide was formed, the n-type impurity diffusion layer forming composition was applied in a line shape by screen printing, and dried at 150 ° C for 10 minutes. Then, the surface of the tantalum substrate coated with the n-type impurity diffusion layer forming surface of the composition is the same surface, and the space is not in contact with the region where the composition is formed by the n-type impurity diffusion layer, by the wire. The p-type diffusion layer forming composition was applied in a line shape by net printing, and dried at 150 ° C for 10 minutes. Then, a debonding treatment was performed at 350 ° C for 3 minutes. Next, heat treatment was performed in the air at 950 ° C for 10 minutes to diffuse n-type impurities and p-type impurities into the germanium substrate to form an n-type impurity diffusion layer and a p-type impurity diffusion layer. Then, the glass layer remaining on the surface of the tantalum substrate is removed by hydrofluoric acid.

其次,藉由SIMS(Secondary Ion Mass Spectrometry,二次離子質譜法)測定確認雜質於矽基板上的擴散狀態。於塗佈有n型雜質擴散層形成組成物的部分,P(磷)自表面擴散至約0.7 μm的深度。而且,於塗佈有p型雜質擴散層形成組成物的部分,B(硼)自表面擴散至約0.6 μm的深度。相對於此,P(磷)、B(硼)均未擴散至未塗佈雜質擴散層形成組成物的部分。SIMS測定是使用IMS-7F(阿美特克(AMETEK)股份有限公司CAMECA事業部),將O2 + 及Cs+ 作為一次離子而進行。Next, the diffusion state of the impurities on the ruthenium substrate was confirmed by SIMS (Secondary Ion Mass Spectrometry) measurement. At a portion coated with the n-type impurity diffusion layer forming composition, P (phosphorus) was diffused from the surface to a depth of about 0.7 μm. Further, B (boron) diffused from the surface to a depth of about 0.6 μm at a portion coated with the p-type impurity diffusion layer forming composition. On the other hand, neither P (phosphorus) nor B (boron) diffused to the portion where the impurity diffusion layer forming composition was not applied. The SIMS measurement was carried out using IMS-7F (AMETEK Co., Ltd. CAMECA Division) and using O 2 + and Cs + as primary ions.

[實施例2] 於實施例1中,於矽基板的整個面預先藉由濕式熱氧化法形成厚度為200 nm的矽的氧化物膜代替藉由常壓CVD法形成矽的氧化物膜而作為包含化合物的層,除此以外與實施例1同樣地進行而形成n型雜質擴散層及p型雜質擴散層。繼而,藉由氫氟酸將矽基板的表面所殘存的玻璃層除去。[Example 2] In Example 1, an oxide film of tantalum having a thickness of 200 nm was formed in advance by wet thermal oxidation on the entire surface of the tantalum substrate instead of forming an oxide film of tantalum by an atmospheric pressure CVD method. An n-type impurity diffusion layer and a p-type impurity diffusion layer were formed in the same manner as in Example 1 except that the layer containing the compound was used. Then, the glass layer remaining on the surface of the tantalum substrate is removed by hydrofluoric acid.

其次,藉由與所述同樣的SIMS測定,確認雜質於矽基板中的擴散狀態。於塗佈有n型雜質擴散層形成組成物的部分,P(磷)自表面擴散至約0.7 μm的深度。而且,於塗佈有p型雜質擴散層形成組成物的部分,B(硼)自表面擴散至約0.6 μm的深度。相對於此,P(磷)、B(硼)均未擴散至未塗佈雜質擴散層形成組成物的部分。Next, the diffusion state of the impurities in the ruthenium substrate was confirmed by the same SIMS measurement as described above. At a portion coated with the n-type impurity diffusion layer forming composition, P (phosphorus) was diffused from the surface to a depth of about 0.7 μm. Further, B (boron) diffused from the surface to a depth of about 0.6 μm at a portion coated with the p-type impurity diffusion layer forming composition. On the other hand, neither P (phosphorus) nor B (boron) diffused to the portion where the impurity diffusion layer forming composition was not applied.

[實施例3] 於矽基板的表面,藉由絲網印刷將利用實施例1中所記載的方法而製作的p型雜質擴散層形成組成物塗佈為線狀,於150℃下進行10分鐘乾燥。將其於氮中、950℃下進行10分鐘熱處理,使p型雜質擴散至矽基板中而形成p型雜質擴散層。繼而,藉由氫氟酸將矽基板表面所殘存的玻璃層除去。其後,於矽基板的形成有p型雜質擴散層的面相同之面的整個面,藉由乾式熱氧化法將矽的氧化物膜形成為200 nm的厚度而作為包含化合物的層。繼而,於矽基板的形成有p型雜質擴散層的面相同的面,以並不與p型雜質擴散層區域接觸的方式空開間隔,藉由絲網印刷而將n型雜質擴散層形成組成物塗佈為線狀,於150℃下進行10分鐘乾燥。繼而,於350℃下進行3分鐘的脫黏合劑處理。其次,於大氣中、950℃下進行10分鐘熱處理,使n型雜質擴散至矽基板中,形成n型雜質擴散層。繼而,藉由氫氟酸將矽基板的表面所殘存的玻璃層除去。[Example 3] The p-type impurity diffusion layer forming composition produced by the method described in Example 1 was applied to a surface of a tantalum substrate by wire printing, and was applied at 150 ° C for 10 minutes. dry. This was heat-treated at 950 ° C for 10 minutes in nitrogen to diffuse the p-type impurity into the ruthenium substrate to form a p-type impurity diffusion layer. Then, the glass layer remaining on the surface of the crucible substrate is removed by hydrofluoric acid. Thereafter, the oxide film of ruthenium was formed into a thickness of 200 nm by a dry thermal oxidation method over the entire surface of the tantalum substrate on which the surface of the p-type impurity diffusion layer was formed, as a layer containing a compound. Then, the surface of the tantalum substrate on which the surface of the p-type impurity diffusion layer is formed is the same, and is spaced apart from the p-type impurity diffusion layer region, and the n-type impurity diffusion layer is formed by screen printing. The material was applied in a linear form and dried at 150 ° C for 10 minutes. Then, a debonding treatment was performed at 350 ° C for 3 minutes. Next, heat treatment was performed in the air at 950 ° C for 10 minutes to diffuse n-type impurities into the ruthenium substrate to form an n-type impurity diffusion layer. Then, the glass layer remaining on the surface of the tantalum substrate is removed by hydrofluoric acid.

其次,藉由與上述同樣的SIMS測定,確認雜質於矽基板中的擴散狀態。於塗佈有n型雜質擴散層形成組成物的部分,P(磷)自表面擴散至約0.7 μm的深度。而且,於塗佈有p型雜質擴散層形成組成物的部分,B(硼)自表面擴散至約0.6 μm。相對於此,P(磷)、B(硼)均未擴散至未塗佈雜質擴散層形成組成物的部分。Next, the diffusion state of the impurities in the ruthenium substrate was confirmed by the same SIMS measurement as described above. At a portion coated with the n-type impurity diffusion layer forming composition, P (phosphorus) was diffused from the surface to a depth of about 0.7 μm. Further, B (boron) diffused from the surface to about 0.6 μm at a portion coated with the p-type impurity diffusion layer forming composition. On the other hand, neither P (phosphorus) nor B (boron) diffused to the portion where the impurity diffusion layer forming composition was not applied.

[太陽電池元件的製作] 分別藉由常規方法於實施例1~實施例3中所得的形成有n型雜質擴散層及p型雜質擴散層的矽基板的n型雜質擴散層上形成n電極,於p型雜質擴散層上形成p電極,製作背面電極型太陽電池元件。所得的背面電極型太陽電池元件均顯示出良好的光轉換特性。[Production of Solar Cell Element] An n-electrode was formed on the n-type impurity diffusion layer of the germanium substrate on which the n-type impurity diffusion layer and the p-type impurity diffusion layer were formed by the conventional methods in the first to third embodiments, respectively. A p-electrode was formed on the p-type impurity diffusion layer to fabricate a back electrode type solar cell element. The obtained back electrode type solar cell elements all exhibited good light conversion characteristics.

no

no

no

Claims (7)

一種太陽電池元件的製造方法,其包含: 在半導體基板的一個面上,經由包含化合物的層而賦予雜質擴散層形成組成物的步驟,所述雜質擴散層形成組成物含有包含n型雜質或p型雜質的玻璃粒子、分散介質; 對賦予了所述雜質擴散層形成組成物的半導體基板進行熱處理而形成雜質擴散層的熱擴散步驟; 於形成有所述雜質擴散層的區域形成電極的步驟。A method for producing a solar cell element, comprising: a step of forming a composition by providing an impurity diffusion layer on a surface of a semiconductor substrate via a layer containing a compound containing an n-type impurity or p Glass particles of a type impurity; a dispersion medium; a heat diffusion step of heat-treating a semiconductor substrate to which the composition for forming the impurity diffusion layer is formed to form an impurity diffusion layer; and forming an electrode in a region where the impurity diffusion layer is formed. 一種太陽電池元件的製造方法,其包含: 在半導體基板的一個面上的第1區域賦予n型雜質擴散層形成組成物的步驟,所述n型雜質擴散層形成組成物含有包含n型雜質的玻璃粉末、分散介質; 在所述半導體基板的設置所述第1區域的面上且所述第1區域以外的第2區域賦予p型雜質擴散層形成組成物的步驟,所述p型雜質擴散層形成組成物含有包含p型雜質的玻璃粉末、分散介質; 對賦予了所述n型雜質擴散層形成組成物及p型雜質擴散層形成組成物的半導體基板進行熱處理而形成n型雜質擴散層及p型雜質擴散層的熱擴散步驟; 分別在形成有所述n型雜質擴散層的第1區域及形成有p型雜質擴散層的第2區域形成電極的步驟;並且 將選自由所述n型雜質擴散層形成組成物及所述p型雜質擴散層形成組成物所組成的群組中的至少一者經由包含化合物的層而賦予至所述半導體基板上。A method for producing a solar cell element, comprising: a step of forming an n-type impurity diffusion layer forming composition on a first region of one surface of a semiconductor substrate, wherein the n-type impurity diffusion layer forming composition contains an n-type impurity a glass powder or a dispersion medium; a step of forming a p-type impurity diffusion layer forming composition on a surface of the semiconductor substrate on which the first region is provided and a second region other than the first region, the p-type impurity diffusion The layer forming composition contains a glass powder containing a p-type impurity, a dispersion medium, and heat-treats the semiconductor substrate to which the n-type impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition are applied to form an n-type impurity diffusion layer. And a thermal diffusion step of the p-type impurity diffusion layer; a step of forming an electrode in each of the first region in which the n-type impurity diffusion layer is formed and the second region in which the p-type impurity diffusion layer is formed; and is selected from the n At least one of the group consisting of the impurity diffusion layer forming composition and the p-type impurity diffusion layer forming composition is imparted to the semiconductor via a layer containing a compound On the body substrate. 如申請專利範圍第1項或第2項所述的太陽電池元件的製造方法,其中,所述包含化合物的層是氧化物或氮化物的層。The method for producing a solar cell element according to the above aspect, wherein the layer containing the compound is a layer of an oxide or a nitride. 如申請專利範圍第1項至第3項中任一項所述的太陽電池元件的製造方法,其中,所述n型雜質包含選自由P(磷)及Sb(銻)所組成的群組中的至少一種元素。The method for producing a solar cell element according to any one of claims 1 to 3, wherein the n-type impurity comprises a group selected from the group consisting of P (phosphorus) and Sb (锑). At least one element. 如申請專利範圍第1項至第4項中任一項所述的太陽電池元件的製造方法,其中,所述p型雜質包含選自由B(硼)、Al(鋁)及Ga(鎵)所組成的群組中的至少一種元素。The method for producing a solar cell element according to any one of claims 1 to 4, wherein the p-type impurity is selected from the group consisting of B (boron), Al (aluminum), and Ga (gallium). At least one element of the group consisting of. 如申請專利範圍第1項至第5項中任一項所述的太陽電池元件的製造方法,其中,包含所述n型雜質的玻璃粉末含有選自由P2 O3 、P2 O5 及Sb2 O3 所組成的群組中的至少一種含有n型雜質的物質,及選自由SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V2 O5 、SnO、ZrO2 、TiO2 及MoO3 所組成的群組中的至少一種玻璃成分物質。The method for producing a solar cell element according to any one of claims 1 to 5, wherein the glass powder containing the n-type impurity contains a material selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb At least one of the group consisting of 2 O 3 containing an n-type impurity, and selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO At least one glass component substance in the group consisting of CdO, V 2 O 5 , SnO, ZrO 2 , TiO 2 and MoO 3 . 如申請專利範圍第1項至第6項中任一項所述的太陽電池元件的製造方法,其中,包含所述p型雜質的玻璃粉末含有選自由B2 O3 、Al2 O3 及Ga2 O3 所組成的群組中的至少一種含有p型雜質的物質,及選自由SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V2 O5 、SnO、ZrO2 、TiO2 及MoO3 所組成的群組中的至少一種玻璃成分物質。The method for producing a solar cell element according to any one of claims 1 to 6, wherein the glass powder containing the p-type impurity contains a material selected from the group consisting of B 2 O 3 , Al 2 O 3 and Ga At least one of the groups consisting of 2 O 3 containing a p-type impurity, and selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO At least one glass component substance in the group consisting of CdO, V 2 O 5 , SnO, ZrO 2 , TiO 2 and MoO 3 .
TW104135692A 2015-10-30 2015-10-30 Method of producing photovoltaic cell element TW201715745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104135692A TW201715745A (en) 2015-10-30 2015-10-30 Method of producing photovoltaic cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104135692A TW201715745A (en) 2015-10-30 2015-10-30 Method of producing photovoltaic cell element

Publications (1)

Publication Number Publication Date
TW201715745A true TW201715745A (en) 2017-05-01

Family

ID=59367115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104135692A TW201715745A (en) 2015-10-30 2015-10-30 Method of producing photovoltaic cell element

Country Status (1)

Country Link
TW (1) TW201715745A (en)

Similar Documents

Publication Publication Date Title
TWI502753B (en) Semiconductor substrate and method for producing the same, photovoltaic cell element, and photovoltaic cell
TWI667695B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell
TWI452708B (en) Method for producing photovoltaic cell
TWI499070B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
JP6379461B2 (en) Method for manufacturing silicon substrate having p-type diffusion layer, method for manufacturing solar cell element, and solar cell element
TWI447930B (en) Method for producing photovoltaic cell
TWI603386B (en) Composition for forming n-type diffusion layer, method of producing semiconductor substrate having n-type diffusion layer, and method of producing photovoltaic cell element
TWI452707B (en) Method for producing photovoltaic cell
TWI607575B (en) Photovoltaic cell substrate, method of producing photovoltaic cell substrate, photovoltaic cell element and photovoltaic cell
TWI480929B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI482302B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW201715745A (en) Method of producing photovoltaic cell element
US20120122265A1 (en) Method for producing photovoltaic cell
TW201513178A (en) Composition for forming n-type diffusion layer, method of forming n-type diffusion layer, method of producing semiconductor substrate having n-type diffusion layer and method of producing photovoltaic cell element
TWI488222B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
JP2017139419A (en) P-type diffusion layer forming composition, method for manufacturing semiconductor substrate with p-type diffusion layer, manufacturing method for solar cell element, and solar cell element
JP2015053401A (en) Method for manufacturing semiconductor substrate having p-type diffusion layer, method for manufacturing solar battery element, and solar battery element
TW201530791A (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer and method for producing photovoltaic cell
TWI556289B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
WO2016068315A1 (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element
JP2016066771A (en) Method for manufacturing solar battery element